第三章--多维随机变量及其分布总结
第三章相互独立的随机变量(多维随机变量及其分布)
f X ( x) fY ( y), x, y R,
10:42:20
即 1 , 2 , 1 , 2 ; ), 且已知X与Y
2 2
相互独立, 由于 f ( x , y ),f X ( x ),fY ( y )都是连续函数,
故对于所有的 x , y , f ( x , y ) f X ( x ) fY ( y )成立, 特别地,取 x 1 , y 2 , 则 f ( 1 , 2 ) f X ( 1 ) fY ( 2 ),
求X与 Y的边缘分布函数,并判断X与Y是否相互 独立?
x
y
10:42:20
2
(1 e x )(1 e y ), x 0, y 0, F ( x, y) 解 其它. 0, 1 e x , x 0, F X ( x ) F ( x , ) 其它. 0, 同理 y 1 e , y 0, FY ( y ) F ( , y ) 其它. 0,
则X , Y独立的充分必要条件是 随机向量 ( X ,Y ) 有联合密度 f ( x , y ),且 f ( x , y ) f X ( x ) fY ( y )
在平面上几乎处处成立 .
这里“几乎处处成立”的含义是:在平面上 除去面积为0的集合外,处处成立.
10:42:20
9
下面考察二维正态随机变量的两个分量的 独立性. 由第二节的讨论可知,
10
f ( x, y)
1 2σ1σ 2 1 ρ
2
( X , Y ) ~ N ( 1 , 2 , 1 , 2 ; ),
2 2
1 ( x μ1 ) 2 ( x μ1 )( y μ2 ) ( y μ2 ) 2 exp 2ρ 2 2 2 σ1 σ 2 σ2 2(1 ρ ) σ1
多维随机变量及其概率分布汇总
第三章 多维随机变量及其概率分布【内容提要】一、二维随机变量及其分布函数【定义】设(),()X X Y Y ωω==是定义于随机试验E 的样本空间Ω上的两个随机变量,则称(,)X Y为二维随机变量,称()(,)(),()F x y P X x Y y ωω=≤≤为其联合分布函数,而称:()1()()F x P X x ω=≤及()2()()F y P Y y ω=≤分别为,X Y 的边缘分布函数。
二维随机变量(,)X Y 的联合分布函数(,)F x y 具有如下性质: ⑴.非负性: ,x y R ∀∈,有0(,)1F x y ≤≤;⑵.规范性: ,x y R ∀∈,有(,)(,)0,(,)1F x F y F -∞=-∞=+∞+∞=; ⑶.单调性: 当()x y 或固定不变时,(,)F x y 是()y x 或的单增函数; ⑷.右连续性: ,x y R ∀∈,有(0,0)(,)F x y F x y ++=;⑸.相容性: ,x y R ∀∈,有12(,)(),(,)()F x F x F y F y +∞=+∞=; ⑹.特殊概率: 若1212,x x y y <<,则121222122111(,)(,)(,)(,)(,)0P x X x y Y y F x y F x y F x y F x y <≤<≤=--+≥。
二、二维离散型随机变量1.二维离散型随机变量及其概率分布律若二维随机变量(,)X Y 的一切可能取值为离散值2(,)i j x y R ∈,其中,1,2,...i j =,且取到这些值的概率(,)(,)0,,1,2,...i j i j p x y P X x Y y i j ===≥=满足1,(,)1i j i j p x y ≤<+∞=∑,则称(,)X Y 为二维离散型随机变量,而称{}(,),1i j p x y i j ≥为其联合概率分布律,记为:(,)(,),,1,2,...i j X Y p x y i j =。
高等数学之多维随机变量及其分布
YX
G
2e(2 x y) d x d y 0y
G
O
x
1. 3
练习题
1. 设二 维随 机变量( X ,Y ) 具有 概率 密度
f
(
x,
y)
ce
x2
y
,
0,
x 1, y 0, 其 它.
(1) 确 定 常 数c; (2) 求P{ X 2Y 1};
2.设随机变量X和Y的联合分布函数为F (x, y), 而F1(x)和F2 ( y)分别为X和Y的分布函数,则 a,b, P{X a,Y b} B
a
3.设二维随机变量( X ,Y )的概率密度为
ey ,0 x y
f (x, y) 0,
其它
求P{X Y 1}.
解:
P{X Y 1} f (x, y)dxdy
y
y=x
G
1/2 dx 1x eydy 1 2 1
0
x
e1/ 2 e
1
0 1/2 1
x
x+y=1
4.设 二 维 随机 变 量( X ,Y )的 分 布 函数 为
例3 设二 维随 机变 量( X , Y ) 具有 概率 密度
2e (2 x y) , x 0, y 0,
f (x, y) 0,
其 它.
(1) 求分 布函 数F ( x, y); (2) 求概 率 P{Y X }.
解: (1) F ( x, y) y
x
f (u, v)d ud v
yx
F ( x, y)
f (u, v) d ud v
则 称( X ,Y )是 连 续 型 的 二 维 随 机 变量,函 数f ( x, y)
概率论与数理统计总结之第三章
第三章 多维随机变量及其分布第一节二维随机变量的概念1.二维随机变量定义:设(X,Y)是二维随机变量,记为:(,){()()}=≤⋂≤F x y P X x Y y (,)=≤≤P X x Y y (,)-∞<<∞-∞<<∞x y称(,)F x y 为X 与Y 的分布函数,或称X 与Y 的联合分布函数}}(){{(,lim (,)→+∞=≤=≤≤+∞=X y F x P X x P X x Y F x y}}(){{,lim (,)→+∞=≤=≤+∞≤=Y x F y P Y y P X Y y F x y分布函数(,)F x y 性质:1)(,)F x y 是变量x 和变量y 的不减函数,(分别关于x 和y 有单调不减性) 2)0(,)1≤≤F x y ,任意一边趋于-∞=0.F(∞,∞)=1(用来确定未知参数).3)(,)(0,)(0,0)=+=++F x y F x y F x y ,即(,)F x y 分别关于x 右连续,关于y 也右连续,4)对于任意11221212(,),(,),,,<<x y x y x x y y 下述不等式成立(可用于判定二元函数(,)F x y 是不是某二维随机变量的分布函数):22211112(,)(,)(,)(,)0-+-≥F x y F x y F x y F x y 2.二维离散型随机变量:定义:如果二维随机变量(X,Y)只取有限对或可列无穷多对,则称(X,Y)是二维离散型随机变量其概率{,},,1,2,====i i ij P X x Y y p i j …为二维离散型随机变量(X,Y)的分布律,或随机变量X 和Y 是联合分布律 性质:1.0,(i,j 1.2.....)≥=ij P2.1≤≤=∑∑i i ijx x y yp满足以上两条,即为二维离散型随机变量的分布律. 注;步骤:定取值,求概率,验证1.离散型随机变量X 和Y 的联合分布函数为(,)≤≤=∑∑i i ijx x y yF x y p,其中和式是对一切满足,≤≤i i x x y y 的i,j 来求和的边缘分布定义:对于离散型随机变量(X,Y),分量X 和Y 的分布律(), 1.2...(), 1.2..的边缘分布律:的边缘分布律:••========∑∑i i ij jJ i ij iX p P X x p i Y p P Y y p i ,0,0(, 1.2....)1•••≥≥===∑∑i j jiip p i j pi p联合确定边缘,但一般情况,边缘不能确定的联合,除非相互独立. 比如;有放回的摸球,就是X ,Y 相互独立. 不放回地摸球,是条件分布.3.二维连续型随机变量的概率密度和边缘概率密度. 对比一维的: 概率密度:()()1∞-∞==⎰f x f x dx ,分布律:{}(),≤≤=⎰b aP a x b f x dx 分布函数:()()-∞=⎰xF x f t dt二维:定义:设二维随机变量(X,Y)的分布函数为(,)F x y ,若存在非负可积函数(,)f x y ,使得对于任意实数x,y 有(,)(,)-∞-∞=⎰⎰xyF x y f u v dudv ,则称(X,Y)为二维连续型随机变量,(,)f x y 称为(X,Y)的概率密度,或联合概率密度.概率密度的性质: 1.(,)F x y ≥0 2.(,)1∞∞-∞-∞=⎰⎰f x y dxdy只要具有以下两条性质,必可作为某二维随机变量的概率密度.3.已知(X,Y)的概率密度(,)f x y ,则(X,Y)在平面区域D 内取值的概率为:{(,)}(,)∈=⎰⎰DP X Y D f x y dxdy (作二重积分)(随机点(X,Y)落在平面区域D 上的概率等于以平面区域D 为底,以曲面(,)=z f x y 顶的典顶的体积) 4.若(,)F x y 在点(x,y)连续,则有2(,)(,)∂=∂∂F x y f x y x y(连续就能根据分布律求概率密度)1) 当求()=P X Y 时,它只是一条线,所以:()0==P X Y2) 一个方程有无实根:20++=ax bx c ,即求:22240,40,40,一个实根无实根两个实根+=+<+>b ac b ac b ac均匀分布:定义:设D 为平面上的有界区域,其面积为S ,且0>S ,如果二维随机变量(X,Y)的概率密度为1,(x,y)(,)0,其它⎧∈⎪=⎨⎪⎩Df x y S,则称(X,Y)服从区域D 上的均匀分布(或叫(X,Y)在D 上服从均匀分布,记作(X,Y )D U . 两种特殊情形:1) D 为矩形,,c )≤≤≤≤a x b y d 时,1,()()(,),c )0,其它⎧⎪--=≤≤≤≤⎨⎪⎩b a dc f x y a x b y d2) D 为圆形,如(X,Y)在以原点为圆心,R 为半径的圆域上服从均匀分布,则(X,Y)的概率密度为:22221,(,))0,其它π⎧⎪=+≤⎨⎪⎩f x y x y R R定义:对连续型随机变量(X,Y),分量X,Y 的概率密度称为(X,Y)关于X 或Y 的边缘概率密度,记作(),X f x ().Y f y X 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰xX F x F x f u v dv du (让Y趋于正无穷) Y 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰yY F y F y f u v du dv (让X趋于正无穷) X 的概率密度:()(,),()∞-∞=-∞<<∞⎰X f x f x y dy xY 的概率密度:()(,),()∞-∞=-∞<<∞⎰Y f y f x y dx y(二维的边缘概率密度是直接以联合概率密度在负无穷到正无穷对对应元素积分,其间需要对划分区间的作分别积分)(X,Y)的概率密度:(,)(,)[(,)]-∞-∞-∞-∞==⎰⎰⎰⎰x yx yf x y f u v dudv f u v dv du二维正态分布: 二维正态221212(,)(,,,,)σσρX Y N u u 分布函数的性质:1.211()(,)σX N u ,222()(,)σY N u 边缘服从一维正态分布2.0,ρ=⇔xy X Y 独立(相关系数为O,则两个随机变量独立)3.212()()σ++k X k Y N u (线性组合按一维正态处理)4. 1212(),±±k X k Y c X c Y 服从二维正态(如:(,)+-X Y X Y ) 条件分布:设(X,Y)是二维离散型随机变量,对于固定的j ,若{}0=>j P Y y ,则称{=i P X x |{,}},1,2,{}⋅=======i j ij j j jP X x Y y p Y y i P Y y p …为在=j Y y 条件下随机变量X 的条件分布律同样地,若{}0,=>i P X x 则称{=j P Y y |{,}},1,2,{}⋅=======i j ij i i i P X x Y y p X x j P X x p …为=i X x 条件下随机变量Y 的条件分布律 变形,即得求联合分布律的方法.设二维随机变量(X,Y)的概率密度为f(x,y),(X,Y)关于Y 的边缘概率密度为()Y f y .若对于固定的y,()0,>Y f y 则称(,)()Y f x y f y 为在Y=y 的条件下X 的条件概率密度称|(,)(|)()-∞-∞=⎰⎰xxX Y Y f x y f x y dx dx f y 为在Y=y 的条件下,X 的条件分布函数,记为P{X ≤x|Y=y}或|(|)X Y F x y ,即|(,)(|){|}()-∞=≤==⎰x X Y Y f x y F x y P X x Y y dx f y 设F(x,y)及(),()X Y F x F y 分别是二维随机变量(X,Y)的分布函数及边缘分布函数,若对于所有x,y 有P{X ≤x,Y ≤y}=P{X ≤x}P{Y ≤y},即(,)()()=X Y F x y F x F y ,则称随机变量X 和Y 是相互独立的设(X,Y)是连续型随机变量,(,),(),()X Y f x y f x f y 分别为(X,Y)的概率密度和边缘概率密度,则X 和Y 相互独立的条件等价于(,)()()=X Y f x y f x f y 在平面上几乎处处成立(除去面积为0的集合以外,处处成立)第二节随机变量的独立性1. 两个随机变量的独立性 定义:设(,),().()X Y F x y F x F y 分别是二维随机变量(X,Y)的分布函数和两个边缘分布函数,若对任意实数,x y 有(,)().()=X Y F x y F x F y ,则称X 与Y 相互独立.可用于判断独立性(随机变量独立,对任意实数x,y,事件X ,Y ≤≤x y 相互独立) 以上公式等价于:(X ,Y )(X ).()≤≤=≤≤X Y P x y P x P Y y 可类推至多个函数的情况.1)如果X,Y 随机变量独立,().()连续f x g y ,(通过函数作用)则().()f x g y 也独立.(可类推至多个随机变量的情况)例:X,Y 独立,则22,x y 独立.2)如果1212,...,...,YYYm m X X X 相互独立,12m 121()()...()()()....()和,f x f x f x g y g y g y 也相互独立。
第三章 多维随机变量及其分布
则称X 1 , X 2 , , X n相互独立。
3.3
多维随机变量函数的分布
一、多维离散随机变量函数的分布 二、最大值与最小值的分布
三、连续场合的卷积公式
四、变量变换法
一、多维离散随机变量函数的分布
泊松分布的可加性
设X P(1 ), Y P(2 ),且X 与Y 独立,则Z X Y P(1 2 ).
二项分布的可加性
设X b(n, p), Y P(m, p),且X 与Y 独立,则Z X Y b(n m, p).
二、最大值和最小值的分布
最大值分布
设X1 , X 2 , , X n是相互独立的n个随机变量,若Y max( X1 , X 2 , , X n ), 则Y的分布称为最大值分布。
y y
0
1
U g1 ( X , Y ) V g2 ( X , Y )
则(U ,V )的联合分布函数为 p( , ) p( x( , ), y( , )) | J |
积的公式
设X 与Y 相互独立,其密度函数分别为p X ( x)和pY ( y )。则 U XY的密度函数为 pU ( )
P( X x , Y y ) P( X x ), i 1, 2,
j 1 i j i
被称为X 的边际分布列,类似地,对i求和所得的分布列
P( X x , Y y ) P(Y y ), j 1, 2,
i别地, 当n 2时( X , Y )为二维随机变量。
其联合分布函数为( F x, y) P (X x, Y y)
若F(x,y)是二维随机变量(X,Y)的分布函数, 则 它表示随机点(X,Y)落在二维区域D内的概率, 其中D 如下图所示:
第3章多维随机变量及其分布
f(x, y)
1
e ,
1 2(12
[ )
(
x1 12
)2
2
(
x1 )(y 12
2
)
(
y
2 22
)2
]
212 1 2
其中,1、2为实数,1>0,2>0, | |<1,则称(X, Y) 服从参数1,2, 1, 2, 的二维正态分布,可记为
元函数f(Dx1,x2,x.1.,...x. nx)n使 :得a对1 任x意的bn1元,...立a方n 体x bn
有
PX1...X n D
...
D
f (x1, x2 ,...xn )dx1...dxn
则称(X1,X2,...Xn)为n维连续型随机变量,称f(x1,x2,...xn) 为(X1,X2,...Xn)的概率密度。
A6
1
(2)F (1,1) 16e(2x3y)dxdy (1 e2 )(1 e3) 0 0
(3) (X, Y)落在三角形区域D:x0, y0, 2X+3y6 内的概率。
解 P{(X ,Y ) D} 6e(2x3y)dxdy
D
3 22x3
dx 6e(2x3y)dy
F ( x,) lim F ( x, y) 0 y
(2)单调不减 对任意y R, 当x1<x2时, F(x1, y) F(x2 , y); 对任意x R, 当y1<y2时, F(x, y1) F(x , y2).
(3)右连续 对任意xR, yR,
F(x,
y0
0)
... ... ... ... ... ...
第三章多维随机变量及其分布
第三章多维随机变量及其分布第三章多维随机变量及其分布在许多随机试验中,需要考虑的指标不⽌⼀个。
例如,考查某地区学龄前⼉童发育情况,对这⼀地区的⼉童进⾏抽样检查,需要同时观察他们的⾝⾼和体重,这样,⼉童的发育就要⽤定义在同⼀个样本空间上的两个随机变量来加以描述。
⼜如,考察礼花升空后的爆炸点,此时要⽤三个定义在同⼀个样本空间上的随机变量来描述该爆炸点。
在这⼀章中,我们将引⼊多维随机变量的概念,并讨论多维随机变量的统计规律性。
1.⼆维随机变量及其分布在这⼀节中.我们主要讨论⼆维随机变量及其概率分布,并把它们推⼴到n维随机变量。
1.⼆维随机变量及其分布函数1.⼆维随机变量定义3.1 设Ω ={ω }为样本空间,X=X(ω )和Y=Y(ω )是定义在Ω上的随机变量,则由它们构成的⼀个⼆维向量(X,Y)称为⼆维随机变量或⼆维随机向量.⼆维向量(X,Y)的性质不仅与X及Y有关,⽽且还依赖于这两个随机变量的相互关系。
因此,逐个讨论X和Y的性质是不够的,需把(X,Y)作为⼀个整体来讨论。
随机变量X常称为⼀维随机变量。
2. ⼆维随机变量的联合分布函数与⼀维的随机变量类似,我们也⽤分布函数来讨论⼆维随机变量的概率分布。
定义3.2 设(X,Y)是⼆维随机变量,x,y为任意实数,事件(X≤x)和(Y≤y)的交事件的概率称为⼆维随机变量(X,Y)的联合分布或分布函数,记作F(x,y),即若把⼆维随机变量(X,Y)看成平⾯上随机点的坐标,则分布函数F (X,Y)在(x,y)处的函数值就是随机点(X,Y)落⼊以(x,y)为定点且位于该点左下⽅的⽆穷矩形区域内的概率(见图3-1)。
⽽随机点(X,Y) 落在矩形区域内的概率可⽤分布函数表⽰(见图3-2)分布函数F (x,y)具有以下的基本性质。
(1) 0≤F (x,y)≤1.对于任意固定的x和y,有(2) F (x,y)是变量x或y的单调不减函数,即对任意固定的y,当x2 ≥x1时,;对任意固定的x,当y2 ≥y1时,。
第三章多维随机变量及其分布知识点梳理
第三章多维随机变量及其分布知识点梳理1. 联合分布函数与边缘分布函数之间的关系:_______________。
2. 联合分布函数的性质:(1)._______________。
(2)._____________________________________。
(3)._____________________________________。
(4)._____________________________________。
(5).________________________________________________。
3. 二维随机变量的相关性质:4.____________________。
5. 随机变量的分布:(1).和分布:___________________________________________。
当X 与Y 独立时,________________________________。
(2).商分布:___________________________________________。
当X 与Y 独立时,________________________________。
(3).极值分布:M=max{x,y}:________________________________________。
N=min{x,y}:________________________________________。
一个前提:_________________________。
6. 常见的二维分布:(1).二维均匀分布:_______________________________________。
(2).二维正态分布:________________________________________。
7. 分布的可加性:(1).X~B(m,p),Y~B(n,p),且X 与Y 相互独立,则X+Y~___________。
3.3-多维随机变量及其分布
f X|Y ( x | y)
f (x, y) fY ( y)
称为随机变量X 在Y y的条件下的条件密度函数.
fY X y
x
f (x, y)
fX x
称为随机变量Y 在 X x的条件下的条件密度函数.
条件密度函数的性质
性质1 对任意的 x,有 fX Y x y 0
性质 2 fX Y x ydx 1 简言之,fX Y x y是密度函数.
和的分布:Z = X + Y 二、连续型分布的情形
设X和Y的联合密度为 f (x,y),求Z=X+Y的密度
Z=X+Y的分布函数是: FZ(z)=P(Z≤z)=P(X+Y ≤ z)
f (x, y)dxdy
D
这里积分区域D={(x, y): x+y ≤z}
是直线x+y =z 左下方的半平面.
FZ (z) f (x, y)dxdy
(3) F (, y) 0, F ( x,) 0 F (,) 0, F (,) 1
(4)关于x或y右连续
(5)对 x1 x2 , y1 y2 ,有
P(x1 X x2, y1 Y y2 )
F ( x2 , y2 ) F ( x1, y2 ) F ( x1, y1 ) F ( x2 , y1) 0
二维随机变量(X,Y) 离散型
X和Y 的联合概率分布列
P(X xi ,Y yj) pij,
i, j =1,2, …
pij 0, i, j 1,2,
pij 1
ij
一维随机变量X 离散型
X的概率分布列
P(Xxk) pk,
k=1,2, …
pk 0, k=1,2, …
pk1
【学习】第三章多维随机变量
fX(x)f(x,y)dy,
fY(y)f(x,y)dx
结 束
19
例1: 设 (X, Y) 的分布函数为:
F (x ,y ) a ( b arx ) c c (a ta ry n ) c,( t a x ,y n ) ,
2
2
试求 (1) a 、 b、c , (2) (X, Y ) 的概率密度.
x2 … xi … p21 … pi 1 … ┇…┇…
yj p1 j p2 j … pi j … ┇ ┇ ┇ …┇ …
( X, Y ) 的分布律的性质: (1) 非负性 pi j 0,
(2) 归一性 pi j 1
ij
结 束
10
( X, Y ) 的分布律
P {X x i,Y yj} p ij,i,j 1 ,2 ,
第三章 多维随机变量及其分布
结 束
1
到现在为止,我们只讨论了一维随机变量及其分布. 但有些随机现象用一个随机变量来描述还不够,而 需要用几个随机变量来描述.
如: 在打靶时, 命中点的位置是由 一对随机变量(两个坐标)来确定的.
飞机的重心在空中的位置是由 三个随机变量(三个坐标)来确定 的等等.
因而需进一步讨论由多个随机变量构成的随机向量. 其处理思路及方法与一维情形相同, 但形式较一维 复杂; 学习时应注意与一维情形的对照.
D的可能取值 为1, 2, 3, 4; F 的可能取值 为0, 1, 2 ;
再确定取值的概率,如: P{D1,F0}P{N1} 1/ 6,
P{D2,F1} P ( { N 2 }{ N 3 }{ N 5 } 3 / 6
等等.
可得D 和 F 的 联合分布律及 边缘分布律为:
FD 1 2 0 1/6 0 1 0 3/6
考研概率统计--多维随机变量及其分布笔记
若G为矩形,服从均匀;推:X服从均匀,Y服从均匀,X,Y独立立
2)二二维正态分布(the special one)
1.定义;
Note:1.淡化公式,强调性质
2.规律律:e的-x2,e的-y2,e的-xy
2.性质:
(1)联合可以推边缘;边缘不不能推联合
(2)(aX+bY,cX+dY)服从二二维正态分布(利利用用卷积公式证明)(只要求 5个参数即可)(联合的线性仍然正态)
(3)aX+bY服从正态(只要求2个参数)(二二维推一一维线性依然是正态的)
(4)X和Y相互独立立互推p=0(独立立性仅有数字特征决定)
四 二二维随机变量量函数的分布
1.二二维离散型:已知联合概率分布律律,求Z=g(X,Y)
第三章 多维随机变量量及其分布
知识点:一一 二二维随机变量量及其分布函数 二二 二二维离散型随机变量量 三 二二维连续型随机变量量 四 二二维随 机变量量函数的分布
一一 ห้องสมุดไป่ตู้二维随机变量量及其分布函数
1.二二维随机变量量就是一一个(X,Y)向量量
2.二二维随机变量量的联合分布函数
1)X,Y取积;
2)在离散型上的体现(1.出现0,一一定不不独立立;2.行行行或列列成比比例例)
三 二二维连续型随机变量量(积分积出来的就是连续的)
1.定义:概率密度积分(二二重积分)
2.联合概率密度
1)性质:1.非非负性;2.规范性
2)应用用:求P,就是求二二重积分
在f(x,y)的连续点上,分布求二二阶倒数就是概率密度
方方法:枚举,合并(相同量量合并)
Note:当然还有二二维
最新第三章--多维随机变量及其分布总结
精品文档第三章 多维随机变量及其分布第一节 二维随机变量一、二维随机变量的分布函数设E 是一个随机试验, 它的样本空间是S . 设X 、Y 是定义在S 上的随机变量, 则由它们构成的一个向量(X , Y )称为二维随机向量或二维随机变量.一般地, (X , Y )的性质不仅与X 有关, 与Y 有关, 而且还依赖于X 、Y 的相互关系, 因此必须把(X , Y )作为一个整体来研究.首先引入(X , Y )的分布函数的概念.定义 设(X , Y )为二维随机变量, 对于任意实数x 、y , 二元函数F (x , y ) = P {(X ≤ x )∩(Y ≤ y )}= P {X ≤ x , Y ≤ y }称为二维随机变量(X , Y )的分布函数, 或称为随机变量X 和y 的联合分布函数.分布函数F (x , y )表示事件(X ≤ x )与事件(Y ≤ y )同时发生的概率. 如果把(X , Y )看成平面上具有随机坐标(X , Y )的点, 则分布函数F (x , y )在(x , y )处的函数值就是随机点(X , Y )落在平面上的以(x , y )为顶点而位于该点左下方的无限矩形内的概率..由上面的几何解释, 容易得到随机点(X , Y )落在矩形区域{x 1 < X ≤ x 2, y 1 < Y ≤ y 2}的概率为P {x 1 < X ≤ x 2, y 1 < Y ≤ y 2} = F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1)(1)与二元函数类似, 二元分布函数F (x , y )也具有如下一些性质:1︒ F (x , y )是变量x 和y 的单调不减函数, 即当x 1 < x 2时, F (x 1, y ) ≤ F (x 2, y ); 当y 1 < y 2时, F (x , y 1) ≤ F (x , y 2). 2︒ 0 ≤ F (x , y ) ≤ 1, 且F (-∞, y ) = 0, F (x , -∞) = 0, F (-∞,-∞) = 0, F (+∞,+∞) = 1.(凡含-∞的概率分布为0) 3︒ F (x , y )关于x 和y 都是右连续的, 即F (x + 0, y ) = F (x , y ), F (x , y + 0) = F (x , y ).4︒ 对任意的(x 1, y 1)、(x 2, y 2), x 1 < x 2, y 1 < y 2, 有F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) ≥ 0.注: 二元分布函数具有性质1︒~ 4︒, 其逆也成立(2︒中0 ≤ F (x , y ) ≤ 1可去), 即若二元实值函数F (x , y )(x ∈ R , y ∈ R )满足1︒~ 4︒, 则F (x , y )必是某二维随机变量的(X , Y )的分布函数. 其中4︒是必不可少的, 即它不能由1︒~ 3︒推出(除去0 ≤ F (x , y ) ≤ 1). 二、二维离散型随机变量如果二维随机变量(X , Y )的所有可能取的值是有限对或可列无限多对, 则称(X , Y )是二维离散型随机变量.设二维离散型随机变量(X , Y )所有可能取的值为(x i , y j ) (i , j = 1, 2, 3, …). 记P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)则由概率定义有 p ij ≥ 0;111=∑∑∞=∞=i j ijp.我们称P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)为二维离散型随机变量(X , Y )的分布律(概率分布)或随机变量X 和Y 的联合分布律, (X , Y )的分布律也可用表格表示. 其分布函数为=),(y x F ∑∑≤≤==x x yy jii j y Y x X P },{=∑∑≤≤x x yy iji j p这里∑∑≤≤x x yy i j 表示对一切x i ≤ x , y j ≤ y 的那些指标i 、j 求和.例1 一个口袋中有三个球, 依次标有1、2、2, 从中任取一个, 不放回袋中, 再任取一个. 设每次取球时,精品文档各球被取到的可能性相等, 以X 、Y 分别记第一次和第二次取到的球上标有的数字, 求X 、Y 的联合分布律与分布函数..解: (X , Y )的可能取值为(1, 2)、(2, 1)、(2, 2). P {X = 1, Y = 2}= P {X = 1}P {Y = 2 / X = 1}=312231=⋅. 同理, 有 P {X = 2, Y = 1}=31 , P {X = 2, Y = 2}=31. 即(X , Y )的分布律如右表所示.当x < 1, 或y < 1时, F {x , y } = 0; 当1 ≤ x < 2, 1 ≤ y <2时, F {x , y } = 0;当1 ≤ x < 2, y ≥ 2时, F {x , y } = =+1211p p 31; 当x ≥ 2, 1 ≤ y <2时, F {x , y } ==+2111p p 31; 当x ≥ 2, y ≥ 2时, F {x , y } = 1.所以, (X , Y )的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>>⎩⎨⎧<≤≥⎩⎨⎧≥<≤⎩⎨⎧<≤<≤<<=.2,2,1,21,22,21,31,21,2111,0),(y x y x y x y x y x y x F 或或或三、二维连续型随机变量设二维随机变量(X , Y )的分布函数为F {x , y }, 若存在非负函数f (x , y ), 使对任意的x 、y 有⎰⎰∞-∞-=y x dudv v u f y x F ),(),(,则称(X , Y )为连续型的二维随机变量, f (x , y )称为二维连续型随机变量(X , Y )的概率密度, 或称随机变量X 、Y 的联合概率密度.概率密度f (x , y )具有以下性质: 1︒ f (x , y ) ≥ 0; 2︒1),(),(=+∞+∞=⎰⎰∞+∞-∞+∞-F dxdy y x f3︒ 若f (x , y )在点(x , y )处连续, 则有),(),(2y x f yx y x F =∂∂∂ 4︒ 设G 是xOy 平面上的一个区域, 则点(X , Y )落在G 内的概率为⎰⎰=∈Gdxdy y x f G Y X P ),(}),{( (2)例2 设二维连续型随机变量(X , Y )的概率密度为⎩⎨⎧>>=+-.,0,0,0,2),()(其它y x Ae y x f y x求: (1) 系数A ; (2) 分布函数F (x , y ); (3) 概率P {(X , Y )∈D }, 其中D : x ≥ 0, y ≥ 0, x + y ≤ 1.解: (1) 由1),(=⎰⎰∞+∞-∞+∞-dxdy y x f , 得21=A .精品文档(2) ⎰⎰∞-∞-+-=yxy x dxdy e y x F )(),(=⎪⎩⎪⎨⎧>>⎰⎰+-,,0,0,0,00)(其它y x dxdy e yxy x =⎩⎨⎧>>----.,0,0,0),1)(1(其它y x e e yx (3) edxdy e e dxdxdy y x f Y X P xy x D21),()},{(101-===⎰⎰⎰⎰---. 例3 设二维连续型随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧≤≤≤≤+=,,0,20,10,3),(2其它y x xy x y x f , 求P {Y ≥ X }. 解: P {Y ≥ X }=2417)3(),(221=+=⎰⎰⎰⎰≤xxy dy xy x dxdxdy y x f . 以上关于二维随机变量的讨论, 不难推广到n (n > 2)维随机变量的情形. 一般地, 设E 是一个随机试验,它的样本空间为S , 设X 1、X 2、…、X n 是定义在S 上的随机变量, 则由它们构成的一个n 维向量(X 1, X 2, …, X n )称为n 维随机向量或n 维随机变量.对任意n 个实数x 1、x 2、…、x n , n 元函数F (x 1, x 2, …, x n ) = P {X 1 ≤ x 1, X 2 ≤ x 2, …, X n ≤ x n }称为n 维随机变量(X 1, X 2, …, X n )的分布函数或随机变量(X 1, X 2, …, X n )的联合分布函数, 它具有与二元分布函数类似的性质.第二节 边 缘 分 布设(X , Y )是二维随机变量, 其分布函数为F (x , y ), 事件{X ≤ x }即为{ X ≤ x , Y < +∞}, 从而由(X , Y )的分布函数可定出X 的分布函数, 记为F X (x ).F X (x ) = P {X ≤ x } = P { X ≤ x , Y < +∞} = F (x , +∞)=),(lim y x F y +∞→.我们称F X (x )为关于X 的边缘分布函数. 类似的可定义关于Y 的边缘分布函数为F Y (y ) = P {Y ≤ y } = P {X < +∞, Y ≤ y }= F (+∞, y ) = ),(lim y x F x +∞→.一、离散型设(X , Y )为二维离散型随机变量, 其分布律为P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …), 则∑∑≤∞==+∞=x x j ijX i px F x F 1),()(, ∑∑≤∞==+∞=y y i ijY i py F y F 1),()(.从而X 与Y 的分布律分别为 ∑∞===1}{j iji px X P , i = 1, 2, …; ∑∞===1}{i ijj py Y P , j = 1, 2, …;记=⋅i p ∑∞===1}{j iji px X P , i = 1, 2, …;=⋅j p ∑∞===1}{i ijj py Y P , j = 1, 2, ….分别称p i ⋅和p ⋅ j 为(X , Y )关于X 与Y 的边缘分布律.注: 1︒ 边缘分布律具有一维分布律的一般性质. 2︒ 联合分布律唯一决定边缘分布律, 反之不然. 二、连续型设二维连续型随机变量(X , Y )的概率密度为f (x , y ), 由精品文档⎰⎰∞-∞+∞-=+∞=xX dx dy y x f x F x F ]),([),()(;⎰⎰∞-∞+∞-=+∞=yY dy dx y x f y F y F ]),([),()(.知X 与Y 都是连续型随机变量. 它们的概率密度分别为⎰∞+∞-=dy y x f x f X ),()(;⎰∞+∞-=dx y x f y f Y ),()(.称f X (x )与f Y (y )分别为(X , Y )关于X 与Y 的边缘概率密度.例2 设D 是平面上的有界区域, 其面积为A , 若二维随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧∈=,,0,),(,1),(其它D y x Ay x f 则称(X , Y )在D 上服从均匀分布.现(X , Y )在以原点为中心、1为半径的圆域上服从均匀分布, 求边缘概率密度. 解: 由1),(=⎰⎰∞+∞-∞+∞-dxdy y x f , 得A = π.当|x | < 1时, ⎰∞+∞-=dy y x f x f X ),()(21112122x dy x x-==⎰---ππ; 当|x | ≥ 1时, f X (x ) = 0, 即⎪⎩⎪⎨⎧≥<-=.1,0,1,12)(2x x x x f X π同理可得, ⎪⎩⎪⎨⎧≥<-=.1,0,1,12)(2y y y y f Y π例3 设二维随机变量(X , Y )的概率密度为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡-+------⋅-=2222212121212221)())((2)()1(21exp 121),(σμσσμμρσμρρσπσy y x x y x f ⎪⎪⎭⎫ ⎝⎛+∞<<∞-+∞<<∞-y x . 其中μ1、μ2、σ1、σ2、ρ 都是常数, 且σ1 > 0, σ2 > 0, -1 < ρ < 1. 我们称(X , Y )为服从参数为μ1、μ2、σ1、σ2、ρ的二维正态分布, 试求二维正态随机变量的边缘概率密度.解: 令m = ⎥⎦⎤⎢⎣⎡-+----222221212121)())((2)(σμσσμμρσμy y x x2121212122121221212222)()()())((2)(σμσμρσμρσσμμρσμ-+---+----=x x x y x y2121221122)()1(σμρσμρσμ--+⎥⎦⎤⎢⎣⎡---=x x y . 所以, ⎰∞+∞-=dy y x f x f X ),()(=⎰∞+∞----dy e m )1(22212121ρρσπσ精品文档⎰∞+∞-⎥⎦⎤⎢⎣⎡--------=dy e ex y x 2112222121)1(212)(221121σμρσμρσμρσπσ.令⎪⎪⎭⎫ ⎝⎛----=1122211σμρσμρx y t , 则dt dy 221σρ⋅-=, 从而, 22222)1(211212211222ρσπσρσμρσμρ-=⋅-=⎰⎰∞+∞--∞+∞-⎥⎦⎤⎢⎣⎡-----dt edy e t x y . 所以, 21212)(121)(σμσπ--=x X ex f (+∞<<-∞x ). 同理可得, 22222)(221)(σμσπ--=y Y e y f (+∞<<-∞y ).表明, ),(~211σμN X , ),(~222σμN Y . 此例说明, 二维正态随机变量(X , Y )中的X 、Y 都服从正态分布, 并且与参数ρ 无关. 所以对于确定的μ1、μ2、σ1、σ2而取不同的ρ, 对应了不同的二维正态分布, 但是其中每个随机变量都分别服从相同的正态分布. 因此, 仅由关于X 和Y 的边缘概率密度(分布), 一般不能确定X 和Y 的联合概率密度(分布).第四节 相互独立的随机变量我们知道, 两事件A 、B 相互独立的充要条件是 P (AB ) = P (A )P (B )由此我们引进随机变量相互独立的定义.定义 设F (x , y )及F X (x )、F Y (y )分别是二维随机变量(X , Y )的分布函数及边缘分布函数, 若对于所有的x 、y , 有 P {X ≤ x , Y ≤ y } = P {X ≤ x } P {Y ≤ y }, 即F (x , y ) = F X (x )F Y (y ) (1) 则称随机变量X 和Y 是相互独立的.可见, 在随机变量X 和Y 相互独立的情况下, 由关于X 和Y 的边缘分布函数就唯一地确定(X , Y )的联合分布函数, 而且还可推得}{},{}/{x X P x X y Y P x X y Y P ==≤==≤}{},{lim0x x X x P x x X x y Y P x ∆+≤≤∆+≤≤≤=→∆),(),(),(),(lim0+∞-+∞∆+-∆+=→∆x F x x F y x F y x x F x)()()()()()()()(lim0+∞-+∞∆+-∆+=→∆Y X Y X Y X Y X x F x F F x x F y F x F y F x x F )()()()]()([lim 0x F x x F y F x F x x F XX Y X X x -∆+-∆+=→∆= F Y (y ) =P {Y ≤ y }.这就是说在X 和Y 相互独立的情况下条件分布与边缘分布相同, 即条件分布化成了无条件分布. 一、离散型设二维离散型随机变量(X , Y )的联合分布律为P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …),(X , Y )关于X 和关于Y 的边缘分布律分别为精品文档=⋅i p ∑∞===1}{j iji px X P , i = 1, 2, …;=⋅j p ∑∞===1}{i ijj py Y P , j = 1, 2, ….则X 和Y 相互独立的充要条件是P {X = x i , Y = y j } = P {X = x i } P {Y = y j }, 即p ij =⋅i p j p ⋅(2)二、连续型设二维连续型随机变量(X , Y )的联合概率密度为f (x , y ), 关于X 和Y 的边缘概率密度为f X (x )和f Y (y ), 则X 和Y 相互独立的充要条件是等式 f (x , y ) = f X (x ) f Y (y ) (3) 几乎处处成立.例3 设(X , Y )服从二维正态分布, 即其联合概率密度为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡-+------⋅-=2222212121212221)())((2)()1(21exp 121),(σμσσμμρσμρρσπσy y x x y x f ⎪⎪⎭⎫ ⎝⎛+∞<<∞-+∞<<∞-y x . 证明: X 和Y 相互独立的充要条件是ρ = 0.例4 若(X , Y )的联合概率密度为⎩⎨⎧≥≥=+-,,0,0,0,),()(其它y x e y x f y x 则X 和Y 相互独立.证: 显然⎩⎨⎧≥=-,,0,0,)(其它x e x f x X ⎩⎨⎧≥=-,,0,0,)(其它y e y f y Y 故有f (x , y ) = f X (x ) f Y (y ). 从而X 和Y 相互独立.例5 设X 与Y 是两个相互独立的随机变量, X 在[0, 0.2]上服从均匀分布, Y 的概率密度为⎩⎨⎧≥=-,,0,0,5)(5其它y e x f y Y试求: (1) X 与Y 的联合概率密度;(2) P {Y ≤ X }.解: (1) 由已知条件, 得⎩⎨⎧≤≤=,,0,2.00,5)(其它x x f X 从而得X 与Y 的联合概率密度为⎩⎨⎧≥≤≤=-.,00,2.00,25),(5其它y x e y x f y(2) P {Y ≤ X }= P {Y - X }⎰⎰≥-=),(y x dxdy y x f ,积分区域如图, 化成二次积分后得⎰⎰≈=⎥⎦⎤⎢⎣⎡=≤-2.00103679.0),(}{e dx dy y x f X Y P x .以上关于二维随机变量的一些概念, 很容易推广到n 维随机变量的情形.设n 维随机变量(X 1, X 2, …, X n )的联合分布函数为F (x 1, x 2, …, x n ), 若存在非负函数f (x 1, x 2, …, x n ), 使得对于任意实数x 1、x 2、…、x n , 有精品文档F (x 1, x 2, …, x n ) =⎰⎰⎰∞-∞-∞--n n x x x n n dx dx dx x x x f 112121),,,(,则称f (x 1, x 2, …, x n )为n 维随机变量(X 1, X 2, …, X n )的联合概率密度.称),,,()(111+∞+∞= x F x F X , ),,,,(),(2121,21+∞+∞= x x F x x F X X , …为关于X 1, (X 1, X 2), …的边缘分布函数, ⎰⎰⎰∞+∞-∞+∞-∞+∞-=n n X dx dx dx x x x f x f32211),,,()(1, ⎰⎰⎰∞+∞-∞+∞-∞+∞-=n n X X dx dx dx x x x f x x f432121,),,,(),(21, …为关于X 1, (X 1, X 2), …的边缘概率密度.若对于所有的x 1、x 2、…、x n , 有F (x 1, x 2, …, x n ))()()(2121n X X X x F x F x F n =, 则称X 1, X 2, …, X n 是相互独立的, 对离散型即连续型随机变量, 也有类似的结论. 若对于所有的x 1、x 2、…、x m ; y 1、y 2、…、y n , 有F (x 1, x 2, …, x m ; y 1, y 2, …, y n ) = F 1 (x 1, x 2, …, x m ) F 2 (y 1, y 2, …, y n )其中F 1、F 2和F 依次为(X 1, X 2, …, X m )、(Y 1, Y 2, …, Y n )和(X 1, X 2, …, X m ; Y 1, Y 2, …, Y n )的分布函数, 则称随机变量(X 1, X 2, …, X m )和(Y 1, Y 2, …, Y n )是相互独立的.定理 设随机变量(X 1, X 2, …, X m )和(Y 1, Y 2, …, Y n )相互独立, 则X i (i = 1, 2, …, m )与Y j (j = 1, 2, …, n )相互独立. 又若h 、g 是连续函数, 则h (X 1, X 2, …, X m )和g (Y 1, Y 2, …, Y n )也相互独立.第三节、条件分布离散型:在已知X=x i 的条件下,Y 取值的条件分布为;∙===i ij i j p p x X y Y P )|(在已知Y=y j 的条件下,X 取值的条件分布为,)|(jij j i p p y Y x X P ∙===连续型:在已知Y=y 的条件下,X 的条件分布密度为)(),()|(y f y x f y x f Y =; 在已知X=x 的条件下,Y 的条件分布密度为)(),()|(x f y x f x y f X =例3.9: 设二维连续型随机变量(X ,Y )在区域D 上服从均匀分布,其中},1||,1|:|),{(≤-≤+=y x y x y x D 求X 的边缘密度()X f x 和X 的边缘密度()Y f y精品文档解:1,(,)20,.Df x y ⎧⎪=⎨⎪⎩其他111111,10;21()(,)1,01;20,.x x x X x dy x x f x f x y dy dy x x +--+∞+-∞-⎧=+-<<⎪⎪⎪===-<<⎨⎪⎪⎪⎩⎰⎰⎰-其他例3.10 设在一段时间内进入某一商店的顾客人数X 服从泊松分布()P λ,每个顾客购买某种商品的概率为p ,并且每个顾客是否购买某种商品相互独立,求进入商店的顾客购买该种商品的人数Y 的分布列。
概率论第三章
例2.一袋中有四个球,上面分别标有数字1,2,2,3.从 袋中任取一球后不放回,再从袋中任取一个球,以 X , Y 分别表示第一、二次取得的球上标有的数字,求 ( X , Y ) 的分布律。 解 X , Y 可能取值均为1,2,3.
p11 P{ X 1, Y 1}
p12 P{ X 1, Y 2}
F (,) 1.
③ 关于 右连续,即
例1. 设 ( X , Y ) 的分布函数为
x y F ( x , y ) A( B arctan )(C arctan ) 3 4 求常数 A, B, C 的值及概率 P{ X 3, Y 4}. 9 F (3, 4) 解 由分布函数的性质
第三章 多维随机变量及其分布
一、二维随机变量
二、边缘分布
三、相互独立的随机变量 四、两个随机变量的函数的分布
第一节
二维随机变量
定义1 设随机试验 的样本空间是 设 和 是定义在 上的随机变量,则由它们构成的一 个向量 定义2 设 二元函数 称为二维随机变量或二维随机向量。 是二维随机变量,对于任意实数
16
一、二维离散型随机变量
定义: 若二维随机变量 ( X , Y ) 的所有可能取值 ( xi , y j ),
i, j 1, 2, 是有限对或可列无限多对时,则称 ( X , Y ) 为 离散型随机变量。
P{ X xi , Y y j } pi j (i , j 1 , 2 , )
若存在 f ( x, y) 0 , 使得对任意实数 x , y , 总有
F ( x, y )
y
x
f (u , v )dudv
则称 ( X , Y ) 为二维连续型随机变量, f ( x, y ) 称为 ( X , Y ) 的 概率密度,或称为随机变量 X 和 Y的联合概率密度。 f (x,y)的性质: ① f ( x, y ) 0 ②
第三章 多维随机变量及概率分布
第三章多维随机变量及概率分布3.1二维随机变量的概念3.1.1二维随机变量及其分布函数到现在为止,我们只讨论了一维随机变量及其他布,但有些随机现象用一个随机变量来描述还不够,而需要用几个随机变量来描述。
例如,在打靶时,以靶心为原点建立直角坐标系,命中点的位置是由一对随机变量(X,Y)(两个坐标)来确定的。
又如考察某地区的气候,通常要考察气温X,风力Y,这两个随机变量,记写(X,Y)。
定义3.12个随机变量X,Y组成的整体Z=(X,Y)叫二维随机变量或二维随机向量。
定义3.2(1)二元函数F(x,y)=P(X≤x,Y≤y)叫二维随机变量(X,Y)的联合分布函数,简称分布函数。
记作(X,Y)~F(x,y)。
(2)二维随机变量(X,Y)中,各分量X,Y的分布函数叫二维随机变量(X,Y)的边缘分布函数。
因为X<+∞,Y<+∞即-∞<X<+∞,-∞<Y<+∞,分别表示必然事件,所以有X~F x(x)=P(X≤x)=P(X≤x,Y<+∞)=F(x,+∞)Y~F Y(y)=P(Y≤y)=P(x<+∞,Y≤y)=F(+∞,y)公式可见X,Y的边缘分布可由联合分布函数求得。
3.1.2二维离散型随机变量定义3-3若二维随机变量(X,Y)只取有限多对或可列无穷多对(x i,y j),(i,j=1,2,…),则称(X,Y)为二维离散型随机变量。
设二维随机变量(X,Y)的所有可能取值为(x i,y j)(i,j=1,2,…),(X,Y)在各个可能取值的概率为:P{X=x i,Y=y j}=P ij(i,j=1,2,…),称P{X=x i,Y=y j}=P ij(i,j=1,2,…)为(X,Y)的分布律。
(X,Y)的分布律还可以写成如下列表形式:(X,Y)的分布律具有下列性质:(1)p ij≥0(i,j=1,2,…);(2)反之,若数集{P ij}(i,j=1,2,…)具有以上两条性质,则它必可作为某二维离散型随机变量的分布律。
概率论与数理统计讲义第三章 多维随机变量及其分布
第三章多维随机变量及其分布随机向量的定义:随机试验的样本空间为S={ω},若随机变量X1(ω),X2(ω),…,X n(ω)定义在S上,则称(X1(ω),X2(ω),…,X n(ω))为n维随机变量(向量)。
简记为(X1,X2,…,X n)。
二维随机向量(X,Y),它可看作平面上的随机点。
对(X,Y)研究的问题:1.(X,Y)视为平面上的随机点。
研究其概率分布——联合分布率、联合分布函数、联合概率密度;Joint2.分别研究各个分量X,Y的概率分布——边缘(际)分布律、边缘分布函数、边缘概率密度;marginal3.X与Y的相互关系;4.(X,Y)函数的分布。
§ 3.1 二维随机变量的分布一.离散型随机变量1.联合分布律定义3.1 若二维随机变量(X,Y)可能取的值(向量)是有限多个或可列无穷多个,则称(X,Y) 为二维离散型随机变量。
设二维离散型随机变量(X,Y)可能取的值(x i,y j), i,j=1,2…,取这些值的概率为p ij=P{(X,Y)=(x i,y i)}=p{X=x i,Y=y i}i, j=1,2,…——(3.1)称 (3.1)式为(X,Y)的联合分布律。
(X,Y)的联合分布律可以用表格的形式表示如下:性质:(1) p ij ≥ 0,i, j=1,2,… (2) ∑ji ij p ,=12.边缘分布律设二维离散型随机变量(X,Y) 的联合分布律为p ij = P{X=x i ,Y=y i } i, j=1,2,…分量X 和Y 的分布律分别为 p i.=P{X=x i } i=1,2,… 满足①p i.≥0②∑ p i.=1p .j = p{Y=y i }j=1,2,… ①p .j ≥0②∑ p .j =1我们称p i.和p .j 分别为(X,Y)关于X 和Y 的边缘分布律,简称为(X,Y)的边缘分布律。
二维离散型随机变量(X,Y) 的联合分布律与边缘分布率有如下关系: p i.=P{X=x i }=P{X=x i , S}=P{X=x i ,∑(Y=y j )}=j∑P{X=x i ,Y=y j }=j∑p ij (3.4) 同理可得 p .j =i∑p ij(3.5)例1:一整数X 随机地在1,2,3三个整数中任取一值,另一个整数Y随机地在1到X中取一值。
概率论与数理统计第三章多维随机变量及其分布第二节边缘分布
24 5
y(2
f
0
x,
x), 0 x 1,0 , 暂时固定其它
ydy
y
x
y
当 x 1或 x 0时,y ,,
x
概率论
y x
都有 f x, y 0,故 fX x 0 . x 0 x 1 x x
当 0 x 1时,
fX
x
0
f
x,
y dy
x
0
f
x,
y dy
x
f
x,
y dy
一、边缘分布函数 (marginal distribution)
概率论
二维随机变量 (X, Y) 作为一个整体, 具有分布函数 F(x, y), 而 X 和 Y 都是随机变量, 也有各自的分布函数, 分别记为 FX(x), FY(y), 依次称为二维随机变量 (X, Y) 关于 X 和 Y 的边缘分布函数.
FX x PX x PX x,Y F x, FY y PY y PX ,Y y F , y
二、离散型随机变量的边缘分布律
概率论
一般地, 对离散型 r.v. (X,Y ), X 和 Y 的联合分布律为:
P( X xi ,Y y j ) pij , i, j 1, 2,
3
13
0 18 38 0 38 0 0 18
概率论
P{X=0}=P{X=0, Y=1}+P{X=0, Y=3}=1/8, P{X=1}=P{X=1, Y=1}+P{X=1, Y=3}=3/8, P{X=2}= P{X=2, Y=1}+P{X=2, Y=3}=3/8, P{X=3}=P{X=3, Y=1}+P{X=3, Y=3}=1/8.
则 (X, Y) 关于X 的边缘分布律为:
多维随机变量及其分布
多维随机变量的期望和方差
总结词
期望和方差是多维随机变量的重要统计量,用于描述随机变量的中心趋势和离散程度。
详细描述
期望值是随机变量所有可能取值的加权平均,反映了随机变量的中心趋势。方差则是描 述随机变量取值分散程度的量,即离散程度。在多维随机变量中,期望值是一个向量,
方差是一个矩阵。
多维随机变量的协方差和相关系数
定义
连续型随机变量是在一定范围内 可以取任何值的随机变量,通常 用X表示。
例子
人的身高、体重、时间等。
概率分布
连续型随机变量的概率分布可以 用概率密度函数(PDF)表示, 即f(x)表示随机变量取某个值的概 率密度。
随机变量的期望和方差
期望
期望是随机变量取值的平均值,用E(X)表示。对于离散型随机变量,E(X)=∑xp(x); 对于连续型随机变量,E(X)=∫xf(x)dx。
复杂度并提高模型的泛化能力。
Part
07
总结与展望
总结多维随机变量及其分布的主要内容
定义与性质
多维随机变量是多个随机变量的组合,具有多维度的特性 。其定义基于概率空间,每个维度都有独立的概率分布。
联合概率分布
多维随机变量的联合概率分布描述了所有维度同时发生的 概率。通过联合概率分布,可以计算各种联合事件的概率 。
总结词
独立性是多维随机变量的一个重要性质,表示多个随机变量之间没有相互依赖关系。
详细描述
在多维随机变量中,如果多个随机变量之间相互独立,那么一个随机变量的取值不会影响到另一个随 机变量的取值。独立性的判断对于概率论和统计学中的许多问题至关重要,如联合概率分布、条件概 率和贝叶斯推断等。
Part
06
边缘概率分布
第3章 多维随机变量及其分布
例1 已知的联合密度为,求的密度函数。 解 先求的分布函数:由分布函数的定义知对任意有,由于事件等价 于事件,于是,所以(由图2—6)
图2-6 在积分中,和是固定的,令,则得 由概率密度的定义 , 由于的对称性,也有 。 上两式为的密度函数的一般公式。
特别当相互独立时,由于对一切都有,此时的密度函数的公式为: 或。
例1[二维均匀分布] 设为二维随机变量,是平面上的一个有界区 域,其面积为,又设,可验证满足概率密度的基本性质,我们称由这个 密度函数确定的分布为二维均匀分布。
例2[二维正态分布]设
() 其中都是常数,且。
可以证明满足概率密度的两条基本性质,因此确定了一个二维随机 变量的分布,我们称由这个密度函数所确定的分布为二维正态分布,记 为。
图2-4 解 (1)
=,所以; (2); (3)关于的边缘分布密度函数为 当时,=0. 当时, 故有
=; 同理可求得关于的边缘分布密度函数为
=. 因为对任意的实数,都有 ,所以相互独立。
例 2.16 设服从域(如图2—5)上的均匀分布,求关于和关于的边 缘分布,并判断是否相互独立。
解 由均匀分布的定义,的联合分布密度函数为
定义 2.5 :设为随机试验的样本空间,,是定义在上的随机变量,则 称有序数组为二维随机变量或称为二维随机向量。
定义 2.6:设是二维随机变量,对于任意实数,称二元函数为二维随 机变量的联合分布函数。
如果把二维随机变量看作平面上具有随机坐标的点,那末分布函数 在()处的函数值就是随机点落在以点()为顶点而位于该点左下方的 无穷矩形域内的概率。
2.二维随机变量联合分布函数的性质: (1) ; (2) 是变量的单调不减函数,即:对于任意固定的,当时有 ;对于任意
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章--多维随机变量及其分布总结第三章 多维随机变量及其分布第一节 二维随机变量一、二维随机变量的分布函数设E 是一个随机试验, 它的样本空间是S . 设X 、Y 是定义在S 上的随机变量, 则由它们构成的一个向量(X , Y )称为二维随机向量或二维随机变量.一般地, (X , Y )的性质不仅与X 有关, 与Y 有关, 而且还依赖于X 、Y 的相互关系, 因此必须把(X , Y )作为一个整体来研究.首先引入(X , Y )的分布函数的概念.定义 设(X , Y )为二维随机变量, 对于任意实数x 、y , 二元函数F (x , y ) = P {(X ≤ x )∩(Y ≤ y )}= P {X ≤ x , Y ≤ y }称为二维随机变量(X , Y )的分布函数, 或称为随机变量X 和y 的联合分布函数.分布函数F (x , y )表示事件(X ≤ x )与事件(Y ≤ y )同时发生的概率. 如果把(X , Y )看成平面上具有随机坐标(X , Y )的点, 则分布函数F (x , y )在(x , y )处的函数值就是随机点(X , Y )落在平面上的以(x , y )为顶点而位于该点左下方的无限矩形内的概率..由上面的几何解释, 容易得到随机点(X , Y )落在矩形区域{x 1 < X ≤ x 2, y 1 < Y ≤ y 2}的概率为P {x 1 < X ≤ x 2, y 1 < Y ≤ y 2} = F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1)(1)与二元函数类似, 二元分布函数F (x , y )也具有如下一些性质:1︒ F (x , y )是变量x 和y 的单调不减函数, 即当x 1 < x 2时, F (x 1, y ) ≤ F (x 2, y ); 当y 1 < y 2时, F (x , y 1) ≤ F (x , y 2). 2︒ 0 ≤ F (x , y ) ≤ 1, 且F (-∞, y ) = 0, F (x , -∞) = 0, F (-∞,-∞) = 0, F (+∞,+∞) = 1.(凡含-∞的概率分布为0) 3︒ F (x , y )关于x 和y 都是右连续的, 即F (x + 0, y ) = F (x , y ), F (x , y + 0) = F (x , y ).4︒ 对任意的(x 1, y 1)、(x 2, y 2), x 1 < x 2, y 1 < y 2, 有F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) ≥ 0.注: 二元分布函数具有性质1︒~ 4︒, 其逆也成立(2︒中0 ≤ F (x , y ) ≤ 1可去), 即若二元实值函数F (x , y )(x ∈ R , y ∈ R )满足1︒~ 4︒, 则F (x , y )必是某二维随机变量的(X , Y )的分布函数. 其中4︒是必不可少的, 即它不能由1︒~ 3︒推出(除去0 ≤ F (x , y ) ≤ 1). 二、二维离散型随机变量如果二维随机变量(X , Y )的所有可能取的值是有限对或可列无限多对, 则称(X , Y )是二维离散型随机变量.设二维离散型随机变量(X , Y )所有可能取的值为(x i , y j ) (i , j = 1, 2, 3, …). 记P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)则由概率定义有 p ij ≥ 0;111=∑∑∞=∞=i j ijp.我们称P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)为二维离散型随机变量(X , Y )的分布律(概率分布)或随机变量X 和Y 的联合分布律, (X , Y )的分布律也可用表格表示. 其分布函数为=),(y x F ∑∑≤≤==x x yy jii j y Y x X P },{=∑∑≤≤x x yy iji j p这里∑∑≤≤x x yy i j 表示对一切x i ≤ x , y j ≤ y 的那些指标i 、j 求和.例1 一个口袋中有三个球, 依次标有1、2、2, 从中任取一个, 不放回袋中, 再任取一个. 设每次取球时, 各球被取到的可能性相等, 以X 、Y 分别记第一次和第二次取到的球上标有的数字, 求X 、Y 的联合分布律与分布函数..解: (X , Y )的可能取值为(1, 2)、(2, 1)、(2, 2). P {X = 1, Y = 2}= P {X = 1}P {Y = 2 / X = 1}=312231=⋅.同理, 有 P {X = 2, Y = 1}=31 , P {X = 2, Y = 2}=31. 即(X , Y )的分布律如右表所示.当x < 1, 或y < 1时, F {x , y } = 0; 当1 ≤ x < 2, 1 ≤ y <2时, F {x , y } = 0;当1 ≤ x < 2, y ≥ 2时, F {x , y } = =+1211p p 31; 当x ≥ 2, 1 ≤ y <2时, F {x , y } ==+2111p p 31; 当x ≥ 2, y ≥ 2时, F {x , y } = 1.所以, (X , Y )的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>>⎩⎨⎧<≤≥⎩⎨⎧≥<≤⎩⎨⎧<≤<≤<<=.2,2,1,21,22,21,31,21,2111,0),(y x y x y x y x y x y x F 或或或三、二维连续型随机变量设二维随机变量(X , Y )的分布函数为F {x , y }, 若存在非负函数f (x , y ), 使对任意的x 、y 有⎰⎰∞-∞-=y x dudv v u f y x F ),(),(,则称(X , Y )为连续型的二维随机变量, f (x , y )称为二维连续型随机变量(X , Y )的概率密度, 或称随机变量X 、Y 的联合概率密度.概率密度f (x , y )具有以下性质: 1︒ f (x , y ) ≥ 0; 2︒1),(),(=+∞+∞=⎰⎰∞+∞-∞+∞-F dxdy y x f3︒ 若f (x , y )在点(x , y )处连续, 则有),(),(2y x f yx y x F =∂∂∂ 4︒ 设G 是xOy 平面上的一个区域, 则点(X , Y )落在G 内的概率为⎰⎰=∈Gdxdy y x f G Y X P ),(}),{( (2)例2 设二维连续型随机变量(X , Y )的概率密度为⎩⎨⎧>>=+-.,0,0,0,2),()(其它y x Ae y x f y x求: (1) 系数A ; (2) 分布函数F (x , y ); (3) 概率P {(X , Y )∈D }, 其中D : x ≥ 0, y ≥ 0, x + y ≤ 1.解: (1) 由1),(=⎰⎰∞+∞-∞+∞-dxdy y x f , 得21=A . (2) ⎰⎰∞-∞-+-=yxy x dxdy e y x F )(),(=⎪⎩⎪⎨⎧>>⎰⎰+-,,0,0,0,00)(其它y x dxdy e yxy x =⎩⎨⎧>>----.,0,0,0),1)(1(其它y x e e yx (3) edxdy e e dxdxdy y x f Y X P xy x D21),()},{(1010-===⎰⎰⎰⎰---. 例3 设二维连续型随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧≤≤≤≤+=,,0,20,10,3),(2其它y x xy x y x f , 求P {Y ≥ X }.解: P {Y ≥ X }=2417)3(),(221=+=⎰⎰⎰⎰≤xxy dy xy x dxdxdy y x f . 以上关于二维随机变量的讨论, 不难推广到n (n > 2)维随机变量的情形. 一般地, 设E 是一个随机试验,它的样本空间为S , 设X 1、X 2、…、X n 是定义在S 上的随机变量, 则由它们构成的一个n 维向量(X 1, X 2, …, X n )称为n 维随机向量或n 维随机变量.对任意n 个实数x 1、x 2、…、x n , n 元函数F (x 1, x 2, …, x n ) = P {X 1 ≤ x 1, X 2 ≤ x 2, …, X n ≤ x n }称为n 维随机变量(X 1, X 2, …, X n )的分布函数或随机变量(X 1, X 2, …, X n )的联合分布函数, 它具有与二元分布函数类似的性质.第二节 边 缘 分 布设(X , Y )是二维随机变量, 其分布函数为F (x , y ), 事件{X ≤ x }即为{ X ≤ x , Y < +∞}, 从而由(X , Y )的分布函数可定出X 的分布函数, 记为F X (x ).F X (x ) = P {X ≤ x } = P { X ≤ x , Y < +∞} = F (x , +∞)=),(lim y x F y +∞→.我们称F X (x )为关于X 的边缘分布函数. 类似的可定义关于Y 的边缘分布函数为F Y (y ) = P {Y ≤ y } = P {X < +∞, Y ≤ y }= F (+∞, y ) = ),(lim y x F x +∞→.一、离散型设(X , Y )为二维离散型随机变量, 其分布律为P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …), 则∑∑≤∞==+∞=x x j ijX i px F x F 1),()(, ∑∑≤∞==+∞=y y i ijY i py F y F 1),()(.从而X 与Y 的分布律分别为 ∑∞===1}{j iji px X P , i = 1, 2, …; ∑∞===1}{i ijj py Y P , j = 1, 2, …;记=⋅i p ∑∞===1}{j iji px X P , i = 1, 2, …;=⋅j p ∑∞===1}{i ijj py Y P , j = 1, 2, ….分别称p i ⋅和p ⋅ j 为(X , Y )关于X 与Y 的边缘分布律.注: 1︒ 边缘分布律具有一维分布律的一般性质. 2︒ 联合分布律唯一决定边缘分布律, 反之不然. 二、连续型设二维连续型随机变量(X , Y )的概率密度为f (x , y ), 由⎰⎰∞-∞+∞-=+∞=xX dx dy y x f x F x F ]),([),()(;⎰⎰∞-∞+∞-=+∞=yY dy dx y x f y F y F ]),([),()(.知X 与Y 都是连续型随机变量. 它们的概率密度分别为⎰∞+∞-=dy y x f x f X ),()(;⎰∞+∞-=dx y x f y f Y ),()(.称f X (x )与f Y (y )分别为(X , Y )关于X 与Y 的边缘概率密度.例2 设D 是平面上的有界区域, 其面积为A , 若二维随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧∈=,,0,),(,1),(其它D y x Ay x f 则称(X , Y )在D 上服从均匀分布.现(X , Y )在以原点为中心、1为半径的圆域上服从均匀分布, 求边缘概率密度.解: 由1),(=⎰⎰∞+∞-∞+∞-dxdy y x f , 得A = π.当|x | < 1时, ⎰∞+∞-=dy y x f x f X ),()(21112122x dy x x -==⎰---ππ; 当|x | ≥ 1时, f X (x ) = 0, 即⎪⎩⎪⎨⎧≥<-=.1,0,1,12)(2x x x x f X π同理可得, ⎪⎩⎪⎨⎧≥<-=.1,0,1,12)(2y y y y f Y π例3 设二维随机变量(X , Y )的概率密度为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡-+------⋅-=2222212121212221)())((2)()1(21exp 121),(σμσσμμρσμρρσπσy y x x y x f ⎪⎪⎭⎫ ⎝⎛+∞<<∞-+∞<<∞-y x . 其中μ1、μ2、σ1、σ2、ρ 都是常数, 且σ1 > 0, σ2 > 0, -1 < ρ < 1. 我们称(X , Y )为服从参数为μ1、μ2、σ1、σ2、ρ的二维正态分布, 试求二维正态随机变量的边缘概率密度.解: 令m = ⎥⎦⎤⎢⎣⎡-+----222221212121)())((2)(σμσσμμρσμy y x x2121212122121221212222)()()())((2)(σμσμρσμρσσμμρσμ-+---+----=x x x y x y2121221122)()1(σμρσμρσμ--+⎥⎦⎤⎢⎣⎡---=x x y . 所以, ⎰∞+∞-=dy y x f x f X ),()(=⎰∞+∞----dy e m )1(22212121ρρσπσ⎰∞+∞-⎥⎦⎤⎢⎣⎡--------=dy eex y x 2112222121)1(212)(221121σμρσμρσμρσπσ.令⎪⎪⎭⎫⎝⎛----=1122211σμρσμρx y t , 则dt dy 221σρ⋅-=, 从而, 22222)1(211212211222ρσπσρσμρσμρ-=⋅-=⎰⎰∞+∞--∞+∞-⎥⎦⎤⎢⎣⎡-----dt edy et x y . 所以, 21212)(121)(σμσπ--=x X ex f (+∞<<-∞x ). 同理可得, 22222)(221)(σμσπ--=y Y e y f (+∞<<-∞y ).表明, ),(~211σμN X , ),(~222σμN Y . 此例说明, 二维正态随机变量(X , Y )中的X 、Y 都服从正态分布, 并且与参数ρ 无关. 所以对于确定的μ1、μ2、σ1、σ2而取不同的ρ, 对应了不同的二维正态分布, 但是其中每个随机变量都分别服从相同的正态分布. 因此, 仅由关于X 和Y 的边缘概率密度(分布), 一般不能确定X 和Y 的联合概率密度(分布).第四节 相互独立的随机变量我们知道, 两事件A 、B 相互独立的充要条件是 P (AB ) = P (A )P (B )由此我们引进随机变量相互独立的定义.定义 设F (x , y )及F X (x )、F Y (y )分别是二维随机变量(X , Y )的分布函数及边缘分布函数, 若对于所有的x 、y , 有 P {X ≤ x , Y ≤ y } = P {X ≤ x } P {Y ≤ y }, 即F (x , y ) = F X (x )F Y (y ) (1) 则称随机变量X 和Y 是相互独立的.可见, 在随机变量X 和Y 相互独立的情况下, 由关于X 和Y 的边缘分布函数就唯一地确定(X , Y )的联合分布函数, 而且还可推得}{},{}/{x X P x X y Y P x X y Y P ==≤==≤}{},{lim0x x X x P x x X x y Y P x ∆+≤≤∆+≤≤≤=→∆),(),(),(),(lim0+∞-+∞∆+-∆+=→∆x F x x F y x F y x x F x )()()()()()()()(lim0+∞-+∞∆+-∆+=→∆Y X Y X Y X Y X x F x F F x x F y F x F y F x x F )()()()]()([lim 0x F x x F y F x F x x F XX Y X Xx -∆+-∆+=→∆= F Y (y ) = P {Y ≤ y }. 这就是说在X 和Y 相互独立的情况下条件分布与边缘分布相同, 即条件分布化成了无条件分布. 一、离散型设二维离散型随机变量(X , Y )的联合分布律为P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …),(X , Y )关于X 和关于Y 的边缘分布律分别为=⋅i p ∑∞===1}{j iji px X P , i = 1, 2, …;=⋅j p ∑∞===1}{i ijj py Y P , j = 1, 2, ….则X 和Y 相互独立的充要条件是P {X = x i , Y = y j } = P {X = x i } P {Y = y j }, 即p ij =⋅i p j p ⋅(2)二、连续型设二维连续型随机变量(X , Y )的联合概率密度为f (x , y ), 关于X 和Y 的边缘概率密度为f X (x )和f Y (y ), 则X 和Y 相互独立的充要条件是等式 f (x , y ) = f X (x ) f Y (y ) (3) 几乎处处成立.例3 设(X , Y )服从二维正态分布, 即其联合概率密度为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡-+------⋅-=2222212121212221)())((2)()1(21exp 121),(σμσσμμρσμρρσπσy y x x y x f ⎪⎪⎭⎫ ⎝⎛+∞<<∞-+∞<<∞-y x . 证明: X 和Y 相互独立的充要条件是ρ = 0.例4 若(X , Y )的联合概率密度为⎩⎨⎧≥≥=+-,,0,0,0,),()(其它y x e y x f y x 则X 和Y 相互独立.证: 显然⎩⎨⎧≥=-,,0,0,)(其它x e x f x X ⎩⎨⎧≥=-,,0,0,)(其它y e y f y Y 故有f (x , y ) = f X (x ) f Y (y ). 从而X 和Y 相互独立.例5 设X 与Y 是两个相互独立的随机变量, X 在[0, 0.2]上服从均匀分布, Y 的概率密度为⎩⎨⎧≥=-,,0,0,5)(5其它y e x f y Y试求: (1) X 与Y 的联合概率密度;(2) P {Y ≤ X }.解: (1) 由已知条件, 得⎩⎨⎧≤≤=,,0,2.00,5)(其它x x f X 从而得X 与Y 的联合概率密度为⎩⎨⎧≥≤≤=-.,00,2.00,25),(5其它y x e y x f y(2) P {Y ≤ X }= P {Y - X }⎰⎰≥-=),(y x dxdy y x f ,积分区域如图, 化成二次积分后得⎰⎰≈=⎥⎦⎤⎢⎣⎡=≤-2.00103679.0),(}{e dx dy y x f X Y P x .以上关于二维随机变量的一些概念, 很容易推广到n 维随机变量的情形.设n 维随机变量(X 1, X 2, …, X n )的联合分布函数为F (x 1, x 2, …, x n ), 若存在非负函数f (x 1, x 2, …, x n ), 使得对于任意实数x 1、x 2、…、x n , 有F (x 1, x 2, …, x n ) =⎰⎰⎰∞-∞-∞--n n x x x n n dx dx dx x x x f 112121),,,(ΛΛΛ,则称f (x 1, x 2, …, x n )为n 维随机变量(X 1, X 2, …, X n )的联合概率密度.称),,,()(111+∞+∞=Λx F x F X , ),,,,(),(2121,21+∞+∞=Λx x F x x F X X , …为关于X 1, (X 1, X 2), …的边缘分布函数, ⎰⎰⎰∞+∞-∞+∞-∞+∞-=n n X dx dx dx x x x f x f ΛΛΛ32211),,,()(1,⎰⎰⎰∞+∞-∞+∞-∞+∞-=n n X X dx dx dx x x x f x x f ΛΛΛ432121,),,,(),(21, …为关于X 1, (X 1, X 2), …的边缘概率密度.若对于所有的x 1、x 2、…、x n , 有F (x 1, x 2, …, x n ))()()(2121n X X X x F x F x F n Λ=, 则称X 1, X 2, …, X n 是相互独立的, 对离散型即连续型随机变量, 也有类似的结论. 若对于所有的x 1、x 2、…、x m ; y 1、y 2、…、y n , 有F (x 1, x 2, …, x m ; y 1, y 2, …, y n ) = F 1 (x 1, x 2, …, x m ) F 2 (y 1, y 2, …, y n )其中F 1、F 2和F 依次为(X 1, X 2, …, X m )、(Y 1, Y 2, …, Y n )和(X 1, X 2, …, X m ; Y 1, Y 2, …, Y n )的分布函数, 则称随机变量(X 1, X 2, …, X m )和(Y 1, Y 2, …, Y n )是相互独立的.定理 设随机变量(X 1, X 2, …, X m )和(Y 1, Y 2, …, Y n )相互独立, 则X i (i = 1, 2, …, m )与Y j (j = 1, 2, …, n )相互独立. 又若h 、g 是连续函数, 则h (X 1, X 2, …, X m )和g (Y 1, Y 2, …, Y n )也相互独立.第三节、条件分布离散型:在已知X=x i 的条件下,Y 取值的条件分布为;•===i ij i j p p x X y Y P )|(在已知Y=y j 的条件下,X 取值的条件分布为,)|(jij j i p p y Y x X P •===连续型:在已知Y=y 的条件下,X 的条件分布密度为)(),()|(y f y x f y x f Y =;在已知X=x 的条件下,Y 的条件分布密度为)(),()|(x f y x f x y f X =例3.9: 设二维连续型随机变量(X ,Y )在区域D 上服从均匀分布,其中},1||,1|:|),{(≤-≤+=y x y x y x D 求X 的边缘密度()Xfx 和X 的边缘密度()Yfy解:1,(,)20,.Df x y ⎧⎪=⎨⎪⎩其他111111,10;21()(,)1,01;20,.x x x X x dy x x f x f x y dy dy x x +--+∞+-∞-⎧=+-<<⎪⎪⎪===-<<⎨⎪⎪⎪⎩⎰⎰⎰-其他例3.10 设在一段时间内进入某一商店的顾客人数X 服从泊松分布()P λ,每个顾客购买某种商品的概率为p ,并且每个顾客是否购买某种商品相互独立,求进入商店的顾客购买该种商品的人数Y 的分布列。