2018年高考数学一轮复习课件第11讲-函数的图象

合集下载

2023届高考数学一轮复习讲义:第11讲 指数与指数函数

2023届高考数学一轮复习讲义:第11讲 指数与指数函数

第11讲 指数与指数函数1.根式 (1)根式的概念①若 ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.式子na 叫做根式,这里 叫做根指数, 叫做被开方数.②a 的n 次方根的表示:x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n ∈N *,n >1时,x =±n a ,当n 为偶数且n ∈N *时.(2)根式的性质①(na )n =a (n ∈N *,且n >1). ②na n=⎩⎨⎧a ,n 为奇数,|a |=⎩⎨⎧a ,a ≥0,-a ,a <0,n 为偶数.2.有理数指数幂(1)幂的有关概念①正分数指数幂:a mn =na m (a >0,m ,n ∈N *,且n >1); ②负分数指数幂:a -mn =1a m n=1na m (a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于 ,0的负分数指数幂 . (2)有理数指数幂的运算性质 ①a r a s =a r +s (a >0,r ,s ∈Q ); ②a r a s =a r -s(a >0,r ,s ∈Q ); ③(a r )s =a rs (a >0,r ,s ∈Q ); ④(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图象与性质 y =a x (a >0且 a ≠1)a >10<a <1图象定义域 值域性质过定点当x >0时,y >1; 当x <0时,0<y <1 当x >0时,0<y <1; 当x <0时,y >1 在R 上是增函数在R 上是减函数➢考点1 指数幂的运算[名师点睛]1.对于指数幂的运算,首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:(1)必须是同底数幂相乘,指数才能相加; (2)运算的先后顺序.2.当底数是负数时,先确定符号,再把底数化为正数.3.运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数. 1.(2022·全国·高三专题练习)(1)计算120.75013110.027()81()369-----++-;(2)若11226x x -+22x x -+的值.2.(2022·全国·高三专题练习)化简下列各式(其中各字母均为正数).(1)()211302270.00210528π---⎛⎫-+-+ ⎪⎝⎭; (2323211113342a b ab a b a b -⎛⎫ ⎪⎝⎭(3)22.53105330.06438π-⎡⎤⎛⎫⎢⎥ ⎪⎢⎥⎝⎭⎣⎦; (4)12112133265a b a b a b ---⎛⎫⋅⋅⋅ ⎪⎝⎭⋅.[举一反三]1.(2022·全国·高三专题练习)计算:100.256361.5()87-⨯-+2.(2022·全国·高三专题练习)(1)计算:1111200.253473(0.0081)3()81(3)88------⨯⨯⎡⎤⎡⎤⎢⎣+⎥⎢⎥⎣⎦⎦;(2211113322a b ---3.(2022·全国·高三专题练习)已知11223a a -+=,求下列各式的值.(1)11a a -+;(2)22a a -+;(3)22111a a a a --++++.4.(2022·全国·高三专题练习)已知11223x x -+=,求22332223x x x x--+-+-的值.5.(2022·全国·高三专题练习)分别计算下列数值: (1)()110340.06416π----+ (2)已知16x x -+=,()01x <<,求221122x x x x---+.6.(2022·全国·高三专题练习)化简: (1)126016(2018)449-⎛⎫+--⨯ ⎪⎝⎭(2111332ab a b -⎫⎪⎭a >0,b >0). (3)312211122211111a a aa a a a a -+--++++-.➢考点2 指数函数的图象及应用[名师点睛]1.对于有关指数型函数的图像问题,一般是从最基本的指数函数的图像入手,通过平移、伸缩、对称变换得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.2.有关指数方程、不等式问题的求解,往往利用相应的指数型函数图像,数形结合求解. [典例]1.(2022·浙江·宁波诺丁汉附中模拟预测)函数()x x kf x a-=(0a >且1a ≠)的图象如图所示,则( )A .1,1k a >>B .1,1k a ><C .01,1k a <<<D .01,1k a <<>2.(2022·北京·高三专题练习)若函数()11x f x a -=-(0a >且1a ≠)的图像经过定点P ,则点P 的坐标是( ) A .(1,1)- B .(1,0) C .(0,0) D .(0,1)-[举一反三]1.(2022·全国·高三专题练习)已知函数()25x f x a -=-(0a >且1a ≠)的图象过定点(),m n ,则不等式210x mx n +++<的解集为( ) A .()1,3B .()3,1--C .()(),31,-∞-⋃+∞D .()3,1-2.(多选)(2022·全国·高三专题练习)已知函数()()()f x x a x b =--的图象如图所示,则()x g x a b =-的图象可能是( )A .B .C .D .➢考点3 指数函数的性质及其应用[名师点睛]1.比较指数式的大小的方法:(1)能化成同底数的先化成同底数幂,再利用单调性比较大小;(2)不能化成同底数的,一般引入“1”等中间量比较大小.2.指数方程(不等式)的求解主要利用指数函数的单调性进行转化.3.涉及指数函数的综合问题,首先要掌握指数函数的相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断. 1.(2022·天津河西·一模)设0.3log 0.2a =,0.30.2b =,log b c a =,则a ,b ,c 的大小关系为( ). A .a b c << B .b a c << C .c a b <<D .c b a <<2.(多选)(2022·全国·高三专题练习)若指数函数x y a =在区间[1,1]-上的最大值和最小值的和为103,则a 的值可能是( ) A .12B .13C .3D .23.(2022·辽宁·建平县实验中学模拟预测)已知函数()221010,231,2x x x f x x x --⎧-≤⎪=⎨-->⎪⎩,则不等式()()10f x f x +-<的解集为___________.4.(2022·北京·高三专题练习)设()f x 是定义在R 上的偶函数,且当0x ≤时,()2xf x -=,若对任意的[],1x m m ∈+,不等式()()2f x f x m -≥恒成立,则正数m 的取值范围为( )A .m 1≥B .1mC .01m <<D .01m <≤5.(2022·重庆市朝阳中学高三开学考试)已知函数4()2x x ag x -=是奇函数,()()lg 101x f x bx =++是偶函数.(1)求a 和b 的值; (2)设1()()2h x f x x =+,若存在[0,1]x ∈,使不等式()[lg(109)]g x h m >+成立,求实数m 的取值范围.[举一反三]1.(2022·天津·一模)设3ln 2a =,0.80.5b =,0.50.8-=c ,则,,a b c 的大小关系为( )A .c b a <<B .b a c <<C .a b c <<D .c a b <<2.(2022·山西吕梁·二模)已知343344333,,444⎛⎫ ⎪⎝⎭⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭a b c ,则( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<3.(2022·全国·高三专题练习)已知函数212,022()3,02x a a a x x f x a x +⎧-+-≥⎪⎪=⎨⎪<⎪⎩在()000x x >处取得最小值,且()03-<f x a ,则实数a 的取值范围( ) A .[2,3)B .[1,3)C .[1,2)D .(1,3)4.(2022·上海市进才中学高三期中)设函数()2xf x =,若存在[]0,4x ∈使不等式()()22f a x f x +-≥成立,则实数a 的取值范围为______.5.(2022·全国·高三专题练习)设函数()322x x f x x -=-+,则使得不等式()()2130f x f -+<成立的实数x 的取值范围是________6.(2022·全国·高三专题练习)已知函数()936=-⋅++x x f x m m ,若方程()()0f x f x 有解,则实数m 的取值范围是_________.7.(2022·全国·高三专题练习)已知函数()x x f x a ka -=+(0a >且1a ≠)是定义在R 上的偶函数,且17(1)4f =. (1)求()f x 的解析式;(2)若函数()()22xxmg x f x m =-⋅+在[0,)+∞上的最小值是1,求m 的值.8.(2022·全国·高三专题练习)已知函数4()1(0,1)2x f x a a a a=->≠+且(0)0f =.(1)求a 的值;(2)若函数()(21)()x g x f x k =++有零点,求实数k 的取值范围. (3)当(0,1)x ∈时,()22x f x m >-恒成立,求实数m 的取值范围.9.(2022·北京·高三专题练习)定义在D 上的函数()f x ,如果满足:对任意,x D ∈存在常数0,M >都有()M f x M -≤≤成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x 的上界.已知()422x xf x a =+⋅-.(1)当2a =-时,求函数()f x 在()0,∞+上的值域,并判断函数()f x 在()0,∞+上是否为有界函数﹐请说明理由﹔ (2)若函数()f x 在(),0-∞上是以2为上界的有界函数,求实数a 的取值范围第12讲 指数与指数函数1.根式 (1)根式的概念①若x n =a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数.②a 的n 次方根的表示:x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n ∈N *,n >1时,x =±n a ,当n 为偶数且n ∈N *时.(2)根式的性质①(na )n =a (n ∈N *,且n >1). ②na n=⎩⎨⎧a ,n 为奇数,|a |=⎩⎨⎧a ,a ≥0,-a ,a <0,n 为偶数.2.有理数指数幂(1)幂的有关概念①正分数指数幂:a mn =na m (a >0,m ,n ∈N *,且n >1); ②负分数指数幂:a -mn =1a m n=1na m (a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的运算性质 ①a r a s =a r +s (a >0,r ,s ∈Q ); ②a r a s =a r -s(a >0,r ,s ∈Q ); ③(a r )s =a rs (a >0,r ,s ∈Q ); ④(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图象与性质 y =a x (a >0且 a ≠1)a >10<a <1图象定义域 R 值域(0,+∞) 性质过定点(0,1)当x >0时,y >1; 当x <0时,0<y <1 当x >0时,0<y <1; 当x <0时,y >1 在R 上是增函数在R 上是减函数➢考点1 指数幂的运算[名师点睛]1.对于指数幂的运算,首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:(1)必须是同底数幂相乘,指数才能相加; (2)运算的先后顺序.2.当底数是负数时,先确定符号,再把底数化为正数.3.运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数. 1.(2022·全国·高三专题练习)(1)计算120.75013110.027()81()369-----++-;(2)若11226x x -+22x x -+的值. 【解】(1)120.75013110.027()81()369-----++-=0.3﹣1﹣36+33+111033-=-36+27+113-=-5.(2)若11226x x -+∴x 1x ++2=6,x 1x+=4,∴x 2+x ﹣2+2=16,∴x 2+x ﹣2=14.2.(2022·全国·高三专题练习)化简下列各式(其中各字母均为正数).(1)()211302270.00210528π---⎛⎫-+-+ ⎪⎝⎭; (2323211113342a b ab a b a b -⎛⎫ ⎪⎝⎭(3)22.53105330.06438π-⎡⎤⎛⎫⎢⎥ ⎪⎢⎥⎝⎭⎣⎦; (4)12112133265a b a b a b ---⎛⎫⋅⋅⋅ ⎪⎝⎭⋅. 【解】(1)原式()()21210523500125252-⎛⎫=-+ ⎪⎝⎭-+416710*********=++=-;(2)原式11223233311111122633311233a b a b a a b b ab a b +-++---⎛⎫ ⎪⎝⎭===; (3)原式253112536427110008-⎧⎫⎡⎤⎪⎪⎪⎪⎛⎫⎛⎫⎢⎥=--⎨⎬ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎪⎪⎣⎦⎪⎪⎩⎭1521335233435311010222⎛⎫⨯-⨯ ⎪⎝⎭⎡⎤⎡⎤⎛⎫⎛⎫=--=--=⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦;(4)原式111111111533223262361566a b a baba b-----+-⋅==⋅1a=. [举一反三]1.(2022·全国·高三专题练习)计算:100.256361.5()87-⨯-+【解】100.256361.5()87-⨯-+1111323334432()1(2)223()23-=⨯+⨯+⨯-, 113322()2427()33=++⨯-, 110=.2.(2022·全国·高三专题练习)(1)计算:1111200.253473(0.0081)3()81(3)88------⨯⨯⎡⎤⎡⎤⎢⎣+⎥⎢⎥⎣⎦⎦;(2211113322a b ---【解】(1)原式111123()4()4(0.25)34231310112101()[3()]31032333333-⨯-⨯--⨯-⎛⎫=-⨯+=-⨯+=-= ⎪⎝⎭; (2)原式11111111153322132623615661a b aba ba aa b-----+--⋅⋅==⋅==⋅. 3.(2022·全国·高三专题练习)已知11223a a -+=,求下列各式的值.(1)11a a -+;(2)22a a -+;(3)22111a a a a --++++. 【解】(1)将11223a a -+=两边平方得1129a a -++=,所以117a a -+=.(2)将117a a -+=两边平方得22249a a -++=,所以2247a a -+=. (3)由(1)(2)可得22114716.171a a a a --+++==+++ 4.(2022·全国·高三专题练习)已知11223x x -+=,求22332223x x x x--+-+-的值.【解】设12x t =,则121x t-=,所以13t t +=,于是,333222321111x xt t t t t t -⎛⎫⎛⎫+=+=++- ⎪⎪⎝⎭⎝⎭,而2224242112x x t t t t -⎛⎫+=+=+- ⎪⎝⎭,将13t t+=平方得22129t t ++=,于是2217t t +=,所以原式()2222221272471137131513t t t t t t ⎛⎫+- ⎪-⎝⎭===--⎛⎫⎛⎫++-- ⎪⎪⎝⎭⎝⎭. 5.(2022·全国·高三专题练习)分别计算下列数值: (1)()110340.06416π----+ (2)已知16x x -+=,()01x <<,求221122x x x x---+.【解】(1)原式()()()11034340.423ππ--=--++-,()110.4123π--=-++-, 1π=-,(2)∵()()()221116x x x xx x x x -----=+-=-, ∴()()2211432,x x x x ---=+-=∵01x <<, ∴1x x --=-∴()2216x x x x ---=-=-又∵21112228x x x x --⎛⎫+=++= ⎪⎝⎭,∵01x <<,∴1122x x -+= ∴221122x x x x---+=12-.6.(2022·全国·高三专题练习)化简: (1)126016(2018)449-⎛⎫+--⨯ ⎪⎝⎭(2111332ab a b -⎫⎪⎭a >0,b >0). (3)312211122211111a a aa a a a a -+--++++-.【解】(1)原式6614342717399πππ=⨯+--=⨯+-+-=+ (2)原式=11121082232333354331127272333333a b a b a b a b a b ab a b a b a b -⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭===.(3)原式1122313122221211111a a a a a a a a a a a a a ⎛⎫⎛⎫-⋅++ ⎪ ⎪-+--+-+⎝⎭⎝⎭=--++1122111a a a a -=--=-.➢考点2 指数函数的图象及应用1.(2022·浙江·宁波诺丁汉附中模拟预测)函数()x x kf x a-=(0a >且1a ≠)的图象如图所示,则( )A .1,1k a >>B .1,1k a ><C .01,1k a <<<D .01,1k a <<>【答案】D 【解析】因为(0)f k =-,由图得10k -<-<, 所以01k <<,所以排除AB ,因为由图象可知当x →+∞时,()0f x →, 所以1a >,所以排除C , 故选:D2.(2022·北京·高三专题练习)若函数()11x f x a -=-(0a >且1a ≠)的图像经过定点P ,则点P 的坐标是( ) A .(1,1)- B .(1,0) C .(0,0) D .(0,1)-【答案】B 【解析】因为01a =,所以当10x -=,即1x =时,函数值为定值0,所以点P 坐标为(1,0).另解:因为()11x f x a -=-可以由x y a =向右平移一个单位长度后,再向下平移1个单位长度得到,由x y a =过定点(0,1),所以()11x f x a -=-过定点(1,0).故选:B[举一反三]1.(2022·全国·高三专题练习)已知函数()25x f x a -=-(0a >且1a ≠)的图象过定点(),m n ,则不等式210x mx n +++<的解集为( ) A .()1,3 B .()3,1-- C .()(),31,-∞-⋃+∞ D .()3,1-【答案】D 【解析】当2x =时,()220255154f aa -=-=-=-=-,故2,4m n ==-,所以不等式为2230x x +-<,解得31x -<<,所以不等式的解集为()3,1-. 故选:D2.(多选)(2022·全国·高三专题练习)已知函数()()()f x x a x b =--的图象如图所示,则()x g x a b =-的图象可能是( )A .B .C .D .【答案】AC【解析】解:令()()()0f x x a x b =--=,解得1x a =、2x b =,根据二次函数图形可知,a 、b 两个数一个大于1,一个大于0且小于1,①当1a >,01b <<时,则()x g x a b =-在定义域上单调递增,且()001g a b b =-=-,即()001g <<,所以满足条件的函数图形为C ;②当1b >,01a <<时,则()x g x a b =-在定义域上单调递减,且()0010g a b b =-=-<,所以满足条件的函数图形为A ; 故选:AC➢考点3 指数函数的性质及其应用1.(2022·天津河西·一模)设0.3log 0.2a =,0.30.2b =,log b c a =,则a ,b ,c 的大小关系为( ). A .a b c << B .b a c << C .c a b << D .c b a <<【答案】D【解析】由指数函数的性质,可得...030002021<<=,所以01b <<, 根据对数的运算性质,可得0.30.3log 0.2log 0.31a =>=,所以1a >, 由01b <<,1a >,所以log log 10b b c a =<=,即0c <, 所以c b a <<. 故选:D2.(多选)(2022·全国·高三专题练习)若指数函数x y a =在区间[1,1]-上的最大值和最小值的和为103,则a 的值可能是( )A .12B .13C .3D .2【答案】BC【解析】当1a >时,函数x y a =在区间[1,1]-上为单调递增函数,当1x =时,max y a =,当1x =-时,1min y a -=,所以1103a a -+=,即231030a a -+=,解得3a =或13a =, 因为1a >,所以3a =;当01a <<时,函数x y a =在区间[1,1]-上为单调递减函数,当1x =时,min y a =,当1x =-时,1max y a -=,所以1103a a -+=,即231030a a -+=,解得3a =或13a =, 因为01a <<,所以13a =.综上可得,实数a 的值为3或13.故选:BC3.(2022·辽宁·建平县实验中学模拟预测)已知函数()221010,231,2x x x f x x x --⎧-≤⎪=⎨-->⎪⎩,则不等式()()10f x f x +-<的解集为___________.【答案】9,2⎛⎫-∞ ⎪⎝⎭【解析】①当2x ≤时,11x -≤,()221010x x f x --=-在(],2-∞上单调递增,()()20f x f ∴≤=,又()()()1120f x f f -≤<=, ()()10f x f x ∴+-<恒成立;②当23x <≤时,112x <-≤,()3120f x x x =--=-<, 又()()120f x f -≤=,()()10f x f x ∴+-<恒成立;③当34x <≤时,213x <-≤,()314f x x x =--=-,()1413f x x x -=--=-;()()110f x f x ∴+-=-<恒成立;④当4x >时,13x ->,()314f x x x =--=-,()1415f x x x -=--=-,()()1290f x f x x ∴+-=-<,解得:92x <,942x ∴<<; 综上所述:不等式()()10f x f x +-<的解集为9,2⎛⎫-∞ ⎪⎝⎭.故答案为:9,2⎛⎫-∞ ⎪⎝⎭.4.(2022·北京·高三专题练习)设()f x 是定义在R 上的偶函数,且当0x ≤时,()2xf x -=,若对任意的[],1x m m ∈+,不等式()()2f x f x m -≥恒成立,则正数m 的取值范围为( )A .m 1≥B .1mC .01m <<D .01m <≤【答案】A【解析】因为函数()f x 是定义在R 上的偶函数,且当0x ≤时,()2xf x -=,则当0x ≥时,0x -≤,()()2xf x f x =-=,故对任意的R x ∈,()2x f x =, 对任意的[],1x m m ∈+,不等式()()2f x f x m -≥恒成立,即222x x m -≥,即2x x m ≥-对任意的[],1x m m ∈+恒成立,且m 为正数,则()2x x m ≥-,可得2x m ≤,所以,12m m +≤,可得m 1≥. 故选:A.5.(2022·重庆市朝阳中学高三开学考试)已知函数4()2x x ag x -=是奇函数,()()lg 101x f x bx =++是偶函数.(1)求a 和b 的值; (2)设1()()2h x f x x =+,若存在[0,1]x ∈,使不等式()[lg(109)]g x h m >+成立,求实数m 的取值范围.【解】解:(1)因为函数4()2x x ag x -=是奇函数,所以(0)0g =得1a =,则41()2x x g x -=,经检验()g x 是奇函数.又()()lg 101xf x bx =++是偶函数,所以(1)(1)f f -=得12b =-,则()1()lg 1012xf x x =+-,经检验()f x 是偶函数,∴112a b ==-,.(2)()()lg 101x h x =+,lg(109)(lg(109))lg[101lg(1010)m h m m +⎤+=+=+⎦,则由已知得,存在(]0,1x ∈,使不等式lg(1010)()m g x >+成立,因为411()222x x x x g x -==-,易知()g x 单调递增,∴max 3()(1)2g x g ==,∴323lg(1010)lg102m +<==∴1010m +<所以1m <,又109010100m m +>⎧⎨+>⎩,解得910m >-,所以9110m -<<.[举一反三]1.(2022·天津·一模)设3ln 2a =,0.80.5b =,0.50.8-=c ,则,,a b c 的大小关系为( )A .c b a <<B .b a c <<C .a b c <<D .c a b <<【答案】C 【解析】3ln ln e 12<=,0.800.50.51<=,0.500.80.81->=,c a ∴>,c b >;31ln22==,0.8110.50.52>=,b a ∴>;a b c ∴<<.故选:C.2.(2022·山西吕梁·二模)已知343344333,,444⎛⎫ ⎪⎝⎭⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭a b c ,则( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<【答案】B【解析】因为函数34xy ⎛⎫= ⎪⎝⎭单调递减,故3143344⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭a b . 因为3433344433334444⎛⎫ ⎪⎝⎭⎛⎫⎛⎫⎛⎫<⇒> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以c b <.又34331443331444⎛⎫ ⎪⎝⎭⎛⎫⎛⎫⎛⎫<⇒< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以a c <.综上a c b <<, 故选B.3.(2022·全国·高三专题练习)已知函数212,022()3,02x a a a x x f x a x +⎧-+-≥⎪⎪=⎨⎪<⎪⎩在()000x x >处取得最小值,且()03-<f x a ,则实数a 的取值范围( ) A .[2,3) B .[1,3) C .[1,2) D .(1,3)【答案】C【解析】由函数()f x 在0(0,)x ∈+∞处取得最小值得()()0f x f x ≥,则0a >且002x a=> 当0x <时1233()2x a a f x +=>,又()20222a a f x f ⎛⎫==- ⎪⎝⎭,所以203222a a a >⎧⎪⎨-≤⎪⎩,得1a ≥.又()03-<f x a ,所以32af a ⎛⎫-< ⎪⎝⎭,即12332a a a -+<,整理得1221a -+>,102a -+>,解得2a <. 综上,12a ≤<. 故选:C .4.(2022·上海市进才中学高三期中)设函数()2xf x =,若存在[]0,4x ∈使不等式()()22f a x f x +-≥成立,则实数a 的取值范围为______.【答案】3,2⎡⎫+∞⎪⎢⎣⎭【解析】解:由()()22f a x f x +-≥,得2222a x x +-≥,两边同除2x , 即2222a x x -≥+⨯,又222x x -+⨯≥222x x -=⨯, 即12x =[]0,4∈时取等号,所以3222a ≥=,所以32a ≥.故答案为:3,2⎡⎫+∞⎪⎢⎣⎭5.(2022·全国·高三专题练习)设函数()322x x f x x -=-+,则使得不等式()()2130f x f -+<成立的实数x 的取值范围是________ 【答案】(),1-∞-【解析】函数的定义域为R ,()()322x x f x x f x --=--=-,所以函数()f x 是奇函数,并由解析式可知函数()f x 是增函数,原不等式可化为()()213f x f -<-,所以213x -<-,解得1x <-,故x 的取值范围是(),1-∞-. 故答案为:(),1-∞-6.(2022·全国·高三专题练习)已知函数()936=-⋅++x x f x m m ,若方程()()0f x f x 有解,则实数m 的取值范围是_________.【答案】4,)+∞【解析】由题意得:99(33)2120x x x x m m --+-+++=有解 令233(2),992x x x x t t t --+=≥+=-则22100t mt m ∴-++=有解,即2(2)10m t t -=+有解,显然2t =无意义2,2(0)t t y y ∴>-=>令2(2)101444y m y y y ++∴==++≥,当且仅当14y y =,即y4,)m ∴∈+∞故答案为:)4,∞⎡+⎣.7.(2022·全国·高三专题练习)已知函数()x xf x a ka -=+(0a >且1a ≠)是定义在R 上的偶函数,且17(1)4f =. (1)求()f x 的解析式;(2)若函数()()22xxmg x f x m =-⋅+在[0,)+∞上的最小值是1,求m 的值. 【解】(1)因为函数()f x 是定义在R 上的偶函数, 所以()()x x x x f x a ka f x a ka ---=+==+,整理得()()10x xk a a ---=,所以1k =,又因为17(1)4f =,可得117(1)4f a a =+=,所以4a =或14a =, 所以()44x xf x -=+.(2)由(1)可知()4422x x xm g x m x-=+-⋅+211(2)(2)222x x x xm =---+ 令122xx u =-,则2()2h u u mu =-+. 因为函数122xxu =-在[0,)+∞上是增函数,所以0u ≥, 因为函数()()2[0,)2xxmg x f x m =-⋅++∞上的最小值是1, 所以函数()h u 在[0,)+∞上的最小值是1. 当0m ≥时,2min()()2124m m h u h ==-+=,解得2m =或2m =-(舍去);当0m <时,min ()(0)21h u h ==≠,不合题意,舍去. 综上,2m =.8.(2022·全国·高三专题练习)已知函数4()1(0,1)2x f x a a a a=->≠+且(0)0f =.(1)求a 的值;(2)若函数()(21)()x g x f x k =++有零点,求实数k 的取值范围. (3)当(0,1)x ∈时,()22x f x m >-恒成立,求实数m 的取值范围. 【解】解:(1)对于函数4()1(0,1)2x f x a a a a=->≠+,由4(0)102f a =-=+, 解得2a =,故42()1122221xxf x =-=-++. (2)若函数()(21)()21221x x x g x f x k k k =++=+-+=-+ 有零点, 则函数2x y =的图象和直线1y k =-有交点,10k ∴->,解得1k <. (3)当(0,1)x ∈时,()22x f x m >-恒成立,即212221x xm ->-+恒成立. 令2x t =,则(1,2)t ∈,且323112(1)(1)1t m t t t t t t t +<-==++++.由于121t t ++ 在(1,2)上单调递减,∴1212712216t t +>+=++,76m ∴.即7,6m ⎛⎤∈-∞ ⎥⎝⎦ 9.(2022·北京·高三专题练习)定义在D 上的函数()f x ,如果满足:对任意,x D ∈存在常数0,M >都有()M f x M -≤≤成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x 的上界.已知()422x xf x a =+⋅-.(1)当2a =-时,求函数()f x 在()0,∞+上的值域,并判断函数()f x 在()0,∞+上是否为有界函数﹐请说明理由﹔(2)若函数()f x 在(),0-∞上是以2为上界的有界函数,求实数a 的取值范围.【解】(1)当2a =-时,()24222(213)x x x f x =-⨯-=--,令2,x t =由(0,)x ∈+∞, 可得(1,)t ∈+∞,令()2)1(3g t t =--,有()3g t >-,可得函数()f x 的值域为(3,)-+∞ 故函数()f x 在(),0-∞上不是有界函数;(2)由题意有,当(),0x ∈-∞时,24222,x x a -≤+⋅-≤ 可化为0424x x a ≤+⋅≤ 必有20x a +≥且422x x a ≤-, 令2x k =,由(),0x ∈-∞,可得()0,1k ∈, 由20x a +≥恒成立,可得0a ≥, 令()()401h t t t t=-<<, 可知函数()h t 为减函数,有()413h t >-=, 由422x x a ≤-恒成立, 可得3,a ≤故若函数()f x 在(,0)-∞上是以2为上界的有界函数, 则实数a 的取值范围为[]0,3。

2018版高考数学一轮复习课件:第2章 第7节 函数的图象

2018版高考数学一轮复习课件:第2章 第7节 函数的图象

上一页
返回首页
下一页
第十页,编辑于星期六:二十二点 二十七分。
高三一轮总复习 4.(2016·浙江高考)函数 y=sin x2 的图象是( )
上一页
返回首页
下一页
第十一页,编辑于星期六:二十二点 二十七分。
高三一轮总复习
D [∵y=sin(-x)2=sin x2, ∴函数为偶函数,可排除 A 项和 C 项;当 x=π2时,sin x2=sin π42≠1,排除 B 项,故选 D.]
上一页
返回首页
下一页
第二十三页,编辑于星期六:二十二点 二十七 分。
高三一轮总复习
(2)当点 P 沿着边 BC 运动,即 0≤x≤π4时, 在 Rt△POB 中,|PB|=|OB|tan∠POB=tan x, 在 Rt△PAB 中,|PA|= |AB|2+|PB|2= 4+tan2x, 则 f(x)=|PA|+|PB|= 4+tan2x+tan x,它不是关于 x 的一次函数,图象不是线 段,故排除 A 和 C;
上一页
返回首页
下一页
第九页,编辑于星期六:二十二点 二十七分。
高三一轮总复习
3.函数 f(x)的图象向右平移 1 个单位长度,所得图象与曲线 y=ex 关于 y 轴对
称,则 f(x)=( )
A.ex+1
B.ex-1
C.e-x+1
D.e-x-1
D [依题意,与曲线 y=ex 关于 y 轴对称的曲线是 y=e-x,于是 f(x)相当于 y =e-x 向左平移 1 个单位的结果,∴f(x)=e-(x+1)=e-x-1.]
上一页
返回首页
下一页
第十七页,编辑于星期六:二十二点 二十七分。
高三一轮总复习

中考一轮复习--第11讲 反比例函数及其应用

中考一轮复习--第11讲 反比例函数及其应用
1
1
∴a=2,∴直线 OB 的函数表达式为 y=2x.
(2)如图,作 CD⊥OA 于点 D,∵C(1,2),
∴OC= 12 + 22 = 5.
在平行四边形 OABC 中,
CB=OA=3,AB=OC= 5,
∴四边形 OABC 的周长为 3+3+ 5 + 5
=6+2 5,
即四边形 OABC 的周长为 6+2 5.
动程序.若在水温为30 ℃时接通电源,水温y(℃)与时间x(min)的关
系如图所示.
(1)分别写出水温上升和下降阶段y与x之间的函数关系式;
(2)怡萱同学想喝高于50 ℃的水,请问她最多需要等待多长时间?
考法1
考法2
考法3
考法4
分析:(1)根据函数图象和题意可以求得y关于x的函数关系式,注意
函数图象是循环出现的;(2)根据(1)中的函数解析式可以解答本题.
(1)求k的值及直线OB的函数表达式;
(2)求四边形OABC的周长.
考法1
考法2
考法3
考法4


解:(1)依题意有:点 C(1,2)在反比例函数 y= (k≠0)的图象上,
∴k=xy=2.
∵A(3,0),∴CB=OA=3.又 CB∥x 轴,∴B(4,2).设直线 OB 的函数表达
式为 y=ax,∴2=4a,
考法1
考法2
考法3
考法4
反比例函数的图象和性质
例2(2019·江苏镇江)已知点A(-2,y1),B(-1,y2)都在反比例函数y=- 2

的图象上,则y1
y2.(填“>”或“<”)
答案:<
2

2018年高三一轮复习教学课件3-函数的图象

2018年高三一轮复习教学课件3-函数的图象

(2)函数y=f(x)与y=-f(x)的图象关于原点对称.( × )
(3)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图象关于直线x=1 对称.(√ ) (4)若函数y=f(x)满足f(x-1)=f(x+1),则函数f(x)的图象关于直线x=1 对称.( × )
(5)将函数y=f(-x)的图象向右平移1个单位得到函数y=f(-x-1)的图

(1)先画函数y=x2-4x+3的图象,再将其x轴下方
的图象翻折到x轴上方,如图1.
2x+1 2(x+1)-1 1 (2)y= = =2- . x+1 x+1 x+1 1 可由函数 y=- x 向左平移 1 个单位, 再向上平 移 2 个单位得到,如图 2. x,x≥1, (3)y=10|lg x|=1 如图 3. , 0 < x < 1 , x
-a=0 有两个实根, 则实数 a 的取值范围是________.
解析 当 x≤0 时,0<2x≤1,所以由图象
可知要使方程 f(x)-a=0 有两个实根,即 函数 y=f(x)与 y=a 的图象有两个交点, 所 以由图象可知 0<a≤1.
答案 (0,1]
考点一 函数图象的作法
【例1】 分别画出下列函数的图象:
考点二 函数图象的辨识 【例 2】 (1)函数 象可能为(
1 f(x)= x- cos x
x(-π≤x≤π 且 x≠0)的图
)
(2) 小明骑车上学,开始时匀速行驶,途中因交通堵塞停留 了一段时间后,为了赶时间加快速度行驶,与以上事件吻合 得最好的图象是( )
解析
(1)因为
1 1 f(-x)= -x+ x cos(-x)=- x-x cos

新高考一轮复习人教A版第二章第十一讲导数与函数的单调性课件(60张)

新高考一轮复习人教A版第二章第十一讲导数与函数的单调性课件(60张)

【题后反思】根据函数单调性求参数的一般思路 (1)利用集合间的包含关系处理:y=f(x)在(a,b)上单 调,则区间(a,b)是相应单调区间的子集. (2)f(x)单调递增(减)的充要条件是对任意的 x∈(a,b) 都有 f′(x)≥0(f′(x)≤0)且在(a,b)内的任一非空子区间 上,f′(x)不恒为零,应注意此时式子中的等号不能省略, 否则会漏解. (3)函数在某个区间上存在单调区间可转化为不等式 有解问题.
解:函数的定义域为(0,+∞),
f′(x)=ax-(a+1)+1x=ax2-a+x 1x+1=
ax-1x-1
x
.
①当 0<a<1 时,1a>1, ∴x∈(0,1)和1a,+∞时,f′(x)>0; x∈1,a1时,f′(x)<0, ∴函数 f(x)在(0,1)和1a,+∞上单调递增,在1,1a上 单调递减;
综上,当 0<a<1 时,函数 f(x)在(0,1)和1a,+∞上单 调递增,在1,a1上单调递减;
当 a=1 时,函数 f(x)在(0,+∞)上单调递增; 当 a>1 时,函数 f(x)在0,a1和(1,+∞)上单调递增, 在1a,1上单调递减.
【题后反思】 (1)研究含参数的函数的单调性,要依据参数对不等式 解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论, 还要确定导数为零的点和函数的间断点.
②当 a>0 时,令 3x2-a=0,得 x=
33a或-
3a 3.
当 x> 33a或 x<- 33a时,f′(x)>0;
当- 33a<x< 33a时,f′(x)<0.
因此 f(x)在-∞,- 33a, 33a,+∞上单调递增, 在- 33a, 33a上单调递减.

高考数学(文)一轮复习文档:第二章 基本初等函数、导数及其应用 第11讲导数与函数的单调性 Word版含答案

高考数学(文)一轮复习文档:第二章 基本初等函数、导数及其应用 第11讲导数与函数的单调性 Word版含答案

第11讲导数与函数的单调性,)函数的单调性在(a,b)内函数f(x)可导,f′(x)在(a,b)任意子区间内都不恒等于0.f′(x)≥0⇔f(x)在(a,b)上为增函数.f′(x)≤0⇔f(x)在(a,b)上为减函数.辨明导数与函数单调性的关系(1)f′(x)>0(或<0)是f(x)在(a,b)内单调递增(或递减)的充分不必要条件;(2)f′(x)≥0(或≤0)是f(x)在(a,b)内单调递增(或递减)的必要不充分条件.注意:由函数f(x)在区间内单调递增(或递减),可得f′(x)≥0(或≤0)在该区间恒成立,而不是f′(x)>0(或<0)恒成立,“=”不能少.1.教材习题改编函数f(x)的导函数f′(x)有下列信息:①f′(x)>0时,-1<x<2;②f′(x)<0时,x<-1或x>2;③f′(x)=0时,x=-1或x=2.则函数f(x)的大致图象是( )C 根据信息知,函数f(x)在(-1,2)上是增函数.在(-∞,-1),(2,+∞)上是减函数,故选C.2.教材习题改编函数f(x)=x3-3x+1的单调增区间是( )A.(-1,1) B.(-∞,1)C.(-1,+∞) D.(-∞,-1),(1,+∞)D f′(x)=3x2-3.由f′(x)>0得,x<-1或x>1.故单调增区间为(-∞,-1),(1,+∞),故选D.3.教材习题改编函数f(x)=cos x-x在(0,π)上的单调性是( )A.先增后减B.先减后增C.增函数D.减函数D 因为f ′(x )=-sin x -1<0. 所以f (x )在(0,π)上是减函数,故选D.4.教材习题改编函数f (x )=sin x +kx 在(0,π)上是增函数,则实数k 的取值范围为________.因为f ′(x )=cos x +k ≥0, 所以k ≥-cos x ,x ∈(0,π)恒成立. 当x ∈(0,π)时,-1<-cos x <1, 所以k ≥1.k ≥15.教材习题改编函数f (x )=x 2-ax -3在(1,+∞)上是增函数,则实数a 的取值范围是________.f ′(x )=2x -a ,因为f (x )在(1,+∞)上是增函数, 所以2x -a ≥0在(1,+∞)上恒成立. 即a ≤2x ,所以a ≤2.a ≤2利用导数判断或证明函数的单调性已知函数f (x )=ln x -ax 2+(2-a )x .讨论f (x )的单调性. 【解】 f (x )的定义域为(0,+∞).f ′(x )=1x-2ax +(2-a )=-(2x +1)(ax -1)x.①若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增. ②若a >0,则由f ′(x )=0得x =1a,且当x ∈(0,1a)时,f ′(x )>0,当x >1a时,f ′(x )<0.所以f (x )在(0,1a )上单调递增,在(1a,+∞)上单调递减.已知函数f (x )=x -2x+1-a ln x ,a >0.讨论f (x )的单调性.由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8. ①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0. 此时f (x )是(0,+∞)上的单调递增函数.②当Δ=0,即a =22时,仅对x =2有f ′(x )=0,对其余的x >0都有f ′(x )>0.此时f (x )是(0,+∞)上的单调递增函数.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.所以f (x ),f ′(x )随x 的变化情况如下表:(a +a 2-82,+∞)上单调递增.求函数的单调区间求函数f (x )=ln x -12x 2+x -12的单调区间.【解】 因为f (x )=ln x -12x 2+x -12,且定义域为(0,+∞),所以f ′(x )=1x -x +1=-(x -1-52)(x -1+52)x.令f ′(x )=0,所以x 1=1+52,x 2=1-52(舍去).当x ∈(0,1+52)时,f ′(x )>0;当x ∈(1+52,+∞)时,f ′(x )<0,所以函数f (x )的单调递增区间为(0,1+52),单调递减区间为(1+52,+∞).已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x,讨论g (x )的单调区间. (1)对f (x )求导得f ′(x )=3ax 2+2x , 因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0, 即3a ·169+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12.(2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x,故g ′(x )=⎝ ⎛⎭⎪⎫32x 2+2x e x +⎝ ⎛⎭⎪⎫12x 3+x 2e x=⎝ ⎛⎭⎪⎫12x 3+52x 2+2x e x=12x (x +1)(x +4)e x. 令g ′(x )=0,解得x =0或x =-1或x =-4. 当x <-4时,g ′(x )<0,故g (x )为减函数; 当-4<x <-1时,g ′(x )>0,故g (x )为增函数; 当-1<x <0时,g ′(x )<0,故g (x )为减函数; 当x >0时,g ′(x )>0,故g (x )为增函数.综上知,g (x )的单调递减区间为(-∞,-4),(-1,0),单调递增区间为(-4,-1),(0,+∞).函数单调性的应用(高频考点)利用导数根据函数的单调性(区间)求参数的取值范围,是高考考查函数单调性的一个重要考向,常以解答题的形式出现.高考对函数单调性的考查主要有以下两个命题角度: (1)已知函数单调性求参数的取值范围; (2)比较大小或解不等式.(1)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A .(-∞,-2]B .(-∞,-1]C . 因为函数f (x )=kx -ln x ,所以f ′(x )=k -1x,函数在区间(1,+∞)上单调递减,则f ′(x )≤0在(1,+∞)上恒成立,即k -1x≤0在区间(1,+∞)上恒成立,故k ≤1x在区间(1,+∞)上恒成立,因为在区间(1,+∞)上0<1x<1,故k ≤0.(1)利用函数的单调性求参数的取值范围的解题思路①由函数在区间上单调递增(减)可知f ′(x )≥0(f ′(x )≤0)在区间上恒成立列出不等式.②利用分离参数法或函数的性质求解恒成立问题.③对等号单独检验,检验参数的取值能否使f ′(x )在整个区间恒等于0,若f ′(x )恒等于0,则参数的这个值应舍去;若只有在个别点处有f ′(x )=0,则参数可取这个值.(2)利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.(1)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )≠0.应注意此时式子中的等号不能省略,否则漏解.(2)注意函数的单调区间与函数在某区间上具有单调性是不同的.角度一 已知函数单调性求参数的取值范围1.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x -1,x ≤1log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为________.要使函数f (x )在R 上单调递增,则有⎩⎪⎨⎪⎧a >1,a -2>0,f (1)≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3]. (2,3]角度二 比较大小或解不等式2.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .D .(0,8)B 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f ≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9., )——分类讨论思想研究函数的单调性已知函数f (x )=(ax 2-x +a )e x,试讨论函数f (x )的单调性. 【解】 f ′(x )=(x +1)(ax +a -1)e x.当a =0时,f ′(x )在(-∞,-1)上时,f ′(x )>0,f (x )在(-∞,-1)上单调递增;f ′(x )在(-1,+∞)上时,f ′(x )<0,f (x )在(-1,+∞)上单调递减.当a >0时,因为-1+1a >-1,所以f (x )在(-∞,-1)和(-1+1a,+∞)上单调递增,在(-1,-1+1a)上单调递减;当a <0时,因为-1+1a <-1,所以f (x )在(-∞,-1+1a)和(-1,+∞)上单调递减,在(-1+1a,-1)上单调递增.(1)含参数的函数的单调性问题一般要分类讨论,常见的分类讨论标准有以下几种可能:①方程f ′(x )=0是否有根;②若f ′(x )=0有根,求出根后是否在定义域内;③若根在定义域内且有两个,比较根的大小是常见的分类方法.(2)本题求解中分a >0,a =0,a <0三种情况讨论.已知函数f (x )=a ln x +12x 2-(1+a )x .求函数f (x )的单调区间.f ′(x )=a x +x -(1+a )=x 2-(1+a )x +a x =(x -1)(x -a )x.当a ≤0时,若0<x <1,则f ′(x )<0,若x >1,则f ′(x )>0,故此时函数f (x )的单调递减区间是(0,1),单调递增区间是(1,+∞);当0<a <1时,f ′(x ),f (x )的变化情况如下表:当a =1时,f ′(x )=(x -1)2x≥0,所以函数f (x )的单调递增区间是(0,+∞);当a >1时,同0<a <1时的解法,可得函数f (x )的单调递增区间是(0,1),(a ,+∞),单调递减区间是(1,a )., )1.函数f (x )=e x-e x ,x ∈R 的单调递增区间是( ) A .(0,+∞) B .(-∞,0) C .(-∞,1)D .(1,+∞)D 由题意知,f ′(x )=e x-e ,令f ′(x )>0,解得x >1,故选D.2.已知函数f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则f (x )的图象可能是( )D 当x <0时,由导函数f ′(x )=ax 2+bx +c <0,知相应的函数f (x )在该区间内单调递减;当x >0时,由导函数f ′(x )=ax 2+bx +c 的图象可知,导函数在区间(0,x 1)内的值是大于0的,则在此区间内函数f (x )单调递增.只有D 选项符合题意.3.若函数f (x )=x 3-tx 2+3x 在区间上单调递减,则实数t 的取值范围是( ) A .(-∞,518]B .(-∞,3]C .[518,+∞)D . f ′(x )=3x 2-2tx +3,由于f (x )在区间上单调递减,则有f ′(x )≤0在上恒成立,即3x 2-2tx +3≤0在上恒成立,则t ≥32(x +1x )在上恒成立,因为y =32(x +1x )在上单调递增,所以t ≥32(4+14)=518,故选C.4.已知函数f (x )=x sin x ,x ∈R ,则f ⎝ ⎛⎭⎪⎫π5,f (1),f ⎝ ⎛⎭⎪⎫-π3的大小关系为( )A .f ⎝ ⎛⎭⎪⎫-π3>f (1)>f ⎝ ⎛⎭⎪⎫π5B .f (1)>f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π5C .f ⎝ ⎛⎭⎪⎫π5>f (1)>f ⎝ ⎛⎭⎪⎫-π3D .f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π5>f (1) A 因为f (x )=x ·sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ).所以函数f (x )是偶函数,所以f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3. 又x ∈⎝⎛⎭⎪⎫0,π2时,得f ′(x )=sin x +x cos x >0,所以此时函数是增函数.所以f ⎝ ⎛⎭⎪⎫π5<f (1)<f ⎝ ⎛⎭⎪⎫π3. 所以f ⎝ ⎛⎭⎪⎫-π3>f (1)>f ⎝ ⎛⎭⎪⎫π5,故选A. 5.(2017·郑州第一次质量预测) 已知定义在R 上的函数f (x )满足f (-3)=f (5)=1,f ′(x )为f (x )的导函数,且导函数y =f ′(x )的图象如图所示,则不等式f (x )<1的解集是( )A .(-3,0)B .(-3,5)C .(0,5)D .(-∞,-3)∪(5,+∞)B 依题意得,当x >0时,f ′(x )>0,f (x )是增函数;当x <0时,f ′(x )<0,f (x )是减函数.又f (-3)=f (5)=1,因此不等式f (x )<1的解集是(-3,5).6.已知f (x )=ax 3,g (x )=9x 2+3x -1,当x ∈时,f (x )≥g (x )恒成立,则a 的取值范围为( )A .a ≥11B .a ≤11C .a ≥418D .a ≤418A f (x )≥g (x )恒成立,即ax 3≥9x 2+3x -1.因为x ∈,所以a ≥9x +3x 2-1x 3.令1x=t ,则当t ∈⎣⎢⎡⎦⎥⎤12,1时,a ≥9t +3t 2-t 3.令h (t )=9t +3t 2-t 3,h ′(t )=9+6t -3t 2=-3(t -1)2+12.所以h ′(t )在⎣⎢⎡⎦⎥⎤12,1上是增函数.所以h ′(t )min =h ′⎝ ⎛⎭⎪⎫12=-34+12>0. 所以h (t )在⎣⎢⎡⎦⎥⎤12,1上是增函数.所以a ≥h (1)=11,故选A.7.函数y =12x 2-ln x 的单调递减区间为________.对于函数y =12x 2-ln x ,易得其定义域为{x |x >0},y ′=x -1x =x 2-1x ,令x 2-1x<0,又x >0,所以x 2-1<0,解得0<x <1,即函数y =12x 2-ln x 的单调递减区间为(0,1).(0,1)8.若函数f (x )=13x 3-32x 2+ax +4恰在上单调递减,则实数a 的值为________.因为f (x )=13x 3-32x 2+ax +4,所以f ′(x )=x 2-3x +a ,又函数f (x )恰在上单调递减, 所以-1,4是f ′(x )=0的两根, 所以a =(-1)×4=-4. -49.(2017·石家庄二中开学考试)已知函数f (x )=ln x +2x,若f (x 2+2)<f (3x ),则实数x 的取值范围是________.由题可得函数定义域为(0,+∞),f ′(x )=1x+2xln 2,所以在定义域内f ′(x )>0,函数单调递增,所以由f (x 2+2)<f (3x )得x 2+2<3x ,所以1<x <2.(1,2)10.若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是________. 由题意知f ′(x )=3ax 2+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点,所以3ax 2+6x -1=0需满足a ≠0,且Δ=36+12a >0,解得a >-3,所以实数a 的取值范围是(-3,0)∪(0,+∞).(-3,0)∪(0,+∞)11.设函数f (x )=13x 3-a 2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(1)求b ,c 的值;(2)求函数f (x )的单调区间.(1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧f (0)=1,f ′(0)=0,即⎩⎪⎨⎪⎧c =1,b =0. (2)由(1)得,f ′(x )=x 2-ax =x (x -a ).①当a =0时,f ′(x )=x 2≥0恒成立,即函数f (x )在(-∞,+∞)内为单调增函数. ②当a >0时,由f ′(x )>0得,x >a 或x <0;由f ′(x )<0得0<x <a .即函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). ③当a <0时,由f ′(x )>0得,x >0或x <a ;由f ′(x )<0得,a <x <0.即函数f (x )的单调递增区间为(-∞,a ),(0,+∞),单调递减区间为(a ,0).12.(2017·河北省衡水中学模拟)已知函数f (x )=⎝ ⎛⎭⎪⎫x +a x e x,a ∈R . (1)当a =0时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)当a =-1时,求证:f (x )在(0,+∞)上为增函数.函数f (x )的定义域为{x |x ≠0},f ′(x )=x 3+x 2+ax -a x 2e x . (1)当a =0时,f (x )=x ·e x ,f ′(x )=(x +1)e x,所以f (1)=e ,f ′(1)=2e.所以曲线y =f (x )在点(1,f (1))处的切线方程是y -e =2e(x -1),即2e x -y -e =0. (2)证明:当a =-1时,f ′(x )=x 3+x 2-x +1x 2e x (x >0). 设g (x )=x 3+x 2-x +1,则g ′(x )=3x 2+2x -1=(3x -1)(x +1).令g ′(x )=(3x -1)(x +1)>0,得x >13. 令g ′(x )=(3x -1)(x +1)<0,得0<x <13. 所以函数g (x )在⎝ ⎛⎭⎪⎫0,13上是减函数,在⎝ ⎛⎭⎪⎫13,+∞上是增函数, 所以函数g (x )在x =13处取得最小值, 且g ⎝ ⎛⎭⎪⎫13=2227>0. 所以g (x )在(0,+∞)上恒大于零.于是,当x ∈(0,+∞)时,f ′(x )=x 3+x 2-x +1x 2e x >0恒成立.所以当a=-1时,函数f(x)在(0,+∞)上为增函数.13.已知a∈R,函数f(x)=(-x2+ax)e x(x∈R,e为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)函数f(x)是否为R上的单调函数?若是,求出a的取值范围;若不是,请说明理由. (1)当a=2时,f(x)=(-x2+2x)e x,所以f′(x)=(-2x+2)e x+(-x2+2x)e x=(-x2+2)e x.令f′(x)>0,即(-x2+2)e x>0,因为e x>0,所以-x2+2>0,解得-2<x<2,所以函数f(x)的单调递增区间是(-2,2).(2)若函数f(x)在R上单调递减,则f′(x)≤0对任意x∈R都成立.即e x≤0对任意x∈R都成立.因为e x>0,所以x2-(a-2)x-a≥0对任意x∈R都成立.所以Δ=(a-2)2+4a≤0,即a2+4≤0,这是不可能的.故函数f(x)不可能在R上单调递减.若函数f(x)在R上单调递增,则f′(x)≥0对任意x∈R都成立,即e x≥0对任意x∈R都成立.因为e x>0,所以x2-(a-2)x-a≤0对任意x∈R都成立.而Δ=(a-2)2+4a=a2+4>0,故函数f(x)不可能在R上单调递增.综上可知函数f(x)不是R上的单调函数.。

高考数学一轮总复习第二章函数概念与基本初等函数第11讲函数模型及其应用课件文

高考数学一轮总复习第二章函数概念与基本初等函数第11讲函数模型及其应用课件文

【解析】 (1)由图象可求得一次函数的解析式为 y=30x-570,令 30x-570 =0,解得 x=19. (2)设每个售价定为 x 元,则利润 y=(x-80)·[400-(x-90)·20]=-20[(x- 95)2-225]. 所以当 x=95 时,y 最大. 【答案】 (1)19 (2)95
利用函数图象刻画实际问题
(师生共研)
(2020·高考北京卷)为满足人民对美好
生活的向往,环保部门要求相关企业加强污
水治理,排放未达标的企业要限期整改.设
企业的污水排放量 W 与时间 t 的系为 W=f(t),用-f(b)b- -fa(a)的大小评价在a,b这段时间内企业污水治理能
力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图
【解析】 (1)设老师上课时声音强度,一般两人小声交谈时声音强度分别 为 x1 W/m2,x2 W/m2, 根据题意得 d(x1)=9lg1×x110-13=63, 解得 x1=10-6, d(x2)=9lg1×x120-13=54, 解得 x2=10-7,所以xx12=10, 所以老师上课时声音强度约为一般两人小声交谈时声音强度的 10 倍,故选 B.
√A.10 %
C.50 %
B.30 % D.100 %
解析:将信噪比NS从 1000 提升至 2000,C 大约增加了
Wlog2(1+2 000)-Wlog2(1+1 000) Wlog2(1+1 000)
=log22
001-log21 log21 001
001≈10.9697.9-679.967≈10%,故选
A.2 023 年
B.2 024 年
√C.2 025 年
D.2 026 年
【解析】 根据题意,知每年投入的研发资金增长的百分率相同,所以, 从 2 021 年起,每年投入的研发资金组成一个等比数列{an},其中,首项 a1 =130,公比 q=1+12%=1.12,所以 an=130×1.12n-1.由 130×1.12n-1>200, 两边同时取对数,得 n-1>lg l2g-1l.1g21.3,又lg l2g-1l.1g21.3≈0.300-.050.11=3.8, 则 n>4.8,即 a5 开始超过 200,所以 2 025 年投入的研发资金开始超过 200 万元,故选 C.

2018版高考数学(人教A版理)一轮复习课件:重点强化课1 函数的图象与性质

2018版高考数学(人教A版理)一轮复习课件:重点强化课1 函数的图象与性质
|a-1|
1 1 3 < 2,即|a-1|<2,所以2<a<2.]
高三一轮总复习
☞角度 2 奇偶性与周期性结合 (2017· 贵阳适应性考试(二))若函数 f(x)=asin 2x+btan x+1, 且 f(- 3)=5,则 f(π+3)=________.
-3 [令 g(x)=asin 2x+btan x,则 g(x)是奇函数,且最小正周期是 π,由 f(- 3)=g(-3)+1=5,得 g(-3)=4,则 g(3)=-g(-3)=-4,则 f(π+3)=g(π+3)+1 =g(3)+1=-4+1=-3.]
高三一轮总复习
重点 1
函数图象的应用

1 0,2, cos πx,x∈ 已知 f(x)为偶函数,当 x≥0 时,f(x)= 2x-1,x∈1,+∞, 2
1 不等式 f(x-1)≤2的解集为(
) 【导学号:01772064】
高三一轮总复习
1 2 4 7 A.4,3∪3,4 3 1 1 2 B.-4,-3∪4,3 1 3 4 7 C.3,4∪3,4 3 1 1 3 D.-4,-3∪3,4
x∈[1,+
1 a=f(-3)=f(3),b=f4=f(4),所以
b>a>c,故
即根据分段函数中自变量取值范围的界定,代入相应的解析式求解零点,注意取 值范围内的大前提,以及函数性质和数形结合在判断零点个数时的强大功能.
Hale Waihona Puke 高三一轮总复习[对点训练 2] (2017· 石家庄一模)已知函数 y=f(x+2)的图象关于直线 x=-2 对称,且当 x∈(0,+∞)时,f(x)=|log2x|,若 c 的大小关系是( A.a>b>c C.c>a>b ) B.b>a>c D.a>c>b

高三数学第一轮复习课件(ppt)目录

高三数学第一轮复习课件(ppt)目录

Page 12
目录 CONTENTS
第二章
2.1 函数及其表示 2.2 函数的单调性与最值 2.3 函数的奇偶性与周期性 2.4 一次函数、二次函数 2.5 指数与指数函数 2.6 对数与对数函数 2.7 幂函数 2.8 函数的图象及其变换 2.9 函数与方程
函数
2.10 函数模型及其应用
第一讲:三角函数
S ABC=1/2bcsinA=1/2absinC=1/2ah,可得sinA=√15/8,sinC=√15/4。
∴cosA=7/8,cosC=1/4,
∴cos(A-C)=7/8 x 1/4 + √15/8 x √15/4
=11/16 c=2
A
b=2
h=√15/2
Page 21
B
C 1/2 a
1/2
C、﹙1,+∞﹚
D、[1,+∞﹚
解析:由于3x>0,所以3x+1>1,所以f(x)>0,集合表示为(0,+∞),答案为A
2、已知函数y=2x+1的值域为(5,7),则对应的自变量x的范围为(

A、[2,3)
B、[2,3]
C、(2,3)
D、(2,3]
解析:根据题意:5<2x+1<7,解得2<x<3,用集合表示为(2,3),答案为C
A [1,2]
解析:解二元一次不等式x2 +2x-8≤0,可得-4≤x≤2,所以M为[-4,2]; 解不等式3x-2≥2x-1,可得x≥1,所以N为[1,+∞﹚。此时我们可以应用数轴马 上解决问题:
-4 0 1 2
如图所示,阴影部分即为所求。答案:A 启示:掌握好数轴工具,在集合、函数问题( B
B、﹙-∞,5]

D、[5,+∞﹚

高考一轮总复习数学(理)课件 第2章 函数、导数及其应用 2-11 板块一 知识梳理 自主学习ppt版本

高考一轮总复习数学(理)课件 第2章 函数、导数及其应用 2-11 板块一 知识梳理 自主学习ppt版本
一轮总复习·数学(理)
第2章 函数、导数及其应用 第11讲 导数在研究函数中的应用
板块一 知识梳理·自主学习
[必备知识] 考点1 函数的导数与单调性的关系 函数y=f(x)在某个区间内可导: (1)若f′(x)>0,则f(x)在这个区间内 单调递增 ; (2)若f′(x)<0,则f(x)在这个区间内 单调递减 ; (3)若f′(x)=0,则f(x)在这个区间内是 常数函数 .
1

a.

f′(x)

1 x

ax

a

1

-ax2+1+ x
ax-x.①若
a≥0,当
0<x<1
时,f′(x)>0,f(x)
单调递增;当 x>1 时,f′(x)<0,f(x)单调递减,所以 x=1
是 f(x)的极大值点.②若 a<0,由 f′(x)=0,得 x=1 或 x
=-1a.因为 x=1 是 f(x)的极大值点,所以-1a>1,解得-
命题角度2 根据函数的单调性求参数范围
例2 已知a≥0,函数f(x)=(x2-2ax)ex,若f(x)在[-1,1]
上是单调减函数,则a的取值范围是(
)
A.0,34
C.34,+∞

B.12,34 D.0,12
[解 析 ] f′(x)= (2x- 2a)ex + (x2 - 2ax)ex = [x2 + (2 - 2a)x-2a]ex,由题意知当 x∈[-1,1]时,f′(x)≤0 恒成立, 即 x2+(2-2a)x-2a≤0 恒成立.
①当-a2≤1 时,即-2≤a<0 时,f(x)在[1,4]上的最小
值为 f(1),由 f(1)=4+4a+a2=8,得 a=±2 2-2,均不符

高考数学第一轮复习系列讲座11--指数函数与对数函数

高考数学第一轮复习系列讲座11--指数函数与对数函数

y = loga x
(0<a<1)
图像
定义域 值域
(0,+∞)
R
(0,+∞) (0,+∞)
R
R
单调性 在(0,+∞)上是增函数 在(0,+∞)上是减函数
过定点
(1,0) (1,0) (1,0)
函数值变 化情况
16
0<x<1时,y<0 x>1时,y>0
新疆 王新敞
奎屯
0<x<1时,y>0
x>1时,y<0
王新敞 w xckt@126. com
新疆 王新敞
奎屯
二、知识点归纳 新疆 源头学子小屋 http://w ww .xj /w xc/ 特级教师 王新敞 w xckt@ 新疆 源头学子小屋 http://w ww .xj /w xc/ 特级教师 王新敞 w xckt@
新疆 源头学子 小屋 http:// w w w . xj ktyg . com/ w xc/ 特级教师
王新敞 w xckt@126. com
新疆 王新敞
奎屯
三、题型讲解
新疆 源头学子小屋 http://w ww .xj /w xc/ 特级教师 王新敞
w xckt@
新疆 源头学子小屋 http://w ww .xj /w xc/ 特级教师 王新敞
w xckt@
例2 画出函数 y log 2 | x |的图象 ,
并由图象写出它们的单调区间.
解: 因为 f (x) log2 | x | log2 | x | f (x) , (x 0)
C2
CC1 所以函数是偶函数,它的图
1

高考数学一轮复习讲义 函数及其表示课件 新人教A版

高考数学一轮复习讲义 函数及其表示课件 新人教A版

4.由映射的定义可以看出,映射是 函数概念的推广,函 数是一种特殊的映射,要注意构成函数的两个集合(jíhé)A,
B必须是 非空数集 .
第三页,共47页。
基础自测(zìcè)
1.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面
的4个图形中,能表示集合M到集合N的函数关系的

()
C
A.①②③④ B.①②③ C.②③ D.② 解析 由映射的定义,要求函数在定义域上都有图 象,并且一个x对应着一个y,据此排除①④,选C.
第十七页,共47页。
探究提高 求函数解析式的常用方法有:(1)代入法, 用g(x)代入f(x)中的x,即得到f[g(x)]的解析式; (2)拼凑法,对f[g(x)]的解析式进行拼凑变形, 使它能用g(x)表示出来,再用x代替两边的所有 “g(x)”即可;(3)换元法,设t=g(x),解出x,代入
f[g(x)],得f(t)的解析式即可;(4)待定系数法, 若已知f(x)的解析式的类型,设出它的一般形式,根 据特殊值,确定相关(xiāngguān)的系数即可;(5)赋值法,给变 量赋予某些特殊值,从而求出其解析式.
10分
解得0<x< 1,适合0<x<1. 故为保证本3年度利润比上年有所增加,投入成本增加
第十九页,共47页。
解 (1) 令 2 1 t,则x 2 ,
x
t 1
f (t) 1g 2 , f (x) 1g 2 , x (1,). (2)设f(x)t=ax1+b(a≠0),则 x 1
3f(x+1)-2f(x-1)=3ax+3a+3b-2ax+2a-2b
=ax+b+5a=2x+17,

2018届高三数学一轮复习-函数的图像及其应用【方案】.ppt

2018届高三数学一轮复习-函数的图像及其应用【方案】.ppt
精选
考点贯通
抓高考命题的“形”与“神”
作函数的图象
[例 1] 作出下列函数的图象: (1)y=12|x|; [解] 作出 y=12x 的图象,保留 y=12x 图 象中 x≥0 的部分,加上 y=12x 的图象中 x>0 部 分关于 y 轴的对称部分,即得 y=12|x|的图象, 如图中实线部分.
精选
2.[考点二]函数 f(x)=lnx-1x的图象是
()
精选
解析:自变量x满足x-
1 x

x2-1 x
>0,当x>0时,可得
x>1,当x<0时,可得-1<x<0,即函数f(x)的定义域是
(-1,0)∪(1,+∞),据此排除选项A、D.函数y=x-
1 x
单调递增,故函数f(x)=ln x-1x 在(-1,0),(1,+∞)上 单调递增,故选B.
精选
(2)y=|log2(x+1)|; (3)y=2xx--11; [解] (2)将函数 y=log2x 的图象向左平移 1 个 单位,再将 x 轴下方的部分沿 x 轴翻折上去,即可 得到函数 y=|log2(x+1)|的图象,如图. (3)因为 y=2xx--11=2+x-1 1,故函数图象可 由 y=1x的图象向右平移 1 个单位,再向上平移 2 个单位而得,如图.
所以 y=cfosxx为偶函数,
所以cfosxx<0 的解集为-π2,-1∪1,π2.
[答案]
-π2,-1∪1,π2
精选
(2)设函数 f(x)=ax+cos x,x∈[0,π].设 f(x)≤1+sin x, 则 a 的取值范围为________.
[解析] 由 f(x)≤1+sin x, 得 ax+cos x≤1+sin x, 即 ax≤ 2sinx-π4+1,构造函数 g1(x)=ax,g2(x) = 2sinx-π4+1, 如图所示, 若使 ax≤ 2sinx-π4+1 恒成立,

2018版高考一轮数学文科:第10讲-函数的图像ppt课件

2018版高考一轮数学文科:第10讲-函数的图像ppt课件
函数的图像
教学参考│课前双基巩固│课堂考点探究│教师备用例题
第10讲 PART 02
考试说明
1.会运用函数图像理解和研究函数的性质. 2.熟记基本初等函数的图像,掌握函数作图的基本方法及函数图像的基本变换,能结合 图像研究函数的性质.
教学参考
考情分析
考点 作函数图像
考查方向 作函数图像
考例
考查热度 ★☆☆
变换 类型 变换前函数 变换方法 变换后函数
f(x-a) 的图像 y=________ f(x)+b 的图像 y=________ -f(x) 的图像 y=________ f(-x) 的图像 y=________ -f(-x) 的图像 y=________
a>0,右移 a 个单位; a<0,左移|a|个单位 平移变换 y=f(x) 的图像 b>0,上移 b 个单位;b<0, 下移|b|个单位 关于 x 轴对称 关于 y 轴对称 y=f(x) 的图像 关于原点对称 对称变换 y=ax (a>0 且 a≠1) 的图像 关于直线 y=x 对称
y= ________________ logห้องสมุดไป่ตู้ax(a>0,且a≠1) 的图像
课前双基巩固
变换 类型 变换前函 数 变换方法 变换后函数
a>1,横坐标缩短为原来的,纵坐标不变;0<a<1, y=________ 的图 f(ax) 横坐标伸长为原来的倍,纵坐标不变 像 伸缩 y=f(x) 的 变换 图像 a>1,纵坐标伸长为原来的a倍,横坐标不变; y=________的图 af(x) 0<a<1,纵坐标缩短为原来的a倍,横坐标不变 像
函数图像的识别
判断函数的图像
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20180101
中华书文馆编辑
12
(3)函数的定义域为{x∈R|x≠1}, 因为y=2x+-1x=-1+x+3 1,
因此由y=3x的图象向左平移 一个单位长度,再向下平移一 个单位长度即可得到函数 y=2x+-1x的图象,如图丙.
20180101
中华书文馆编辑
13
【拓展演练1】 作出下列函数的图象: (1)y=log2|x-1|;
20180101
中华书文馆编辑
5
3.(2013·湖南省浏阳第二次模拟)已知下图(1)中的图象
对应的函数为y=f(x),则下图(2)中的图象对应的函数在下列
给出的四个式子中,只可能是( D )
A.y=f(|x|)
B.y=|f(x)|
C.y=-f(|x|)
D.y=f(-|x|)
20180101
中华书文馆编辑
20180101
中华书文馆编辑
16
二 利用图象研究函数及其性质问题
|lg x|
0<x≤10
【例2】(1)已知函数f(x)=-21x+6 x>10

若a,b,c互不相同,
且f(a)=f(b)=f(c),则abc的取值范围是__________.
20180101
中华书文馆编辑
17
解析:(1)作出f(x)的图象如右. 假设a<b<c,则由图可知0<a<1,1<b<10,10<c<12, 又因为f(a)=-lg a,f(b)=lg b,所以-lg a=lg b,即ab=1, 所以abc的取值范围就是c的范围, 即所求abc的取值范围是(10,12).
知b=-3a. 再由f(x)的函数值的符号得a>0,所以b<0.故选A.
20180101
中华书文馆编辑
24
三 利用图象研究方程与不等式问题
2-x-1 x≤0 【例3】(1)已知函数f(x)= fx-1 x>0 ,若方程f(x)
=x+a有且只有两个不相等的实数根,则实数a的取值范围是
() A.(-∞,1]
B.(0,1]
C.(-∞,1)
D.[0,+∞)
(2)设函数f(x)=|x+a|,g(x)=x-1,对于任意的x∈R,
不等式f(x)≥g(x)恒成立,则实数a的取值范围是__________.
20180101
中华书文馆编辑
25
解析:(1)作出函数f(x)的图象(如图甲),要使斜率为1的 直线与y=f(x)有两个不同的交点,必须a<1,故选C.
-2x+3 x≤1 (2)y=-x2+4x-2 1<x≤3 .
2x-3 x>3
20180101
中华书文馆编辑
14
解析:(1)作y=log2|x|的图象, 再将图象向右平移一个单位,
如图①,即得到y=log2|x-1| 图象.
20180101
中华书文馆编辑
15
(2)分段分别画出 一次函数(x≤1), 二次函数(1<x≤3), 指数函数(x>3)的图象, 如图②.
20180101
中华书文馆编辑
9
分析:对于(1)可先在其定义域内化简,再画图象;而对 于(2)和(3)可根据其特点,找出对应的基本函数,通过图象变 换画出图象.
20180101
中华书文馆编辑
10
解析:(1)由|x|>0,得函数的定义域为{x∈R|x≠0},
且y=3log3|x|=|x|=x-x
6
解析:图(2)中的图象可以看作是保留图(1)左边的图象, 去掉右边的图象,再把左边的图象沿 y 轴翻折到右边得到的, 因此只可能函数 y=f(-|x|),故选 D.
20180101
中华书文馆编辑
7
20180101
中华书文馆编辑
8
一 函数图象的作法
【例1】作出下列函数的图象: (1)y=3log3|x|; (2)y=|log2(x-1)|; (3)y=x2+-1x.
20180101
中华书文馆编辑
22
(2)函数f(x)=ax3+bx2+cx+d的图象如图所示,则( )
A.b∈(-∞,0)
B.b∈(0,1)
C.b∈(1,2)
D.b∈(2,+∞)20180101源自中华书文馆编辑23
解析:(2)由图象给出的信息得0,1,2是方程f(x)=0的三个 根,所以d=0.设f(x)=ax(x-1)(x-2)=ax3-3ax2+2ax,
x>0 , x<0
则其图象如图甲.
20180101
中华书文馆编辑
11
(2)由x-1>0,得x>1,函数的定义域为(1,+∞), 先作y=log2x的图象,再将图象上的所有的点向右平 移一个单位(纵坐标不变),然后保留x轴上方图象不变, 并将x轴下方的图象翻折到x轴上方,可得y=|log2(x-1)| 的图象,如图乙.
第11讲 函数的图象
20180101
中华书文馆编辑
1
20180101
中华书文馆编辑
2
1.观察以下四组图象,则四种说法正确的是( C )
A.图①中a>1,k>1 B.图②中a>0,Δ>0 C.图③中a>1,0<k<1 D.图④中,a<0,k>1
20180101
中华书文馆编辑
3
2.为了得到函数y=9×(
1 3
)x的图象,可以把函数y=(
1 3
)x
的图象( D )
A.向左平移3个单位长度 B.向右平移3个单位长度
C.向左平移2个单位长度 D.向右平移2个单位长度
20180101
中华书文馆编辑
4
解析:因为 y=9×(31)x=(31)x-2,所以 y=9×(31)x 的图象 可以把函数 y=(13)x 的图象向右平移 2 个单位长度,故选 D.
20180101
中华书文馆编辑
20
【拓展演练2】(1)已知直线y=x+m与函数y= 1-x2 的
图象有两个不同的交点,则实数m的取值范围是
.
20180101
中华书文馆编辑
21
分析:本题属于识图问题,通过对给出的函数图象的分 析、判断,抽象出函数所具有的一些性质、满足的条件等.
解析:(1)因为函数y= 1-x2 的图象如右图所示,由图 可知1≤m< 2.
20180101
中华书文馆编辑
18
(2)已知函数y=f(x)的周期为2,当x∈[-1,1]时,f(x)=
x2,那么函数y=f(x)的图象与函数y=|lg x|的图象的交点共
有( )
A.10个
B.9个
C.8个
D.1个
20180101
中华书文馆编辑
19
(2)如图所示,在同一直角坐标系下作出函数y=f(x)和 函数y=|lg x|的图象,观察图象得两个函数的图象有10个交 点,所以选A.
相关文档
最新文档