中等职业教育直线与圆的位置关系教案
中职数学教案:直线与圆的位置关系(全3课时)
江苏省XY中等专业学校2021-2022-2教案编号:教学内容二、新知探究设直线的方程和圆的方程分别是:Ax+By+C=0,x2+y2+Dx+Ey+F=0如果直线和圆有公共点,由于公共点同时在直线和圆上,所以公共点的坐标一定是这两个方程的公共解。
反之,如果这两个方程没有公共解,则说明直线和圆没有公共点。
有如下结论:教学内容三、例题讲解例1 判断直线3x-4y+5=0与圆x2+y2=5的位置关系。
解法1:求出圆的半径r=5,圆心(0,0)到直线的距离为:22|30405|d153(4)⨯-⨯+==+-<所以直线与圆相交。
解法2:解方程组:223x4y50x y5-+=⎧⎨+=⎩解得:11x=-x=15y=22y=-5⎧⎪⎧⎪⎨⎨⎩⎪⎪⎩或所以,直线与圆有两个交点,即:直线与圆相交。
例2 已知圆(x+1)2+(y-2)2=a与直线3x+4y+5=0相切,求a的值。
(引导学生预习下节课内容)解:由题意得:圆心(-1,2)到直线的距离等于半径,所以:所以a=r2=4江苏省XY中等专业学校2021-2022-2教案编号:备课组别数学上课日期主备教师授课教师课题:§8.7.2直线与圆的位置关系(2)教学目标1理解并能判断直线与圆的位置关系;2学会解决直线与圆相切的问题;3通过教学,培养学生的观察、分析、归纳、推理的能力,培养学生类比分析的能力;重点直线与圆相切的问题;难点直线与圆相切的问题;教法引导探究,讲练结合教学设备多媒体一体机教学环节教学活动内容及组织过程个案补充教学内容一、复习直线与圆的位置关系的判断方法二、巩固练习:判断下列直线l与圆C的位置关系:(1)l:10x y+-=,C:229x y+=(2)l:4380x y--=,C:()2211x y++=江苏省XY中等专业学校2021-2022-2教案编号:教学内容二例题讲解例5 已知圆C的方程为2210x y+=,求过圆上一点P(3,-1)和圆相切的直线l的方程。
直线与圆的位置关系教学设计
直线与圆的位置关系教学设计教学设计:直线与圆的位置关系教学目标:1.知识目标:掌握直线与圆的相交情况和位置关系;2.技能目标:能够判断直线与圆的位置关系,并能够解决相关问题;3.情感目标:培养学生的逻辑思维能力和解决问题的能力,增强学生对几何知识的兴趣和学习动力。
教学准备:1.教学工具:黑板、白板、多媒体设备;2.教学资源:直线与圆的相关知识介绍的PPT、练习题。
教学过程:一、导入(10分钟)1.师生共同回顾直线与圆的定义和基本性质;2.出示图片,引发学生对直线与圆的相交情况和位置关系的思考,激发学生的学习兴趣。
二、知识讲解(25分钟)1.根据图片,向学生讲解直线与圆的相交情况和位置关系,包括以下几种情况:a.直线与圆相交于两个不同的点;b.直线与圆相切;c.直线与圆相离;d.直线包含圆。
2.结合具体的例子和图片,详细说明每一种情况下的特点和性质。
三、案例分析与讨论(25分钟)1.提供一些练习题,让学生根据所学知识判断直线与圆的位置关系;2.学生独立完成练习题,然后进行讨论,分析每一道题的解题思路和方法;3.针对一些较难的问题,教师进行讲解和答疑。
四、拓展练习(25分钟)1.提供一些较为复杂的问题,让学生运用所学知识解决;2.学生独立或小组合作完成练习题,然后进行讨论和分享,相互之间交流解题思路;3.教师提供指导和答疑。
五、小结(10分钟)1.对本节课的内容进行总结,巩固学生对直线与圆的位置关系的理解;2.提醒学生注意其中的重点和难点,为之后的学习做好准备。
教学反思:通过本节课的教学,学生能够初步了解直线与圆的位置关系,并能够进行相关的判断和解决问题。
通过案例分析和拓展练习,培养了学生的逻辑思维能力和解决问题的能力。
在教学中,我应重点讲解每一种情况下的特点和性质,帮助学生理解和记忆。
此外,在讲解和讨论环节,我也应注重培养学生的思考和分析能力,引导他们自主学习和发现问题的解决方法。
同时,也要根据学生的学习情况,及时进行指导和答疑,确保每个学生都能够理解掌握所学内容。
数学《直线与圆的位置关系》教案
数学《直线与圆的位置关系》教案教学目标:1. 了解直线与圆的位置关系,熟练掌握直线与圆的切线、割线、切点、割点等概念。
2. 掌握直线与圆的位置关系的基础推理方法,能够灵活运用数学知识解决相关的问题。
3. 培养学生观察、分析的能力,增强学生的实际操作能力和动手能力。
教学重难点:1. 直线与圆的切线、割线、切点、割点等概念的理解和掌握。
2. 直线与圆的位置关系的基础推理方法的应用。
教学方法:1. 讲授法和实践法相结合。
2. 采用板书、多媒体等方式进行教学。
3. 鼓励学生积极思考、多动手实践。
教学内容:1. 直线与圆的位置关系的定义。
2. 直线与圆的切线、割线、切点、割点等概念的讲解。
3. 直线与圆的位置关系的基础推理方法的应用。
教学过程:一、引入通过实际例子引出今天的教育内容:小明在修建一条直线公路的时候,发现公路穿过了一块广场,广场的中央是一个圆形花坛。
这时候,我们就需要了解直线与圆的位置关系了。
二、学习内容1. 直线与圆的位置关系的定义2. 直线与圆的切线、割线、切点、割点等概念的讲解3. 直线与圆的位置关系的基础推理方法的应用三、学习方法1. 讲授法和实践法相结合,从例子入手,以实际问题为导向,让学生掌握知识。
2. 采用板书、多媒体等方式进行教学,以图形为主,直观、形象。
3. 鼓励学生积极思考、多动手实践,参与课堂讨论。
四、学习重点难点1. 直线与圆的切线、割线、切点、割点等概念的理解和掌握。
2. 直线与圆的位置关系的基础推理方法的应用。
五、学习结果1. 了解直线与圆的位置关系。
2. 掌握直线与圆的切线、割线、切点、割点等概念。
3. 熟练应用数学知识解决直线与圆的位置关系相关的问题。
六、作业1. 完成课后习题。
2. 预习下一节课内容。
直线与圆的位置关系教案
直线与圆的位置关系教案教学目标:1. 理解直线与圆的位置关系,掌握相关概念。
2. 学会利用直线与圆的位置关系解决实际问题。
3. 培养学生的空间想象能力和逻辑思维能力。
教学重点:1. 直线与圆的位置关系的判定。
2. 直线与圆的位置关系的应用。
教学难点:1. 理解并掌握直线与圆的位置关系的判定条件。
2. 解决实际问题时,如何正确运用直线与圆的位置关系。
教学准备:1. 教学课件或黑板。
2. 直线与圆的位置关系的相关例题和练习题。
教学过程:第一章:直线与圆的基本概念1.1 直线的定义及性质1.2 圆的定义及性质1.3 直线与圆的位置关系的基本概念第二章:直线与圆的位置关系的判定2.1 直线与圆相交的判定条件2.2 直线与圆相切的判定条件2.3 直线与圆相离的判定条件第三章:直线与圆的位置关系的应用3.1 求圆的方程3.2 求直线的方程3.3 求直线与圆的位置关系第四章:实际问题中的应用4.1 求点到直线的距离4.2 求点到圆心的距离4.3 求直线与圆的交点坐标第五章:综合练习5.1 判断直线与圆的位置关系5.2 求直线与圆的位置关系5.3 解决实际问题教学反思:通过本章的学习,学生应能掌握直线与圆的位置关系的基本概念,判定条件以及应用。
在教学过程中,应注意引导学生运用数学知识解决实际问题,培养学生的空间想象能力和逻辑思维能力。
通过练习题的训练,使学生巩固所学知识,提高解题能力。
第六章:直线与圆的位置关系的性质6.1 直线与圆相交的性质6.2 直线与圆相切的性质6.3 直线与圆相离的性质本章主要学习直线与圆的位置关系的性质。
学生将学习到在直线与圆相交、相切、相离的情况下,直线和圆的特定性质。
这些性质包括交点的数量、切点的位置、距离的关系等。
教学活动:通过图形和实例,让学生观察和总结直线与圆相交、相切、相离时的性质。
引导学生通过几何推理证明这些性质。
提供练习题,让学生应用这些性质解决具体问题。
教学评估:通过课堂讨论和练习题,评估学生对直线与圆位置关系性质的理解程度。
直线与圆的位置关系教案
直线与圆的位置关系教案教学目标:1. 学习直线与圆的位置关系的概念;2. 掌握直线与圆外切、内切以及相交的判定方法;3. 能够解决与直线与圆的位置关系相关的问题。
教学准备:1. 教师准备:黑板、彩色粉笔、PPT等教具;2. 学生准备:课本、笔记本、铅笔等。
教学过程:Step 1: 引入1. 教师在黑板上画两条直线和一个圆,让学生观察并描述直线与圆的位置关系;2. 引导学生思考直线与圆的位置关系是否有规律可循。
Step 2: 外切关系1. 教师引导学生观察直线与圆相切的情况,并让学生描述相切的特征;2. 教师讲解外切的定义:当且仅当直线离圆的距离等于圆的半径时,直线与圆相外切;3. 教师给出一些例题,让学生判断直线与圆是否为外切关系,并解释判断过程。
Step 3: 内切关系1. 教师引导学生观察直线与圆相切的情况,并让学生描述相切的特征;2. 教师讲解内切的定义:当且仅当直线离圆的距离等于圆的半径,且直线通过圆心时,直线与圆相内切;3. 教师给出一些例题,让学生判断直线与圆是否为内切关系,并解释判断过程。
Step 4: 相交关系1. 教师引导学生观察直线与圆相交的情况,并让学生描述相交的特征;2. 教师讲解相交的定义:当直线与圆有公共点时,直线与圆相交;3. 教师给出一些例题,让学生判断直线与圆是否相交,并解释判断过程。
Step 5: 总结归纳1. 教师带领学生总结直线与圆的外切、内切和相交的判定方法;2. 教师提问,让学生复述直线与圆的位置关系。
Step 6: 练习巩固1. 教师提供一些练习题,让学生独立尝试解决;2. 学生互相交流解题思路,并互相讨论答案;3. 对答案并讲解解题思路。
Step 7: 拓展延伸1. 教师提出一些拓展问题,让学生尝试解决;2. 学生通过思考和讨论,寻找解题思路;3. 教师给予适当提示或解答。
Step 8: 总结反思1. 教师带领学生总结本节课的重点内容;2. 学生回顾所学,思考自己的不足之处,并提出问题;3. 教师提供帮助和解答,并鼓励学生在课后继续巩固和拓展相关知识。
直线和圆的位置关系教案
直线和圆的位置关系教案教学目标:1.能够理解直线和圆的位置关系,并能够准确描述它们之间的相对位置。
2.能够运用几何知识,解决与直线和圆的位置关系相关的问题。
3.培养学生观察和归纳总结的能力,培养学生的几何思维。
教学重难点:1.直线和圆的位置关系。
2.解决与直线和圆的位置关系相关的问题。
教学准备:1.教师准备:教学课件、教学资料。
2.学生准备:几何工具。
教学过程:一、导入(5分钟)教师通过一个小游戏,让学生通过观察几何图形的关系,来引出直线和圆的位置关系。
教师可在黑板上绘制几个形状,要求学生观察并回答以下问题:1.画一个圆和一条直线,它们的位置关系是什么?2.如果直线与圆相交,交点有几个?3.如果直线与圆相切,它们的位置关系又是什么?4.如果直线与圆没有交点或相切,它们的位置关系呢?通过学生的回答,介绍直线和圆的位置关系。
二、讲解(10分钟)1.直线与圆相交的位置关系:教师通过教学课件,向学生展示直线与圆相交的不同情况,并讲解每种情况下的名称和特点。
-直线穿过圆的两个交点,这种情况称为“直线与圆相交”。
-直线经过圆的中心,这种情况称为“直线与圆相交于两个点”,交点分别为A、B。
-直线切圆,这种情况称为“直线与圆相切”。
2.直线与圆相切的位置关系:教师通过教学课件,向学生展示直线与圆相切的情况,并讲解。
-直线与圆相切于一个点,这种情况称为“直线与圆外切”。
-直线经过圆的中心,这种情况称为“直线与圆相切”。
-直线穿过圆,并且在圆的内部,这种情况称为“直线与圆内切”。
三、练习(35分钟)1.教师出示一些练习题,供学生进行个别练习。
学生可以用纸和笔列式解答,并标注出直线与圆的位置关系。
2.在练习过程中,教师根据学生的情况,进行辅导和指导,解答学生的疑惑。
四、归纳总结(10分钟)1.教师可以要求学生归纳总结直线与圆的位置关系,可以通过小组合作让学生共同完成。
2.教师带领学生一起进行讨论,让他们自己总结直线与圆的位置关系,并在黑板上进行记录。
《直线与圆的位置关系》教案
《直线与圆的位置关系》教案一、教学目标知识与技能:1. 让学生掌握直线与圆的位置关系,理解直线与圆相交、相切、相离的概念。
2. 学会运用直线与圆的位置关系解决实际问题。
过程与方法:1. 通过观察、分析、推理等方法,探索直线与圆的位置关系。
2. 培养学生的空间想象能力和逻辑思维能力。
情感态度与价值观:1. 激发学生对数学的兴趣,培养学生的探究精神。
2. 培养学生运用数学知识解决实际问题的能力。
二、教学重点与难点重点:1. 直线与圆的位置关系的判定。
2. 直线与圆相交、相切、相离的性质。
难点:1. 直线与圆的位置关系的推理论证。
2. 运用直线与圆的位置关系解决实际问题。
三、教学准备教具:1. 直尺、圆规、铅笔。
2. 直线与圆的位置关系的图片或模型。
学具:1. 直尺、圆规、铅笔。
2. 直线与圆的位置关系的练习题。
四、教学过程1. 导入:1.1 教师出示一些直线与圆的位置关系的图片或模型,让学生观察。
1.2 学生分享观察到的直线与圆的位置关系。
2. 探究:2.1 教师引导学生通过画图、观察、分析、推理等方法,探索直线与圆的位置关系。
3. 讲解:3.1 教师根据学生的探究结果,讲解直线与圆的位置关系的判定方法和性质。
3.2 教师通过例题,讲解如何运用直线与圆的位置关系解决实际问题。
4. 练习:4.1 学生独立完成练习题,巩固所学知识。
4.2 教师选取部分学生的练习题进行点评,解答学生的疑问。
五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对直线与圆的位置关系的理解和运用能力。
关注学生在学习过程中的情感态度,激发学生的学习兴趣,培养学生的探究精神。
六、教学拓展1. 教师引导学生思考:直线与圆的位置关系在实际生活中有哪些应用?2. 学生举例说明直线与圆的位置关系在实际生活中的应用,如自行车轮子与地面的关系、篮球筐与投篮线的关系等。
七、课堂小结八、作业布置1. 完成课后练习题,巩固直线与圆的位置关系的知识。
直线与圆的位置关系》教案
直线与圆的位置关系》教案直线与圆的位置关系》教案教学目标:1、认识和理解直线与圆的三种位置关系,能够用定义来判断直线与圆的位置关系。
2、掌握圆的切线的判定方法和性质,能够判断一条直线是否是圆的切线,培养逻辑推理能力。
3、了解切线长的概念和定理,能够应用切线长的知识解决简单问题。
教学重点:1、直线和圆的三种位置关系。
2、切线的性质定理和判定定理。
3、切线长定理。
教学难点:1、直线和圆的位置关系的性质与应用。
2、运用切线的判定定理解决问题。
3、应用切线长定理。
教学过程:一、直线和圆的三种位置关系1、复导入、回顾旧知回顾点和圆的位置关系,以及判断方法。
2、创设情境,提出问题通过唐诗和观察太阳升起的过程,引出直线和圆的位置关系。
3、探究发现,建构知识练一:在纸上画圆,利用直尺移动直线,观察直线和圆的位置关系,得出相离、相切、相交的定义和判别依据。
练二:利用所学知识判断直线和圆的位置关系,并进行数量分析。
练三:复点到直线的距离和垂线段的概念。
二、圆的切线1、复导入、回顾旧知回顾圆的性质和定理。
2、创设情境,提出问题通过实例引出圆的切线的概念和判定方法。
3、探究发现,建构知识练一:通过实验和观察,得出圆的切线的性质和定理。
练二:运用切线的判定方法判断一条直线是否是圆的切线,综合运用切线的性质解决问题。
练三:介绍切线长的概念和定理,并应用切线长的知识解决简单问题。
三、课堂练和作业练一:判断直线和圆的位置关系。
练二:判断一条直线是否是圆的切线。
作业:应用所学知识解决相关问题。
通过以上教学过程,学生能够掌握直线和圆的位置关系、圆的切线的判定方法和性质,以及切线长的概念和定理,并能够应用所学知识解决相关问题。
例1如图24-43,Rt△ABC的斜边AB=10cm,∠A=30°。
求以点C为圆心作圆,当半径为多少时,AB与⊙C相切。
另外,以点C为圆心、半径分别为4cm和5cm作两个圆,这两个圆与斜边AB分别有怎样的位置关系?解:(1)过点C作边AB上的高CD。
直线与圆的位置关系教案
直线与圆的位置关系教案一、教学目标1.知识目标:了解直线与圆的位置关系的基本概念及判断方法。
2.能力目标:能够根据已知条件判断直线与圆的位置关系。
3.情感目标:培养学生观察问题、分析问题和解决问题的能力,培养学生的数学思维和创新意识。
二、教学重点三、教学难点根据已知条件判断直线与圆的位置关系。
四、教学准备1.教学工具:黑板、白板、教学投影仪。
2.教学素材:教材课件、教案、实例、练习题。
五、教学步骤步骤一:引入新课(5分钟)1.教师展示一些直线与圆的照片,向学生提问:“你们在日常生活中见过直线和圆吗?它们之间有什么关系?”2.学生回答后,教师引导学生思考直线与圆的关系,并给出提示:“直线和圆在几何学中有着重要的位置关系。
”3.教师引出本堂课的主题:“本节课我们要学习直线与圆的位置关系,通过学习,我们能够了解它们之间的关系以及如何判断它们的位置关系。
”步骤二:讲解直线与圆的位置关系(15分钟)1.教师向学生介绍直线与圆的位置关系的基本概念。
2.教师通过示意图展示直线与圆的四种位置关系:(1)直线与圆相交;(2)直线与圆内切;(3)直线与圆外切;(4)直线与圆相离。
3.教师通过实例分别讲解以上四种位置关系的判断方法。
步骤三:示例分析与讨论(20分钟)1.教师给出一些示例题,引导学生按照判断方法,分析并判断直线与圆的位置关系。
2.学生在黑板上完成示例题的解答,并与教师及其他同学进行讨论。
3.教师在讨论中强调判断的关键点和注意事项。
步骤四:解释与总结(10分钟)1.教师对本节课的重点知识进行解释和总结,强调直线与圆的位置关系的判断方法。
2.教师鼓励学生对所学知识进行思考,提出自己的疑问或观点,加深对知识的理解。
步骤五:练习与巩固(20分钟)1.学生在教师的指导下,完成一些练习题,巩固所学知识。
2.学生互相交流解题过程和答案,讨论解题思路和方法。
3.教师在学生解题过程中及时给予指导和点评。
六、课堂小结1.教师对本节课的重点进行概括性总结,强调直线与圆的位置关系的判断方法。
24.2.2直线和圆的位置关系教案
24.2.2直线和圆的位置关系(一)教学目标:(1)知识与技能:a、知道直线和圆相交、相切、相离的定义。
会根据定义来判断直线和圆的位置关系。
b、根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置。
(2)过程与方法:让学生通过观察、发现、操作、实验、对比,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的关系。
此外,通过直线与圆的相对运动,培养学生运动变化的辨证唯物主义观点,通过对研究过程的反思,进一步强化对分类和归纳的思想的认识。
(3)情感与价值:通过观察生活中的例子,让学生感受到实际生活中,存在的直线和圆的三种位置关系,便于学生用运动的观点观察圆与直线的位置关系,有利于学生把实际的问题抽象成数学模型。
教学重难点:重点:掌握直线和圆的三种位置关系的性质与判定。
难点:如何引导学生发现隐含在图形中的两个数量d和r并加以比较。
教学过程一、情境创设,导入新课:活动1:欣赏王维的《使至塞上》中的“大漠孤烟直,长河落日圆”的情景,感知直线与和圆的位置关系。
二、合作交流,解读探究活动2:1.让学生通过实物演示,体会直线和圆的位置关系。
(1)在纸上画一条直线,把硬币的边缘看作圆,在纸上移动硬币.(2)在纸上画一个圆,把直尺看作直线,移动直尺.思考:你能发现直线与圆的公共点个数的变化情况吗?公共点最少时有几个?最多时又有几个?2、定义归纳:明确用直线和圆的交点的个数来确定直线与圆的位置关系直线和圆没有公共点,这时我们说直线和圆相离.直线和圆有一个公共点,这时我们说直线和圆相切,这条直线叫做圆的切线,这个点叫做切点。
直线和圆有两个公共点,这时我们说直线和圆相交,这条直线叫做圆的割线。
3、定义运用:如何根据基本概念来判断直线与圆的位置关系?4、性质探究、知识小结活动3:思考:设⊙O的半径为r,圆心O到直线的距离为d,在直线和圆的不同位置关系中,d与r具有怎样的大小关系?反过来,你能根据d与r的大小关系确定直线和圆的位置关系吗?观察讨论:当直线与圆相离、相切、相交时,圆心到直线的距离d与半径r有何关系?直线与圆 O相交 <=> d<r 直线l与圆 O相切 <=> d=r 直线l与圆 O相离 <=> d>r判定直线与圆的位置关系的方法有两种:(1)根据定义,由直线与圆的公共点的个数来判断;(2)根据性质,由圆心到直线的距离d与半径r的关系来判断。
《直线和圆的位置关系》教学设计
《直线和圆的位置关系》教学设计《直线和圆的位置关系》教学设计(精选5篇)教学设计是把教学原理转化为教学材料和教学活动的计划。
教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。
今天应届毕业生店铺为大家编辑整理了《直线和圆的位置关系》教学设计,希望对大家有所帮助。
《直线和圆的位置关系》教学设计篇1一、素质教育目标㈠知识教学点⒈使学生理解直线和圆的位置关系。
⒉初步掌握直线和圆的位置关系的数量关系定理及其运用。
㈡能力训练点⒈通过对直线和圆的三种位置关系的直观演示,培养学生能从直观演示中归纳出几何性质的能力。
⒉在7.1节我们曾学习了“点和圆”的位置关系。
⑴点P在⊙O上OP=r⑵点P在⊙O内OP<r⑶点P在⊙O外OP>r初步培养学生能将这个点和圆的位置关系和点到圆心的距离的数量关系互相对应的理论迁移到直线和圆的位置关系上来。
㈢德育渗透点在用运动的观点揭示直线和圆的位置关系的过程中向学生渗透,世界上的一切事物都是变化着的,并且在变化的过程中在一定的条件下是可以相互转化的。
二、教学重点、难点和疑点⒈重点:使学生正确理解直线和圆的位置关系,特别是直线和圆相切的关系,是以后学习中经常用到的一种关系。
⒉难点:直线和圆的位置关系与圆心到直线的距离和圆的关径大小关系的对应,它既可做为各种位置关系的判定,又可作为性质,学生不太容易理解。
⒊疑点:为什么能用圆心到直线的距离九圆的关径大小关系判断直线和圆的位置关系?为解决这一疑点,必须通过图形的演示,使学生理解直线和圆的位置关系必转化成圆心到直线的距离和圆的关径的大小关系来实现的。
三、教学过程㈠情境感知⒈欣赏网页flash动画,《海上日出》提问:动画给你形成了怎样的几何图形的印象?⒉演示z+z超级画板制作《日出》的简易动画,给学生形成直线和圆的位置关系的印象,像这样平面上给定一条定直线和一个运动着的圆,它们之间虽然存在着若干种不同的位置关系,如果从数学角度,它的若干位置关系能分为几大类?请同学们打开练习本,画一画互相研究一下。
直线和圆的位置关系数学教案
直线和圆的位置关系数学教案
标题:直线与圆的位置关系
一、教学目标
1. 理解并掌握直线与圆的位置关系的概念。
2. 掌握判断直线与圆位置关系的方法。
3. 培养学生的空间想象能力,提高学生解决实际问题的能力。
二、教学重难点
重点:直线与圆的位置关系的理解及应用。
难点:根据条件判断直线与圆的位置关系。
三、教学过程
1. 导入新课:
通过实例引入,如:在日常生活中我们经常会遇到直线与圆的位置关系的问题,比如篮球运动员投篮时,球的运动轨迹就是一个抛物线,而篮球框是一个圆形。
那么如何确定球是否会进入篮筐呢?这就需要我们学习直线与圆的位置关系的知识。
2. 新课讲解:
(1) 直线与圆的位置关系:相交、相切、相离。
(2) 判断方法:利用点到直线的距离公式,比较圆心到直线的距离与半径的大小关系。
3. 练习巩固:
设计一些练习题,让学生自己动手操作,通过实践来理解和掌握直线与圆的位置关系。
4. 小结:
回顾本节课所学的内容,强调重点和难点。
5. 作业:
设计一些相关的题目作为家庭作业,让学生在课后继续复习和巩固所学知识。
四、教学反思
教师要时刻关注学生的学习情况,对教学效果进行反思和调整,以达到最佳的教学效果。
直线与圆的位置关系教案
直线与圆的位置关系教案教学目标:1.知道直线与圆的位置关系有三种情况:相离、相切、相交。
2.掌握判断直线与圆的位置关系的方法。
3.能够综合运用所学知识解决直线与圆的位置关系问题。
教学重点:1.直线与圆的位置关系的判断方法。
2.解决直线与圆的位置关系问题的能力。
教学难点:1.判断直线与圆的位置关系。
2.综合运用所学知识解决直线与圆的位置关系问题。
教学过程:一、导入(5分钟)老师出示一张图片,图片上有一条直线与一个圆相交,并让学生观察并回答:直线与圆的位置关系有哪些可能的情况?二、讲授(15分钟)1.老师引入“直线与圆的位置关系”的概念,并给出三种可能的情况:相离、相切、相交。
2.介绍判断直线与圆的位置关系的方法:a.直线与圆相离的情况下,直线与圆的最短距离大于圆的半径。
b.直线与圆相切的情况下,直线与圆的最短距离等于圆的半径。
c.直线与圆相交的情况下,直线与圆的最短距离小于圆的半径。
3.通过示例讲解判断直线与圆的位置关系的方法。
三、练习(20分钟)1.团队合作练习:将学生分成若干小组,给出不同的直线与圆的示例,让学生判断直线与圆的位置关系,并在白板上写出自己的判断结果。
2.小组讨论与展示:每个小组轮流讲解和展示自己的判断结果,并给出相应的理由。
3.整体讨论与总结:老师引导学生就判断直线与圆的位置关系时遇到的问题进行讨论,并总结判断方法和解决问题的关键。
四、拓展(15分钟)1.引导学生思考更复杂的问题:在平面直角坐标系中,如何判断直线与圆的位置关系?2.给出示例并指导解决问题:通过求直线与圆的方程,将问题转化成代数方程求解。
五、讲评(10分钟)1.对学生在练习环节中的表现给予评价和点评。
2.解答学生提出的疑问,帮助学生理解和掌握直线与圆的位置关系。
六、小结(5分钟)老师对本节课的内容进行小结,并指导学生合理复习巩固相关知识。
教学反思:本节课通过引入问题、讲解相关概念、示例分析和练习等环节,使学生逐步理解和掌握直线与圆的位置关系的判断方法。
《直线与圆的位置关系》教案
《直线与圆的位置关系》教案教案标题:《直线与圆的位置关系》教学目标:1. 知识目标:理解直线与圆的相交关系,掌握直线与圆的位置关系的判断方法和求解方法。
2. 能力目标:能够通过几何知识分析和解决直线与圆的位置关系的问题。
3. 情感目标:培养学生的数学思维能力和解决问题的能力,增强对数学的兴趣和信心。
教学重点:1. 理解直线与圆的相交关系。
2. 掌握直线与圆的位置关系的判断方法和求解方法。
教学难点:1. 较为复杂的直线与圆的相交问题的分析和求解。
2. 判断及解决直线与圆的位置关系的问题。
教学准备:1. 教材:《数学课程标准实验教科书》2. 教具:直尺、圆规、针线、黑板、彩色粉笔等。
3. 准备直线与圆位置关系的问题示例。
教学过程:Step 1 导入新知1. 通过黑板上绘制一个圆和一条直线,引发学生对直线与圆的位置关系的思考。
2. 引导学生回顾前面学过的直线与圆的相交情况,复习公共切线、内切、外切等概念。
Step 2 理解直线与圆的位置关系1. 学生在黑板上同时绘制直线和圆,观察直线与圆之间的位置关系。
2. 引导学生总结直线与圆的位置关系,如相交于两点、相切于一点、不相交等情况。
Step 3 判断和解决直线与圆的位置关系问题1. 教师提供一些直线与圆的位置关系的问题示例,要求学生通过几何知识来判断和解决问题。
2. 学生以小组形式合作讨论,并找出解决问题的方法和步骤。
3. 学生提出解决问题的过程和思路,教师进行指导和点拨。
4. 学生展示解题过程和思路,教师进行总结和评价。
Step 4 拓展与应用1. 提出一些拓展问题,要求学生通过归纳和推理来解决问题。
2. 学生以小组形式合作解答,讨论并给出解决思路和步骤。
3. 学生进行展示和讨论,教师进行点评和总结。
4. 引导学生将所学的知识应用到实际生活中,如建筑、工程等领域。
Step 5 总结与反思1. 教师对本节课的内容进行总结,并强调重点和难点。
2. 学生进行自我评价和反思,指出学习上的问题和不足。
《直线和圆的位置关系》优秀教学设计
《直线和圆的位置关系》优秀教学设计作为一名为他人授业解惑的教育工作者,时常需要用到教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。
那么你有了解过教学设计吗?下面是小编精心整理的《直线和圆的位置关系》优秀教学设计,仅供参考,欢迎大家阅读。
《直线和圆的位置关系》优秀教学设计1教学目标:(一)教学知识点:1.了解直线与圆的三种位置关系。
2.了解圆的切线的概念。
3.掌握直线与圆位置关系的性质。
(二)过程目标:1.通过多媒体让学生可以更直观地理解直线与圆的位置关系。
2.通过让学生发现与探究来使学生更加深刻地理解知识。
(三)感情目标:1.通过图形可以增强学生的感观能力。
2.让学生说出解题思路提高学生的语言表达能力。
教学重点:直线与圆的位置关系的性质及判定。
教学难点:有无进入暗礁区这题要求学生将实际问题转化为直线与圆的位置关系的判定,有一定难度,是难点。
教学过程:一、创设情境,引入新课请同学们看一看,想一想日出是怎么样的?屏幕上出现动态地模拟日出的情形。
(把太阳看做圆,把海平线看做直线。
)师:你发现了什么?(希望学生说出直线与圆有三种不同的位置关系,如果学生没有说到这里,我可以直接问学生,你觉得直线与圆有几种不同的位置关系。
)让学生在本子上画出直线与圆三种不同的位置图。
(如图)师:你又发现了什么?(希望学生回答出有第一个图直线与圆没有公共点,第二个图有一个公共点,而第三个有两个公共点,如果没有学生没有发现到这里,我可以引导学生做答)二、讨论知识,得出性质请同学们想一想:如果已知直线l与圆的位置关系分别是相离、相切、相交时,圆心O到直线l的距离d与圆的半径r有什么关系设圆心到直线的距离为d,圆的半径为r让学生讨论之后再与学生一起总结出:当直线与圆的位置关系是相离时,dr当直线与圆的位置关系是相切时,d=r当直线与圆的位置关系是相交时,d知识梳理:直线与圆的位置关系图形公共点d与r的大小关系相离没有r相切一个d=r相交两个d三、做做练习,巩固知识抢答,我能行活动:1、已知圆的`直径为13cm,如果直线和圆心的距离分别为(1)d=4.5cm(2)d=6.5cm(3)d=8cm,那么直线和圆有几个公共点?为什么?(让个别学生答题)师:第一题是已知d与r问直线与圆之间的位置关系,而下面这题是已知d与位置关系求r,那又该如何做呢?请大家思考后作答:2、已知圆心和直线的距离为4cm,如果圆和直线的关系分别为以下情况,那么圆的半径应分别取怎样的值?(1)相交;(2)相切;(3)相离。
《直线与圆的位置关系》教学设计
《直线与圆的位置关系》教学设计一、教学内容解析本节课是中等职业教育课程改革国家规划新教材第三版《基础模块》下册第八章《直线圆与方程》第四节“直线与圆的位置关系”的第一课时,它是在学生已经掌握“直线的方程”和“圆的方程”的基础上,进一步研究直线与圆的位置关系.17世纪初期,笛卡尔发明了坐标系,人们开始在坐标系的基础上,用代数方法研究几何问题.上一节,我们学习了直线与圆的方程.知道在直角坐标系中,直线和圆可以用方程表示,通过方程,可以研究直线间的位置关系,直线与直线的交点等问题.本节在上一节的基础上,将继续用坐标法探究圆的几何特征并用坐标法解决一些与圆有关的简单几何问题和实际问题,如直线与圆的位置关系等问题,进一步让学生感受数形结合的基本思想方法,形成用代数方法解决几何问题的能力.解析几何是数学的一个重要分支,它沟通了数学中数与形、代数与几何等最基本对象之间的联系.本节课将研究直线与圆的位置关系,它的核心内容是如何借助直线的方程和圆的方程来判断直线与圆的位置关系,通过学习让学生掌握两种判断方法:一种方法,根据学生初中学习直线与圆相交、相切、相离的定义;另一种方法,根据学生初中学习的直线与圆三种位置关系的判定,即利用圆心到直线的距离与半径比较.该方法,涉及到把点与坐标、直线与方程联系起来,实现空间形式与数量关系的结合.需要特别指出的是:该方法属圆的个性范畴,不能推广.通过分析不难看出,直线与圆的位置关系起到了承上启下的作用。
直线与圆的位置关系这一内容,蕴含着丰富的数学思想.首先,直线与圆的位置这一几何特征,是通过点的坐标和直线、圆的方程来研究,体现了数形结合的思想方法.这在学习直线的方程、圆的方程时,学生已经接触过,结合本节课内容,可以进一步加强对数形结合思想方法的理解,发挥从“数”和“形”两个方面共同分析解决问题的优势.其次,从本节课知识的研究过程来看,由“几何问题(位置关系)”到“代数问题(坐标、方程、点到直线的距离公式、联立方程组等),再到“几何问题(分析代数结果的几何含义)”,充分体现了由“形”到“数”,再由“数”到“形”的转化过程,是转化思想的具体应用.再有,通过具体例子判断直线与圆的位置关系,来归纳总结判断直线与圆位置关系的方法,充分体现了由特殊到一般的思想方法.因此,本节课的教学重点。
“直线与圆的位置关系”教案
解得x=-1.
将x=-1代入①式得y=1.
所以直线l和圆O有且只有一个公共点(-1,1),即直线l和圆O相切.
课堂练习:判断直线 和圆 的位置关系
新的问题:类比于点与圆的位置关系,能否借助于数量关系判断直线与圆的位置关系?
用圆心到直线的距离和圆半径的数量关系来揭示圆和直线的位置关系.
结论:直线l:Ax+By+C=0圆C:(x-a)2+(y-b)2=r2(r>0)
(1) 直线与圆相交
(2) 直线与圆相切
(3) 直线与圆相离
例2的另一种解法:圆心(0,0),半径
圆心到直线的距离
所以直线与圆相切
例3:判断下列各直线与圆的位置关系
(1)直线 ,圆
(2)直线 ,圆
(3)直线 ,圆
三.课堂小结
判定直线与圆的位置关系的方法有两种:
(1)根据定义,由直线与圆的公共点的个数来判断;
(2)根据性质,由圆心到直线的距离与半径的关系来判断.
在实际应用中,常采用第二种方法判定.
布
置
作
业
1.《创新学案》
2.《导学与同步训练》
教
学
后
记
在《直线和圆的位置关系》这节课中,我首先由生活中的情景——黄昏日落引入,让学生发现地平线和太阳位置关系的变化,从而引出课题:直线和圆的位置关系。然后要求学生自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着回顾之前讲点与圆位置关系时用数量关系来判断的方法,引导学生探索直线与圆的位置关系中是否也可以用数量关系来判断直线与圆的位置关系。由“做一做”进行应用,最后去解决实际问题。
直线和圆的位置关系教学设计
《直线和圆的位置关系》教学设计
教学设计说明
本节课的教学目标是,使学生掌握直线和圆的三种位置关系的性质与判定,
重点是直线和圆的相切关系,难点是直线和圆的三种位置关系的性质和判定的运用。
在教学过程中,注意培养学生运用运动变化的观点观察几何图形的辨证思想,培养学生观察概括及分析问题的能力。
在复习提问中,安排了点和圆的位置关系与数量特征,为下面研究直线和圆的位置关系打下基础,在观察直线和圆的位置关系时,注意发挥学生的主体作用,由学生概括出直线和圆的三种位置关系,在研究直线和圆的位置关系的数量特征时,启发学生回忆点和圆的位置关系的数量特征,运用类比推理找到直线和圆的位置关系的数量特征。
这样既可以使学生直接参与到课堂教学中来,培养他们的观察、概括分析能力,同时渗透了类比推理方法使学生在研究类似问题时有章可循。
在小结列表过程中,培养学生的概括能力和总结能力,以及运用数学语言的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:直线与圆的位置关系
执教教师:刘迪
单位:广饶县职业中等专业学校
时间:2014-1-3
直线与圆的位置关系
一、教学目标
1、掌握直线与圆的位置关系,会判断一条直线与圆的位置关系
2、能够利用直线与圆的位置关系解决有关弦长,切线等问题
二、重点与难点
1、重点:直线与圆的位置关系的判断与应用,及弦长与切线问题
2、难点:弦长与切线问题
三、12年、13年考察情况
(1)(2012年山东春季高考)求圆上的点到直线的距离的最大值
(2)(2013年山东春季高考)设直线
与圆
的两个交点为A,
B,则线段AB的长度为________
四、教学过程
【一】基础知识回顾
1
2、直线与圆相交形成的弦长问题
(1)利用圆中的特征三角形求解:弦心距d,半径r及弦的一半l
满足:_______________________
(2)弦长公式:若斜率为k的直线与圆相交于
11
(,)
A x y,
22
(,)
B x y
则||
AB=
=
3、过圆上一点的圆的切线方程
(1)过圆222
x y r
+=上一点
00
(,)
P x y的切线方程是_____________________
(2)过圆222
()()
x a y b r
-+-=上一点
00
(,)
P x y的切线方程是_____________________ 【二】例题讲解
(一)直线与圆的位置关系的判断与运用
例题1、(1)判断直线10
x y
-+=与圆22
(2)2
x y
++=的位置关系
22
(1)(1)4
x y
-++=
34140
x y
+-=
x y
--=2225
x y
+=
方案一:(几何法)解:圆心为(-2,0)
所以直线与圆相交 方案二:(代数法)由
得: 所以直线与圆相交
例题2、已知直线y x m =+与圆22
2x y +=,分别求直线与圆相交,相切,相离时m 的取值范围 解:相交时:
解得: 相切时:
解得: 相离时:
解得:
总结:一般情况下我们尽量用d 与r
的关系去判断和利用直线与圆的位置关系,判别式法计算较为复杂,但是方法要熟练,在直线与圆锥曲线的问题中判别式法较为常用
(二)直线与圆相交形成的弦长问题
例题1、(2)若直线10x
y -+=与圆22(2)2x y ++=相交于A ,B 两点,求弦|AB|的长 答案:
练习:2013年春季高考题
设直线0x y --=与圆2225x y +=相交于A ,B 两点,求线段AB 的长度 答案:8
总结:圆的特征三角形是解决直线与圆相交形成的弦长问题的有力工具,它将圆的半径,弦心距及弦长的一半由勾股定理联系在了一起
(三)圆的切线问题
例题3、求满足下列条件的圆224x y +=的切线方程
(1)过点A (2)过点(2,4)B (3)过点B (1,3) 解:(1)因为点A 在圆上,所以切线方程为
(2)点(2,4)B 在圆外,切线有两条 d =2
=<2210(2)2x y x y -+=⎧⎨++=⎩22630x x ++=3624120
∆=-=>d =<22m -<<d ==2m =±d =>22m m <->或||2
||AB AD ==40
x +-=
①当k 不存在时,x=2恰好与圆相切
②当k 存在时,设直线方程为:4(2)y k x -=- 即420kx y k -+-=
2=得34
k = 所以直线方程为:34100x y -+=
综上有圆的切线方程为:X=2或34100x y -+=
(3)学生自己处理
331)31)33
y x y x ----=--=-或 总结:解决此问题的方法要先判断点是否在圆上,若在圆上则直接利用公式写出切线方程,有且只有一条,若点在圆外,则切线有两条,但要注意是直线方程时,切线斜率存在性的问题
(四)相离中的问题
例题4、求圆22
(1)(1)4x y -++=上的点到直线34140x y +-=的距离的最大值和最小值 答案:最大值3+2=5,最小值3-2=1
总结:圆上的点到直线的最近距离和最远距离一般用圆心到直线的距离和半径的“差与和”来解决,但是当直线与圆相交时,最小距离是0
【三】小结 ⎧⎧⎨⎪⎩⎪⎪⎪⎪⎧⎨⎨⎩⎪⎪⎪⎪⎪⎩
几何法相交:弦长问题代数法过点的切线,点是否在圆上直线与圆相切:切线问题设直线,斜率是否存在相离:最值问题
【四】作业及课后练习
学案:本节练习。