生物化学课件 基因重组和基因工程
《生物化学》-第八章
➢ 与前述操纵子的基本组成一样,乳糖操纵子也是由结构基因和调控区组成的 ➢ 乳糖操纵子包括Z、Y和A三个结构基因 ➢ Z结构基因编码β-半乳糖苷酶,催化乳糖转变为别乳糖 ➢ Y结构基因编码半乳糖透过酶,促使半乳糖透过酶进入细菌内 ➢ A结构基因编码乙酰转移酶,催化半乳糖形成乙酰半乳糖 ➢ 调控区包括调节基因(I)、启动子(P)、操纵基因(O)及启动子上游的一个CAP结合位点,
第一节 基因表达的调控
二、基因表达调控的概念和意义
(一)基因表达调控的概念
➢ 基因表达调控是指细胞或生物体在接收内外环境信号刺激 或适应环境变化的过程中,在基因表达水平上所做出的应 答,即基因组内的基因如何被表达、表达多少等
➢ 基因表达调控大致可以在5个层次上进行,即转录前、转 录、转录后、翻译和翻译后
➢ 基因表达是指在一定的调节机制的控制下,基因组DNA经 转录、翻译等一系列过程,合成具有特异生物学功能的蛋 白质的过程
➢ 并非所有基因表达过程都产生蛋白质,rRNA、tRNA编码 基因转录生成功能型RNA的过程也属于基因表达
第一节 基因表达的调控
一、基因表达的概念、特点及方式
(二)基因表达的特点--时间特异性
5′-侧上游,主要控制整个结构基因群的转录
第一节 基因表达的调控
三、原核生物基因表达的调控
(一)操纵子的基本组成
➢ 3.操纵基因 ➢ 操纵基因是指能被阻遏蛋白特异性识别并结合
的一段DNA序列,常与启动子邻近或与启动子 序列重叠 ➢ 当阻遏蛋白结合在操纵基因上,阻遏蛋白会阻 碍RNA聚合酶与启动子结合或使RNA聚合酶 不能沿DNA链向前移动,从而阻遏转录的进行
(一)操纵子的基本组成
➢ 1.结构基因 ➢ 操纵子中被调控的编码蛋白质的基因称为结构基因 ➢ 一个操纵子中含有2个以上的结构基因,多的可达20个以上 ➢ 各结构基因头尾衔接、串联排列,组成结构基因群
生物化学第十四章-基因重组和基因工程
第十四章基因重组和基因工程一、自然界的基因转移和重组:基因重组(gene recombination)是指DNA片段在细胞内、细胞间,甚至在不同物种之间进行交换,交换后的片段仍然具有复制和表达的功能。
1.接合作用:当细胞与细胞相互接触时,DNA分子即从一个细胞向另一个细胞转移,这种遗传物质的转移方式称为接合作用(conjugation)。
2.转化和转染:由外来DNA引起生物体遗传性状改变的过程称为转化(transformation)。
噬菌体常常可感染细菌并将其DNA注入细菌体内,也可引起细菌遗传性状的改变。
通过感染方式将外来DNA引入宿主细胞,并导致宿主细胞遗传性状改变的过程称为转染(transfection)。
转染是转化的一种特殊形式。
3.整合和转导:外来DNA侵入宿主细胞,并与宿主细胞DNA进行重组,成为宿主细胞DNA的一部分,这一过程称为整合。
整合在宿主细胞染色体DNA中的外来DNA,可以被切离出来,同时也可带走一部分的宿主DNA,这一过程称为转导(transduction)。
来源于宿主DNA的基因称为转导基因。
4.转座:转座又称为转位(transposition),是指DNA的片段或基因从基因组的一个位置转移到另一个位置的现象。
这些能够在基因组中自由游动的DNA片段包括插入序列和转座子两种类型。
⑴插入序列:典型的插入序列(insertion sequence,IS)是长750-1500bp的DNA片段,由两个分离的反向重复序列和一个转座酶基因。
当转座酶基因表达时,即可引起该序列的转座。
其转座方式主要有保守性转座和复制性转座。
⑵转座子:转座子(transposons)是可从一个染色体位点转移到另一个位点的分散的重复序列,含两个反向重复序列、一个转座酶基因和其他基因(如抗生素抗性基因)。
免疫球蛋白重链基因由一组可变区基因(VH)和一组恒定区基因(CH)构成,通过这些基因的选择性转座和重组,就可以转录表达出各种各样的免疫球蛋白重链,以对付不同的抗原。
中国医科大学-生物化学-14 基因重组与基因工程
Holliday模型中,同源重组主要4个关键步骤
①两个同源染色体DNA排列整齐 ②一个DNA的一条链断裂、并与另一个DNA
对应的链连接,形成Holliday中间体 ③通过分支移动产生异源双链DNA ④Holliday中间体切开并修复,形成两个双链
重组体DNA,分别为: 片段重组体(patch recombinant)
5´ 3´
5´
3´ DNA 5´
3´
3´
5´ 连接酶 3´
5´
3´
5´
3´
5´
5´
3´
5´
3´
Holiday中间体
5´ 3´ 3´ 5´
3´ 5´
3´ 5´ 5´ 3´
3´ 5´
3´
3´
5´
5´
内切酶 (ruvC)
5´ 3´
5´ 3´
Hale Waihona Puke 3´5´5´ 3´
5´ 3´ 5´ 3´
5´ 3´
3´ 5´
DNA连接酶
Ⅰ类酶由三种不同的亚基组成,需要Mg2+、 S-腺苷酸甲硫氨酸(SAM)和ATP为辅助因子。这 类酶识别部位复杂,特异性差,通常在识别部位 周围400~7000bp范围内切割DNA。
Ⅲ类酶由二种亚基组成,需要Mg2+、ATP为辅 助因子,DNA切割发生在识别部位周围25~27bp 范围内。
Ⅱ类酶由一种亚基构成,切割DNA仅需要 Mg2+作为辅助因子,DNA切割就发生在特异识 别部位范围内。Ⅱ类酶切割DNA的特异性强, 被分子生物学家广泛研究,通常所指的限制性内 切酶,即指此类酶而言。
例 (一)λ噬菌体DNA的整合
λ噬菌体的整合酶识别噬菌体DNA和宿主 染色体的特异靶位点发生选择性整合;反转 录病毒整合酶可特异地识别、整合反转录病 毒 cDNA 的 长 末 端 重 复 序 列 (long terminal repeat, LTR)。
基因突变和基因重组课件(共40张PPT)高一下学期生物人教版2019必修2
自由组合型
互换型
基因工程
五、基因重组
①自由组合型:在生物体通过减数分裂形成配子时,随着非同源染 色体的自由组合,非等位基因也自由组合
五、基因重组
②互换型:在减数分裂过程中的四分体时期,位于同源染色体上的 等位基因有时会随着非姐妹染色单体之间的互换而发生交换,导致染 色单体上的基因重组
、基因重组
基因重组的特点: ①发生在有性生殖的遗传中 ②只产生新的基因型,并未产生新的基因→无新蛋白质→无新性状 产生 ③亲本杂合度越高→遗传物质相差越大→基因重组类型越多
基因重组的意义:能够产生基因组合多样化的子代,是生物变异的 来源之一,对生物的进化具有重要意义。
六、 基因突变 VS 基因重组
基因突变
本质 基因结构改变,产生新的基因
因
子
生物致癌因子 人乳头瘤病毒、黄曲霉素等
二、基因突变的原因
诱变育种:利用物理因素或化学因素处理生物,使生物发生基因 突变,可以提高突变率,创造人类需要的生物新品种
三、基因突变的特点
高等生物中105~108个生殖细胞中有一个产生基因突变
每一种生物中均能产生基因突变,基因突变既有自发突 变又有诱发突变
异常血红蛋白
讨论:教材P81思考讨论问题2
正常
异常
DNA
G AG C TC
G TG CAC
mRNA G A G G U G
氨基酸 谷氨酸 蛋白质
缬氨酸
2.5.1.1 基因突变的实例
DNA分子中发生碱基的替换、增添或缺失,而引起的基因碱 基序列的改变,叫做基因突变
特别说明: 基因内部发生碱基替换、增添或缺失可
目不变,但
A+T C+G
的碱基比例略小于原有的大肠杆菌,这表明Bu诱发
第十七章 基因重组和基因工程
第十七章基因重组和基因工程一、单项选择题1.限制性核酸内切酶切割DNA后产生A. 5′磷酸基和3′羟基基团的末端B. 5′磷酸基和3′磷酸基团的末端C. 5′羟基和3′羟基基团的末端D. 3′磷酸基和5′羟基基团的末端E. 以上都不是2. 可识别并切割特异DNA序列的酶是A. 非限制性核酸外切酶B. 限制性核酸内切酶C. 限制性核酸外切酶D. 非限制性核酸内切酶E. DNA酶3. 有关限制性核酸内切酶,以下哪个描述是错误的?A. 识别和切割位点通常是4~8个bp长度B. 大多数酶的识别序列具有回文结构C. 在识别位点切割磷酸二酯键D. 只能识别和切割原核生物DNA分子E. 只能切割含识别序列的双链DNA分子4. 在重组DNA技术中催化形成重组DNA分子的酶是A. 解链酶B. DNA聚合酶C. DNA连接酶D. 内切酶E. 拓扑酶5. 对基因工程载体的描述,下列哪个不正确?A. 可以转入宿主细胞B. 有限制酶的识别位点C. 可与目的基因相连D. 是环状DNA分子E. 有筛选标志6. 克隆所依赖的DNA载体的最基本性质是A. 卡那霉素抗性B. 青霉素抗性C. 自我复制能力D. 自我表达能力E. 自我转录能力7. 重组DNA技术中常用的质粒DNA是A. 病毒基因组DNA的一部分B. 细菌染色体外的独立遗传单位C. 细菌染色体DNA的一部分D. 真核细胞染色体外的独立遗传单位E. 真核细胞染色体DNA的一部分8. 下列哪种物质一般不用作基因工程的载体?A. 质粒B. 噬菌体C. 哺乳动物的病毒D. 逆转录病毒DNAE. 大肠杆菌基因组9. 关于pBR322质粒描述错误的是A.有一些限制酶的酶切位点B.含有1个ori.C.含有来自大肠杆菌的lacZ基因片段D.含个氨卞青霉素抗性基因E.含四环素抗性基因。
10. 以mRNA为模板催化cDNA合成需要下列酶A. RNA聚合酶B. DNA聚合酶C. Klenow片段D. 逆转录酶E. DNA酶11. 催化聚合酶链反应需要下列酶A. RNA聚合酶B. DNA聚合酶C. Taq DNA聚合酶D. 逆转录酶E.限制性核酸内切酶12. 关于PCR的描述下列哪项不正确?A. 是一种酶促反应B. 引物决定了扩增的特异性C. 扩增产物量大D.扩增的对象是DNA序列E.扩增的对象是RNA序列13. 在基因工程中,DNA重组体是指A. 不同来源的两段DNA单链的复性B. 目的基因与载体的连接物C. 不同来源的DNA分子的连接物D. 原核DNA与真核DNA的连接物E. 两个不同的结构基因形成的连接物14. 基因工程操作中转导是指A. 把重组质粒导入宿主细胞B. 把DNA重组体导入真核细胞C. 把DNA重组体导入原核细胞D. 把外源DNA导入宿主细胞E. 以噬菌体或病毒为载体构建的重组DNA导入宿主细胞15. 重组DNA的筛选与鉴定不包括哪一方法A. 限制酶酶切图谱鉴定B. PCR扩增鉴定C. 显微注射D. 蓝白筛选E.抗药筛选二、多项选择题1. 在分子克隆中,目的DNA可来自A.原核细胞染色体DNAB.真核细胞染色体DNAC.人工合成的DNAD.聚合酶链反应E.真核细胞mRNA反转录获得的cDNA2. 重组DNA技术基本过程包括A.目的基因的获取B.克隆载体的构建C.目的DNA与载体的连接D.将重组体导入受体菌E.重组DNA分子转化受体菌的筛选3. 分子克隆又称A.基因克隆B.DNA克隆C.单克隆抗体制备D.构建基因组DNA文库E. 基因重组4. 参与聚合酶链反应体系的组分有A. DNA引物B. 目的DNAC. 三磷酸脱氧核苷D. Taq DNA聚合酶E. RNA聚合酶5.从基因组DNA文库或cDNA文库分离、扩增某一感兴趣基因的过程就是A.基因克隆B.分子克隆C.DNA克隆D.构建基因组DNA文库E.重组DNA技术6. 可用作克隆基因载体的DNA有A.细菌质粒DNAB.真核细胞基因组DNAC.病毒DNAD.酵母人工染色体E.噬菌体DNA7.将重组DNA分子导入受体细菌的方法有A.接合B.转座C.感染D.转染E.转化8.转染真核细胞的方法有A. 磷酸钙共沉淀法B. 电穿孔C. DEAE葡聚糖法D. 脂质体载体法E. 显微注射法9.下述操作可能用于基因工程过程的是A.DNA的制备和酶解B.不同来源DNA的拼接C.重组DNA导入受体细胞D.细菌的生长和繁殖E.核酸分子杂交10.关于质粒DNA的叙述正确的是A.是基因组DNA的组成部分B.具有独立复制功能C.含有抗生素抗性基因D.含有感兴趣的目的DNAE.具有编码蛋白质的功能三、填空题1、DNA重组技术主要涉及两大核心技术:和。
基因重组和基因工程课件
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
感受态细胞:指具备接受外源DNA能力的宿主细胞
62
63
64
65
66
67
68
69
70
(六)克隆基因的表达 表达体系的建立 表达载体的构建 受体细胞的建立 表达产物的分离纯化
第一节
DNA的重组
DNA Recombination
1
DNA重组包括:
同源重组
接合作用
细菌的基因转移与重组 转化作用
位点特异重组
转导作用
转座重组
2
一、同源重组
发生在同源序列间的重组称为同源重组 (homologous recombination),又称基本重组。 是最基本的DNA重组方式,通过链的断裂和 再连接,在两个DNA分子同源序列间进行单 链或双链片段的交换。
DNA Recombination Technique
24
基因工程诞生的历史背景:
1973年是基因工程诞生的元年。 1. 1944年Oswald T.Avery等的肺炎球菌转化证 明了DNA是遗传信息携带者。 2. 1953年James Watson和Francis Crick 两人 提出了DNA结构的双螺旋模型,揭示了遗传物质 自我复制的机制。 3. 1961-1965年,科学家破译了生物界全部64个遗 传密码,发表了划时代的遗传密码字典,提出了遗 传信息由DNA→RNA→蛋白质传递的中心法则。 4. 1970年发现了反转录酶,丰富了中心法则,为 cDNA的制备奠定了基础。
《生物工程》课件
酶的稳定性
酶在一定的条件下可以保持 稳定,但在某些条件下可能 会失活。
酶工程的基本技术
01
酶的分离与纯化
通过物理、化学或生物的方法将 酶从原料中分离出来,并进行纯
化,得到高纯度的酶。
03
酶的修饰
通过化学或基因工程技术对酶进 行修饰,以提高其稳定性、改变 其催化特性或降低生产成本。
02
酶的固定化
将游离酶或细胞固定在一定载体 上,使其保持活性并可重复使用
总结词
细胞工程的应用包括制备单克隆抗体、干细胞治疗、 转基因动物和植物的培育等。
详细描述
制备单克隆抗体是细胞工程的重要应用之一,通过杂 交瘤技术将免疫细胞与肿瘤细胞融合,制备出能够产 生单一抗体的杂交瘤细胞。干细胞治疗是利用干细胞 的分化能力,将干细胞移植到病变组织中,以修复和 替代受损的细胞和组织。转基因动物和植物的培育是 通过基因转移技术,将外源基因导入动物或植物的受 精卵中,培育出具有新性状的转基因动物或植物。
资源环境问题
生物工程在生产过程中可能产生环境 污染和资源浪费问题。
如何应对生物工程的挑战
加强伦理道德规范
制定严格的伦理道德规范,确保生物工程技 术的合理应用。
加强技术监管
建立完善的技术监管体系,防止技术误用或 滥用。
完善知识产权制度
制定合理的知识产权制度,保护创新成果, 促进技术转移转化。
推动可持续发展
04
CATALOGUE
酶工程
酶工程的定义与原理
酶工程的定义
酶工程是利用酶的催化性质 ,通过生物技术手段将原料 转化为有用物质的一门技术 。
酶工程的基本原理
酶是一种具有高效催化能力 的蛋白质,能够在温和的条 件下催化化学反应,具有高 度的专一性和选择性。
基因工程的基本内容优秀课件
特点:特异性。
即一种限制性内切酶只能识别一种特定 的脱氧核苷酸序列,并且能在特定的切点上 切割DNA分子。
基因工程的基本内容优秀课件
(二)基因操作的工具
• 基因的剪刀——限制性内切酶(简称限制酶) 大肠杆菌(E.coli)的一种限制酶能识别
2)用同一种限制酶切断目的基因,使其 产生相同的黏性末端。
3)将切下的目的基因片段插入质粒的切 口处,再加入适量DNA连接酶,形成 了一个重组DNA分子(重组质粒)
目的基因与运载体的结合过程,实际 上是不同来源的基因重组的过程。
基因工程的基本内容优秀课件
• 步骤二:目的基因与运载体结合
基因工程的基本内容优秀课件
1)反转录法:
目的基因的mRNA
以目的基因转录成的信 使RNA为模板,反转录 成互补的单链DNA,然 后在酶的作用下合成双 链DNA,从而获得所需 的基因。
反转录
单链DNA(cDNA)
合成
双链DNA (即目的基因)
基因工程的基本内容优秀课件
3)根据已知的氨基酸序列合成DNA法 :
根据已知蛋白质的氨 蛋白质的氨基酸序列
基因工程的基本内容优秀课件
(二)基因操作的工具
• 解决培育抗虫棉的关键步骤需要哪些工具? 关键步骤一的工具:基因的剪刀——限制性内切酶 关键步骤二的工具:基因的针线——DNA连接酶 关键步骤三的工具:基因的运载工具——运载体
基因工程的基本内容优秀课件
(二)基因操作的工具
• 基因的剪刀——限制性内切酶(简称限制酶)
2)植物细胞: 农杆菌转化法、基因枪法、花粉管
《微生物基因工程》课件
02
微生物基因工程的基本技 术
基因克隆技术基ຫໍສະໝຸດ 克隆技术定义基因克隆技术是一种将特定基因或基因片段分离出来,并在体外进行复制、剪切、拼接等 操作,最终将重组的基因或基因片段导入受体细胞,实现基因的体外操作和扩增的技术。
基因克隆技术原理
基因克隆技术的核心原理是DNA的半保留复制。通过将外源DNA片段插入到载体DNA中 ,形成重组DNA,然后将重组DNA导入到宿主细胞中,实现外源DNA的扩增。
利用基因工程改造微生物,提高生物 燃料的产量和效率,降低生产成本。
药物生产
通过基因工程手段改良微生物,实现 高效的药物生产,降低生产成本。
环境保护
利用基因工程改造微生物,提高污染 物的降解效率和速度,降低环境污染 。
农业领域
通过基因工程手段改良农作物,提高 农作物的抗逆性和产量,改善农业生 产效益。
改良农作物优点
通过基因工程技术,可以提高农作物的抗逆性、产量和品 质,为农业生产的发展做出贡献。
改良农作物挑战
改良农作物需要经过严格的试验和审批,确保安全性、有效性和 可持续性。同时需要加强农业技术的推广和应用,提高农民的素
质和能力。
04
微生物基因工程的前景与 挑战
微生物基因工程的发展前景
生物燃料
基因操作技术
包括基因克隆、转化、表达等关键技 术,是实现基因工程应用的基础。
微生物基因工程的历史与发展
起源
20世纪70年代,随着DNA双螺旋结构的发现和分子生物学的兴起 ,基因工程技术开始起步。
发展历程
经历了从简单到复杂、从单一到多基因的转化,技术不断进步,应 用领域不断扩大。
未来展望
随着基因编辑技术的发展,微生物基因工程将更加精准、高效,有 望在生物医药、生物能源等领域发挥更大作用。
《基因工程的原理》PPT课件
是
。
⑸由于转基因表达产物存在于山羊的乳汁中,检测其体内是
否出现进药行用抗蛋原白—,抗在体分杂子交水如平果上出的现检杂测交方带法,及表结明果奶是牛什中出现了 么? 抗原蛋白;不出现杂交带,表明奶牛中未出现抗原蛋白
。 ⑹要确定目的让的害基虫因吞(食抗棉虫花基叶因,)观导察入害棉虫花是细否胞具后有,抗是虫否性能状
一、 目的基因的获得
1、目的基因:
在基因操作中使用的外源基因。它是编 码蛋白质的结构基因,如胰岛素基因、 干扰素基因。
2、获得目的基因的方法:
(1)直接分离法—— a.鸟枪法
(2)人工合成法 b.反转录法 c.化射击法)
①分离程序:用限制性内切酶将完 整的DNA分子切成适当长度的片段, 然后通过检测的方法挑选出所需要 的基因。
B、具有多个限制酶切点,以便于目的基 因的表达
C.具有某些标记基因,以便为目的基因 的表达提供条件
D、能够在宿主细胞中复制并稳定保存, 以便于进行筛选
4、质粒是基因工程最常见的载体,它的 主要特点是( )
①能自主复制 ②不能自主复制 ③结构很小 ④是蛋白质 ⑤是环状RNA ⑥是环状DNA ⑦能“友好”地“借居”
想一想需要哪些工具呢?
普通棉花
抗虫棉
探究1:基因工程的基本工具是什么?
一、 基因手术刀:限制性内切酶 二、基因缝纫针:DNA连接酶 三、基因运输车:载体
一、 基因手术刀:限制性内切酶
1、来源: 主要从原核生物中分离纯化 2、功能:(1)识别特定的脱氧核苷酸序列(回文
序列);(2)并在特异性位点把双链 DNA分子“切割”开。
第一节 基因工程的原理
乳汁中含有人生长激素的 转基因牛(阿根廷)
基因工程DNA的重组概技术念或基因拼接技术
生物化学:基因重组与基因工(名词解释)
1.plasmid plasmid(质粒):是存在于细菌染色体外的小型环状双链DNA分子。
质粒分子本身是含有复制功能的遗传结构,能在宿主细胞独立自主地进行复制,并在细胞分裂时恒定地传给子代细胞。
质粒带有某些遗传信息,所以会赋予宿主细胞一些遗传性状。
因为质粒DNA有自我复制功能及所携带的遗传信息等特性,故可作为重组DNA操作的载体。
2.restriction endonuclease restriction endonuclease(限制性核酸内切酶):就是识别DNA的特异序列,并在识别位点或其周围切割双链DNA的一类核酸内切酶。
限制性核酸内切酶存在于细菌体内,与相伴存在的甲基化酶共同构成细菌的限制性修饰体系,限制外源DNA、保护自身DNA,对细菌遗传性状的稳定遗传具有重要意义。
限制性核酸内切酶分为三类。
重组DNA技术中常用的限制性内切核酸酶为Ⅱ类酶。
3.vector vector(载体):即基因载体,或称克隆载体,是在基因工程中为"携带"感兴趣的外源DNA、实现外源DNA的无性繁殖或表达有意义的蛋白质所采用的一些DNA分子,具有自我复制和表达功能。
其中,为使插入的外源DNA序列可转录、进而翻译成多肽链而特意设计的克隆载体又称表达载体。
克隆载体有质粒DNA、噬菌体DNA和病毒DNA,它们经适当改造后仍具有自我复制能力,或兼有表达外源基因的能力。
4.DNA cloning DNA cloning (DNA克隆):就是应用酶学的方法,在体外将各种来源的遗传物质——同源的或异源的、原核的或真核的、天然的或人工的DNA与载体DNA结合成一具有自我复制能力的DNA分子—复制子,继而通过转化或转染宿主细胞、筛选出含有目的基因的转化细胞,再进行扩增、提取获得大量同一DNA分子,即DNA克隆,又称基因克隆、重组DNA或基因工程。
5.目的基因目的基因:应用重组DNA技术有时是为分离、获得某一感兴趣的基因或DNA序列,或是为获得感兴趣基因的表达产物——蛋白质。
高中生物必修二《6-2基因工程》课件
质粒
质粒是基因工程 最常用的运载体,它 广泛地存在于细菌中, 是细菌染色体外能够 自主复制的很小的环 状DNA分子,大小只 有普通细菌拟核DNA 的百分之一。
大肠杆菌质粒的分子结构示意图:
DNA 大肠杆菌细胞 目的基因插入位点
“标记基因”
氨苄青霉素 抗性基因
质粒
有切割位点
复制原点 有标记基因的 存在,将来可 能复制并带着插入的 用含青霉素的 质粒一般有几个到几百个基因,控制细菌的 目的基因一起复制 培养基鉴别。
在生物体内进行有 性生殖过程中,控 制不同性状的基因 重新组合
同一物种的不同 基因
按人们意愿,把一种 生物的某种基因提取出 来,修饰改造后放到另 一种生物的细胞里,定 向改造生物遗传性状
不同物种间的不同基因
繁殖方式
有性生殖 小
无性生殖 大
变异大小
意义
是生物变异的主要来源, 使人类有可能按自己意愿 对生物进化有重要意义 定向培育新品种
利用基因工程方法制造“工程菌”,可高效率地 生产出各种高质量、低成本的药品。
基因 工程 药品
药品
干扰素 白细胞介素 疫苗 凝血因子
乙肝疫苗 狂犬病疫苗 百日咳疫苗
(三)基因工程与环境保护
利用转基因细菌分解泄漏的石油,降解有毒有害 化合物,吸收环境中的重金属,处理废水等
五、转基因生物和转基因食品的安全性
四、基因工程的应用 (一)基因工程与动植物育种 1、培育高产、稳产、优质和抗逆性 的转基因作物新品种
基因工程及其应用课件
胰岛素从猪、牛等动物的胰 腺中提取,100Kg胰腺只能提取 4-5g的胰岛素,其产量之低和价 格之高可想而知。 将合成的胰岛 素基因导入大肠杆 菌,每2000L培养液 就能产生100g胰岛 素!使其价格降低 了30%-50%!
和 分解多种污染环境的物质。
“ ”
指“
限制性核酸内切酶 ”
来源: 主要存在于微生物
种类: 已发现的有200多种 特点: 一种限切酶只能识别一种特定的核苷 酸序列,并在特定切点切割DNA分子 作用于:磷酸二酯键
限制性内切酶(EcoRⅠ)作用过程
点击播放
思考:
被同一种限制酶切断的几个DNA是否具有 相同的黏性末端? 具有 不同的限制酶呢?
美国人食用转基因食品已多年,超级
市场上有4000多种商品是含有转基因 植物成分的,还没有事例证明人吃了 以后会得病,甚至会引起死亡。
加拿大、澳大利亚也是转基因食品的 生产大国,均有几千万人在吃,到现 在为止也没有—个案例说明它有问题 。
反对派的观点
一英国科学家声称,转基因马铃薯会减
弱老鼠免疫系统功能;
条
件
②具有多个限制酶切点,以便与外源基
因连接
③具有标记基因,便于进行筛选
(3)常用 的运载体:
质粒、噬菌体和动、植物病 毒等
(4)它们的共同特点是
都有侵染或进入 宿主细胞的能力 其中质粒存在于 许多细菌和酵母菌等 生物中,是细胞染色体 外能够自主复制的很 小的环状DNA分子.
标记基 因,便 于进行 检测。
导入人基因具特殊用途的猪和小鼠
水母
1、通过本节课的学习,你认识什
么叫基因工程了吗?
2、基因工程的原理你了解了么?
基因重组
基因的结构和功能PPT课件
基因与生物性状物体 的性状。
02 基因的表达水平可以影响生物体的表现型,如身 高、肤色、眼睛颜色等。
03 基因与环境因素的相互作用也可以影响生物体的 表现型,如饮食习惯、运动习惯等。
05
基因工程和基因编辑
基因工程的定义和应用
基因工程的定义
基因工程是一种通过人工操作和 改变生物体的遗传物质来改变其 性状的技术。
基因工程的应用
基因工程在农业、医学、工业和 基础生物学研究中有着广泛的应 用,例如转基因作物、基因治疗 、基因检测和基因克隆等。
基因编辑技术及其应用
基因编辑技术的定义
基因编辑技术是一种能够精确地修改生物体基因组的工具,包括CRISPR-Cas9、 ZFNs和TALENs等。
基因编辑技术的应用
基因编辑技术被广泛应用于基础生物学研究、疾病治疗、作物改良和动物育种 等领域,例如用于治疗遗传性疾病、抗病抗虫作物的培育以及动物模型的构建 等。
DNA的分子结构
双螺旋结构
DNA由两条反向平行的链 组成,通过碱基配对形成 双螺旋结构。
碱基配对
A与T配对,G与C配对, 形成稳定的碱基对。
方向性
DNA的两条链方向相反, 一条链是5'到3'方向,另 一条链是3'到5'方向。
基因的组成和结构
基因定义
基因是遗传信息的基本单位,负责编码蛋白质或多肽。
基因结构
基因由编码区和非编码区组成。编码区包含有意义的核苷酸序列,负 责转录和翻译为蛋白质或多肽。非编码区则调控基因的表达。
基因复制
DNA复制是半保留复制,即亲代DNA的每一条链作为模板合成子代 DNA的一条链。
基因突变
基因突变是指基因序列的改变,可能导致遗传信息的改变,从而影响 生物体的表型。
生物化学课件 第二章 重组DNA技术
43
克隆载体(cloning vector) 为使插入的外源DNA序列被扩增而特意设 计的载体称为克隆载体。 表达载体(expression vector) 为使插入的外源DNA序列可转录翻译成多
特点 以mRNA作为模板,以dNTP为底物, RNA指导 的DNA聚合酶 (RDDP,RNA-dependent DNA polymerase ) 种类:禽成髓细胞瘤病毒(AMV) Moloney鼠白血病病毒(Mo-MLV) 用途: (1)逆转录合成cDNA (2)补平或标记5’粘端 (3)DNA测序 (4)制备探针
库建立时除去RNA链以便第二条链cDNA链的合成。
37
(三)DNase I
1. 特点:
内切酶,作用于ds -DNA,但无核苷酸序列特 异型(随机切割),产生5’-磷酸脱氧寡核苷酸。
2. 用途:
1) 切口平移法,制备DNA探针 2) 制备RNA样品时除去DNA分子 3) 基因突变时产生切口
38
重组DNA技术中常用的工具酶
29
3、Taq DNA聚合酶(Taq DNA polymerase )
特点:耐热的DNA聚合酶,最佳作用温度75-80C。 具有5’3’聚合酶和5’3’外切酶活性,缺 乏3’ 5’ 外切酶活性,因而无校正阅读功能。
用途:(1)PCR
(2)DNA序列测定
30
4、逆转录酶(Reverse Transcriptase ,RTase)
33
T4多核苷酸激酶 (T4 polynucleotide kinase)
催化将 ATP 的 γ- 磷酸转移到DNA链的 5’ -末端。 用途: (1)放射性标记DNA链的5’ -末端,用于DNA 测序或探针制备。 (2)将人工接头和其它没有 5’ -末端磷酸的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3´ 5´ 5´
内切酶
3´ (recBCD)
3´ 5´ 5´ 3´
5´ 3´ 3´ 5´
3´ 5´ 5´ 3´ 5 ´ 3´
DNA侵扰 (recA)
5´ 3´ 3´ 5´ 3´ 5´ 5´ 3´
分支迁移 (recA)
内切酶 (recBCD)
5´ 3´ 3´ 3´
3´ 5´ 5´ 3´
DNA 连接酶
5´ 3´ 3´ 5´
IR Transposase Gene IR
发生形式: 保守性转座(conservative transposition) 复制性转座(duplicative transposition)
15
插 入 序 列 的 复 制 性 转 座
16
(二)转座子转座
转座子(transposons) ——可从一个染色体位 点转移到另一位点的分散重复序列。 转座子组成:反向重复序列
使细胞或培养的受体细胞获得新的遗传表 型,称为转化作用 (transformation)。
8
例:溶菌时,裂解的DNA片段被另一细菌摄取。
9
10
(三)转导作用
当病毒从被感染的(供体)细胞释放出
来、再次感染另一(供体)细胞时,发生在
供体细胞与受体细胞之间的 DNA 转移及基因
重组即为转导作用(transduction)。
能否让细菌“吐出”蚕丝?
能否让微生物产生出人的胰岛素、干扰素等珍贵 的药物?
设想三
科学家于20世纪70年代创立了可以定向 改造生物的新技术——基因工程。
28
DNA重组技术是基因工程的核心技术
基因工程的 原理 操作环境 操作对象 操作水平 基本过程 基因重组
生物体外
基因 (或DNA片段) DNA水平 剪切→拼接 →导入 →表达 人类需要的新的生物类型
转座酶编码基因
抗生素抗性等有用的基因
IR Transposase Gene 有用基因 IR
17
由转座子介导的转座
18
二、基因重组
在接合、转化、转导或转座过程中,不同 DNA分子间发生的共价连接称基因重组 。 同源重组 (homologous recombination) 位点特异的重组(site-specific recombination)
拼接重组体(splice recombinant)
23
片段重组体 (见模型图左边产物):
切开的链与原来断裂的是同一条链,重组体含
有一段异源双链区,其两侧来自同一亲本DNA。
拼接重组体(见模型图右边产物): 切开的链并非原来断裂的链,重组体异源双
链区的两侧来自不同亲本DNA。
24
5´ 3´ 3´ 5´ 5´ 3´ 3´ 5´
第十四章 基因重组和基因工程
Genetic Recombination and
Genetic Engineering
1
第一节
自然界DNA重组和基因转移
2
一、细菌的基因转移与重组
接合作用 (conjugation)
转化作用 (transformation)
转导作用 (transduction)
3
(一)接合作用
19
一、同源重组 (homologous recombination) 发生在同源序列间的重组称为同源重组, 又称基本重组。是最基本的DNA重组方式, 通过链的断裂和再连接,在两个DNA分子同 源序列间进行单链或双链片段的交换。
20
21
以 E.coli 的同源重组为例,了解同源重组 机制的Holliday模型。
3´
3´
5´
5´3´ 3´
段 重 组 体
拼 5´ 3´ 接 重 组 5´ 体 3´
DNA 连接酶 3´
5´
5´
3´
26
二、位点特异重组
位点特异重组(site-specific recombination) 是由整合酶催化,在两个 DNA 序列的特异位点 间发生的整合。
27
定向基因改造设想
设想一 能否让禾本科的植物也能够固定空气中的氮? 设想二
11
例
溶菌生长途径 (lysis pathway) 溶源菌生长途径 (lysogenic pathway)
λ噬菌体的生活史
12
13
(四) 、转座
由插入序列和转座子介导的基因移位或 重排称为转座(transposition)。
14
(一)插入序列转座
插入序列(insertion sequences, IS)组成: 二个分离的反向重复(inverted repeats, IR)序列 特有的正向重复序列 一个转座酶(transposase)编码基因
当细胞与细胞、或细菌通过菌毛相互接 触时,质粒 DNA 从一个细胞(细菌)转移至 另一细胞(细菌)的 DNA 转移称为接合作用 (conjugation)。
4
5
质粒 —— 细菌染色体外的小型环状双链DNA分子
6
可接合质粒如 F 因子(F factor)
7
(二)转化作用
通过自动获取或人为地供给外源DNA,
22
Holliday模型中,同源重组主要4个关键步骤
①两个同源染色体DNA排列整齐
②一个DNA的一条链断裂、并与另一个DNA 对应的链连接,形成Holliday中间体 ③通过分支移动产生异源双链DNA ④Holliday中间体切开并修复,形成两个双链 重组体DNA,分别为: 片段重组体(patch recombinant)
Holiday中间体
3´ 5´ 5´ 3´
25
5´ 3´ 3´ 5´
Holiday中间体
3´ 5´ 5´ 3´ 5´ 3´
3´ 5´
5´ 3´
3´ 5´
内切酶 (ruvC)
3´ 5´ 3´ 5´ 3´ 5´ 5´ 3´ 5´
内切酶 (ruvC)
5´ 3´
3´
5´
5´ 3´
5´ 片
5´
3´
DNA 连接酶
1980年 1997年 开始建造第一家应用重组DNA技术生产胰岛素的工厂 英国罗林研究所成功的克隆了多莉
30
第二节 重组DNA技术
DNA Recombination Technique
31
一、重组DNA技术相关概念
(一) DNA克隆
克隆(clone) 来自同一始祖的相同副本或拷贝的集合。
结果
基因产物
29
重组DNA技术的发展史
1865年 1944年 G.J.Mendel的豌豆杂交试验 O.T.Avery的肺炎球菌转化实验
1973年
1977年
美国斯坦福大学的科学家构建第一个重组DNA分子
美国南旧金山由博耶和斯旺森建立世界上第一家遗传
工程公司,专门应用重组DNA技术制造医学上重要的药物。