七年级暑假提高练习14-垂线专题

合集下载

5.1.2 垂线 人教版七年级数学下册重难点专项练习(含答案)

5.1.2 垂线 人教版七年级数学下册重难点专项练习(含答案)

5.1.2《垂线》重难点题型专项练习考查题型一垂线的定义典例1.(2022秋·北京·七年级北京市第一六一中学校考期末)如图,O是上一点,于点O,直线经过O点,,则的度数为( )A.100°B.105°C.115°D.125°【答案】C【分析】由,可得,由对顶角相等可得,根据角的和差即可解答.【详解】解:∵,∴,∵,∴.故选:C.【点睛】此题考查垂直的定义以及对顶角,题目很简单,解题时要仔细识图.变式1-1.(2022秋·四川泸州·七年级统考期末)已知:如图,于点O,c为经过点O的任意一条直线,那么与的关系是()A.互余B.互补C.互为对顶角D.相等【答案】A【分析】根据对顶角相等得到,利用,得到,即可推出.【详解】解:由题意得,∵,∴,∴,故选:A.【点睛】此题考查了对顶角相等,垂直的定义,余角的定义,熟记各定义是解题的关键.变式1-2.(2022春·黑龙江哈尔滨·七年级哈尔滨风华中学校考期中)如图,,直线BD 经过点O,则的度数为( )A.B.C.D.【答案】B【分析】先利用垂直的含义求解再利用邻补角的含义求解即可.【详解】解:∵,∴∵直线BD经过点O,∴故选B.【点睛】本题考查的是垂直的含义,邻补角的含义,熟练的利用垂直与邻补角的定义求解角的度数是解本变式1-3.(2022秋·辽宁本溪·七年级统考期末)如图,,,垂足为点O,,垂足为点O,则等于()A.24°B.42°C.48°D.64°【答案】B【分析】根据,,可得∠BOD=∠AOC=90°,再由,可得∠AOB=48°,即可求解.【详解】解:∵,,∴∠BOD=∠AOC=90°,∵,∴∠AOB=∠AOD-∠BOD=48°,∴∠BOC=∠AOC-∠AOB=42°.故选:B【点睛】本题主要考查了角与角间的和与差,垂直的性质,明确题意,准确得到角与角之间的关系是解题的关键.考查题型二作已知直线的垂线典例2.(2021秋·广东珠海·七年级统考期中)过点C向AB边作垂线段,下列画法中正确的是( )A.B.C.D.【分析】根据垂线段的定义逐个判断即可得出正确结论.【详解】解:A.此选项是过点A作BC边的垂线段,故错误;B.此选项是过点B作AB边的垂线段,故错误;C.此选项是过点C作AB边的垂线段,故此项正确;D.此选项是过点B作CA边的垂线段,故错误.故选:C.【点睛】本题考查了垂线段的定义及作法,是一道基础题,解题时要善于观察,准确理解垂线段的定义是解题的关键.变式2-1.(2022秋·河北承德·七年级统考期末)下列选项中,过点P画AB的垂线CD,三角尺放法正确的是( )A.B.C.D.【答案】C【分析】根据P点在CD上,CD⊥AB进行判断.【详解】解:过点P画AB的垂线CD,则P点在CD上,CD⊥AB,所以三角尺放法正确的为【点睛】本题考查了作图-基本作图,熟练掌握基本作图(过一点画已知直线的垂线)是解决问题的关键.变式2-2.(2022秋·河北石家庄·七年级校联考期中)下列各图中,过直线外的点画直线的垂线,三角尺操作正确的是()A.B.C.D.【答案】C【分析】根据垂线的作法,用直角三角板的一条直角边与l重合,另一条直角边过点P后沿直角边画直线即可;【详解】根据分析可得C的画法正确;故答案选C.【点睛】本题主要考查了垂线的作法,准确理解是解题的关键.变式2-3.(2020秋·广西·七年级广西大学附属中学校考阶段练习)下列用三角板过点P画AB的垂线CD,正确的是()A.B.C.D.【答案】D【分析】根据垂线的作法,用直角三角板的一条直角边与重合,另一条直角边过点后沿直角边画直线即可.【详解】解:根据分析可得,用直角三角板的一条直角边与重合,另一条直角边过点后沿直角边画直线,选项的画法正确,故选:.【点睛】此题主要考查了垂线的画法,在平面内,过一点有且只有一条直线与已知直线垂直.考查题型三垂线的性质的应用典例3.(2022秋·重庆云阳·七年级校考阶段练习)春节过后,某村计划挖一条水渠将不远处的河水引到农田(记作点O),以便对农田的小麦进行灌溉,现设计了四条路段,,,,如图所示,其中最短的一条路线是( )A.OA B.OB C.OC D.OD【答案】B【分析】根据垂线段的性质:垂线段最短,可得答案.【详解】由垂线段最短,得四条线段,,,,如图所示,其中最短的一条路线是,故选:B.【点睛】本题考查了垂线段的的性质,熟记性质是解题关键.变式3-1.(2022·江苏盐城·校考三模)如图,是测量学生跳远成绩的示意图,即的长为某同学的跳远成绩,其依据是( )A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线与已知直线垂直【答案】C【分析】由点到直线的距离的定义及跳远比赛的规则作出判断.【详解】解:能正确解释这一现象的数学知识是垂线段最短,故选:C.【点睛】此题考查了垂线段最短的性质的运用,解答此题的关键是熟练掌握由点到直线的距离的定义及跳远比赛的规则.变式3-2.(2022秋·河北保定·七年级校考期中)如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是()A.两点确定一条直线B.两点之间,直线最短C.两点之间,线段最短D.垂线段最短【答案】D【分析】根据垂线段最短解答即可.【详解】解:过点C作于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是:垂线段最短.故选D.【点睛】本题考查了垂线段的性质,熟练掌握垂线段性质是解答本题的关键.从直线外一点到这条直线上各点所连的线段中,垂线段最短.变式3-3.(2022秋·河南安阳·七年级统考期末)如图,从位置O到直线公路l有四条小道,其中路程最短的是()A.OA B.OB C.OC D.OD【答案】C【分析】根据垂线的性质即可得到结论.【详解】解:根据垂线段最短得,能最快到达公路l的小道是OC,故选C.【点睛】本题考查了垂线段最短,熟记垂线的性质是解题的关键.考查题型四点到直线的距离典例4.(2022春·黑龙江哈尔滨·七年级哈尔滨市第四十九中学校校考阶段练习)如图,直角三角形中,,,垂足是点,则下列说法正确的是()A.线段的长表示点到的距离B.线段的长表示点到的距离C.线段的长表示点到的距离D.线段的长表示点到的距离【答案】C【分析】根据直线外一点,到这条直线的垂线段的长度是这点到直线的距离判断即可.【详解】解:A.线段的长度表示点A到的距离,说法错误,不符合题意;B.线段的长度表示点C到的距离,说法错误,不符合题意;C.线段的长度表示点B到的距离,说法正确,符合题意;D.线段的长度表示点B到的距离,说法错误,不符合题意;故选C.【点睛】本题考查了点到直线的距离,解题关键是准确识图,正确进行判断.变式4-1.如图,P为直线l外一点,A,B,C在l上,且PB⊥l,下列说法中,正确的个数是()①PA,PB,PC三条线段中,PB最短;②线段PB叫做点P到直线l的距离;③线段AB的长是点A到PB 的距离;④线段AC的长是点A到PC的距离.A.1个B.2个C.3个D.4个【答案】B【分析】根据直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;从直线外一点到这条直线上各点所连的线段中,垂线段最短.逐一判断.【详解】解:①线段BP是点P到直线l的垂线段,根据垂线段最短可知,PA,PB,PC三条线段中,PB最短;故原说法正确;②线段BP是点P到直线l的垂线段,故线段BP的长度叫做点P到直线l的距离,故原说法错误;③线段AB是点A到直线PB的垂线段,故线段AB的长度叫做点P到直线l的距离,故故原说法正确;④由题意及图形无法判断线段AC的长是点A到PC的距离,故原说法错误;综上所述,正确的说法有①③;故选:B.【点睛】本题主要考查了垂线段最短的性质和点到直线的距离的概念.垂线的两条性质:①从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.②从直线外一点到这条直线上各点所连的线段中,垂线段最短.变式4-2.(2022春·广东梅州·七年级校考阶段练习)如图,已知三角形ABC中,∠ACB=90°,CD⊥AB,垂足为D,则表示点A到直线CD距离的是( )A.线段CD的长度B.线段AC的长度C.线段AD的长度D.线段BC的长度【答案】C【分析】根据点到直线的距离的概念:直线外一点到这条直线的垂线段的长度即为该点到这条直线的距离作答即可.【详解】解:点A到CD的距离是线段AD的长度.故选C.【点睛】本题主要考查了点到直线的距离的概念,解题的关键是熟练掌握并理解点到直线的距离的概念.变式4-3.(2022秋·山东济宁·七年级统考期末)如图,点A在直线l1上,点B,C在直线l2上,AB⊥l2于点B,AC⊥11于点A,AB=4,AC=5,则下列说法正确的是( )A.点B到直线l1的距离等于4B.点A到直线l2的距离等于5C.点B到直线l1的距离等于5D.点C到直线l1的距离等于5【答案】D【分析】根据点到直线的距离的定义求解即可.【详解】解:∵AB⊥于点B,AC⊥于点A,AB=4,AC=5,∴点A到直线的距离等于4,点C到直线的距离等于5,故选:D.【点睛】本题考查了点到直线的距离,利用点到直线的距离定义是解题关键.。

七年级数学下册《垂线》练习题及答案

七年级数学下册《垂线》练习题及答案

七年级数学下册《垂线》练习题及答案一、选择题1.下面说法中错误的是()A.两条直线相交,有一个角是直角,则这两条直线互相垂直B.若两对顶角之和为1800,则两条直线互相垂直C.两条直线相交,所构成的四个角中,若有两个角相等,则两条直线互相垂直D.两条直线相交,所构成的四个角中,若有三个角相等,则两条直线互相垂直2.如图所示,AB⊥CD,垂足为D,AC⊥BC,垂足为C,那么图中的直角一共有()A.2个B.3个C.4个D.1个3.如图所示,直线EO⊥CD,垂足为点O,AB平分⊥EOD,则⊥BOD的度数为()A.120°B.130°C.135°D.1404.点P为直线外一点,点A、B、C为直线上三点,PA=4cm,PB=5cm,PC=2cm,则点P 到直线的距离为()A.4cm B.5cm C.小于2cm D.不大于2cm5.如图所示,OA⊥OC,OB⊥OD,下面结论中,其中说法正确的是()①⊥AOB=⊥COD;②⊥AOB+⊥COD=90°;③⊥BOC+⊥AOD=180°;④⊥AOC-⊥COD=⊥BOC.A.①②③B.①②④C.①③④D.②③④6.如图所示,直线AB⊥CD于点O,直线EF经过点O,若⊥1=26°,则⊥2的度数是(⊥).A.26°B.64°C.54°D.以上答案都不对7.在下列语句中,正确的是().A.在平面上,一条直线只有一条垂线;B.过直线上一点的直线只有一条;C.过直线上一点且垂直于这条直线的直线有且只有一条;D.垂线段的长度就是点到直线的距离8.如图所示,⊥BAC=90°,AD⊥BC于D,则下列结论中,正确的个数为().①AB⊥AC; ②AD与AC互相垂直; ③点C到AB的垂线段是线段AB; ④点D到BC的距离是线段AD的长度; ⑤线段AB的长度是点B到AC的距离; ⑥线段AB是点B到AC的距离;⑦AD>BD.A.2个B.4个C.7个D.0个9.如图,直线AB,CD相交于点O,射线OM平分⊥AOC,ON⊥OM,若⊥AOM=35°,则⊥CON的度数为()A.35°B.45°C.55°D.65°10.已知在正方形网格中,每个小方格都是边长为1的正方形,A和B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C⊥为顶点的三角形的面积为1个平方单位,则C 点的个数为().A.3个B.4个C.5个D.6个11.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是()A.B.C.D.12.下列语句正确的是()A.两条直线相交成四个角,如果有两个角相等,那么这两条直线互相垂直B.两条直线相交成四个角,如果有两对角相等,那么这两条直线互相垂直C.两条直线相交成四个角,如果有三个角相等,那么这两条直线互相垂直D.两条直线相交成四个角,如果有两个角互补,那么这两条直线互相垂直13.过线段外一点画这条线段的垂线,垂足一定在()A.线段上B.线段的端点上C.线段的延长线上D.以上情况都有可能14.如图,直线AD⊥BD,垂足为D,则点B到线段AC的距离是()A.线段AC的长B.线段AD的长C.线段BC的长D.线段BD的长15.如图,OM⊥NP,ON⊥NP,所以OM和ON重合,理由是()A.两点确定一条直线B.经过一点有且只有一条直线和已知直线垂直C.过一点只能作一条垂线D.垂线段最短16.当两条直线相交所成的四个角中,叫做这两条直线互相垂直,其中的一条直线叫,它们的交点叫.17.过直线上或直线外一点,与已知直线垂直.18.如图所示,若AB⊥CD于O,则⊥AOD=;若⊥BOD=90°,则AB CD.19.如图所示,已知AO⊥BC于O,那么⊥1与⊥2.20.如果CD⊥AB于D,自CD上任一点向AB作垂线,那么所画垂线均与CD重合,这是因为.21.如图,已知A,O,E三点在一条直线上,OB平分⊥AOC,⊥AOB+⊥DOE=90°,试问:⊥COD 与⊥DOE之间有怎样的关系?说明理由.-com22.如图,⊥1=30°,AB⊥CD,垂足为O,EF经过点O.求⊥2、⊥3的度数.23.如图,直线AB与CD相交于点O,OP是⊥BOC的平分线,OE⊥AB,OF⊥CD(1)图中除直角外,还有相等的角吗?请写出两对:①;②.(2)如果⊥AOD=40°,则①⊥BOC=;②OP是⊥BOC的平分线,所以⊥COP=度;③求⊥BOF的度数.24.如图,已知⊥AOB,OE平分⊥AOC,OF平分⊥BOC.(1)若⊥AOB是直角,⊥BOC=60°,求⊥EOF的度数;(2)猜想⊥EOF与⊥AOB的数量关系;(3)若⊥AOB+⊥EOF=156°,则⊥EOF是多少度?25.直线AB、CD相交于点O.OE、OF分别是⊥AOC、⊥BOD的平分线.(1)画出这个图形.(2)射线OE、OF在同一条直线上吗?(3)画⊥AOD的平分线OG.OE与OG有什么位置关系?并说明理由.参考答案1.【答案】C2.【答案】B3.【答案】C4.【答案】D5.【答案】C6.【答案】B7.【答案】D8.【答案】B9.【答案】C10.【答案】D11.【答案】C12.【答案】C13.【答案】D14.【答案】D15.【答案】B16.【答案】有一个直角;另一条直线的垂线;垂足17.【答案】有且只有一条直线18.【答案】90°;⊥19.【答案】互余20.【答案】在同一平面内,过一点有且只有一条直线与已知直线垂直21.【答案】相等,理由:⊥AOB+⊥DOE=90°,且A、O、E三点共线,所以⊥BOC+⊥COD=90°.因为OB平分⊥AOC,所以⊥AOB=⊥BOC,通过等量代换,可以得知⊥COD与⊥DOE相等.22.【答案】∵⊥1与⊥3是对顶角∴⊥1=⊥3,因为⊥1=30°∴⊥3=30°.∵AB⊥CD∴⊥BOD=90°∵⊥2+⊥3=⊥BOD∴⊥2=90°-⊥3=60°.23.【答案】(1)⊥AOD=⊥BOC;⊥BOP=⊥COP(2)40°;20°;50°24.【答案】(1)∵⊥AOC=⊥AOB+⊥BOC,∴⊥AOC=90°+60°=150°.∵OE平分⊥AOC,∴⊥EOC =150°÷2=75°.∵OF平分⊥BOC,∴⊥COF=60°÷2=30°.∵⊥EOC=⊥EOF+⊥COF,∴⊥EOF=75°-30°=45°.(2)∵OE平分⊥AOC,OF平分⊥BOC.∴⊥COE=⊥AOC,⊥COF=⊥BOC∵⊥AOB=⊥AOC-⊥BOC∴⊥EOF=⊥COE-⊥COF=⊥AOC-⊥BOC=(⊥AOC-⊥BOC)=⊥AOB(3)∵OE平分⊥AOC,OF平分⊥BOC,∴⊥COE=⊥AOC,⊥COF=⊥BOC∴⊥EOF=⊥AOC-⊥BOC=(⊥AOC-⊥BOC)=⊥AOB.又∵⊥AOB+⊥EOF=156°∴⊥EOF=52°.25.【答案】(1)如图:(2)射线OE、射线OF在同一条直线上.理由如下:∵直线AB、CD相交于点O,∴⊥AOC=⊥BOD,⊥AOC+⊥AOD=180°,∵OE、OF分别是⊥AOC、⊥BOD的平分线,∴⊥AOE=12⊥AOC,⊥DOF=12⊥BOD ∴⊥AOE=⊥DOF,∴⊥AOE+⊥DOF=⊥AOC,∴⊥AOE+⊥DOF+⊥AOD=180°,∴射线OE、射线OF在同一条直线上;(3)如图OE⊥OG.理由如下:∵OG平分⊥AOD,∴⊥AOG=⊥DOG,∵⊥AOE=⊥DOF,⊥AOE+⊥DOF+⊥AOD=180°,∴⊥AOE+⊥AOG=90°,∴OG⊥OE.。

垂线的专项练习30题有答案ok

垂线的专项练习30题有答案ok

垂线专项练习30题(有答案)1.如图,①过点Q作QD⊥AB,垂足为D,②过点P作PE⊥AB,垂足为E,③过点Q作QF⊥AC,垂足为F,④连P、Q两点,⑤P、Q两点间的距离是线段_________的长度,⑥点Q到直线AB的距离是线段_________的长度,⑦点Q到直线AC的距离是线段_________的长度,⑧点P到直线AB的距离是线段_________的长度.2.如图,点P是∠AOB的边OB上的一点过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到_________的距离,_________是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是_________(用“<”号连接)3.(1)画出表示点B到直线CD的距离的线段,结论:_________(2)A、C两点之间的距离为线段_________的长;(3)画出表示两条平行线AD、BC之间的距离的线段,结论:_________.4.如图,DE∥BC,AF⊥DE于G,DH⊥BC于H,且AG=4cm,DH=4cm,试求点A到BC的距离.5.如图,过点A作BC的垂线,并指出那条线的长度是表示点A到BC的距离?6.如图,∠C=90°,AB=5,AC=4,BC=3,则点A到直线BC的距离为_________,点B到直线AC的距离为_________,A、B间的距离为_________,AC+BC>AB,其依据是_________,AB>AC,其依据是_________.7.如图所示,村庄A、村庄B分别要从河流L引水入庄,各需修筑一水渠,请你画出修筑水渠的路线图.8.如图,要把水渠中的水引到C点,在渠岸AB的什么地方开沟,才能使沟最短?画出图形,并说明理由.9.如图,王林和李明同学骑自行车同时从各自的家中出发去学校.如果他们的骑车速度相同,那么谁先到达学校?为什么?10.如图,是一条河,C是河边AB外一点:(1)过点C要修一条与河平行的绿化带,请作出正确的示意图.(2)现欲用水管从河边AB,将水引到C处,请在图上测量并计算出水管至少要多少?(本图比例尺为1:2000)11.如图所示,火车站、码头分别位于A,B两点,直线a和b分别表示铁路与河流.(1)从火车站到码头怎样走最近,画图并说明理由;(2)从码头到铁路怎样走最近,画图并说明理由;(3)从火车站到河流怎样走最近,画图并说明理由.12.如图,计划在河边建一水厂,可过C点引CD⊥AB于D,在D点建水厂,可使水厂到村庄C的路程最短,这种设计的依据是_________.13.如图,点P处有一个工厂,现拟修一条通往大路口a的公路,应如何修才能使所修之路最短,试说明理由.14.如图,直线AD和BE相交于点O,∠COD=90°,∠COE=60°,求∠AOB的度数.15.如图,OF平分∠AOC,OE⊥OF,AB与CD相交于O,∠BOD=130°,求∠EOB的度数.16.如图所示,已知∠AOB=∠COD=90°,(1)若∠BOC=45°,求∠AOC与∠BOD的度数;(2)若∠BOC=25°,求∠AOC与∠BOD的度数;(3)由(1)、(2)你能得出什么结论?说说其中的道理.17.如图,直线BC与MN相交于点O,AO⊥BC,OE平分∠BON,若∠EON=20°,求∠AOM的度数.18.如图,直线AB与CD相交于点O,OP是∠AOD的平分线,OF⊥CD,如果∠BOD=30°.求:(1)∠AOF的度数;(2)∠POF的度数.19.如图所示,OA丄OB,OC丄OD,OE为∠BOD的平分线,∠BOE=15°,求∠BOD和∠AOC的度数.20.已知:如图,直线AB、CD、EF相交于点0,∠1=20°,∠BOC=90°.求∠2的度数.21.说出日常生活现象中的数学原理:日常生活现象相应数学原理有人和你打招呼,你笔直向他走过去两点之间直线段最短要用两个钉子把毛巾架安装在墙上桥建造的方向通常是垂直于河两岸人去河边打水总是垂直于河边方向走22.如图所示,修一条路将A,B两村庄与公路MN连起来,怎样修才能使所修的公路最短?画出线路图,并说明理由.23.如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C,(2)过点P画OA的垂线,垂足为H,(3)线段PH的长度是点P到_________的距离,线段_________是点C到直线OB的距离.(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC、PH、OC这三条线段大小关系是_________(用“<”号连接)24.已知:如图所示,∠1=∠2,∠3=∠4,GF⊥AB于G点,那么CD与AB是否互相垂直?试判断并说明理由.25.如图,已知OA⊥OB,∠1与∠2互补,求证:OC⊥OD.26.你能用折纸的方法过一点作已知直线的垂线吗?27.先拿一张长方形的白纸,按如图所示的方式将∠A、∠E折叠,使A′B与BE′重合,则BC与BD有什么关系?说明理由.28.分别过点P作线段MN的垂线.29.如图,∠AOE与∠BOF互余,那么AO与BO是否垂直?试说明理由.30.对于平面上垂直的两条直线a和b,称(a,b)为一个“垂直对”,而a和b都是属于这个“垂直对”的直线.那么当平面上有二十条直线时最多可组成多少个“垂直对”?参考答案:1.①②③④作图如图所示:⑤根据两点之间距离即可得出P、Q两点间的距离是线段PQ的长度,⑥根据点到直线的距离可得出点Q到直线AB的距离是线段QD的长度,⑦根据点到直线的距离可得出点Q到直线AC的距离是线段QF的长度,⑧根据点到直线的距离可得出点P到直线AB的距离是线段PE的长度,故答案为PQ,QD,QF,PE.2.(1)如图:(2)线段PH的长度是点P到直线OA的距离,线段CP的长度是点C到直线OB的距离,根据垂线段最短可得:PH<PC<OC,故答案为:OA,线段CP,PH<PC<OC3.(1)过B点作DC的垂线,交CD的延长线于E点,如,则线段BE的长为点B到直线CD的距离;所以过直线外一点作直线的垂线,垂线段长就是这个点到直线的距离;(2)A、C两点之间的距离为线段AC的长;(3)过C点作AD的垂线,垂足为F点,如图,则线段CF的长即为两条平行线AD、BC之间的距离.故答案为过直线外一点作直线的垂线,垂线段的长就是这个点到直线的距离;AC;两条平行线之间的距离就是一条直线上任意一点到另一条直线的距离.4.∵AF⊥DE,DE∥BC,∴AF⊥BC,∵DE∥BC,∴四边形DHFG是平行四边形,∴DH=GF=4cm,∴AF=AG+GF=4cm+4cm=8cm,即点A到BC的距离是8cm.5.过点A作BC的垂线,交CB的延长线于E,根据点到直线的距离的定义:从直线外一点到这条直线的垂线段长度,叫点到直线的距离.可得AE的长度即为点A到BC的距离.答:AE的长度即为点A到BC的距离.6.∵∠C=90°,AB=5,AC=4,BC=3,∴点A到直线BC的距离为4,点B到直线AC的距离为3,A、B间的距离为5,AC+BC>AB,其依据是三角形任意两边之和大于第三边长度,AB>AC,其依据是直角三角形中斜边长度大于直角边长度.7.如图所示,AE、BF就是村庄A、村庄B修筑水渠的路线图.8.如图,过C作CD⊥AB,垂足为D,在D处开沟,则沟最短.因为直线外一点与直线上各点连线的所有线段中,垂线段最短.9.根据垂线段定理,可知王林先到达学校.因为从他家到学校是垂线段,路程最短.10.如图:(1)过点C画一平行线平行于AB.(2)过点C作CD垂直于AB交AB于点D.然后用尺子量CD的长度,再按1:2000的比例求得实际距离即可.11.如图所示(1)沿AB走,两点之间线段最短;(2)沿BD走,垂线段最短;(3)沿AC走,垂线段最短.12.∵CD⊥AB,∴线段CD的长度就是点C到直线AB的最短距离.故答案为:垂线段最短.13.如图,过点P作PD⊥a于D,则由点P沿着PD修路,能使所修之路最短.14.∵已知∠COD=90°,∠COE=60°,∴∠DOE=90°﹣60°=30°,又∵∠AOB与∠DOE是对顶角,∴∠AOB=∠DOE=30°.15.∵∠AOC=∠BOD,∠BOD=130°,∴∠AOC=130°.∵OF平分∠AOC,∴∠AOF=∠FOC=65°.∵OE⊥OF,∴∠EOF=90°.∴∠BOE=180°﹣∠AOF﹣∠EOF=180°﹣65°﹣90°=25°16.(1)∵∠AOB=∠COD=90°,且∠BOC=45°,∴∠AOC=∠AOB﹣∠BOC=45°,∠BOD=∠COD﹣∠BOC=45°;(2)∵∠AOB=∠COD=90°,且∠BOC=25°,∴∠AOC=∠AOB﹣∠BOC=65°,∠BOD=∠COD﹣∠BOC=65°;(3)∠AOC=∠BOD,等角的余角相等.17.∵OE平分∠BON,∴∠BON=2∠EON=40°,∴∠COM=∠BON=40°,∴∠AOM=90°﹣∠COM=90°﹣40°=50°.18.(1)∵∠AOC=∠BOD=30°,OF⊥CD,∴∠AOF=90°﹣30°=60°;(2)∵OP是∠AOD的平分线,∴∠AOP=∠AOP=(180°﹣∠BOD)=(180°﹣30°)=75°,∴∠POF=∠AOP﹣∠AOF=75°﹣60°=15°19.∵OE为∠BOD的平分线,∴∠BOE=∠BOC,即∠BOD=2∠BOE=2×15°=30°;∵OA丄OB,OC丄OD,∴∠AOB=∠COD=90°,∴∠AOC=360°﹣90°﹣90°﹣30°=150°.20.∵∠1=20°,∠BOC=90°,∴∠BOE=∠BOC﹣∠1=90°﹣20°=70°,∴∠2=∠BOE=70°.21.这几种实际问题用数学原理解释分别是:两点确定一条直线;夹在两平行线间的线段中,垂线段最短;连接直线外一点与直线上各点的所有线段中,垂线段最短.22.连接AB,作BC⊥MN,C是垂足,线段AB和BC 就是符合题意的线路图.因为从A到B,线段AB最短,从B到MN,垂线段BC最短,所以AB+BC最短.23.(1)如图(2)如图,(3)直线0A、PC的长.(4)PH<PC<OC.24.相互垂直.理由:∵GF⊥AB,∴∠2+∠4=90°,而∠1=∠2,∠3=∠4,∴∠1+∠3=90°,∴∠1+∠2=180°,∵OA⊥OB,∴∠AOB=90°,∴∠COD=360°﹣(∠1+∠2)﹣∠AOB=360°﹣180°﹣90°=90°,∴OC⊥OD26.先沿已知直线折一下,再在已知点处对折即可.27.垂直;根据题意可得∠ABC=∠A′BC,∠FBE=∠FBE′,∵∠ABC+∠A′BC+∠E′BF+∠FBE=180°,∴∠A′BC+∠E′BF=90°,∴BC⊥FB28.①延长NM,过点P作NM所在直线的垂线.②延长NM,过点P作NM所在直线的垂线.③过点P作NM所在直线的垂线.④延长NM,过点P作NM所在直线的垂线.29.AO与BO垂直.理由如下:∵∠AOE与∠BOF互余,∴∠AOE+∠BOF=90°,又∵∠AOE+∠AOB+∠BOF=180°,∴∠AOB=90°,∴AO⊥BO,即AO与BO垂直30.当二十条直线有10条互相平行;另10条不仅互相平行而且与前10条垂直时垂直对最多.答案是100对.。

人教版数学七年级下册垂线同步练习题含答案

人教版数学七年级下册垂线同步练习题含答案

人教版数学七年级下册垂线同步练习题学校:___________姓名:___________班级:___________一、单选题1.如图,AB ⊥CD ,垂足为O ,EF 是过点O 的一条直线,已知⊥1=40°,则⊥2=( )A .40°B .45°C .50°D .60°2.入射光线和平面镜的夹角为40︒,转动平面镜,使入射角减小10︒,反射光线与入射光线的夹角和原来相比较将( ) A .减小40︒B .减小10︒C .减小20︒D .不变3.如图所示,已知:,1:23:2CD AB ⊥∠∠=,则FDC ∠=( )A .120︒B .126︒C .135︒D .144︒4.过一条线段外一点,作这条线段的垂线,垂足在( ) A .这条线段上 B .这条线段的端点处 C .这条线段的延长线上D .以上都有可能5.数学课上,同学们在练习过点B 作线段AC 所在直线的垂线段,正确的是( )A .AB .BC .CD .D6.如图,O 是直线AD 上一点,射线,OC OE 分别平分,AOB BOD ∠∠,则COE ∠的大小为( )A.120°B.60°C.90°D.150°7.如图,AB⊥AC于A,AD⊥BC于D,DE⊥AC于E,下列说法错误的是()A.点A到BC的距离是AD的长度B.点B到AD的距离是BD的长度C.点C到AD的距离是DE的长度D.点B到AC的距离是AB的长度DE=,点F是射线OB上的任意一点,8.如图,OD平分AOB∠,DE AO⊥于点E,5则DF的长度不可能是()A.4B.5C.6D.79.如图,△ABC中,CD是AB边上的高,CM是AB边上的中线,点C到边AB所在直线的距离是()A.线段CA的长度B.线段CM的长度C.线段CD的长度D.线段CB的长度10.如图,在直角三角形ABC中,⊥BAC=90°,AD⊥BC于点D,则下列说法错误的是()A .线段AC 的长度表示点C 到AB 的距离 B .线段AD 的长度表示点A 到BC 的距离 C .线段CD 的长度表示点C 到AD 的距离 D .线段BD 的长度表示点A 到BD 的距离 11.下列命题是真命题的是( )A .过一点有且只有一条直线与已知直线垂直B .从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离C .互相垂直的两条线段一定相交D .直线外一点与直线上各点连接的所有线段中,垂线段最短12.平面直角坐标系中,点()1,2A -,()2,1B ,经过点A 的直线a x ∥轴,点C 是直线a 上的一个动点,当线段BC 的长度最短时,点C 的坐标为( ). A .()1,1- B .()1,2-C .()2,1D .()2,2二、填空题13.如图,当直线AB 与CD 相交于O 点,⊥AOD =______时,那么AB 与CD 垂直,记作:AB ______CD . 符号语言:因为⊥AOD =90°(已知) , 所以AB ⊥CD ( ) .14.如图,直线AB 和CD 交于O 点,OD 平分⊥BOF ,OE ⊥CD 于点O ,⊥AOC =40︒,则⊥EOF =_______.15.如图, 直线AB , CD , EF 相交于点O , 若:1:2AOE COE ∠∠=, AB CD ⊥, 则COF ∠=______度.16.如图,已知CF AB ⊥于C ,DC CE ⊥,则ACD ∠的余角是__.17.如图,直线AB 、CD 相交于点O ,⊥BOC =α,点F 在直线AB 上且在点O 的右侧,点E 在射线OC 上,连接EF ,直线EM 、FN 交于点G .若⊥MEF =n ⊥CEF ,⊥NFE =(1﹣2n )⊥AFE ,且⊥EGF 的度数与⊥AFE 的度数无关,则⊥EGF=__.(用含有α的代数式表示)18.如图所示,⊥AOC 与⊥BOD 都是直角,且⊥AOB :⊥AOD =2:11,则⊥AOB =_______.三、解答题19.如图,已知⊥AOB =20°.(1)若射线OC ⊥OA ,射线OD ⊥OB ,请你在图中画出所有符合要求的图形; (2)请根据(1)所画出的图形,求⊥COD 的度数.20.如图1,1A BC ∠、1ACM ∠的角平分线2BA 、2CA 相交于点2A ,(1)如果164A ∠=︒,那么2A ∠的度数是多少,试说明理由并完成填空; 解:(1)结论:2∠=A ______度.说理如下:因为2BA 、2CA 平分1A BC ∠和1ACM ∠(已知), 所以121A BC ∠=∠,122A CM ∠=∠(角平分线的意义). 因为111ACM A BC A ∠=∠+∠,221A ∠=∠+∠( ) (完成以下说理过程)(2)如图2,164A ∠=︒,如果2A BC ∠、2A CM ∠的角平分线3BA 、3CA 相交于点3A ,请直接写出3A ∠度数;(3)如图2,重复上述过程,1n A BC -∠、1n A CM -∠的角平分线n BA 、n CA 相交于点n A 得到n A ∠,设1A θ∠=︒,请用θ表示n A ∠的度数(直接写出答案)21.如图,CE 是ABC 的外角ACD ∠的平分线,且CE 交BA 的延长线于点E .(1)求证:2BAC B E ∠=∠+∠.(2)若CA BE ⊥,30ECD ACB ∠-∠=︒时,求E ∠的度数.22.直线AB ,CD 相交于点O ,OF CD ⊥于点O ,作射线OE ,且OC 在AOE ∠的内部.(1)当点E ,F 在直线AB 的同侧;⊥如图1,若15BOD ∠=︒,120BOE ∠=︒,求EOF ∠的度数;⊥如图2,若OF 平分∠BOE ,请判断OC 是否平分AOE ∠,并说明理由; (2)若2AOF COE ∠=∠,请直接写出∠BOE 与AOC ∠之间的数量关系.23.如图所示,一辆汽车在直线形公路AB 上由A 向B 行驶,M 、N 分别是位于公路两侧的村庄.(1)设汽车行驶到公路AB 上点P 位置时,距离村庄M 最近;行驶到点Q 位置时,距离村庄N 最近,请在图中的公路AB 上分别画出点P 和点Q 的位置(保留作图痕迹). (2)当汽车从A 出发向B 行驶时,在公路AB 的哪一段路上距离M 、N 两村庄都越来越近?在哪一段路上距离村庄N 越来越近,而离村庄M 越来越远?(分别用文字表述你的结论,不必说明)24.如图,所有小正方形的边长都是1个单位,A 、B 、C 均在格点上仅用无刻度直尺画图:(1)过点A 画线段BC 的平行线AD ; (2)过点B 画线段BC 的垂线,垂足为B ; (3)过点C 画线段AB 的垂线,垂足为E ;(4)线段CE 的长度是点C 到直线________的距离;(5)线段CA 、CE 的大小关系是_________(用“<”连接),理由是__________________.参考答案:1.C【分析】根据垂直得到⊥BOD =90°,然后平角的性质求解即可. 【详解】⊥AB ⊥CD , ⊥⊥BOD =90°,⊥⊥1+⊥BOD +⊥2=180°,⊥1=40°, ⊥40°+90°+⊥2=180°, ⊥⊥2=50°, 故选:C .【点睛】此题考查了直角和平角的性质,解题的关键是熟练掌握直角和平角的性质. 2.C【分析】要知道入射角和反射角的概念:入射光线与法线的夹角,反射角是反射光线与法线的夹角,在光反射时,反射角等于入射角.【详解】解:入射光线与平面镜的夹角是40︒,所以入射角为904050︒-︒=︒.根据光的反射定律,反射角等于入射角,反射角也为50︒,所以入射光线与反射光线的夹角是100︒.入射角减小10︒,变为501040︒-︒=︒,所以反射角也变为40︒,此时入射光线与法线的夹角为80︒.则反射光线与入射光线间的夹角和原来比较将减小20︒. 故选:C .【点睛】本题考查了有关角的计算,首先要熟记光的反射定律的内容,搞清反射角与入射角的关系,特别要掌握反射角与入射角的概念,它们都是反射光线和入射光线与法线的夹角. 3.B【分析】根据CD AB ⊥,可得⊥ADC =⊥BDC =90°可得⊥1+⊥2=90°,由1:23:2∠∠=,可求⊥1=54︒,⊥2=36︒,由对顶角性质可得⊥ADF =⊥2=36°,利用角的和可得⊥FDC =⊥ADC +⊥ADF =126°. 【详解】解:⊥CD AB ⊥ ⊥⊥ADC =⊥BDC =90° ⊥⊥1+⊥2=90°, ⊥1:23:2∠∠=,设⊥1=3x ︒,⊥2=2x ︒, ⊥3x +2x =90, 解得18x =,⊥⊥1=54︒,⊥2=36︒, ⊥⊥ADF =⊥2=36°,⊥⊥FDC =⊥ADC +⊥ADF =90°+36°=126°. 故选:B .【点睛】本题考查垂直定义,角的和与比例,掌握垂直定义,根据角的和与比例建构方程,会解方程是解题关键. 4.D【分析】画一条线段的垂线,就是画线段所在的直线的垂线,进而得出答案.【详解】作一条线段的垂线,实际上是作线段所在直线的垂线,垂足可能在这条线段上,可能在端点处,也可能在线段的延长线上. 故选:D .【点睛】本题考查线段垂线的画法.正确把握垂线的定义是解题关键. 5.A【详解】A.根据垂线段的定义,故A 正确; B.BD 不垂直AC ,所以错误;C.是过点D 作的AC 的垂线,所以错误;D.过点C 作的BD 的垂线,也错误. 故选:A. 6.C【分析】根据平角的概念结合角平分线的定义列式求解. 【详解】解:⊥O 是直线AD 上一点 ⊥180AOD ∠=︒⊥射线,OC OE 分别平分,AOB BOD ∠∠ ⊥12COB AOB ∠=∠,12EOB BOD ∠=∠⊥1111=()902222COE COB EOB AOB BOD AOB BOD AOD ∠∠+∠=∠+∠=∠+∠=∠=︒故选:C .【点睛】本题考查平角及角平分线的概念,正确理解相关概念列出角的和差关系是解题关键. 7.C【分析】根据点到直线的距离的定义判断各选项即可.【详解】A 、点A 到BC 的距离是AD 的长度,本选项正确,不符合题意; B 、点B 到AD 的距离是BD 的长度,本选项正确,不符合题意; C 、点C 到AD 的距离是DE 的长度,故本选项错误,符合题意; D 、点B 到AC 的距离是AB 的长度,本选项正确,不符合题意. 故选C .【点睛】本题考查了点到直线的距离,关键是对点到直线的距离的意义的掌握. 8.A【分析】根据角平分线的性质,可知点D 到OB 和OA 的距离相等,并且点到直线的线段中,垂线段最短,最短距离为5,即可判断.【详解】⊥OD 平分AOB ∠,DE AO ⊥于点E ,5DE =, ⊥D 到OB 的距离等于5, ⊥5DF ≥故DF 的长度不可能为4,故选A .【点睛】本题考查了角平分线的性质,点到直线的线段中,垂线段最短,熟练掌握性质是本题的关键. 9.C【分析】根据点C 到边AB 所在直线的距离是点C 到直线AB 的垂线段的长度进行求解即可.【详解】点C 到边AB 所在直线的距离是点C 到直线AB 的垂线段的长度,而CD 是点C 到直线AB 的垂线段, 故选C.【点睛】本题考查了点到直线的距离,熟知点到直线的距离的概念是解题的关键. 10.D【分析】根据直线外一点,到这条直线的垂线段的长度是这点到直线的距离判断即可. 【详解】解:A. 线段AC 的长度表示点C 到AB 的距离,说法正确,不符合题意; B. 线段AD 的长度表示点A 到BC 的距离,说法正确,不符合题意; C. 线段CD 的长度表示点C 到AD 的距离,说法正确,不符合题意;D. 线段BD的长度表示点B到AD的距离,原说法错误,符合题意;故选:D.【点睛】本题考查了点到直线的距离,解题关键是准确识图,正确进行判断.11.D【详解】在同一平面内,过一点有且只有一条直线与已知直线垂直,A没有告知在同一平面内,是假命题;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,B 是假命题;互相垂直的两条线段不一定相交,C是假命题;直线外一点与直线上各点连接的所有线段中,垂线段最短,D是真命题.答案:D题型解法:命题的真假判断,正确的命题叫真命题,错误的命题叫假命题,确定假命题可举反例证明.12.D【分析】根据题意画出图形,根据直线a//x轴,得到直线a为直线y= 2,根据垂线段最短即可得出答案.【详解】如图,⊥直线a// x轴,⊥直线a为直线y= 2,当BC⊥a时,线段BC最短,⊥点C的坐标为(2,2).故选:D.【点睛】本题考查了坐标与图形性质,掌握平行于x轴的坐标的特点,以及垂线段最短是解题的关键.13.90°⊥垂直的定义【解析】略14.130°【分析】根据对顶角性质可得⊥BOD =⊥AOC=40°.根据OD 平分⊥BOF ,可得⊥DOF =⊥BOD =40°,根据OE ⊥CD ,得出⊥EOD =90°,利用两角和得出⊥EOF =⊥EOD +⊥DOF =130°即可.【详解】解:⊥AB 、CD 相交于点O ,⊥⊥BOD =⊥AOC=40°.⊥OD 平分⊥BOF ,⊥⊥DOF =⊥BOD =40°,⊥OE ⊥CD ,⊥⊥EOD =90°,⊥⊥EOF =⊥EOD +⊥DOF =130°.故答案为130°.【点睛】本题考查相交线对顶角性质,角平分线定义,垂直定义,掌握对顶角性质,角平分线定义,垂直定义是解题关键.15.120【分析】根据垂直的定义和对顶角相等的性质可得答案.【详解】解:AB CD ⊥,90AOC BOC ∴∠=∠=︒,又:1:2AOE COE ∠∠=,119030123AOE AOC ∴∠=∠=︒⨯=︒+, AOE BOF ∠=∠,3090120COF BOF BOC ∴∠=∠+∠=︒+︒=︒,故答案为:120.【点睛】本题考查垂直的定义,对顶角相等的性质,解题的关键是掌握垂直的定义. 16.DCF ∠,ECB ∠【分析】根据垂直的定义和余角的定义,找和ACD ∠相加得90°的角即可.【详解】解:CF AB ⊥于C ,DC CE ⊥,90ACF BCF DCE ∴∠=∠=∠=︒,90ACD DCF∴∠+∠=︒,18090ACD BCE DCE∠+∠=︒-∠=︒ACD∴∠的余角是:DCF∠,ECB∠.答案:DCF∠,ECB∠.【点睛】本题考查了垂直的定义和余角的定义,解题关键是准确识图,找出图中90°角,准确进行推理判断.17.13α##α3【分析】利用三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角和,以及三角形内角和定理求解.【详解】解:⊥⊥CEF=⊥AFE+⊥BOC,⊥BOC=α,⊥⊥CEF=α+⊥AFE,⊥⊥MEF=n⊥CEF,⊥⊥MEF=n(α+⊥AFE),⊥⊥EGF=⊥MEF﹣⊥NFE,⊥⊥EGF=n(α+⊥AFE)﹣(1﹣2n)⊥AFE=nα+(3n﹣1)⊥AFE,⊥⊥EGF的度数与⊥AFE的度数无关,⊥3n﹣1=0,即n=13,⊥⊥EGF=13α;故答案为:13α.【点睛】此题考查了三角形外角的性质及角度计算,解题的关键是理解⊥EGF的度数与⊥AFE 的度数无关的含义.18.20°【分析】由⊥AOB+⊥BOC=⊥BOC+⊥COD知⊥AOB=⊥COD,设⊥AOB=2α,则⊥AOD=11α,故⊥AOB+⊥BOC=5α=90°,解得α即可.【详解】解:⊥⊥AOB+⊥BOC=⊥BOC+⊥COD,⊥⊥AOB=⊥COD,设⊥AOB=2α,⊥⊥AOB:⊥AOD=2:11,⊥⊥AOB+⊥BOC=9α=90°,解得α=10°,⊥⊥AOB =20°.故答案为20°.【点睛】此题主要考查了角的计算以及余角和补角,正确表示出各角度数是解题关键. 19.(1)见解析;(2)⊥COD=20°或160°.【分析】(1)根据垂直的定义画射线OC ⊥OA ,射线OD ⊥OB ;(2)如图1,由于OC ⊥OA ,OD (或OD’)⊥OB ,则⊥BOD =⊥BOD’=⊥AOC =90°,于是利用周角的定义可计算出⊥COD =160°,利用⊥COD ′=⊥BOC ﹣⊥BOD’可得到⊥COD ′=20°,如图2,同理可得⊥COD =160°,⊥COD ′=20°.【详解】解:(1)如图1、如图2,OC 、OD (或OD ′)为所作;(2)如图1,⊥OC ⊥OA ,OD ⊥OB ,⊥⊥BOD =⊥BOD’=⊥AOC =90°,⊥⊥COD =360°﹣90°﹣90°﹣20°=160°,⊥COD ′=⊥BOC ﹣⊥BOD’=90°+20°﹣90°=20°,如图2,同理可得⊥COD =160°,⊥COD ′=20°,⊥⊥COD =20°或160°.【点睛】本题考查了基本作图—过一点作已知直线的垂线,分情况作出图形是解决此题的关键.20.(1)32;三角形的一个外角等于与它不相邻的两个内角的和;过程见解析(2)16° (3)1()2n θ︒-【分析】(1)利用角平分线的定义和三角形的外角的性质即可求解;(2)根据(1)的解法即可直接求解;(3)利用(1)的结论求解.(1)解:结论:⊥A 2=32度.说理如下:因为BA 2、CA 2平分⊥A 1BC 和⊥A 1CM (已知),所以⊥A 1BC =2⊥1,⊥A 1CM =2⊥2(角平分线的意义).因为⊥A 1CM =⊥A 1BC +⊥A 1,⊥2=⊥1+⊥A 2(三角形的一个外角等于和它不相邻的两个内角的和).所以⊥A 1CM =⊥A 1BC +⊥A 1=2⊥1+⊥A 1=2(⊥1+⊥A 2),所以⊥A 1=2⊥A 2,因为⊥A 1=64°,所以⊥A 2=32°.故答案为:32,三角形的一个外角等于和它不相邻的两个内角的和.(2)由(1)得:⊥A 1=2⊥A 2,⊥A 2=2⊥A 3,⊥⊥A 1=4⊥A 3,⊥⊥A 3=14⊥A 1=16°. (3)由(1)得:⊥A 1=2⊥A 2,⊥A 2=2⊥A 3,…,⊥An ﹣1=2⊥An ,⊥⊥A 1=2⊥A 2,⊥A 1=4⊥A 3,⊥A 1=8⊥A 4,…,⊥A 1=2n ﹣1•⊥An ,⊥⊥A 1=2n ﹣1•⊥An ,⊥⊥An =112n A -∠=1()2n θ-︒. 【点睛】本题考查了角的平分线的定义以及三角形的外角的性质:三角形的一个外角等于与它不相邻的两个内角的和,正确解决(1),读懂题意是关键.21.(1)见解析(2)20︒【分析】(1)利用外角的性质,BAC E ACE ∠=∠+∠,ECD E B ∠=∠+∠,再利用角平分线的定义推出ACE ECD ∠=∠,通过等量代换即可求证;(2)先利用30ECD ACB ∠-∠=︒,180ACD ACB ∠+∠=︒,求出40ACB ∠=︒,进而求出B ,再代入(1)中结论即可求解.(1)证明:⊥BAC ∠是ACE ∆的外角,⊥BAC E ACE ∠=∠+∠,⊥ECD ∠是BCE ∆的外角,⊥ECD E B ∠=∠+∠,⊥CE 是ACD ∠的平分线,⊥ACE ECD E B ∠=∠=∠+∠,⊥2BAC E ACE E B E B E ∠=∠+∠=∠+∠+∠=∠+∠;(2)解:⊥30ECD ACB ∠-∠=︒,⊥30ECD ACB ∠=∠+︒,⊥2260ACD ECD ACB ∠=∠=∠+︒,⊥180ACD ACB ∠+∠=︒,⊥260180ACB ACB ∠+︒+∠=︒,解得40ACB ∠=︒.⊥CA BE ⊥,⊥90BAC ∠=︒,⊥18050B BAC ACB ∠=︒-∠-∠=︒,由(1)知2BAC B E ∠=∠+∠,⊥90502E ︒=︒+∠,解得20E ∠=︒.【点睛】本题考查三角形外角的性质,三角形内角和定理,垂直的定义,角平分线的定义等,牢固掌握上述知识并灵活运用是解题的关键.22.(1)⊥45︒;⊥平分,理由见解析(2)32270AOC BOE ∠+∠=︒或2270AOC BOE ∠+∠=︒【分析】(1)⊥先利用角度的和差关系求得COE ∠,再根据90EOF COE ∠=︒-∠,可得EOF∠的度数;⊥先根据角平分线定义EOF FOB ∠=∠,再结合余角定义和对顶角相等可得结论; (2)需要分类讨论,当点E ,F 在直线AB 的同侧,当点E ,F 在直线AB 的异侧;设COE α∠=,再分别表示AOC ∠、∠BOE ,再消去α即可.(1)解:⊥⊥OF CD ⊥于点O ,⊥90COF ∠=︒,⊥15BOD ∠=︒,120BOE ∠=︒,⊥1801801201545COE BOE BOD ∠=︒-∠-∠=︒-︒-︒=︒,⊥904545EOF COF COE ∠=∠-∠=︒-︒=︒,⊥EOF ∠的度数为45︒;⊥平分.理由如下:⊥OF 平分∠BOE , ⊥12EOF FOB EOB ∠=∠=∠, ⊥OF CD ⊥,⊥90COF ∠=︒,⊥90COE EOF FOB BOD ∠+∠=∠+∠=︒,⊥COE BOD ∠=∠,⊥AOC BOD ∠=∠,⊥COE AOC ∠=∠,⊥OC 平分AOE ∠.(2)如图,当点E ,F 在直线AB 的同侧,设COE α∠=,⊥2AOF COE ∠=∠,⊥22AOF COE α∠=∠=,⊥OF CD ⊥,⊥90COF ∠=︒,⊥290AOC AOF COF α∠=∠-∠=-︒⊥,⊥()1801802902703BOE AOC COE ααα∠=︒-∠-∠=︒--︒-=︒-⊥,⊥×3+⊥×2得,32270AOC BOE ∠+∠=︒;如图,当点E ,F 在直线AB 的异侧;设COE α∠=,⊥2AOF COE ∠=∠,⊥22AOF COE α∠=∠=,⊥OF CD ⊥,⊥90COF ∠=︒,⊥902AOC COF AOF α∠=∠-∠=︒-⊥,⊥()180********BOE AOC COE ααα∠=︒-∠-∠=︒-︒--=︒+⊥,⊥+⊥×2得,2270AOC BOE ∠+∠=︒.综上所述,∠BOE 与AOC ∠之间的数量关系:32270AOC BOE ∠+∠=︒或2270AOC BOE ∠+∠=︒.【点睛】本题考查了角平分线定义,对顶角相等,垂直的定义,平角的定义,等式的恒等变形等知识,主要考查学生的计算能力,并注意数形结合.分类讨论是解题的关键. 23.(1)作图见解析;(2)当汽车从A 向B 行驶时,在AP 这段路上,离两个村庄越来越近;在PQ 这段路上,离村庄M 越来越远,离村庄N 越来越近.【分析】(1)点与直线的连线中,垂线段最短,所以MP AB ⊥,NQ AB ⊥.(2)观察图形可以得到在AP 这段路上,离两个村庄越来越近;在PQ 这段路上,离村庄M越来越远,离村庄N越来越近.⊥,垂足为Q,点P、Q 【详解】解:(1)过点M作MP AB⊥,垂足为P,过点N作NQ AB就是要画的两点,如图所示.(2)当汽车从A向B行驶时,在AP这段路上,离两个村庄越来越近;在PQ这段路上,离村庄M越来越远,离村庄N越来越近.【点睛】本题主要考查了点与直线距离以及尺规作图相关知识,熟练掌握点与直线的距离和尺规作图是解决本题的关键.<;垂线段最短.24.(1)见解析;(2)见解析;(3)见解析;(4)AB;(5)CE CA【分析】(1)(2)(3)利用网格的特点直接作出平行线及垂线即可;(4)利用垂线段的性质直接回答即可;(5)利用垂线段最短比较两条线段的大小即可.【详解】(1)如图,直线AD即为所求;(2)如图,直线BF即为所求(3)如图,直线CE即为所求;(4)AB<;垂线段最短.(5)CE CA【点睛】本题考查了垂线段最短和点到直线的距离的知识,解题的关键是理解有关垂线段的性质及能进行简单的基本作图.。

垂线练习题初中

垂线练习题初中

垂线练习题初中垂线是几何中常见的一种线段,它与所连接的两条线段或直线相交成直角。

在初中数学中,垂线经常被用来解决诸如求垂线长度、垂直平分线等问题。

本文将通过一些具体的练习题来帮助初中生更好地理解和应用垂线的相关知识。

练习题一:已知线段AB的长度为10cm,点C是线段AB上一点,求AC上的垂线CD。

解析:首先,根据题意可知AC的长度为10cm。

接下来,我们需要找到垂线CD与AC的交点D。

由于D是AC上的垂线,所以AD和CD构成直角,即ACD是一个直角三角形。

根据勾股定理可知,AC的平方等于AD的平方加上CD的平方。

由于AC和AD的长度已知,我们可以将这个方程代入计算,进而求得CD的长度。

练习题二:已知直角三角形ABC中,∠BCA是直角,BD是AC的垂线,且AC的长度为8cm,BD的长度为6cm,求AB的长度。

解析:由题意可知,BD是AC的垂线且BCA是直角,因此BD和AD构成直角。

根据勾股定理可知,AC的平方等于AD的平方加上CD 的平方。

已知AC和BD的长度,我们可以将这个方程代入计算,进而求得AD的长度。

然后,利用BD和AD的长度可以求出AB的长度。

练习题三:已知点A(2, 4)和点B(6, 2),求直线AB上距离点A最近的一点D 的坐标。

解析:首先,我们需要找到直线AB的方程。

根据两点确定直线的公式,可以求得直线AB的方程为 y = -x + 6。

接下来,我们需要找到直线AB上垂足D的坐标。

由于垂线上任意一点斜率与直线AB的斜率互为负倒数,因此垂线的斜率为1。

由此我们可以得到方程 y = x + c,其中c为常数。

接下来,将垂线的方程和直线AB的方程联立,解得D 的坐标。

练习题四:已知点A(-3, -1)和直线l:x + 2y - 5 = 0,求l上距离点A最近的一点B的坐标。

解析:首先,我们需要求得直线l的斜率。

根据直线一般式,可以得到斜率的表达式为 -a/b,其中a和b分别是直线l的系数。

七年级数学-垂线练习含解析

七年级数学-垂线练习含解析

七年级数学-垂线练习含解析基础闯关全练1.如图,直线AB、CD、EF相交于点O,且AB⊥CD,若∠BOE=35°,则∠DOF=( )A.65° B.45° C.35° D.55°2.如图,点O在直线AB上且OC⊥OD,若∠COA= 36°,则∠DOB的大小为( )A.36°B.54°C.55°D.44°3.下列选项中,过点P画AB的垂线CD,三角板放法正确的是( )A B C D4.在下图所示的各图中用三角板分别过点C画线段AB的垂线.(1)(2)(3)(4)5.如图,在立定跳远中,体育老师是这样测量运动员的成绩的,用一块直角三角板的一边附在起跳线上,另一边与拉直的皮尺重合,这样做的理由是( )A.两点之间,线段最短B.过两点有且只有一条直线C.垂线段最短D.过一点可以作无数条直线6.如图.想在河堤两岸搭建一座桥,图中四种搭建方式PA,PB,PC,PD中,最短的是_______. 7.下列图形中,线段PQ的长为点P到直线MN的距离的是( )A B C D8.如图.立定跳远比赛时,小明从点A起跳落在沙坑内B处,这次小明的跳远成绩是4.6米,则小明从起跳点到落脚点之间的距离( )A.大于4.6米 B.等于4.6米 C.小于4.6米 D.不能确定能力提升全练1.如图,∠ACB= 90°.CD⊥AB,垂足为点D,则下面的结论中,正确的有( )①BC与AC互相垂直②AC与CD互相垂直③点A到BC的垂线段是线段BC④点C到AB的垂线段是线段CD⑤线段BC是点B到AC的距离⑥线段AC的长度是点A到BC的距离A.2个 B.3个 C.4个 D.5个2.如图,已知直线CD、EF相交于点O.OA⊥OB,且OE平分∠AOC,若∠EOC= 60°,则∠BOF=______.3.如图,直线AB ,CD 相交于点O ,∠DOE=∠BOD .OF 平分∠AOE. (1)判断OF 与OD 的位置关系;(2)若∠AOC :∠AOD=1:5.求∠EOF 的度数.三年模拟全练 一、选择题1.如图所示,直线AB ⊥CD 于点D ,直线EF 经过点O .若∠1=26°,则∠2的度数是( )A .26°B .64° C.54° D .以上答案都不对2.如图,直线AB 、CD 相交于点O ,OE ⊥CD ,∠AOE= 52°,则∠BOD 等于( )A.24°B.26° C .36° D .38° 二、填空题3.如图,已知AC ⊥BC,CD ⊥ AB .AC=3,BC=4,CD= 2.4,则点C 到直线AB 的距离等于______.4.如图,当∠1与∠2满足_________条件时,OA ⊥OB .三、解答题5.如图,直线AB 与CD 相交于点D ,OP 是∠BOC 的平分线,OE ⊥AB ,OF ⊥ CD. (1)图中除直角外,写出三对相等的角: (2)已知∠EOC= 50°,求∠POF 的度数,五年中考全练 选择题.1.如图,直线AB ,CD 相交于点O ,EO ⊥CD.下列说法错误的是( )A. ∠AOD=∠BOCB.∠AOE+∠BOD=90°C.∠AOC=∠AOED.∠AOD+∠BOD= 180°2.如图,经过直线l 外一点A 画l 的垂线,能画出( )A.1条B.2条C.3条D.4条 3.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度核心素养全练如图,随意画一个锐角∠MON和一个钝角∠M'O’N’,画出∠MON的平分线OP和∠M'O’N'的平分线O’P’.(1)在OP上任取一点A,画AB⊥OM,AC⊥ON,垂足分别为B,C;(2)在O'P’上任取一点A’,画A'B'⊥O'M’,A'C'⊥O'N',垂足分别是B’,C’;(3)通过度量线段AB,AC,A'B’,A'C'的长度,发现AB____AC,A'B'____ A'C’;(填“=”或“≠”)(4)通过上面的画图和度量,和同学们交流一下,有什么猜想?请用一句话表述出来.5.1.2垂线1.D∵AB⊥CD,∠BOE=35°,∴∠AOF=35°,∠AOD=∠BOC=90°,∴∠DOF= 90°-35°=55°.故选D.2.B∵OC⊥OD,∴∠COD= 90°,又∵∠AOC+∠COD+∠DOB= 180°.∴∠DOB= 180°-36°-90°= 54°.故选B.3.C根据垂线的作法,将直角三角板的一条直角边与直线AB重合,另一条直角边过点P后沿该直角边画直线即可.4.解析5.C根据垂线段的性质:垂线段最短,故选C.6.答案PC解析根据“连接直线外一点与直线上各点的所有线段中,垂线段最短”与PC⊥AD.知PC最短.7.A对于选项A,PQ⊥MN,Q是垂足,故线段PQ的长为点P到直线MN的距离.8.A跳远的成绩是点B到起跳线的距离,即垂线段的长度为4.6米,结合题图知AB的长大于4.6米.1.B.∵∠ACB=90°,∴AC⊥BC,故①正确;AC与DC相交不垂直,故②错误;点A到BC的垂线段是线段AC.故③错误;点C到AB的垂线段是线段CD,故④正确;线段BC的长度是点B到AC的距离,故⑤错误;线段AC的长度是点A到BC的距离,故⑥正确.故选B.2.答案30°解析∵OE平分∠AOC,∠EOC=60°,∴∠AOE=∠COE= 60°,∠DOE= 180°-∠COE= 120°,∴∠DOA= 60°,∵OA⊥OB,∴∠DOA+∠BOD= 90°.∴∠DOB=30°,∵∠DOF=∠EOC=60°,∴∠BOF=30°.3.解析(1)因为OF平分∠AOE,所以∠AOF=∠EOF=21∠AOE.又因为∠DOE=∠BOD=21∠BOE,所以∠DOE+∠EOF=21(∠BOE+∠AOE)=21×180°=90°,即∠FOD=90°,所以OF⊥OD.(2)设∠AOC=x.因为∠AOC:∠AOD=1:5,所以∠AOD=5x,因为∠AOC+∠AOD= 180°,所以x+5x= 180°,x=30°.所以∠DOE=∠BOD=∠AOC=30°.又因为∠FOD= 90°.所以∠EOF= 90°-30°= 60°.一、选择题1.B∵∠1=26°,∠DOF与∠1是对顶角,∴∠DOF=∠1=26°,又∵AB⊥CD.∴∠DOF+∠2=90°,∴∠2=90°-∠ DOF=90°-26°=64°.故选B.2.D 因为OE⊥CD, ∠AOE =52°,所以∠AOC= 38°,则∠BOD=∠AOC= 38°,故选D.二、填空题3.答案2.4解析由题意得点C 到直线AB 的距离等于CD 的长,即点C 到直线AB 的距离等于2.4. 4.答案∠1+∠2= 90°解析当∠1+∠2= 90°时,∠AOB= 90°,根据垂直的定义得OA ⊥OB. 三、解答题5.解析(1)①∠AOD= ∠BOC,②∠COP= ∠BOP,③∠COE=∠ BOF 等. (2)∵OE ⊥AB,∴ ∠EOB=90°.∵∠ EOC= 50°,∴∠COB= ∠EOB- ∠EOC= 40°.∵OP 是∠BOC 的平分线,∴∠COP=21∠BOC=20°. ∵OF ⊥CD, ∴∠COF=90°,∴∠POF= ∠COF-∠COP=70°. 选择题1.C 由对顶角相等知∠AOD=∠BOC ,选项A 中说法正确;由对顶角相等知∠BOD=∠AOC .由EO ⊥CD 知∠AOE+∠AOC=90°,所以∠AOE+∠BOD=90°,选项B 中说法正确;由邻补角概念知∠AOD+∠BOD= 180°,选项D 中说法是正确的.只有选项C 中说法是错误的. 2.A 同一平面内,过一点有且只有一条直线垂直于已知直线. 3.B 点P 到直线l 的距离就是点P 到直线l 的垂线段PB 的长度。

鲁教版七年级下册数学-线段的垂直平分线素养提升练习(含解析)

鲁教版七年级下册数学-线段的垂直平分线素养提升练习(含解析)

4 线段的垂直平分线基础过关全练知识点1 线段垂直平分线的性质定理1.如图所示,AC垂直平分BD,若AB=3 cm,CD=5 cm,则四边形ABCD的周长是( )A.11 cmB.13 cmC.16 cmD.18 cm2.如图,在△ABC中,AB=AC,∠A=42°,AB的垂直平分线MN交AC于D点,连接BD,则∠DBC的度数是( )A.22°B.27°C.32°D.40°3.(2021山东济南期末)如图,∠ABC=90°,∠C=15°,线段AC的垂直平分线DE交AC 于D,交BC于E,CE=10 cm,则AB=( )A.4 cmB.5 cmC.6 cmD.不能确定4.(2022内蒙古鄂尔多斯中考)如图,在△ABC中,边BC的垂直平分线DE交AB于点D,连接DC,若AB=3.7,AC=2.3,则△ADC的周长是 .5.如图,在Rt△ABC中,∠C=90°,直线DE是线段AB的垂直平分线,交AC于点E,连接BE.(1)若∠A=35°,求∠CBE的度数;(2)若∠A=30°,△BCE的周长为15+53,求△ABC的面积.知识点2 线段垂直平分线的判定定理6.已知:C、D是线段AB外不重合的两点,AC=BC,AD=BD,点P在直线CD上.若AP=5,则BP的长为( )A.2.5B.5C.10D.257.(2023陕西西安高陵期末)如图,已知∠ACB=∠BDA=90°,BC与AD交于点E,AC=BD.求证:点E在线段CD的垂直平分线上.8.【一题多解】如图,在△ABC中,∠ACB=90°,D是BC延长线上一点,EH垂直平分BD,连接DE交AC于F,求证:点E在线段AF的垂直平分线上.知识点3 三角形三条边的垂直平分线的性质9.(2023河北石家庄赵县二模)A、B、C三地所在的位置如图所示,若想建立一个货物中转仓,使其到这三地的距离相等,则中转仓的位置应选在( )A.△ABC的三边垂直平分线的交点处B.△ABC的三边中线的交点处C.△ABC的三条角平分线的交点处D.△ABC的三边上的高所在直线的交点处能力提升全练10.(2023山东济南历下期末,10,★★☆)如图,在锐角三角形ABC中,直线l为边BC的垂直平分线,射线BP为∠ABC的平分线,且直线l与射线BP相交于点P.若∠A=64°,∠ACP=26°,则∠ABP的度数为( )A.30°B.32°C.34°D.36°11.(2023山东威海荣成十六校联盟期中,8,★★☆)如图,在△ABC中,∠BAC=80°,AB 边的垂直平分线交AB于点D,交BC于点E,AC边的垂直平分线交AC于点F,交BC 于点G,连接AE,AG,则∠EAG的度数为( )A.15°B.20°C.25°D.30°12.【新考法】(2022湖北宜昌中考,6,★★☆)如图,在△ABC中,分别以点B和点C为BC长为半径画弧,两弧相交于点M,N.作直线MN,交AC于点D,交BC于圆心,大于12点E,连接BD.若AB=7,AC=12,BC=6,则△ABD的周长为( )A.25B.22C.19D.1813.(2023浙江丽水中考,13,★★☆)如图,在△ABC中,边AC的垂直平分线交BC于点D,交AC于点E,∠B=∠ADB.若AB=4,则DC的长是 .14.(2023山东淄博张店期中,12,★★☆)如图,线段AB,BC的垂直平分线l1,l2相交于点O.若∠AOC=68°,则∠ABC= .15.(2022山东青岛胶州期中,14,★★☆)如图,在△ABC中,AB=AC=10,BC=12,点D 是边BC的中点,直线MN是线段AB的垂直平分线,点E是MN上的一个动点,则△BDE周长的最小值是 .16.【方程思想】(2022山东济南章丘期末,23,★★☆)如图,在△ABC中,∠C=90°,点P 在AC上运动,点D在AB上运动,PD始终与PA相等,线段BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断DE与PD的位置关系,并说明理由;(2)若AC=3,BC=4,PA=1,求线段DE的长.素养探究全练17.【推理能力】如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC于点E,l1与l2相交于点O,连接OB,OC.若△ADE的周长为12 cm,△OBC的周长为32 cm.(1)求线段BC的长;(2)连接OA,求线段OA的长;(3)若∠BAC=n°(n>90),求∠DAE的度数.(用含n的式子表示)答案全解全析基础过关全练1.C ∵AC 垂直平分BD,∴AD=AB=3 cm,BC=CD=5 cm,∴四边形ABCD 的周长=AD+AB+BC+CD=16 cm.故选C.2.B ∵AB=AC,∠A=42°,∴∠ABC=12(180°-∠A)=12(180°-42°)=69°,∵MN 垂直平分AB,∴AD=BD,∴∠ABD=∠A=42°,∴∠DBC=∠ABC-∠ABD=69°-42°=27°.故选B.3.B ∵DE 垂直平分AC,∴AE=CE=10 cm,∴∠EAC=∠C=15°,∴∠AEB=30°,∵∠ABC=90°,∴AB=12AE=5 cm,故选B.4.答案 6解析 ∵边BC 的垂直平分线DE 交AB 于点D,∴BD=CD,∵AB=3.7,AC=2.3,∴△ADC 的周长为AD+CD+AC=AB+AC=6,故答案为6.5.解析 (1)∵∠C=90°,∠A=35°,∴∠ABC=90°-35°=55°,∵直线DE 是线段AB 的垂直平分线,∴EA=EB,∴∠EBA=∠A=35°,∴∠CBE=55°-35°=20°.(2)∵∠C=90°,∠A=30°,∴∠ABC=60°,∵EB=EA,∴∠ABE=∠A=30°,∴∠CBE=30°,∴BE=2CE,设CE=x,则BE=2x,∴BC=BE 2−CE 2=3x,∴3x +3x =15+53,∴x =5,∴BC =53,EA=EB=10,∴AC=CE+EA=15,∴△ABC 的面积=12×CA ×BC =7532.6.B ∵C 、D 是线段AB 外不重合的两点,AC=BC,AD=BD,∴直线CD 是线段AB 的垂直平分线,∵点P 在直线CD 上,AP=5,∴BP=AP=5,故选B.7.证明 ∵∠ACB=∠BDA=90°,AC=BD,且AB=BA,∴Rt△ACB≌Rt△BDA(HL),∴AD=BC,∠ABC=∠BAD,∴AE=BE,∴EC=ED,∴点E在线段CD的垂直平分线上.8.证明 证法一:∵EH垂直平分BD,∴BE=DE,EH⊥BD,∴∠BEH=∠DEH,∵∠ACB=90°,∴AC⊥BD,∴EH∥AC,∴∠BEH=∠A,∠DEH=∠AFE,∴∠A=∠AFE,∴AE=EF,∴点E在线段AF的垂直平分线上.证法二:∵∠ACB=90°,∴∠A+∠B=90°,∠D+∠DFC=90°,∵EH垂直平分BD,∴EB=ED,∴∠B=∠D,∴∠A=∠DFC,∵∠DFC=∠AFE,∴∠A=∠AFE,∴EA=EF,∴点E在线段AF的垂直平分线上.9.A ∵中转仓到A、B、C三地的距离相等,∴中转仓的位置应选在△ABC的三边垂直平分线的交点处,故选A.能力提升全练10.A ∵直线l为边BC的垂直平分线,∴PB=PC,∴∠PBC=∠PCB,∵BP为∠ABC的平分线,∴∠ABP=∠CBP,∴∠PBC=∠PCB=∠ABP,∵∠ABC+∠ACB+∠A=180°,∴3∠ABP+∠A+∠ACP=180°,∵∠A=64°,∠ACP=26°,∴∠ABP=30°.故选A.11.B ∵AB边的垂直平分线交BC于点E,AC边的垂直平分线交BC于点G,∴AG=CG,AE=BE,∴∠C=∠CAG,∠B=∠BAE,∴∠BAE+∠CAG=∠B+∠C=180°-∠BAC=100°,∴∠EAG=∠BAE+∠CAG-∠BAC=100°-80°=20°,故选B.12.C 由题意可得,MN垂直平分BC,∴DB=DC,∴△ABD的周长=AB+BD+AD=AB+DC+AD=AB+AC,∵AB=7,AC=12,∴AB+AC=19,∴△ABD的周长是19,故选C.13.答案 4解析 ∵∠B=∠ADB,AB=4,∴AD=AB=4,∵直线DE是边AC的垂直平分线,∴DC=AD=4,故答案为4.14.答案 34°解析 连接OB,AC,如图所示,∵线段AB,BC的垂直平分线l1,l2相交于点O,∴OA=OB,OC=OB,∴∠OBA=∠OAB,∠OBC=∠OCB,∵∠AOC=68°,∴∠OAC+∠OCA=180°-68°=112°,∵∠OAC+∠OCA+∠OAB+∠OBA+∠OBC+∠OCB=180°,∴112°+2∠OBA+2∠OBC=180°,∴2(∠OBA+∠OBC)=68°,∴∠OBA+∠OBC=34°,即∠ABC=34°.15.答案 14解析 如图,连接AD,AE,∵直线MN是线段AB的垂直平分线,∴AE=BE,∵AB=AC,D是BC的中点,∴AD⊥BC,BD=CD=6,∴△BDE的周长=BD+DE+BE=BD+DE+AE≥BD+AD,∴当A、E、D 三点共线时,△BDE的周长最小,∵∠ADB=90°,AB=10,BD=6,∴AD=AB2−BD2=8,∴△BDE周长的最小值为6+8=14,故答案为14.16.解析 (1)DE⊥DP.理由:∵PD=PA,∴∠A=∠PDA,∵直线EF是线段BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠PDA+∠EDB=90°,∴∠PDE=180°-90°=90°,∴DE⊥DP.(2)如图,连接PE,CP=AC-AP=2,PD=PA=1,设DE=x,则EB=ED=x,∴CE=4-x,∵∠C=∠PDE=90°,∴PC2+CE2=PE2=PD2+DE2,即22+(4-x)2=12+x 2,解得x=198,故DE=198.素养探究全练17.解析 (1)∵l 1是AB 边的垂直平分线,∴DA=DB,∵l 2是AC 边的垂直平分线,∴EA=EC,∵△ADE 的周长为12 cm,∴DA+DE+EA=12 cm,∴BC=BD+DE+EC=DA+DE+EA=12 cm.(2)如图,∵l 1是AB 边的垂直平分线,∴OA=OB,∵l 2是AC 边的垂直平分线,∴OA=OC,∵△OBC 的周长为32 cm,∴OB+OC+BC=32 cm,∴OA=OB=OC=32−122=10(cm).(3)∵∠BAC=n°,∴∠ABC+∠ACB=(180-n)°,∵DA=DB,EA=EC,∴∠BAD=∠ABC,∠EAC=∠ACB,∴∠DAE=∠BAC-∠BAD-∠EAC=n°-(180°-n°)=2n°-180°.。

垂线(巩固篇)(专项练习)-七年级数学下册基础知识专项讲练(人教版)

垂线(巩固篇)(专项练习)-七年级数学下册基础知识专项讲练(人教版)

专题5.6垂线(巩固篇)(专项练习)一、单选题1.两条直线相交所成的四个角中,下列条件中能判定两条直线垂直的是().A.有两个角相等B.有两对角相等C.有三个角相等D.有四对邻补角2.如图,经过直线l外一点A作l的垂线,能画出()A.4条B.3条C.2条D.1条3.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,正确的是()A.B.C.D.4.如图,点A在直线l1上,点B,C在直线l2上,AB⊥l2,AC⊥l1,AB=4,BC=3,则下列说法正确的是()A.点A到直线l2的距离等于4B.点C到直线l1的距离等于4C.点C到AB的距离等于4D.点B到AC的距离等于35.如图,在△ABC中,∠C=90︒,D是边BC上一点,且∠ADC=60︒,那么下列说法中错误的是()A.直线AD与直线BC的夹角为60︒B.直线AC与直线BC的夹角为90︒C .线段CD 的长是点D 到直线AC 的距离D .线段AB 的长是点B 到直线AD 的距离6.如图,已知直线AB l ⊥,BC l ⊥,则直线AB 与BC 重合,理由是()A .垂线段最短B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .直线外一点到这条直线的垂线段的长度,叫做点到直线的距离D .在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条7.如图, ,, 5, 3AD BD BC CD AB BC ⊥⊥==,则BD 的长度可能是()A .3B .5C .3或5D .4.58.如图所示,点A 到BC 所在的直线的距离是指图中线段()的长度.A .ACB .AFC .BD D .CE9.直线AB ,CD 相交于点O .OE ,OF ,OG 分别平分AOC ∠,BOC ∠,AOD ∠.下列说法正确的是()A .OE ,OF 在同一直线上B .OE ,OG 在同一直线上C .OG OF⊥D .OE OF ⊥10.如图,直线AB 、CD 相交于点O ,OE ⊥AB ,O 为垂足,如果∠EOD =38°,下列结论不正确的是()A .∠EOB =90°B .∠DOB 是∠AOE 的补角C .∠AOC =52°D .∠AOC 与∠EOD 互为余角二、填空题11.如果∠α,∠β两边分别垂直,其中∠α比∠β的2倍少30°,那么∠α=_____.12.如图,直线AB ,CD 相交于点O ,EO ⊥AB ,垂足为O ,∠AOC :∠COE =2:3,则∠AOD =______.13.如图,直线AB 、CD 相交于点O ,OE 平分BOC ∠,OF OE ⊥于点O .若80AOD ∠=︒,则AOF ∠等于____________.14.点O 为线段AB 上一点,不与点A 、B 重合,OC ⊥OD 于点O ,若∠AOC =35°,则∠BOD 的度数为___.15.如图,点C ,O ,D 在一条直线上,OA OB ⊥,OE 平分AOC BOC ∠∠,比BOD ∠大70︒,COE ∠的度数为________.16.已知点O 是直线AB 上一点,50AOC ∠=︒,OD 平分AOC ∠,90BOE ∠=︒,请写出下列正确结论的序号_____________①130BOC ∠=︒②25AOD ∠=︒③155BOD ∠=︒④45COE ∠=︒17.如图,直线AB ,CD 相交于点O ,OE CD ⊥,垂足为点O .当直线AB 绕着点O 在DOE ∠内部转动,OF 是AOC ∠的角平分线,若BOE α∠=,则AOF β∠=,则β关于α的函数关系式为______.18.100条直线两两相交于一点,则共有对顶角(不含平角)_______对,邻补角________对.三、解答题19.如图,A 、B 、C 是平面内三点.(1)按要求作图:①作射线BC ,过点B 作直线l ,使A 、C 两点在直线l 两旁;②点P 为直线l 上任意一点,点Q 为直线BC 上任意一点,连接线段AP 、PQ ;(2)在(1)所作图形中,若点A 到直线l 的距离为2,点A 到直线BC 的距离为5,点A 、B 之间的距离为8,点A 、C 之间的距离为6,则AP +PQ 的最小值为__________,依据是__________20.如图,直线AB 、CD 相交于点O ,OD 平分AOF ∠,EO OD ⊥,55EOA ∠=︒,求BOF ∠的度数.21.如图,已知OB ,OC ,OD 是AOE ∠内三条射线,OB 平分AOE ∠,OD 平分COE ∠.(1)若70AOB ∠=︒,20DOE ∠=︒,求BOC ∠的度数.(2)若136AOE ∠=︒,AO CO ⊥,求BOD ∠的度数.(3)若20DOE ∠=︒,220AOE BOD ∠+∠=︒,求BOD ∠的度数.22.如图,O 为直线AB 上一点,F 为射线OC 上一点,OE ⊥AB .(1)用量角器和直角三角尺画∠AOC 的平分线OD ,画FG ⊥OC ,FG 交AB 于点G ;(2)在(1)的条件下,比较OF 与OG 的大小,并说明理由;(3)在(1)的条件下,若∠BOC =40°,求∠AOD 与∠DOE 的度数.23.如图,用三张卡片拼成如下图①,图②所示的两个四边形,其周长分别为1C 、2C .(1)请你根据所学知识解释:在直角三角形卡片中,“n m <”的理由是_________.(填写正确选项的字母)A .两点之间线段最短;B .过一点有且只有一条直线与已知直线垂直;C .垂线段最短;D .两点确定一条直线.(2)分别计算1C 、2C (用含m 、n 的代数式表示);(3)比较112C 与212C 的大小,并说明理由.24.点O 为直线l 上一点,射线OA OB 、均与直线l 重合,如图1所示,过点O 作射线OC 和射线OD ,使得100BOC ∠=︒,90COD ∠=︒,作AOC ∠的平分线OM .(1)求AOC ∠与MOD ∠的度数;(2)作射线OP ,使得90BOP AOM ∠+∠=︒,请在图2中画出图形,并求出COP ∠的度数;(3)如图3,将射线OB 从图1位置开始,绕点O 以每秒5︒的速度逆时针旋转一周,作COD ∠的平分线ON ,当20MON ∠=︒时,求旋转的时间.参考答案1.C【分析】两直线相交所成的四个角中,有一个角为90°,则这两条直线互相垂直,根据的定义判断即可.【详解】解:A、两条直线相交成四个角,如果有两个角相等,是两个对顶角相等,那么这两条直线不一定垂直,故本选项错误;B、两条直线相交成四个角,如果有两对角相等,是两对对顶角相等,那么这两条直线不一定垂直,故本选项错误;C、两条直线相交成四个角,则这四个角中有2对对顶角.如果三个角相等,则这四个角相等,都是直角,所以这两条直线垂直.故正确;D、两条直线相交成四个角,如果有四对邻补角,是四对普通的邻补角,那么这两条直线不一定垂直,故本选项错误;故选:C.【点拨】本题主要考查了垂线的定义,对顶角的定义,邻补角的定义,是基础题,熟记概念是解题的关键.2.D【分析】平面内经过一点有且只有一条直线垂直于已知直线,据此可得.【详解】解:经过直线l外一点画l的垂线,能画出1条垂线,故选D.【点拨】本题主要考查垂线,解题的关键是掌握在平面内,过一点有且只有一条直线与已知直线垂直.3.A【分析】满足两个条件:①经过点B.②垂直AC;由此即可判断.【详解】解:根据垂线段的定义可知,图①线段BE,是点B作线段AC所在直线的垂线段,故选A.【点拨】本题考查作图-复制作图,垂线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.A【分析】根据点到直线的距离的定义:直线外一点到这条直线的垂线段的长度,即可得到答案.【详解】解:点A到直线l2的距离为AB的长,等于4,故A正确;点C到直线l1的距离为AC的长,大于4,故B错误;点C到AB的距离为BC的长,等于3,故C错误;同理,点B 到AC 的距离也不是3,故D 错误,故选:A【点拨】本题考查点到直线的距离,掌握定义是解题的关键.5.D【分析】根据已知角即可判断A 、B ;根据点到直线的距离的定义即可判断C 、D .【详解】解:A 、∵∠CDA =60︒,∴直线AD 与直线BC 的夹角是60︒,正确,故不符合题意;B 、∵∠ACD =90︒,∴直线AC 与直线BC 的夹角是90︒,正确,故不符合题意;C 、∵∠ACD =90︒,∴DC ⊥AC ,∴线段CD 的长是点D 到直线AC 的距离,正确,故不符合题意;D 、∵BD 和AD 不垂直,∴线段AB 的长不是点B 到直线AD 的距离,错误,故本选项符合题意;故选:D .【点拨】本题考查了点到直线的距离,以及直线与直线的夹角,注意:点到直线的距离是指该点到直线的垂线段的长.6.B【分析】直接利用垂线的性质进而分析得到答案.【详解】∵AB l ⊥,BC l ⊥,垂足为B ,∴AB 和BC 重合,理由是:在同一平面内,过一点有且只有一条直线与已知直线垂直.故选:B .【点拨】本题考查了同一平面内直线的垂直关系及垂线段的知识点,解题的关键是熟悉对垂线段定义的理解.7.D【分析】根据垂线段最短可得3<BD <5.【详解】解:∵AD ⊥BD ,BC ⊥CD ,AB=5,BC=3,∴BC <BD <AB ,即3<BD <5.故选:D .【点拨】此题主要考查了垂线段的性质,关键是掌握垂线段最短.8.B【分析】根据点到直线的距离是垂线段的长度,可得答案.【详解】点A 到线段BC 所在直线的距离是线段AF 的长度,故选B .【点拨】本题考查了点到直线的距离,利用点到直线的距离的定义是解题关键.9.D【分析】根据角平分线的性质得到12COE AOC ∠=∠,12COF BOC ∠=∠,又因为AOC ∠与BOC ∠是互为补角,所以90COE COF ∠+∠=︒,所以OE OF ⊥,所以A 错误,D 正确;因为12AOG AOD Ð=Ð,且AOD ∠与BOC ∠互为对顶角,所以AOG BOF ∠=∠,所以OF 与OG 共线,所以OE OG ⊥,所以B ,C 均错误.【详解】解:如图,∵OE ,OF 分别是AOC ∠,BOC ∠的平分线,∴12COE AOE AOC ∠=∠=∠,12COF BOF BOC Ð=Ð=Ð,∵OG 是AOD ∠的平分线,∴12AOG DOG AOD Ð=Ð=Ð,∴1180902COE COFAOF BOF ����窗=,∴90EOF ∠=︒,∵AOC BOD ∠=∠,∴AOG BOF ∠=∠,∴90EOG AOG AOE Ð=Ð+Ð=°,∴180EOG EOF ∠+∠=︒,∴OF 与OG 共线,∴射线OE ,OF 互相垂直,故D 正确,A 错误;射线OF 与OG 互相垂直,故BC 错误.故选:D .【点拨】本题考查了垂线,对顶角,角平分线的定义,正确的识别图形是解题的关键.10.B【分析】根据垂直的定义可知90EOB ∠=︒,故A 正确;根据互补定义,由图知DOB ∠和AOD ∠互补,故B 错误;根据OE ⊥AB ,∠EOD =38°,结合对顶角定义,可得52AOC BOD ∠=∠=︒,故C 正确;根据互余定义和对顶角定义可知AOC BOD ∠=∠,90BOD EOD ∠+∠=︒即可得到∠AOC 与∠EOD 互为余角,故D 正确,从而得到结论.【详解】解:A 、由于OE ⊥AB ,则90EOB ∠=︒,故该选项不符合题意;B 、由于A O B 、、三点共线,则180AOD BOD ∠+∠=︒,即∠DOB 是∠AOE 的补角错误,故该选项符合题意;C 、由于OE ⊥AB ,则90EOB ∠=︒,再结合∠EOD =38°,根据对顶角相等可知52AOC BOD ∠=∠=︒,故该选项不符合题意;D 、由于OE ⊥AB ,则90EOB ∠=︒,从而90BOD EOD ∠+∠=︒,根据对顶角相等AOC BOD ∠=∠可得90AOC EOD ∠+∠=︒,∠AOC 与∠EOD 互为余角,故该选项不符合题意;故选:B .【点拨】本题考查垂线的定义、互余的定义、互补的定义和对顶角相等的性质等知识点,熟记概念,准确识图并找到各个相关角度之间的数量关系是解决问题的关键.11.30︒或110︒【分析】分两种情况,当αβ∠=∠时,当180αβ∠+∠=︒,然后进行计算即可解答,【详解】解:设∠β为x ︒,则()230x α∠=-︒,分两种情况:当αβ∠=∠时,如图:230x x ∴-=,解得:30x =,30α∴∠=︒,当180αβ∠+∠=︒,如图:230180x x ∴-+=,解得:70x =,110α∴∠=︒综上所述:30α∠=︒或110α∠=︒.故答案为:30︒或110︒.【点拨】本题考查了垂线,角的计算,根据题意画出图形,分两种情况讨论是解题的关键.12.144°【分析】直接利用垂直的定义得出∠AOE =90°,进而利用∠AOC :∠COE =2:3,得出∠AOC 的度数,进而得出答案.【详解】解:∵EO ⊥AB ,∴∠AOE =90°,∵∠AOC :∠COE =2:3,∴设∠AOC =2x ,∠COE =3x ,则3x +2x =90°,解得:x =18°,故∠AOC =36°,则∠AOD =180°-36°=144°.故答案为:144°.【点拨】此题主要考查了垂直的定义以及邻补角,正确得出∠AOC 度数是解题关键.13.50︒##50度【分析】根据对顶角相等可得80BOC AOD =∠=︒∠,再根据角平分线的性质得1402BOE BOC ==︒∠∠,最后根据平角的性质求解即可.【详解】解:∵80AOD ∠=︒,∴80BOC AOD =∠=︒∠.∵OE 平分∠BOC ,∴1402BOE BOC ==︒∠∠.∵OF ⊥OE ,∴90EOF ∠=︒,∴180180409050AOF BOE EOF =︒--=︒-︒-︒=︒∠∠∠.故答案为:50︒.【点拨】本题考查了角的度数问题、垂直定义以及角平分线的定义,掌握对顶角相等、平角的定义是解题的关键.14.55°或125°【分析】分OC ,OD 在AB 的同侧和异侧两种情况求解.【详解】当OC 和OD 在AB 同一侧时,如图:∵OC ⊥OD ,∴∠COD =90°,∴∠AOC +∠BOD =90°,∵∠AOC =35°,∴∠BOD =90°﹣∠AOC =90°﹣35°=55°,当OC 和OD 在AB 同异侧时,如图:∵OC ⊥OD ,∴∠COD =90°,∵∠AOC =35°,∴∠AOD =55°,∴∠BOD =180°﹣∠AOD =180°﹣55°=125°.∴∠BOD 的度数为55°或125°.故答案为:55°或125°.【点拨】本题考查了垂直的定义即两直线相交,交成的四个角中有一个是直角,理解定义,学会分类是解题的关键.15.72.5︒##72.5度【分析】根据BOC ∠比BOD ∠大70︒,BOC ∠和BOD ∠互补,即可求出55BOD ∠=︒,进而由垂直性质可求出35AOD ∠=︒,再由角平分线性质即可得出答案.【详解】解:∵BOC ∠比BOD ∠70︒,∴设BOD x ∠=,则70BOC x ∠=+︒,∵BOC ∠+180BOD ∠=︒,∴()70180x x ++︒=︒,∴55x =︒,∴55BOD ∠=︒,∵OA OB ⊥,∴90AOB ∠=︒,∴9035AOD BOD ∠=︒-∠=︒,∴180145AOC AOD ∠=︒-∠=︒,∵OE 平分AOC ∠,∴172.52COE AOC ∠=∠=︒.故答案为:72.5︒.【点拨】本题考查了垂直的性质,角平分线的性质以及角的运算,掌握以上知识是解题的关键.16.①②③【分析】根据图形的特点及角平分线的概念依次求出各角度即可解答.【详解】解:∵50AOC ∠=︒,∴∠BOC =180°-AOC ∠=130°,则①正确∵OD 平分AOC ∠,∴∠AOD =1252AOC ∠=︒,则②正确∴∠BOD =180°-∠AOD =155°,则③正确∵90BOE ∠=︒∴∠COE =90︒-AOC ∠=40°,则④错误.故答案为:①②③.【点拨】本题主要考查角平分线、垂直、邻补角的定义以及角的和差等知识点,熟知邻补角的定义及角平分线的定义成为解答本题的关键.17.()1450902β=-α+︒︒<α<︒【分析】先由角平分线定义得:22AOC AOF ∠=∠=β,由垂直定义和角的和差90BOC ∠=︒+α,再根据180AOC BOC ∠+∠=︒,得到α与β的关系,进而得解.【详解】∵OF 是AOC ∠的角平分线,AOF β∠=,∴22AOC AOF ∠=∠=β.∵OE CD ⊥,∴90COE ∠=︒,∵BOE α∠=,∴90BOC COE BOE ∠=∠+∠=︒+α.∵180AOC BOC ∠+∠=︒,∴290180β+︒+α=︒,∴()1450902β=-α+︒︒<α<︒,故答案是()1450902β=-α+︒︒<α<︒.【点拨】本题主要考查垂直的定义,角平分线的定义,补角的定义,由180AOC BOC ∠+∠=︒,90BOC ∠=︒+α,推导出β关于α的函数关系式是解本题的关键.18.990019800【详解】100条直线两两相交,最多有100(1001)49502-=个交点,每个交点处有两组对顶角,4对邻补角,故100条直线两两相交于一点共有4950×2=9900(对)对顶角,有4950×4=19800(对)邻补角,故答案为9900,19800.19.(1)①见解析;②见解析(2)5,垂线段最短【分析】(1)根据题意作出图形即可;(2)根据线段的性质即可得到结论.(1)解:①如图1所示,射线BC ,直线l 即为所求;②如图1所示,线段AP ,PQ 即为所求;;(2)解:过A 作AQ ⊥BC 交直线l 于P ,则此时,AP +PQ 的值最小,∵点A 到直线BC 的距离为5,∴AP +PQ 的最小值为5,依据是垂线段最短,故答案为:5,垂线段最短.【点拨】本题考查了点到直线的距离,直线,射线,线段的定义,正确的作出图形是解题的关键.20.110BOF ∠=︒【分析】依据EO OD ⊥,55EOA ∠=︒,可得905535AOD ∠=︒-︒=︒,再根据OD 平分AOF ∠,即可得出270AOF AOD ∠=∠=︒,依据平角定义得到BOF ∠.【详解】解:∵EO OD ⊥,∴90EOD ∠=︒.∵55EOA ∠=︒.∴1905535EOD EOA ∠=∠-∠=︒-︒=︒.∵OD 平分AOF ∠.∴11352AOF ∠=∠=︒.∴70AOF ∠=︒.∵180BOA BOF AOF ∠=∠+∠=︒∴180********BOF AOF ∠=︒-∠=︒-︒=︒.【点拨】本题主要考查了垂线的意义,角平分线的定义以及余角的综合运用,正确的识别图形是解题的关键.21.(1)30︒(2)45︒(3)60︒【分析】对于(1),由角平分线的定义求出∠BOE 和COE ∠,再根据=BOC BOE COE ∠∠-∠即可求解;对于(2),先求出COE ∠,再根据角平分线的定义求出DOE ∠和∠BOE ,然后根据=-BOD BOE DOE ∠∠∠即可求解;对于(3),由角平分线的定义得2AOE BOE ∠=∠,结合已知条件可得2220BOE BOD ∠+∠=︒,20BOE BOD ∠-∠=︒,即2240BOE BOD ∠-∠=︒,进而得出3180∠=︒BOD ,可得答案.【详解】(1)∵OB 平分AOE ∠,OD 平分COE ∠,∴70BOE AOB ∠=∠=︒,240COE DOE ∠=∠=︒,∴=704030BOC BOE COE ∠∠-∠=︒-︒=︒;(2)∵AO CO ⊥,∴=90AOC ∠︒.∵136AOE ∠=︒,∴1369046COE AOE AOC ∠=∠-∠=︒-︒=︒.∵OB 平分AOE ∠,OD 平分COE ∠,∴1682BOE AOE ∠=∠=︒,1232COE ∠=∠=︒,∴=-682345BOD BOE DOE ∠∠∠=︒-︒=︒;(3)∵OB 平分AOE ∠,∴2AOE BOE ∠=∠.∵220AOE BOD ∠+∠=︒,∴2220BOE BOD ∠+∠=︒.∵BOE BOD DOE ∠-∠=∠,∴20BOE BOD ∠-∠=︒,∴2240BOE BOD ∠-∠=︒,∴3180∠=︒BOD ,∴60BOD ∠=︒.【点拨】本题主要考查了角的和差,关键是由角平分线定义得出相关等式.22.(1)见解析;(2)OF <OG ;理由见解析;(3)∠AOD =70°,∠DOE =20°.【分析】(1)使用量角器量出AOC ∠的度数,再用直角三角尺画它的平分线,使用直角三角尺画FG OC ⊥于G ;(2)根据垂线段最短即可确定OF 和OG 的大小;(3)先利用邻补角计算出180140AOC BOC ∠=︒-∠=︒,再根据角平分线定义得70AOD ∠=°,然后利用角互余计算DOE ∠的度数.【详解】(1)先使用量角器量出AOC ∠的度数,再用直角三角尺画它的平分线;使用直角三角尺画FG OC ⊥于G ,如下图所示,OD 、FG 即为所画(2)OF OG <.理由如下:FG OC⊥ OF ∴是点O 到FG 的距离由直线外一点与直线上各点的连线中,垂线段最短可知,OF OG <;(3)40BOC ︒∠= 180140AOC BOC ∴∠=︒-∠=︒∵OD 是AOC ∠的平分线∴1702AOD AOC ∠=∠=︒∵OE AB⊥∴90AOE ∠=︒∴20DOE AOE AOD ∠=∠-∠=︒故AOD ∠的度数为70︒,DOE ∠的度数为20︒.【点拨】本题考查了角平分线和垂线的画法、垂线段最短、角互余等知识点,掌握角平分线的定义是解题关键.23.(1)C(2)124C m n =+,242C m n =+(3)121122C C <,理由见解析【分析】(1)根据垂线段最短解答;(2)根据周长公式计算即可;(3)利用作差法比较大小.(1)解:“n m <”的理由是垂线段最短,故选:C ;(2)解:1224,42C m n C m n =+=+;(3)解:()()12111124422222C C m n m n n m -=+-+=-;∵n <m ,∴n-m <0,∴1211022C C -<,∴121122C C <.【点拨】此题考查了垂线的性质,计算图形的周长,利用作差法比较两个式子的大小,整式加减的应用,正确掌握垂线的性质及作差法比较大小的方法是解题的关键.24.(1)80AOC ∠=︒,50MOD ∠=︒(2)50︒或150︒(3)6秒或62秒【分析】(1)根据180AOB ∠=︒,100BOC ∠=︒,即可得出AOC ∠的度数,根据角平分线的定义得出1402COM AOC ∠=∠=︒,然后根据90COD ∠=︒得出MOD ∠的度数;(2)根据题意得出BOP ∠的度数,然后分两种情况进行讨论:①当射线OP 在BOC ∠内部时;②当射线OP 在BOC ∠外部时;分别进行计算即可;(3)根据ON 平分COD ∠得出45CON ∠=︒,根据题意画出图形,计算∠BOE 的角度,然后计算时间即可.【详解】(1)解:由题意可知,180AOB ∠=︒,∵100BOC ∠=︒,∴80AOC AOB BOC ∠=-∠=︒,∵OM 平分AOC ∠,∴1402COM AOC ∠=∠=︒,∴50MOD COD COM ∠=∠-∠=︒;(2)由(1)知,40AOM AOC COM ∠=∠-∠=︒,∴9050BOP AOM ∠=︒-∠=︒,①当射线OP 在BOC ∠内部时,如图2(1),50COP BOC BOP ∠=∠-∠=︒;②当射线OP 在BOC ∠外部时,如图2(2),150COP BOC BOP ∠=∠+∠=︒,综上所述,COP ∠的度数为50︒或150︒;(3)∵ON 平分COD ∠,∴1452CON COD ∠=∠=︒,①如图3,25COM CON MON ∠=∠-∠=︒,∵OM 平分AOC ∠,∴250AOC COM ∠=∠=︒,∴18030BOE AOC BOC ∠=︒-∠-∠=︒,∴旋转的时间3056t =︒÷︒=(秒);②如图3(1),此时,65COM CON MON ∠=∠+∠︒,∵OM 平分AOC ∠,∴2130AOC COM ∠=∠=︒,∴18013050COE ∠=︒-︒=︒,∴1005050BOE ∠=︒-︒=︒,∴旋转的时间(36050)562=︒-︒÷︒=(秒);综上所述,旋转的时间为6秒或62秒.【点拨】本题主要考查角度的计算,角平分线的定义等内容;第(2)问进行合适的分类讨论是解题的关键;第(3)问,搞清楚在射线OB 旋转的过程中,OM 和ON 的相对位置在不断的变化,以此进行分类画图.。

人教版七年级下册 垂直线与水平线 提高题

人教版七年级下册 垂直线与水平线 提高题

人教版七年级下册垂直线与水平线提高

题目1
在一个矩形ABCD中,有一条线段EF与AB平行且垂直于BC,EF的长度为12厘米。

已知AB=20厘米,BC=15厘米,求EF
的长度。

解答1
根据题意可知,线段EF与AB平行,所以EF也与CD平行。

又因为EF垂直于BC,所以EF也与BC垂直。

根据垂直线的特性,可以得到以下关系:
1. AE = BC = 15厘米
2. AB = EF + AE
将已知条件带入上述关系式,可以得出EF的长度:
EF = AB - AE = AB - BC = 20厘米 - 15厘米 = 5厘米
所以,EF的长度为5厘米。

题目2
已知矩形EFGH的边长分别为8厘米和12厘米,线段IJK与GH垂直且平行于EF。

求线段IJK的长度。

解答2
根据题意可知,线段IJK与GH垂直,所以IJK也与EF垂直。

又因为IJK平行于EF,所以IJK也与GH平行。

根据垂直线的特性,可以得到以下关系:
1. HI = GH = 8厘米
2. GJ = EF = 12厘米
根据平行线的特性,可以得到以下关系:
1. HJ = GI
将已知条件带入上述关系式,可以得出线段IJK的长度:
IJK = HJ + GJ = HI + GI = GH + EF = 8厘米 + 12厘米 = 20厘米
所以,线段IJK的长度为20厘米。

以上是关于人教版七年级下册垂直线与水平线的提高题的解答。

希望能对你有所帮助!如有其他问题,请随时提问。

青岛版七年级下册数学-垂直素养提升练习(含解析)

青岛版七年级下册数学-垂直素养提升练习(含解析)

第8章 角8.5 垂直基础过关全练知识点1 垂直的定义与表示1.有下列几种说法:①两条直线相交所成的四个角中有一个是直角;②两条直线相交所成的四个角相等;③两条直线相交所成的四个角中有一组邻补角相等;④两条直线相交得到的对顶角互补.其中能得到两条直线互相垂直的是( )A.①③B.①②③C.②③④D.①②③④2.【跨学科·物理】(2022山东威海乳山一模)“玉兔”在月球表面行走的动力主要来自太阳光能,要使接收太阳光能最多,需使光线垂直照射在太阳光板上.某一时刻太阳光线的照射角度如图所示,要使得此时接收的光能最多,那么太阳光板绕支点A逆时针旋转的最小角度为( )A.44°B.46°C.36°D.54°3.【新独家原创】如图,直线AB、CD相交于点O,OM⊥AB.(1)若OC⊥ON,求证:∠1=∠2.(2)若∠1=1∠AOC,求∠DOM的度数.2知识点2 垂线的画法4.【教材变式·P22T1】在下列各图中,用三角尺分别过点C画线段AB的垂线.知识点3 垂线的性质及其应用5.(2022山东潍坊昌乐北大公学月考)给出下列说法:①有公共顶点且相等的角是对顶角;②直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离;③两点之间直线最短;④同一平面内,经过一点有且只有一条直线与已知直线垂直.其中正确的个数为( )A.1B.2C.3D.46.如图所示,码头、火车站分别位于A、B两点,直线a和b分别表示铁路与河流.请根据下列问题画图,并说明理由.(1)从火车站B到码头A怎样走最近?(2)从码头A到铁路a怎样走最近?(3)从火车站B到河流b怎样走最近?能力提升全练7.【山东潍坊新题型·多选题】(2023山东潍坊安丘期中,9,★☆☆)如图,点C、O、B在同一条直线上,∠AOB=90°,∠1=∠3,则下列结论正确的是( )A.∠AOC=90° B.OD⊥OEC.∠1=∠4 D.∠2=∠48.【跨学科·物理】(2022山东威海中考,5,★☆☆)图1是光的反射规律示意图.其中,PO是入射光线,OQ是反射光线,法线KO⊥MN,∠POK 是入射角,∠KOQ是反射角,∠KOQ=∠POK.图2中,光线自点P射入,经镜面EF反射后经过的点是( )A.A点B.B点C.C点D.D点9.【跨学科·体育与健康】(2022山东菏泽牡丹月考,15,★☆☆)在体育课上某同学跳远的情况如图所示,直线l表示起跳线,经测量,PB=3.3米,PC=3.1米,PD=3.5米,且PC⊥l,则该同学的立定跳远成绩是 米.10.(2023山东东营月考,24,★★☆)如图,直线AB、CD相交于点O,已知∠AOC=80°,射线OE把∠BOD分成两个角,且∠BOE∶∠EOD=3∶5.(1)求∠EOB的度数.(2)过点O作射线OF⊥OE,求∠BOF的度数.素养探究全练11.【几何直观】(2022浙江金华东阳吴宁三中月考)如图1,点A,O,B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒4°的速度转动,同时射线OB绕点O沿逆时针方向以每秒6°的速度转动,直线MN保持不动,如图2,设转动时间为t s(0≤t≤60).(1)当t=3时,求∠AOB的度数.(2)在转动过程中,当∠AOB第二次达到80°时,求t的值.(3)在转动过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请求出t的值;如果不存在,请说明理由.答案全解全析基础过关全练1.D ①两条直线相交所成的四个角中有一个是直角,能得到这两条直线互相垂直;②两条直线相交所成的四个角相等,则每个角为90°,所以两条直线互相垂直;③两条直线相交所成的四个角中有一组邻补角相等,则这两个角都是90°,所以这两条直线互相垂直;④两条直线相交得到的对顶角互补,则这对对顶角的大小为90°,所以这两条直线互相垂直.故选D.2.A 太阳光板绕支点A逆时针旋转的最小角度为134°-90°=44°.故选A.3.解析 (1)证明:∵OM⊥AB,∴∠AOM=∠1+∠AOC=90°,∵OC⊥ON,∴∠CON=∠2+∠AOC=90°,∴∠1=∠2(同角的余角相等).(2)∵OM⊥AB,∴∠AOM=∠BOM=90°,∠AOC,∠1+∠AOC=90°,∵∠1=12∠AOM=30°,∴∠1=13∴∠AOC=∠AOM-∠1=90°-30°=60°,∴∠BOD=∠AOC=60°,∴∠DOM=∠BOM+∠BOD=90°+60°=150°.4.解析 如图所示.5.A 有公共顶点且相等的角不一定是对顶角,故①错误;直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,故②错误;两点之间线段最短,故③错误;④正确.故选A.6.解析 (1)连接AB,从火车站B到码头A沿线段AB走最近.理由:两点之间线段最短.(2)过A作AC⊥直线a于点C,从码头A到铁路a沿垂线段AC走最近.理由:垂线段最短.(3)过B作BD⊥直线b于点D,从火车站B到河流b沿垂线段BD走最近.理由:垂线段最短.能力提升全练7.ABD ∵∠AOB=90°,∴∠AOC=180°-90°=90°,故A中结论正确,符合题意;∵∠1+∠2=90°,∠1=∠3,∴∠2+∠3=90°,∴∠DOE=90°,∠1+∠4=90°,∴OD⊥OE,故B中结论正确,符合题意,C 中结论不正确,不符合题意;∵∠3+∠4=90°,∠2+∠3=90°,∴∠2=∠4,故D中结论正确,符合题意.故选ABD.8.B 补全题图2并作出法线OK,如图所示.由图可知,OB是反射光线,即光线自点P射入,经镜面EF反射后经过的点是B点.9.3.1解析 ∵PC⊥l,∴该同学的立定跳远成绩应为图中线段CP的长,∴该同学的立定跳远成绩为3.1米.10.解析 (1)∵∠AOC=80°,∠BOD=∠AOC,∴∠BOD=80°,=30°.∵∠BOE∶∠EOD=3∶5,∴∠EOB=80°×33+5(2)∵OF⊥OE,∴∠EOF=90°.由(1)得∠EOB=30°.如图1,当OF在∠AOD的内部时,∠BOF=∠EOF+∠BOE=90°+30°=120°.如图2,当OF在∠BOC的内部时,∠BOF=∠EOF-∠BOE=90°-30°=60°.综上所述,∠BOF=60°或120°.素养探究全练11.解析 (1)当t=3时,∠AOB=180°-4°×3-6°×3=150°.(2)依题意,得4t+6t=180+80,解得t=26.∴当∠AOB第二次达到80°时,t的值为26.(3)存在.当0≤t<18时,180-4t-6t=90,解得t=9.当18≤t≤60时,4t+6t=180+90或4t+6t=180+270,解得t=27或t=45.故在转动过程中存在这样的t,使得射线OB与射线OA垂直,t的值为9、27或45.。

七级数学 暑假提高练习 垂线专题(无答案)

七级数学 暑假提高练习 垂线专题(无答案)

提高练习 垂线专题一、相交线例题:1、如图,已知AB 、CD 、EF 相交于O ,EF AB ⊥,OG 为COF ∠的平分线,OH 为DOG ∠的平分线,若:4:7AOC COG ∠∠=,求GOH ∠的度数2、如图,已知直线EF 、CD 相较于点O ,OA OB ⊥,OD 平分AOF ∠,2BOE AOE ∠=∠。

求EOD ∠的度数练习:1.下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A.1个B.2个C.3个D.4个2、如图所示,L1,L2,L3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.3 4l3l2l1 123、若4条不同的直线相交于一点,则图中共有几对对顶角?若n条不同的直线相交于一点呢?4、在一个平面内任意画出6条直线,最多可以把平面分成几个部分?n条直线呢?•二、垂线例题:1、已知,如图,AC BC ⊥,5AC =,12BC =,13AB =.(1)说出点A 到BC 的距离,点B 到AC 的距离(2)点C 到AB 的距离是多少?(写出解答过程)2、如图,已知∠ABC =90°,∠1=∠2,∠DCA =∠CAB , 求证:(1)CD ⊥CB ;(2)CD •平分∠ACE .练习:1、如图,ABC ∆中,90C ∠=︒,3AC =,点P 是边BC 上的动点,则AP 长不可能是( )21D CA BEA 2.5B .3C .4D .52、如图,AC BC ⊥,CD AB ⊥,则图中互余的角有( )A . 4对B . 3对C . 2对D . 1对3、下列说法正确的是( )A .在同一平面内,过已知直线外一点作这条直线的垂线有且只有一条B .连结直线外一点和直线上任一点,使这条线段垂直于已知直线C .作出点P 到直线的距离D .连结直线外一点和直线上任一点的线段长是点到直线的距离4、如下左图,一辆汽车在直线形的公路AB 上由A 向B 行驶,M 、N 分别是位于公路AB 两侧的村庄,(1)现在公路AB 上修建一个超市C ,使得到M 、N 两村庄距离最短,请在图中画出点C (2)设汽车行驶到点P 位置时离村庄M 最近;行驶到点Q 位置时,距离村庄N 最近,请在图中公路AB 上分别画出P 、Q 两点的位置。

湘教版数学七年级下册_《垂线》拓展训练

湘教版数学七年级下册_《垂线》拓展训练

《垂线》拓展训练一、选择题1.在△ABC中,BC=6,AC=3,过点C作CP⊥AB,垂足为P,则CP长的最大值为()A.5B.4C.3D.22.下列生活实例中,数学原理解释错误的一项是()A.从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线B.两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短C.把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线D.从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短3.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为()A.1个B.2个C.3个D.4个4.如图,在直角△ABC中,∠ACB=90°,AC=4,BC=3,在△ABC内部以AC为斜边任意作Rt△ACD,连接BD,则线段BD的最小值是()A.﹣2B.﹣2C.D.25.如图,已知点O在直线AB上,CO⊥DO,若∠1=155°,则∠3的度数为()A.35°B.45°C.55°D.65°6.如图,已知直线AB,CD,EF相交于点O,OG⊥AB,∠COE=32°,∠FOG=29°,则∠AOC的度数是()A.19°B.29°C.32°D.39°7.如图,AB、CD交于O,OE⊥CD于O,∠AOC=36°,则∠BOE的度数为()A.36°B.64°C.54°D.144°8.如图,OA⊥OB,∠BOC=30°,OD平分∠AOC,则∠BOD的大小是()A.20°B.30°C.40°D.60°9.已知∠BOC=60°,OF平分∠BOC.若AO⊥BO,OE平分∠AOC,则∠EOF的度数是()A.45°B.15°C.30°或60°D.45°或15°10.如图,直线AB、CD相交于点O,OF⊥CO,∠AOF与∠BOD的度数之比为3:2,则∠AOC的度数是()A.18°B.45°C.36°D.30°二、填空题11.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠CON=2∠COM,则∠BOD的度数为.12.如图CD⊥AB于点D,EF⊥AB于F,∠DGC=84°,∠BCG=96°,则∠1+∠2=.13.如图,直线AB、CD相交于点O,OD平分∠BOF,OE⊥CD于O,若∠EOF=α,下列说法①∠AOC=α﹣90°;②∠EOB=180°﹣α;③∠AOF=360°﹣2α,其中正确的是.14.如图,若OA⊥OB,OC⊥OD,且∠AOC:∠BOD=1:2,则∠BOD=°.15.如图,∠ACB=90°,CD⊥AB,AC=5,BC=12,AB=13.点A到CD边的距离是;点C到AB边的距离是.三、解答题16.如图,直线AB与CD相交于点O,OE是∠AOC的平分线OF⊥CD,OG⊥OE,∠BOD=52°.(1)求∠AOF的度数;(2)∠EOF与∠BOG是否相等呢?请说明理由;(3)直接写出图中∠AOE的所有余角.17.如图,直线AB、CD相交于点O,OM⊥AB.(1)若∠1=∠2,求∠NOD的度数;(2)若∠1=∠BOC,求∠AOC和∠MOD的度数.18.如图,OA⊥OB,引射线OC(点C在∠AOB外),OD平分∠BOC,OE平分∠AOD.(1)若∠BOC=40°,请依题意补全图,并求∠BOE的度数;(2)若∠BOC=α(0°<α<90°),请直接写出∠BOE的度数(用含α的代数式表示).19.如图,直线AB、CD相交于点O,OM⊥AB.(1)若∠1=∠2,则∠2的余角有.(2)若∠1=∠BOC,求∠AOD和∠BOD的度数.20.直线AB、CD相交于点O,OE平分∠BOD,OF⊥CD,垂足为O.(1)若∠EOF=54°,求∠AOC的度数;(2)①在∠AOD的内部作射线OG⊥OE;②试探索∠AOG与∠EOF之间有怎样的关系?并说明理由.《垂线》拓展训练参考答案与试题解析一、选择题1.在△ABC中,BC=6,AC=3,过点C作CP⊥AB,垂足为P,则CP长的最大值为()A.5B.4C.3D.2【分析】根据垂线段最短得出结论.【解答】解:根据垂线段最短可知:PC≤3,∴CP长的最大值为3,故选:C.【点评】本题考查了垂线段最短的性质,正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短;本题是指点C到直线AB连接的所有线段中,CP是垂线段,所以最短;在实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.2.下列生活实例中,数学原理解释错误的一项是()A.从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线B.两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短C.把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线D.从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短【分析】根据垂线段最短、直线和线段的性质即可得到结论.【解答】解:A、从一条河向一个村庄引一条最短的水渠,其中数学原理是:垂线段最短,故原命题错误;B、两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短,正确;C、一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线,正确;D、从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短,正确.故选:A.【点评】本题考查了垂线段最短,直线和线段的性质,熟练掌握各性质是解题的关键.3.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为()A.1个B.2个C.3个D.4个【分析】根据垂线段的定义直接观察图形进行判断.【解答】解:从左向右第一个图形中,BE不是线段,故错误;第二个图形中,BE不垂直AC,所以错误;第三个图形中,是过点E作的AC的垂线,所以错误;第四个图形中,过点C作的BE的垂线,也错误.故选:D.【点评】过点B作线段AC所在直线的垂线段,是一条线段,且垂足应在线段AC 所在的直线上.4.如图,在直角△ABC中,∠ACB=90°,AC=4,BC=3,在△ABC内部以AC为斜边任意作Rt△ACD,连接BD,则线段BD的最小值是()A.﹣2B.﹣2C.D.2【分析】取AC的中点O,根据圆周角定理得到点D在以AC为直径的圆上,根据勾股定理可计算出OB=5,当D点在OB上时,BD的值最小,最小值为5﹣3=2.【解答】解:取AC的中点O,∵在△ABC内部以AC为斜边任意作Rt△ACD,∴点D在以AC为直径的圆上,∴当D点在OB上时,BD的值最小,在Rt△BOC中,OC=AC=2,BC=3,∴OB==,∴BD的值最小为﹣2.故选:B.【点评】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.也考查了圆周角定理和勾股定理.5.如图,已知点O在直线AB上,CO⊥DO,若∠1=155°,则∠3的度数为()A.35°B.45°C.55°D.65°【分析】先根据邻补角关系求出∠2=25°,再由垂线得出∠COD=90°,最后由互余关系求出∠3=90°﹣∠2.【解答】解:∵∠1=155°,∴∠2=180°﹣155°=25°,∵CO⊥DO,∴∠COD=90°,∴∠3=90°﹣∠2=90°﹣25°=65°;故选:D.【点评】本题考查了垂线和邻补角的定义;弄清两个角之间的互补和互余关系是解题的关键.6.如图,已知直线AB,CD,EF相交于点O,OG⊥AB,∠COE=32°,∠FOG=29°,则∠AOC的度数是()A.19°B.29°C.32°D.39°【分析】先根据垂直的定义得出∠BOG=90°,那么∠BOF=61°,由对顶角相等求出∠AOE=∠BOF=61°,进而求出∠AOC=61°﹣32°=29°.【解答】解:∵OG⊥AB,∴∠BOG=90°,∵∠FOG=29°,∴∠BOF=∠BOG﹣∠FOG=90°﹣29°=61°,∴∠AOE=∠BOF=61°,∵∠COE=32°,∴∠AOC=∠AOE﹣∠COE=61°﹣32°=29°.故选:B.【点评】本题考查了垂直的定义,对顶角的性质;弄清各个角之间的关系是解决问题的关键.7.如图,AB、CD交于O,OE⊥CD于O,∠AOC=36°,则∠BOE的度数为()A.36°B.64°C.54°D.144°【分析】由垂直的定义可知∠DOE=90°,∠DOB与∠AOC是对顶角,利用这些关系可解此题.【解答】解:∵OE⊥CD,∴∠DOE=90°,∵∠DOB=∠AOC=36°,∴∠BOE=∠DOE﹣∠DOB=54°,故选:C.【点评】本题利用垂直的定义,对顶角相等计算,要注意领会由垂直得直角这一要点.8.如图,OA⊥OB,∠BOC=30°,OD平分∠AOC,则∠BOD的大小是()A.20°B.30°C.40°D.60°【分析】首先根据题意得出∠AOC的度数,再利用角平分线的定义得出∠AOD,∠COD的度数,进而得出答案.【解答】解:∵OA⊥OB,∠BOC=30°,∴∠AOC=90°+30°=120°,∵OD平分∠AOC,∴∠COD=∠AOD=∠AOC=60°,则∠BOD=60°﹣30°=30°.故选:B.【点评】此题主要考查了垂直的定义以及角平分线的定义,正确把握角平分线的定义是解题关键.9.已知∠BOC=60°,OF平分∠BOC.若AO⊥BO,OE平分∠AOC,则∠EOF的度数是()A.45°B.15°C.30°或60°D.45°或15°【分析】根据垂线的定义,可得∠AOB的度数,根据角的和差,可得∠AOC的度数,根据角平分线的性质,可得∠COE、∠COF的度数,根据角的和差,可得答案.【解答】解:如图1,由AO⊥BO,得∠AOB=90°,由角的和差,得∠AOC=∠AOB+∠BOC=150°.∵OE平分∠AOC,OF平分∠BOC,∴∠COE=∠AOC=×150°=75°,∠COF=∠BOC=×60°=30°.由角的和差,得∠EOF=∠COE﹣∠COF=75°﹣30°=45°.如图2,由AO⊥BO,得∠AOB=90°,由角的和差,得∠AOC=∠AOB﹣∠BOC=30°.∵OE平分∠AOC,OF平分∠BOC,∴∠COE=∠AOC=×30°=15°,∠COF=∠BOC=×60°=30°.由角的和差,得∠EOF=∠COE+∠COF=15°+30°=45°.故选:A.【点评】本题考查了垂线,利用了垂线的定义,角平分线的定义,角的和差,以及分类思想的运用.10.如图,直线AB、CD相交于点O,OF⊥CO,∠AOF与∠BOD的度数之比为3:2,则∠AOC的度数是()A.18°B.45°C.36°D.30°【分析】根据垂直定义可得∠FOC=90°,再根据∠AOF与∠BOD的度数之比为3:2可得∠AOF:∠AOC=3:2,然后可得答案.【解答】解:∵OF⊥CO,∴∠FOC=90°,∵∠AOF与∠BOD的度数之比为3:2,∴∠AOF:∠AOC=3:2,∴∠AOC=90°×=36°,故选:C.【点评】此题主要考查了垂线,以及对顶角,关键是掌握对顶角相等.二、填空题11.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠CON=2∠COM,则∠BOD的度数为60°.【分析】根据垂直得出∠NOM=90°,根据角平分线定义得出∠AOM=∠COM,再利用∠CON=2∠COM,即可得出答案.【解答】解:∵ON⊥OM,∴∠NOM=90°,∵∠CON=2∠COM,∴设∠COM=x,则∠CON=2x,故x+2x=90°,解得:x=30°,∵射线OM平分∠AOC,∴∠AOM=∠COM=30°,∴∠AOC=∠BOD=2∠COM=60°,故答案为:60°.【点评】本题考查了垂直定义,角平分线定义等知识点,能求出∠COM的度数是解此题的关键.12.如图CD⊥AB于点D,EF⊥AB于F,∠DGC=84°,∠BCG=96°,则∠1+∠2= 180°.【分析】求出DC∥EF,求出∠2+∠BCD=180°,由∠DGC=84°,∠BCG=96°,易证DG∥BC,推出∠1=∠BCD,即可求出答案.【解答】解:∵CD⊥AB,EF⊥AB,∴DC∥EF,∴∠DCB+∠2=180°,∵∠DGC=84°,∠BCG=96°,∴∠DGC+∠BCG=180°,∴BC∥GD,∴∠1=∠DCB,∴∠1+∠2=180°.故答案为:180°【点评】本题主要考查了平行线的性质及判定定理,综合运用性质定理是解答此题的关键.13.如图,直线AB、CD相交于点O,OD平分∠BOF,OE⊥CD于O,若∠EOF=α,下列说法①∠AOC=α﹣90°;②∠EOB=180°﹣α;③∠AOF=360°﹣2α,其中正确的是①②③.【分析】根据垂线、角之间的和与差,即可解答.【解答】解:∵OE⊥CD于O,∠EOF=α,∴∠DOF=α﹣90°,∵OD平分∠BOF,∴∠BOD=∠FOD,∵∠AOC=∠BOD,∴∠AOC=∠FOD,∴∠AOC=α﹣90°,①正确;∴∠BOE=180°﹣∠COE﹣∠AOC=180°﹣90°﹣(α﹣90°)=180°﹣α,②正确;∴∠AOF=180°﹣∠AOC﹣∠DOF=180°﹣(α﹣90°)﹣(α﹣90°)=360°﹣2α,③正确;故答案为:①②③【点评】本题考查了垂线,解决本题的关键是利用角之间的关系解答.14.如图,若OA⊥OB,OC⊥OD,且∠AOC:∠BOD=1:2,则∠BOD=120°.【分析】根据垂直定义可得∠AOB=90°,∠COD=90°,进而可得∠AOC+∠BOD=180°,然后再根据条件∠AOC:∠BOD=1:2可得∠BOD的度数.【解答】解:∵OA⊥OB,OC⊥OD,∴∠AOB=90°,∠COD=90°,∴∠AOC+∠BOD=180°,∵∠AOC:∠BOD=1:2,∴∠BOD=120°,故答案为:120.【点评】此题主要考查了垂线,以及角的计算,关键是理清图中角的关系.15.如图,∠ACB=90°,CD⊥AB,AC=5,BC=12,AB=13.点A到CD边的距离是;点C到AB边的距离是.【分析】根据条件分别求出AD、CD的长度即可.【解答】解:由于AC•BC=AB•CD∴CD=在Rt△ACD中,由勾股定理可得:AD=∴A到CD边的距离为:,C在AB边的距离为:故答案为:,【点评】本题考查点到直线的距离,解题的关键是熟练运用勾股定理,本题属于中等题型.三、解答题16.如图,直线AB与CD相交于点O,OE是∠AOC的平分线OF⊥CD,OG⊥OE,∠BOD=52°.(1)求∠AOF的度数;(2)∠EOF与∠BOG是否相等呢?请说明理由;(3)直接写出图中∠AOE的所有余角.【分析】(1)直接利用垂直的定义结合对顶角的定义得出∠AOF的度数;(2)分别求出∠EOF与∠BOG的度数进而得出答案.(3)依据OE是∠AOC的平分线,OF⊥CD,OG⊥OE,即可得到图中∠AOE的所有余角.【解答】解:(1)∵OF⊥CD,∴∠COF=90°,又∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD=52°,∴∠AOF=∠COF﹣∠AOC=90°﹣52°=38°;(2)相等,理由:∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD=52°,∵OE是∠AOC的平分线,∴∠AOE=∠AOC=26°,又∵OG⊥OE,∴∠EOG=90°,∴∠BOG=180°﹣∠AOE﹣∠EOG=64°,而∠EOF=∠AOF+∠AOE=38°+26°=64°,∴∠EOF=∠BOG.(3)∵OE是∠AOC的平分线,∴∠AOE=∠COE=26°,又∵OF⊥CD,∴∠EOF+∠COE=90°,即∠EOF+∠AOE=90°,又∵OF⊥CD,OG⊥OE,∴∠COG=∠EOF,∴∠COG+∠AOE=90°,∵∠BOG+∠AOE=90°,∠COG+∠COE=90°,∠AOE=∠COE,∴∠BOG=∠COG,∴∠BOG+∠AOE=90°,∴图中∠AOE的所有余角为∠EOF,∠COG,∠BOG.【点评】此题主要考查了垂线的定义以及角平分线的定义和对顶角定义,正确把握相关定义是解题关键.17.如图,直线AB、CD相交于点O,OM⊥AB.(1)若∠1=∠2,求∠NOD的度数;(2)若∠1=∠BOC,求∠AOC和∠MOD的度数.【分析】(1)根据垂直的定义可得∠1+∠AOC=90°,再求出∠2+∠AOC=90°,然后根据平角等于180°列式求解即可;(2)根据垂直的定义可得∠AOM=∠BOM=90°,然后列方程求出∠1,再根据余角和邻补角的定义求解即可.【解答】解:(1)∵OM⊥AB,∴∠AOM=∠1+∠AOC=90°,∵∠1=∠2,∴∠NOC=∠2+∠AOC=90°,∴∠NOD=180°﹣∠NOC=180°﹣90°=90°;(2)∵OM⊥AB,∴∠AOM=∠BOM=90°,∵∠1=∠BOC,∴∠BOC=∠1+90°=3∠1,解得∠1=45°,∠AOC=90°﹣∠1=90°﹣45°=45°,∠MOD=180°﹣∠1=180°﹣45°=135°.【点评】本题考查了垂线的定义,邻补角的定义,熟记概念并准确识图,找准各角之间的关系是解题的关键.18.如图,OA⊥OB,引射线OC(点C在∠AOB外),OD平分∠BOC,OE平分∠AOD.(1)若∠BOC=40°,请依题意补全图,并求∠BOE的度数;(2)若∠BOC=α(0°<α<90°),请直接写出∠BOE的度数(用含α的代数式表示).【分析】(1)首先根据角平分线的定义求得∠BOD的度数,然后求得∠AOD的度数,根据角平分线的定义求得∠DOE,然后根据∠BOE=∠DOE﹣∠BOD;(2)与(1)解法相同.【解答】解:(1)如图,∵OD是∠BOC的平分线,∴∠COD=∠BOD=20°,∴∠AOD=∠BOD+∠AOB=20°+90°=110°,又∵OE是∠AOD的平分线,∴∠DOE=∠AOD=55°,∴∠BOE=∠DOE﹣∠BOD=55°﹣20°=35°;(2)同(1)可得∠COD=∠BOD=α,∠AOD=α+90°,∠DOE=∠AOD=(α+90°)=α+45°,则∠BOE=α+45°﹣α=45°﹣α.【点评】本题考查了角度的计算,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线,理解角平分线的定义是关键.19.如图,直线AB、CD相交于点O,OM⊥AB.(1)若∠1=∠2,则∠2的余角有∠AOC,∠BOD.(2)若∠1=∠BOC,求∠AOD和∠BOD的度数.【分析】(1)由垂线的性质求得∠AOM=∠BOM=90°,然后根据等量代换及余角的定义解答;(2)根据垂直的定义求得∠AOM=∠BOM=90°,再由∠1=∠BOC求得∠BOC=120°;然后根据邻补角定义和对顶角的性质即可求解.【解答】解:(1)∵OM⊥AB,∠1=∠2,∴∠1+∠AOC=∠2+∠AOC=90°,即∠CON=90°,可得∠AOC=∠BOD,∴∠2的余角有:∠AOC,∠BOD;故答案为:∠AOC,∠BOD;(2)∵OM⊥AB,∴∠AOM=∠BOM=90°,∵∠1=∠BOC,∴∠BOC=∠AOD=120°,∠1=∠2=30°;又∠AOC+∠BOC=180°,∴∠AOC=60°,则∠BOD=∠AOC=60°.【点评】此题主要考查了垂直的定义,对顶角的性质和邻补角的定义计算,要注意领会由垂直得直角这一要点.20.直线AB、CD相交于点O,OE平分∠BOD,OF⊥CD,垂足为O.(1)若∠EOF=54°,求∠AOC的度数;(2)①在∠AOD的内部作射线OG⊥OE;②试探索∠AOG与∠EOF之间有怎样的关系?并说明理由.【分析】(1)依据OF⊥CD,∠EOF=54°,可得∠DOE=90°﹣54°=36°,再根据OE 平分∠BOD,即可得出∠BOD=2∠DOE=72°,依据对顶角相等得到∠AOC=72°;(2)依据OE平分∠BOD,可得∠BOE=∠DOE,再根据OF⊥CD,OG⊥OE,即可得到∠EOF+∠DOE=90°,∠AOG+∠BOE=90°,依据等角的余角相等,可得∠EOF=∠AOG.【解答】解:(1)∵OF⊥CD,∠EOF=54°,∴∠DOE=90°﹣54°=36°,又∵OE平分∠BOD,∴∠BOD=2∠DOE=72°,∴∠AOC=72°;(2)①如图所示:②∠AOG=∠EOF;理由:∵OE平分∠BOD,∴∠BOE=∠DOE,∵OF⊥CD,OG⊥OE,∴∠EOF+∠DOE=90°,∠AOG+∠BOE=90°,∴∠EOF=∠AOG.【点评】本题主要考查了垂线,角平分线的定义以及余角的综合运用,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,解决问题的关键是掌握:等角的余角相等.。

七年级数学--相交线,垂线(提高)巩固练习【名校学案word精编版+详细解答】

七年级数学--相交线,垂线(提高)巩固练习【名校学案word精编版+详细解答】

相交线,垂线(提高)巩固练习【巩固练习】一、选择题1.如图,直线AB、CD相交于点O,OE、OF是过O的射线,其中构成对顶角的是()A.∠AOF与∠DOE B.∠EOF与∠BOEC.∠BOC与∠AOD D.∠COF与∠BOD2.下列说法正确的有()①因为∠1与∠2是对顶角,所以∠1=∠2;②因为∠1与∠2是邻补角,所以∠1=∠2;③因为∠1和∠2不是对顶角,所以∠1≠∠2;④因为∠1和∠2不是邻补角,所以∠1+∠2≠180°.A.0个B.1个C.2个D.3个3.如图,直线AB、CD相交于点O,OE⊥AB,OF⊥CD,则图中与∠EOF相等的角还有()A.1个B.2个C.3个D.4个4.如图,∠PQR=138°,SQ⊥QR,QT⊥PQ,则∠SQT等于()A.42°B.64°C.48°D.24°5.如图所示,OC⊥OA,OD⊥OB,∠AOB=150°,∠COD的度数为()A.90°B.60°C.30°D.45°6.已知关于距离的四种说法:①连结两点的线段长度叫做两点间的距离;②连结直线外的点和直线上的点的线段叫做点到直线的距离;③以直线外一点所引的这条直线的垂线叫做点到直线的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.其中正确命题的个数()A.0个B.1个C.2个D.3个二、填空题7.如图,三条直线a,b,c交于一点,∠1,∠2,∠3的大小顺序是________.8.如图,AD⊥BD,BC⊥CD,AB=a cm,BC=b cm,则BD的取值范围是________.9.如图,请你在表盘上画出时针与分针,使时针与分针恰好互相垂直.(1)时针和分针互相垂直的整点时刻分别为;(2)一天24小时,时针与分针互相垂直________次.10.在同一平面内,OA⊥MN,OB⊥MN,所以OA,OB在同一直线线上,理由是________________.11. 100条直线两两相交于一点,则共有对顶角(不含平角)_______对,邻补角________对。

(word完整版)七年级数学下册垂线练习题(2021年整理)

(word完整版)七年级数学下册垂线练习题(2021年整理)

(word完整版)七年级数学下册垂线练习题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)七年级数学下册垂线练习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)七年级数学下册垂线练习题(word版可编辑修改)的全部内容。

七年级数学下册《垂线》练习 1一、选择题:(每小题3分,共18分)1。

如图1所示,下列说法不正确的是()A.点B到AC的垂线段是线段AB;B。

点C到AB的垂线段是线段ACC。

线段AD是点D到BC的垂线段;D.线段BD是点B到AD的垂线段(1)(2)(3)(4)2。

如图1所示,能表示点到直线(线段)的距离的线段有()A。

2条B。

3条C.4条D。

5条3.下列说法正确的有()①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线。

A。

1个B。

2个C。

3个D。

4个4。

如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是()A.大于acmB.小于bcmC。

大于acm或小于bcmD.大于bcm且小于acm5。

到直线L的距离等于2cm的点有()A.0个B。

1个;C.无数个D.无法确定6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到?直线m的距离为()A。

4cmB.2cm;C.小于2cmD。

不大于2cm二、填空题:(每小题3分,共12分)1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,•∠AOD=∠_______=∠_______=∠_______=90°。

2020—2021年湘教版七年级数学下册《垂线》同步练习题及参考答案一.docx

2020—2021年湘教版七年级数学下册《垂线》同步练习题及参考答案一.docx

4.5 垂线第1课时垂线要点感知1 两条直线相交所成的四个角中,如果有一个是__________角时,这两条直线叫做互相垂直.其中一条直线叫做另一条的__________,它们的交点叫__________.预习练习1-1 如图,∠PQR等于138°,SQ⊥QR,QT⊥PQ,则∠SQT等于__________.要点感知2 在同一平面内,垂直于同一条直线的两条直线__________.预习练习2-1 在同一平面内,若a⊥b,c⊥b,d∥c,则a与d的位置关系是__________.要点感知3 在同一平面内,如果一条直线垂直于两条平行线中的一条,那么这条直线____________________.预习练习3-1 直线a,b,c中,若a⊥b,b∥c,则a,c的位置关系是__________.知识点1 垂线的概念1.如图,OA⊥OB,若∠1=40°,则∠2的度数是( )A.20°B.40°C.50°D.60°2.如图,平面内三条直线交于点O,∠1=30°,∠2=60°,AB与CD的关系是( )A.平行B.垂直C.重合D.以上均有可能3.如图,点O在直线AB上,且OC⊥OD.若∠COA=36°,则∠DOB的大小为( )A.36°B.54°C.64°D.72°4.如图,AB⊥CD,垂足为点B,EF平分∠ABD,则∠CBF的度数为__________.5.如图所示,AB与CD交于点O,OE⊥CD,OF⊥AB,∠BOD=25度,则∠AOE=________度,∠DOF=________度.知识点2 垂线与平行线6.如图,直线a,b,c,d,已知c⊥a,c⊥b,直线b,c,d交于一点,若∠1=50°,则∠2等于( )A.60°B.50°C.40°D.30°7.如图,∠1=∠2,DE⊥AB于点D,则BC与AB的位置关系是__________.8.如图,AD⊥BC于D,EG⊥BC于G,∠E=∠3,AD平分∠BAC吗?为什么?9.如图,已知∠ABC=90°,∠1=∠2,∠DCA=∠CAB.试说明:(1)CD⊥CB;(2)CD平分∠ACE.10.如图,直线AB,CD相交于点O,OT⊥AB于O,CE∥AB交CD于点C,若∠ECO=30°,则∠DOT=( )A.30°B.45°C.60°D.120°11.如图,直线AB、CD相交于点O,射线OM平分∠AOC,ON⊥OM. 若∠AOM=35°,则∠CON的度数为( )A.35°B.45°C.55°D.65°12.如图所示,AB,CD相交于点O,OE⊥AB,下列结论错误的是( )A.∠AOC=∠BODB.∠COE+∠BOD=90°C.∠COE+∠AOD=180°D.∠EOB+∠AOE=180°13.在同一平面内,有2 015条直线:a1,a2…a2 015,如果a1⊥a2,a2⊥a3,a3⊥a4…那么a1与a2 015的位置关系是( )A.垂直B.平行C.相交但不垂直D.以上都不对14.如图,OA⊥OC,OB⊥OD,∠AOD=125°,则∠BOC的度数是__________°.15.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,求∠2的度数.16.如图,直线BC与MN相交于点O,AO⊥BC,OE平分∠BON,若∠EON=20°,求∠AOM和∠NOC的度数.17.已知:如下图,AB,CD,EF三直线相交于一点O,且OE⊥AB,∠COE=20°,OG平分∠BOD,求∠BOG的度数.18.如图,已知∠ADE=∠B,FG⊥AB,∠EDC=∠GFB,试说明:CD⊥AB.19.如图,OA⊥OB,OC⊥OD,OE是OD的反向延长线.(1)试说明∠AOC=∠BOD;(2)若∠BOD=32°,求∠AOE的度数.参考答案要点感知1 直垂线垂足预习练习1-1 42°要点感知2 互相平行预习练习2-1 平行要点感知3 垂直于另一条直线预习练习3-1 垂直1.C2.B3.B4.45°5.65 1156.B7.垂直8.AD平分∠BAC.因为AD⊥BC,EG⊥BC,所以AD∥EG.所以∠1=∠E,∠2=∠3.因为∠3=∠E,所以∠1=∠2.所以AD平分∠BAC.9.(1)因为∠DCA=∠CAB,所以AB∥CD.又因为∠ABC=90°,所以AB⊥CB.所以CD⊥CB.(2)因为∠DCA+∠1=90°,所以∠DCE+∠2=90°.又因为∠1=∠2,所以∠DCA=∠DCE.所以CD平分∠ACE.10.C 11.C 12.C 13.B 14.55 15.因为AB⊥BC,所以∠1+∠3=90°.因为∠1=55°,所以∠3=35°.因为a∥b,所以∠2=∠3=35°.16.因为OE平分∠BON,∠EON=20°,所以∠BON=2∠EON=40°.所以∠NOC=180°-∠BON=140°,∠MOC=∠BON=40°. 又因为AO⊥BC,所以∠AOC=90°.所以∠AOM=∠AOC-∠MOC=50°.即∠NOC=140°,∠AOM=50°.17.因为OE⊥AB,所以∠AOE=90°.因为∠COE=20°,所以∠AOC=90°-20°=70°.所以∠BOD=∠AOC=70°.因为OG平分∠BOD,∠BOD=35°.所以∠BOG=1218.因为∠ADE=∠B,所以DE∥BC.所以∠EDC=∠DCB.因为∠EDC=∠GFB,所以∠DCB=∠GFB.所以FG∥CD.因为FG⊥AB,所以CD⊥AB.19.(1)因为OA⊥OB,OC⊥OD,所以∠AOC+∠BOC=90°,∠BOD+∠BOC=90°.所以∠AOC=∠BOD(同角的余角相等).(2)因为OA⊥OB,所以∠AOB=90°.所以∠AOE=180°-∠AOB-∠BOD=180°-90°-32°=58°.第2课时垂线段与点到直线的距离要点感知1 在同一平面内,过一点__________直线与已知直线垂直.预习练习1-1 过直线AB上一点P,在同一平面内画AB的垂线,可以画的条数是( )A.0B.1C.2D.无数条要点感知2 直线外一点与直线上各点连接的所有线段中,__________最短.简单说成:__________最短.预习练习2-1 如图,计划把河AB中的水引到水池C中,可以先作CD⊥AB,垂足为D,然后沿CD开渠,则能使所打开的水渠最短,这种方案的设计根据是____________________.要点感知3 从直线外一点到这条直线的__________的长度,叫做点到直线的距离.预习练习3-1 点到直线的距离是指( )A.从直线外一点到这条直线的连线B.从直线外一点到这条直线的垂线段C.从直线外一点到这条直线的垂线的长D.从直线外一点到这条直线的垂线段的长3-2 如图,三角形ABC中,CD⊥AC,CE⊥AB,垂足分别是C,E,那么点C到线段AB的距离是线段__________的长度.知识点1 垂线、垂线段及其性质1.如图,已知ON⊥a,OM⊥a,可以推断出OM与ON重合的理由是( )A.两点确定一条直线B.过一点只能作一条直线C.垂线段最短D.在平面内,过一点有且只有一条直线与已知直线垂直2.如图,三角形ABC中,∠C=90°,AC=3,点P是边BC上的动点,则AP的长不可能是( )A.2.5B.3C.4D.53.如图,想在河堤两岸搭建一座桥,图中搭建方式中,最短的是PB,理由是____________________.4.如图,某人站在马路的左侧A点处,要到路的右侧,怎样走最近?为什么?如果他要到马路对面的B点处,怎样走最近?为什么?知识点2 点到直线的距离5.P为直线l外一点,A,B,C为l上三点,且PB⊥l,那么下列说法正确的是( )A.线段PA的长度是点P到直线l的距离B.线段PB的长度是点P到直线l的距离C.线段PC的长度是点P到直线l的距离D.线段AC的长度是点A到PC的距离6.如图,AB⊥BC,BD⊥AC,能表示点到直线的距离的线段共有( )A.2条B.3条C.4条D.5条7.如图,A,D是直线l1上两点,B,C是直线l2上两点,且AB⊥BC,CD⊥AD,点A到直线l2的距离是线段______的长,点C与l1的距离是线段__________的长.8.如图,AC⊥BC,C为垂足,CD⊥AB,D为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC=6,那么点C到AB的距离是,点A到BC的距离是__________,点B到CD的距离是__________.9.已知直线AB,CB ,l 在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是( )10.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个11.如图,这是一条马路上的人行横道线,即斑马线的示意图,请你根据图示判断,在过马路时三条线路AC、AB、AD中最短的是( )A.AC B.AB C.ADD.不确定12.下列说法中正确的是( )A.有且只有一条直线垂直于已知直线B.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离C.互相垂直的两条线段一定相交D.直线c外一点A与直线c上各点连接而成的所有线段中最短线段的长是3 cm,则点A到直线c的距离是3 cm13.点P为直线l外一点,点A、B、C在直线l上,若PA=3 cm,PB=4 cm,PC=6 cm,则点P到直线l的距离是( )A.3 cm B.小于3 cm C.小于或等于3 cm D.4 cm14.如图所示,AD⊥BD,BC⊥CD,AB=5 cm,BC=3 cm,则BD的长度的取值范围是( )A.大于3 cmB.小于5 cmC.大于3 cm或小于5 cmD.大于3 cm且小于5 cm15.如图,从学校到公路最近的是__________号路线,数学道理是____________________.16.如图,从B村经A村到河边修一条道路,怎样修使道路最短?并说明道理.17.如图,分别画出点A到BC的垂线段,并量出点A到BC的距离.18.如图:在三角形ABC中,∠BCA=90°,CD⊥AB于点D,线段AB,BC,CD 的大小顺序如何,并说明理由.19.如图,DE⊥EF,EF=8,DE=15,DF=17.(1)试说出点F到直线DE的距离,点D到直线EF的距离;(2)点E到直线DF的距离是多少?你是怎样求得的?参考答案要点感知1 有且只有一条预习练习1-1 B要点感知2 垂线段垂线段预习练习2-1 垂线段最短要点感知3 垂线段预习练习3-1 D3-2 CE1.D2.A3.垂线段最短4.此人要走到马路的右侧,可沿A点到马路右侧的垂线段走,因为直线外一点到直线的垂线段最短.要到B点处,可沿线段AB走,因为两点之间线段最短.5.B6.D7.AB CD8.4.8 6 6.49.C 10.B 11.B 12.D 13.C 14.D 15.②垂线段最短16.连接AB,过点A作AC垂直于河岸线于点C.理由:两点之间,线段最短;直线外一点与直线上各点连接的所有线段中,垂线段最短.17.作图略.18.因为CD⊥AB于点D,所以BC>CD.因为∠BCA=90°,所以BC⊥AC.所以AB>BC.所以AB>BC>CD.19.(1)因为DE⊥EF,EF=8,DE=15,所以点F到直线DE的距离,点D到直线EF的距离分别是:8,15.(2)设点E到直线DF的距离为h,三角形DEF的面积=12DE·EF=12DF·h,所以17h=8×15,所以h=12017.所以点E到直线DF的距离为12017.。

湘教版数学七年级下册_《垂线》提高训练

湘教版数学七年级下册_《垂线》提高训练

《垂线》提高训练一、选择题1.如图,∠C=90°,AC=3cm,BC=4cm,点P是BC边上一动点,则线段AP的长不可能是()A.2.5cm B.3cm C.4cm D.5cm2.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,则图中能表示点到直线距离的垂线段共有()A.2条B.3条C.4条D.5条3.如图,已知直线AD、BE、CF相交于点O,OG⊥AD,且∠BOC=35°,∠FOG=30°,则∠DOE的度数为()A.30°B.35°C.15°D.25°4.如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是()A.∠2=∠3B.∠2与∠3互补C.∠2与∠3互余D.不确定5.如图,直线AB与直线CD相交于点O,E是∠COB内一点,且OE⊥AB,∠AOC=35°,则∠EOD的度数是()A.155°B.145°C.135°D.125°二、填空题6.在△ABC中∠B=90°,BC=5,AB=12,AC=13,则点B到斜边AC的距离是.7.如图,直线AB与CD相交于点O,EO⊥CD于点O,OF平分∠AOC,若∠BOE:∠AOC=4:5,则∠EOF为度.8.如图,直线AB、CD相交于点O,OE⊥AB,垂足是点O,∠BOC=140°,则∠DOE=.9.如图,点A,B,C,D,E在直线l上,点P在直线l外,PC⊥l于点C,在线段PA,PB,PC,PD,PE中,最短的一条线段是,理由是10.如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.三、解答题11.如图,直线AB,CD相交于点O,OE⊥CD于点0,OD平分∠BOF,∠BOE=50°,求∠AOC,∠AOF,∠EOF的度数.12.如图,直线AB、CD相交于点O,EO⊥AB,垂足为O.(1)若∠EOC=35°,求∠EOD的度数;(2)若∠AOC+∠BOD=100°,求∠EOD的度数.13.如图,直线EF,CD相交于点O,OA⊥OB,且OC平分∠AOF.(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=α,求∠BOD的度数;(用含a的代数式表示)(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系?14.如图,直线AB、CD相交于点O,OE⊥AB.(1)若∠BOC=4∠AOC,求∠BOD的度数;(2)若∠1=∠2,问OF⊥CD吗?说明理由.15.如图1,已知A、O、B三点在同一直线上,射线OD、OE分别平分∠AOC、∠BOC.(1)求∠DOE的度数;(2)如图2,在∠AOD内引一条射线OF⊥OC,其他不变,设∠DOF=a o(o o<a <90o).a.求∠AOF的度数(用含a的代数式表示);b.若∠BOD是∠AOF的2倍,求∠DOF的度数.《垂线》提高训练参考答案与试题解析一、选择题1.如图,∠C=90°,AC=3cm,BC=4cm,点P是BC边上一动点,则线段AP的长不可能是()A.2.5cm B.3cm C.4cm D.5cm【分析】利用勾股定理列式求出AB,然后根据AC≤AP≤AB求出AP的范围,再选择答案即可.【解答】解:∵∠C=90°,AC=3,BC=4,∴AB==5,∴3≤AP≤5,故选:A.【点评】本题考查了勾股定理,垂线段最短的性质,求出AP的取值范围是解题的关键2.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,则图中能表示点到直线距离的垂线段共有()A.2条B.3条C.4条D.5条【分析】根据点到直线的距离的定义,得结论.【解答】解:点C到AB的距离是线段CD,点B到CD的距离是线段BD,点A到CD的距离是线段AD,点A到CB的距离是线段CA,点B到AC的距离是线段BC,故选:D.【点评】本题考查了点到直线的距离,理解点到直线的距离是解决本题的关键.3.如图,已知直线AD、BE、CF相交于点O,OG⊥AD,且∠BOC=35°,∠FOG=30°,则∠DOE的度数为()A.30°B.35°C.15°D.25°【分析】根据对顶角相等,以及垂直的定义求出所求角度数即可.【解答】解:∵∠BOC=35°,∠FOG=30°,∴∠EOF=∠BOC=35°,∴∠GOE=∠GOF+∠FOE=65°,∵OG⊥AD,∴∠GOD=90°,∴∠DOE=25°,故选:D.【点评】此题考查了垂线,以及对顶角、领补角,熟练掌握各自的性质是解本题的关键.4.如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是()A.∠2=∠3B.∠2与∠3互补C.∠2与∠3互余D.不确定【分析】根据垂线定义可得∠1+∠3=90°,再根据等量代换可得∠2+∠3=90°.【解答】解:∵OB⊥CD,∴∠1+∠3=90°,∵∠1=∠2,∴∠2+∠3=90°,∴∠2与∠3互余,故选:C.【点评】此题主要考查了垂线和余角,关键是掌握垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.5.如图,直线AB与直线CD相交于点O,E是∠COB内一点,且OE⊥AB,∠AOC=35°,则∠EOD的度数是()A.155°B.145°C.135°D.125°【分析】由对顶角相等可求得∠BOD,根据垂直可求得∠EOB,再利用角的和差可求得答案.【解答】解:∵∠AOC=35°,∴∠BOD=35°,∵EO⊥AB,∴∠EOB=90°,∴∠EOD=∠EOB+∠BOD=90°+35°=125°,故选:D.【点评】本题主要考查对项角相等和垂直的定义,掌握对顶角相等是解题的关键,注意由垂直可得到角为90°.二、填空题6.在△ABC中∠B=90°,BC=5,AB=12,AC=13,则点B到斜边AC的距离是.【分析】设AC边上的高为h,再根据三角形的面积公式即可得出结论.【解答】解:设AC边上的高为h,∵在Rt△ABC中,∠B=90°,AB=5,BC=12,AC=13,∴AB•BC=AC•h,∴h===.故答案为:.【点评】本题考查的是三角形的面积,熟知三角形的面积公式是解答此题的关键.7.如图,直线AB与CD相交于点O,EO⊥CD于点O,OF平分∠AOC,若∠BOE:∠AOC=4:5,则∠EOF为115度.【分析】依据∠AOC+∠BOE=90°,∠BOE:∠AOC=4:5,即可得出∠AOC=50°,根据OF平分∠AOC,可得∠COF=25°,进而得到∠EOF=∠COF+∠COE=115°.【解答】解:∵EO⊥CD,∴∠COE=90°,∴∠AOC+∠BOE=90°,又∵∠BOE:∠AOC=4:5,∴∠AOC=50°,又∵OF平分∠AOC,∴∠COF=25°,∴∠EOF=∠COF+∠COE=25°+90°=115°,故答案为:115.【点评】本题主要考查垂线的定义、角平分线的定义、对顶角的性质、邻补角的性质,关键在于熟练运用各性质定理,推出相关角的度数.8.如图,直线AB、CD相交于点O,OE⊥AB,垂足是点O,∠BOC=140°,则∠DOE=50°.【分析】运用垂线的定义,对顶角的性质进行计算即可.【解答】解:∵直线AB、CD相交于点O,∴∠BOC=∠AOD=140°,又∵OE⊥AB,∴∠DOE=140°﹣90°=50°,故答案为:50°.【点评】本题主要考查了对顶角和垂线的定义,解题的关键是运用对顶角的性质:对顶角相等.9.如图,点A,B,C,D,E在直线l上,点P在直线l外,PC⊥l于点C,在线段PA,PB,PC,PD,PE中,最短的一条线段是PC,理由是垂线段最短【分析】点到直线的距离是指该点到直线的垂线段的长,根据定义即可选出答案.【解答】解:根据点到直线的距离的定义得出线段PC的长是点P到直线l的距离,从直线外一点到这条直线所作的垂线段最短.故答案是:PC;垂线段最短.【点评】本题考查了对点到直线的距离的应用,注意:点到直线的距离是指该点到直线的垂线段的长.10.如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为140°.【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°﹣40°=140°.故答案为:140°.【点评】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.三、解答题11.如图,直线AB,CD相交于点O,OE⊥CD于点0,OD平分∠BOF,∠BOE=50°,求∠AOC,∠AOF,∠EOF的度数.【分析】根据题意即可推出∠EOD=90°,∠BOD=40°,既而得,∠AOC=40°,∠BOF=80°,得:∠EOF=130°,∠AOF=100°.【解答】解:∵OE⊥CD于点O,∴∠EOD=90°(垂直的定义)∵∠BOE=50°,∴∠BOD=90°﹣50°=40°,∴∠AOC=∠BOD=40°(对顶角相等).∵OD平分∠BOF,∴∠BOF=2∠BOD=80°(角平分线的定义),∴∠AOF=180°﹣80°=100°,(平角的定义)∴∠EOF=∠EOB+∠BOF=130°.答:∠AOC=40°,∠AOF=100°,∠EOF=130°.【点评】本题主要考查垂线的定义、角平分线的定义、对顶角的性质、邻补角的性质,关键在于熟练运用各性质定理,推出相关角的度数.12.如图,直线AB、CD相交于点O,EO⊥AB,垂足为O.(1)若∠EOC=35°,求∠EOD的度数;(2)若∠AOC+∠BOD=100°,求∠EOD的度数.【分析】(1)根据平角的定义可求∠EOD的度数;(2)根据对顶角的定义可求∠BOD=50°,再根据垂直的定义和角的和差关系可求∠EOD的度数.【解答】解:(1)∵∠EOC=35°,∴∠EOD=180°﹣∠EOC=145°;(2)∵∠AOC+∠BOD=100°,∠AOC与∠BOD是对顶角,∴∠BOD=50°,∵EO⊥AB,∴∠BOE=90°,∴∠EOD=∠EOB+∠BOD=140°.【点评】本题主要考查的是垂直的定义和对顶角的性质,由垂直的定义求得∠BOD的度数是解题的关键.13.如图,直线EF,CD相交于点O,OA⊥OB,且OC平分∠AOF.(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=α,求∠BOD的度数;(用含a的代数式表示)(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系?【分析】(1)先求出∠AOF,根据角平分线定义求出∠FOC,根据对顶角相等求出∠EOD=∠FOC,求出∠BOE,即可得出答案;(2)先求出∠AOF,根据角平分线定义求出∠FOC,根据对顶角相等求出∠EOD=∠FOC,求出∠BOE,即可得出答案;(3)先求出∠AOF,根据角平分线定义求出∠FOC,根据对顶角相等求出∠EOD=∠FOC,求出∠BOE,即可得出答案.【解答】解:(1)∵∠AOE+∠AOF=180°(互为补角),∠AOE=40°,∴∠AOF=140°;又∵OC平分∠AOF,∴∠FOC=∠AOF=70°,∴∠EOD=∠FOC=70°(对顶角相等);而∠BOE=∠AOB﹣∠AOE=50°,∴∠BOD=∠EOD﹣∠BOE=20°;(2)∵∠AOE+∠AOF=180°(互为补角),∠AOE=α,∴∠AOF=180°﹣α;又∵OC平分∠AOF,∴∠FOC=∠AOF=90°﹣α,∴∠EOD=∠FOC=90°﹣α(对顶角相等);而∠BOE=∠AOB﹣∠AOE=90°﹣α,∴∠BOD=∠EOD﹣∠BOE=α;(3)从(1)(2)的结果中能看出∠AOE=2∠BOD.【点评】本题考查了邻补角、对顶角、角平分线定义等知识点,能根据知识点和已知求出∠BOE和∠EOD的度数是解此题的关键.14.如图,直线AB、CD相交于点O,OE⊥AB.(1)若∠BOC=4∠AOC,求∠BOD的度数;(2)若∠1=∠2,问OF⊥CD吗?说明理由.【分析】(1)根据邻补角的定义,可得∠AOC,根据对顶角的性质,可得答案;(2)根据垂直的定义,可得∠AOE,根据余角的性质,可得答案.【解答】解:(1)由邻补角的定义,得∠AOC+∠BOC=180°,∵∠BOC=4∠AOC,∴4∠AOC+∠AOC=180°,∴∠AOC=36°,由对顶角相等,得∠BOD=∠AOC=36°;(2)OF⊥CD,理由如下:∵OE⊥AB,∴∠AOE=90°,∴∠1+∠AOC=90°,∵∠1=∠2,即∠FOC=90°,∴OF⊥CD.【点评】本题考查了垂线,解(1)的关键是利用邻补角的定义得出∠AOC,解(2)的关键是利用余角的性质得出∠2+∠AOC=90°.15.如图1,已知A、O、B三点在同一直线上,射线OD、OE分别平分∠AOC、∠BOC.(1)求∠DOE的度数;(2)如图2,在∠AOD内引一条射线OF⊥OC,其他不变,设∠DOF=a o(o o<a <90o).a.求∠AOF的度数(用含a的代数式表示);b.若∠BOD是∠AOF的2倍,求∠DOF的度数.【分析】(1)根据角平分线的性质解答即可;(2)a.根据互余解答即可.b.根据∠BOD是∠AOF的2倍,列方程可得α的值.【解答】解:(1)∵点A,O,B在同一条直线上,∴∠AOC+∠BOC=180°,∵射线OD和射线OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC∴∠COD+∠COE=(∠AOC+∠BOC)=90°,∴∠DOE=90°;(2)a.∵OC⊥OF,∴∠COF=90°,∵∠DOF=αo,∴∠COD=90°﹣α°,∴∠AOF=∠AOD﹣∠DOF=90°﹣α°﹣α°=(90﹣2α)°,b.∵∠BOD是∠AOF的2倍,∴180°﹣(90﹣α)°=2(90﹣2α)°,α=18°,即∠DOF=18°.【点评】此题主要考查了垂线和角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.。

2020年暑期衔接训练人教版数学七年级下册:第2讲 垂线

2020年暑期衔接训练人教版数学七年级下册:第2讲 垂线

2020年暑期衔接训练人教版数学七年级下册:第2讲垂线一、单选题(共10题;共20分)1. ( 2分) (2020七下·唐山期中)如图,已知直线AB,CD 相交于点O,EF⊥AB 于点O,若∠BOC=55°,则∠DOF=()A. 35°B. 45°C. 55°D. 90°2. ( 2分) (2020七下·抚宁期中)如图,把小河里的水引到田地A处就作AB⊥l,垂足为B,沿AB挖水沟,水沟最短,理由是()A. 垂线段最短B. 两点确定一条直线C. 点到直线的距离D. 两点之间线段最短3. ( 2分) (2020七下·铁东期中)如图,点P在直线l外,点A,B在直线l上,PA=3,PB=7,点P到直线l 的距离可能是( )A. 2B. 4C. 7D. 84. ( 2分) (2020七下·铁东期中)过一点画已知直线的垂线,可画垂线的条数是()A. 0B. 1C. 2D. 无数5. ( 2分) (2020七上·西湖期末)如图,A是直线l外一点,点B,E,D,C在直线l上,且,D 为垂足,如果量得,,,,则点A到直线l的距离为()A. 11 cmB. 7 cmC. 6 cmD. 5 cm6. ( 2分) (2020七上·扬州期末)点P为直线外一点,点A、B在直线l上,若PA=4cm,PB=5cm,则点P 到直线l的距离是( )A. 4cmB. 小于4cmC. 不大于4cmD. 5cm7. ( 2分) (2020七下·龙岗期中)下列图形中,线段AD的长表示点A到直线BC距离的是()A. B. C. D.8. ( 2分) (2018七下·余姚期末)如图,平行河岸两侧各有一城镇P,Q,根据发展规划,要修建一条公路连接P,Q两镇.已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案()A. B. C. D.9. ( 2分) (2019七下·广安期末)已知点P为直线m外一点,点A,B,C为直线m上三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P到直线m的距离为()A. 4 cmB. 5 cmC. 小于2 cmD. 不大于2 cm10. ( 2分)在下列语句中,正确的是().A. 在平面上,一条直线只有一条垂线;B. 过直线上一点的直线只有一条;C. 过直线上一点且垂直于这条直线的直线有且只有一条;D. 垂线段的长度就是点到直线的距离二、填空题(共8题;共24分)11. ( 3分) (2020七下·太原期中)如图,小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段________的长度.12. ( 3分) (2020七下·北京期中)如图,连接直线l外一点P与直线l上各点O,A1,A2,A3,…,其中PO⊥l,这些线段PO,PA1,PA2,PA3,…中,最短的线段是________.13. ( 3分) (2020七下·三台期中)如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段BN的长度,这样测量的依据是________.14. ( 3分) (2020七下·武汉期中)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠AOE=55°,则∠BOD的度数为________.15. ( 3分) (2020七下·武鸣期中)如图,直线AB、CD相交于点O,∠COE为直角,∠AOE=60°,则∠BOD =________°.16. ( 3分) (2020七上·萧山期末)如图,直线AB,CD相交于点O,射线OE⊥CD,给出下列结论:①∠2和∠4互为对顶角;②∠3+∠2=180°;③∠5与∠4互补;④∠5=∠3-∠1;其中正确的是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

提高练习14-垂线专题
一、相交线
例题:1、如图,已知AB 、CD 、EF 相交于O ,EF AB ⊥,OG 为COF ∠的平分线,OH 为DOG ∠的平分线,若:4:7AOC COG ∠∠=,求GOH ∠的度数
2、如图,已知直线EF 、CD 相较于点O ,
OA OB ⊥,OD 平分AOF ∠,2BOE AOE ∠=∠。

求EOD ∠的度数
练习:1.下列说法正确的有( )
①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶
角;④若两个角不是对顶角,则这两个角不相等.
A.1个
B.2个
C.3个
D.4个
2、如图所示,L1,L2,L3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.
3 4
l3
l2
l1 1
2
3、若4条不同的直线相交于一点,则图中共有几对对顶角?若n条不同的直线相交于一
点呢?
4、在一个平面内任意画出6条直线,最多可以把平面分成几个部分?n条直线呢?•
二、垂线
例题:1、已知,如图,AC BC ⊥,5AC =,12BC =,13AB =.(1)说出点A 到
BC 的距离,点B 到AC 的距离(2)点C 到AB 的距离是多少?(写出解答过程)
2、如图,已知∠ABC =90°,∠1=∠2,∠DCA =∠CAB , 求证:(1)CD ⊥CB ;(2)CD •平分∠ACE .
21
D C
A B
E
练习:
1、如图,ABC ∆中,90C ∠=︒,3AC =,点P 是边BC 上的动点,则AP 长不可能是( ) A 2.5 B .3 C .4 D .5
2、如图,AC BC ⊥,CD AB ⊥,则图中互余的角有( )
A . 4对
B . 3对
C . 2对
D . 1对 3、下列说法正确的是( )
A .在同一平面内,过已知直线外一点作这条直线的垂线有且只有一条
B .连结直线外一点和直线上任一点,使这条线段垂直于已知直线
C .作出点P 到直线的距离
D .连结直线外一点和直线上任一点的线段长是点到直线的距离
4、如下左图,一辆汽车在直线形的公路AB 上由A 向B 行驶,M 、N 分别是位于公路AB 两侧的村庄,(1)现在公路AB 上修建一个超市C ,使得到M 、N 两村庄距离最短,请在图中画出点C (2)设汽车行驶到点P 位置时离村庄M 最近;行驶到点Q 位置时,距离村庄N 最近,请在图中公路AB 上分别画出P 、Q 两点的位置。

(1) (2)
5、如图,OE ,OF 分别是∠AOC 与∠BOC 的平分线,且OE ⊥OF ,求证:A ,O ,B •三点在同一直线上.
C A
B
O
F E
三、同位角、内错角、同旁内角
例题:1、如图,平行线AB 、CD 与直线EF 、GH 相交,图中的同旁内角有( )对。

A .4对
B .8对
C .12对
D . 16对
2、如图,DE 、BC 被那条直线所截,得到那些同位角,内错角或同旁内角。

练习:1、如图2-44,∠1和∠4是AB 、 被 所截得的 角,∠3和∠5是 、 被 所截得的 角,∠2和∠5是 、
所截得的 角,AC 、BC 被AB 所截得的同旁内角是
.

2、如图2-45,AB 、DC 被BD 所截得的内错角是 ,AB 、CD 被AC 所截是的内错角是 ,AD 、BC 被BD 所截得的内错角是 ,AD 、BC 被AC 所截得的内错角是
.
3、如图2-50图中,共有几对内错角?这几对内错角分别是哪两条直线被哪一条直线所
截构成的?
4、如图2-51,直线AB、CD被EF
所截,如果∠1与∠2互补,且
∠1=110°,那么∠3、∠4的度数是多少?。

相关文档
最新文档