2004年高考重庆市数学(理工农医类)试题
2004年高考.重庆卷.理科数学试题及答案
2004年普通高等学校招生重庆卷理工农医类数学试题本试卷分第Ⅰ部分(选择题)和第Ⅱ部分(非选择题)共150分 考试时间120分钟.第Ⅰ部分(选择题 共60分)参考公式:如果事件A 、B 互斥,那幺 P(A+B)=P(A)+P(B)如果事件A 、B 相互独立,那幺 P(A·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那幺n 次独立重复试验中恰好发生k 次的概率k n k knn P P C k P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y =( )A [1,)+∞B 23(,)+∞C 23[,1]D 23(,1]2.设复数1Z =+, 则22Z Z -= ( )A –3B 3C -3iD 3i 3.圆222430x y x y +-++=的圆心到直线1x y -=的距离为:( )A 2B 2C 1 D4.不等式221x x +>+的解集是:( ) A (1,0)(1,)-+∞ B (,1)(0,1)-∞-C (1,0)(0,1)-D (,1)(1,)-∞-+∞5.sin163sin 223sin 253sin313+= ( )A 12-B 12C 2-D 26.若向量a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=-,则向量a 的模为:( )A 2B 4C 6D 12 7.一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是:( )A 0a <B 0a >C 1a <-D 1a > 8.设P 是60的二面角l αβ--内一点,,PA PB αβ⊥⊥平面平面,A,B 为垂足,4,2,PA PB ==则AB 的长为:( )A B C D9. 若数列{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n项和0n S >成立的最大自然数n 是:( )A 4005B 4006C 4007D 400810.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( )A 43B 53C 2D 7311.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:( )A 110B 120C 140D 112012.若三棱锥A-BCD 的侧面ABC 内一动点P 到底面BCD 的面积与到棱AB 的距离相等,则动点P 的轨迹与ABC 组成图形可能是:( )第Ⅱ部分(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.若在5(1)ax +的展开式中3x 的系数为80-,则_______a =14.曲线23112224y x y x =-=-与在交点处切线的夹角是______(用弧度数作答)15.如图P 1是一块半径为1的半圆形纸板,在P 1的左下端剪去一个半径为12的半圆后得到图形P 2,然后依次剪去一个更小半圆(其直径为前一个被剪掉半圆的半径)得圆形P 3、P 4、…..P n …,记纸板P n 的面积为n S ,则lim ______n x S →∞=16.对任意实数K ,直线:y kx b =+与椭圆:2cos (02)14sin x y θθπθ⎧=⎪≤≤⎨=+⎪⎩恰有一个公共点,则b 取值范围是_______________三、解答题:本题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)求函数44sincos cos y x x x x =+-的取小正周期和取小值;并写出该函数在[0,]π上的单调递增区间。
2004年普通高等学校招生全国统一考试数学 (理工农林医 类)
2004年普通高等学校招生全国统一考试数学 (理工农林医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至1页,第Ⅱ卷3至10页。
考试结束后,将试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔在答题卡上对应题宗旨答案涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,惟有一项乃是符合题目要求的。
参阅公式:三角函数的和差化积公式 )]sin()[sin(21cos sin βαβαβα-++= )]sin()[sin(21sin cos βαβαβα--+= )]cos()[cos(21cos cos βαβαβα-++= )]cos()[cos(21sin sin βαβαβα--+-=一、选择题1.设集合(){}R y R x y x y x M ∈∈=+=,,1,22,(){}R y R x y x y x N ∈∈=-=,,0,2,则集合NM 中元素的个数为( )A .1B .2C .3D .4 2.函数2sin x y =的最小正周期乃是( )A .2πB .πC .π2D .π43.设数列{}n a 乃是等差数列,且6,682=-=a a ,n S 乃是数列{}n a 的前n 项和,则 ( )A .54S S <B .54S S =C .56S S <D .56S S = 4.圆0422=-+x y x 在点)3,1(P 处的切线方程为( )正棱台、圆台的侧面积公式l c c S )(21+'=台侧 其中c ′、c 分别表示上、下底面周长,l 表示斜高或母线长 台体的体积公式334R V π=球 其中R 表示球的半径A .023=-+y xB .043=-+y xC .043=+-y xD .023=+-y x 5.函数)1(log 221-=x y 的定义域为( )A .[)(]2,11,2 -- B .)2,1()1,2( --C .[)(]2,11,2 --D .)2,1()1,2( --6.设复数z 的辐角的主值为32π,虚部为3,则2z =( )A .i 322--B .i 232--C .i 32+D .i 232+7.设双曲线的焦点在x 轴上,两条渐近线为x y 21±=,则该双曲线的离心率=e ( )A .5B .5 C .25D .45 8.不等式311<+<x 的解集为( )A .()2,0B .())4,2(0,2 -C .()0,4-D .())2,0(2,4 --9.正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为 ( )A .322 B .2C .32D .324 10.在△ABC 中,AB=3,BC=13,AC=4,则边AC 上的高为( )A .223 B .233 C .23 D .3311.设函数⎪⎩⎪⎨⎧≥--<+=1,141,)1()(2x x x x x f ,则使得1)(≥x f 的自变量x 的取值范围为( )A .(][]10,02, -∞-B .(][]1,02, -∞-C .(][]10,12, -∞-D .[]10,1]0,2[ -12.将4名教师分配到3所中学任教,每所中学至少1名,则不同的分配方案共有( )A .12种B .24种C .36种D .48种第Ⅱ卷步骤.)13.用平面α截半径为R 的球,如果球心到平面α的距离为2R,那么截得小圆的面积与球的表面积的比值为 .14.函数x x y cos 3sin +=在区间⎥⎦⎤⎢⎣⎡2,0π上的最小值为 .15.已知函数)(x f y =乃是奇函数,当0≥x 时,13)(-=x x f ,设)(x f 的反函数乃是)(x g y =,则=-)8(g .16.设P 乃是曲线)1(42-=x y 上的一个动点,则点P 到点)1,0(的距离与点P 到y 轴的距离之和的最小值为 .三、解读回答题(6道题,共76分)17.(本小题满分12分)已知α为锐角,且21tan =α,求ααααα2cos 2sin sin cos 2sin -的值.18.(本小题满分12分)解方程 11214=-+xx.m的矩形蔬菜温室。
2004普通高等学校招生全国统一考试(北京)数学(理工农医类)
2004年普通高等学校招生全国统一考试(北京卷)数学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟. 第I 卷(选择题 共40分) 注意事项:1. 答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式 sin cos [sin()sin()]αβαβαβ=++-12cos sin [sin()sin()]αβαβαβ=+--12cos cos [cos()cos()]αβαβαβ=++-12sin sin [cos()cos()]αβαβαβ=-+--12正棱台、圆台的侧面积公式 S c c l 台侧=+12(')其中c ’,c 分别表示上、下底面周长,l 表示斜高或母线长 球体的表面积公式S R 球=42π其中R 表示球的半径一、 选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集是实数集R ,M x x =-≤≤{|}22,N x x =<{|}1,则M N ⋂等于( ) A .{|}x x <-2B .{|}x x -<<21C .{|}x x <1D .{|}x x -≤<212.满足条件||||z i i -=+34的复数z 在复平面上对应点的轨迹是( )A . 一条直线B . 两条直线C . 圆D . 椭圆3.设m 、n 是两条不同的直线,αβγ,,是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n //④若αγ⊥,βγ⊥,则αβ//其中正确命题的序号是 ( )A .①和②B . ②和③C . ③和④D . ①和④4.如图,在正方体ABCD A B C D -1111中,P 是侧面BB C C 11内一动点,若P 到直线BC 与 直线C D 11的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C . 双曲线D . 抛物线5.函数f x x ax ()=--223在区间[1,2]上存在反函数的充分必要条件是 ( )A .a ∈-∞(,]1B .a ∈+∞[,)2C .a ∈[,]12D . a ∈-∞⋃+∞(,][,)126.已知a 、b 、c 满足c b a <<,且ac <0,那么下列选项中不一定成立的是 ( )A .ab ac >B . c b a ()-<0C . cb ab 22<D . 0)(<-c a ac7.从长度分别为1,2,3,4,5的五条线段中,任取三条的不同取法共有n 种。
2004高考数学试题(全国4理)及答案
2004年高考试题全国卷Ⅳ理科数学(必修+选修Ⅱ)第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知集合},2|{},2,1,0{M a a x x N M ∈===,则集合N M ⋂= ( )A .{0}B .{0,1}C .{1,2}D .{0,2} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.过点(-1,3)且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.)1)31(2ii +-=( )A .i +3B .i --3C .i -3D .i +-3 5.不等式03)2(<-+x x x 的解集为( )A .}30,2|{<<-<x x x 或B .}3,22|{><<-x x x 或C .}0,2|{>-<x x x 或D .}3,0|{<<x x x 或6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .220 7.对于直线m 、n 和平面α,下面命题中的真命题是( )A .如果m n m ,,αα⊄⊂、n 是异面直线,那么α//n ;B .如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交C .如果m n m ,//,αα⊂、n 共面,那么n m //;D .如果m n m ,//,//αα、n 共面,那么n m //8.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π 其中R 表示球的半径A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x 9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=2,BC=32,则球心 到平面ABC 的距离为( )A .1B .2C .3D .211.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+12.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .15.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 . 16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)求函数241)1ln()(x x x f -+=在[0,2]上的最大值和最小值.C19.(本小题满分12分) 某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响. (Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望; (Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率. 20.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 21.(本小题满分12分)双曲线)0,1(12222>>=-b a by a x 的焦点距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围. 22.(本小题满分14分)已知函数0)(),sin (cos )(='+=-x f x x ex f x将满足的所有正数x 从小到大排成数列}.{n x(Ⅰ)证明数列{}{n x f }为等比数列;(Ⅱ)记n S 是数列{}{n n x f x }的前n 项和,求.lim 21nS S S nn +++∞→2004年高考试题全国卷4理科数学(必修+选修Ⅱ)参考答案一、选择题1—12 D C A D A B C A B A B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.21-15.43 16.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++= 当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α 18.本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小值以及综合运算能力.满分12分. 解:,2111)(x x x f -+=' 令 ,02111=-+x x 化简为,022=-+x x 解得.1),(221=-=x x 舍去当)(,0)(,10x f x f x >'<≤时单调增加; 当)(,0)(,21x f x f x <'≤<时单调减少. 所以412ln )1(-=f 为函数)(x f 的极大值. 又因为 ),2()1(,013ln )2(,0)0(f f f f >>-==所以 0)0(=f 为函数)(x f 在[0,2]上的最小值,412ln )1(-=f 为函数)(x f 在[0,2]上的最大值.19.本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解 决实际问题的能力.满分12分. 解:(Ⅰ)ξ的可能值为-300,-100,100,300.P (ξ=-300)=0.23=0.008, P (ξ=-100)=3×0.22×0.8=0.096, P (ξ=100)=3×0.2×0.82=0.384, P (ξ=300)=0.83=0.512,图2Cy所以ξ的概率分布为根据ξ的概率分布,可得ξ的期望E ξ=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.(Ⅱ)这名同学总得分不为负分的概率为P (ξ≥0)=0.384+0.512=0.896.20.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD.作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD , 所以∠PEO 为侧面PAD 与底面所成的二面角的平面角, 由已知条件可知∠PEO=60°,PE=6, 所以PO=33,四棱锥P —ABCD 的体积 V P —ABCD =.963334831=⨯⨯⨯ (Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--=BD PA 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.通过计算可得EO=3,AE=23知AD=43,AB=8,得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.21.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是.525≤≤e 22.本小题主要考查函数的导数,三角函数的性质,等差数列与等比数列的概念和性质,以及综合运用的能力.满分14分. (Ⅰ)证明:.sin 2)cos sin ()sin (cos )(x e x x e x x ex f x x x----=+-++-='由,0)(='x f 得.0sin 2=--x e x解出n n x ,π=为整数,从而,3,2,1,==n n x n π .)1()(πn n n e x f --=.)()(1π-+-=e x f x f n n所以数列)}({n x f 是公比π--=eq 的等比数列,且首项.)(1q x f =(Ⅱ)解:)()()(2211n n n x f x x f x x f x S +++= ),21(1-+++=n nq q q π),11()21(),2(122n nnn n n n n nq qq q nq qq q qS S nq q q q qS ---=-+++=-+++=-πππ 而).11(1n nn nq qq q q S ----=πnS S S n+++ 21.)1()1()1(2)1()11()1(11)1()1()21()1()1()1()1(2232222222121222q q q q n q q qnq qq q n q q q q n q q q nq q q n q qq q n q q qn n n nn n n -+----=----------=+++--+++---=+--πππππππππ因为0lim .1||=<=∞→-n n q eq π,所以.)1()1(lim 2221+-=-=+++∞→ππππe e q q n S S S n n。
2004年高考数学试题(全国2理)及答案
2004年高考试题全国卷Ⅱ理科数学(必修+选修Ⅱ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21 (B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2 (C )ω1-(D )21ω(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36 (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条 (9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe ,其中λ= (A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π(12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为ξ0 1 2 P(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .(16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱,其中,真命题的编号是 (写出所有真命题的编号). 三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高. (18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率. (19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2+S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M . (Ⅰ)求证:CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.(21)(本小题满分12分) 给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1,求OA 与OB 夹角的大小;(Ⅱ)设=AF λ,若λ∈[4,9],求l 在y 轴上截距的变化范围. (22)(本小题满分14分)已知函数f (x )=ln(1+x )-x ,g (x )=x ln x .(1)求函数f (x )的最大值;(2)设0<a <b ,证明:0<g (a )+g (b )-2g (2ba +)<(b -a )ln2.2004年高考试题全国卷2 理科数学(必修+选修Ⅱ)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C 二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan = =2+6设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为2+618.(I) 解:有一组恰有两支弱队的概率762482523=C C C(II)解:A 组中至少有两支弱队的概率21481533482523=+C C C C C C 19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n , 211=++nS n S n n (n=1,2,3,…).故数列{nSn }是首项为1,公比为2的等比数列A'(II )解:由(I )知,)2(14111≥-∙=+-+n n Sn S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3, 又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1 又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM , 因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F , 则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1, 所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23, ∴∠B 1GF 是所求二面角的平面角 又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=332123223)21()23(222121221-=∙∙-+=∙-+FGG B F B FG G B即所求二面角的大小为π-arccos33 解法二:如图以C 为原点建立坐标系 (I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1), =DM (0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=(-22,21,21),=G B 1),41,43,42(--∴01=∙G B BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴与G B 1的夹角θ等于所求二面角的平面角, cos .3311-==θ 所以所求二面角的大小为π-arccos33 21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1.将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OB OA ∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y x OB OAcos<OB OA ,.41413||||-=∙OB OA 所以OA 与OB 夹角的大小为π-arccos41413. 解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1 (3)联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1) 当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或-12-λλ由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤ 直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln 2b a +=a ba bb b a a +++2ln 2ln .由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得021,02<-<->-bba a ab ,因此a a b a a b b a a 2)21l n (2ln-->-+-=+,bba b b a b a b 2)21ln(2ln -->-+-=+. 所以a b a b b b a a +++2ln 2ln >-022=---ba ab . 又,22b b a b a a +<+ a b a b b b a a +++2ln 2ln <a .2ln )(2ln )(2ln 2ln a b ba ba b b a b b b b a -<+-=+++ 综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2xa +),则.2ln ln )]'2([2)(')('xa x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数当x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)因为F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2ba +).设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2ln ln )('x a x xa x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2ba +)<(b-a)ln2.。
2004年普通高等学校招生全国统一考试数学(理工农医类)(重庆卷)及答案
2004年普通高等学校招生全国统一考试数学(理工农医类)(重庆卷)本试卷分第Ⅰ部分(选择题)和第Ⅱ部分(非选择题)共150分 考试时间120分钟.第Ⅰ部分(选择题 共60分)参考公式:如果事件A 、B 互斥,那幺 P(A+B)=P(A)+P(B)如果事件A 、B 相互独立,那幺 P(A·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率k n kk n n P P C k P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y =( )A .[1,)+∞B .23(,)+∞C .23[,1]D .23(,1] 2.设复数z z i z 2,212-+=则, 则22Z Z -=( ) A .–3 B .3 C .-3i D .3i3.圆222430x y x y +-++=的圆心到直线1x y -=的距离为 ( )A .2B .2C .1D 4.不等式221x x +>+的解集是( )A .(1,0)(1,)-+∞B .(,1)(0,1)-∞-C .(1,0)(0,1)-D .(,1)(1,)-∞-+∞5.sin163sin 223sin 253sin313+=( )A .12-B .12C .2-D .26.若向量a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=-,则向量a 的模为 ( )A .2B .4C .6D .127.一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是:( )A .0a <B .0a >C .1a <-D .1a > 8.设P 是60的二面角l αβ--内一点,,PA PB αβ⊥⊥平面平面,A,B 为垂足,4,2,PA PB ==则AB 的长为( )A .B .C .D .9. 若{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0n S >成立的最大自然数n 是:( ) A .4005B .4006C .4007D .400810.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( ) A .43 B .53 C .2 D .7311.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为: ( )A .110B .120C .140 D .112012.若三棱锥A-BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与△ABC 组成图形可能是( )(C ) (D )第Ⅱ部分(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.若在5(1)ax +的展开式中3x 的系数为80-,则_______a =.14.曲线23112224y x y x =-=-与在交点处切线的夹角是______,(用幅度数作答) 15.如图P 1是一块半径为1的半圆形纸板,在P 1的左下端剪去一个半径为12的半圆后得到图形P 2,然后依次剪去一个更小半圆(其直径为前一个被剪掉半圆的半径)得圆形P 3、P 4、…..,P n ,…,记纸板P n 的面积为n S ,则lim ______n x S →∞=.16.对任意实数K ,直线:y kx b =+与椭圆:)20(sin 41cos 23πθθθ<≤⎩⎨⎧+=+=y x 恒有公共点,则b 取值范围是_______________三、解答题:本题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数44sincos cos y x x x x =+-的最小正周期和最小值;并写出该函数在[0,]π上的单调递增区间。
2004年高考理科数学全国卷(word版含答案)
2004年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k(1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60。
1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |= ( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1) B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .( IA)∪B=IB .( IA)∪( I B)=I C .A ∩( IB)=φD .( I A)∪( I B)=I B 7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点 球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径为P ,则||2PF = ( )A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象 ( )A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH 的表面积为T ,则S T等于( )A .91B .94 C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n},满足a1=1,a n=a1+2a2+3a3+…+(n-1)a n-1(n≥2),则{a n}的通项1, n=1,a n= ,n≥2.16.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是 .①两条平行直线②两条互相垂直的直线③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是(写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xx xxxxf2sin2cossincossin)(2 24 4-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间.20.(本小题满分12分)如图,已知四棱锥 P—ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD 与底面ABCD所成的二面角为120°.(I)求点P到平面ABCD的距离,Array(II)求面APB与面CPB所成二面角的大小.21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值.22.(本小题满分14分)已知数列1}{1 a a n 中,且 a 2k =a 2k -1+(-1)K,a 2k+1=a 2k +3k, 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年普通高等学校招生全国统一考试理科数学(必修+选修I )参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37.P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2P(ξ=4)= 0.52×0.42=0.04于是得到随机变量ξ的概率分布列为:19.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.(II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE. ∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a a a a e (II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a aa x a a x a a x 所以由得消去所以22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分.解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3.a 4=a 3+(-1)2=4,a 5=a 4+32=13,所以,a 3=3,a 5=13.(II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k ,所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1,……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)],由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k ka 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k (-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nnn a。
2004年重庆高考理综
2004年普通高等学校招生全国统一考试理科综合能力测试第Ⅰ卷(选择题 共126分)本卷共21题,每题6分,共126分。
以下数据可供解题时参考:原子量;C 17 N 14 O 16 Na 23 Mg 24 P 31 Cl 35.5 K 39 Ca 40 Fe56l .下列关于光合作用强度的叙述,正确的是A .叶片从幼到老光合作用强度不变B .森林或农田中植株上部叶片和下部叶片光合作用强度有差异C .光合作用强度是由基因决定的,因此是固定不变的D .在相同光照条件下,各种植物的光合作用强度相同2.某生物的体细胞染色体数为2n 。
该生物减数分裂的第二次分裂与有丝分裂相同之处是A .分裂开始前,都进行染色体的复制B .分裂开始时,每个细胞中的染色体数都是2nC .分裂过程中,每条染色体的着丝点都分裂成为两个D .分裂结束后,每个子细胞的染色体数都是n3.用一定量的甲状腺激素连续饲喂正常成年小白鼠4周,与对照组比较,实验组小白鼠表现为A .耗氧量增加、神经系统的兴奋性降低B .耗氧量增加、神经系统的兴奋性增强C .耗氧量减少、神经系统的兴奋性降低D .耗氧量减少、神经系统的兴奋性增强 4.下列属于生态系统食物同特征的是A .一种生物只能被另一种生物捕食B .食物链的环节数是无限的C .一种生物可能属于不同的营养级D .食物网上的生物之间都是捕食关系5.用动物细胞工程技术获取单克隆抗体,下列实验步骤中错误..的是) A .将抗原注入小鼠体内,获得能产生抗体的B 淋巴细胞 B .用纤维素酶处理B 淋巴细胞与小鼠骨髓瘤细胞C .用聚乙二醇作诱导剂,促使能产生抗体的B 淋巴细胞与小鼠骨髓瘤细胞融合D .筛选杂交瘤细胞,并从中选出能产生所需抗体的细胞群,培养后提取单克隆抗体 6.在pH =l 含+2Ba 离子的溶液中,还能大量存在的离子是A .-2AlOB .-ClOC .-ClD .-24SO7.物质的量浓度相同的下列溶液中,符合按pH 由小到川匝序排列的是A .Na 2CO 3 NaHCO 3 NaCl NH 4ClB .Na 2CO 3 NaHCO 3 NH 4Cl NaClC .(NH 4)2SO 4 NH 4Cl NaNO 3 Na 2SD .NH 4Cl (NH 4)2SO 4 Na 2S NaNO 3 8.已知(l ))g (O 21)g (H 22+ =H 2O (g ) △H 1=a kJ ·1mol -(2))g (O )g (H 222+ =2H 2O (g ) △H 2=b kJ ·1mol - (3))g (O 21)g (H 22+=H 2O (l ) △H 3=c kJ ·1mol -(4))g (O )g (H 222+ =2H 2O (l ) △H 4=d kJ ·1mol - 下列关系式中正确的是 A . a <c <0 B .b >d >0C .2a =b <0D .2c =d >09.将0.l mol ·1L -醋酸溶液加水稀释,下列说法正确的是A .溶液中c (H +)和c (-OH )都减小B .溶液中c (H +)增大C .醋酸电离平衡向左移动D .溶液的pH 增大 10.下列叙述正确的是A .同温同压下,相同体积的物质,它们的物质的量必相等B .任何条件下,等物质的量的乙烯和一氧化碳所含的分子数必相等C .1L 一氧化碳气体一定比1L 氧气的质量小D .等体积、等物质的量浓度的强酸中所含的H +数一定相等 11.若1 mol 某气态烃C x H y 完全燃烧,需用3 mol O 2,则A .x = 2,y =2B .x = 2,y =4C .x = 3,y =6D .2=3,y =8 12.下列分子中,所有原子不可能...共处在同一平面上的是 A .C 2H 2 B .CS 2 C .NH 3 D .C 6H 6 13.常温下,下列各组物质不能用一种试剂通过化学反应区别的是A .MnO 2 CuO FeOB .(NH 4)2SO 4 K 2SO 4 NH 4ClC .AgNO 3 KNO 3 Na 2CO 3D .Na 2CO 3 NaHCO 3 K 2CO3 14.现有1200个氢原子被激发到量子数为4的能级上,若这些受激氢原子最后都回到基态,则在此过程中发出的光子总数是多少?假定处在量子数为n 的激发态的氢原子跃迁到各较低能级的原子数都是处在该激发态能级上的原子总数的1n 1-。
2004年高考试题——数学理(北京卷)
2004年普通高等学校招生全国统一考试(北京卷)数学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟. 第I 卷(选择题 共40分) 注意事项:1. 答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上. 3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式sin cos [sin()sin()]αβαβαβ=++-12 cos cos [cos()cos()]αβαβαβ=++-12s i n s i n [c o s ()c o s ()]αβαβαβ=-+--12正棱台、圆台的侧面积公式 S c c l 台侧=+12(')其中c’,c 分别表示上、下底面周长,l 表示斜高或母线长 球体的表面积公式S R 球=42π 其中R 表示球的半径一、 选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集是实数集R ,M x x =-≤≤{|}22,N x x =<{|}1,则M N 等于( )A .{|}x x <-2B .{|}x x -<<21C .{|}x x <1D .{|}x x -≤<21 2.满足条件||||z i i -=+34的复数z 在复平面上对应点的轨迹是( )A . 一条直线B . 两条直线C . 圆D . 椭圆 3.设m 、n 是两条不同的直线,αβγ,,是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则αβ//其中正确命题的序号是( ) A .①和② B . ②和③C . ③和④D . ①和④4.如图,在正方体1111ABC D A B C D -中,P 是侧面BB C C 11内一动点,若P 到直线BC 与 直线C D 11的距离相等,则动点P 的轨迹所在的曲线是( )D C 1A CA .直线B .圆C . 双曲线D . 抛物线5.函数f x x ax ()=--223在区间[1,2]上存在反函数的充分必要条件是 ( ) A .a ∈-∞(,]1B .a ∈+∞[,)2C .a ∈[,]12D . (,1][2,)a ∈-∞+∞6.已知a 、b 、c 满足c b a <<,且ac <0,那么下列选项中不一定成立的是 ( ) A .ab ac > B . c b a ()-<0C . cb ab 22<D . 0)(<-c a ac7.从长度分别为1,2,3,4,5的五条线段中,任取三条的不同取法共有n 种.在这些取 法中,以取出的三条线段为边可组成的钝角三角形的个数为m ,则m n等于 ( )A .110B .15C .310D .258.函数,(),x x Pf x x x M ∈⎧=⎨-∈⎩,其中P 、M 为实数集R 的两个非空子集,又规定(){|(),}f P y y f x x P ==∈,(){|(),}f M y y f x x M ==∈,给出下列四个判断:①若P M =∅ ,则()()f P f M =∅ ②若P M ≠∅ ,则()()f P f M ≠∅ ③若P M R = ,则()()f P f M R = ④若P M R ≠ ,则()()f P f M R ≠ 其中正确判断有( )A . 1个B . 2个C . 3个D . 4个第Ⅱ卷(非选择题 共110分)二、 填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9.函数f x x x x ()cos sin cos =-223的最小正周期是___________. 10.方程lg()lg lg 4223xx+=+的解是___________________ .11.某地球仪上北纬30 纬线的长度为12πcm ,该地球仪的半径是__________cm ,表面积是______________cm 2. 12.曲线C :x y ==-+⎧⎨⎩cos sin θθ1(θ为参数)的普通方程是__________,如果曲线C 与直线x y a ++=0有公共点,那么实数a 的取值范围是_______________.13.在函数f x ax bx c ()=++2中,若a ,b ,c 成等比数列且f ()04=-,则f x ()有最______________值(填“大”或“小”),且该值为______________.14.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{}a n 是等和数列,且a 12=,公和为5,那么a 18的值为______________,这个数列的前n 项和S n 的计算公式为________________ .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)在∆ABC 中,sin cos A A +=22,AC =2,AB =3,求tgA 的值和∆ABC 的面积.16.(本小题满分14分)如图,在正三棱柱ABC A B C -111中,AB =3,AA 14=,M 为AA 1的中点,P 是BC 上一点,且由P 沿棱柱侧面经过棱CC 1到M 的最短路线长为29,设这条最短路线与CC 1的交点为N ,求:(I )该三棱柱的侧面展开图的对角线长;(II )PC 和NC 的长;(III )平面NMP 与平面ABC 所成二面角(锐角)的大小(用反三角函数表示)1N C B17.(本小题满分14分)如图,过抛物线y px p 220=>()上一定点00(,)P x y (y 00>),作两条直线分别交抛物线于11(,)A x y ,22(,)B x y (I )求该抛物线上纵坐标为p 2的点到其焦点F 的距离(II )当P A 与PB 的斜率存在且倾斜角互补时,求y y y 12+的值,并证明直线AB 的斜率是非零常数x18.(本小题满分14分)函数f x ()是定义在[0,1]上的增函数,满足f x f x()()=22且f ()11=,在每个区间(,]12121ii -(i =1,2……)上,y f x =()的图象都是斜率为同一常数k 的直线的一部分.(I )求f ()0及f ()12,f ()14的值,并归纳出f i i()(,,)1212= 的表达式;(II )设直线x i=12,x i =-121,x 轴及y f x =()的图象围成的矩形的面积为a i (i =1,2……),记S k a a a n n ()lim ()=+++→∞12 ,求S k ()的表达式,并写出其定义域和最小值19.(本小题满分12分)某段城铁线路上依次有A 、B 、C 三站,AB =5km ,BC =3km ,在列车运行时刻表上,规定列车8时整从A 站发车,8时07分到达B 站并停车1分钟,8时12分到达C 站.在实际运行中,假设列车从A 站正点发车,在B 站停留1分钟,并在行驶时以同一速度vkm h /匀速行驶,列车从A 站到达某站的时间与时刻表上相应时间之差的绝对值称为列车在该站的运行误差.(I )分别写出列车在B 、C 两站的运行误差;(II )若要求列车在B ,C 两站的运行误差之和不超过2分钟,求v 的取值范围.20.(本小题满分13分)给定有限个正数满足条件T :每个数都不大于50且总和L =1275.现将这些数按下列要求进行分组,每组数之和不大于150且分组的步骤是:首先,从这些数中选择这样一些数构成第一组,使得150与这组数之和的差r 1与所有可能的其他选择相比是最小的,r 1称为第一组余差;然后,在去掉已选入第一组的数后,对余下的数按第一组的选择方式构成第二组,这时的余差为r 2;如此继续构成第三组(余差为r 3)、第四组(余差为r 4)、……,直至第N 组(余差为r N )把这些数全部分完为止.(I )判断r r r N 12,,, 的大小关系,并指出除第N 组外的每组至少含有几个数; (II )当构成第n (n <N )组后,指出余下的每个数与r n 的大小关系,并证明r n L n n ->--11501;(III )对任何满足条件T 的有限个正数,证明:N ≤11.2004年普通高等学校招生全国统一考试 数学(理工农医类)(北京卷)参考答案一、选择题:本大题主要考查基本知识和基本运算.每小题5分,满分40分.1.A 2.C 3.A 4.D 5.D 6.C 7.B 8.B二、填空题:本大题主要考查基本知识和基本运算.每小题5分,满分30分.9.π 10.x x 1201==, 11.43 192π 12.x y 2211++=() 1212-≤≤+a13.大 -3 14.3 当n 为偶数时,S n n =52;当n 为奇数时,S n n =-5212三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.本小题主要考查三角恒等变形、三角形面积公式等基本知识,考查运算能力.满分13分.解法一:.21)45cos(,22)45cos(2cos sin =-∴=-=+A A A A又0180A << ,.323131)6045(.105,6045--=-+=+=∴==-∴tg tgA A As i n s i ns i n ()s i n c o s c o s s i n A ==+=+=+105456045604560264.S AC AB A ABC ∆=⨯=⨯⨯⨯+=+1212232643426sin ()解法二: s i n c o s A A +=22, (1).0c o s ,0s i n ,1800,21c o s s i n 2,21)c o s (s i n 2<>∴<<-=∴=+∴A A A A A A A(s i n c o s )s i n c o s A A A A -=-=21232,∴-=s i n c o s A A 62, (2)(1)+(2)得:sin A =+264,(1)-(2)得:cos A =-264,∴==+⨯-=--t g A A As i n c o s 26442623.(以下同解法一)16.本小题主要考查直线与平面的位置关系、棱柱等基本知识,考查空间想象能力、逻辑思维能力和运算能力.满分14分.解:(I )正三棱柱ABC A B C -111的侧面展开图是一个长为9,宽为4的矩形,其对角线长为949722+=.(II )如图1,将侧面BB C C 11绕棱CC 1旋转120 使其与侧成AA C C 11在同一平面上,点P 运动到点P 1的位置,连接M P 1,则M P 1就是由点P 沿棱柱侧面经过棱CC 1到点M 的最短路线.设PC x =,则P C x 1=,在Rt M AP ∆1中,由勾股定理得()322922++=x 求得x =2..54,52.2111=∴====∴NC A P C P MANC C P PC(III )如图2,连结PP 1,则PP 1就是平面NMP 与平面ABC 的交线,作NH PP ⊥1于H ,又CC 1⊥平面ABC ,连结CH ,由三垂线定理得,CH PP ⊥1.A∴∠N H C 就是平面NMP 与平面ABC 所成二面角的平面角(锐角)在Rt PH C ∆中,∠=∠=P C H P C P 12601,12P C C H ∴==.在R t N C H ∆中,tg NH C NCCH ∠===45145, 故平面NMP 与平面ABC 所成二面角(锐角)的大小为arctg 45.17.本小题主要考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力.满分14分. 解:(1)当y p =2时,x p =8,又抛物线y px 22=的准线方程为x p =-2.由抛物线定义得,所求距离为p p p 8258--=().(2)设直线P A 的斜率为k PA ,直线PB 的斜率为k PB 由y px 1212=,y px 0202=,相减得()()()y y y y p x x 1010102-+=-. 故k y y x x p y y x x PA =--=+≠101010102().同理可得k p y y x x PB =+≠22020().由PA ,PB 倾斜角互补知k k PA PB =-, 即221020p y y p y y +=-+, 所以y y y 1202+=-, 故y y y 122+=-.设直线AB 的斜率为k AB由y px 2222=,y px 1212= 相减得()()()y y y y p x x 2121212-+=-, 所以k y y x x p y y x x AB =--=+≠212112122(). 将y y y y 120020+=->()代入得k p y y p y AB =+=-212,所以k AB 是非零常数.18.本小题主要考查函数、数列等基本知识,考查分析问题和解决问题的能力.满分14分. 解:(I )由f f ()()020=,得f ()00= 由f f ()()1212=及f ()11=,得f f ()()1212112==.同理,f f ()()1412124==1.归纳得f i i i ()(,,)121212== .(II )当12121ii x <≤-时,f x k x i i ()()=+---121211a k i i i ii i i=++------121212121212121111[()]() =-1=-()(,,)1421221ki i .所以{}a n 是首项为1214()-k ,公比为14的等比数列, 所以S k a a a k k n n ()lim ()()()=+++=--=-→∞1212141142314.S k ()的定义域为0<≤k 1,当k =1时取得最小值12.19.本小题主要考查解不等式等基本知识,考查应用数学知识分析问题和解决问题的能力.满分12分.解:(I )列车在B ,C 两站的运行误差(单位:分钟)分别是 ||3007v -和||48011v-.(II )由于列车在B ,C 两站的运行误差之和不超过2分钟,所以 ||||3007480112vv -+-≤. (*)当03007<≤v 时,(*)式变形为3007480112vv-+-≤,解得393007≤≤v ; 当300748011<≤v 时,(*)式变形为7300480112-+-≤vv , 解得300748011<≤v ; 当v >48011时,(*)式变形为700114802-3+-≤vv,解得480111954<≤v .综上所述,v 的取值范围是[39,1954]20.本小题主要考查不等式的证明等基本知识,考查逻辑思维能力、分析问题和解决问题的能力.满分13分.解:(I )r r r N 12≤≤≤ .除第N 组外的每组至少含有150503=个数(II )当第n 组形成后,因为n N <,所以还有数没分完,这时余下的每个数必大于余差r n ,余下数之和也大于第n 组的余差r n ,即L r r r r n n --+-++->[()()()]150******** , 由此可得r r r n L n 121150+++>-- . 因为()n r r r r n n -≥+++--11121 ,所以r n L n n ->--11501.(III )用反证法证明结论,假设N >11,即第11组形成后,还有数没分完,由(I )和(II )可知,余下的每个数都大于第11组的余差r 11,且r r 1110≥, 故余下的每个数>≥>⨯-=r r 111015011127510375. . (*)因为第11组数中至少含有3个数,所以第11组数之和大于37531125..⨯=.此时第11组的余差11150r=-第11组数之和150112.537.5<-=这与(*)式中r11375>.矛盾,所以N≤11.第11页共11页。
2004年高考数学试题(全国4理)及答案
2004年高考试题全国卷Ⅳ理科数学(必修+选修Ⅱ)第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知集合},2|{},2,1,0{M a a x x N M ∈===,则集合N M ⋂= ( )A .{0}B .{0,1}C .{1,2}D .{0,2} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.过点(-1,3)且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.)1)31(2ii +-=( )A .i +3B .i --3C .i -3D .i +-3 5.不等式03)2(<-+x x x 的解集为( )A .}30,2|{<<-<x x x 或B .}3,22|{><<-x x x 或C .}0,2|{>-<x x x 或D .}3,0|{<<x x x 或6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .220 7.对于直线m 、n 和平面α,下面命题中的真命题是( )A .如果m n m ,,αα⊄⊂、n 是异面直线,那么α//n ;B .如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交C .如果m n m ,//,αα⊂、n 共面,那么n m //;D .如果m n m ,//,//αα、n 共面,那么n m //8.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π 其中R 表示球的半径A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x 9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=2,BC=32,则球心 到平面ABC 的距离为( )A .1B .2C .3D .211.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+12.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .15.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 . 16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)求函数241)1ln()(x x x f -+=在[0,2]上的最大值和最小值.C19.(本小题满分12分) 某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响. (Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望; (Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率. 20.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 21.(本小题满分12分)双曲线)0,1(12222>>=-b a by a x 的焦点距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围. 22.(本小题满分14分)已知函数0)(),sin (cos )(='+=-x f x x ex f x将满足的所有正数x 从小到大排成数列}.{n x(Ⅰ)证明数列{}{n x f }为等比数列;(Ⅱ)记n S 是数列{}{n n x f x }的前n 项和,求.lim 21nS S S nn +++∞→2004年高考试题全国卷4理科数学(必修+选修Ⅱ)参考答案一、选择题1—12 D C A D A B C A B A B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.21-15.43 16.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++= 当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α18.本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小 值以及综合运算能力.满分12分. 解:,2111)(x x x f -+=' 令 ,02111=-+x x 化简为,022=-+x x 解得.1),(221=-=x x 舍去当)(,0)(,10x f x f x >'<≤时单调增加; 当)(,0)(,21x f x f x <'≤<时单调减少. 所以412ln )1(-=f 为函数)(x f 的极大值. 又因为 ),2()1(,013ln )2(,0)0(f f f f >>-==所以 0)0(=f 为函数)(x f 在[0,2]上的最小值,412ln )1(-=f 为函数)(x f 在[0,2]上的最大值.19.本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解 决实际问题的能力.满分12分. 解:(Ⅰ)ξ的可能值为-300,-100,100,300.P (ξ=-300)=0.23=0.008, P (ξ=-100)=3×0.22×0.8=0.096, P (ξ=100)=3×0.2×0.82=0.384, P (ξ=300)=0.83=0.512, 所以ξ的概率分布为图2Cy图1根据ξ的概率分布,可得ξ的期望E ξ=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.(Ⅱ)这名同学总得分不为负分的概率为P (ξ≥0)=0.384+0.512=0.896.20.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD.作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD , 所以∠PEO 为侧面PAD 与底面所成的二面角的平面角, 由已知条件可知∠PEO=60°,PE=6, 所以PO=33,四棱锥P —ABCD 的体积 V P —ABCD =.963334831=⨯⨯⨯ (Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--= 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.通过计算可得EO=3,AE=23知AD=43,AB=8,得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.21.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab a y b x 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+=由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是.525≤≤e 22.本小题主要考查函数的导数,三角函数的性质,等差数列与等比数列的概念和性质,以及综合运用的能力.满分14分.(Ⅰ)证明:.sin 2)cos sin ()sin (cos )(x e x x e x x e x f xx x ----=+-++-='由,0)(='x f 得.0sin 2=--x ex解出n n x ,π=为整数,从而,3,2,1,==n n x n π .)1()(πn n n e x f --=.)()(1π-+-=e x f x f n n所以数列)}({n x f 是公比π--=eq 的等比数列,且首项.)(1q x f =(Ⅱ)解:)()()(2211n n n x f x x f x x f x S +++= ),21(1-+++=n nq q q π),11()21(),2(122n nnn n n n n nq qq q nq qq q qS S nq q q q qS ---=-+++=-+++=-πππ 而).11(1n nn nq qq q q S ----=πnS S S n+++ 21.)1()1()1(2)1()11()1(11)1()1()21()1()1()1()1(2232222222121222q q q q n q q qnq qq q n q q q q n q q q nq q q n q qq q n q q qn nnn n n n -+----=----------=+++--+++---=+--πππππππππ因为0lim .1||=<=∞→-n n q eq π,所以.)1()1(lim 2221+-=-=+++∞→ππππe e q q n S S S n n。
2004年高考试题全国卷2理科数学及答案(必修+选修Ⅱ四川吉林黑龙江云南等地区)
2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21 (B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2 (C )ω1-(D )21ω (4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36 (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条(9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe,其中λ= (A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π (12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120 则z =3x +2y 的最大值是 . (15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . (16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱 其中,真命题的编号是 (写出所有真命题的编号).三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高.(18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率.(19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.(Ⅰ)求证:CD⊥平面BDM;(Ⅱ)求面B1BD与面CBD所成二面角的大小.(21)(本小题满分12分)给定抛物线C:y2=4x,F是C的焦点,过点F的直线l与C相交于A、B两点.(Ⅰ)设l的斜率为1,求与夹角的大小;(Ⅱ)设=AFλ,若λ∈[4,9],求l在y轴上截距的变化范围.(22)(本小题满分14分)已知函数f(x)=ln(1+x)-x,g(x)=x ln x.(1)求函数f(x)的最大值;(2)设0<a<b,证明:0<g(a)+g(b)-2g(2ba+)<(b-a)ln2.2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan =设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为18.(I) 解:有一组恰有两支弱队的概率72482523=C C C (II)解:A 组中至少有两支弱队的概率2481533482523=+C C C C C C19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n ,211=++nS n S n n (n=1,2,3,…).故数列{n S n }是首项为1,公比为2的等比数列 (II )解:由(I )知,)2(14111≥-∙=+-+n n Sn S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B ,∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3,又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM ,因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F ,则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1, 所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23, ∴∠B 1GF 是所求二面角的平面角又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=2123223)21()23(222121221=∙∙-+=∙-+FGG B F B FG G B 即所求二面角的大小为π解法二:如图以C 为原点建立坐标系(I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1), =DM (0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=BD (-22,21,21),=B 1),41,43,42(--∴01=∙B ,∴BD ⊥B 1G ,又CD ⊥BD ,∴CD 与G B 1的夹角θ等于所求二面角的平面角,A'C'cos .33||||11-=∙=G B CD θ所以所求二面角的大小为π21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1. 将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OB OA ∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y x OB OAcos<OB OA ,.41413-= 所以OA 与OB 夹角的大小为π-arccos41413. 解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1……………………………………(3) 联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1)当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤ 直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln 2b a +=a ba bb b a a +++2ln 2ln .由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得021,02<-<->-bba a ab ,因此a a b a a b b a a 2)21ln (2ln -->-+-=+,bb a b b a b a b 2)21ln(2ln -->-+-=+. 所以a b a b b b a a +++2ln 2ln >-022=---ba ab . 又,22b b a b a a +<+ a b a b b b a a +++2ln 2ln <a .2ln )(2ln )(2ln 2ln a b ba ba b b a b b b b a -<+-=+++ 综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2xa +),则.2ln ln )]'2([2)(')('xa x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2ba +).设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2lnln )('x a x xa x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2ba +)<(b-a)ln2.。
2004高考数学试题(全国2理)及答案
2004年高考试题全国卷Ⅱ理科数学(必修+选修Ⅱ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21 (B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2 (C )ω1-(D )21ω (4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36 (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条 (9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe ,其中λ= (A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π (12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为ξ0 1 2 P(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .(16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱,其中,真命题的编号是 (写出所有真命题的编号). 三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高. (18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率. (19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2+S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M . (Ⅰ)求证:CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.(21)(本小题满分12分) 给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1,求与夹角的大小;(Ⅱ)设=AF λ,若λ∈[4,9],求l 在y 轴上截距的变化范围. (22)(本小题满分14分)已知函数f (x )=ln(1+x )-x ,g (x )=x ln x .(1)求函数f (x )的最大值;(2)设0<a <b ,证明:0<g (a )+g (b )-2g (2ba +)<(b -a )ln2.2004年高考试题全国卷2 理科数学(必修+选修Ⅱ)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C 二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan = =2+6设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为2+618.(I) 解:有一组恰有两支弱队的概率762482523=C C C(II)解:A 组中至少有两支弱队的概率21481533482523=+C C C C C C 19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n , 211=++nS n S n n (n=1,2,3,…).故数列{nSn }是首项为1,公比为2的等比数列 (II )解:由(I )知,)2(14111≥-∙=+-+n n Sn S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形,BA'C'又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3, 又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1 又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM , 因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F , 则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1,所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23,∴∠B 1GF 是所求二面角的平面角 又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=332123223)21()23(222121221-=∙∙-+=∙-+FGG B F B FG G B即所求二面角的大小为π-arccos33 解法二:如图以C 为原点建立坐标系 (I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1), =(0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=BD (-22,21,21),=G B 1),41,43,42(--∴01=∙G B BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴CD 与G B 1的夹角θ等于所求二面角的平面角, cos .331-==θ 所以所求二面角的大小为π-arccos33 21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1. 将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y xcos<,.41413-= 所以OA 与OB 夹角的大小为π-arccos41413.解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1 (3)联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1) 当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或-12-λλ由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤ 直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln 2b a +=a ba bb b a a +++2ln 2ln .由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得021,02<-<->-bba a ab ,因此a a b a a b b a a 2)21l n (2ln-->-+-=+,bba b b a b a b 2)21ln(2ln -->-+-=+. 所以a b a b b b a a +++2ln 2ln >-022=---ba ab . 又,22b b a b a a +<+ a b a b b b a a +++2ln 2ln <a .2ln )(2ln )(2ln 2ln a b ba ba b b a b b b b a -<+-=+++ 综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2xa +),则.2ln ln )]'2([2)(')('xa x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数当x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)因为F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2ba +).设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2ln ln )('x a x xa x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2ba +)<(b-a)ln2.。
2004年普通高校招生全国统一考试(重庆卷)数学试卷分析
2004年普通高校招生全国统一考试(重庆卷)数学试卷分析重庆市教育科学研究院张晓斌400015这次参加重庆卷数学考试的普通高中学生共有112668人,比去年增加28619人,其中理科69795人,占61.95%,文科42873人,占38.05%。
一、命题范围及试卷结构本次考试的命题范围是普通高中数学教学大纲和2004年普通高校招生全国统一考试大纲所规定的全部内容。
经统计各知识点所占分值如下表。
本次试题充分考虑了文理科学生的实际情况,适当拉大了文理科试题的差异,既体现了个性,也体现了共性。
文理科有7个选择题,1个填空题,1.5个解答题相同,共计9.5个题相同,还有1道姊妹题(第21题),这样文理试题计有11.5个题不同。
本次试题各类题型(选择题、填空题、解答题)的分布、总个数、每个题的分值分布等都与近几年全国高考数学试卷相同。
二、试题评价1.注重基础,贴近教材总体来看,本次试题无偏题,无怪题,所有题目都是大家熟悉的题型,严格遵循考纲的要求,注重了“三基”的考查和应用数学的意识与数学能力的考查,较好的体现了循序渐进,入手容易,深入难的设题思路。
如文理科解答题除第18题外,其余5个题得分容易,但得满分难。
中学数学中所学的基础知识、基本技能和基本数学思想方法是学生继续深造的基础,也是培养学生数学能力的前提。
基础知识一般包括概念、性质、法则、定理、公式等,本次文理试题的各个题目都是以相应的基本知识为载体的,不可能脱离基础知识而独立存在,因而所有的题目都体现了对基础知识的考查。
基本技能是指对变形、代换、推理、计算等技巧所掌握的熟练程度,如文理的选择填空题第1——8题,第13、14题,只要平时基础扎实的学生都能快速作答。
又如文理科解答题第21、22题考查了一些基本的技能技巧。
基本数学思想方法是指在中学数学中影响全局的、具有重大价值的、有深远意义的解决问题的思想、方法和策略,如函数方程、整体代换、数形结合、分类讨论、待定系数、化归与转化、运动变换等,如考题中很多题目都渗透了函数方程思想,如文理科的第21题,理科的第15、16题就要充分运用数形结合的思想去解决,理科第20题考查了分类讨论的思想。
2004年普通高等学校招生全国统一考试(北京卷)数学(理工农医类)
2004年普通高等学校招生全国统一考试(北京卷)数学(理
工农医类)
佚名
【期刊名称】《中学理科:高考导航》
【年(卷),期】2004(000)007
【总页数】4页(P3-6)
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.2004年普通高等学校招生全国统一考试(广西卷)数学(理工农医类) [J],
2.2007年普通高等学校招生全国统一考试 (北京卷)数学(理工农医类) [J], 王芝平
3.2007年普通高等学校招生全国统一考试(北京卷)数学(理工农医类) [J],
4.2003年普通高等学校招生全国统一考试(北京卷)数学(理工农医类) [J], 无
5.2003年普通高等学校招生全国统一考试数学(理工农医类)(北京卷) [J],因版权原因,仅展示原文概要,查看原文内容请购买。
重庆卷2004年理科
2004年重庆市高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1. (2004▪重庆▪理)函数y =的定义域是 A.[1,)+∞ B.2(3,)+∞ C.2[3,1] D.2(3,1]2. (2004▪重庆▪理)设复数1z =,则22z z -=A.3-B.3C.3i -D.3i3. (2004▪重庆▪理)圆222430x y x y +-++=的圆心到直线1x y -=的距离为A.2B.2C.1 4. (2004▪重庆▪理)不等式221x x +>+的解集是 A.(1-,0)(1,)+∞ B.(-∞,1)(0-,1)C.(1-,0)(0,1)D.(-∞,1)(1-,)+∞5. (2004▪重庆▪理)sin163sin 223sin 253sin 313︒︒+︒︒=A.12-B.12C.-6. (2004▪重庆▪理)若向量a 与b 的夹角为60︒,4b =,(2)a b +▪(3)72a b -=-,则向量a 的模为A.2B.4C.6D.12 7. (2004▪重庆▪理)一元二次方程2210(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是A.0a <B.0a >C.1a <-D.1a >8. (2004▪重庆▪理)设P 是60︒的二面角l αβ--内一点,PA ⊥平面α,PB ⊥平面β,A 、B 分别为垂足,4PA =,2PB =,则AB 的长为A. B. C. D.9. (2004▪重庆▪理)若数列{}n a 是等差数列,首项10a >,200320040a a +>,2003a ▪ 20040a <,则使前n 项和0n S >成立的最大自然数n 是A.4005B.4006C.4007D.400810. (2004▪重庆▪理)已知双曲线22221(0x y a a b-=>,0)b >的左、右焦点分别为1F 、2F ,点P 在双曲线的右支上,且124PF PF =,则此双曲线的离心率e 的最大值为A.43B.53C.2D.7311. (2004▪重庆▪理)某校高三年级举行一次演讲比赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位.若采用抽签的方式确定他们的演讲顺序,则一班的3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为 A.110B.120C.140D.112012. (2004▪重庆▪理)若三棱锥A BCD -的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与ABC ∆组成的图形可能是A. B.C. D. 二、填空题(共4小题,每小题4分,满分16分)13. (2004▪重庆▪理)若在5(1)ax +的展开式中3x 的系数为80-,则a =_________.14. (2004▪重庆▪理)曲线2122y x =-与3124y x =-在交点处的切线夹角是_______(以弧度数作答).15. (2004▪重庆▪理)如图,1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小半圆(其直径为前一个被剪掉半圆的半径)得圆形3P ,4P ,…、n P ,…,记纸板n P 的面积为n S ,则l i m n n S →∞=_____.…16. (2004▪重庆▪理)对任意实数k ,直线y kx b =+与椭圆2cos (014sin x y θθθ⎧=⎪≤⎨=+⎪⎩ 2)π<恒有公共点,则b 的取值范围是__________.三、解答题(共6小题,满分12×5+14=74分)17. (2004▪重庆▪理)求函数44sin cos cos y x x x x =-的最小正周期和最小值;并写出该函数在[0,]π上的单调递增区间.18. (2004▪重庆▪理)设一汽车在前进途中要经过4个路口,汽车在每个路口遇到绿灯(允许通行)的概率为34,遇到红灯(禁止通行)的概率为14.假定汽车只在遇到红灯或到达目的地才停止前进,ξ表示停车时已经通过的路口数,求:⑴ξ的概率的分布列及期望E ξ; ⑵停车时最多已通过3个路口的概率.19. (2004▪重庆▪理)如图,四棱锥P ABCD -的底面是正方形,PA ⊥底面ABCD ,AE PD ⊥,EF ∥CD ,AM EF =.⑴证明:MF 是异面直线AB 与PC 的公垂线;⑵若3PA AB =,求直线AC 与平面EAM 所成角的正弦值.20. (2004▪重庆▪理)设函数()(1)()(1)f x x x x a a =-->.⑴求导数()f x ',并证明()f x 有两个不同的极值点1x ,2x ;⑵若不等式12()()0f x f x +≤成立,求a 的取值范围.21. (2004▪重庆▪理)设0p >是一常数,过点(2Q p ,0)的直线与抛物线22y px =交于相异两点A 、B ,以线段AB 为直径作圆(H H 为圆心).试证抛物线顶点在圆H 的圆周上;并求圆H 的面积最小时直线AB 的方程.22. (2004▪重庆▪理)设数列{}n a 满足:12a =,*11()n n n a a n N a +=+∈.⑴证明:n a >*n N ∈恒成立; ⑵令*)n b n N =∈,判断n b 与1n b +的大小,并说明理由.2004年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2004•重庆)函数的定义域是:()A.[1,+∞)B.C. D.【分析】无理式被开方数大于等于0,对数的真数大于0,解答即可.【解答】解:要使函数有意义:≥0,即:可得 0<3x﹣2≤1解得x∈故选D.【点评】本题考查对数函数的定义域,考查学生发现问题解决问题的能力,是基础题.2.(5分)(2004•重庆)设复数,则Z2﹣2Z=()A.﹣3 B.3 C.﹣3i D.3i【分析】首先进行复数的乘方运算,再进行复数的乘法运算,去掉括号,合并同类项,得到最简形式,选出正确答案.【解答】解:∵复数,∴Z2﹣2Z==﹣1+2i﹣2﹣2i=﹣3故选A.【点评】本题考查复数的乘法和乘方运算,是一个基础题,这种题目经常出现在一套题目的前几个题目中,是一个送分题目.3.(5分)(2004•重庆)圆x2+y2﹣2x+4y+3=0的圆心到直线x﹣y=1的距离为:()A.2 B.C.1 D.【分析】先求圆心坐标,然后用点到直线的距离公式求解即可.【解答】解:圆x2+y2﹣2x+4y+3=0的圆心(1,﹣2),它到直线x﹣y=1的距离:故选D.【点评】本题考查点到直线的距离公式,圆的一般方程,是基础题.4.(5分)(2004•重庆)不等式x+>2的解集是()A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣1,0)∪(0,1)D.(﹣∞,﹣1)∪(1,+∞)【分析】直接化简为分式不等式,求解即可,或者特值验证即可.【解答】解:法一:x+>2 得x﹣2+>0 即>0可得 x(x﹣1)(x+1)>0可得﹣1<x<0或x>1.法二:验证,x=﹣2、不满足不等式,排除B、C、D.故选A.【点评】本题考查分式不等式的解法,特值验证法的应用,是基础题.5.(5分)(2004•重庆)sin163°sin223°+sin253°sin313°等于()A.﹣ B.C.﹣D.【分析】通过两角和公式化简,转化成特殊角得出结果.【解答】解:原式=sin163°•sin223°+cos163°cos223°=cos(163°﹣223°)=cos(﹣60°)=.故答案选B【点评】本题主要考查了正弦函数的两角和与差.要熟练掌握三角函数中的两角和公式.(5分)(2004•重庆)若向量的夹角为60°,,6.则向量的模为()A.2 B.4 C.6 D.12【分析】分解(a+2b)•(a﹣3b)得|a|2﹣|a||b|cos60°﹣6|b|2,因为向量的夹角、已知,代入可得关于的方程,解方程可得.【解答】解:(a+2b)•(a﹣3b)=|a|2﹣|a||b|cos60°﹣6|b|2=|a|2﹣2|a|﹣96=﹣72,∴|a|2﹣2|a|﹣24=0.∴(|a|﹣6)•(|a|+4)=0.∴|a|=6.故选C【点评】求常用的方法有:①若已知,则=;②若已知表示的有向线段的两端点A、B坐标,则=|AB|=③构造关于的方程,解方程求.7.(5分)(2004•重庆)一元二次方程ax2+2x+1=0,(a≠0)有一个正根和一个负根的充分不必要条件是()A.a<0 B.a>0 C.a<﹣1 D.a>1【分析】求解其充要条件,再从选项中找充要条件的真子集.求解充要条件时根据题设条件特点可以借助一元二次根与系数的关系的知识求解.【解答】解:一元二次方程ax2+2x+1=0,(a≠0)有一个正根和一个负根的充要条件是x1×x2=<0,即a<0,而a<0的一个充分不必要条件是a<﹣1故应选 C【点评】本考点是一元二次方程分布以及充分不必要条件的定义.本题解决的特点是先找出其充要条件,再寻求充分不必要条件.8.(5分)(2004•重庆)设P是60°的二面角α﹣l﹣β内一点,PA⊥平面α,PB⊥平面β,A,B为垂足,PA=4,PB=2,则AB的长为:()A.B.C.D.【分析】利用线面垂直作出二面角的平面角,然后在平面PAB中利用互补求出∠APB=120度,最后利用余弦定理解三角形PAB,得出AB的长为.【解答】解:设平面PAB与二面角的棱l交于点Q,连接AQ、BQ可得直线l⊥平面PAQB,所以∠AQB是二面角α﹣l﹣β的平面角,∠AQB=60°,故△PAB中,∠APB=180°﹣60°=120°,PA=4,PB=2,由余弦定理得:AB2=PA2+PB2﹣2PA•PBcos120°,,所以,故选C.【点评】本题考查直线与平面垂直的判定和二面角平面的定义,属于中档题,在做题时应该注意利用正、余弦定理解三角形所起的作用.9.(5分)(2004•重庆)若数列{an}是等差数列,首项a1>0,a2003+a2004>0,a2003.a2004<0,则使前n项和Sn>0成立的最大自然数n是()A.4005 B.4006 C.4007 D.4008【分析】对于首项大于零的递减的等差数列,第2003项与2004项的和大于零,积小于零,说明第2003项大于零且2004项小于零,且2003项的绝对值比2004项的要大,由等差数列前n项和公式可判断结论.【解答】解:解法1:由a2003+a2004>0,a2003•a2004<0,知a2003和a2004两项中有一正数一负数,又a1>0,则公差为负数,否则各项总为正数,故a2003>a2004,即a2003>0,a2004<0.∴S4006==>0,∴S4007=•(a1+a4007)=4007•a2004<0,故4006为Sn>0的最大自然数.选B.解法2:由a1>0,a2003+a2004>0,a2003•a2004<0,同解法1的分析得a2003>0,a2004<0,∴S2003为Sn中的最大值.∵Sn是关于n的二次函数,如草图所示,∴2003到对称轴的距离比2004到对称轴的距离小,∴在对称轴的右侧.根据已知条件及图象的对称性可得4006在图象中右侧零点B的左侧,4007,4008都在其右侧,Sn>0的最大自然数是4006.【点评】本题没有具体的数字运算,它考查的是等差数列的性质,有数列的等差中项,等差数列的前n项和,实际上这类问题比具体的数字运算要困难,对同学们来说有些抽象.10.(5分)(2004•重庆)已知双曲线=1,(a>0,b>0)的左,右焦点分别为F1,F2,点P在双曲线的右支上,且|PF1|=4|PF2|,则此双曲线的离心率e的最大值为()A.B.C.2 D.【分析】先设P的坐标(x,y),焦半径得丨PF1丨=ex+a,丨PF2丨=ex﹣a,根据|PF1|=4|PF2|,进而可得e的关于x的表达式.根据p在双曲线右支,进而确定x的范围,得到e的范围.【解答】解:设P(x,y),由焦半径得丨PF1丨=ex+a,丨PF2丨=ex﹣a,∴ex+a=4(ex﹣a),化简得e=,∵p在双曲线的右支上,∴x≥a,∴e≤,即双曲线的离心率e的最大值为故选B【点评】本题主要考查了双曲线的简单性质.考查了学生对双曲线定义的灵活运用.11.(5分)(2004•重庆)某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:()A.B.C.D.【分析】由题意知本题是一个古典概型,试验发生包含的所有事件是10位同学参赛演讲的顺序共有A1010;满足条件的事件要得到需要分为三步,根据分步计数原理得到结果,再根据古典概型公式得到结果.【解答】解:由题意知本题是一个古典概型,∵试验发生包含的所有事件是10位同学参赛演讲的顺序共有:A1010;满足条件的事件要得到“一班有3位同学恰好被排在一起而二班的2位同学没有被排在一起的演讲的顺序”可通过如下步骤:①将一班的3位同学“捆绑”在一起,有A33种方法;②将一班的“一梱”看作一个对象与其它班的5位同学共6个对象排成一列,有A66种方法;③在以上6个对象所排成一列的7个间隙(包括两端的位置)中选2个位置,将二班的2位同学插入,有A72种方法.根据分步计数原理(乘法原理),共有A33•A66•A72种方法.∴一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:.故选B.【点评】本题考查的是排列问题,把排列问题包含在实际问题中,解题的关键是看清题目的实质,把实际问题转化为数学问题,解出结果以后再还原为实际问题.12.(5分)(2004•重庆)若三棱锥A﹣BCD的侧面ABC内一动点P到底面BCD的面积与到棱AB的距离相等,则动点P的轨迹与△ABC组成图形可能是:()A.B.C.D.【分析】设二面角A﹣BC﹣D的大小为θ,作PR⊥面BCD于R,PQ⊥BC于Q,PC⊥AB于T,则∠PQR=θ,由题设条件知=sinθ为小于1的常数.【解答】解:设二面角A﹣BC﹣D的大小为θ,如图.作PR⊥面BCD于R,PQ⊥BC于Q,PC⊥AB于T,则∠PQR=θ,且由条件PT=PR=PQ•sinθ,∴=sinθ为小于1的常数,故选D.【点评】本题考查轨迹方程问题,数形结合是最有效的解题方法.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2004•重庆)若在(1+ax)5的展开式中x3的系数为﹣80,则a= ﹣2 .【分析】利用展开式的通项公式求出第r+1项,令x的指数为3得x3的系数,列出方程解得.【解答】解:(1+ax)5展开式的通项为Tr+1=C5r(ax)r=arC5rxr令x=3的展开式中x3的系数为a3C53=10a3∵展开式中x3的系数为﹣80∴10a3=﹣80∴a=﹣2故答案为﹣2【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.(2004•重庆)曲线y=2﹣x2与y=x3﹣2在交点处的切线夹角是.(以(4分)14.弧度数作答)【分析】先求出曲线y=2﹣x2与y=x3﹣2在交点坐标,然后分别求出两个函数在切点处的导数得到两切线的斜率,最后利用夹角公式求出两切线的夹角即可.【解答】解:由得x3+2x2﹣16=0,(x﹣2)(x2+4x+8)=0,∴x=2.∴两曲线只有一个交点.∵y′=(2﹣x2)′=﹣x,∴y′|x=2=﹣2.又y′=(﹣2)′=x2,∴当x=2时,y′=3.∴两曲线在交点处的切线斜率分别为﹣2、3,||=1.∴夹角为.故答案为:【点评】本题主要考查了利用导数研究曲线上某点切线方程,以及夹角公式的运用等基础题知识,考查运算求解能力,属于基础题.15.(4分)(2004•重庆)如图P1是一块半径为1的半圆形纸板,在P1的左下端剪去一个半径为的半圆后得到图形P2,然后依次剪去一个更小半圆(其直径为前一个被剪掉半圆的半径)得圆形P3、P4、…、Pn…,记纸板Pn的面积为Sn,则= .【分析】由已知每次剪掉的半圆形面积构成一个等比数列,根据已知不难求出该数列的首项和公比,代入等比数列前n项和公式,易得剪去的所有半圆的面积和,从而得到最后纸板Pn的面积.【解答】解:每次剪掉的半圆形面积构成一个以为首项,以为公比的等比数列,则a1+a2+…+an==故:==故答案为:【点评】本题考查的知识点其实是一种极限思想,当一个等比数列的|q|<1时,=0,则a1+a2+…+an=.16.(4分)(2004•重庆)直线:y=k(x﹣)+5与椭圆:恰有一个公共点,则k取值是0 .【分析】先将椭圆的参数方程化成直角坐标方程,再根据直线恒过定点,而该定点又是椭圆的顶点,很快问题得以解决.【解答】解:椭圆:化成标准方程为直线y=k(x﹣)+5恒过(,5)而点(,5)在椭圆上且为上定点,则直线:y=k(x﹣)+5与椭圆:恰有一个公共点即k=0,故答案为0.【点评】本题主要考查了椭圆的参数方程,以及直线与圆锥曲线的综合问题,属于基础题.三、解答题(共6小题,满分74分)17.(12分)(2004•重庆)求函数y=sin4x+2sinxcosx﹣cos4x的最小正周期和最小值;并写出该函数在[0,π]上的单调递增区间.【分析】先分解因式,然后利用二倍角的余弦公式以及两角差的余弦,化为一个角的一个三角函数的形式,求出周期,最小值以及函数的单调增区间.【解答】解:y=sin4x+2sinxcosx﹣cos4x=(sin2x+cos2x)(sin2x﹣cos2x)+sin2x=sin2x﹣cos2x=2sin(2x﹣).故该函数的最小正周期是π;最小值是﹣2;单调递增区间是[0,],[,π].【点评】本题考查三角函数的周期性及其求法,同角三角函数间的基本关系,二倍角的正弦,二倍角的余弦,正弦函数的单调性,三角函数的最值,把三角函数式化简为y=Asin (ωx+φ)+k(ω>0)是解决周期、最值、单调区间问题的常用方法.18.(12分)(2004•重庆)设一汽车在前进途中要经过4个路口,汽车在每个路口遇到绿灯的概率为,遇到红灯(禁止通行)的概率为.假定汽车只在遇到红灯或到达目的地才停止前进,ξ表示停车时已经通过的路口数,求:(Ⅰ)ξ的概率的分布列及期望Eξ;(Ⅱ)停车时最多已通过3个路口的概率.【分析】(I)由题意知ξ表示停车时已经通过的路口数,因为共有4个路口,ξ的所有可能值为0,1,2,3,4,根据条件所给的在每个路口遇到绿灯的概率为,遇到红灯(禁止通行)的概率为,做出变量对应不同数值时的概率,得到分布列和期望.(II)停车时最多已通过3个路口的对立事件是停车时已经通过4个路口,根据上一问做出的通过4个路口的概率和对立事件的概率,得到结果.【解答】解:(I)由题意知ξ的所有可能值为0,1,2,3,4用AK表示“汽车通过第k个路口时不停(遇绿灯)”,则P(AK)=独立.故,,,从而ζ有分布列:(II)即停车时最多已通过3个路口的概率为.【点评】本题考查相互独立事件同时发生的概率,对立事件的概率,离散型随机变量的分布列和期望,是一个近几年经常出现的概率问题,解题时注意分清事件的关系.19.(12分)(2004•重庆)如图,四棱锥P﹣ABCD的底面是正方形,PA⊥底面ABCD,AE ⊥PD,EF∥CD,AM=EF(1)证明MF是异面直线AB与PC的公垂线;(2)若PA=3AB,求直线AC与平面EAM所成角的正弦值.【分析】(I)利用矩形,以及直线与直线的判定定理证明AM⊥MF,MF⊥PC,推出MF是AB与PC的公垂线.(II)连接BD交AC于O,连接BE,过O作BE的垂线OH,垂足H在BE上.推出OH⊥面MAE.连接AH,说明∠HAO是所要求的线AC与面NAE所成的角设AB=a,在Rt△AHO中,求出sin∠HAO.即可.【解答】(I)证明:因PA⊥底面,有PA⊥AB,又知AB⊥AD,故AB⊥面PAD,推得BA⊥AE,又AM∥CD∥EF,且AM=EF,证得AEFM是矩形,故AM⊥MF.又因AE⊥PD,AE⊥CD,故AE⊥面PCD,而MF∥AE,得MF⊥面PCD,故MF⊥PC,因此MF是AB与PC的公垂线.(II)解:连接BD交AC于O,连接BE,过O作BE的垂线OH,垂足H在BE上.易知PD⊥面MAE,故DE⊥BE,又OH⊥BE,故OH∥DE,因此OH⊥面MAE.连接AH,则∠HAO是所要求的线AC与面NAE所成的角设AB=a,则PA=3a,.因Rt△ADE~Rt△PDA,故,.从而在Rt△AHO中.【点评】本题是中档题,考查异面直线的公垂线的证明,直线与平面所成角的正弦值的求法,考查空间想象能力,计算能力,常考题型.20.(12分)(2004•重庆)设函数f(x)=x(x﹣1)(x﹣a),(a>1)(1)求导数f′(x)并证明f(x)有两个不同的极值点x1,x2;(2)若不等式f(x1)+f(x2)≤0成立,求a的取值范围.【分析】(1)利用求导法则求出f(x)的导函数,令f'(x)=0考虑到判别式大于零得到两个极值点,设x1<x2,讨论函数的增减性得到x1是极大值点,x2是极小值点;(2)把x1,x2代入到f(x)中求出函数值代入不等式f(x1)+f(x2)≤0中,在利用根与系数的关系化简得到关于a的不等式,求出解集即可.【解答】解:(1)f'(x)=3x2﹣2(1+a)x+a.令f'(x)=0得方程3x2﹣2(1+a)x+a=0.因△=4(a2﹣a+1)≥4a>0,故方程有两个不同实根x1,x2不妨设x1<x2,由f'(x)=3(x﹣x1)(x﹣x2)可判断f'(x)的符号如下:当x<x1时,f'(x)>0;当x1<x<x2时,f'(x)<0;当x>x2时,f'(x)>0因此x1是极大值点,x2是极小值点.(2)因f(x1)+f(x2)≤0,故得不等式x13+x23﹣(1+a)(x12+x22)+a(x1+x2)≤0.即(x1+x2)[(x1+x2)2﹣3x1x2]﹣(1+a)[(x1+x2)2﹣2x1x2]+a(x1+x2)≤0.又由(I)知代入前面不等式,两边除以(1+a),并化简得2a2﹣5a+2≥0.解不等式得a≥2或a≤(舍去)因此,当a≥2时,不等式f(x1)+f(x2)≤0成立.【点评】考查学生求导数及利用导数研究函数极值的能力,灵活运用一元二次方程根与系数的关系解决数学问题的能力.21.(12分)(2004•重庆)设p>0是一常数,过点Q(2p,0)的直线与抛物线y2=2px 交于相异两点A、B,以线段AB为直径作圆H(H为圆心).试证抛物线顶点在圆H的圆周上;并求圆H的面积最小时直线AB的方程.【分析】先设出A,B的坐标,把直线与抛物线方程联立消去x,根据韦达定理可分别求得y1+y2和y1y2及x1+x2和x1x2的从而求得•的值,结果为0,可推断出OA⊥OB,进而可知O必在圆H的圆周上,又根据H是AB的中点,进而可表示出圆心的坐标,求得|OH|的表达式,进而根据二次函数的性质求得|OH|即圆的半径的最小值,即进而可知当a=0时,圆的面积最小.【解答】解:由题意,设直线AB的方程为ay=x﹣2,设A(x1,y1),B(x2,y2),则其坐标满足消去x的y2﹣2apy﹣4p2=0,则因此•=x1x2+y1y2=0∴OA⊥OB,故O必在圆H的圆周上,又由题意圆心H是AB的中点,故,由前已证OH应是圆H的半径,且|OH|=p;从而当a=0时,圆H的半径最小,也使圆H的面积最小.【点评】本题主要考查了抛物线的应用.考查了考生运用所学知识解决实际问题的能力.22.(14分)(2004•重庆)设数列{an}满足:a1=2,an+1=an+.(Ⅰ)证明:an>对n∈N*恒成立;(Ⅱ)令bn=,判断bn与bn+1的大小,并说明理由.【分析】(1)证法一:用数学归纳法进行证明.证法二:由递推公式得,,由此可知.(2)解法一:由=可知bn+1<bn成立.解法二:由===,可知bn+1<bn.【解答】解:(1)证法一:当n=1时,,不等式成立,假设n=k时,成立(2分),当n=k+1时,.(5分)∴n=k+1时,时成立综上由数学归纳法可知,对一切正整数成立(6分)证法二:由递推公式得,(2分)上述各式相加并化简得=2n+2>2n+1+1+1(n≥2)(4分)又n=1时,显然成立,故(6分)(2)解法一:(8分)=(10分)又显然bn>0(n∈N*),故bn+1<bn成立(12分)解法二:=(8分)=(10分)=故bn+12<bn2,因此bn+1<bn(12分)【点评】本题考查数列的性质和应用,解题时要注意公式有灵活运用.。