二次根式及一元二次方程复习及练习

合集下载

二次根式知识点及典型例题(含答案)

二次根式知识点及典型例题(含答案)

4、不会比较根式的大小5、不会利用二次根式的非负性6、对最简二次根式的条件掌握不牢八、经典例题例1、求下列各数的平方根与算术平方根( )A.36B.81121 C.2-(5) D.41【答案】A.2=36±(6)∴36的平方根为6±,即6± ∴36的算术平方根为6,即B.2981=11121±()∴81121的平方根为911±,即911±∴81121的算术平方根为911,即911 C.25=25±()∴2-(5)的平方根为5±,即5± ∴2-(5)的算术平方根为5,即D.()241=41±∴41的平方根为 ∴41【解析】一个正数的平方根有两个,它们互为相反数,解答本题注意解题步骤的规范书写,不是完全平方数的正数,它的平方根只能用含有根号的形式表示.练习1、计算:(1 (2)【答案】(1)211=121(2)20.9=0.810.9±表示121的算术平方根,表示0.81的平方根,、的意义是解答本题的关键例2、如果一个正数的平方根为3a-5和2a-10,求这个正数【答案】由题意得,3a-5+2a-10=0得a=3∴3a-5=4∴这个数为24=16【解析】一个正数的平方根有两个,它们互为相反数,而互为相反数的两个数相加为0,故(3a-5)+(2a-10)=0.求出a后,可知3a-5与2a-10的值,在考虑哪个正数的平方根是3a-5,2a-10的值即可。

练习1、x为何值时,下列各式有意义。

【答案】解:A.10x-≥,即1x≥有意义B.10x-≥且0x≥,即01x≤≤有意义C.10x+>,即1x>-D.230x+≥,即x都有意义【解析】a≥例3、【答案】解252736<<<<即56<<的整数部分是5【解析】处在哪两个完全平方数之间.例4、:x y【答案】解:33y-1和互为相反数3y-1∴和1-2x互为相反数3y-1+1-2x=0∴:=3:2x y∴互为相反数,则a和b互为相反数,所以本题中3y-1与1-2x 互为相反数例5、实数0.5的算术平方根等于().D.1 2【答案】C【解析】理解算术平方根的意义,把二次根式化成最简形式是解答本题的关键.例6、的算术平方根是()A. 4±B. 4C. 2±D. 2【答案】D【解析】4的算术平方根,4的算术平方根为2.例7、根据下列运算正确的是()3=2 C. (x+2y)2=x2+2xy+4y2 D. A.x6+x2=x3 B.√−8√18−√8=√2【答案】解:A、本选项不能合并,错误;3=-2,本选项错误;B、√-8C、((x+2y)2=x2+2xy+4y2,本选项错误;D、√18-√8=3√2-2√2=√2,本选项正确.故选D【解析】此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解本题的关键.例8、)【答案】B综合练习简单1. 式子在实数范围内有意义,则x的取值范围是()A.<1 B.≥1 C.≤-1 D.<-1【答案】B【解析】由二次根式的意义,知:x-1≥0,所以x≥1.2.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1【答案】D解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选D.【解析】代数式√x有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.x-13.要使式子2-x有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2【答案】D解:根据题意得,2﹣x≥0,解得x≤2.【解析】根据被开方数大于等于0列式计算即可得解.4. 下列计算正确的是()=√2 D.3+2√2=5√2 A.4√3-3√3=1 B.√2+√3=√5 C.2√12【答案】C【解析】 A、4√3-3√3=√3,原式计算错误,故本选项错误;B、√2与√3不是同类二次根式,不能直接合并,故本选项错误;=√2,计算正确,故本选项正确;C、2√12D、3+2√2≠5√2,原式计算错误,故本选项错误;根据二次根式的化简及同类二次根式的合并,分别进行各选项的判断即可.5. 若,则=【答案】6【解析】原方程变为:,所以,,由得:=3,两边平方,得:=7,所以,原式=7-1=6中等题1.结果是。

中考习题——《二次根式》及《一元二次方程》

中考习题——《二次根式》及《一元二次方程》

学校 班级 考号 姓名__________________________◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆《二次根式》及《一元二次方程》一、选择题1. (2011广西钦州)下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A .x 2+1=0 B .x 2-2x +1=0 C .x 2+x -2=0 D .x 2+2x -1=0 2.(2011广西钦州)下列计算正确的是( )A .3)3(2-=- B .3)3(2= C .39±= D .523=+3.(2010安徽芜湖)关于x 的方程(a -5)x 2-4x -1=0有实数根,则a 满足() A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠5 4. (2011贵州安顺,7,3分)函数1--=x xy 中自变量x 的取值范围是( ) A .x ≥0B .x <0且x ≠lC .x <0D .x ≥0且x ≠l5.(2011贵州省)估计20的算术平方根的大小在( ) A 、2与3之间 B 、3与4之间C 、4与5之间D 、5与6之间6. (2011贵州省) 三角形两边长分别为3和6,第三边是方程2680x x -+=的解,则这个三角形的周长是( ) A 、11B 、13C 、11或13D 、不能确定7.(2011昆明) 若x 1,x 2是一元二次方程2x 2﹣7x+4=0的两根,则x 1+x 2与x 1•x 2的值分别是( )A 、﹣72,﹣2B 、﹣72,2 C 、72,2 D 、72,﹣2 8.(2011湖北咸宁)若关于x 的方程022=+-m x x 的一个根为1-,则另一个根为( ) A .3- B .1- C .1 D .3 9.(2011湖北荆门)将代数式142-+x x 化成q p x ++2)(的形式为( ) A .3)2(2+-x B .4)2(2-+x C .5)2(2-+x D .4)4(2++x10.(2011湖北荆门)关于x 的方程0)1(2)13(2=+++-a x a ax 有两个不相等的实根1x 、2x ,且有 a x x x x -=+-12211,则a 的值是( ) A .1 B .1- C . 1或1- D .2二、填空题11. (2011昆明) 当x 时,二次根式5x -有意义.12.(2011广西来宾)若一元二次方程x 2+mx -2=0的两个实数根分别为x 1、x 2,则x 1·x 2= .13.(2011贵州省)已知:223(35)0x y x y +-+--=,则2x =________ 14. (2011贵州省)函数12y x=-中,自变量x 的取值范围是________ 15.(2011遵义)若x 、y 为实数,且,则x+y= .16. (2011云南部分州市)在函数21y x x =+-中,自变量x 的取值范围是 .17. (2011遵义)计算:= .18.若(m-1)(2)1m m x+-+2mx-1=0是关于x 的一元二次方程,则m 的值是________.19. (2011毕节地区)函数中自变量x 的取值范围是_________________.20. (2011柳州)方程x 2-4=0的解是_______________________________________.21. (2011柳州) 若x -2在实数范围内有意义,则x 的取值范围是_________________. 22. (2011福州)一元二次方程x (x ﹣2)=0根的情况是___________________________________.23.(2011南京) 计算(21)(22)+-=_______________.24. (2011泰州)一元二次方程x x 22=的根是__________________________.25.(2011宿迁) 如图,邻边不等..的矩形花圃ABCD ,它的一边AD 利用已有的围墙,另外三边所围的栅栏的总长度是6m .若矩形的面积为4m 2,则AB 的长度是 m (可利用的围墙长度超过6m ).26.(2011徐州) 若式子1x -在实数范围内有意义,则x 的取值范围是_________________.27. (2011徐州)若方程290x kx ++=有两个相等的实数根,则k= __________. 28. (2011福建龙岩)若式子3x -有意义,则实数x 的取值范围是____________.29. (2011广州)当实数x 的取值使得有意义时,函数y=4x+1中y 的取值范围是_____________________.30.(2011广东湛江)函数y=中自变量x 的取值范围是 ,若x=4,则函数值y= . 三、解答题31.按要求解答下列一元二次方程,没指定的方法不限.4x 2-121=0(指定因式分解法) 2x(x-1)+6=2(0.5x+3)( 指定公式法)4x 2-8x-1=0(指定用配方法) (2)1x x +=21110336x x --=;2(23)(23)9x x x -+=-. 32. (2011广西玉林)已知:12x x 、是一元二次方程2410x x -+=的两个实数根. 求:2121211()()x x x x +÷+的值.33.(2010 重庆江津)在等腰△ABC 中,三边分别为a 、b 、c ,其中5a =,若关于x 的方程()2260x b x b +++-=有两个相等的实数根,求△ABC 的周长.34.(2011茂名)化简: (1); (2)(x+y )2﹣(x ﹣y )2.35.(2011泰州)解方程组⎩⎨⎧=+=+8361063y x y x ,并求xy 的值。

九年级数学期末复习002一元二次方程与二次根式

九年级数学期末复习002一元二次方程与二次根式

九年级数学期末复习 方程、根式班级 姓名 学号一、知识点回顾:1.一元二次方程的一般形式: .2.解法:四种 ; ; ; . 求根公式:x =(b 2-4ac ≥0)3.根的判别式: .4.二次根式的定义:形如 ( )5.二次根式的性质:2= (a ≥⎧==⎨⎩;= (a ≥0,b ≥= . (a ≥0,b>0) 二、知识技能训练:1.已知ax 2+4x-5=3x 2关于x 的方程是一元二次方程,则 a 的取值范围 . 2.方程22x x =的解为 .3.已知:方程(k-1)x 2+2x+1=0. (1)若方程有实根,则k ;(2)若方程有两个不等实根,则k .4.一元二次方程ax 2+bx+c =0(a ≠0)(1)当a+b+c=0时,该方程必有一根为: . (2)当4a-2b+c=0时,该方程必有一根为: . 5.若(a 2+b 2)(a 2+b 2-2)=8,则a 2+b 2= .6.当k= 时,二次三项式x 2-2(k+1)x+k+7是一个关于x 的完全平方式.7.在四边形ABCD 中, AB ∥CD,且AB 、CD 的长是关于x 的方程x 2-3mx+2m 2+m-2=0的两个根,则四边形ABCD 是 . 8.函数y =中自变量x 的取值范围是 .9.已知x ≤1,= .10.,则a= .11.阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=c a. 根据材料填空:已知x 1、x 2是方程x 2+6x +3=0的两实数根,则21x x +12x x 的值为 . 12.关于x 的一元二次方程()2211a x x a -++=的一个根为0,则a 的值为 . 13.若抛物线y=kx 2+x+1与x 轴有交点,则k 的取值范围是 . 14.若方程x 2+4x+a=0无实根,化简16-8a+a 2= .15.已知 m 是方程x 2-5x-6=0 的一根则 10m-2m 2+5= .16.已知xy<0,.17.为了美化环境,某市加大对绿化的投资.2007年用于绿化投资20万元,2009年用于绿化投资25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为x ,根据题意所列方程为 . 18.下列二次根式中不可以再化简......的是 ( ) A.xy 1.0 B.x 2+1 C.y 3D.3119.下列运算中,错误的是 ( ) A.632=⨯B.2221=C.252322=+D.32)32(2-=-20.( ) A.6到7之间 B.7到8之间C.8到9之间D.9到10之间21. 计算:(1) 34482714122--+(2) 1012)4cos30|3-⎛⎫++- ⎪⎝⎭°22.先化简,再求值:2225241244a a a a a a ⎛⎫-+-+÷ ⎪+++⎝⎭,其中a 满足方程x 2+x-6=0.23.解下列方程:(1) (x-5)(x-6)=6 (2) 2x2-x-3=0(用配方法)24.已知关于x的一元二次方程(1-2k)x2-2k+1 x-1=0有两个不相等的实数根,求k的取值范围.25.已知关于x的方程x2-(k+2)x+2k=0.(1)求证:无论k取何实数值,方程总有实数根;(2)若等腰三角形ABC的一边a=3,另两边长b、c恰好是这个方程的两个根,求△ABC的周长.26.某商场将某种商品的售价从原来的每件40元经两次调价后调至每件32.4元.(1)若该商店两次两次调价的降价率相同,求这个降价率;(2)经调查,该商品每降价0.2元,即可多销售10件.若该商品原来每月可销售500件,那么两次调价后,每月可销售该商品多少件?27.某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:(1)该企业2007年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?28.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?29.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?课后作业:1~25题;课堂:讲评作业并训练26~29题.。

二次根式和一元二次方程测试题(附完整答案及解析)

二次根式和一元二次方程测试题(附完整答案及解析)

二次根式和一元二次方程测试题一.选择题(36分)1。

下列式子中二次根式的个数有 ( )⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x . A .2个 B .3个 C .4个 D .5个2。

当22-+a a 有意义时,a 的取值范围是 ( )A .a≥2B .a >2C .a≠2D .a≠-23.下列二次根式:2xy ,8,a b 2,35x y ,x y +,12,其中最简二次根式共有( ) A 。

2个 B. 3个 C 。

4个 D 。

5个4。

化简二次根式a a a -+12的结果是 ( ) A 。

--a 1 B 。

---a 1C 。

a -1D 。

--a 1 5. 式子错误!+错误!有意义的条件是 ( )A 。

x ≥0B 。

x ≤0且x ≠-2C 。

x ≠-2D 。

x ≤0 6。

计算abab b a 1⋅÷等于 ( ) A .ab ab 21 B .ab ab 1 C .ab b1 D .ab b 7。

下列方程中,一元二次方程是( ) (A )221xx +(B)bx ax +2(C )()()121=+-x x (D )052322=--y xy x 8。

已知21x x 、是方程122+=x x 的两个根,则2111x x +的值为( ) (A )21- (B)2 (C)21 (D)-2 9.若关于x 的一元二次方程0962=+-x kx 有两个不相等的实数根,则k 的取值范围( )(A) k <1 (B )k ≠0 (C )k <1且k ≠0 (D ) k >110某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x ,则所列方程应为( )A .100(1+x)2=800B 。

100+100×2x=800C .100+100×3x=800 D.100[1+(1+x)+(1+x)2]=80011。

(完整版)《二次根式及一元二次方程》专题练习含解析

(完整版)《二次根式及一元二次方程》专题练习含解析

《二次根式及一元二次方程》一、选择题1.估算的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间2.要使+有意义,则x应满足()A.≤x≤3 B.x≤3且x≠C.<x<3 D.<x≤33.已知方程x2+bx+a=0有一个根是﹣a(a≠0),则下列代数式的值恒为常数的是()A.ab B.C.a+b D.a﹣b4.已知a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5.武汉市2016年国内生产总值(GDP)比2015年增长了12%,由于受到国际金融危机的影响,预计今年比2016年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A.12%+7%=x% B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)26.下列各式计算正确的是()A.B.(a<1)C.D.7.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠58.设a,b是方程x2+x﹣2016=0的两个实数根,则a2+2a+b的值为()A.2014 B.2017 C.2015 D.20169.方程(x﹣3)(x+1)=x﹣3的解是()A.x=0 B.x=3 C.x=3或x=﹣1 D.x=3或x=010.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.12或15 C.15 D.不能确定11.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c12.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4二、填空题13.化简=.14.计算的结果是.15.计算: +=.16.如果方程ax2+2x+1=0有两个不等实根,则实数a的取值范围是.17.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x12+3x1x2+x22的值为.18.已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为.19.请你写出一个有一根为1的一元二次方程:.(答案不唯一)20.关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根分别是x1、x2,且x12+x22=7,则(x1﹣x2)2的值是.21.若把代数式x2﹣2x﹣3化为(x﹣m)2+k的形式,其中m,k为常数,则m+k=.22.将根号外面的因式移进根号后等于.23.若正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.若正方形OABC的面积为1,则k的值为;点E的坐标为.三、解答题24.计算:.25.用配方法解方程:2x2+1=3x.26.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0.(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;(2)当Rt△ABC的斜边长a=,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.27.已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的范围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.28.已知关于x的一元二次方程x2=2(1﹣m)x﹣m2的两实数根为x1,x2(1)求m的取值范围;(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.《二次根式及一元二次方程》参考答案与试题解析一、选择题1.估算的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【考点】估算无理数的大小.【专题】应用题.【分析】首先利用平方根的定义估算31前后的两个完全平方数25和36,从而判断的范围,再估算的范围即可.【解答】解:∵5<<6∴3<<4故选C.【点评】此题主要考查了利用平方根的定义来估算无理数的大小,解题关键是估算的整数部分和小数部分.2.要使+有意义,则x应满足()A.≤x≤3 B.x≤3且x≠C.<x<3 D.<x≤3【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,,解不等式①得,x≤3,解不等式②的,x>,所以,<x≤3.故选:D.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.已知方程x2+bx+a=0有一个根是﹣a(a≠0),则下列代数式的值恒为常数的是()A.ab B.C.a+b D.a﹣b【考点】一元二次方程的解.【分析】本题根据一元二次方程的根的定义,把x=﹣a代入方程,即可求解.【解答】解:∵方程x2+bx+a=0有一个根是﹣a(a≠0),∴(﹣a)2+b(﹣a)+a=0,又∵a≠0,∴等式的两边同除以a,得a﹣b+1=0,故a﹣b=﹣1.故本题选D.【点评】本题考查的重点是方程根的定义,分析问题的方向比较明确,就是由已知入手推导、发现新的结论.4.已知a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【考点】根的判别式;三角形三边关系.【分析】由于这个方程是一个一元二次方程,所以利用根的判别式可以判断其根的情况.能够根据三角形的三边关系,得到关于a,b,c的式子的符号.【解答】解:∵△=(2c)2﹣4(a+b)2=4[c2﹣(a+b)2]=4(a+b+c)(c﹣a﹣b),根据三角形三边关系,得c﹣a﹣b<0,a+b+c>0.∴△<0.∴该方程没有实数根.故选A.【点评】本题是方程与几何的综合题.主要考查了三角形三边关系、一元二次方程的根的判别式等知识点.重点是对(2c)2﹣4(a+b)(a+b)进行因式分解.5.武汉市2016年国内生产总值(GDP)比2015年增长了12%,由于受到国际金融危机的影响,预计今年比2016年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A.12%+7%=x% B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)2【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),然后用平均增长率和实际增长率分别求出今年的国内生产总值,由此可得到一个方程,即x%满足的关系式.【解答】解:若设2015年的国内生产总值为y,则根据实际增长率和平均增长率分别得到2010年和今年的国内生产总值分别为:2016年国内生产总值:y(1+x%)或y(1+12%),所以1+x%=1+12%,今年的国内生产总值:y(1+x%)2或y(1+12%)(1+7%),所以(1+x%)2=(1+12%)(1+7%).故选D.【点评】本题主要考查增长率问题,然后根据增长率和已知条件抽象出一元二次方程.6.下列各式计算正确的是()A.B.(a<1)C.D.【考点】二次根式的混合运算;立方根.【分析】A、根据二次根式的乘法运算法则的逆运算直接计算就可以;B、由条件可以判断出原式为负数再将根号外面的数移到根号里面化简求解就可以了;C、先将被开方数进行乘方运算再合并最后化简就可以了;D、先进行分母有理化,再进行合并同类二次根式就可以了.【解答】解:A、≠,本答案错误;B、(a<1),本答案正确;C、,本答案错误;D、==4≠2,本答案错误.故选B.【点评】本题考查了二次根式的乘、除、加、减混合运算的运用及立方根的运用,在结算时注意运算的顺序和运算的符号是解答的关键.7.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5【考点】根的判别式.【专题】判别式法.【分析】由于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,那么分两种情况:(1)当a﹣5=0时,方程一定有实数根;(2)当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a的取值范围.【解答】解:分类讨论:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;②当a﹣5≠0即a≠5时,∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根∴16+4(a﹣5)≥0,∴a≥1.∴a的取值范围为a≥1.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;切记不要忽略一元二次方程二次项系数不为零这一隐含条件.8.设a,b是方程x2+x﹣2016=0的两个实数根,则a2+2a+b的值为()A.2014 B.2017 C.2015 D.2016【考点】根与系数的关系;一元二次方程的解.【专题】压轴题.【分析】由于a2+2a+b=(a2+a)+(a+b),故根据方程的解的意义,求得(a2+a)的值,由根与系数的关系得到(a+b)的值,即可求解.【解答】解:∵a是方程x2+x﹣2016=0的根,∴a2+a=2016;由根与系数的关系得:a+b=﹣1,∴a2+2a+b=(a2+a)+(a+b)=2016﹣1=2015.故选:C.【点评】本题综合考查了一元二次方程的解的定义及根与系数的关系,要正确解答本题还要能对代数式进行恒等变形.9.方程(x﹣3)(x+1)=x﹣3的解是()A.x=0 B.x=3 C.x=3或x=﹣1 D.x=3或x=0【考点】解一元二次方程﹣因式分解法.【专题】计算题;压轴题.【分析】此题可以采用因式分解法,此题的公因式为(x﹣3),提公因式,降次即可求得.【解答】解:∵(x﹣3)(x+1)=x﹣3∴(x﹣3)(x+1)﹣(x﹣3)=0∴(x﹣3)(x+1﹣1)=0∴x1=0,x2=3.故选D.【点评】此题考查了学生的计算能力,注意把x﹣3当作一个整体,直接提公因式较简单,选择简单正确的解题方法可以达到事半功倍的效果.10.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.12或15 C.15 D.不能确定【考点】等腰三角形的性质;解一元二次方程﹣因式分解法;三角形三边关系.【专题】分类讨论.【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.【解答】解:解方程x2﹣9x+18=0,得x1=6,x2=3∵当底为6,腰为3时,由于3+3=6,不符合三角形三边关系∴等腰三角形的腰为6,底为3∴周长为6+6+3=15故选C.【点评】此题是一元二次方程的解结合几何图形的性质的应用,注意分类讨论.11.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c【考点】根的判别式.【专题】压轴题;新定义.【分析】因为方程有两个相等的实数根,所以根的判别式△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,化简即可得到a与c的关系.【解答】解:∵一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,∴△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,即(a+c)2﹣4ac=a2+2ac+c2﹣4ac=a2﹣2ac+c2=(a﹣c)2=0,∴a=c.故选A【点评】一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4【考点】反比例函数系数k的几何意义.【专题】压轴题.【分析】△AOC的面积=△AOB的面积﹣△BOC的面积,由点A的坐标为(﹣6,4),根据三角形的面积公式,可知△AOB的面积=12,由反比例函数的比例系数k的几何意义,可知△BOC的面积=|k|.只需根据OA的中点D的坐标,求出k值即可.【解答】解:∵OA的中点是D,点A的坐标为(﹣6,4),∴D(﹣3,2),∵双曲线y=经过点D,∴k=﹣3×2=﹣6,∴△BOC的面积=|k|=3.又∵△AOB的面积=×6×4=12,∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣3=9.故选B.【点评】本题考查了一条线段中点坐标的求法及反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.二、填空题13.化简=0.【考点】二次根式有意义的条件.【分析】由1﹣x≥0,x﹣1≥0,得出x﹣1=0,从而得出结果.【解答】解:∵1﹣x≥0,x﹣1≥0,∴x﹣1=0,∴=0.【点评】二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.14.计算的结果是4.【考点】算术平方根.【专题】常规题型.【分析】根据算术平方根的定义解答即可.【解答】解:==4.故答案为:4.【点评】此题主要考查了算术平方根的定义,本题易错点在于符号的处理.15.计算: +=3.【考点】二次根式的加减法.【分析】本题考查了二次根式的加减运算,应先化为最简二次根式,再合并同类二次根式.【解答】解:原式=2+=3.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.16.如果方程ax2+2x+1=0有两个不等实根,则实数a的取值范围是a<1且a≠0.【考点】根的判别式.【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有不相等的实数根下必须满足△=b2﹣4ac>0.【解答】解:根据题意列出不等式组,解之得a<1且a≠0.故答案为:a<1且a≠0.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.17.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x12+3x1x2+x22的值为7.【考点】根与系数的关系.【分析】根据根与系数的关系,可求出x1+x2以及x1x2的值,然后根据x12+3x1x2+x22=(x1+x2)2+x1x2进一步代值求解.【解答】解:由题意,得:x1+x2=3,x1x2=﹣2;原式=(x1+x2)2+x1x2=9﹣2=7.故答案为:7.【点评】熟记一元二次方程根与系数的关系是解答此类题的关键.18.已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为1.【考点】一元二次方程的解;完全平方公式.【分析】首先把x=1代入一元二次方程x2+mx+n=0中得到m+n+1=0,然后把m2+2mn+n2利用完全平方公式分解因式即可求出结果.【解答】解:∵x=1是一元二次方程x2+mx+n=0的一个根,∴m+n+1=0,∴m+n=﹣1,∴m2+2mn+n2=(m+n)2=(﹣1)2=1.故答案为:1.【点评】此题主要考查了方程的解的定义,利用方程的解和完全平方公式即可解决问题.19.请你写出一个有一根为1的一元二次方程:x2=1.(答案不唯一)【考点】一元二次方程的解.【专题】开放型.【分析】可以用因式分解法写出原始方程,然后化为一般形式即可.【解答】解:根据题意x=1得方程式x2=1.故本题答案不唯一,如x2=1等.【点评】本题属于开放性试题,主要考查一元二次方程的概念的理解与掌握.可以用因式分解法写出原始方程,然后化为一般形式即可,如(y﹣1)(y+2)=0,后化为一般形式为y2+y﹣2=0.20.关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根分别是x1、x2,且x12+x22=7,则(x1﹣x2)2的值是13.【考点】根与系数的关系;根的判别式.【分析】首先根据根与系数的关系,得出x1+x2和x1x2的值,然后根据x12+x22的值求出m(需注意m的值应符合此方程的根的判别式);然后再代值求解.【解答】解:由题意,得:x1+x2=m,x1x2=2m﹣1;则:(x1+x2)2=x12+x22+2x1x2,即m2=7+2(2m﹣1),解得m=﹣1,m=5;当m=5时,△=m2﹣4(2m﹣1)=25﹣4×9<0,不合题意;故m=﹣1,x1+x2=﹣1,x1x2=﹣3;∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=1+12=13.【点评】此题用到的知识点有:根与系数的关系、根的判别式、完全平方公式等知识.本题需注意的是在求出m值后,一定要用根的判别式来判断所求的m是否符合题意,以免造成多解、错解.21.若把代数式x2﹣2x﹣3化为(x﹣m)2+k的形式,其中m,k为常数,则m+k=﹣3.【考点】完全平方公式.【专题】配方法.【分析】根据完全平方公式的结构,按照要求x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,可知m=1.k=﹣4,则m+k=﹣3.【解答】解:∵x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,∴m=1,k=﹣4,∴m+k=﹣3.故答案为:﹣3.【点评】本题主要考查完全平方公式的变形,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.22.将根号外面的因式移进根号后等于.【考点】二次根式的性质与化简.【专题】计算题.【分析】先根据二次根式定义得到a<0,然后根据二次根式的性质把﹣a转化为,再利用乘法公式运算即可.【解答】解:∵﹣≥0,∴a<0,∴原式=﹣(﹣a)•=﹣=﹣.故答案为﹣.【点评】本题考查了二次根式的性质与化简:(a≥0)为二次根式;=|a|;=•(a≥0,b≥0)等.23.若正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.若正方形OABC的面积为1,则k的值为1;点E的坐标为(+,﹣).【考点】反比例函数系数k的几何意义.【分析】(1)根据正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC的边长为1,得出B点坐标,即可得出反比例函数的解析式;(2)由于D点在反比例函数图象上,用a和正方形OABC的边长表示出来E点坐标,代入y=(x>0)求得a的值,即可得出D点坐标.【解答】解:∵正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC的边长为1.∴B点坐标为:(1,1),设反比例函数的解析式为y=;∴xy=k=1,设正方形ADEF的边长为a,则E(1+a,a),代入反比例函数y=(x>0)得:1=(1+a)a,又a>0,解得:a=﹣.∴点E的坐标为:( +,﹣).【点评】本题考查了反比例函数与正方形性质结合的综合应用,考查了数形结合的思想,利用xy=k得出是解题关键.三、解答题24.计算:.【考点】二次根式的混合运算;负整数指数幂.【分析】本题涉及分数指数幂、负整数指数幂、乘方、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】原式=3+4﹣2﹣2+=5﹣2+2﹣2=3.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是理解分数指数幂的意义,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.25.用配方法解方程:2x2+1=3x.【考点】解一元二次方程﹣配方法.【专题】计算题.【分析】首先把方程的二次项系数变成1,然后等式的两边同时加上一次项系数的一半,则方程的左边就是完全平方式,右边是常数的形式,再利用直接开平方的方法即可求解.【解答】解:移项,得2x2﹣3x=﹣1,二次项系数化为1,得,配方,,由此可得,∴x1=1,.【点评】配方法是一种重要的数学方法,是中考的一个重要考点,我们应该熟练掌握.本题考查用配方法解一元二次方程,应先移项,整理成一元二次方程的一般形式,即ax2+bx+c=0(a≠0)的形式,然后再配方求解.26.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0.(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;(2)当Rt△ABC的斜边长a=,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.【考点】根与系数的关系;根的判别式;勾股定理.【专题】计算题.【分析】(1)根据△>0即可证明无论k取什么实数值,该方程总有两个不相等的实数根;(2)根据勾股定理及根与系数的关系列出关于b,c的方程,解出b,c即可得出答案.【解答】解:(1)关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,△=(2k+1)2﹣4(4k﹣3)=4k2﹣12k+13=4+4>0恒成立,故无论k取什么实数值,该方程总有两个不相等的实数根;(2)根据勾股定理得:b2+c2=a2=31①因为两条直角边b和c恰好是这个方程的两个根,则b+c=2k+1②,bc=4k﹣3③,因为(b+c)2﹣2bc=b2+c2=31,即(2k+1)2﹣2(4k﹣3)=31,整理得:4k2+4k+1﹣8k+6﹣31=0,即k2﹣k﹣6=0,解得:k1=3,k2=﹣2,∵b+c=2k+1>0即k>﹣.bc=4k﹣3>0即k>,∴k2=﹣2(舍去),则b+c=2k+1=7,又因为a=,则△ABC的周长=a+b+c=+7.【点评】本题考查了根与系数的关系和根的判别式及勾股定理,难度较大,关键是巧妙运用△>0恒成立证明(1),再根据勾股定理和根与系数的关系列出方程组进行解答.27.已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的范围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.【考点】根与系数的关系;根的判别式.【专题】压轴题.【分析】(1)一元二次方程x2﹣2x+m=0有两个实数根,△≥0,把系数代入可求m的范围;(2)利用两根关系,已知x1+x2=2结合x1+3x2=3,先求x1、x2,再求m.【解答】解:(1)∵方程x2﹣2x+m=0有两个实数根,∴△=(﹣2)2﹣4m≥0,解得m≤1;(2)由两根关系可知,x1+x2=2,x1•x2=m,解方程组,解得,∴m=x1•x2=.【点评】本题考查了一元二次方程根的判别式,两根关系的运用,要求熟练掌握.28.已知关于x的一元二次方程x2=2(1﹣m)x﹣m2的两实数根为x1,x2(1)求m的取值范围;(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.【考点】根与系数的关系;根的判别式;一次函数的性质.【专题】综合题.【分析】(1)若一元二次方程有两不等根,则根的判别式△=b2﹣4ac≥0,建立关于m 的不等式,可求出m的取值范围;(2)根据根与系数的关系可得出x1+x2的表达式,进而可得出y、m的函数关系式,根据函数的性质及(1)题得出的自变量的取值范围,即可求出y的最小值及对应的m值.【解答】解:(1)将原方程整理为x2+2(m﹣1)x+m2=0;∵原方程有两个实数根,∴△=[2(m﹣1)]2﹣4m2=﹣8m+4≥0,得m≤;(2)∵x1,x2为一元二次方程x2=2(1﹣m)x﹣m2,即x2+2(m﹣1)x+m2=0的两根,∴y=x1+x2=﹣2m+2,且m≤;因而y随m的增大而减小,故当m=时,取得最小值1.【点评】此题是根的判别式、根与系数的关系与一次函数的结合题.牢记一次函数的性质是解答(2)题的关键.。

二次根式与一元二次方程练习题

二次根式与一元二次方程练习题

二次根式与一元二次方程练习题一、选择题1、下列式子一定是二次根式的是( )A .2--xB .xC .22+xD .22-x2、若13-m 有意义,则m 能取的最小整数值是( )A .m=0B .m=1C .m=2D .m=33、关于x 的一元二次方程x 2+kx -1=0的根的情况是( )A 、有两个不相等的同号实数根B 、有两个不相等的异号实数根C 、有两个相等的实数根D 、没有实数根4、已知一元二次方程已知一元二次方程02=++c bx ax,若0=++c b a ,则该方程一定有一个根为( )A. 0B. 1C. -1D. 25、当3-=x 时,二次根7522++x x m 式的值为5,则m 等于( )A .2B .22 C .55 D .5 6、如果)6(6-=-•x x x x ,那么( )A .x ≥0B .x ≥6C .0≤x ≤6D .x 为一切实数7、mm m m m m 15462-+的值( )。

A 、是正数 B 、是负数 C 、是非负数 D 、可为正也可为负8、若x<0,则xx x 2-的结果是( ) A .0 B .—2 C .0或—2 D .29、若t 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆和完全平方式2)2(b at M +=的关系是( )A.△=MB. △>MC. △<MD. 大小关系不能确定二、填空题10、某经济开发区1月份工业产值达50亿元,3月份工业产值达72亿,设平均每月增长率为 x ,则可列方程为__________________________ 。

11、已知一元二次方程032=++px x 的一个根为3-,则_____=p 。

12、如果02=+a a 则a 的范围是 。

13、如图,ABCD 是正方形,对角线AC 、BD 相交于O ,P 点在AO上,且∠OPD =60°,则PO :AO 等于 。

二次根式和一元二次方程复习题

二次根式和一元二次方程复习题

二次根式和一元二次方程复习题一.选择题1.式子有意义,则x的取值范围是()A.x>1B.x<1C.x≥1D.x≤1 2.下列根式中,不是最简二次根式的是()A.B.C.D.3.在式子,,,中,x可以取1和2的是()A.B.C.D.4.方程(m+1)x|m﹣1|+mx+2=0是关于x的一元二次方程,则()A.m=﹣1或3B.m=3C.m=﹣1D.m≠﹣1 5.下列各式中属于最简二次根式的是()A.B.C.D.6.下列各式计算正确的是()A.B.C.=5D.=7.下面计算正确的是()A.+=B.×=C.=﹣3D.﹣=8.下列二次根式中,是最简二次根式的是()A.B.C.D.9.下列计算正确的是()A.B.C.D.10.要使代数式有意义,则x的()A.最大值是B.最小值是C.最大值是D.最小值是11.用配方法解方程x2+2x﹣3=0,下列配方结果正确的是()A.(x﹣1)2=2B.(x﹣1)2=4C.(x+1)2=2D.(x+1)2=4 12.方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14 B.(x﹣3)2=14C.(x+6)2=D.以上答案都不对13.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x﹣2)2=5B.(x+2)2=5C.(x+2)2=3D.(x﹣2)2=3 14.已知最简二次根式与可以合并成一项,则a、b的值分别为()A.a=1,b=2B.a=﹣1,b=0C.a=1,b=0D.a=﹣1,b=2 15.若y=﹣3,则x+y=()A.1B.5C.﹣5D.﹣116.方程(2x+3)(x﹣1)=1的解的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.有一个实数根17.方程(x+1)(x﹣3)=0的根是()A.x=﹣1B.x=3C.x1=1,x2=3D.x1=﹣1,x2=3 18.若关于x的一元二次方程(m﹣1)x2+2x+m2﹣1=0有一个根为0,则m的值是()A.1B.﹣1C.±1D.±219.已知a是方程2x2﹣4x﹣3=0的一个根,则代数式2a2﹣4a的值等于()A.3B.2C.0D.120.方程(x﹣2)(x+1)=(x+1)的解是()A.x=3B.x=﹣1C.x1=3,x2=﹣1D.x1=﹣3,x2=1 21.方程x2+6x﹣9=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.有一个根为﹣1D.没有实数根22.如果关于x的方程x2+k2﹣16=0和x2﹣3k+12=0有相同的实数根,那么k的值是()A.﹣7B.﹣7或4C.7D.423.实数a在数轴上的位置如图所示,则化简后为()A.7B.﹣7C.2a﹣15D.无法确定24.已知m、n是方程x2+5x﹣2=0的两个实数根,则m2+6m+n﹣2mn的值为()A.1B.﹣1C.﹣5D.525.已知x、y为实数,且.则的值为()A.5B.6C.7D.8二.填空题26.计算的结果是.27.一元二次方程2x2=5x的解是.28.分解因式:2a2﹣4a+2=.29.关于x的一元二次方程(m+1)x2﹣x+m2=0有一个根为1,则m的值为.30.已知﹣=﹣,=,则a﹣b=.31.计算:=.32.若+|x﹣3|=0,则x+y的平方根为.33.已知三角形两边的长是2和3,第三边的长是方程x2﹣6x+8=0的根,则该三角形的周长是.34.计算:()2010•()2009=.35.若方程(m+3)x|m|﹣1+3mx=0是关于x的一元二次方程,求m=.36.要使代数式有意义,则x应该满足的条件是.37.若最简二次根式与可以合并,则x的值为.38.关于x的方程2x2+kx﹣1=0的一个根是﹣1,另一个根为.39.﹣()2=.40.已知﹣3是关于x的一元二次方程ax2﹣2x+3=0的一个解,则此方程的另一个解为.41.计算:=.42.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q=.43.已知x=2是一元二次方程x2+mx+6=0的一个根,则方程的另一个根是.三.解答题44.(1)计算:(2)解方程:2x2﹣5x﹣3=045.①计算:②解方程:9x2﹣6x+1=046.计算:(1)+|﹣7|+()0+()﹣1 (2)(+2)(﹣2)+(+1)2﹣47.计算:(1)2+6﹣3(2)﹣(2+)2(2﹣)248.用适当的方法解方程(1)3x2﹣x﹣4=0 (2)(x+3)2=16(2﹣x)2 (3)x2+4x=1249.解下列方程:(1)2x2+x﹣6=0;(2)(x﹣5)2=2(5﹣x).50.解方程.(1)2x(x﹣2)=3x﹣6 (2)x2﹣2x=2x+1 (3)3x2﹣x﹣4=0.51.先化简,再求值:(a﹣)(a+)+a(5﹣a),其中a=+1.52.先化简再计算:,其中x是一元二次方程x2﹣2x﹣2=0的正数根.53.已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.54.已知a=,b=,求的值.55.已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两个实数根.(1)求m的取值范围;(2)若(x1﹣1)(x2﹣1)=28,求m的值.56.已知关于x的方程x2﹣(2k+1)x+k2+1=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L的长.57.已知关于x的方程mx2﹣(2m﹣1)x+m﹣2=0;(1)当m为何值时,方程有两个不相等的实数根;(2)若m为满足(1)的最小正整数,求此时方程的两个根x1,x2.58.已知关于x的一元二次方程x2+(m+1)x+﹣2=0.(1)若此方程有两个实数根,求m的最小整数值;(2)若此方程的两个实数根为x1,x2,且满足x12+x22+x1x2=18﹣,求m的值.。

二次根式、一元二次方程练习题

二次根式、一元二次方程练习题

页眉内容二次根式、一元二次方程测试题班级 学号 姓名 成绩一、选择题:(每小题3分,共30分)1x 的取值范围是( )A 、1x >B 、1x ≥C 、1x ≤D 、1x <2、若b b -=-3)3(2,则( )A 、b>3B 、b<3C 、b ≥3D 、b ≤33、下列计算正确的是( )A 、= B =3= D 3=- 4、若1<x <2,则()213-+-x x 的值为( )A .2x-4B .-2C .4-2xD .2 5、2)9(-的平方根是( )A. -9.B.9.C.±9.D.±3.6、下列方程,是一元二次方程的是( )①3x 2+x=20,②2x 2-3xy+4=0,③412=-x x ,④ x 2=4-, ⑤ 0432=--x xA .①②B .①②④⑤C .①③④D .①④⑤7、关于x 的一元二次方程(m -1)x 2+x +m 2-1=0有一根为0,则m 的值为( ).A 、1B 、-1C 、1或-1D 、08、已知06522=+-y xy x ,则x y :等于 ( ) A. 161或 B. 16或 C. 2131或 D. 32或9、使分式2561x x x --+ 的值等于零的x 是( ) A.6 B.-1或6 C.-1 D.-610、已知三角形两边长分别为2和9,第三边的长为二次方程x 2-14x+48=0的一根, 则这个三角形的周长为( )A.11B.17C.17或19D.19二、填空题:(每小题3分,共24分)11、方程(x –1)(2x +1)=2化成一般形式是 ,它的二次项系数是 .12、关于x 的方程5)3(72=---x m m 是一元二次方程,则m=_________. 13、参加一次同学聚会,每两人都握一次手,所有人共握了45次,若设共有x 人参加同学聚会。

列方程得 。

14、设b a ,是一个直角三角形两条直角边的长,且12)1)((2222=+++b a b a ,则这个直角三角形的斜边长为15、△ABC 的三边长为a 、b 、c,且a,b 满足2-a +b 2-6b+9=0,则c 的取值范围是 。

精品 九年级数学上册 二次根式 一元二次方程 综合复习题

精品 九年级数学上册 二次根式 一元二次方程 综合复习题

5
4. 2( x 2
1 1 ) 3( x ) 1 2 x x
5. x 2 x 2 0
6. x 2 (1 2 3 ) x 3 3 0
7.
x4 1 2 2 2 x 2x x 2x 4 x 2
8.
x 2 5 x 1 10 x 1 x2 5 3
14. 3 x 2 2(a 2b) x b 2 a 2 0
ቤተ መጻሕፍቲ ባይዱ
15. x 2 m(3 x 2m n) n 2 0
3
4.( a +
b ab a b ab )÷( + - ) (a≠b) . a b ab b ab a ab
5.计算(2 5 +1) (
1 10.已知 a,b 是方程 x2+x-1=0 的两根,求 a2+2a+ 的值. b
11.已知:关于x的方程x -(2k-3)x+(2k-4)=0. (1)无论k取任何实数,方程总有两个实数根. (2)当k取何值时,方程的两个根都是正数? (3)k为何值时,方程的两个实数根都比2大?
2
12.某商场销售一种产品,平均每天可售出20件,每件盈利40元.为了扩大销售,尽快减少库 存,商场决定采取适当的降价措施.经调查发现,如果每件产品每降价1元,商场平均每天可 多售出2件.若商场平均每天要盈利1200元,每件产品应降价多少元?
3 2 2 32 2 2 8.以 和 2 为根的整系数一元二次方程是______
2 2
9.已知实数 x、y 满足(x+y)(x+y+3)-4=0,则 x+y 的值是______ 2 10.已知 k 是正整数,并且关于 x 的方程 x +2x+k-1=0 有实数根,则 k 的值是___ 2 2 2 11.已知方程 x +x-1=0 的两根为 x1 和 x2,则(x1 +2x1-1)(x2 +2x2-1)的值为___ 12.若实数 x1、x2 满足 x12-3x1+1=0,x22-3x2+1=0,则 + 的值是_______

二次根式和一元二次方程测试题(附完整答案及解析)

二次根式和一元二次方程测试题(附完整答案及解析)

页脚内容1二次根式和一元二次方程测试题一.选择题(36分)1.下列式子中二次根式的个数有 ( )⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x . A .2个 B .3个 C .4个 D .5个2.当22-+a a 有意义时,a 的取值范围是 ( )A .a≥2B .a >2C .a≠2D .a≠-23.下列二次根式:2xy ,8,a b 2,35x y ,x y +,12,其中最简二次根式共有( ) A. 2个 B. 3个 C. 4个 D. 5个4.化简二次根式a a a -+12的结果是 ( ) A. --a 1B. ---a 1C. a -1D. --a 1 5. 式子-x +1x +2有意义的条件是 ( ) A. x ≥0 B. x ≤0且x ≠-2C. x ≠-2D. x ≤0 6.计算abab b a 1⋅÷等于 ( ) A .ab ab 21B .ab ab 1C .ab b1 D .ab b页脚内容27.下列方程中,一元二次方程是( )(A )221xx +(B )bx ax +2(C )()()121=+-x x (D )052322=--y xy x 8.已知21x x 、是方程122+=x x 的两个根,则2111x x +的值为( ) (A )21- (B )2 (C )21 (D )-2 9.若关于x 的一元二次方程0962=+-x kx 有两个不相等的实数根,则k 的取值范围( )(A ) k <1 (B )k ≠0 (C )k <1且k ≠0 (D ) k >110某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x ,则所列方程应为( )A .100(1+x)2=800B 。

100+100×2x=800C .100+100×3x=800D 。

100[1+(1+x)+(1+x)2]=80011.据《南京市2002年国民经济和社会发展统计公报》报告:南京市2002年国内生产总值达1493亿元,比2001年增长11.8%.下列说法:① 2001年国内生产总值为1493(1-11.8%)亿元;②2001年国内生产总值为%8.1111493-亿元;③2001年 国内生产总值为%8.1111493+亿元;④若按11.8%的年增长率计算,2004年的国内生产总值预计为1493(1+11.8%)2亿元.其中正确的是( )A.③④B.②④C.①④D.①②③页脚内容3二.填空题(16分)13.函数2x x 4y --=中,自变量x 的取值范围是__________________.14.下列各式中,①(-3)2;②12-13;③(a -b )2;④-a 2-1;⑤38. 属于二次根式的是__________________(填写序号) 15.已知x=-1是关于x 的一元二次方程ax 2+bx+c=0的根,则______=-ac a b 16、参加一次同学聚会,每两人都握一次手,所有人共握了45次,若设共有x 人参加同学聚会。

九年级数学-二次根式及一元二次方程的解法-综合测试题

九年级数学-二次根式及一元二次方程的解法-综合测试题

23、a2+b2中,是最简二次根式的有(12ab得(2b2B.x≤2C.x>D.x<C.2x2+1二次根式、一元二次方程的解法基础卷(共72分)一、选择题(共30分,每小题3分)1.在式子4、0.5、1A.1个B.2个C.3个D.4个2.要使4-2x有意义,则字母x应满足的条件是()A.x=2B.x<2C.x≤2D.x≥23.下列计算中,正确的是()A.23+42=65B.27÷3=3C.33⨯32=36D.(-3)2=-3)4.化简3a)A.4b B.2b C.1D.b2b5.如果x•x-6=x(x-6),那么()A.x≥0B.x≥6C.0≤x≤6D.x为一切实数6.小明的作业本上有以下四题:①16a4=4a2;②5a⨯10a=52a;③a 1=a2•a1a=a;④3a-2a=a。

做错的题是()A.①B.②C.③D.④7.若(2x-1)2=1-2x则x的取值范围是()A.x≥1112128.下列方程中,是一元二次方程的是:()A.x2+3x+y=0B.x+y+1=03=x+12D.x2+1x+5=09.关于x的方程(a2+a-2)x2+ax+b=0是一元二次方程的条件是()A.a≠0B.a≠-2C.a≠-2或a≠1D.a≠-2且a≠13-23+22②3a①72+18-3210.在一幅长80厘米,宽50厘米的矩形风景画的四周镶一条金色的纸边,制成一幅矩形挂图,如下图所示,如果要使整个挂图的面积是5400平方厘米,设金色纸边的宽为x厘米,那么满足的方程是()A.x2+130x-1400=0 C x2-130x-1400=0B.x2+65x-350=0 D.x2-65x-350=0二、填空题(共18分,每小题3分)11.比较大小:2313;112.已知矩形长为23cm,宽6为cm,那么这个矩形对角线长为_____cm;13.若x+y-4+x-y-2=0,则xy=_____________;14.观察分析下列数据,寻找规律:0,3,6,3,23,15,32,……那么第10个数据应是.15.将方程2x2-4x-3=0配方后所得的方程是;16.一元二次方程(m+1)x2-2mx=1的一个根是3,则m=;三、简答题(共24分)17.计算(每小题3分)b1⋅(÷)b a b③(1-3)2-23+1+(23-1)0④(23+32)2-(23-32)218.解方程:(每小题3分)①25x2-32=0②(2x-5)2-(x+4)2=0x=a,则x+B E24.(5分)已知:x、y都是实数,且y=3-x-x-3+1,求x③2x2-7x+3=0④(x+2)2-10(x+2)+25=0拓展卷(共48分)四、填空题(共12分,每小题3分)19.已知x+11x的值为;20.把(1-a)-1a-1的根号外面的因式移到根号内为;21.如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边A D落在对角线AC上,得到折痕AE,则点E到点B的距离F为;C 22.一位家长为了给两年后读大学的子女攒学费,他将自己辛苦打工所得的5000元钱存入银行,存期1年,(假设一年期的年利率为3%),一年到期后他又将本金及利息一并存入银行,存期也为1年,那么到期后他可以取得的本息和为;(不考虑利息税)五、简答题(共36分)23.(5分)数a、b在数轴上的位置如图所示,化简(a-b)2+(1-b)2-(a+1)2.y+的值。

二次根式知识点及习题

二次根式知识点及习题

二次根式知识点一:二次根式的概念形如()的式子叫做二次根式。

注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。

知识点二:取值范围1. 二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

2. 二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。

知识点三:二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。

注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。

这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。

知识点四:二次根式()的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。

注:二次根式的性质公式()是逆用平方根的定义得出的结论。

上面的公式也可以反过来应用:若,则,如:,.知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。

注:1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。

知识点六:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。

但与都是非负数,即,。

因而它的运算的结果是有差别的,,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而. 知识点七:二次根式的性质和最简二次根式如:不含有可化为平方数或平方式的因数或因式的有√2、√3、√a(a≥0)、√x+y 等;含有可化为平方数或平方式的因数或因式的有√4、√9、√a^2、√(x+y)^2、√x^2+2xy+y^2等(3)最终结果分母不含根号。

(完整版)《二次根式及一元二次方程》专题练习含解析

(完整版)《二次根式及一元二次方程》专题练习含解析

《二次根式及一元二次方程》一、选择题1.估算的值( )A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间2.要使+有意义,则x应满足()A.≤x≤3 B.x≤3且x≠C.<x<3 D.<x≤33.已知方程x2+bx+a=0有一个根是﹣a(a≠0),则下列代数式的值恒为常数的是()A.ab B.C.a+b D.a﹣b4.已知a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是( )A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5.武汉市2016年国内生产总值(GDP)比2015年增长了12%,由于受到国际金融危机的影响,预计今年比2016年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是( )A.12%+7%=x% B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)26.下列各式计算正确的是()A.B.(a<1)C.D.7.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠58.设a,b是方程x2+x﹣2016=0的两个实数根,则a2+2a+b的值为()A.2014 B.2017 C.2015 D.20169.方程(x﹣3)(x+1)=x﹣3的解是()A.x=0 B.x=3 C.x=3或x=﹣1 D.x=3或x=010.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.12或15 C.15 D.不能确定11.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c12.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为( )A.12 B.9 C.6 D.4二、填空题13.化简= .14.计算的结果是.15.计算: += .16.如果方程ax2+2x+1=0有两个不等实根,则实数a的取值范围是.17.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x12+3x1x2+x22的值为.18.已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为.19.请你写出一个有一根为1的一元二次方程:.(答案不唯一)20.关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根分别是x1、x2,且x12+x22=7,则(x1﹣x2)2的值是.21.若把代数式x2﹣2x﹣3化为(x﹣m)2+k的形式,其中m,k为常数,则m+k= .22.将根号外面的因式移进根号后等于.23.若正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.若正方形OABC 的面积为1,则k的值为;点E的坐标为.三、解答题24.计算:.25.用配方法解方程:2x2+1=3x.26.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0.(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;(2)当Rt△ABC的斜边长a=,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.27.已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的范围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.28.已知关于x的一元二次方程x2=2(1﹣m)x﹣m2的两实数根为x1,x2(1)求m的取值范围;(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.《二次根式及一元二次方程》参考答案与试题解析一、选择题1.估算的值()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间【考点】估算无理数的大小.【专题】应用题.【分析】首先利用平方根的定义估算31前后的两个完全平方数25和36,从而判断的范围,再估算的范围即可.【解答】解:∵5<<6∴3<<4故选C.【点评】此题主要考查了利用平方根的定义来估算无理数的大小,解题关键是估算的整数部分和小数部分.2.要使+有意义,则x应满足( )A.≤x≤3 B.x≤3且x≠C.<x<3 D.<x≤3【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,,解不等式①得,x≤3,解不等式②的,x>,所以,<x≤3.故选:D.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.已知方程x2+bx+a=0有一个根是﹣a(a≠0),则下列代数式的值恒为常数的是()A.ab B.C.a+b D.a﹣b【考点】一元二次方程的解.【分析】本题根据一元二次方程的根的定义,把x=﹣a代入方程,即可求解.【解答】解:∵方程x2+bx+a=0有一个根是﹣a(a≠0),∴(﹣a)2+b(﹣a)+a=0,又∵a≠0,∴等式的两边同除以a,得a﹣b+1=0,故a﹣b=﹣1.故本题选D.【点评】本题考查的重点是方程根的定义,分析问题的方向比较明确,就是由已知入手推导、发现新的结论.4.已知a,b,c分别是三角形的三边,则方程(a+b)x2+2cx+(a+b)=0的根的情况是()A.没有实数根B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【考点】根的判别式;三角形三边关系.【分析】由于这个方程是一个一元二次方程,所以利用根的判别式可以判断其根的情况.能够根据三角形的三边关系,得到关于a,b,c的式子的符号.【解答】解:∵△=(2c)2﹣4(a+b)2=4[c2﹣(a+b)2]=4(a+b+c)(c﹣a﹣b),根据三角形三边关系,得c﹣a﹣b<0,a+b+c>0.∴△<0.∴该方程没有实数根.故选A.【点评】本题是方程与几何的综合题.主要考查了三角形三边关系、一元二次方程的根的判别式等知识点.重点是对(2c)2﹣4(a+b)(a+b)进行因式分解.5.武汉市2016年国内生产总值(GDP)比2015年增长了12%,由于受到国际金融危机的影响,预计今年比2016年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是()A.12%+7%=x%B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)2【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),然后用平均增长率和实际增长率分别求出今年的国内生产总值,由此可得到一个方程,即x%满足的关系式.【解答】解:若设2015年的国内生产总值为y,则根据实际增长率和平均增长率分别得到2010年和今年的国内生产总值分别为:2016年国内生产总值:y(1+x%)或y(1+12%),所以1+x%=1+12%,今年的国内生产总值:y(1+x%)2或y(1+12%)(1+7%),所以(1+x%)2=(1+12%)(1+7%).故选D.【点评】本题主要考查增长率问题,然后根据增长率和已知条件抽象出一元二次方程.6.下列各式计算正确的是( )A.B.(a<1)C.D.【考点】二次根式的混合运算;立方根.【分析】A、根据二次根式的乘法运算法则的逆运算直接计算就可以;B、由条件可以判断出原式为负数再将根号外面的数移到根号里面化简求解就可以了;C、先将被开方数进行乘方运算再合并最后化简就可以了;D、先进行分母有理化,再进行合并同类二次根式就可以了.【解答】解:A、≠,本答案错误;B、(a<1),本答案正确;C、,本答案错误;D、==4≠2,本答案错误.故选B.【点评】本题考查了二次根式的乘、除、加、减混合运算的运用及立方根的运用,在结算时注意运算的顺序和运算的符号是解答的关键.7.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5【考点】根的判别式.【专题】判别式法.【分析】由于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,那么分两种情况:(1)当a﹣5=0时,方程一定有实数根;(2)当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a的取值范围.【解答】解:分类讨论:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;②当a﹣5≠0即a≠5时,∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根∴16+4(a﹣5)≥0,∴a≥1.∴a的取值范围为a≥1.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;切记不要忽略一元二次方程二次项系数不为零这一隐含条件.8.设a,b是方程x2+x﹣2016=0的两个实数根,则a2+2a+b的值为()A.2014 B.2017 C.2015 D.2016【考点】根与系数的关系;一元二次方程的解.【专题】压轴题.【分析】由于a2+2a+b=(a2+a)+(a+b),故根据方程的解的意义,求得(a2+a)的值,由根与系数的关系得到(a+b)的值,即可求解.【解答】解:∵a是方程x2+x﹣2016=0的根,∴a2+a=2016;由根与系数的关系得:a+b=﹣1,∴a2+2a+b=(a2+a)+(a+b)=2016﹣1=2015.故选:C.【点评】本题综合考查了一元二次方程的解的定义及根与系数的关系,要正确解答本题还要能对代数式进行恒等变形.9.方程(x﹣3)(x+1)=x﹣3的解是()A.x=0 B.x=3 C.x=3或x=﹣1 D.x=3或x=0【考点】解一元二次方程﹣因式分解法.【专题】计算题;压轴题.【分析】此题可以采用因式分解法,此题的公因式为(x﹣3),提公因式,降次即可求得.【解答】解:∵(x﹣3)(x+1)=x﹣3∴(x﹣3)(x+1)﹣(x﹣3)=0∴(x﹣3)(x+1﹣1)=0∴x1=0,x2=3.故选D.【点评】此题考查了学生的计算能力,注意把x﹣3当作一个整体,直接提公因式较简单,选择简单正确的解题方法可以达到事半功倍的效果.10.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.12或15 C.15 D.不能确定【考点】等腰三角形的性质;解一元二次方程﹣因式分解法;三角形三边关系.【专题】分类讨论.【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.【解答】解:解方程x2﹣9x+18=0,得x1=6,x2=3∵当底为6,腰为3时,由于3+3=6,不符合三角形三边关系∴等腰三角形的腰为6,底为3∴周长为6+6+3=15故选C.【点评】此题是一元二次方程的解结合几何图形的性质的应用,注意分类讨论.11.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰"方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c【考点】根的判别式.【专题】压轴题;新定义.【分析】因为方程有两个相等的实数根,所以根的判别式△=b2﹣4ac=0,又a+b+c=0,即b=﹣a ﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,化简即可得到a与c的关系.【解答】解:∵一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根,∴△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得(﹣a﹣c)2﹣4ac=0,即(a+c)2﹣4ac=a2+2ac+c2﹣4ac=a2﹣2ac+c2=(a﹣c)2=0,∴a=c.故选A【点评】一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4【考点】反比例函数系数k的几何意义.【专题】压轴题.【分析】△AOC的面积=△AOB的面积﹣△BOC的面积,由点A的坐标为(﹣6,4),根据三角形的面积公式,可知△AOB的面积=12,由反比例函数的比例系数k的几何意义,可知△BOC的面积=|k|.只需根据OA的中点D的坐标,求出k值即可.【解答】解:∵OA的中点是D,点A的坐标为(﹣6,4),∴D(﹣3,2),∵双曲线y=经过点D,∴k=﹣3×2=﹣6,∴△BOC的面积=|k|=3.又∵△AOB的面积=×6×4=12,∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣3=9.故选B.【点评】本题考查了一条线段中点坐标的求法及反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.二、填空题13.化简= 0 .【考点】二次根式有意义的条件.【分析】由1﹣x≥0,x﹣1≥0,得出x﹣1=0,从而得出结果.【解答】解:∵1﹣x≥0,x﹣1≥0,∴x﹣1=0,∴=0.【点评】二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.14.计算的结果是 4 .【考点】算术平方根.【专题】常规题型.【分析】根据算术平方根的定义解答即可.【解答】解: ==4.故答案为:4.【点评】此题主要考查了算术平方根的定义,本题易错点在于符号的处理.15.计算: += 3.【考点】二次根式的加减法.【分析】本题考查了二次根式的加减运算,应先化为最简二次根式,再合并同类二次根式.【解答】解:原式=2+=3.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.16.如果方程ax2+2x+1=0有两个不等实根,则实数a的取值范围是a<1且a≠0 .【考点】根的判别式.【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有不相等的实数根下必须满足△=b2﹣4ac>0.【解答】解:根据题意列出不等式组,解之得a<1且a≠0.故答案为:a<1且a≠0.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.17.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,则x12+3x1x2+x22的值为7 .【考点】根与系数的关系.【分析】根据根与系数的关系,可求出x1+x2以及x1x2的值,然后根据x12+3x1x2+x22=(x1+x2)2+x1x2进一步代值求解.【解答】解:由题意,得:x1+x2=3,x1x2=﹣2;原式=(x1+x2)2+x1x2=9﹣2=7.故答案为:7.【点评】熟记一元二次方程根与系数的关系是解答此类题的关键.18.已知x=1是一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为 1 .【考点】一元二次方程的解;完全平方公式.【分析】首先把x=1代入一元二次方程x2+mx+n=0中得到m+n+1=0,然后把m2+2mn+n2利用完全平方公式分解因式即可求出结果.【解答】解:∵x=1是一元二次方程x2+mx+n=0的一个根,∴m+n+1=0,∴m+n=﹣1,∴m2+2mn+n2=(m+n)2=(﹣1)2=1.故答案为:1.【点评】此题主要考查了方程的解的定义,利用方程的解和完全平方公式即可解决问题.19.请你写出一个有一根为1的一元二次方程:x2=1 .(答案不唯一)【考点】一元二次方程的解.【专题】开放型.【分析】可以用因式分解法写出原始方程,然后化为一般形式即可.【解答】解:根据题意x=1得方程式x2=1.故本题答案不唯一,如x2=1等.【点评】本题属于开放性试题,主要考查一元二次方程的概念的理解与掌握.可以用因式分解法写出原始方程,然后化为一般形式即可,如(y﹣1)(y+2)=0,后化为一般形式为y2+y﹣2=0.20.关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根分别是x1、x2,且x12+x22=7,则(x1﹣x2)2的值是13 .【考点】根与系数的关系;根的判别式.【分析】首先根据根与系数的关系,得出x1+x2和x1x2的值,然后根据x12+x22的值求出m(需注意m的值应符合此方程的根的判别式);然后再代值求解.【解答】解:由题意,得:x1+x2=m,x1x2=2m﹣1;则:(x1+x2)2=x12+x22+2x1x2,即m2=7+2(2m﹣1),解得m=﹣1,m=5;当m=5时,△=m2﹣4(2m﹣1)=25﹣4×9<0,不合题意;故m=﹣1,x1+x2=﹣1,x1x2=﹣3;∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=1+12=13.【点评】此题用到的知识点有:根与系数的关系、根的判别式、完全平方公式等知识.本题需注意的是在求出m值后,一定要用根的判别式来判断所求的m是否符合题意,以免造成多解、错解.21.若把代数式x2﹣2x﹣3化为(x﹣m)2+k的形式,其中m,k为常数,则m+k= ﹣3 .【考点】完全平方公式.【专题】配方法.【分析】根据完全平方公式的结构,按照要求x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,可知m=1.k=﹣4,则m+k=﹣3.【解答】解:∵x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,∴m=1,k=﹣4,∴m+k=﹣3.故答案为:﹣3.【点评】本题主要考查完全平方公式的变形,熟记公式结构是解题的关键.完全平方公式:(a ±b)2=a2±2ab+b2.22.将根号外面的因式移进根号后等于.【考点】二次根式的性质与化简.【专题】计算题.【分析】先根据二次根式定义得到a<0,然后根据二次根式的性质把﹣a转化为,再利用乘法公式运算即可.【解答】解:∵﹣≥0,∴a<0,∴原式=﹣(﹣a)•=﹣=﹣.故答案为﹣.【点评】本题考查了二次根式的性质与化简:(a≥0)为二次根式; =|a|; =•(a ≥0,b≥0)等.23.若正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.若正方形OABC 的面积为1,则k的值为 1 ;点E的坐标为(+,﹣).【考点】反比例函数系数k的几何意义.【分析】(1)根据正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC 的边长为1,得出B点坐标,即可得出反比例函数的解析式;(2)由于D点在反比例函数图象上,用a和正方形OABC的边长表示出来E点坐标,代入y=(x >0)求得a的值,即可得出D点坐标.【解答】解:∵正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC 的边长为1.∴B点坐标为:(1,1),设反比例函数的解析式为y=;∴xy=k=1,设正方形ADEF的边长为a,则E(1+a,a),代入反比例函数y=(x>0)得:1=(1+a)a,又a>0,解得:a=﹣.∴点E的坐标为:( +,﹣).【点评】本题考查了反比例函数与正方形性质结合的综合应用,考查了数形结合的思想,利用xy=k得出是解题关键.三、解答题24.计算:.【考点】二次根式的混合运算;负整数指数幂.【分析】本题涉及分数指数幂、负整数指数幂、乘方、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】原式=3+4﹣2﹣2+=5﹣2+2﹣2=3.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是理解分数指数幂的意义,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.25.用配方法解方程:2x2+1=3x.【考点】解一元二次方程﹣配方法.【专题】计算题.【分析】首先把方程的二次项系数变成1,然后等式的两边同时加上一次项系数的一半,则方程的左边就是完全平方式,右边是常数的形式,再利用直接开平方的方法即可求解.【解答】解:移项,得2x2﹣3x=﹣1,二次项系数化为1,得,配方,,由此可得,∴x1=1,.【点评】配方法是一种重要的数学方法,是中考的一个重要考点,我们应该熟练掌握.本题考查用配方法解一元二次方程,应先移项,整理成一元二次方程的一般形式,即ax2+bx+c=0(a≠0)的形式,然后再配方求解.26.已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0.(1)求证:无论k取什么实数值,该方程总有两个不相等的实数根;(2)当Rt△ABC的斜边长a=,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.【考点】根与系数的关系;根的判别式;勾股定理.【专题】计算题.【分析】(1)根据△>0即可证明无论k取什么实数值,该方程总有两个不相等的实数根; (2)根据勾股定理及根与系数的关系列出关于b,c的方程,解出b,c即可得出答案.【解答】解:(1)关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,△=(2k+1)2﹣4(4k﹣3)=4k2﹣12k+13=4+4>0恒成立,故无论k取什么实数值,该方程总有两个不相等的实数根;(2)根据勾股定理得:b2+c2=a2=31①因为两条直角边b和c恰好是这个方程的两个根,则b+c=2k+1②,bc=4k﹣3③,因为(b+c)2﹣2bc=b2+c2=31,即(2k+1)2﹣2(4k﹣3)=31,整理得:4k2+4k+1﹣8k+6﹣31=0,即k2﹣k﹣6=0,解得:k1=3,k2=﹣2,∵b+c=2k+1>0即k>﹣.bc=4k﹣3>0即k>,∴k2=﹣2(舍去),则b+c=2k+1=7,又因为a=,则△ABC的周长=a+b+c=+7.【点评】本题考查了根与系数的关系和根的判别式及勾股定理,难度较大,关键是巧妙运用△>0恒成立证明(1),再根据勾股定理和根与系数的关系列出方程组进行解答.27.已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的范围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.【考点】根与系数的关系;根的判别式.【专题】压轴题.【分析】(1)一元二次方程x2﹣2x+m=0有两个实数根,△≥0,把系数代入可求m的范围;(2)利用两根关系,已知x1+x2=2结合x1+3x2=3,先求x1、x2,再求m.【解答】解:(1)∵方程x2﹣2x+m=0有两个实数根,∴△=(﹣2)2﹣4m≥0,解得m≤1;(2)由两根关系可知,x1+x2=2,x1•x2=m,解方程组,解得,∴m=x1•x2=.【点评】本题考查了一元二次方程根的判别式,两根关系的运用,要求熟练掌握.28.已知关于x的一元二次方程x2=2(1﹣m)x﹣m2的两实数根为x1,x2(1)求m的取值范围;(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.【考点】根与系数的关系;根的判别式;一次函数的性质.【专题】综合题.【分析】(1)若一元二次方程有两不等根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,可求出m的取值范围;(2)根据根与系数的关系可得出x1+x2的表达式,进而可得出y、m的函数关系式,根据函数的性质及(1)题得出的自变量的取值范围,即可求出y的最小值及对应的m值.【解答】解:(1)将原方程整理为x2+2(m﹣1)x+m2=0;∵原方程有两个实数根,∴△=[2(m﹣1)]2﹣4m2=﹣8m+4≥0,得m≤;(2)∵x1,x2为一元二次方程x2=2(1﹣m)x﹣m2,即x2+2(m﹣1)x+m2=0的两根,∴y=x1+x2=﹣2m+2,且m≤;因而y随m的增大而减小,故当m=时,取得最小值1.【点评】此题是根的判别式、根与系数的关系与一次函数的结合题.牢记一次函数的性质是解答(2)题的关键.。

二次根式和一元二次方程(教师版)

二次根式和一元二次方程(教师版)

学科教师辅导讲义学员姓名: 年 级: 初二 授课时间: 课时数:2 辅导科目: 数学 学科教师: 学科组长签名组长备注课题 二次根式、一元二次方程复习教学目标1.复习二次根式的概念和性质,灵活掌握二次根式的运用2.复习一元二次方程的解法和应用 重点 1.二次根式的运算2.一元二次方程的解法和应用 难点 一元二次方程的解法和应用 考点 1.二次根式的运算2.一元二次方程的解法和运用二次根式、一元二次方程复习【热身练习】1、下列根式中是同类二次根式的个数是 2(1)b a 32 (2)24ab (3)329b a (4)31225ab (5)b a 522、当x < 2时,化简二次根式442+-x x = 2-x .3、若2132n m n -+与6是同类最简二次根式,则m= 1 ;n = 32; 4、因式分解:2222x x y y --=1313222x y x y ⎛⎫⎛⎫+--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; 5、已知关于x 的一元二次方程2410x x -+=的两个实数根分别为x 1 、x 2,则1211x x += 4 ;2212x x += 14 ; 6、某进出口贸易公司2008年的出口商品利润比2007年增长12%,2009年比2008年增长7%,设这两年的平均增长率为x ,则x 满足的关系式为:()()()20000111217x +=++ 7、化简:221(0)a a ba ba ab a a b a b aa b+÷÷>>-+- 2211a a b a a b a b a a a ba b ab +-⨯⨯⨯⨯+-=原式=8、用配方法解方程:2212033x x +-= 解: 移项得 221233x x +=方程两边同时乘以32得 2132x x +=方程两边同时加上得 2111321616x x ++=+ 即 2149416x ⎛⎫+= ⎪⎝⎭ 两边开平方得 1744x +=±解得 123,22x x ==- 9、解含有字母系数的方程:()2220a xb c c a a b x b c b c -++++=解: 当a=0时,原方程化为 ()0b c x b c bc -++= 所以当bc=0时,x 为任意实数; 当0bc ≠时,()x b c =-+当0a ≠时,原方程化为 ()()20a xb c c a a b x b c b c -++++= 解得12,b c x b c x a=+=【知识精要】一、二次根式1、二次根式的概念:代数式()0a a ≥叫做二次根式。

完整版二次根式及一元二次方程专题练习含解析

完整版二次根式及一元二次方程专题练习含解析

《二次根式及一元二次方程》一、选择题1).估算的值(544 D23 C3A12 B之间和之间之间和.在.在.在.在和和之间x2)+有意义,则应满足(.要使3x3BxAx33x CxD≤<≤≤..≤<且.≠<.203xabxa=0a)≠).已知方程,则下列代数式的值恒为常数的是++(有一个根是﹣(bab DB Caab A﹣...+.2=0bbxa2cx4abca的根的情况是))+,+,+分别是三角形的三边,则方程((+.已知)(B A.可能有且只有一个实数根.没有实数根D C.有两个不相等的实数根.有两个相等的实数根12%201552016GDP,由于受到国际金融危.武汉市)比年国内生产总值(年增长了x%7%GDPx%2016满足,若这两年,则年增长年平均增长率为机的影响,预计今年比)的关系是(x%1=2A12%7%=x% B112%17%))++)(.(+.(+2x%7%=2?x% D17%=112%1C12%))+.(+++)(.(6).下列各式计算正确的是(A.1aB)<.(C.D.2a74x1=0a5xx))满足(﹣.关于﹣的方程(﹣有实数根,则5a5Daa511AaBaaC1≠.且..≥≥.>≠且≠22ba2a2016=0xba8x)++的值为(.设,是方程 +﹣的两个实数根,则20162017 B2014A2015 DC....页)18页(共1第3x1=x9x3)+ ).方程(﹣)(﹣的解是(x=0x=31 Ax=0 Bx=3 Cx=3x=D或﹣....或218=010x9x)的两个根是等腰三角形的底和腰,则这个三角形的周长为(﹣+ .方程DA12 B1215 C15 .不能确定或...2c=0ab011axbxc=0a,那么我们称这个方程.定义:如果一元二次方程++≠+)满足(+2”“axbxc=0a0“”方程,且有两个相等的实数根,则下≠++方程.已知凤凰(为)是凤凰)列结论正确的是(a=b=ca=b Cb=c DAa=cB....DOABOAy=12k0,且与直角斜边()经过直角三角形<的中点.如图,已知双曲线AOCAABC64)的面积为(,边相交于点.若点),则△的坐标为(﹣4CB9 6 D12 A....二、填空题=13..化简14.的结果是.计算=15.计算: +.22x1=0axa16的取值范围是 + +.如果方程.有两个不等实根,则实数222x3xx3x2=0x17xxx的值为﹣﹣+的两个实数根,则.设,+是一元二次方程.212211222n2mnmxn=0x=118xm的值为+ 的一个根,则.已知+是一元二次方程++.191的一元二次方程:.请你写出一个有一根为.(答案不唯一)222=7xxmx2m1=0xx20xx,+﹣,且﹣的两个实数根分别是+、.关于的一元二次方程22112xx的值是)则(.﹣2122kmkx3mmk=21x2x +的形式,其中+,为常数,则..若把代数式﹣﹣化为(﹣)22.将根号外面的因式移进根号后等于.第2页(共18页)E23OABCBADEF的图象上.都在函数和正方形.若正方形的顶点的顶点若EOABC1k.的面积为,则正方形;点的值为的坐标为三、解答题24.计算:.21=3x2x25.+.用配方法解方程:23=04k2k1xx26 x.﹣(﹣的一元二次方程++.已知关于)k1取什么实数值,该方程总有两个不相等的实数根;()求证:无论cbRtABCa=2恰好是这个方程的两个根时,△,且两条直角边)当的斜边长和(ABC 的周长.求△2m=027x2x..已知一元二次方程﹣+m1的范围;)若方程有两个实数根,求(m=3x2xx3x的值.)若方程的两个实数根为,+,且,求(211222xxmxmx28x=21,﹣的两实数根为﹣.已知关于的一元二次方程)(21m1的取值范围;)求(myx2y=x的值,并求出最小值.取得最小值时,求相应+()设,当21第3页(共18页)《二次根式及一元二次方程》参考答案与试题解析一、选择题1).估算的值(54 D3 C342A1 B2之间之间和之间.在.在.在和和之间.在和【考点】估算无理数的大小.【专题】应用题.363125,从而判断前后的两个完全平方数【分析】首先利用平方根的定义估算和的范围即可.的范围,再估算65<<【解答】解:∵43<∴<C.故选的【点评】此题主要考查了利用平方根的定义来估算无理数的大小,解题关键是估算整数部分和小数部分.x2)+.要使有意义,则应满足(3xB3x3xD3xAx C≤<<.≤且≠..≤.≤<【考点】二次根式有意义的条件;分式有意义的条件.00列式计算即可得解.【分析】根据被开方数大于等于,分母不等于,【解答】解:由题意得,3x,≤解不等式①得,x,>解不等式②的,3x.所以,≤<D.故选:0;二次根式的被开方数是非负【点评】本题考查的知识点为:分式有意义,分母不为数.页(共第418页)2bxa=0a3xa0),则下列代数式的值恒为常数的是(+ 有一个根是﹣(.已知方程)≠+bDa Cab Aab B﹣+....【考点】一元二次方程的解.ax=代入方程,即可求解.【分析】本题根据一元二次方程的根的定义,把﹣20aabxa=0x),+(+≠有一个根是﹣【解答】解:∵方程2a=0aab,∴(﹣))++(﹣0a,又∵≠1=0baa,∴等式的两边同除以﹣,得+1b=a.﹣故﹣D.故本题选【点评】本题考查的重点是方程根的定义,分析问题的方向比较明确,就是由已知入手推导、发现新的结论.2=0b2cxabxab4ac的根的情况是++)分别是三角形的三边,则方程(().已知+,,+)(BA .可能有且只有一个实数根.没有实数根DC .有两个不相等的实数根.有两个相等的实数根【考点】根的判别式;三角形三边关系.所以利用根的判别式可以判断其根的情况.【分析】由于这个方程是一个一元二次方程,cab的式子的符号.,,能够根据三角形的三边关系,得到关于2222bcab=4ac=2c4ab=4cba),]﹣【解答】解:∵△(()﹣)(+)()+[+﹣(﹣+ 0c0abbca.,+<+根据三角形三边关系,得﹣>﹣0.∴△<∴该方程没有实数根.A.故选【点评】本题是方程与几何的综合题.22c)主要考查了三角形三边关系、一元二次方程的根的判别式等知识点.重点是对(bbaa4)进行因式分解.)(++﹣(第5页(共18页)52016GDP201512%,由于受到国际金融危年国内生产总值(年增长了.武汉市)比20167%GDPx%x%满足年平均增长率为机的影响,预计今年比,则年增长,若这两年的关系是()A12%7%=x% B112%17%=21x%))((.++.(++)2x%17%= D112%1C12%7%=2?x%)).(++++)(.(【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.=1+增长率),然后用平均增增长前的量×(【分析】增长率问题,一般用增长后的量x%满足的长率和实际增长率分别求出今年的国内生产总值,由此可得到一个方程,即关系式.2015y,年的国内生产总值为【解答】解:若设2010年和今年的国内生产总值分别为:则根据实际增长率和平均增长率分别得到2016y1x%y112%),年国内生产总值:)或(++(1x%=112%,++所以2y112%17%y1x%),(今年的国内生产总值:)((+++)或2=112%x%117%).所以(++)+)((D.故选【点评】本题主要考查增长率问题,然后根据增长率和已知条件抽象出一元二次方程.6.下列各式计算正确的是()A.1aB)(.<C.D.【考点】二次根式的混合运算;立方根.A、根据二次根式的乘法运算法则的逆运算直接计算就可以;【分析】B、由条件可以判断出原式为负数再将根号外面的数移到根号里面化简求解就可以了;第6页(共18页)C、先将被开方数进行乘方运算再合并最后化简就可以了;D、先进行分母有理化,再进行合并同类二次根式就可以了.A,本答案错误;【解答】解:≠、1aB),本答案正确;(<、C,本答案错误;、2=4D=,本答案错误.、≠B.故选【点评】本题考查了二次根式的乘、除、加、减混合运算的运用及立方根的运用,在结算时注意运算的顺序和运算的符号是解答的关键.2a4x57xax1=0)﹣有实数根,则的方程(﹣)满足(.关于﹣5Aa1Ba5 Daa1a5C1a≠且且≠.≥..>≥.≠【考点】根的判别式.【专题】判别式法.2a1=0xa5x14x﹣有实数根,那么分两种情况:(﹣【分析】由于﹣的方程()当﹣)055=02a时,方程成为一元二次方程,利用判别式﹣时,方程一定有实数根;()当≠a的取值范围.即可求出【解答】解:分类讨论:1=0a5=0a=54x,此时方程一定有实数根;即﹣①当时,方程变为﹣﹣50aa5时,②当即﹣≠≠21=0x4xax5有实数根﹣)∵关于﹣的方程(﹣05a164,)≥∴﹣+(1a.≥∴1aa.∴的取值范围为≥A.故选:224acc=0axbxa0=b:当△(≠)的根的判别式△【点评】本题考查了一元二次方程﹣++00=0,方程,方程有两个相等的实数根;当△<>,方程有两个不相等的实数根;当△没有实数根;切记不要忽略一元二次方程二次项系数不为零这一隐含条件.第7页(共18页)222aabbxx2016=08a的值为( ++﹣的两个实数根,则.设+,)是方程A2014B2017C2015D2016....【考点】根与系数的关系;一元二次方程的解.【专题】压轴题.222abaaaa2ab=a)的值,+【分析】由于),故根据方程的解的意义,求得()+++((++ab)的值,即可求解.+由根与系数的关系得到(2x2016=0ax的根,+【解答】解:∵是方程﹣2a=2016a;∴+ab=1,+﹣由根与系数的关系得:22aab=2016aa2ab=1=2015.++(+()++﹣∴)C.故选:【点评】本题综合考查了一元二次方程的解的定义及根与系数的关系,要正确解答本题还要能对代数式进行恒等变形.9x3x1=x3的解是().方程(﹣﹣)(+)Ax=0 Bx=3 Cx=3x=1 Dx=3x=0或..﹣或..【考点】解一元二次方程﹣因式分解法.【专题】计算题;压轴题.x3),提公因式,降次即可求【分析】此题可以采用因式分解法,此题的公因式为(﹣得.x3x1=x3﹣﹣))(+【解答】解:∵(x3x1x3=0)+﹣∴(﹣)﹣()(x3x11=0)+∴(﹣﹣)(x=0x=3.,∴21D.故选x3当作一个整体,直接提公因式较简﹣【点评】此题考查了学生的计算能力,注意把单,选择简单正确的解题方法可以达到事半功倍的效果.29x18=010x的两个根是等腰三角形的底和腰,则这个三角形的周长为().方程﹣+第8页(共18页)A12 B1215 C15 D.不能确定...或【考点】等腰三角形的性质;解一元二次方程﹣因式分解法;三角形三边关系.【专题】分类讨论.【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.29x18=0xx=6x=3,+﹣,得【解答】解:解方程216333=6,不符合三角形三边关系,腰为+时,由于∵当底为63,底为∴等腰三角形的腰为663=15+∴周长为+C.故选【点评】此题是一元二次方程的解结合几何图形的性质的应用,注意分类讨论.2bxc=0a0ab11axc=0,那么我们称这个方程+)满足(.定义:如果一元二次方程+≠++2bxc=0a0““”ax”方程,且有两个相等的实数根,则下+为)是凤凰(方程.已知凤凰≠+列结论正确的是()Aa=c Ba=b Cb=c Da=b=c....【考点】根的判别式.【专题】压轴题;新定义.24ac=0abc=0=b,﹣+,又【分析】因为方程有两个相等的实数根,所以根的判别式△+224ac=0ac4ac=0acbb=ac的关系.﹣﹣得(﹣与即﹣﹣,化简即可得到﹣),代入2bxc=0aax0)有两个相等的实数根,【解答】解:∵一元二次方程+≠+(24ac=0=b,∴△﹣abc=0b=ac,+﹣+﹣,即又224ac=0c4ac=0ba,得(﹣)代入﹣﹣﹣222222=0c=2acc4ac=aa2accac4ac=a,+(﹣)即(+﹣)﹣+﹣+a=c.∴A故选【点评】一元二次方程根的情况与判别式△的关系:10?方程有两个不相等的实数根;)△>(2=0?方程有两个相等的实数根;()△第9页(共18页)03方程没有实数根.)△<?(D0OABOA12y=k,且与直角)经过直角三角形的中点<.如图,已知双曲线斜边(AOC64ABCA),边),则△相交于点.若点的面积为(的坐标为(﹣4D12 B9 C6 A....k的几何意义.【考点】反比例函数系数【专题】压轴题.4=AOBBOCA6AOC),△的坐标为(﹣【分析】△的面积﹣△的面积的面积,由点,kAOB=12的几何意的面积根据三角形的面积公式,可知△,由反比例函数的比例系数kOAD=BOCk值即可.的中点.只需根据|的坐标,求出|义,可知△的面积46DOAA),的坐标为(﹣的中点是,点,【解答】解:∵23D),(﹣∴,Dy=,∵双曲线经过点62=k=3,×∴﹣﹣=3=kBOC.|的面积|∴△4=12AOB=6,又∵△×的面积×3=9=12=AOCAOBBOC.∴△的面积的面积△﹣的面积﹣△B.故选k与其图象上的本题考查了一条线段中点坐标的求法及反比例函数的比例系数【点评】S的关系,即点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积kS=.||二、填空题0=13..化简页)18页(共10第【考点】二次根式有意义的条件.1=010x1x0x,从而得出结果.≥﹣≥,,得出【分析】由﹣﹣0x11x0,﹣﹣,≥≥【解答】解:∵1=0x,﹣∴=0.∴0a【点评】二次根式的意义和性质.概念:式子()叫二次根式.性质:二次根式≥中的被开方数必须是非负数,否则二次根式无意义.414.的结果是.计算【考点】算术平方根.【专题】常规题型.【分析】根据算术平方根的定义解答即可.==4.【解答】解:4.故答案为:【点评】此题主要考查了算术平方根的定义,本题易错点在于符号的处理.3=15. +.计算:【考点】二次根式的加减法.【分析】本题考查了二次根式的加减运算,应先化为最简二次根式,再合并同类二次根式.=2=3.【解答】解:原式+【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.22x1=0aa1a016ax≠的取值范围是<.且.如果方程++有两个不等实根,则实数【考点】根的判别式.【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:第11页(共18页)1)二次项系数不为零;(20=b4ac2.>)在有不相等的实数根下必须满足△(﹣,【解答】解:根据题意列出不等式组0aa1.解之得<≠且0aa1.<故答案为:≠且【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.2227xx3xx17xxx3x2=0. +则,是一元二次方程的值为+﹣﹣.设的两个实数根,221112【考点】根与系数的关系.22=xx3xxxxxxxx)【分析】根据根与系数的关系,可求出(++以及+的值,然后根据+22122111122xx进一步代值求解.+21xx=3xx=2;﹣+,【解答】解:由题意,得:21122xx=92=7=xx.+原式)(﹣+21217.故答案为:【点评】熟记一元二次方程根与系数的关系是解答此类题的关键.22212mnmxn=0mx=118xn ++的一个根,则..已知是一元二次方程+的值为+【考点】一元二次方程的解;完全平方公式.222n1=0m2mnx=1xn=0mxmn+代入一元二次方程,然后把++【分析】首先把+中得到++利用完全平方公式分解因式即可求出结果.2mxn=0x=1x的一个根,是一元二次方程【解答】解:∵++mn1=0,+∴+mn=1,∴﹣+2222=11=m2mnnm=n.+)+)(﹣∴(+1.故答案为:【点评】此题主要考查了方程的解的定义,利用方程的解和完全平方公式即可解决问题.2=1119x的一元二次方程:.(答案不唯一).请你写出一个有一根为第12页(共18页)【考点】一元二次方程的解.【专题】开放型.【分析】可以用因式分解法写出原始方程,然后化为一般形式即可.22=1xx=1x=1等.得方程式【解答】解:根据题意.故本题答案不唯一,如【点评】本题属于开放性试题,主要考查一元二次方程的概念的理解与掌握.可以用因y1y2=0,后化为一般式分解法写出原始方程,然后化为一般形式即可,如(+﹣))(2y2=0y.+形式为﹣222=7xxmx2m1=0xx20xx,+、﹣+﹣的两个实数根分别是.关于,且的一元二次方程2112213xx.﹣的值是)则(21【考点】根与系数的关系;根的判别式.22xxxxxx的值求出【分析】首先根据根与系数的关系,得出的值,然后根据++和211122mm的值应符合此方程的根的判别式);然后再代值求解.(需注意xx=mxx=2m1;【解答】解:由题意,得:﹣+,21212222xxx=xxx,)则:(+++ 2121212=722mm1),即+﹣(m=1m=5;解得,﹣242m1=254m=5=m90,不合题意;﹣当×时,△)<﹣﹣(m=1xx=1xx=3;故,﹣﹣,﹣+2121224xx=112=13=xxxx.﹣()﹣)++∴(221211【点评】此题用到的知识点有:根与系数的关系、根的判别式、完全平方公式等知识.本mm是否符合题意,以值后,一定要用根的判别式来判断所求的题需注意的是在求出免造成多解、错解.222x3xmmmk21kxk=3.,﹣则﹣+化为(﹣﹣)+的形式,.为常数,若把代数式其中【考点】完全平方公式.【专题】配方法.2224x12x14=x2x3=x,﹣﹣+﹣【分析】根据完全平方公式的结构,按照要求﹣﹣(﹣)m=1k=4mk=3..﹣+,则可知﹣2224x4=13=xx2x12x,﹣)【解答】解:∵﹣﹣﹣﹣+﹣(第13页(共18页)4m=1k=,∴﹣,3mk=.∴﹣+3.故答案为:﹣【点评】本题主要考查完全平方公式的变形,熟记公式结构是解题的关键.完全平方公222b=a2abab.±±+式:()22.根号外面的因式移进根号后等于.将【考点】二次根式的性质与化简.【专题】计算题.a0a转化为,【分析】先根据二次根式定义得到,<然后根据二次根式的性质把﹣再利用乘法公式运算即可.0,≥【解答】解:∵﹣0a,∴<=?==a.﹣∴原式﹣﹣(﹣).故答案为﹣=aa0 【点评】本题考查了二次根式的性质与化简:(≥|)为二次根式;;|=?a0b0)等.,(≥≥23OABCBADEFE都在函数的图象上.的顶点若和正方形.若正方形的顶点E1OABC1k﹣).;点的坐标为(+正方形的面积为,,则的值为k的几何意义.【考点】反比例函数系数1OABCAEDF各有一个顶点在一反比例函数图象上,【分析】(和正方形)根据正方形OABC1B点坐标,即可得出反比例函数的解析式;且正方形的边长为,得出2DaOABCE点坐标,点在反比例函数图象上,用和正方形的边长表示出来()由于第14页(共18页)Day=x0点坐标.(>的值,即可得出)求得代入AEDFOABC各有一个顶点在一反比例函数图象上,且和正方形【解答】解:∵正方形1OABC.的边长为正方形11B),∴,点坐标为:(y=;设反比例函数的解析式为xy=k=1,∴aaADEFaE1),的边长为,,则设正方形+(0aaay=x01=1,)代入反比例函数,又(+>)得:>(a=.解得:﹣E的坐标为:( +,﹣).∴点考查了数形结合的思想,【点评】本题考查了反比例函数与正方形性质结合的综合应用,xy=k得出是解题关键.利用三、解答题24..计算:【考点】二次根式的混合运算;负整数指数幂.【分析】本题涉及分数指数幂、负整数指数幂、乘方、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.22=34+﹣【解答】原式+﹣2=522﹣﹣+=3.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是理解分数指数幂的意义,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.21=3x2x25.+.用配方法解方程:【考点】解一元二次方程﹣配方法.第15页(共18页)【专题】计算题.1,首先把方程的二次项系数变成然后等式的两边同时加上一次项系数的一半,【分析】则方程的左边就是完全平方式,右边是常数的形式,再利用直接开平方的方法即可求解.23x=2x1,﹣﹣【解答】解:移项,得1,二次项系数化为,得,配方,,由此可得=1x.∴,1【点评】配方法是一种重要的数学方法,是中考的一个重要考点,我们应该熟练掌握.本题考查用配方法解一元二次方程,应先移项,整理成一元二次方程的一般形式,即20bxaxc=0a)的形式,然后再配方求解.(+≠+23=04k1x26 xx2k.)的一元二次方程﹣﹣(.已知+关于+k1取什么实数值,该方程总有两个不相等的实数根;)求证:无论(cb2RtABCa=恰好是这个方程的两个根时,和△的斜边长(,且两条直角边)当ABC的周长.求△【考点】根与系数的关系;根的判别式;勾股定理.【专题】计算题.k10取什么实数值,该方程总有两个不相等的实数【分析】(即可证明无论)根据△>根;ccb2b即可得出答案.(的方程,解出)根据勾股定理及根与系数的关系列出关于,,23=01xx1x4k2k,+的一元二次方程)﹣(﹣【解答】解:(+)关于22013=4=4k12k431=2k44k恒成立,﹣>)(++)﹣(﹣+△k取什么实数值,该方程总有两个不相等的实数根;故无论222=31b2c=a①()根据勾股定理得:+cb恰好是这个方程的两个根,因为两条直角边和第16页(共18页)bc=2k1bc=4k3③,+②,+则﹣222=312bc=bbcc,因为(++﹣)224k32k1=31,即((+))﹣﹣22kk6=018k64k31=04k,﹣﹣+整理得:,即﹣+﹣+k=3k=2,,解得:﹣21k3kbc=4k0bc=2k10,>﹣∵.+﹣+即>>即>2k=(舍去),∴﹣21=7bc=2k,则++a=,又因为c=ABC7=ab+的周长+则△.+【点评】本题考查了根与系数的关系和根的判别式及勾股定理,难度较大,关键是巧妙10),再根据勾股定理和根与系数的关系列出方程组进行解答.运用△>恒成立证明(2m=02x27x..已知一元二次方程﹣+m1的范围;()若方程有两个实数根,求m=3x3x2xx的值.+)若方程的两个实数根为,求,(,且2112【考点】根与系数的关系;根的判别式.【专题】压轴题.2m01xm=02x的有两个实数根,△≥【分析】(﹣)一元二次方程+,把系数代入可求范围;mx3x=3xx=22xx.+、)利用两根关系,已知,先求+,再求结合(2112212m=0x2x1有两个实数根,﹣+【解答】解:()∵方程202=4m,≥)﹣∴△(﹣1m;解得≤=m?x=2x2xx,()由两根关系可知,+,2121,解方程组第17页(共18页),解得=?xm=x.∴21【点评】本题考查了一元二次方程根的判别式,两根关系的运用,要求熟练掌握.22xxm28xxx=21m,.已知关于﹣的一元二次方程﹣的两实数根为)(21m1的取值范围;()求my=xxy2的值,并求出最小值.+取得最小值时,求相应)设,当(21【考点】根与系数的关系;根的判别式;一次函数的性质.【专题】综合题.2m4ac01=b,建立关于)若一元二次方程有两不等根,则根的判别式△﹣【分析】(≥m的取值范围;的不等式,可求出mxy2x的函数关系式,根的表达式,进而可得出+(、)根据根与系数的关系可得出21m1y值.)题得出的自变量的取值范围,即可求出据函数的性质及(的最小值及对应的22=0m1xx1m2;﹣++)【解答】解:()将原方程整理为(∵原方程有两个实数根,22m42m104m=8m=;(﹣≥)]∴△[≤﹣+,得﹣2222=0xm=21mxmxm21xx2x的两根,(﹣()﹣)﹣()∵,为一元二次方程,即++21mxy=x=2m2;∴≤+,且﹣+211m=ym.因而时,取得最小值随的增大而减小,故当【点评】此题是根的判别式、根与系数的关系与一次函数的结合题.牢记一次函数的性2)题的关键.质是解答(第18页(共18页)。

初二二次根式所有知识点总结和常考题提高难题压轴题练习含答案解析)

初二二次根式所有知识点总结和常考题提高难题压轴题练习含答案解析)

初二二次根式所有知识点总结和常考题知识点:1、二次根式: 形如)0(≥a a 的式子。

①二次根式必须满足:含有二次根号“”;被开方数a 必须是非负数。

②非负性2、最简二次根式:满足:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式的二次根式。

3、化最简二次根式的方法和步骤:(1)如果被开方数含分母,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。

(2)如果被开方数含能开得尽方的因数或因式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。

3、二次根式有关公式(1))0()(2≥=a a a (2)a a =2(3)乘法公式)0,0(≥≥∙=b a b a ab(4)除法公式)0,0( b a ba b a ≥= 4、二次根式的加减法则:先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并。

5、二次根式混合运算顺序:先乘方,再乘除,最后加减,有括号的先算括号里的。

常考题:一.选择题(共14小题)1.下列二次根式中属于最简二次根式的是( ) A .B .C .D .2.式子有意义的x 的取值范围是( )A .x ≥﹣且x ≠1B .x ≠1C .D .3.下列计算错误的是( )A .B .C .D .4.估计的运算结果应在( )A .6到7之间B .7到8之间C .8到9之间D .9到10之间5.如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥6.若=(x+y)2,则x﹣y的值为()A.﹣1 B.1 C.2 D.37.是整数,则正整数n的最小值是()A.4 B.5 C.6 D.78.化简的结果是()A.B.C.D.9.k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n10.实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定11.把根号外的因式移入根号内得()A.B.C.D.12.已知是正整数,则实数n的最大值为()A.12 B.11 C.8 D.313.若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限14.已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5二.填空题(共13小题)15.实数a在数轴上的位置如图所示,则|a﹣1|+= .16.计算:的结果是.17.化简:(﹣)﹣﹣|﹣3|= .18.如果最简二次根式与是同类二次根式,则a= .19.定义运算“@”的运算法则为:x@y=,则(2@6)@8= .20.化简×﹣4××(1﹣)0的结果是.21.计算:﹣﹣= .22.三角形的三边长分别为,,,则这个三角形的周长为cm.23.如果最简二次根式与能合并,那么a= .24.如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是.(结果保留根号)25.实数p在数轴上的位置如图所示,化简= .26.计算:= .27.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= .三.解答题(共13小题)28.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.29.计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.30.先化简,再求值:,其中.31.先化简,再求值:,其中x=1+,y=1﹣.32.先化简,再求值:,其中.33.已知a=,求的值.34.对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+﹣a=﹣a=;乙的解答:+=+=+a﹣=a=.请你判断谁的答案是错误的,为什么?35.一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.36.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.37.已知:,,求代数式x2﹣xy+y2值.38.计算或化简:(1);(2)(a>0,b>0).39.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.40.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若a+4=,且a、m、n均为正整数,求a的值?初二二次根式所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2005•岳阳)下列二次根式中属于最简二次根式的是()A.B.C. D.【分析】B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.2.(2013•娄底)式子有意义的x的取值范围是()A.x≥﹣且x≠1 B.x≠1 C.D.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故选A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.(2007•荆州)下列计算错误的是()A.B.C.D.【分析】根据二次根式的运算法则分别计算,再作判断.【解答】解:A、==7,正确;B、==2,正确;C、+=3+5=8,正确;D、,故错误.故选D.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.4.(2008•芜湖)估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间【分析】先进行二次根式的运算,然后再进行估算.【解答】解:∵=4+,而4<<5,∴原式运算的结果在8到9之间;故选C.【点评】本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.5.(2011•烟台)如果=1﹣2a,则()A.a<B.a≤C.a>D.a≥【分析】由已知得1﹣2a≥0,从而得出a的取值范围即可.【解答】解:∵,∴1﹣2a≥0,解得a≤.故选:B.【点评】本题考查了二次根式的化简与求值,是基础知识要熟练掌握.6.(2009•荆门)若=(x+y)2,则x﹣y的值为()A.﹣1 B.1 C.2 D.3【分析】先根据二次根式的性质,被开方数大于或等于0,可求出x、y的值,再代入代数式即可.【解答】解:∵=(x+y)2有意义,∴x﹣1≥0且1﹣x≥0,∴x=1,y=﹣1,∴x﹣y=1﹣(﹣1)=2.故选:C.【点评】本题主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7.(2012秋•麻城市校级期末)是整数,则正整数n的最小值是()A.4 B.5 C.6 D.7【分析】本题可将24拆成4×6,先把化简为2,所以只要乘以6得出62即可得出整数,由此可得出n的值.【解答】解:∵==2,∴当n=6时,=6,∴原式=2=12,∴n的最小值为6.故选:C.【点评】本题考查的是二次根式的性质.本题还可将选项代入根式中看是否能开得尽方,若能则为答案.8.(2013•佛山)化简的结果是()A.B.C.D.【分析】分子、分母同时乘以(+1)即可.【解答】解:原式===2+.故选:D.【点评】本题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.9.(2013•台湾)k、m、n为三整数,若=k,=15,=6,则下列有关于k、m、n的大小关系,何者正确?()A.k<m=n B.m=n<k C.m<n<k D.m<k<n【分析】根据二次根式的化简公式得到k,m及n的值,即可作出判断.【解答】解:=3,=15,=6,可得:k=3,m=2,n=5,则m<k<n.故选:D【点评】此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.10.(2011•菏泽)实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定【分析】先从实数a在数轴上的位置,得出a的取值范围,然后求出(a﹣4)和(a﹣11)的取值范围,再开方化简.【解答】解:从实数a在数轴上的位置可得,5<a<10,所以a﹣4>0,a﹣11<0,则,=a﹣4+11﹣a,=7.故选A.【点评】本题主要考查了二次根式的化简,正确理解二次根式的算术平方根等概念.11.(2013秋•五莲县期末)把根号外的因式移入根号内得()A.B.C.D.【分析】根据二次根式的性质及二次根式成立的条件解答.【解答】解:∵成立,∴﹣>0,即m<0,原式=﹣=﹣.故选:D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.二次根式成立的条件:被开方数大于等于0,含分母的分母不为0.12.(2009•绵阳)已知是正整数,则实数n的最大值为()A.12 B.11 C.8 D.3【分析】如果实数n取最大值,那么12﹣n有最小值;又知是正整数,而最小的正整数是1,则等于1,从而得出结果.【解答】解:当等于最小的正整数1时,n取最大值,则n=11.故选B.【点评】此题的关键是分析当等于最小的正整数1时,n取最大值.13.(2005•辽宁)若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据二次根式的被开方数为非负数和分母不为0,对a、b的取值范围进行判断.【解答】解:要使这个式子有意义,必须有﹣a≥0,ab>0,∴a<0,b<0,∴点(a,b)在第三象限.故选C.【点评】本题考查二次根式有意义的条件,以及各象限内点的坐标的符号.14.(2013•上城区一模)已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5【分析】原式变形为,由已知易得m+n=2,mn=(1+)(1﹣)=﹣1,然后整体代入计算即可.【解答】解:m+n=2,mn=(1+)(1﹣)=﹣1,原式====3.故选:C.【点评】本题考查了二次根式的化简求值:先把被开方数变形,用两个数的和与积表示,然后利用整体代入的思想代入计算.二.填空题(共13小题)15.(2004•山西)实数a在数轴上的位置如图所示,则|a﹣1|+= 1 .【分析】根据数轴上表示的两个数,右边的数总比左边的大,分别得出a﹣1与0,a﹣2与0的关系,然后根据绝对值的意义和二次根式的意义化简.【解答】解:根据数轴上显示的数据可知:1<a<2,∴a﹣1>0,a﹣2<0,∴|a﹣1|+=a﹣1+2﹣a=1.故答案为:1.【点评】本题主要考查了数轴,绝对值的意义和根据二次根式的意义化简.二次根式的化简规律总结:当a≥0时,=a;当a≤0时,=﹣a.16.(2013•南京)计算:的结果是.【分析】先进行二次根式的化简,然后合并同类二次根式即可.【解答】解:原式=﹣=.故答案为:.【点评】本题考查了二次根式的加减运算,属于基础题,关键是掌握二次根式的化简及同类二次根式的合并.17.(2013•泰安)化简:(﹣)﹣﹣|﹣3|= ﹣6 .【分析】根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可.【解答】解:(﹣)﹣﹣|﹣3|=﹣3﹣2﹣(3﹣),=﹣6.故答案为:﹣6.【点评】此题主要考查了二次根式的化简与混合运算,正确化简二次根式是解题关键.18.(2006•广安)如果最简二次根式与是同类二次根式,则a= 5 .【分析】根据最简二次根式和同类二次根式的定义,列方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a﹣8=17﹣2a,解得:a=5.【点评】此题主要考查最简二次根式和同类二次根式的定义.19.(2007•芜湖)定义运算“@”的运算法则为:x@y=,则(2@6)@8= 6 .【分析】认真观察新运算法则的特点,找出其中的规律,再计算.【解答】解:∵x@y=,∴(2@6)@8=@8=4@8==6,故答案为:6.【点评】解答此类题目的关键是认真观察新运算法则的特点,找出其中的规律,再计算.20.(2014•荆州)化简×﹣4××(1﹣)0的结果是.【分析】先把各二次根式化为最简二次根式,再根据二次根式的乘法法则和零指数幂的意义计算得到原式=2﹣,然后合并即可.【解答】解:原式=2×﹣4××1=2﹣=.故答案为:.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.21.(2014•广元)计算:﹣﹣= ﹣2 .【分析】分别进行分母有理化、二次根式的化简,然后合并求解.【解答】解:==﹣2.故答案为:﹣2.【点评】本题考查了二次根式的加减法,本题涉及了分母有理化、二次根式的化简等运算,属于基础题.22.(2013•宜城市模拟)三角形的三边长分别为,,,则这个三角形的周长为5cm.【分析】三角形的三边长的和为三角形的周长,所以这个三角形的周长为++,化简合并同类二次根式.【解答】解:这个三角形的周长为++=2+2+3=5+2(cm).故答案为:5+2(cm).【点评】本题考查了运用二次根式的加减解决实际问题.23.(2012秋•浏阳市校级期中)如果最简二次根式与能合并,那么a= 1 .【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【解答】解:根据题意得,1+a=4a﹣2,移项合并,得3a=3,系数化为1,得a=1.故答案为:1.【点评】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.24.(2006•宿迁)如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是2﹣2 .(结果保留根号)【分析】根据题意可知,两相邻正方形的边长分别是和,由图知,矩形的长和宽分别为+、,所以矩形的面积是为(+)•=2+6,即可求得矩形内阴影部分的面积.【解答】解:矩形内阴影部分的面积是(+)•﹣2﹣6=2+6﹣2﹣6=2﹣2.【点评】本题要运用数形结合的思想,注意观察各图形间的联系,是解决问题的关键.25.(2003•河南)实数p在数轴上的位置如图所示,化简=1 .【分析】根据数轴确定p的取值范围,再利用二次根式的性质化简.【解答】解:由数轴可得,1<p<2,∴p﹣1>0,p﹣2<0,∴=p﹣1+2﹣p=1.【点评】此题从数轴读取p的取值范围是关键.26.(2009•泸州)计算:= 2 .【分析】运用二次根式的性质:=|a|,由于2>,故=2﹣.【解答】解:原式=2﹣+=2.【点评】合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.27.(2011•凉山州)已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5 .【分析】只需首先对估算出大小,从而求出其整数部分a,其小数部分用﹣a表示.再分别代入amn+bn2=1进行计算.【解答】解:因为2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把m=2,n=3﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得(6a+16b)﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以2a+b=3﹣0.5=2.5.故答案为:2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.三.解答题(共13小题)28.(2009•邵阳)阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.【分析】(1)中,通过观察,发现:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到约分的目的;(2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况.【解答】解:(1)=,=;(2)原式=+…+=++…+=.【点评】学会分母有理化的两种方法.29.(2014•张家界)计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0+.【分析】根据零指数幂、负整数指数幂和平方差公式得到原式=5﹣1﹣9+﹣1﹣1+2,然后合并即可.【解答】解:原式=5﹣1﹣9+﹣1﹣1+2=﹣7+3.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂、负整数指数幂.30.(2009•广州)先化简,再求值:,其中.【分析】本题的关键是对整式化简,然后把给定的值代入求值.【解答】解:原式=a2﹣3﹣a2+6a=6a﹣3,当a=时,原式=6+3﹣3=6.【点评】本题主要考查整式的运算、平方差公式等基本知识,考查基本的代数计算能力.注意先化简,再代入求值.31.(2005•沈阳)先化简,再求值:,其中x=1+,y=1﹣.【分析】这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【解答】解:原式===;当x=1+,y=1﹣时,原式=.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.32.(2010•莱芜)先化简,再求值:,其中.【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式去括号,把除法转换为乘法化简,然后再代入求值.本题注意x﹣2看作一个整体.【解答】解:原式====﹣(x+4),当时,原式===.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.33.(2008•余姚市校级自主招生)已知a=,求的值.【分析】先化简,再代入求值即可.【解答】解:∵a=,∴a=2﹣<1,∴原式=﹣=a﹣1﹣=a﹣1+=2﹣﹣1+2+=4﹣1=3.【点评】本题考查了二次根式的化简与求值,将二次根式的化简是解此题的关键.34.(2002•辽宁)对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+﹣a=﹣a=;乙的解答:+=+=+a﹣=a=.请你判断谁的答案是错误的,为什么?【分析】因为a=时,a﹣=﹣5=﹣4<0,所以≠a﹣,故错误的是乙.【解答】解:甲的解答:a=时,﹣a=5﹣=4>0,所以=﹣a,正确;乙的解答:因为a=时,a﹣=﹣5=﹣4<0,所以≠a﹣,错误;因此,我们可以判断乙的解答是错误的.【点评】应熟练掌握二次根式的性质:=﹣a(a≤0).35.(2011•上城区二模)一个三角形的三边长分别为、、(1)求它的周长(要求结果化简);(2)请你给一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.【分析】把三角形的三边长相加,即为三角形的周长.再运用运用二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:(1)周长=++==,(2)当x=20时,周长=,(或当x=时,周长=等)【点评】对于第(2)答案不唯一,但要注意必须符合题意.36.(2005•台州)我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.【分析】(1)代入计算即可;(2)需要在括号内都乘以4,括号外再乘,保持等式不变,构成完全平方公式,再进行计算.【解答】解:(1)s=,=;p=(5+7+8)=10,又s=;(2)=(﹣)=,=(c+a﹣b)(c﹣a+b)(a+b+c)(a+b﹣c),=(2p﹣2a)(2p﹣2b)•2p•(2p﹣2c),=p(p﹣a)(p﹣b)(p﹣c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)【点评】考查了三角形面积的海伦公式的用法,也培养了学生的推理和计算能力.37.(2009秋•金口河区期末)已知:,,求代数式x2﹣xy+y2值.【分析】观察,显然,要求的代数式可以变成x,y的差与积的形式,从而简便计算.【解答】解:∵,,∴xy=×2=,x﹣y=∴原式=(x﹣y)2+xy=5+=.【点评】此类题注意变成字母的和、差或积的形式,然后整体代值计算.38.(2010秋•灌云县校级期末)计算或化简:(1);(2)(a>0,b>0).【分析】(1)先化简,再运用分配律计算;(2)先化简,再根据乘除法的法则计算.【解答】解:(1)原式==6﹣12﹣6=6﹣18;(2)原式=﹣×=﹣3a2b2×=﹣a2b.【点评】熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.39.(2013秋•故城县期末)先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【解答】解:根据,可得m=13,n=42,∵6+7=13,6×7=42,∴==.【点评】解题关键是把根号内的式子整理为完全平方的形式.40.(2013•黔西南州)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a= m2+3n2,b= 2mn ;(2)利用所探索的结论,找一组正整数a、b、m、n填空: 4 + 2 =( 1+ 1 )2;(3)若a+4=,且a、m、n均为正整数,求a的值?【分析】(1)根据完全平方公式运算法则,即可得出a、b的表达式;(2)首先确定好m、n的正整数值,然后根据(1)的结论即可求出a、b的值;(3)根据题意,4=2mn,首先确定m、n的值,通过分析m=2,n=1或者m=1,n=2,然后即可确定好a的值.【解答】解:(1)∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)设m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4、2、1、1.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.【点评】本题主要考查二次根式的混合运算,完全平方公式,解题的关键在于熟练运算完全平方公式和二次根式的运算法则.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式小结与复习基础盘点1.二次根式的定义:一般地,我们把形如a (a ___0)的式子叫做二次根式,“”称为二次根式.定义诠释:(1)二次根式的定义是以形式界定的,如4是二次根式; (2)形如a b (a ≥0)的式子也叫做二次根式;(3)二次根式a 中的被开方数a ,可以是数,也可以是单项式、多项式、分式,但必须满足a ≥0. 2.二次根式的基本性质(1)a _____0(a ___0);(2)()2a =_____(a ___0);(3)a a =2=()()⎩⎨⎧0_____0_____a a ;(4)=_________(a ___0,b ___0);(5=_________(a ___0,b ___0).3.最简二次根式必须满足的条件为:(1)被开方数中不含___;(2)被开方数中所有因式的幂的指数都_____.4.二次根式的乘、除法则:(1)=______(a ___0,b ___0);(2)=_______(a ___0,b ___0).复习提示:(1)进行乘法运算时,若结果是一个完全平方数,则应利用==a a 2()()⎩⎨⎧<-≥00a aa a 进行化简,即将根号内能够开的尽方的数移到根号外; (2)进行除法运算时,若除得的商的被开方数中含有完全平方数因数,应运用积的算术平方根的性质将其进行化简.5.同类二次根式:几个二次根式化成______后,如果_____相同,这几个二次根式就叫做同类二次根式.6.二次根式的加减法则:二次根式加减时,可以先将二次根式化成_____,然后把_______进行合并. 复习提示:(1)二次根式的加减分为两个步骤:第一步是_____,第二步是____,在合并时,只需将根号外的因式进行加减,被开方数和根指数不变;(2)不是同类二次根式的不能合并,如:53+≠8;(3)在求含二次根式的代数式的值时,常用整体思想来计算. 7.二次根式的混合运算(1)二次根式的混合运算顺序与实数中的运算顺序一致,也是先_,再__,最后__,有括号的先_内的. 复习提示:(1)在运算过程中,有理数(式)中的运算律,在二次根式中仍然适用,有理数(式)中的乘法公式在二次根式中仍然适用; (2)二次根式的运算结果可能是有理式,也可能是二次根式,若是二次根式,一定要化成最简二次根式. 8.二次根式的实际应用利用二次根式的运算解决实际问题,主要从实际问题中列出算式,然后根据运算的性质进行计算,注意最后的结果有时需要取近似值.1 二次根式有意义的条件例1 若式子43-x 在实数范围内有意义,则x 的取值范围是( )A.x ≥34B.x >34C.x ≥43D.x >43方法总结:判断含有字母的二次根式是否有意义,就是看根号内的被开方数是不是非负数,如果是,就有意义,否则就没有意义,当二次根式含有分母时,分母不能为0.2 二次根式的性质例2 下列各式中,正确的是( )A.()332-=- B.332-=- C.()332±=± D.332±=方法总结:()a a =2成立的条件是a ≥0,而在化简()2a 时,先要判断a 的正负情况.3 二次根式的非负性例3 已知32552--+-=x x y ,则xy 2的值为( )A.—15B.15C.215-D.215 方法总结:二次根式a (a ≥0)具有双重非负性,即a ≥0、a ≥0. 4 最简二次根式例4 下列二次根式中,最简二次根式是( )A.51B.5.0C.5D.50 方法总结:在进行二次根式化简时,一些同学不知道化到什么程度为止,切记,一定要化到最简二次根式为止. 5 二次根式的运算 例5 计算1824-×31=____.方法总结:二次根式的加减运算,一定要先化简才能得知算式中哪些二次根式可以合并,除法运算先化为乘法再运算,混合运算时要正确使用运算法则.6 二次根式的化简求值例6若120142013-=m,则34520132mmm--的值是_____.方法总结:解决此类问题应注意代数式的变形和整体思想的运用.一元二次方程1、一元二次方程:只含有一个未知数,并且未知数的最高次数是2的整式方程。

例1、(1)、下列方程中是一元二次方程是()A、212xx+=B、267x+=C、225x y+=D、23520x x-+=2、一元二次方程的一般形式:20(0)ax bx c a++= ≠二次项:,一次项:,常数项:。

二次项系数:,一次项系数:。

例2、(1)、方程x(x+4)=8x+12的一般形式是;二次项是一次项是,常数项是。

(2). 关于x的一元二次方程()22120a x x-+-=是一元二次方程,则a满足()A.1a≠ B. 1a≠- C. 1a≠± D.为任意实数(3)、若方程013)2(||=+++mxxm m是关于x的一元二次方程,则()A.2±=m B.m=2 C.m= —2 D.2±≠m(4)、下列方程中,常数项为零的是( )A.x2+x=1B.2x2-x-12=12;C.2(x2-1)=3(x-1)D.2(x2+1)=x+23..一元二次方程的解法1、因式分解法①移项:使方程右边为0②因式分解:将方程左边因式分解;方法:一提,二套,三十字,四分组③由A∙B=0,则A=0或B=0,解两个一元一次方程2、直接开平方法)0(2≥=aax3、配方法①移项:左边只留二次项和一次项,右边为常数项(移项要变号)②同除:方程两边同除二次项系(每项都要除)③配方:方程两边加上一次项系数一半的平方④开平方:注意别忘根号和正负axax-==21()0(2≥=+aabx解两个一元一次方程abx±=+② 方程:解两个一元一次方程4、公式法① 将方程化为一般式 ② 写出a 、b 、c ③ 求出ac b 42-,④ 若b 2-4ac <0,则原方程无实数解⑤ 若b 2-4ac >0,则原方程有两个不相等的实数根,代入公式求解⑥ 若b 2-4ac =0,则原方程有两个相等的实数根,代入公式2bx a=-求解。

例4、(1)、若关X 的一元二次方程036)1(2=++-x x k 有实数根,则实数k 的取值范围( )A.k ≤4,且k ≠1B.k <4, 且k ≠1C. .k <4D. k ≤4 (2). 已知一元二次方程已知一元二次方程02=++c bx ax ,若0=++c b a ,则该方程一定有一个根为( )A. 0B. 1C. -1D. 2 (3). 关于x 的一元二次方程x 2+kx -1=0的根的情况是( ) A 、有两个不相等的同号实数根 B 、有两个不相等的异号实数根 C 、有两个相等的实数根 D 、没有实数根(4).关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 值为( )A 、1B 、1-C 、1或1-D 、12(5).若关于y 的一元二次方程ky 2-4y-3=3y+4有实根,则k 的取值范围是( )A.k>-74 B.k ≥-74 且k ≠0 C.k ≥-74 D.k>74且k ≠0 例5、(1)利用因式分解法解下列方程(x -2) 2=(2x -3)2 3(1)33x x x +=+ ()()0165852=+---x x(2)、利用开平方法解下列方程4(x -3)2=25 24)23(2=+x51)12(212=-y(3)、利用配方法解下列方程220x -+=(4)、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=05、根与系数的关系:20(0)ax bx c a ++= ≠12b x x a +=- 12cx x a⋅= 例5、(1).已知是方程的两个根,则等于__________.(2)、已知一元二次方程01322=--x x 的两根为1x 、2x ,则=+21x x (3)、已知1x ,2x 是方程2630x x ++=的两实数根,则2112x x x x +的值为______ (4)已知方程222(2)40x m x m +-++=两根的平方和比两根的积大21,求m 的值。

6、一元二次方程的应用(要注意实际问题不能取负数) (1)二次三项式的因式分解①若一元二次方程)0(02≠=++a c bx ax 的两个实数根为x 1,x 2,则二次三项式)0(2≠++a c bx ax 在实数范围内可分解因式写成:))((212x x x x a c bx ax --=++012632=--x x x x 12,x x 2210--=1112x x +039922=--x x②当ac b 42->0,二次三项式在实数范围内分解因式为:))((212x x x x a c bx ax --=++ 当ac b 42-=0,二次三项式在实数范围内分解因式为:212)(x x a c bx ax -=++当ac b 42-<0,二次三项式在实数范围内不能分解因式(2)一元二次方程的实际应用二、典型例题精讲与练习 1、填空题:(1)写一个有两个不相等的实数根的一元二次方程,这个方程可以是(2)已知方程06222=+-mx x 的一个根为-2,则m= ,它的另一个根是(3)已知关于x 的方程0112)21(2=-+--k x x k 有两个不相等的实数根,则k 的取值范围是2、在实数范围内将下列二次三项式分解因式:(1)3522-+x x (2)22253y xy x +--(3)5)2(3)2(22-+++y x y x3、已知关于x 的一元二次方程0122=+-+a x x 没有实数根,试判断关于x 的一元二次方程12=++a ax x 根的情况,并说明理由。

4、已知关于x 的一元二次方程02)2(22=-+--k x k x 有两个相等的实数根,求k 的值及这时方程的根。

5、已知m ,n 为实数,且20)1)((2222=+++n m n m ,23=mn ,求2)(n m +及2)(n m -的值?6、求证:不论k 为何值,关于x 的方程03)12(2=--+-k x k x 总有两个不相等的实数根。

7、一元二次方程()01122=-+++m x x m 有一个解为0,求12-m 的值。

8、一元二次方程的实际应用例6、(1)、某厂去年3月份的产值为50万元,5月份上升到72万元,这两个月平均每月增长的百分率是多少?若设平均每月增长的百分率是x ,则列出的方程是( ) (A )()72150=+x (B )()()721501502=+++x x(C )()722150=⨯+x (D )()721502=+x(2)、原价a 元的某商品经过两次降价后,现售价b 元,如果每次降价的百分比都为x ,那么下列各式中正确的是( )()()b x a A =-21; ()()b x a B =-21;()()a x b C =+21; ()()a x b D =+21。

相关文档
最新文档