备战新课标高考理科数学2020:“12+4”小题提速练(八)
2020年高考数学二轮复习小题押题(12+4)提速综合练习7-8(含答案解析)

2020年高考数学二轮复习小题押题(12+4)提速综合练习7-8“12+4”小题提速综合练(七)一、选择题1.(2016·浙江高考)命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( ) A .∀x ∈R ,∃n ∈N *,使得n <x 2 B .∀x ∈R ,∀n ∈N *,使得n <x 2 C .∃x ∈R ,∃n ∈N *,使得n <x 2 D .∃x ∈R ,∀n ∈N *,使得n <x 2解析:选D 由于特称命题的否定形式是全称命题,全称命题的否定形式是特称命题,所以“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式为“∃x ∈R ,∀n ∈N *,使得n <x 2”.2.(2017·南京模拟)若复数z =(a -1)+3i(a ∈R)在复平面内对应的点在直线y =x +2上,则a 的值等于( ) A .1 B .2 C .5D .6解析:选B 因为复数z =(a -1)+3i(a ∈R)在复平面内对应的点为(a -1,3),所以由题意得点在直线y =x +2上,则3=a -1+2,解得a =2.3.把函数y =sin ⎝⎛⎭⎫x +π3的图象上各点的横坐标缩短到原来的12(纵坐标不变),再将图象向右平移π3个单位,所得图象对应的函数为( )A .y =sin ⎝⎛⎭⎫2x -π3B .y =sin 2xC .y =sin ⎝⎛⎭⎫12x +π6 D .y =sin 12x解析:选A 把函数y =sin ⎝⎛⎭⎫x +π3的图象上各点的横坐标缩短到原来的12(纵坐标不变),得到y =sin ⎝⎛⎭⎫2x +π3的图象,再将图象向右平移π3个单位,所得图象对应的函数为y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π3+π3=sin ⎝⎛⎭⎫2x -π3. 4.如图所示的程序框图,程序运行时,若输入的S =-12,则输出S 的值为( ) A .4 B .5C .8D .9解析:选C 第一次循环,得S =-10,n =2;第二次循环,得S =-6,n =3;第三次循环,得S =0,n =4;第四次循环,得S =8,n =5.此时S >n ,不满足循环条件,退出循环,输出S 的值为8,故选C.5.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差d 是( )A .1B .2C .4D .6解析:选B 法一:等差数列{a n }的前n 项和为S n =na 1+12n (n -1)d ,所以有S n n =a 1+12(n -1)d ,代入S 33-S 22=1中,得a 1+12(3-1)d -a 1+12(2-1)d =12d =1,所以d =2.法二:易知数列⎩⎨⎧⎭⎬⎫S n n 是公差为d2的等差数列,所以d =2.6.在[-2,6]上随机取一个数m ,则使关于x 的一元二次方程x 2-4x +m 2=0有实数根的概率是( ) A.12 B.13C.14D.15解析:选A 由关于x 的一元二次方程x 2-4x +m 2=0得(-4)2-4m 2≥0,解得-2≤m ≤2,所以所求概率P =2-(-2)6-(-2)=12.7.函数y =e x cos e xe 2x -1的图象大致为( )解析:选D 设f (x )=e x cos e xe 2x -1,则易得函数f (x )的定义域为(-∞,0)∪(0,+∞),且f (-x )=e -x cos (-e x )e -2x -1=e x cos e x 1-e 2x=-f (x ),所以函数f (x )为奇函数,函数图象关于原点中心对称,排除A ;当0<x <π2e 时,f (x )>0,排除B ;当x增大时,函数值的符号正负交替出现,排除C ,故选D.8.(2017·南京模拟)某空间几何体的三视图如图所示(图中小正方形的边长为1),则这个几何体的体积是( )A.323B.643C .16D .32解析:选A 由三视图可知该几何体如图所示,此几何体是三棱锥,且底面是腰长为4的等腰直角三角形,高为4,故该几何体的体积V =13×⎝⎛⎭⎫12×4×4×4=323. 9.(2017·惠州模拟)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( )A. 3B. 2 C .2D .3解析:选A 设双曲线C 的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由于直线l 过双曲线的焦点且与对称轴垂直,因此直线l 的方程为x =c 或x =-c ,代入x 2a 2-y 2b 2=1中得y 2=b 2⎝⎛⎭⎫c 2a 2-1=b 4a2,∴y =±b 2a ,故|AB |=2b 2a ,依题意2b 2a =4a ,∴b 2a 2=2,∴e =1+b 2a2= 3. 10.(2017·湘中名校联考)已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,且f ⎝⎛⎭⎫π2>f (π),则f (x )的单调递增区间是( )A.⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z) B.⎣⎡⎦⎤k π,k π+π2(k ∈Z) C.⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z) D.⎣⎡⎦⎤k π-π2,k π(k ∈Z) 解析:选C 因为f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,即⎪⎪⎪⎪f ⎝⎛⎭⎫π6=⎪⎪⎪⎪sin ⎝⎛⎭⎫π3+φ=1,所以φ=k π+π6(k ∈Z).因为f ⎝⎛⎭⎫π2>f (π),所以sin(π+φ)>sin(2π+φ),即sin φ<0,所以φ=-5π6+2k π(k ∈Z),所以f (x )=sin ⎝⎛⎭⎫2x -5π6,所以由三角函数的单调性知2x -5π6∈⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z),得x ∈k π+π6,k π+2π3(k ∈Z). 11.已知曲线C :y =18x 2的焦点为F ,过点F 的直线l 与曲线C 交于P ,Q 两点,且|FP |=2|FQ |,则△OPQ 的面积等于( )A .6 2 B.322C .12 2D.324解析:选A 由题意得抛物线的标准方程为x 2=8y ,所以焦点F (0,2),易得直线l 的斜率一定存在,则不妨设直线l 的方程为y =kx +2,与抛物线的方程联立,消去y 得x 2-8kx -16=0,则x P x Q =-16, ①又因为|FP |=2|FQ |,所以x P =-2x Q , ②联立①②,解得⎩⎨⎧ x P =42,x Q =-22或⎩⎨⎧x P =-42,x Q =22,所以S △OPQ =12(|x P |+|x Q |)·|OF |=6 2.12.(2018届高三·昆明两区七校调研)若f (x )+1=1f (x +1),当x ∈[0,1]时,f (x )=x ,在区间(-1,1]内,g (x )=f (x )-mx -m2有两个零点,则实数m 的取值范围是( )A.⎣⎡⎭⎫0,13B.⎝⎛⎦⎤0,23 C.⎝⎛⎦⎤0,13 D.⎣⎡⎭⎫23,+∞解析:选B 依题意,f (x )=1f (x +1)-1,当x ∈(-1,0)时,x +1∈(0,1), f (x )=1f (x +1)-1=1x +1-1, 由g (x )=0得f (x )=m ⎝⎛⎭⎫x +12. 在同一坐标系上画出函数y =f (x )与y =m ⎝⎛⎭⎫x +12在区间(-1,1]内的图象, 结合图象可知,要使g (x )有两个零点,只需函数y =f (x )与y =m ⎝⎛⎭⎫x +12该直线斜率为m ,过点-12,0在区间(-1,1]内的图象有两个不同的交点,故实数m 的取值范围是⎝⎛⎦⎤0,23,选B. 二、填空题13.(2017·合肥模拟)某同学在高三学年的五次阶段性考试中,数学成绩依次为110,114,121,119,126,则这组数据的方差是________.解析:因为对一组数据同时加上或减去同一个常数,方差不变,所以本题中可以先对这5个数据同时减去110,得到新的数据分别为0,4,11,9,16,其平均数为x =15(0+4+11+9+16)=8,根据方差公式可得s 2=(0-8)2+(4-8)2+(11-8)2+(9-8)2+(16-8)25=30.8. 答案:30.814.(2018届高三·广西五校联考)已知向量a =(1,3),b =(3,m ),且b 在a 上的投影为3,则向量a 与b 的夹角为________.解析:因为a ·b =3+3m ,|a |=12+(3)2=2,|b |=9+m 2,由|b |cos 〈a ,b 〉=3,可得a ·b|a |=3,故3+3m 2=3,解得m =3,故|b |=9+3=23,故cos 〈a ,b 〉=323=32,故〈a ,b 〉=π6,即向量a 与b 的夹角为π6. 答案:π615.(2017·西安八校联考)设实数x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≥0,y ≤a ,若z =x +2y 的最大值为3,则a 的值是________.⎩⎪⎨⎪⎧x -y ≤0,x +y ≥0,y ≤a表示的平解析:依题意得a >0,在平面直角坐标系内大致画出不等式组面区域如图所示,结合图形可知,直线z =x +2y 经过直线y =a 与直线x -y =0的交点,即点A (a ,a )时,z =x +2y 取得最大值3,因此a +2a =3,a =1.答案:116.(2017·福建质检)数列{a n }的前n 项和为S n ,且a 1=23,a n +1-S n =23.用[x ]表示不超过x 的最大整数,如:[-0.4]=-1,[1.6]=1.设b n =[a n ],则数列{b n }的前2n 项和为________.解析:当n ≥2时,由题意,得S n =a n +1-23,S n -1=a n -23,两式相减得,a n =a n +1-a n ,即a n +1a n =2(n ≥2),又当n =1时,a 1=23,a 2-a 1=23,所以a 2=43,即a 2a 1=2,所以数列{a n }是首项为23,公比为2的等比数列,所以a n =23·2n -1=13·2n.所以b 1=0,b 2=1=2b 1+1, b 3=2=2b 2,b 4=5=2b 3+1, b 5=10=2b 4,b 6=21=2b 5+1, b 7=42=2b 6,b 8=85=2b 7+1, …,b 2n -1=2b 2n -2,b 2n =2b 2n -1+1, 所以b 1+b 2=21-1,b 3+b 4=23-1, b 5+b 6=25-1,b 7+b 8=27-1,…, b 2n -1+b 2n =22n -1-1,设数列{b n }的前2n 项和为T 2n , 则T 2n =2(1-4n )1-4-n =22n +13-n -23.答案:22n +13-n -23“12+4”小题提速综合练(八)一、选择题1.(2017·湘中名校联考)已知集合A ={x |x 2-11x -12<0},B ={x |x =2(3n +1),n ∈Z},则A ∩B 等于( ) A .{2} B .{2,8} C .{4,10}D .{2,4,8,10}解析:选B 因为集合A ={x |x 2-11x -12<0}={x |-1<x <12},集合B 为被6整除余数为2的数.又集合A 中的整数有0,1,2,3,4,5,6,7,8,9,10,11,故被6整除余数为2的数有2和8,所以A ∩B ={2,8}.2.(2017·兰州模拟)下列命题中的真命题为( ) A .∃x 0∈R ,e x 0≤0 B .∀x ∈R,2x ≥x 2C .已知a ,b 为实数,则a +b =0的充要条件是ab=-1D .已知a ,b 为实数,则a >1,b >1是ab >1的充分不必要条件解析:选D 选项A 为假命题,理由是对∀x ∈R ,e x >0;选项B 为假命题,不妨取x =3,则23<32,显然不满足∀x ∈R,2x ≥x 2;选项C 为假命题,当b =0时,由a +b =0推不出a b =-1,但由ab =-1可推出a +b =0,即a +b =0的充分不必要条件是ab =-1.3.(2017·石家庄模拟)已知等差数列{a n }的公差为5,前n 项和为S n ,且a 1,a 2,a 5成等比数列,则S 6=( ) A .80 B .85 C .90D .95解析:选C 由题意,得(a 1+5)2=a 1(a 1+4×5),解得a 1=52,所以S 6=6×52+6×52×5=90.4.(2017·合肥模拟)设向量a ,b 满足|a +b |=4,a ·b =1,则|a -b |=( ) A .2 B .2 3 C .3D .2 5解析:选B 因为|a +b |2=a 2+2a ·b +b 2,|a -b |2=a 2-2a ·b +b 2,以上两式相减可得,4a ·b =|a +b |2-|a -b |2,所以|a -b |2=|a +b |2-4a ·b =16-4=12,即|a -b |=2 3.5.(2018届高三·湖北五校联考)已知数列{a n }的前n 项和S n =Aq n +B (q ≠0),则“A =-B ”是“数列{a n }是等比数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 若A =B =0,则S n =0,故数列{a n }不是等比数列;若数列{a n }是等比数列,则a 1=Aq +B ,a 2=Aq 2-Aq ,a 3=Aq 3-Aq 2,由a 3a 2=a 2a 1,得A =-B .6.一个凸多面体,其三视图如图,则该几何体体积为( )A .5 2B .6 2C .9D .10解析:选C 由三视图知,该几何体是一个四棱锥,画出该几何体的直观图如图中实线所示,所以该四棱锥由两个三棱锥组成,其体积V =2×13×12×32×3=9.7.(2017·云南模拟)执行如图所示的程序框图,如果输入的N =30,则输出的S =( )A .26B .57C .225D .256解析:选B 第一次循环,得S =1,n =3;第二次循环,得S =4,n =7;第三次循环,得S =11,n =15;第四次循环,得S =26,n =31;第五次循环,S =57,n >30.所以此时退出循环,故输出的S =57.8.(2018届高三·玉溪四校联考)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x >a ,x 2+5x +2,x ≤a ,函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值范围是( )A .[-1,1)B .[0,2]C .[-2,2)D .[-1,2)解析:选D 由题意知g (x )=⎩⎪⎨⎪⎧2-x ,x >a ,x 2+3x +2,x ≤a ,因为g (x )有三个不同的零点,所以2-x =0在x >a 时有一个解,由x =2得a <2;由x 2+3x +2=0得x =-1或x =-2,则由x ≤a 得a ≥-1.综上,a 的取值范围为[-1,2).9.(2017·广西三市联考)已知在(0,+∞)上函数f (x )=⎩⎪⎨⎪⎧-2,0<x <1,1,x ≥1,则不等式log 2x -(log 144x -1)f (log 3x +1)≤5的解集为( )A.⎝⎛⎭⎫13,1 B .[1,4] C.⎝⎛⎦⎤13,4D .[1,+∞)解析:选C 原不等式等价于⎩⎪⎨⎪⎧log 3x +1≥1,log 2x -⎝⎛⎭⎫log 144x -1≤5 或⎩⎪⎨⎪⎧0<log 3x +1<1,log 2x +2⎝⎛⎭⎫log 144x -1≤5,解得1≤x ≤4或13<x <1,∴原不等式的解集为⎝⎛⎦⎤13,4. 10.(2017·安徽二校联考)在边长为1的正三角形ABC 中,D ,E 是边BC 的两个三等分点(D 靠近点B ),则AD ―→·AE ―→等于( )A.16B.29C.1318D.13解析:选C 法一:因为D ,E 是边BC 的两个三等分点,所以BD =DE =CE =13,在△ABD 中,AD 2=BD 2+AB 2-2BD ·AB ·cos 60° =⎝⎛⎭⎫132+12-2×13×1×12=79, 即AD =73,同理可得AE =73, 在△ADE 中,由余弦定理得 cos ∠DAE =AD 2+AE 2-DE 22AD ·AE=79+79-⎝⎛⎭⎫1322×73×73=1314,所以AD ―→·AE ―→=|AD ―→|·|AE ―→|cos ∠DAE =73×73×1314=1318. A ⎝⎛⎭⎫0,32,D ⎝⎛⎭⎫-16,0,法二:如图,建立平面直角坐标系,由正三角形的性质易得E ⎝⎛⎭⎫16,0,所以AD ―→=⎝⎛⎭⎫-16,-32,AE ―→=⎝⎛⎭⎫16,-32,所以AD ―→·AE ―→=⎝⎛⎭⎫-16,-32·⎝⎛⎭⎫16,-32=-136+34=1318.11.(2018届高三·贵州摸底)已知函数f (x )=sin ωx -3cos ωx (ω>0),若方程f (x )=-1在(0,π)上有且只有四个实数根,则实数ω的取值范围为( )A.⎝⎛⎦⎤136,72 B.⎝⎛⎦⎤72,256 C.⎝⎛⎦⎤256,112D.⎝⎛⎦⎤112,376解析:选B 因为f (x )=2sin ⎝⎛⎭⎫ωx -π3, 方程2sin ⎝⎛⎭⎫ωx -π3=-1在(0,π)上有且只有四个实数根,即sin ⎝⎛⎭⎫ωx -π3=-12在(0,π)上有且只有四个实数根.设t =ωx -π3,因为0<x <π,所以-π3<t <ωπ-π3,所以19π6<ωπ-π3≤23π6,解得72<ω≤256.12.(2018届高三·石家庄调研)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1且垂直于x 轴的直线与该双曲线的左支交于A ,B 两点,AF 2,BF 2分别交y 轴于P ,Q 两点,若△PQF 2的周长为12,则ab 取得最大值时该双曲线的离心率为( )A. 2B. 3C .2 2D.233解析:选D 由题意,得|AF 1|+|BF 1|=|AB |=2b 2a , ①且P ,Q 分别为AF 2,BF 2的中点. 由双曲线的定义,知|AF 2|-|AF 1|=2a , ② |BF 2|-|BF 1|=2a , ③联立①②③,得|AF 2|+|BF 2|=4a +2b 2a .因为△PQF 2的周长为12,所以△ABF 2的周长为24, 即4a +4b 2a =24,亦即b 2=6a -a 2, 所以(ab )2=6a 3-a 4. 令f (a )=6a 3-a 4,则f ′(a )=18a 2-4a 3=4a 2⎝⎛⎭⎫92-a , 所以f (a )在⎝⎛⎭⎫0,92上单调递增, 在⎝⎛⎭⎫92,+∞上单调递减, 所以当a =92时,f (a )取得最大值,此时b 2=6×92-⎝⎛⎭⎫922=274,所以c =a 2+b 2=33, 所以e =c a =233.二、填空题13.若函数f (x )=(x -a )(x +3)为偶函数,则f (2)=________.解析:由f (x )=x 2+(3-a )x -3a 为偶函数,知其奇次项的系数为0,所以3-a =0,a =3,所以f (2)=22-9=-5.答案:-514.(2017·贵阳模拟)已知不等式1+14<32,1+14+19<53,1+14+19+116<74,照此规律总结出第n 个不等式为________________________________.解析:由已知,三个不等式可以写成1+122<2×2-12,1+122+132<2×3-13,1+122+132+142<2×4-14,所以照此规律可得到第n 个不等式为1+122+132+…+1n 2+1(n +1)2<2(n +1)-1n +1=2n +1n +1.答案:1+122+132+…+1n 2+1(n +1)2<2n +1n +115.(2017·广西五校联考)两圆x 2+y 2+2ax +a 2-4=0和x 2+y 2-4by -1+4b 2=0恰有三条公切线,若a ∈R ,b ∈R 且ab ≠0,则1a 2+1b2的最小值为________.解析:两圆x 2+y 2+2ax +a 2-4=0和x 2+y 2-4by -1+4b 2=0分别配方得,(x +a )2+y 2=4,x 2+(y -2b )2=1,依题意得两圆相外切,故a 2+4b 2=1+2=3,即a 2+4b 2=9,则1a 2+1b 2=⎝⎛⎭⎫a 29+4b 29⎝⎛⎭⎫1a 2+1b 2=19+a 29b 2+4b 29a 2+49≥59+2a 29b 2·4b 29a 2=1,当且仅当a 29b 2=4b 29a 2,即a 2=2b 2时等号成立,故1a 2+1b 2的最小值为1. 答案:116.设A ,B 是球O 的球面上两点,∠AOB =π3,C 是球面上的动点,若四面体OABC 的体积V 的最大值为934,则此时球的表面积为________.解析:在四面体OABC 中,显然△OAB 的面积一定,设球O 的半径为R ,则S △OAB =12×R ×32R =34R 2,要使四面体的体积最大,则只需球上的点到平面OAB 的距离最大,显然,到平面OAB 距离的最大值为球的半径,所以(V C -OAB )max =13×34R 2×R =312R 3=934,解得R =3,由球的表面积公式得S 球=4πR 2=4×32×π=36π. 答案:36π。
2020高考数学(理)考前题型增分特训:选填题专项8 Word版含解析

2020高考数学(理)考前题型增分特训选填题 “12选择+4填空”专项8时间:45分钟 满分:80分一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足(3-4i)z =|3-4i|,则z 的虚部为( ) A .-4B.45 C .4D .-45解析:因为(3-4i)z =|3-4i|,所以z =|3-4i|3-4i =32+423-4i =5(3+4i )(3-4i )(3+4i )=3+4i 5,所以z 的虚部为45,故选B. 答案:B2.已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( )A .A ⊆B B .B ⊆AC .A ∩B =∅D .A ∪B =R解析:由x 2-2x >0,得x >2或x <0,则A ={x |x >2或x <0},又B ={x |-5<x <5},所以A ∪B =R ,故选D.答案:D3.如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,三星销量约占30%,苹果销量约占20%),根据该图,以下结论中一定正确的是( )A .四个季度中,每季度三星和苹果总销量之和均不低于华为的销量B .苹果第二季度的销量小于第三季度的销量C .第一季度销量最大的为三星,销量最小的为苹果D .华为的全年销量最大解析:对于选项A ,第四季度中,华为销量大于50%,三星和苹果总销量之和低于华为的销量,故A 错误;对于选项B ,苹果第二季度的销量大于苹果第三季度的销量,故B 错误;对于选项C ,第一季度销量最大的是华为,故C 错误;对于选项D ,由图知,四个季度华为的销量都最大,所以华为的全年销量最大,故D 正确,故选D.答案:D4.设S n 是各项均不为0的等差数列{a n }的前n 项和,且S 13=13S 7,则a 7a 4等于( )A .1B .3C .7D .13解析:因为S n 是各项均不为0的等差数列{a n }的前n 项和,且S 13=13S 7,所以13(a 1+a 13)2=13×7(a 1+a 7)2,即a 7=7a 4,所以a 7a 4=7,故选C.答案:C5.过点P (0,1)的直线l 与圆(x -1)2+(y -1)2=1相交于A ,B 两点,若|AB |=2,则该直线的斜率为( )A .±1B .± 2C .±3D .±2解析:由题意设直线l 的方程为y =kx +1,因为圆(x -1)2+(y -1)2=1的圆心为(1,1),半径为r =1,又弦长|AB |=2,所以圆心到直线的距离为d =r 2-⎝ ⎛⎭⎪⎪⎫|AB |22=1-12=22,所以有|k |k 2+1=22,解得k =±1,故选A. 答案:A6.首届中国国际进口博览会期间,甲、乙、丙三家中国企业都有意向购买同一种型号的机床设备,他们购买该机床设备的概率分别为12,13,14,且三家企业的购买结果相互之间没有影响,则三家企业中恰有1家购买该机床设备的概率是( )A.2324B.524 C.1124D.124 解析:由题意可知三家企业中恰有1家购买该机床设备的概率是12×⎝ ⎛⎭⎪⎪⎫1-13×⎝ ⎛⎭⎪⎪⎫1-14+⎝ ⎛⎭⎪⎪⎫1-12×13×⎝ ⎛⎭⎪⎪⎫1-14+⎝ ⎛⎭⎪⎪⎫1-12×⎝ ⎛⎭⎪⎪⎫1-13×14=1124. 答案:C7.双曲线C :x 2a2-y 2b2=1(a >0,b >0),F 1,F 2分别为其左,右焦点,其渐近线上一点G 满足GF 1⊥GF 2,线段GF 1与另一条渐近线的交点为H ,H 恰好为线段GF 1的中点,则双曲线C 的离心率为( )A.2B .2C .3D .4解析:由题意得双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±bax ,F 1(-c,0),F 2(c,0),不妨令G 在渐近线y =b a x 上,则H 在y =-ba x 上,设G ⎝ ⎛⎭⎪⎪⎫x ,b a x ,由GF 1⊥GF 2得kGF 1·kGF 2=-1,即bax x +c ·b ax x -c=-1,解得x =a ,所以G (a ,b ),又H 恰好为线段GF 1的中点,所以H ⎝⎛⎭⎪⎪⎫a -c 2,b 2,因H 在y =-b a x 上,所以b 2=-b a ×a -c 2,因此c =2a ,故离心率为2,故选B.答案:B8.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-3bc=a 2,bc =3a 2,则角C 的大小是( )A.π6或2π3B.π3C.2π3D.π6解析:∵b 2+c 2-3bc =a 2, ∴cos A =b 2+c 2-a 22bc=3bc 2bc=32. 由0<A <π,可得A =π6.∵bc =3a 2,∴sin B sin C =3sin 2A =34,∴sin ⎝ ⎛⎭⎪⎪⎫5π6-C sin C =34,即12sin C cos C +34(1-cos2C )=34, 解得tan2C =3.又0<C <5π6,∴2C =π3或4π3,即C =π6或2π3,故选A.答案:A9.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点E 为BB 1上一动点,现有以下四个结论,其中不正确的结论是( )A .平面AC 1E ⊥平面A 1BDB .AE ∥平面CDD 1C 1C .当E 为BB 1的中点时,△AEC 1的周长取得最小值D .三棱锥A 1-AEC 1的体积不是定值解析:AC 1⊥平面A 1BD 是始终成立的,又AC 1⊂平面AC 1E ,所以平面AC 1E ⊥平面A 1BD ,故选项A 正确;平面AB 1∥平面C 1D ,所以选项B 正确;平面BCC 1B 1展开到与平面ABB 1A 1在同一个平面上,则当E 为BB 1的中点时,AE +EC 1最小,故选项C 正确;,故选项D 不正确,故选D.答案:D10.已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,|φ|<π2)的图象如图所示,令g (x )=f (x )+f ′(x ),则下列关于函数g (x )的说法中正确的是( )A .函数g (x )图象的对称轴方程为x =k π+5π12(k ∈Z )B .函数g (x )的最大值为2C .函数g (x )的图象上存在点P ,使得在P 点处的切线与直线y =-3x +1平行D .若函数h (x )=g (x )+2的两个不同零点分别为x 1,x 2,则|x 1-x 2|的最小值为π2解析:根据函数f (x )=A cos(ωx +φ)的图象知,A =2,T 4=2π3-π6=π2,∴T =2π,ω=2πT=1, 根据五点法画图知,当x =π6时,ωx +φ=π6+φ=0,∴φ=-π6,∴f (x )=2cos ⎝⎛⎭⎪⎪⎫x -π6,∴f ′(x )=-2sin ⎝⎛⎭⎪⎪⎫x -π6,∴g (x )=f (x )+f ′(x )=2cos ⎝ ⎛⎭⎪⎪⎫x -π6-2sin ⎝ ⎛⎭⎪⎪⎫x -π6=22cos ⎝⎛⎭⎪⎪⎫x +π12.令x +π12=k π,k ∈Z ,解得x =k π-π12(k ∈Z ),∴函数g (x )的对称轴方程为x =k π-π12,k ∈Z ,A 错误; 当x +π12=2k π,k ∈Z ,即x =2k π-π12时,k ∈Z ,函数g (x )取得最大值22,B 错误;g ′(x )=-22sin ⎝⎛⎭⎪⎪⎫x +π12,假设函数g (x )的图象上存在点P (x 0,y 0),使得在P 点处的切线与直线l :y =-3x +1平行,则k =g ′(x 0)=-22sin ⎝ ⎛⎭⎪⎪⎫x 0+π12=-3,得sin ⎝⎛⎭⎪⎪⎫x 0+π12=322>1,显然不成立,所以假设错误,即C 错误;方程g (x )=-2,则22cos ⎝⎛⎭⎪⎪⎫x +π12=-2,∴cos ⎝ ⎛⎭⎪⎪⎫x +π12=-22,∴x +π12=3π4+2k π或x +π12=5π4+2k π,k ∈Z ,即x =2k π+23π或x =2k π+76π,k ∈Z ;所以方程的两个不同的解分别为x 1,x 2, 则|x 1-x 2|最小值为π2,故选D.答案:D11.已知f (x )是定义在R 上的奇函数,且满足f (x )=f (2-x ),当x ∈[0,1]时,f (x )=4x -1,则在(1,3)上,f (x )≤1的解集是( )A.⎝⎛⎦⎥⎥⎤1,32B.⎣⎢⎢⎡⎦⎥⎥⎤32,52C.⎣⎢⎢⎡⎭⎪⎪⎫32,3 D .[2,3)解析:①作出x ∈[0,1]时,f (x )=4x -1的图象.②由f (x )是定义在R 上的奇函数,其图象关于原点对称,作出x ∈[-1,0]时,f (x )的图象.③由f (x )=f (2-x )知,f (x )的图象关于直线x =1对称,由此作出函数f (x )在(1,3)内的图象,如图所示.④作出f (x )=1的图象.由f (x )=1及x ∈[0,1]时,f (x )=4x -1可得4x -1=1,解得x =12,从而由对称性知,在(1,3)内f (x )与y =1交点的横坐标为32,由图可知,在(1,3)上,f (x )≤1的解集为⎣⎢⎢⎡⎭⎪⎪⎫32,3,故选C.答案:C12.三棱锥D -ABC 的四个顶点都在球O 的球面上,△ABC 是边长为3的正三角形.若球O 的表面积为16π,则三棱锥D -ABC 体积的最大值为( )A.934 B.332 C .2 3D .33解析:由题意得△ABC 的面积为 12×3×3×sin π3=934.又设△ABC 的外心为O 1,则AO 1=23×323=3.由4πR 2=16π,得R =2. ∵OO 1⊥平面ABC ,∴OO 1=1,∴球心O 在棱锥内部时,棱锥的体积最大. 此时三棱锥D -ABC 高的最大值为1+2=3, ∴三棱锥D -ABC 体积的最大值为 13×934×3=934,故选A. 答案:A二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 满足|b |=2|a |=1,a ⊥(a -b ),则a 与2a +b 的夹角的余弦值为________.解析:由a ⊥(a -b )得a ·b =14,|2a +b |=4a 2+4a ·b +b 2=3,则a 与2a+b 的夹角的余弦值为cos 〈a,2a +b 〉=a ·(2a +b )|a ||2a +b |=2a 2+a ·b|a ||2a +b |=32.答案:3214.若⎠⎜⎛023x 2d x =n ,则(1+x 3)⎝ ⎛⎭⎪⎪⎫2-1x n 的展开式中x -4的系数为________.解析:由⎠⎜⎛023x 2d x =n 可得 n =8,∴(1+x 3)⎝ ⎛⎭⎪⎪⎫2-1x n =(1+x 3)⎝⎛⎭⎪⎪⎫2-1x 8,二项展开式含有x -4,则⎝ ⎛⎭⎪⎪⎫2-1x 8展开式中含有x -4和x -7,则二项展开式分别为C 48·24·⎝ ⎛⎭⎪⎪⎫-1x 4和C 78·21·x 3·⎝ ⎛⎭⎪⎪⎫-1x 7,∴含有x -4的系数为C 48·24-C 78·21=1104.答案:110415.已知点M(0,2),过抛物线y 2=4x 的焦点F 的直线AB 交抛物线于A ,B 两点,若∠AMF =π2,则点B 坐标为________.解析:由抛物线方程得F(1,0),设直线AB 方程为x =my +1,A(x 1,y 1),B(x 2,y 2),联立⎩⎪⎨⎪⎧x =my +1,y 2=4x得y 2-4my -4=0,所以y 1y 2=-4. 由∠AMF =π2,得AM→·MF →=0. 又AM →=(-x 1,2-y 1),MF →=(1,-2), 所以-x 1-4+2y 1=0.又y 21=4x 1,所以-y 214+2y 1-4=0,得y 1=4.又y 1y 2=-4,所以y 2=-1.又y 22=4x 2,所以x 2=14,所以B ⎝ ⎛⎭⎪⎪⎫14,-1.答案:⎝ ⎛⎭⎪⎪⎫14,-1 16.在数列{a n }中,若a 1=-2,a n a n -1=2a n -1-1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1,则数列{b n }的前n 项和S n 的最小值为________. 解析:由题意知,a n =2-1a n -1(n ≥2,n ∈N *),∴b n =1a n -1=12-1a n -1-1=a n -1a n -1-1=1+1a n -1-1=1+b n -1,则b n -b n -1=1(n ≥2,n ∈N *),又b 1=1a 1-1=-13,∴数列{b n }是以-13为首项,1为公差的等差数列,b n =n -43.易知b 1<0,b 2>0,∴S n 的最小值为S 1=b 1=-13. 答案:-13。
2020-2021新课标高考理科数学“12+4”限时提速培优突破一(32张)

第15页
得|PF1|= |PF2|=
1+2b2+1, 1+2b2-1,
在 Rt△PF1F2 中,cos∠PF1F2
=||FP1FF12||= 1+22cb2+1= 21+12+b2b+2 1=2 5 5,整理得 9b4-32b2
两垂直,且 AB=1,AC=2,AD=3,则该球的表面积为( B )
A.7π
B.14π
7
7 14π
C.2π
D. 3
解析:三棱锥 A-BCD 的三条侧棱两两互相垂直,所以把它 补为长方体,而长方体的体对角线长为其外接球的直径.所以长
方体的体对角线长是 12+22+32= 14的外接球半径是 214,外
第13页
9.已知 F1,F2 分别是双曲线 x2-by22=1(b>0)的左、右焦
点,点 P 为双曲线右支上的一点,满足(O→P+O→F2)·F→2P=0(O
为坐标原点),且 cos∠PF1F2=2 5 5,则该双曲线的离心率为
( D)
A. 3
B.2
C.3
D. 5
第14页
解析:解法 1:由(O→P+O→F2)·F→2P=0,得|OP|=|OF2|,∴ 在△PF1F2 中,OP 是边 F1F2 上的中线,且|OP|=12|F1F2|,∴∠ F1PF2=90°.由 x2-by22=1,得 a=1,c= 1+b2.在 Rt△PF1F2 中,
“ 12+4”限时提速练(一)
第1页
一、选择题(本题共 12 小题,每小题 5 分,共 60 分.在每
小题给出的四个选项中,只有一项是符合题目要求的)
1.已知集合 A={x|x2-1>0},B={y|y=(12)x,x∈R},则 A∩B
2020-2021新课标高考理科数学“12+4”限时提速培优突破八(8页)

2020-2021新课标高考理科数学“12+4”限时提速培优突破八“12+4”限时提速练(八)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知实数集R ,集合M ={x |log 2x <3},N ={x |x 2-4x -5>0},则M ∩(∁R N )=( B )A .[-1,8)B .(0,5]C .[-1,5)D .(0,8)解析:集合M ={x |0<x <8},N ={x |x >5,或x <-1},∁R N ={x |-1≤x ≤5},所以,M ∩(∁R N )=(0,5].2.已知i 为虚数单位,若复数z =a1-2i +i(a ∈R )的实部与虚部互为相反数,则a =( D )A .-5B .-1C .-13D .-53 解析:z =a 1-2i +i =a (1+2i )(1-2i )(1+2i )+i =a 5+2a +55i ,∵复数z =a1-2i +i(a ∈R )的实部与虚部互为相反数,∴-a 5=2a +55,解得a =-53. 3.下列说法中正确的是( A )A .“a >1,b >1”是“ab >1”成立的充分条件B .命题p :∀x ∈R,2x>0,则綈p :∃x 0∈R,2x 0<0 C .命题“若a >b >0,则1a <1b ”的逆命题是真命题 D .“a >b ”是“a 2>b 2”成立的充分不必要条件解析:对于选项A ,由a >1,b >1,易得ab >1,故A 正确;对于选项B ,全称命题的否定为特称命题,所以命题p :∀x ∈R,2x >0的否定为綈p :∃x 0∈R,2x 0≤0,故B 错误;对于选项C ,其逆命题:若1a <1b ,则a >b >0,可举反例,如a =-1,b =1,显然为假命题,故C 错误;对于选项D ,由“a >b ”并不能推出“a 2>b 2”,如a =1,b =-1,故D 错误.4.已知x >0,y >0,a =(x,1),b =(1,y -1),若a ⊥b ,则1x +4y 的最小值为( B ) A .4 B .9 C .8D .10解析:依题意,得a ·b =x +y -1=0⇒x +y =1.1x +4y =x +y x +4(x +y )y =5+y x +4x y ≥9,当且仅当x =13,y =23时取等号.5.已知直线m ,l ,平面α,β,且m ⊥α,l ⊂β,给出下列命题: ①若α∥β,则m ⊥l ;②若α⊥β,则m ∥l ;③若m ⊥l ,则α⊥β;④若m ∥l ,则α⊥β.其中正确的命题是( A )A .①④B .③④C .①②D .①③解析:对于①,若α∥β,m ⊥α,l ⊂β,则m ⊥l ,故①正确,排除B ;对于④,若m ∥l ,m ⊥α,则l ⊥α,又l ⊂β,所以α⊥β.故④正确.6.设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则a 1=( B )A .-2B .-1 C.12 D.23解析:由S 2=3a 2+2,S 4=3a 4+2得a 3+a 4=3a 4-3a 2,即q +q 2=3q 2-3,解得q =-1(舍)或q =32,将q =32代入S 2=3a 2+2,得a 1+32a 1=3×32a 1+2,解得a 1=-1.7.函数f (x )=2|x |-x 2的图象大致为( C )解析:由题意知,当x >0时,f ′(x )=2x ln2-2x ,当x →0时,2x →1,2x →0,f ′(x )>0,说明函数f (x )的图象在y 轴右侧开始时是递增的,故排除选项A ,B ,D ,选C.8.若2cos2θcos ⎝ ⎛⎭⎪⎫π4+θ=3sin2θ,则sin2θ=( C )A.13B.23 C .-23 D .-13 解析:∵2cos2θcos ⎝ ⎛⎭⎪⎫π4+θ=3sin2θ,∴2(cos θ+sin θ)(cos θ-sin θ)22(cos θ-sin θ)=3sin2θ,即2(cos θ+sin θ)=3sin2θ.∴4+4sin2θ=3sin 22θ, 解得sin2θ=-23或sin2θ=2(舍去).9.已知平面区域Ω={(x ,y )|0≤x ≤π,0≤y ≤1},现向该区域内任意掷点,则该点落在曲线y =sin 2x 下方的概率是( A )A.12B.1πC.2πD.π4解析:y =sin 2x =12-12cos2x ,其图象如图所示,⎠⎛0π⎝⎛⎭⎪⎫12-12cos2x d x =⎝⎛⎭⎪⎫12x -14sin2x | π0=π2,区域Ω={(x ,y )|0≤x ≤π,0≤y ≤1}的面积为π,∴向区域Ω内任意掷点,该点落在曲线y =sin 2x 下方的概率是π2π=12.10.已知实数x ,y 满足⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k ,且z =x +y 的最大值为6,则(x +5)2+y 2的最小值为( A )A .5B .3 C. 5D.3解析:作出不等式组⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k表示的平面区域如图中阴影部分所示,由z =x +y ,得y =-x +z ,平移直线y =-x ,由图形可知当直线y =-x +z 经过点A 时,直线y =-x +z 的纵截距最大,此时z 最大,最大值为6,即x +y=6.由⎩⎪⎨⎪⎧x +y =6,x -y =0,得A (3,3),由直线y =k 过点A ,知k =3.又(x +5)2+y 2表示可行域内的点与点D (-5,0)的距离的平方.数形结合,知点(-5,0)到直线x +2y =0的距离最短,故(x +5)2+y 2的最小值为⎝⎛⎭⎪⎪⎫|-5+2×0|12+222=5.11.已知函数f (x )=⎩⎪⎨⎪⎧|x +1|,-7≤x ≤0,ln x ,e -2≤x ≤e ,g (x )=x 2-2x ,设a 为实数,若存在实数m ,使f (m )-2g (a )=0,则实数a 的取值范围为( C )A .[-1,+∞)B .(-∞,-1]∪[3,+∞)C .[-1,3]D .(-∞,3]解析:当-7≤x ≤0时,f (x )=|x +1|∈[0,6], 当e -2≤x ≤e 时,f (x )=ln x 是增函数,f (x )∈[-2,1], ∴f (x )的值域是[-2,6].若存在实数m ,使f (m )-2g (a )=0,则有-2≤2g (a )≤6. ∴-1≤a 2-2a ≤3,解之得-1≤a ≤3.12.已知点A 是抛物线x 2=4y 的对称轴与准线的交点,点B 为抛物线的焦点,点P 在抛物线上且满足|P A |=m |PB |,当m 取最大值时,点P 恰好在以A ,B 为焦点的双曲线上,则双曲线的离心率为( C )A.5-12 B.2+12 C.2+1D.5-1解析:如图,依题意知A (0,-1),B (0,1),不妨设P ⎝ ⎛⎭⎪⎫x ,x 24,抛物线的准线为l ,过P 作PC ⊥l 于点C ,由抛物线的定义得|PB |=|PC |,所以m =|P A ||PC |=x 2+⎝ ⎛⎭⎪⎫x 24+121+x 24,令t =1+x 24,由题易得点P 异于点O ,所以x ≠0,则t >1, m =t 2+4t -4t=-4×⎝ ⎛⎭⎪⎫1t 2+4×1t +1, 当1t =12,即x =±2时,m max = 2. 此时|PB |=2,|P A |=2 2.设双曲线的实轴长为2a ,焦距为2c , 依题意得2a =|P A |-|PB |=22-2,2c =2, 则e =c a =12-1=2+1.二、填空题(本题共4小题,每小题5分,共20分) 13.若(x +a )(1+2x )5的展开式中x 3的系数为20,则a =-14. 解析:由已知得C 25·22+a ·C 35·23=20,解得a =-14.14.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤.斩末一尺,重二斤.问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1斤,重2斤;问依次每一尺各重多少斤?”设该金杖由粗到细是均匀变化的,其重量为M ,现将该金杖截成长度相等的10段,记第i 段的重量为a i (i =1,2,…,10),且a 1<a 2<…<a 10,若48a i =5M ,则i =6.解析:根据题意知,由细到粗每段的重量成等差数列,记为{a n },设公差为d ,则⎩⎪⎨⎪⎧a 1+a 2=2,a 9+a 10=4,解得a 1=1516,d =18.所以该金杖的总重量M =10×1516+10×92×18=15,因为48a i =5M ,所以48⎣⎢⎡⎦⎥⎤1516+(i -1)×18=75,即39+6i =75,解得i=6.15.如图所示,在圆内接四边形ABCD 中,AB =6,BC =3,CD =4,AD=5,则四边形ABCD 的面积为解析:如图所示,连接BD ,因为四边形ABCD 为圆内接四边形,所以A +C =180°,则cos A =-cos C ,利用余弦定理得cos A =62+52-BD 22×6×5,cos C =32+42-BD 22×3×4.则62+52-BD 22×6×5=-32+42-BD 22×3×4,解得BD 2=2477, 所以cos C =-37.由sin 2C +cos 2C =1,得sin C =2107,因为A +C =180°,所以sin A =sin C =2107,则S 四边形ABCD =S △ABD +S △BCD =12×5×6×2107+12×3×4×2107=610.16.已知函数f (x )=e x(x -b )(b ∈R ).若存在x ∈⎣⎢⎡⎦⎥⎤12,2,使得f (x )+xf ′(x )>0,则实数b 的取值范围是⎝⎛⎭⎪⎫-∞,83.解析:设g (x )=xf (x ),则g ′(x )=f (x )+xf ′(x ).若存在x ∈⎣⎢⎡⎦⎥⎤12,2,使得f (x )+xf ′(x )>0, 则函数g (x )在区间⎣⎢⎡⎦⎥⎤12,2上存在子区间使得g ′(x )>0成立.g (x )=xf (x )=e x (x 2-bx ).g ′(x )=e x (x 2-bx )+e x (2x -b )=e x [x 2+(2-b )x -b ],设h (x )=x 2+(2-b )x -b ,则h (2)>0或h ⎝ ⎛⎭⎪⎫12>0,即8-3b >0或54-32b >0,解得b <83.。
2020年高考数学(理)二轮复习练习:小题提速练8 “12选择+4填空”80分练 Word版含答案

小题提速练(八) “12选择+4填空”80分练(时间:45分钟 分值:80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在复平面内,复数3i1-i对应的点在( )【导学号:07804222】A .第一象限B .第二象限C .第三象限D .第四象限B [3i1-i=+-+=-3+3i 2,故其对应的点在第二象限,选B.]2.已知A =[1,+∞),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( ) A .[1,+∞)B .⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)A [因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a -1≥1,2a -1≥12a ,解得a ≥1,故选A.]3.某小区有1 000户,各户每月的用电量近似服从正态分布N (300,102),则用电量在320度以上的户数约为( )(参考数据:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.27%,P (μ-2σ<ξ<μ+2σ)=95.45%,P (μ-3σ<ξ<μ+3σ)=99.73%)A .17B .23C .34D .46B [P (ξ>320)=12×[1-P (280<ξ<320)]=12×(1-95.45%)≈0.023, 0.023×1 000=23,∴用电量在320度以上的户数约为23.故选B.]4.将函数y =sin ⎝⎛⎭⎪⎫2x +π6的图象向左平移π3个单位长度,所得图象对应的函数解析式为( ) A .y =sin ⎝⎛⎭⎪⎫2x +5π6 B .y =-cos 2xC .y =cos 2xD .y =sin ⎝⎛⎭⎪⎫2x -π6 A [依题意得,y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π3+π6=sin ⎝ ⎛⎭⎪⎫2x +2π3+π6=sin ⎝ ⎛⎭⎪⎫2x +5π6.故选A.]5.已知向量a =(1,cos α),b =(sin α,1),且0<α<π,若a ⊥b ,则α=( )A.2π3 B .3π4C.π4D .π6B [∵a ⊥b ,∴a ·b =0, ∴sin α+cos α=0,∴tan α=-1.又α∈(0,π), ∴α=3π4.故选B.]6.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( )A. 3 B . 2 C .2D .3A [设双曲线C 的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由于直线l 过双曲线的焦点且与对称轴垂直,因此直线l 的方程为x =c 或x =-c ,代入x 2a 2-y 2b 2=1中得y 2=b 2⎝ ⎛⎭⎪⎫c 2a 2-1=b 4a 2,∴y =±b 2a ,故|AB |=2b 2a ,依题意2b 2a =4a ,∴b 2a 2=2,∴c 2-a 2a2=e 2-1=2,∴e =3,选A.]7.已知(2x -1)10=a 0+a 1x +a 2x 2+…+a 9x 9+a 10x 10,则a 2+a 3+…+a 9+a 10的值为( )A .-20B .0C .19D .20D [令x =1,得a 0+a 1+a 2+…+a 9+a 10=1,令x =0,得a 0=1,所以a 1+a 2+…+a 9+a 10=0.又由(2x -1)10的展开式的通项可得a 1=-20, 所以a 2+a 3+…+a 9+a 10=20.]8.钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .1B [S △ABC =12AB ·BC sin B =12×1×2sin B =12,∴sin B =22,∴B =45°或135°.若B =45°,则由余弦定理得AC =1,∴△ABC 为直角三角形,不符合题意,因此B =135°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos B =1+2-2×1×2×⎝ ⎛⎭⎪⎫-22=5,∴AC = 5.故选B.] 9.某几何体的三视图如图20所示(网格线中每个小正方形的边长为1),则该几何体的表面积为( )图20A .48B .54C .64D .60D [根据三视图还原直观图,如图所示,则该几何体的表面积S =6×3+12×6×4+2×12×3×5+12×6×5=60,故选D.]10.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0x -2y -2≤02x -y +2≥0,若2x +y +k ≥0恒成立,则直线2x +y +k =0被圆(x -1)2+(y -2)2=25截得的弦长的最大值为( )【导学号:07804223】A .10B .2 5C .4 5D .3 5B [作出约束条件表示的平面区域,如图中阴影部分所示,不等式2x +y +k ≥0恒成立等价于k ≥(-2x -y )max ,设z =-2x -y ,则由图可知,当直线y =-2x -z 经过点A (-2,-2)时,z 取得最大值,即z max =-2×(-2)-(-2)=6,所以k ≥6.因为圆心(1,2)到直线2x +y +k =0的距离d =|2+2+k |22+12=|4+k |5,记题中圆的半径为r ,则r =5,所以直线被圆截得的弦长L =2r 2-d 2=2-k +2+1255,所以当k =6时,L 取得最大值,最大值为25,故选B.]11.已知过抛物线y 2=2px (p >0)的焦点F 的直线与抛物线交于A ,B 两点,且AF →=3FB →,抛物线的准线l 与x 轴交于点C ,AA 1⊥l 于点A 1,若四边形AA 1CF 的面积为123,则准线l 的方程为( ) A .x =- 2 B .x =-2 2 C .x =-2D .x =-1A [由题意,知F ⎝ ⎛⎭⎪⎫p 2,0,准线l 的方程为x =-p 2.设A (x 1,y 1),B (x 2,y 2),则AF →=⎝ ⎛⎭⎪⎫p 2-x 1,-y 1,FB →=⎝⎛⎭⎪⎫x 2-p 2,y 2.由AF →=3FB →,得p 2-x 1=3⎝ ⎛⎭⎪⎫x 2-p 2,即x 2=13(2p -x 1) ①.由题意知直线AB 的斜率存在,设直线AB 的方程为y =k ⎝ ⎛⎭⎪⎫x -p 2,代入抛物线方程,消去y ,得k 2x 2-(k 2p +2p )x+k 2p 24=0,所以x 1x 2=p 24 ②.联立①②,得x 1=32p 或x 1=p2(舍去),所以|y 1|=3p .因为S 四边形AA 1CF =|y 1|⎝ ⎛⎭⎪⎫x 1+p2+p 2=123,将x 1,|y 1|的值代入,解得p =22,所以准线l 的方程为x =-2,故选A.] 12.已知函数f (x )=ax +eln x 与g (x )=x 2x -eln x的图象有三个不同的公共点,其中e 为自然对数的底数,则实数a 的取值范围为( ) A .a <-e B .a >1C .a >eD .a <-3或a >1B [由ax +eln x =x 2x -eln x (x >0),得a +eln x x =11-eln x x.令h (x )=eln xx,且t =h (x ),则a +t =11-t,即t 2+(a -1)t -a +1=0 (*).由h ′(x )=-ln xx 2=0,得x =e ,函数h (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,且x →+∞时,h (x )→0,h (x )的大致图象如图所示.由题意知方程(*)有一根t 1必在(0,1)内,另一根t 2=1或t 2=0或t 2∈(-∞,0).当t 2=1时,方程(*)无意义,当t 2=0时,a =1,t 1=0不满足题意,所以t 2∈(-∞,0),令m (t )=t 2+(a -1)t -a +1,由二次函数的图象,有⎩⎪⎨⎪⎧m =02+a --a +1<0m=12+a --a +1>0,解得a >1,故选B.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.运行如图21所示的程序,若结束时输出的结果不小于3,则t 的取值范围为________.图21[解析] 依次运行程序框图中的语句可得n =2,x =2t ,a =1;n =4,x =4t ,a =3;n =6,x =8t ,a =3.此时结束循环,输出的a x =38t ,由38t≥3,得8t ≥1,t ≥18.[答案] ⎣⎢⎡⎭⎪⎫18,+∞ 14.从一架钢琴挑出的10个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和声,若有一个音键不同,则发出不同的和声,则这样的不同的和声数为________(用数字作答).[解析] 依题意共有8类不同的和声,当有k (k =3,4,5,6,7,8,9,10)个键同时按下时,有C k 10种不同的和声,则和声总数为C 310+C 410+C 510+…+C 1010=210-C 010-C 110-C 210=1 024-1-10-45=968. [答案] 96815.已知点A 在椭圆x 225+y 29=1上,点P 满足AP →=(λ-1)·OA →(λ∈R )(O 是坐标原点),且OA →·OP→=72,则线段OP 在x 轴上的投影长度的最大值为________.[解析] 因为AP →=(λ-1)OA →,所以OP →=λOA →,即O ,A ,P 三点共线,因为OA →·OP →=72,所以OA →·OP →=λ|OA →|2=72,设A (x ,y ),OA 与x 轴正方向的夹角为θ,线段OP 在x 轴上的投影长度为|OP →||cos θ|=|λ||x |=72|x ||OA →|2=72|x |x 2+y 2=721625|x |+9|x |≤72216×925=15,当且仅当|x |=154时取等号.故线段OP 在x 轴上的投影长度的最大值为15.[答案] 1516.已知三棱锥D ABC 的体积为2,△ABC 是等腰直角三角形,其斜边AC =2,且三棱锥D ABC 的外接球的球心O 恰好是AD 的中点,则球O 的体积为________.【导学号:07804224】[解析] 设球O 的半径为R ,球心O 到平面ABC 的距离为d ,则由O 是AD 的中点得,点D 到平面ABC 的距离等于2d ,所以V D ABC =2V O ABC =23×12×2×2×d =2,解得d =3,记AC 的中点为O ′,则OO ′⊥平面ABC .在Rt△OO ′A 中,OA 2=OO ′2+O ′A 2,即R 2=d 2+12=10,所以球O 的体积V =43πR 3=43π×1010=40103π.[答案] 40103π。
备战新课标高考理科数学2020:小题提速练(六)含解析

7.小华的爱好是玩飞镖,现有如图所示的由两个边长都为2的正方形ABCD 和正方形OPQR 构成的标靶图形,如果O 正好是正方形ABCD 的中心,而正方形OPQR 可以绕O 点旋转.若小华随机向标靶投飞镖,一定能射中标靶,则他射中阴影部分的概率是( )A.13B.14C.16D.17解析:选D 如图,记OP 交AB 于H ,OR 交BC 于G .当H 不为AB 的中点时,过O 分别作OE ⊥AB 于E ,OF ⊥BC 于F ,则∠OEH =∠OFG =90°,又O 正好是正方形ABCD 的中心,所以OE =OF ,∠EOF =90°,又∠GOH =90°,所以∠GOF =∠EOH ,所以△OEH 和△OFG 全等,所以阴影部分的面积与正方形OEBF 的面积相等,所以阴影部分的面积为标靶面积的17.当H 为AB 的中点时,阴影部分的面积为标靶面积的17.所以小华射中阴影部分的概率为17,故选D.8.如果点P (x ,y )满足⎩⎨⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0,点Q 在曲线x 2+(y +2)2=1上,则|PQ |的取值范围是( )A .[5-1,10-1]B .[5-1,10+1]C .[10-1,5]D .[5-1,5]解析:选D 作出点P 满足的线性约束条件表示的可行域如图中阴影部分所示,因为点Q 所在圆的圆心为M (0,-2),所以|PM |取得最小值的最优解为(-1,0),取得最大值的最优解为(0,2),所以|PM |的最小值为5,最大则h(x)min=h(e2)=-1e2,即a的最小值为-1e2.12.(20xx·江西南昌二中月考)已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点P在椭圆C上,线段PF2与圆:x2+y2=b2相切于点Q.若Q是线段PF2的中点,e为椭圆C的离心率,则a2+e2 3b的最小值为( )A.23B.53C.33D.263解析:选B如图,连接PF1,OQ,由OQ为△PF1F2的中位线,可得OQ∥PF1,|OQ|=12|PF1|.又|OQ|=b,所以|PF1|=2b.由椭圆的定义可得|PF1|+|PF2|=2a,所以|PF2|=2a-2b,又OQ⊥PF2,所以PF1⊥PF2,则有(2b)2+(2a-2b)2=(2c)2,即b2+a2-2ab+b2=c2=a2-b2,化简得2a =3b,即b=23a,c=a2-b2=53a,所以离心率e=ca=53.则a2+e23b=a2+592a=12⎝⎛⎭⎪⎫a+59a≥12·2a·59a=53,当且仅当a=59a,即a=53时等号成立,所以a2+e23b的最小值为53.二、填空题13.已知平面向量a,b满足a=(1,3),|b|=3,a⊥(a-b),则a与b夹角的余弦值为________.解析:由a ⊥(a -b )可知a ·(a -b )=a 2-a ·b =4-2×3cos 〈a ,b 〉=0,解得cos 〈a ,b 〉=23.答案:2314.已知x >0,y >0,且1x +2y =1,则xy +x +y 的最小值为________.解析:∵1x +2y =1,∴2x +y =xy ,∴xy +x +y =3x +2y =(3x +2y )⎝ ⎛⎭⎪⎫1x +2y =7+6x y +2y x ≥7+43,当且仅当6x y =2yx 时等号成立,∴xy +x +y 的最小值为7+43.答案:7+4315.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c 成等比数列,且tan B =34,则1tan A +1tan C的值是________.解析:∵a ,b ,c 成等比数列,∴b 2=ac ,由正弦定理得sin 2B =sin A sin C ,∴1tan A +1tan C =cos A sin A +cos C sin C =sin Ccos A +cos Csin A sin Asin C=错误!=sin B sin Asin C =1sin B ,∵tan B =34,∴sin B =35,∴1tan A +1tan C =53.答案:5316.在棱长为1的透明密闭的正方体容器ABCD -A 1B 1C 1D 1中,装有容器总体积一半的水(不计容器壁的厚度),将该正方体容器绕BD 1旋转,并始终保持BD 1所在直线与水平平面平行,则在旋转过程中容器中水的水面面积的最大值为________.解析:由题意得,在保持BD 1所在直线与水平平面平行时,正方体容器绕BD 1旋转的过程中,水面图形为如图所示的平行四边形BE 1D 1E ,设B 1E 1=DE =x,0≤x ≤1,则BE 1=x2+1,E 1D 1=错误!,由余弦定理得cos ∠BE 1D 1=。
备战新课标高考理科数学2020训练题:“12+4”小题提速练(六)

提高小题的解题速度 “12+4”小题提速练(六) 为解答后面的大题留足时间一、选择题1.设复数z 满足1+2z1-z =i ,则z =( )A.15+35i B.15-35i C .-15+35i D .-15-35i解析:选C 因为1+2z 1-z =i ,所以1+2z =i -i z ,所以z =i -12+i=(i -1)(2-i )5=-15+35i ,故选C.2.已知集合A ={x |x 2-x -2<0},B ={x |x 2+3x <0},则A ∩B =( ) A .(0,2) B .(-1,0) C .(-3,2)D .(-1,3) 解析:选B 由x 2-x -2<0得-1<x <2,即A =(-1,2),由x 2+3x <0得-3<x <0,即B =(-3,0),所以A ∩B =(-1,0),故选B.3.(2019·张掖模拟)已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2=( )A .-4B .-6C .-8D .-10解析:选B ∵a 1,a 3,a 4成等比数列,∴a 23=a 1a 4,∴(a 1+4)2=a 1(a 1+6),∴a 1=-8,∴a 2=-8+2=-6.4.(2019·唐山模拟)执行如图所示的程序框图,当输入的n 为7时,输出的S 的值是( )A .14B .210C .42D .840解析:选B n =7,S =1,7<5?,否,S =7×1=7,n =6,6<5?,否,S =6×7=42,n =5,5<5?,否,S =5×42=210,n =4,4<5?,是,退出循环,输出的S 的值为210,选B.5.已知cos ⎝ ⎛⎭⎪⎫π2+α=2cos(π-α),则tan ⎝ ⎛⎭⎪⎫π4+α=( )A .-3B .3C .-13D.13解析:选A ∵cos ⎝ ⎛⎭⎪⎫π2+α=2cos(π-α),∴-sin α=-2cos α,∴tan α=2,∴tan ⎝ ⎛⎭⎪⎫π4+α=1+tan α1-tan α=-3.6.已知a =2,b =55,c =77,则a ,b ,c 的大小关系为( ) A .a >b >c B .a >c >b C .b >a >cD .c >b >a解析:选A ∵a =2,b =55,c =77,∴a ,b ,c 均为正数,∴a 10=25=32,b 10=52=25,∴a 10>b 10,∴a >b .∵b 35=57,c 35=75,∴b 35>c 35,∴b >c .综上,a >b >c ,故选A.7.小华的爱好是玩飞镖,现有如图所示的由两个边长都为2的正方形ABCD 和正方形OPQR 构成的标靶图形,如果O 正好是正方形ABCD 的中心,而正方形OPQR 可以绕O 点旋转.若小华随机向标靶投飞镖,一定能射中标靶,则他射中阴影部分的概率是( )A.13B.14C.16D.17解析:选D 如图,记OP 交AB 于H ,OR 交BC 于G .当H不为AB 的中点时,过O 分别作OE ⊥AB 于E ,OF ⊥BC 于F ,则∠OEH =∠OFG =90°,又O 正好是正方形ABCD 的中心,所以OE =OF ,∠EOF =90°,又∠GOH =90°,所以∠GOF =∠EOH ,所以△OEH 和△OFG 全等,所以阴影部分的面积与正方形OEBF 的面积相等,所以阴影部分的面积为标靶面积的17.当H 为AB 的中点时,阴影部分的面积为标靶面积的17.所以小华射中阴影部分的概率为17,故选D.8.如果点P (x ,y )满足⎩⎨⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0,点Q 在曲线x 2+(y +2)2=1上,则|PQ |的取值范围是( )A .[5-1,10-1]B .[5-1,10+1]C .[10-1,5]D .[5-1,5]解析:选D 作出点P 满足的线性约束条件表示的可行域如图中阴影部分所示,因为点Q 所在圆的圆心为M (0,-2),所以|PM |取得最小值的最优解为(-1,0),取得最大值的最优解为(0,2),所以|PM |的最小值为5,最大值为4,又圆M 的半径为1,所以|PQ |的取值范围是[5-1,5],故选D.9.将函数y =sin ⎝ ⎛⎭⎪⎫2x -π4的图象向左平移π4个单位长度,所得图象对应的函数在区间(-m ,m )上无极值点,则m 的最大值为( )A.π8 B.π4 C.3π8D.π2解析:选A y =sin ⎝ ⎛⎭⎪⎫2x -π4的图象向左平移π4个单位长度后,所得图象对应的函数解析式为y =sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π4-π4=sin ⎝ ⎛⎭⎪⎫2x +π4,函数在原点附近的两个极值分别在x =π8和x =-3π8时取得,若在(-m ,m )上没有极值点,则应满足m ≤π8,所以m 的最大值为π8.10.已知椭圆x 2a 2+y2b 2=1(a >b >0),点F 为左焦点,点P 为下顶点,平行于FP 的直线l 交椭圆于A ,B 两点,且AB 的中点为M ⎝ ⎛⎭⎪⎫1,12,则椭圆的离心率为( )A.12 B.22 C.14D.32解析:选B ∵FP 的斜率为-bc ,FP ∥l , ∴直线l 的斜率为-bc . 设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,x 22a 2+y 22b2=1得y 21b 2-y 22b 2=-⎝ ⎛⎭⎪⎫x 21a 2-x 22a 2,即y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2). ∵AB 的中点为M ⎝ ⎛⎭⎪⎫1,12,∴-b c =-2b 2a 2,∴a 2=2bc ,即b 2+c 2=2bc ,∴b =c , ∴a =2c ,∴椭圆的离心率为22.11.已知函数f (x )=x e ax -1-ln x -ax ,若函数f (x )的最小值恰好为0,则实数a 的最小值是( )A .-1B .-1eC .-1e 2D .-1e 3解析:选C 令t =x e ax -1(x >0),则t >0, 所以ln t =ln x +ax -1. 令u =f (x )=x e ax -1-ln x -ax , 则u =t -ln t -1.令g (t )=t -ln t -1,则g ′(t )=1-1t =t -1t ,当t ∈(0,1)时,g ′(t )<0,g (t )单调递减;当t ∈(1,+∞)时,g ′(t )>0,g (t )单调递增,故当t =1时,g (t )取得最小值g (1)=0, 故当x eax -1=1,即a =1-ln xx 时,函数f (x )的最小值恰好为0.令h (x )=1-ln x x ,则h ′(x )=ln x -2x 2,令h ′(x )=0,得x =e 2,可知h (x )在(0,e 2)上单调递减,在(e 2,+∞)上单调递增,则h (x )min =h (e 2)=-1e 2,即a 的最小值为-1e 2.12.(2019·江西南昌二中月考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点P 在椭圆C 上,线段PF 2与圆:x 2+y 2=b 2相切于点Q .若Q 是线段PF 2的中点,e 为椭圆C 的离心率,则a 2+e 23b 的最小值为( )A.23B.53C.33D.263解析:选B 如图,连接PF 1,OQ ,由OQ 为△PF 1F 2的中位线,可得OQ ∥PF 1,|OQ |=12|PF 1|.又|OQ |=b ,所以|PF 1|=2b .由椭圆的定义可得|PF 1|+|PF 2|=2a , 所以|PF 2|=2a -2b ,又OQ ⊥PF 2,所以PF 1⊥PF 2,则有(2b )2+(2a -2b )2=(2c )2,即b 2+a 2-2ab +b 2=c 2=a 2-b 2,化简得2a =3b ,即b =23a ,c =a 2-b 2=53a ,则a 2+e 23b =a 2+592a =12⎝ ⎛⎭⎪⎫a +59a ≥12·2a ·59a =53,当且仅当a =59a ,即a =53时等号成立,所以a 2+e 23b 的最小值为53. 二、填空题13.已知平面向量a ,b 满足a =(1,3),|b |=3,a ⊥(a -b ),则a 与b 夹角的余弦值为________.解析:由a ⊥(a -b )可知a ·(a -b )=a 2-a ·b =4-2×3cos 〈a ,b 〉=0,解得cos 〈a ,b 〉=23.答案:2314.已知x >0,y >0,且1x +2y =1,则xy +x +y 的最小值为________. 解析:∵1x +2y =1,∴2x +y =xy ,∴xy +x +y =3x +2y =(3x +2y )⎝ ⎛⎭⎪⎫1x +2y =7+6x y +2y x ≥7+43,当且仅当6x y =2yx 时等号成立,∴xy +x +y 的最小值为7+4 3.答案:7+4 315.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c 成等比数列,且tan B =34,则1tan A +1tan C 的值是________.解析:∵a ,b ,c 成等比数列,∴b 2=ac ,由正弦定理得sin 2B =sin A sin C ,∴1tan A +1tan C =cos A sin A +cos C sin C =sin C cos A +cos C sin A sin A sin C =sin (C +A )sin A sin C =sin B sin A sin C =1sin B ,∵tan B =34,∴sin B =35,∴1tan A +1tan C =53.答案:5316.在棱长为1的透明密闭的正方体容器ABCD -A 1B 1C 1D 1中,装有容器总体积一半的水(不计容器壁的厚度),将该正方体容器绕BD 1旋转,并始终保持BD 1所在直线与水平平面平行,则在旋转过程中容器中水的水面面积的最大值为________.解析:由题意得,在保持BD 1所在直线与水平平面平行时,正方体容器绕BD 1旋转的过程中,水面图形为如图所示的平行四边形BE 1D 1E ,设B 1E 1=DE =x,0≤x ≤1,则BE 1=x 2+1,E 1D 1=1+(1-x )2,由余弦定理得cos ∠BE 1D 1=x 2-x x 2+1·1+(1-x )2,所以平行四边形BE 1D 1E 的面积的平方S 2=BE 21·E 1D 21sin 2∠BE 1D 1=(x 2+1)[1+(1-x )2]⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1-(x 2-x )2(x 2+1)[1+(1-x )2]=2x 2-2x +2,所以x=0或x =1时,S 2取得最大值2,所以S 的最大值为2,即水的水面面积的最大值为 2.答案: 2。
2020版考前小题练 高考数学理科(全国通用)总复习文档:12+4满分练八(含答案解析)

A.2
B.3
C.4
D.5
8.已知 F 是抛物线 y2=2x 的焦点,以 F 为端点的射线与抛物线相交于点 A,与抛物线的准线相交
于点 B,若F→B=4F→A,则F→A·F→B等于( )
A.1
B.1.5
C.2
D.2.25
第1页共6页
9.抛物线 C1:x2=2py(p>0)的焦点与双曲线 C2:x2-y2=1 的右焦点的连线在第一象限内与 C1 交于 3
4
满足到正三角形 ABC 的顶点 A,B,C 的距离至少有一个小于 1 的平面区域如图中阴影部分 1
所示,其加起来是一个半径为 1 的半圆,则 S 阴影= π, 2
3π 则使取到的点到三个顶点 A,B,C 的距离大于 1 的概率 P=1- ,故选 A.
6
7.答案为:C;
解析:程序框图执行过程,首先初始化数值:a=3,A=0,B=1,n=0,然后进入循环. 第一次循环:满足 A≤B,则 A=A+an=1,B=2B+1=3,n=n+1=1, 第二次循环:满足 A≤B,则 A=A+an=4,B=2B+1=7,n=n+1=2, 第三次循环:满足 A≤B,则 A=A+an=13,B=2B+1=15,n=n+1=3, 第四次循环:满足 A≤B,则 A=A+an=40,B=2B+1=31,n=n+1=4,
B.(0, 3)
C.( 3,+∞)
D.(1, 3)
已知 f(x)是定义在 R 上的偶函数,且在区间(-∞,0]上单调递增,若实数 a 满足 f( 2log3 a )
>f(- 2),则 a 的取值范围是( )
A.(-∞, 3)
B.(0, 3)
C.( 3,+∞)
D.(1, 3)
二、填空题 13.在(a+b)n 的二项展开式中,若奇数项的二项式系数的和为 128,则二项式系数的最大值为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提高小题的解题速度 “12+4”小题提速练(八) 为解答后面的大题留足时间一、选择题1.在复平面内,表示复数z =11-i的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选A z =11-i =1+i (1-i )(1+i )=12+12i ,在复平面内对应的点为⎝ ⎛⎭⎪⎫12,12,位于第一象限,故选A.2.已知集合A ={-1,0,1,2},B ={x |(x +1)(x -2)<0},则A ∩B =( ) A .{-1,0,1,2} B .{-1,0,1} C .{0,1,2}D .{0,1}解析:选D 法一: 因为B ={x |(x +1)(x -2)<0}={x |-1<x <2},所以A ∩B ={0,1},故选D.法二:因为-1∉B 且2∉B ,所以排除A 、B 、C ,故选D.3.已知等差数列{a n }的前n 项和为S n ,且a 2=4,a 4=2,则S 6=( ) A .0 B .10 C .15D .30解析:选C 法一:设等差数列{a n }的公差为d ,则由题意,得⎩⎨⎧ a 2=a 1+d =4,a 4=a 1+3d =2,解得⎩⎨⎧a 1=5,d =-1,所以S 6=6×5+6×52×(-1)=15,故选C. 法二:设等差数列{a n }的公差为d ,则d =a 4-a 22=-1,所以S 6=6(a 1+a 6)2=3(a 2+a 5)=3(a 2+a 4+d )=3×(2+4-1)=15.故选C.4.下列各点中,可以作为函数y =sin x -3cos x +1图象的对称中心的是( )A.⎝ ⎛⎭⎪⎫π3,1 B.⎝ ⎛⎭⎪⎫π6,1 C.⎝ ⎛⎭⎪⎫π3,0 D.⎝ ⎛⎭⎪⎫π6,0 解析:选A y =sin x -3cos x +1=2sin ⎝ ⎛⎭⎪⎫x -π3+1,由x -π3=k π(k ∈Z ),得x =k π+π3(k ∈Z ),当k =0时,x =π3,所以该函数图象的一个对称中心可以为⎝ ⎛⎭⎪⎫π3,1.5.设θ∈R ,则“0<θ<π3”是“3sin θ+cos 2θ>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析:选A3sin θ+cos 2θ>1⇔3sin θ>1-cos 2θ=2sin 2θ⇔(2sin θ-3)sin θ<0⇔0<sin θ<32.当0<θ<π3时,0<sin θ<32;当0<sin θ<32时,2k π<θ<π3+2k π,k ∈Z 或2π3+2k π<θ<π+2k π,k ∈Z .所以0<θ<π3是3sin θ+cos 2θ>1的充分不必要条件,故选A.6.已知函数f (x )=ln 1+x1-x+x +1,且f (a )+f (a +1)>2,则a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫-12,+∞ B.⎝ ⎛⎭⎪⎫-1,-12 C.⎝ ⎛⎭⎪⎫-12,0 D.⎝ ⎛⎭⎪⎫-12,1 解析:选C 由题意知函数f (x )的定义域为(-1,1), 令g (x )=ln 1+x1-x +x ,则g (-x )=ln1-x 1+x -x =-ln 1+x1-x-x =-g (x ), 故函数g (x )为奇函数,并且g (x )=ln(1+x )-ln(1-x )+x , 易得g (x )在(-1,1)上为增函数. f (a )+f (a +1)>2,即g (a )+g (a +1)>0, ∴g (a +1)>-g (a ),∴g (a +1)>g (-a ),∴⎩⎨⎧-1<-a <1,-1<a +1<1,a +1>-a ,∴-12<a <0,故选C.7.如图,在直角梯形ABCD 中,AB =4,CD =2,AB ∥CD ,AB ⊥AD ,E 是BC 的中点,则AB →·(AC→+AE →)=( )A .8B .12C .16D .20解析:选D 法一:设AB →=a ,AD →=b ,则a ·b =0,a 2=16,AC →=AD →+DC →=b +12a ,AE →=12(AC →+AB →)=12⎝ ⎛⎭⎪⎫b +12a +a =34a +12b ,所以AB →·(AC →+AE →)=a ·⎝ ⎛⎭⎪⎫b +12a +34a +12b =a ·⎝ ⎛⎭⎪⎫54a +32b =54a 2+32a ·b =54a 2=20,故选D. 法二:以A 为坐标原点建立平面直角坐标系(如图所示),设AD =t (t >0),则B (4,0),C (2,t ),E ⎝ ⎛⎭⎪⎫3,12t ,所以AB →·(AC→+AE →)=(4,0)·⎣⎢⎡⎦⎥⎤(2,t )+⎝ ⎛⎭⎪⎫3,12t =(4,0)·⎝ ⎛⎭⎪⎫5,32t =20,故选D.8.在2018中国国际大数据产业博览会期间,有甲、乙、丙、丁4名游客准备到贵州的黄果树瀑布、梵净山、万峰林三个景点旅游,其中每个人只能去一个景点,每个景点至少要去一个人,则游客甲去梵净山旅游的概率为( )A.14 B.13 C.12D.23解析:选B 4名游客去三个景点,每个景点至少有一个人,可以先将其中2名游客“捆绑在一起”作为“一个人”,再将“三个人”安排到三个景点去旅游,共有C 24A 33=6×6=36(种)方案.游客甲去梵净山旅游,若梵净山再没有其他3名游客去旅游,则有C 23A 22=3×2=6(种)方案,若“乙、丙、丁”中有1人也去了梵净山旅游,则有A 33=6(种)方案,所以游客甲去梵净山旅游共有12种方案.所以游客甲去梵净山旅游的概率P =1236=13.故选B.9.某简单几何体的三视图如图所示,若该几何体的所有顶点都在球O 的球面上,则球O 的体积是( )A.823π B .43π C .12πD .323π解析:选B 在棱长为2的正方体中还原该几何体,如图中的三棱柱ACD -A 1C 1D 1所示,则该三棱柱的外接球与该正方体的外接球是同一个球,该正方体的外接球的半径为其体对角线的一半,∴球O 的半径R =22+22+222=3,∴球O的体积V =43πR 3=43π,故选B.10.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P (2,3)在双曲线上,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则该双曲线的方程为( ) A .x 2-y 2=1 B.x 22-y 23=1 C .x 2-y 23=1D.x 216-y 24=1解析:选A ∵|PF 1|,|F 1F 2|,|PF 2|成等差数列, ∴|PF 1|+|PF 2|=4c ,∵点P 位于第一象限,∴|PF 1|-|PF 2|=2a , ∴|PF 1|=2c +a ,|PF 2|=2c -a ,∴cos ∠PF 2F 1=4c 2+(2c -a )2-(2c +a )24c (2c -a )=c -2a2c -a ,又点P 的坐标为(2,3),∴sin ∠PF 2F 1=32c -a ,∴⎝ ⎛⎭⎪⎫c -2a 2c -a 2+3(2c -a )2=1, 化简得(c -2a )2+3=(2c -a )2,c 2-a 2=b 2=1, 又4a 2-3b 2=1,∴a 2=1,∴双曲线的方程为x 2-y 2=1,故选A.11.设f (x )=x ,点O (0,0),A (0,1),A n (n ,f (n )),n ∈N *,设∠AOA n =θn ,对一切n ∈N *都有不等式sin 2θ112+sin 2θ222+sin 2θ332+…+sin 2θn n 2<t 2-2t -2成立,则正数t 的最小值为( )A .3B .4C .5D .6解析:选A 由∠AOA n =θn ,得sin 2θn n 2=⎝ ⎛⎭⎪⎫n n 2+f 2(n )21n 2=⎝ ⎛⎭⎪⎫1n 2+n 2=1n (n +1)=1n -1n +1,所以sin 2θ112+sin 2θ222+sin 2θ332+…+sin 2θn n 2=11-12+12-13+13-14+…+1n-1n +1=1-1n +1<1,所以t 2-2t -2≥1,解得t ≥3,所以正数t 的最小值为3.故选A.12.对任意m ∈⎣⎢⎡⎦⎥⎤1e ,e 2,存在x 1,x 2∈R 且x 1≠x 2,使得ax 1-e x 1=ax 2-e x 2=m ln m -m ,其中e 为自然对数的底数,则实数a 的取值范围是( )A .(e 2,+∞)B .(1,+∞)C .(1,e 2)D .(0,1)解析:选A 设t =h (m )=m ln m -m ⎝ ⎛⎭⎪⎫m ∈⎣⎢⎡⎦⎥⎤1e ,e 2,则t ′=ln m ,∵1e ≤m ≤e 2,∴1e ≤m <1时,t ′<0,1<m ≤e 2时,t ′>0, ∴t ≥h (1)=-1,又h ⎝ ⎛⎭⎪⎫1e =-2e <h (e 2)=e 2,∴-1≤t ≤e 2.∵存在x 1,x 2∈R 且x 1≠x 2,使得ax 1-e x 1=ax 2-e x 2=t , ∴方程ax -e x -t =0有两个不等实根x 1,x 2. 设f (x )=ax -e x -t ,则f ′(x )=a -e x ,∵a ≤0时,f ′(x )<0,∴函数f (x )=ax -e x -t 在R 上是减函数,方程ax -e x -t =0不可能有两个不等实根,不合题意,∴a >0(也可以分析选项得到).∵x <ln a 时f ′(x )>0,x >ln a 时f ′(x )<0, ∴f (x )≤f (ln a ),∴f (x )≤a ln a -a -t .∵方程ax -e x -t =0有两个不等实根x 1,x 2,∴a ln a -a -t >0,∴a ln a -a >t 对一切t ∈[-1,e 2]恒成立,∴a ln a -a >e 2,即a (ln a -1)>e 2,显然ln a -1>0,∴a >e.设g (a )=a (ln a -1)(a >e),则g ′(a )=ln a ,∵g ′(a )>1,∴g (a )=a (ln a -1)在区间(e ,+∞)上是增函数,又g (e 2)=e 2, ∴a >e 2,∴实数a 的取值范围是(e 2,+∞),故选A. 二、填空题13.若实数x ,y 满足约束条件⎩⎨⎧y ≤x ,x +y ≥1,x -3y +3≥0,则z =3x +y 的最小值为________.解析:作出满足约束条件的可行域如图中阴影部分所示,作出直线3x +y =0,并平移,可知当直线经过点P 时,z 取得最小值.由⎩⎨⎧y =x ,x +y -1=0,得⎩⎪⎨⎪⎧x =12,y =12,所以P ⎝ ⎛⎭⎪⎫12,12,此时z min =3×12+12=2.答案:214.执行如图所示的程序框图,如果输入N =4,则输出的p 为________.解析:初始值,N =4,k =1,p =1,进入循环,p =1,k <N ,k =2;p =2,k <N ,k =3;p =6,k <N ,k =4;p =24,k =N ,此时不满足循环条件,退出循环体,输出的p =24.答案:2415.设函数f (x )=x +ax (a >0).当a =1时,f (x )在区间(0,+∞)上的最小值为__________;若f (x )在区间(2,+∞)上存在最小值,则满足条件的一个a 的值为__________.解析:当a =1时,因为x >0,所以f (x )=x +1x ≥2x ·1x =2,当且仅当x =1时,f (x )取得最小值为2.若f (x )在区间(2,+∞)上存在最小值,由f (x )的导数为f ′(x )=1-a x 2=(x +a )(x -a )x 2,当f ′(x )<0,f (x )单调递减,可得f (x )在x =a 处取得极小值,由题意可得f (a )为最小值,即有a >2,可得a >4.可取a =5(答案不唯一).答案:2 516.在四面体P ABC 中,若P A =3,PB =4,PC =5,底面△ABC 是边长为23的正三角形,O 为△ABC 的中心,则∠P AO 的余弦值为________.解析:如图,连接CO 并延长交AB 于点D , 则AD =DB =3,CD =3,OC =2,DO =1,AO =2. 连接DP ,在△APD 和△BPD 中,由余弦定理得cos ∠ADP =AD 2+PD 2-AP 22×AD ×PD ,cos ∠BDP =BD 2+PD 2-PB 22×BD ×PD .∵cos ∠ADP =-cos ∠BDP ,∴(3)2+PD 2-322×3×PD =-(3)2+PD 2-422×3×PD ,∴PD 2=192.连接PO ,在△POD 和△POC 中,cos ∠DOP =-cos ∠POC ,∴PO 2+DO 2-PD 22×PO ×DO =-PO 2+OC 2-PC 22×PO ×OC,即PO 2+12-1922×PO ×1=-PO 2+22-522×PO ×2,∴PO 2=383.在△P AO中,cos∠P AO=AP2+AO2-PO22×AP×AO=32+22-3832×3×2=136.答案:1 36。