高三数学第一轮复习:抛物线的定义、性质及标准方程
高三第一轮复习 抛物线的定义及几何性质
第42讲抛物线第100课时抛物线的定义及几何性质【提纲挈领】(请阅读下面文字,并在关键词下面记着重号)主干知识归纳1.抛物线的定义(1)平面内与一个定点F和一条定直线l(F∉l)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.(2)其数学表达式:|MF|=d(其中d为点M到准线的距离).2.抛物线的标准方程与几何性质(1)图形与方程2124p x x =;(212y p =-;13|)2sin p AB x x x =++=)以AB 为直径的原与准线(5)/090AC B ∠=; (6)//090A FB ∠=;(7)A 、O 、/B 三点共线;(8)B 、O 、/A 三点共线; (9)112||||AF BF P +=;(10)22sin ABOp Sα=等等。
方法规律总结1. 抛物线的定义是抛物线问题的本质,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.2.求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置,开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.3.在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.【指点迷津】【类型一】抛物线的定义及其应用【例1】:已知点A (3,4),F 是抛物线y 2=8x 的焦点,M 是抛物线上的动点,当|AM |+|MF |最小时,M 点坐标是( )A .(0,0)B .(3,26)C .(2,4)D .(3,-26)【解析】:由题知点A 在抛物线内.设M 到准线的距离为|MK |,则|MA |+|MF |=|MA |+|MK |,当|MA |+|MK |最小时,M 点坐标是(2,4). 答案:C.【例2】:已知点A (2,0),抛物线C :x 2=4y 的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则|FM |∶|MN |=( ).A .2∶ 5B .1∶2C .1∶ 5D .1∶3【解析】:如图所示,由抛物线定义知|MF |=|MH |,所以|MF |∶|MN |=|MH |∶|MN |.由△MHN ∽△FOA ,则|MH ||HN |=|OF ||OA |=12, 则|MH |∶|MN |=1∶5,即|MF |∶|MN |=1∶ 5. 答案:C.【例3】:已知点P 是抛物线y 2=4x 上的动点,点P 在y 轴上的射影是M ,点A 的坐标是(4,a ),则当|a |>4时,|PA |+|PM |的最小值是________. 【解析】:将x =4代入抛物线方程y 2=4x ,得y =±4,|a |>4,所以A 在抛物线的外部,由题意知F (1,0),则抛物线上点P 到准线l :x =-1的距离为|PN |,由定义知,|PA |+|PM |=|PA |+|PN |-1=|PA |+|PF |-1.当A ,P ,F 三点共线时,|PA |+|PF |取最小值,此时|PA |+|PM |也最小,最小值为|AF |-1=9+a 2-1. 答案:9+a 2-1.【类型二】抛物线的标准方程【例1】:如果抛物线的顶点在原点,对称轴为x 轴,焦点在直线3x -4y -12=0上,那么抛物线的方程是( )A .y 2=-16xB .y 2=12xC .y 2=16xD .y 2=-12x【解析】:由题设知直线3x -4y -12=0与x 轴的交点(4,0)即为抛物线的焦点,故其方程为y 2=16x . 答案:C .【例2】:已知圆x 2+y 2+mx -14=0与抛物线y =14x 2的准线相切,则m =( ).A .±2 2B. 3C. 2 D .± 3【解析】:抛物线的标准方程为x 2=4y ,所以准线为y =-1.圆的标准方程为⎝ ⎛⎭⎪⎫x +m 22+y 2=m 2+14,所以圆心为⎝ ⎛⎭⎪⎫-m 2,0,半径为m 2+12.所以圆心到直线的距离为1,即m 2+12=1,解得m =± 3.答案:D.【例3】:如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( ).A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=3x 【解析】:如图,分别过A ,B 作AA 1⊥l 于A 1,BB 1⊥l 于B 1, 由抛物线的定义知:|AF |=|AA 1|,|BF |=|BB 1|, ∵|BC |=2|BF |,∴|BC |=2|BB 1|,∴∠BCB 1=30°,∴∠AF x =60°,连接A 1F ,则△AA 1F 为等边三角形,过F 作FF 1⊥AA 1于F 1,则F 1为AA 1的中点,设l 交x 轴于K ,则|KF |=|A 1F 1|=12|AA 1|=12|AF |,即p =32,∴抛物线方程为y 2=3x . 答案:C.【类型三】抛物线的几何性质【例1】:已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A 、B 两点,|AB |=12,P 为C 的准线上一点,则△ABP 的面积为( )A .18B .24C .36D .48【解析】:设抛物线方程为y 2=2px ,当x =p2时,y 2=p 2, ∴|y |=p .∴p =|AB |2=122=6,又点P 到AB 的距离始终为6,∴S △ABP =12×12×6=36.故选C.答案:C.【例2】:已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 24-y 25=1的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|AK |=2|AF |,则A 点的横坐标为( ).A .2 2B .3C .2 3D .4【解析】:抛物线的焦点为⎝ ⎛⎭⎪⎫p 2,0,准线为x =-p 2.双曲线的右焦点为(3,0),所以p2=3,即p =6,即y 2=12x .过A 做准线的垂线,垂足为M ,则|AK |=2|AF |=2|AM |,即|KM |=|AM |,设A (x ,y ),则y =x +3,代入y 2=12x ,解得x =3. 答案:B.【例3】:过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点.若|AF |=3,则|BF |=________.【解析】:法一 由1|AF |+1|BF |=2p .得|BF |=32.法二 设∠BFO =θ,则⎩⎨⎧|AF |=p +|AF |cos θ,|BF |=p -|BF |cos θ,由|AF |=3,p =2,得cos θ=13,∴|BF |=32. 答案:32.【同步训练】【一级目标】基础巩固组 一、选择题1.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( ).A.12B.32C .1 D.3 【解析】:抛物线y 2=4x 的焦点F (1,0),双曲线x 2-y 23=1的渐近线方程是y =±3x ,即3x ±y =0,故所求距离为|3±0|32+2=32. 答案:B.2.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p 的值为( ).A .1B .2 C.12D .4【解析】:圆的标准方程为(x -3)2+y 2=16,圆心为(3,0),半径为4.圆心到准线的距离为3-⎝ ⎛⎭⎪⎫-p 2=4,解得p =2.答案:B.3.点M (5,3)到抛物线y =ax 2的准线的距离为6,那么抛物线的方程是( ). A .y =12x 2 B .y =12x 2或y =-36x 2C .y =-36x 2 D .y =112x 2或y =-136x 2 【解析】:分两类a >0,a <0可得y =112x 2,y =-136x 2. 答案:D.4.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( )A.12B .1C .2D .4 【解析】:由题知抛物线的准线为x =-p2,圆心为(3,0)、半径为4,由准线与圆相切得圆心到准线的距离d =3+p2=4,解得p =2.答案:C.5.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( ). A .1 B.32C .2D .3【解析】:由已知得双曲线离心率e =c a=2,得c 2=4a 2,∴b 2=c 2-a 2=3a 2,即b =3a .又双曲线的渐近线方程为y =±ba x =±3x ,抛物线的准线方程为x =-p2,所以不妨令A ⎝ ⎛⎭⎪⎫-p 2,32p ,B ⎝ ⎛⎭⎪⎫-p 2,-3p 2,于是|AB |=3p .由△AOB 的面积为3可得12·3p ·p 2=3,所以p 2=4,解得p =2或p =-2(舍去).答案:C. 二、填空题6.若点P 到直线y =-1的距离比它到点(0,3)的距离小2,则点P 的轨迹方程是________.【解析】:由题意可知点P 到直线y =-3的距离等于它到点(0,3)的距离,故点P 的轨迹是以点(0,3)为焦点,以y =-3为准线的抛物线,且p =6,所以其标准方程为x 2=12y . 答案:x 2=12y.7.已知抛物线y 2=4x 上一点M 与该抛物线的焦点F 的距离|MF |=4,则点M 的横坐标x 0=________.【解析】:抛物线y 2=4x 的焦点为F (1,0),准线为x =-1. 根据抛物线的定义,点M 到准线的距离为4,则M 的横坐标为3. 答案:3.8.抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________. 【解析】:如图,在等边三角形ABF 中,DF =p ,BD =33p , ∴B 点坐标为⎝ ⎛⎭⎪⎫33p ,-p2.又点B 在双曲线上,故13p 23-p 243=1.解得p =6.答案:6. 三、解答题9.已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M (-3,m )到焦点的距离为5,求抛物线的方程和m 的值.【解析】:法一:根据已知条件,抛物线方程可设为y 2=-2px (p >0),则焦点F ⎝ ⎛⎭⎪⎫-p 2,0.∵点M (-3,m )在抛物线上,且|MF |=5,故⎩⎨⎧m 2=6p ,⎝⎛⎭⎪⎫-3+p 22+m 2=5,解得⎩⎨⎧p =4,m =26或⎩⎨⎧p =4,m =-2 6.∴抛物线方程为y 2=-8x ,m =±2 6.法二:设抛物线方程为y 2=-2px (p >0),则准线方程为x =p2,由抛物线定义,M点到焦点的距离等于M 点到准线的距离,所以有p2-(-3)=5,∴p =4.∴所求又∵点M (-3,m )在抛物线上,故m 2=(-8)×(-3),∴抛物线方程为y 2=-8x ,m =±2 6.答案:抛物线方程为y 2=-8x ,m =±2 6.10.已知倾斜角为θ的直线过抛物线y 2=2px(p>0)的焦点F ,与抛物线交于A 、B 两点,求证:(1)|AB|=2p sin 2θ; (2)S △AOB =p 22sin θ; (3)以AB 为直径的圆与抛物线的准线相切.【解析】:(1)由抛物线的定义知|AF|等于点A 到准线x =-p2的距离,所以|AF|=x 1+p 2.同理,|BF|=x 2+p2.所以|AB|=|AF|+|BF|=x 1+x 2+p ①又设焦点弦的方程为y =k(x -p 2)(k≠0),所以x =1k y +p2,故x 1+x 2=1k (y 1+y 2)+p.y 2-2p k y -p 2=0,y 1+y 2=2p k .所以x 1+x 2=2pk2+p ② 将②代入①得:|AB|=2p k 2+2p =2p(1+1k 2)=2p(1+1tan 2θ)=2psin 2θ(2)如图,S △AOB =S △AOF +S △BOF =12|OF|·|AF|·sin(π-θ)+12|OF|·|BF|·sin θ=12|OF|·sin θ(|AF|+|BF|)=12|OF|·|AB|·sin θ=12·p 2·2p sin 2θ·sin θ=p 22sin θ. (3)设线段AB 的中点为M ,分别过A 、M 、B 作准线的垂线,垂足为C 、N 、D ,则|MN|=12(|AC|+|BD|)=12(|AF|+|BF|)=12|AB|.所以以AB 为直径的圆与准线相切. 答案:略.【二级目标】能力提升题组 一、选择题1.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( ).A .x 2=833y B .x 2=1633y C .x 2=8y D .x 2=16y 【解析】:∵x 2a 2-y 2b 2=1的离心率为2,∴c a =2,即c 2a 2=a 2+b 2a 2=4,∴ba = 3.x 2=2py 的焦点坐标为⎝⎛⎭⎪⎫0,p 2,x 2a 2-y 2b 2=1的渐近线方程为y =±b a x ,即y =±3x .由题意,得p21+32=2,∴p =8.故C 2:x 2=16y ,选D. 答案:D.2.(2014·洛阳统考)已知P 是抛物线y 2=4x 上一动点,则点P 到直线l :2x -y +3=0和y 轴的距离之和的最小值是( ).A. 3B. 5 C .2 D.5-1【解析】:由题,抛物线的焦点为F (1,0).设点P 到直线l 的距离为d ,由抛物线的定义可知,点P 到y 轴的距离为|PF |-1,所以点P 到直线l 的距离与到y 轴的距离之和为d +|PF |-1.易知d +|PF |的最小值为点F 到直线l 的距离,故d +|PF |的最小值为22)1(2|32|-++=5,所以d +|PF |-1的最小值为5-1.答案:D. 二、填空题3.已知椭圆C :x 24+y 23=1的右焦点为F ,抛物线y 2=4x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足.如果直线AF 的倾斜角为120°,那么|PF |=________.【解析】:抛物线的焦点坐标为F (1,0),准线方程为x =-1.因为直线AF 的倾斜角为120°,所以tan 120°=y A -1-1,所以y A =2 3.因为PA ⊥l ,所以y P =y A=23,代入y 2=4x ,得x A =3,所以|PF |=|PA |=3-(-1)=4. 答案:4. 三、解答题4. 如图,抛物线()2212:4,:20C x y C x py p ==->,点()00,M x y 在抛物线2C 上,过M 作1C 的切线,切点为,A B (M 为原点O 时,,A B 重合于O)01x =,切线.MA 的斜率为12-.(I)求p 的值;(II)当M 在2C 上运动时,求线段AB 中点N 的轨迹方程.(),,.A B O O 重合于时中点为③,【高考链接】1.(2010年全国Ⅱ卷理15文15)已知抛物线2:2(0)C y px p =>的准线为l ,过(1,0)M l 相交于点A ,与C 的一个交点为B .若AM MB =,则p = .【解析】:过B 作BE 垂直于准线l 于E ,∵AM MB =,∴M 为中点,∴1BM AB 2=0BAE 30∠=, ∴1BE AB 2=,∴BM BE =,∴M 为抛物线的焦点,∴p =2. 答案:2.2.(2009年广东理科第19题)已知曲线2:C y x =与直线:20l x y -+=交于两点(,)A A A x y 和(,)B B B x y ,且A B x x <.记曲线C 在点A 和点B 之间那一段L 与线段AB 所围成的平面区域(含边界)为D .设点(,)P s t 是L 上的任一点,且点P 与点A 和点B 均不重合.(1)若点Q 是线段AB 的中点,试求线段PQ 的中点M 的轨迹方程;(2)若曲线22251:24025G x ax y y a -+-++=与点D 有公共点,试求a 的最小值. 【解析】:(1)联立2x y =与2+=x y 得2,1=-=B A x x ,则AB 中点)25,21(Q ,设线段PQ 的中点M 坐标为),(y x ,则225,221ty s x +=+=,即252,212-=-=y t x s ,又点P 在曲线C 上,∴2)212(252-=-x y 化简可得8112+-=x x y ,又点P 是L 上的任一点,且不与点A 和点B 重合,则22121<-<-x ,即4541<<-x ,∴中点M 的轨迹方程为8112+-=x x y (4541<<-x ).(2)曲线22251:24025G x ax y y a -+-++=,即圆E :2549)2()(22=-+-y a x ,其圆心坐标为)2,(a E ,半径57=r由图可知,当20≤≤a 时,曲线22251:24025G x ax y y a -+-++=与点D 有公共点;当0<a 时,要使曲线22251:24025G x ax y y a -+-++=与点D 有公共点,只需圆心E 到直线:20l x y -+=的距离572||2|22|≤=+-=a a d ,得0527<≤-a ,则a 的最小值为527-.答案: (1) M 的轨迹方程为8112+-=x x y (4541<<-x ). (2) a 的最小值为527-.3.(2013年福建数学(理))如图,在正方形OABC 中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10).分别将线段OA 和AB 十等分,分点分别记为129,,....A A A 和129,,....B B B ,连结i OB ,过i A 做x 轴的垂线与i OB 交于点*(,19)i P i N i ∈≤≤.(1)求证:点*(,19)i P i N i ∈≤≤都在同一条抛物线上,并求该抛物线E 的方程; (2)过点C 做直线与抛物线E 交于不同的两点,M N ,若OCM ∆与OCN ∆的面积比为4:1,求直线的方程.【解析】:(Ⅰ)依题意,过*(,19)∈≤≤i A i N i 且与x 轴垂直的直线方程为=x i(10,)i B i ,∴直线i OB 的方程为10=iy x 设i P 坐标为(,)x y ,由10=⎧⎪⎨=⎪⎩x iiy x 得:2110=y x ,即210=x y , ∴*(,19)∈≤≤i P i N i 都在同一条抛物线上,且抛物线E 方程为210=x y(Ⅱ)依题意:直线的斜率存在,设直线的方程为10=+y kx由21010=+⎧⎨=⎩y kx x y得2101000--=x kx [来源:学*科*网] 此时2100+4000∆=>k ,直线与抛物线E 恒有两个不同的交点,M N设:1122(,)(,)M x y N x y ,则121210100+=⎧⎨⋅=-⎩x x kx x4∆∆=OCM OCN S S ∴124=x x 又120⋅<x x ,∴124=-x x 分别代入21010=+⎧⎨=⎩y kx x y,解得32=±k 直线的方程为3+102=±y x ,即32200-+=x y 或3+2200-=x y .答案: (Ⅰ) 抛物线E 方程为210=x y ;(Ⅱ) 直线的方程为 32200-+=x y 或3+2200-=x y .。
高考数学第一轮复习:《抛物线》
高考数学第一轮复习:《抛物线》最新考纲1.掌握抛物线的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).2.理解数形结合思想.3.了解抛物线的简单应用.【教材导读】1.若抛物线定义中定点F 在定直线l 上时,动点的轨迹是什么图形?提示:当定点F 在定直线l 上时,动点的轨迹是过点F 且与直线l 垂直的直线. 2.抛物线的标准方程中p 的几何意义是什么? 提示:p 的几何意义是焦点到准线的距离.1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.2.抛物线的标准方程及其简单几何性质标准 方程 y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)图形顶点 (0,0)对称轴 x 轴y 轴焦点 F ⎝ ⎛⎭⎪⎫p 2,0 F ⎝ ⎛⎭⎪⎫-p 2,0 F ⎝ ⎛⎭⎪⎫0,p 2 F ⎝ ⎛⎭⎪⎫0,-p 2 离心率 e =1准线方程x =-p 2x =p 2y =-p2y =p 2【重要结论】抛物线焦点弦的几个常用结论设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则 (1)x 1x 2=p 24,y 1y 2=-p 2.(2)弦长|AB |=x 1+x 2+p =2psin 2 α(α为弦AB 的倾斜角). (3)以弦AB 为直径的圆与准线相切.(4)通径:过焦点垂直于对称轴的弦,长等于2p .1.已知抛物线y 2=2px (p >0)的准线经过点(-1,1),则该抛物线焦点坐标为( ) (A)(-1,0) (B)(1,0) (C)(0,-1)(D)(0,1)B 解析:由准线过已知点可求出p 的值,进而可求出抛物线的焦点坐标.抛物线y 2=2px (p >0)的准线为x =-p 2且过点(-1,1),故-p2=-1,解得p =2.所以抛物线的焦点坐标为(1,0).2.若点P 为抛物线y =2x 2上的动点,F 为抛物线的焦点,则|PF |的最小值为( ) (A)2 (B)12 (C)14(D)18D 解析:本题考查抛物线的定义.抛物线y =2x 2上的点到焦点的距离等于该点到准线的距离,所以最小距离是p 2,又2p =12,则p 2=18,即|PF |的最小值为18,故选D.3.已知AB 是抛物线y 2=2x 的一条焦点弦,|AB |=4,则AB 中点C 的横坐标是( ) (A)2 (B)12 (C)32(D)52C 解析:设A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p =4, 又p =1,所以x 1+x 2=3, 所以点C 的横坐标是x 1+x 22=32.4.设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2),若线段F A 的中点B 在抛物线上,则B 到该抛物线准线的距离为________.解析:依题意知F 坐标为p2,0, 所以B 的坐标为p4,1代入抛物线方程得 p 22=1,解得p =2,所以抛物线准线方程为x =-22,所以点B 到抛物线准线的距离为24+22=34 2. 答案:34 25.直线l 过抛物线x 2=2py (p >0)的焦点,且与抛物线交于A ,B 两点,若线段AB 的长是6,AB 的中点到x 轴的距离是1,则此抛物线方程是________.解析:设A (x 1,y 1),B (x 2,y 2),则|AB |=y 1+y 2+p =2+p =6,∴p =4.即抛物线方程为x 2=8y .答案:x 2=8y考点一 抛物线的定义及其应用(1)长为2的线段AB 的两个端点在抛物线y 2=x 上滑动,则线段AB 的中点M到y 轴距离的最小值是________.(2)已知点P 是抛物线y 2=4x 上的动点,点P 在y 轴上的射影是M ,点A 的坐标是(4,a ),则当|a |>4时,|P A |+|PM |的最小值是________.(3)已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作y 轴的垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析:(1)如图,AB=2,要使AB的中点M到y轴的距离最小,则|BG|+|AE|的值最小,即|AF|+|BF|的值最小.在△ABF中,|AF|+|BF|≥|AB|,当A,B,F三点共线时取等号,即当线段AB过焦点F时,AB的中点M到y轴的距离最小,最小值为|AE|+|BG|2-14=1-14=34.(2)将x=4代入抛物线的方程y2=4x,得y=±4.又|a|>4,所以点A在抛物线的外部.由题意知F(1,0),设抛物线上点P到准线l:x=-1的距离为|PN|,由定义知,|P A|+|PM|=|P A|+|PN|-1=|P A|+|PF|-1.画出简图(图略),易知当A,P,F三点共线时,|P A|+|PF|取得最小值,此时|P A|+|PM|也最小,最小值为|AF|-1=9+a2-1.(3)由题意知F(1,0),|AC|+|BD|=|AF|+|FB|-2=|AB|-2.依据抛物线的定义知,当|AB为通径,即|AB|=2p=4时,|AB|的值最小,所以|AC|+|BD|的最小值为2.答案:(1)34(2)9+a2-1(3)2【反思归纳】利用抛物线的定义可解决的常见问题(1)轨迹问题:用抛物线的定义可以确定动点与定点、定直线距离有关的轨迹是否为抛物线.(2)距离问题:涉及抛物线上的点到焦点的距离和到准线的距离问题时,注意在解题中利用两者之间的相互转化.【即时训练】(1)已知抛物线方程为y2=4x,直线l的方程为x-y+4=0,在抛物线上有一动点P到y轴的距离为d1,P到直线l的距离为d2,则d1+d2的最小值是()(A)522+2 (B)522+1 (C)522-2(D)522-1(2)若点A 的坐标为(3,2),F 是抛物线y 2=2x 的焦点,点M 在抛物线上移动时,使|MF |+|MA |取得最小值的M 的坐标为( )(A)(0,0) (B)⎝ ⎛⎭⎪⎫12,1 (C)(1,2)(D)(2,2)解析:(1)如图,点P 到准线的距离等于点P 到焦点F 的距离,从而P 到y 轴的距离等于点P 到焦点F 的距离减1,过焦点F 作直线x -y +4=0的垂线,此时d 1+d 2=|PF |+d 2-1最小.因为F (0,1),则|PF |+d 2=|1-0+4|1+1=522,则d 1+d 2的最小值为522-1.(2)过M 点作左准线的垂线,垂足是N ,则|MF |+|MA |=|MN |+|MA |,当A ,M ,N 三点共线时,|MF |+|MA |取得最小值,此时M (2,2).故选D.答案:(1)D (2)D考点二 抛物线的标准方程及性质(1)已知抛物线y 2=2px (p >0)上一点M 到焦点F 的距离等于2p ,则直线MF 的斜率为( )(A)±3 (B)±1 (C)±34(D)±33(2)过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若A ,B 两点的横坐标之和为103,则|AB |=( )(A)133 (B)143 (C)5(D)163(3)过抛物线C :x 2=2y 的焦点F 的直线l 交抛物线C 于A 、B 两点,若抛物线C 在点B 处的切线斜率为1,则|AF |=( )(A)1 (B)2 (C)3(D)4解析:(1)设M (x 0,y 0),易知焦点为F ⎝ ⎛⎭⎪⎫p 2,0,由抛物线的定义得|MF |=x 0+p 2=2p ,所以x 0=32p ,故y 20=2p ×32p =3p 2,解得y 0=±3p ,故直线MF 的斜率k =±3p 32p -p 2=±3,选A. (2)∵p =2,∴|AB |=2+103=163.故选D. (3)∵x 2=2y ,∴y =x 22,∴y ′=x ,∵抛物线C 在点B 处的切线斜率为1, ∴B ⎝ ⎛⎭⎪⎫1,12 ∵抛物线x 2=2y 的焦点F 的坐标为⎝ ⎛⎭⎪⎫0,12,∴直线l 的方程为y =12, ∴|AF |=|BF |=1.故选A. 答案:(1)A (2)D (3)A【反思归纳】 (1)抛物线几何性质的确定由抛物线的方程可以确定抛物线的开口方向、焦点位置、焦点到准线的距离;从而进一步确定抛物线的焦点坐标及准线方程.(2)求抛物线的标准方程的方法①因为抛物线方程有四种上标准形式,因此求抛物线方程时,需先定位,再定量.②因为未知数只有p,所以只需利用待定系数法确定p值即可.提醒:求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y2=mx 或x2=my(m≠0).【即时训练】(1)如图,过抛物线y2=2px(p>0)的焦点F的直线依次交抛物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则抛物线的方程为()(A)y2=3 2x(B)y2=3x(C)y2=9 2x(D)y2=9x(2)若双曲线C:2x2-y2=m(m>0)与抛物线y2=16x的准线交于A,B两点,且|AB|=43,则m的值是________.答案:(1)B(2)20考点三直线与抛物线的位置关系考查角度1:直线与抛物线的交点问题.如图,已知抛物线C:y2=2px(p>0),焦点为F,过点G(p,0)作直线l交抛物线C 于A ,M 两点,设A (x 1,y 1),M (x 2,y 2).(1)若y 1y 2=-8,求抛物线C 的方程;(2)若直线AF 与x 轴不垂直,直线AF 交抛物线C 于另一点B ,直线BG 交抛物线C 于另一点N .求证:直线AB 与直线MN 斜率之比为定值.解:(1)设直线AM 的方程为x =my +p ,代入y 2=2px 得y 2-2mpy -2p 2=0, 则y 1y 2=-2p 2=-8,得p =2. ∴抛物线C 的方程为y 2=4x . (2)证明:设B (x 3,y 3),N (x 4,y 4). 由(1)可知y 3y 4=-2p 2,y 1y 3=-p 2. 又直线AB 的斜率k AB =y 3-y 1x 3-x 1=2p y 1+y 3,直线MN 的斜率k MN =y 4-y 2x 4-x 2=2py 2+y 4,∴k AB k MN =y 2+y 4y 1+y 3=-2p 2y 1+-2p 2y 3y 1+y 3=-2p 2y 1y 3(y 1+y 3)y 1+y 3=2.故直线AB 与直线MN 斜率之比为定值. 【反思归纳】 直线与抛物线位置关系的判断直线y =kx +m (m ≠0)或x =my +n 与抛物线y 2=2px (p >0)联立方程组,消去y ,得到k 2x 2+2(mk -p )x +m 2=0的形式.当k =0时,直线和抛物线相交,且与抛物线的对称轴平行,此时与抛物线只有一个交点;当k ≠0时,设其判别式为Δ,(1)相交:Δ>0⇔直线与抛物线有两个交点; (2)相切:Δ=0⇔直线与抛物线有一个交点; (3)相离:Δ<0⇔直线与抛物线没有交点.提醒:过抛物线外一点总有三条直线和抛物线有且只有一个公共点;两条切线和一条平行于对称轴的直线.考查角度2:直线与抛物线的相交弦问题设抛物线C :y 2=2px (p >0)的焦点为F ,准线为l .已知点A 在抛物线C 上,点B 在l 上,△ABF 是边长为4的等边三角形.(1)求p 的值;(2)在x 轴上是否存在一点N ,当过点N 的直线与抛物线C 交于Q 、R 两点时,1|NQ |2+1|NR |2为定值?若存在,求出点N 的坐标,若不存在,请说明理由.解析:(1)由题知,|AF |=|AB |,则AB ⊥l .设准线与x 轴交于点D ,则AB ∥DF .又△ABF 是边长为4的等边三角形,∠ABF =60°,所以∠BFD =60°,|DF |=|BF |·cos ∠BFD =4×12=2,即p=2.(2)设点N (t,0),由题意知直线的斜率不为零, 设直线的方程为x =my +t ,点Q (x 1,y 1),R (x 2,y 2),由⎩⎪⎨⎪⎧x =my +t y 2=4x 得,y 2-4my -4t =0,则Δ=16m 2+16t >0,y 1+y 2=4m ,y 1·y 2=-4t .又|NQ |2=(x 1-t )2+y 21=(my 1+t -t )2+y 21=(1+m 2)y 21,同理可得|NR |2=(1+m 2)y 22,则有1|NQ |2+1|NR |2=1(1+m 2)y 21+1(1+m 2)y 22=y 21+y 22(1+m 2)y 21y 22=(y 1+y 2)2-2y 1y 2(1+m 2)y 21y 22=16m 2+8t 16(1+m 2)t 2=2m 2+t (2m 2+2)t2. 若1|NQ |2+1|NR |2为定值,则t =2,此时点N (2,0)为定点. 又当t =2,m ∈R 时,Δ>0,所以,存在点N (2,0),当过点N 的直线与抛物线C 交于Q 、R 两点时,1|NQ |2+1|NR |2为定值14.【反思归纳】 直线与抛物线相交问题处理规律(1)凡涉及抛物线的弦长、弦的中点、弦的斜率问题时都要注意利用根与系数的关系,避免求交点坐标的复杂运算.解决焦点弦问题时,抛物线的定义有广泛的应用,而且还应注意焦点弦的几何性质.(2)对于直线与抛物线相交、相切、中点弦、焦点弦问题,以及定值、存在性问题的处理,最好是作出草图,由图象结合几何性质做出解答.并注意“设而不求”“整体代入”“点差法”的灵活应用.抛物线的综合问题已知点M (-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.审题点拨关键点 所获信息 抛物线y 2=4x 可求焦点坐标 ∠AMB =90°k MA ·k MB =-1解题突破:把∠AMB =90°转化为斜率之积为-1.解析:由题意知,抛物线的焦点坐标为F (1,0),设直线方程为y =k (x -1),直线方程与y 2=4x 联立,消去y ,得k 2x 2-(2k 2+4)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1x 2=1,x 1+x 2=2k 2+4k 2. 由M (-1,1),得AM→=(-1-x 1,1-y 1),BM →=(-1-x 2,1-y 2).由∠AMB =90°,得AM →·BM →=0,∴ (x 1+1)(x 2+1)+(y 1-1)(y 2-1)=0, ∴ x 1x 2+(x 1+x 2)+1+y 1y 2-(y 1+y 2)+1=0. 又y 1y 2=k (x 1-1)·k (x 2-1)=k 2[x 1x 2-(x 1+x 2)+1], y 1+y 2=k (x 1+x 2-2),∴ 1+2k 2+4k 2+1+k 2⎝ ⎛⎭⎪⎫1-2k 2+4k 2+1-k ⎝ ⎛⎭⎪⎫2k 2+4k 2-2+1=0,整理得4k 2-4k +1=0,解得k =2.答案:2命题意图:本题重点考查直线与抛物线的应用,考查考生的运算能力.课时作业基础对点练(时间:30分钟)1.若抛物线y 2=4x 上一点P 到其焦点F 的距离为2,O 为坐标原点,则△OFP 的面积为( )(A)12 (B)1 (C)32(D)2B 解析:设P (x p ,y p ),由题可得抛物线焦点为F (1,0),准线方程为x =-1,又点P 到焦点F 的距离为2,∴由定义知点P 到准线的距离为2,∴x P +1=2,∴x P =1,代入抛物线方程得|y P |=2,∴△OFP 的面积为S =12·|OF |·|y P |=12×1×2=1.故选B.2.若抛物线y =ax 2的焦点坐标是(0,1),则a =( ) (A)1 (B)14 (C)2(D)12B 解析:因为抛物线方程为x 2=1a y ,所以其焦点坐标为⎝ ⎛⎭⎪⎫0,14a ,则有14a =1,a =14,故选B.3.已知P 为抛物线y 2=-6x 上一个动点,Q 为圆x 2+(y -6)2=14上一个动点,那么点P 到点Q 的距离与点P 到y 轴距离之和的最小值是( )(A)317-72(B)317-42 (C)317-12(D)317+12B 解析:结合抛物线的定义知,P 到y 轴的距离为P 到焦点的距离减去32,则所求最小值为抛物线的焦点到圆心的距离减去半径及32,即62+⎝ ⎛⎭⎪⎫322-12-32=317-42,故选B.4.若点A,B在抛物线y2=2px(p>0)上,O是坐标原点,若正三角形OAB的面积为43,则该抛物线方程是()(A)y2=233x(B)y2=3x(C)y2=23x(D)y2=3 3xA解析:根据对称性,AB⊥x轴,由于正三角形的面积是43,故34AB2=43,故AB=4,正三角形的高为23,故可以设点A的坐标为(23,2),代入抛物线方程得4=43p,解得p=33,故所求的抛物线方程为y2=233x.故选A.5.已知直线l1:4x-3y+7=0和直线l2:x=-2,抛物线y2=8x上一动点P到直线l1和l2的距离之和的最小值是()(A) 5 (B)2 5(C)3 (D)3 5C解析:如图所示,过点P作PH1⊥l1,PH2⊥l2,连接PF,H1F,过F作FM⊥l1,交l1于M,由抛物线方程为y2=8x,得l2为其准线,焦点为F(2,0),由抛物线的定义可知|PH1|+|PH2|=|PH1|+|PF|≥|FH1|≥|FM|=|4×2-0+7|42+32=3,故选C.6.已知抛物线C的顶点是原点O,焦点F在x轴的正半轴上,经过F的直线与抛物线C交于A ,B 两点,如果OA →·OB→=-12,那么抛物线C 的方程为( )(A)x 2=8y (B)x 2=4y (C)y 2=8x(D)y 2=4xC 解析:由题意,设抛物线方程为y 2=2px (p >0), 直线方程为x =my +p2,联立⎩⎨⎧y 2=2px ,x =my +p2,消去x 得y 2-2pmy -p 2=0, 设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=2pm ,y 1y 2=-p 2,得OA →·OB →=x 1x 2+y 1y 2=my 1+p 2my 2+p 2+y 1y 2=m 2y 1y 2+pm 2(y 1+y 2)+p 24+y 1y 2=-34p 2=-12⇒p =4,即抛物线C 的方程为y 2=8x .7.过抛物线y =14x 2的焦点F 作一条倾斜角为30°的直线交抛物线于A ,B 两点,则|AB |=________.解析:依题意,设点A (x 1,y 1),B (x 2,y 2),题中的抛物线x 2=4y 的焦点坐标是F (0,1),直线AB 的方程为y =33x +1,即x =3(y -1).由⎩⎪⎨⎪⎧x 2=4y ,x =3(y -1),消去x 得3(y -1)2=4y ,即3y 2-10y +3=0,y 1+y 2=103,|AB |=|AF |+|BF |=(y 1+1)+(y 2+1)=y 1+y 2+2=163.答案:1638.抛物线y 2=2px (p >0)的焦点为F ,AB 为抛物线上的两点,以AB 为直径的圆过点F ,过AB 的中点M 作抛物线的准线的垂线MN ,垂足为N ,则|MN ||AB |的最大值为__________.解析:由抛物线定义得|MN ||AB |=|AF |+|BF |2|AF |2+|BF |2≤|AF |2+|BF |22|AF |2+|BF |2=22,即|MN ||AB |的最大值为22.答案: 229.过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,若|AF |=5,则|BF |=________. 解析:由题意,设A (x 1,y 1),B (x 2,y 2), 则|AF |=x 1+1=5⇒x 1=4,y 21=4x 1=16, 根据对称性,不妨取y 1=4, 所以直线AB :y =43x -43,代入抛物线方程可得,4x 2-17x +4=0, 所以x 2=14, 所以|BF |=x 2+1=54. 答案:5410.在平面直角坐标系中,动点M (x ,y )(x ≥0)到点F (1,0)的距离与到y 轴的距离之差为1.(1)求点M 的轨迹C 的方程;(2)若Q (-4,2),过点N (4,0)作任意一条直线交曲线C 于A ,B 两点,试证明k QA +k QB 是一个定值.解析:(1)M 到定点F (1,0)的距离与到定直线x =-1的距离相等, ∴M 的轨迹C 是一个开口向右的抛物线,且p =2, ∴M 的轨迹方程为y 2=4x .(2)设过N (4,0)的直线的方程为x =my +4,联立方程组⎩⎪⎨⎪⎧y 2=4x ,x =my +4整理得y 2-4my -16=0,设直线l 与抛物线的交点为A (x 1,y 1),B (x 2,y 2), 则有y 1+y 2=4m ,y 1y 2=-16, 又k QA +k QB =y 1-2x 1+4+y 2-2x 2+4=y 1-2my 1+8+y 2-2my 2+8=-8m 2-3216m 2+64=-12, 因此k QA +k QB 是一个定值为-12.能力提升练(时间:15分钟)11.已知直线l 1:x =2,l 2:3x +5y -30=0,点P 为抛物线y 2=-8x 上的任一点,则P 到直线l 1,l 2的距离之和的最小值为( )(A)2 (B)234 (C)181734(D)161534C 解析:抛物线y 2=-8x 的焦点为F (-2,0),准线为l 1:x =2. ∴P 到l 1的距离等于|PF |,∴P 到直线l 1,l 2的距离之和的最小值为F (-2,0)到直线l 2的距离d =|-6+0-30|9+25=181734.故选C.12.已知点A (0,2),抛物线C :y 2=2px (p >0)的焦点为F ,射线F A 与抛物线C 相交于点M ,与其准线相交于点N ,若|FM ||MN |=55,则p 的值等于( )(A)18 (B)14 (C)2(D)4C 解析:设M (x M ,y M ),N ⎝ ⎛⎭⎪⎫-p 2,y N ,由|FM ||MN |=55,知|FM ||FN |=15+1,所以y N =(5+1)y M ;由k F A =k FN 知,y N -p =2-p 2,所以y N =4,所以y M =45+1;又|FM ||FN |=15+1,所以p 2-x M =15+1⎝ ⎛⎭⎪⎫p 2+p 2=p 5+1,所以x M =()5-1p 2(5+1),将(x M ,y M )代入y 2=2px ,得⎝ ⎛⎭⎪⎫45+12=2p ×(5-1)p 2(5+1),解得p =2.故选C.13.已知抛物线C :x 2=2py (p >0)的焦点为F ,O 为坐标原点,点M ⎝ ⎛⎭⎪⎫-4,p 2,N ⎝ ⎛⎭⎪⎫1,p 2,射线MO ,NO 分别交抛物线C 于异于点O 的点A ,B ,若A ,B ,F 三点共线,则p 的值为________.解析:直线OM 的方程为y =-p8x ,将其代入x 2=2py , 解方程可得⎩⎪⎨⎪⎧x =-p 24y =p 332,故A ⎝ ⎛⎭⎪⎫-p 24,p 332.直线ON 的方程为y =p2x ,将其代入x 2=2py ,解方程可得⎩⎨⎧x =p 2y =p 32,故B ⎝ ⎛⎭⎪⎫p 2,p 32.又F ⎝ ⎛⎭⎪⎫0,p 2,所以k AB =3p 8,k BF =p 2-12p ,因为A ,B ,F 三点共线,所以k AB =k BF ,即3p 8=p 2-12p ,解得p =2.答案:214.顶点在原点,经过圆C :x 2+y 2-2x +22y =0的圆心且准线与x 轴垂直的抛物线方程为________.解析:将圆C 的一般方程化为标准方程为(x -1)2+(y +2)2=3,圆心为(1,-2).由题意,知抛物线的顶点在原点,焦点在x 轴上,且经过点(1,-2).设抛物线的标准方程为y 2=2px ,因为点(1,-2)在抛物线上,所以(-2)2=2p ,解得p =1,所以所求抛物线的方程为y 2=2x .答案:y 2=2x15.已知AB 是抛物线x 2=4y 的一条焦点弦,若该弦的中点纵坐标是3,则弦AB 所在的直线方程是________.解析:设A (x 1,y 1),B (x 2,y 2), 直线AB 的方程为x =m (y -1),由抛物线的定义及题设可得,y 1+y 2=6, 直线与抛物线方程联立消去x 可得 m 2y 2-(2m 2+4)y +m 2=0, 则y 1+y 2=2m 2+4m 2,即6=2m 2+4m 2, 可得m =1或m =-1.故直线方程为x -y +1=0或x +y -1=0. 答案:x -y +1=0或x +y -1=016.已知抛物线C :y =mx 2(m >0),焦点为F ,直线2x -y +2=0交抛物线C 于A ,B 两点,P 是线段AB 的中点,过P 作x 轴的垂线交抛物线C 于点Q ,①求抛物线C 的焦点坐标.②若抛物线C 上有一点R (x R,2)到焦点F 的距离为3,求此时m 的值.③是否存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形?若存在,求出m 的值;若不存在,请说明理由.解析:①因为抛物线C :x 2=1m y ,所以它的焦点F (0,14m ). ②因为|RF |=y R +14m ,所以2+14m =3,得m =14.③存在,联立方程⎩⎪⎨⎪⎧y =mx 2,2x -y +2=0,消去y 得mx 2-2x -2=0,依题意,有Δ=(-2)2-4×m ×(-2)>0恒成立.解得m >-12.设A (x 1,mx 21),B (x 2,mx 22),则⎩⎪⎨⎪⎧x 1+x 2=2m,x 1·x 2=-2m .(*)因为P 是线段AB 的中点,所以P ⎝ ⎛⎭⎪⎫x 1+x 22,mx 21+mx 222, 即P ⎝ ⎛⎭⎪⎫1m ,y P ,所以Q ⎝ ⎛⎭⎪⎫1m ,1m .得QA →=⎝ ⎛⎭⎪⎫x 1-1m ,mx 21-1m , QB →=⎝⎛⎭⎪⎫x 2-1m ,mx 22-1m , 若存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形, 则QA →·QB→=0,即⎝ ⎛⎭⎪⎫x 1-1m ·⎝ ⎛⎭⎪⎫x 2-1m +⎝ ⎛⎭⎪⎫mx 21-1m ⎝ ⎛⎭⎪⎫mx 22-1m =0, 结合(*)化简得-4m 2-6m +4=0,即2m 2-3m -2=0, 所以m =2或m =-12.而2∈(-12,+∞),-12∉(-12,+∞).。
抛物线学案-2023届高三数学一轮复习
第7节 抛物线考试要求 1.了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用;2.掌握抛物线的定义、几何图形、标准方程及简单几何性质. 知识梳理 1.抛物线的定义(1)平面内与一个定点F 和一条定直线l (F ∉l )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的 .(2)其数学表达式:{M ||MF |=d }(d 为点M 到准线l 的距离). 2.抛物线的标准方程与几何性质图形标准方程y 2=2px(p >0)y 2=-2px(p >0)x 2=2py(p >0)x 2=-2py(p >0)p 的几何意义:焦点F 到准线l 的距离性质顶点对称轴焦点离心率准线方程 y =p2 范围 开口方向向左3.设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则 (1)x 1·x 2=p 24.(2)y 1·y 2=-p 2.(3)|AB |=x 1+x 2+p =2psin 2α(α是直线AB 的倾斜角).(4)1|AF |+1|BF |=2p 为定值(F 是抛物线的焦点). 自主检测1.顶点在原点,且过点P (-2,3)的抛物线的标准方程是________________.2. 抛物线y 2=8x 上到其焦点F 距离为5的点的个数为________.3.若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p =( ) A.2 B.3 C.4 D.84.已知F 是抛物线y 2=x 的焦点,A ,B 是抛物线上的两点,且|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A.34B.1C.54D.745.已知抛物线方程为y 2=8x ,若过点Q (-2,0)的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是________. 典型例题考点一 抛物线的定义、标准方程及其性质【例1】 (1)已知抛物线C 与双曲线x 2-y 2=1有相同的焦点,且顶点在原点,则抛物线C 的方程是( ) A.y 2=±22x B.y 2=±2x C.y 2=±4x D.y 2=±42x(2)设抛物线y 2=4x 的焦点为F ,准线为l ,P 为该抛物线上一点,P A ⊥l ,A 为垂足,若直线AF 的斜率为-3,则△P AF 的面积为( ) A.2 3 B.4 3 C.8 D.8 3(3)动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为__________.【训练1】 (1)设抛物线y 2=2px 的焦点在直线2x +3y -8=0上,则该抛物线的准线方程为( ) A.x =-4 B.x =-3 C.x =-2 D.x =-1(2)已知抛物线x 2=2py (p >0)的焦点为F ,准线为l ,点P (4,y 0)在抛物线上,K 为l 与y 轴的交点,且|PK |=2|PF |,则y 0=________.考点二 与抛物线有关的最值问题 角度1 到焦点与定点距离之和(差)最值问题【例2-1】 点P 为抛物线y 2=4x 上的动点,点A (2,1)为平面内定点,F 为抛物线焦点,则: (1)|P A |+|PF |的最小值为________;(2)(多填题)|P A |-|PF |的最小值为________,最大值为________. 角度2 到点与准线的距离之和最值问题【例2-2】 设P 是抛物线y 2=4x 上的一个动点,则点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值为________.角度3 动弦中点到坐标轴距离最短问题【例2-3】 已知抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为( ) A.34 B.32 C.1 D.2角度4 焦点弦中距离之和最小问题【例2-4】 已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作y 轴的垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.角度5 到定直线的距离最小问题【例2-5】 抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是________.【训练2】 (1)若在抛物线y 2=-4x 上存在一点P ,使其到焦点F 的距离与到A (-2,1)的距离之和最小,则该点的坐标为( ) A.⎝⎛⎭⎫-14,1 B.⎝⎛⎭⎫14,1 C.(-2,-22) D.(-2,22)(2)已知P 为抛物线y 2=4x 上一个动点,Q 为圆C :x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线准线的距离之和的最小值是________. 考点三 直线与抛物线的综合问题【例3】 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求直线l 的方程; (2)若AP →=3PB →,求|AB |.【训练3】 如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P (1,2),A (x 1,y 1),B (x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)当P A 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率.当堂检测1.已知抛物线y 2=2px (p >0),点C (-4,0),过抛物线的焦点作垂直于x 轴的直线,与抛物线交于A ,B 两点,若△CAB 的面积为24,则以直线AB 为准线的抛物线的标准方程是( ) A.y 2=4x B.y 2=-4x C.y 2=8x D.y 2=-8x2.设抛物线C :y 2=3x 的焦点为F ,点A 为C 上一点,若|F A |=3,则直线F A 的倾斜角为( ) A.π3 B.π4 C.π3或2π3 D.π4或3π43.设F 为抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若F 为△ABC 的重心,则|F A →|+|FB →|+|FC →|的值为________.4.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为________.5.已知P 为抛物线C :y =x 2上一动点,直线l :y =2x -4与x 轴、 y 轴交于M ,N 两点,点A (2,-4)且AP →=λAM →+μAN →,则λ+μ的最小值为________.6.设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.7.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.。
抛物线的定义及其标准方程(201911整理)
1.抛物线的定义. 2.抛物线的四种标准方程形式及其对应的焦点和准线.
学习重点
1.抛物线的定义及焦点与准线. 2.抛物线的四种标准方程形式,以及p的意义.
抛物线的四种图形,标准方程的推导及焦点坐标与 准线方程.
复习回顾:
我们知道,到一个定点的距离和到一条 定直线的距离的比是常数的点的轨迹,当常 数在(0,1)内变化时,轨迹是椭圆;那么 当常数等于1时轨迹是什么曲线呢?这就是 今天我们要学习的另一种圆锥曲线——抛物 线,以及它的定义和标准方程.
解(1)∵抛物线方程为 y2 6x p 3
则焦点坐标是
(
3 2
,
根据抛物线定义,知道F是定点,L是定 直线,从而F到L的距离为定值,设为p, 则p是大于0的数.
探究:在建立椭圆的标准方程时,选择不同的坐标系得到不同
形式的标准方程。那么,抛物线的标准方程有哪些不同的形式? 探究后填写下表:
图形
标准方程 焦点坐标 准线方程
y 2 2 px
( p 0)
y 2 2 px
探究:
如图,点 F是定点,L 是不经过点F 的定直线。H是 L上任
意一点,过点H 做 MH L,线段FH的垂直平分线m交
MH于点M,拖动点H,观察点M的轨迹,你能发现点M
满足的几何条件吗?
L
H
M
F
m
; 代写工作总结 https:/// 代写工作总结
;
装置的接线方法和技巧;4 教学重点:汽车电气系统的组成及各部分工作原理、汽车电器结构组成及正确使用、汽车电器典型故障及故障排除方法、汽车电路原理图的识读方法、汽车电控系统的基本原理。第三部分 实验内容 机械制图,课程编码: 3 1.课程简介 低碳钢拉伸时力学性能的测定 (实验) 观
2022年高考数学(文)一轮复习文档:第八章 平面解析几何 第7讲抛物线 Word版含答案
第7讲 抛物线 ,)1.抛物线的定义满足以下三个条件的点的轨迹是抛物线: (1)在平面内;(2)动点到定点F 的距离与到定直线l 的距离相等; (3)定点不在定直线上. 2.抛物线的标准方程和几何性质标准方程y 2=2px(p >0)y 2=-2px(p >0)x 2=2py(p >0)x 2=-2py(p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F ⎝ ⎛⎭⎪⎫p 2,0 F ⎝ ⎛⎭⎪⎫-p 2,0 F ⎝⎛⎭⎪⎫0,p 2 F ⎝ ⎛⎭⎪⎫0,-p 2离心率 e =1准线 方程 x =-p2x =p 2y =-p 2y =p 2范围 x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0, x ∈R开口方向 向右向左向上 向下 焦半径|PF |=|PF |=|PF |=|PF |=(其中P (x 0, y 0))x 0+p 2-x 0+p2y 0+p 2-y 0+p21.辨明两个易误点(1)抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与定直线垂直的直线.(2)对于抛物线标准方程中参数p ,易忽视只有p >0才能证明其几何意义是焦点F 到准线l 的距离,否则无几何意义.2.与焦点弦有关的常用结论(以右图为依据)设A (x 1,y 1),B (x 2,y 2).(1)y 1y 2=-p 2,x 1x 2=p 24.(2)|AB |=x 1+x 2+p =2psin 2θ(θ为AB 的倾斜角).(3)1|AF |+1|BF |为定值2p. (4)以AB 为直径的圆与准线相切. (5)以AF 或BF 为直径的圆与y 轴相切.1.教材习题改编 抛物线8x 2+y =0的焦点坐标为( ) A .(0,-2) B .(0,2) C .⎝⎛⎭⎪⎫0,-132 D .⎝ ⎛⎭⎪⎫0,132C 由8x 2+y =0,得x 2=-18y .2p =18,p =116,所以焦点为⎝⎛⎭⎪⎫0,-132,故选C.2.教材习题改编 以x =1为准线的抛物线的标准方程为( ) A .y 2=2x B .y 2=-2x C .y 2=4xD .y 2=-4xD 由准线x =1知,抛物线方程为y 2=-2px (p >0)且p2=1,p =2,所以方程为y 2=-4x ,故选D.3.M 是抛物线y 2=2px (p >0)位于第一象限的点,F 是抛物线的焦点,若|MF |=52p ,则直线MF 的斜率为( )A .43B .53C .54D .52A 设M (x 0,y 0),由|MF |=52p ,得x 0+p 2=5p2,所以x 0=2p .所以y 20=2px 0=4p 2,取正根得y 0=2p . 即M 的坐标为(2p ,2p ), 又F 的坐标为(p2,0),所以k MF =2p -02p -p 2=43,故选A.4.动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为________.设动圆的圆心坐标为(x ,y ),则圆心到点(1,0)的距离与到直线x =-1的距离相等,依据抛物线的定义易知动圆的圆心的轨迹方程为y 2=4x .y 2=4x5.教材习题改编 抛物线x 2=2py (p >0)上的点P (m ,2)到焦点F 的距离为3,则该抛物线的方程为________. 依据抛物线定义可知2+p2=3,所以p =2,所以抛物线的方程为x 2=4y .x 2=4y抛物线的定义及其应用(1)若抛物线y 2=2x 上一点M 到它的焦点F 的距离为32,O 为坐标原点,则△MFO 的面积为( )A .22B .24C .12D .14(2)已知抛物线y 2=4x 的焦点是F ,点P 是抛物线上的动点,又有点B (3,2),则|PB |+|PF |的最小值为________.【解析】 (1)由题意知,抛物线准线方程为x =-12.设M (a ,b ),由抛物线的定义可知, 点M 到准线的距离为32,所以a =1,代入抛物线方程y 2=2x , 解得b =±2,所以S △MFO =12×12×2=24.(2)如图,过点B 作BQ 垂直准线于Q ,交抛物线于点P 1,则|P 1Q |=|P 1F |,则有|PB |+|PF |≥|P 1B |+|P 1Q |=|BQ |=4.即|PB |+|PF |的最小值为4. 【答案】 (1)B (2)4若本例(2)中的B 点坐标改为(3,4),试求|PB |+|PF |的最小值.由题意可知点(3,4)在抛物线的外部.由于|PB |+|PF |的最小值即为B ,F 两点间的距离, 所以|PB |+|PF |≥|BF |=42+22=16+4=2 5.即|PB |+|PF |的最小值为2 5.抛物线定义的应用(1)利用抛物线的定义解决此类问题,应机敏地进行抛物线上的点到焦点的距离与到准线距离的等价转化.即“看到准线想到焦点,看到焦点想到准线”.(2)留意机敏运用抛物线上一点P (x ,y )到焦点F 的距离|PF |=|x |+p 2或|PF |=|y |+p2.1.(2021·云南省统一检测)设经过抛物线C 的焦点F 的直线l 与抛物线C 交于A 、B 两点,那么抛物线C 的准线与以AB 为直径的圆的位置关系为( )A .相离B .相切C .相交但不经过圆心D .相交且经过圆心B 设圆心为M ,过点A 、B 、M 作准线l 的垂线,垂足分别为A 1、B 1、M 1, 则|MM 1|=12(|AA 1|+|BB 1|).由抛物线定义可知|BF |=|BB 1|,|AF |=|AA 1|, 所以|AB |=|BB 1|+|AA 1|,|MM 1|=12|AB |,即圆心M 到准线的距离等于圆的半径, 故以AB 为直径的圆与抛物线的准线相切.2.(2021·长春调研)已知直线l 1:4x -3y +6=0和直线l 2:x =-1,则抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A .355B .2C .115D .3B 由题可知l 2:x =-1是抛物线y 2=4x 的准线,设抛物线的焦点F 为(1,0),则动点P 到l 2的距离等于|PF |,则动点P 到直线l 1和直线l 2的距离之和的最小值即为焦点F 到直线l 1:4x -3y +6=0的距离,所以最小值是|4-0+6|5=2.抛物线的标准方程及性质(高频考点)抛物线的标准方程及性质是高考的热点,考查时多以选择题、填空题形式消灭,个别高考题有肯定难度. 高考对抛物线的考查主要有以下三个命题角度: (1)求抛物线方程; (2)由已知求参数p ; (3)抛物线方程的实际应用.(1)(2022·高考全国卷乙)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8(2)若抛物线的焦点为直线3x -4y -12=0与坐标轴的交点,则抛物线的标准方程为________.【解析】 (1)由题意,不妨设抛物线方程为y 2=2px (p >0),由|AB |=42,|DE |=25,可取A ⎝ ⎛⎭⎪⎫4p,22,D ⎝ ⎛⎭⎪⎫-p 2,5,设O 为坐标原点,由|OA |=|OD |,得16p 2+8=p 24+5,得p =4,所以选B.(2)对于直线方程3x -4y -12=0,令x =0,得y =-3,令y =0,得x =4,所以抛物线的焦点坐标可能为(0,-3)或(4,0).当焦点坐标为(0,-3)时,设方程为x 2=-2py (p >0),则p2=3,所以p =6,此时抛物线的标准方程为x2=-12y ;当焦点坐标为(4,0)时,设方程为y 2=2px (p >0),则p2=4,所以p =8,此时抛物线的标准方程为y 2=16x . 所以所求抛物线的标准方程为x 2=-12y 或y 2=16x . 【答案】 (1)B (2)x 2=-12y 或y 2=16x(1)求抛物线的标准方程的方法①求抛物线的标准方程常用待定系数法,由于未知数只有p ,所以只需一个条件确定p 值即可. ②由于抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量. (2)确定及应用抛物线性质的技巧①利用抛物线方程确定及应用其焦点、准线等性质时,关键是将抛物线方程化成标准方程.②要结合图形分析,机敏运用平面几何的性质以图助解.角度一 求抛物线方程1.以x 轴为对称轴,原点为顶点的抛物线上的一点P (1,m )到焦点的距离为3,则抛物线的方程是( ) A .y =4x 2B .y =8x 2C .y 2=4xD .y 2=8xD 设抛物线的方程为y 2=2px (p >0),则由抛物线的定义知1+p2=3,即p =4,所以抛物线方程为y2=8x .角度二 由已知求参数p2.(2021·襄阳调研测试)抛物线y 2=2px 的焦点为F ,M 为抛物线上一点,若△OFM 的外接圆与抛物线的准线相切(O 为坐标原点),且外接圆的面积为9π,则p =( )A .2B .4C .6D .8B 由于△OFM 的外接圆与抛物线的准线相切,所以△OFM 的外接圆的圆心到准线的距离等于圆的半径,由于圆面积为9π,所以圆的半径为3,又由于圆心在OF 的垂直平分线上,|OF |=p2,所以p 2+p4=3,所以p =4.角度三 抛物线方程的实际应用3.如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为________米.建立坐标系如图所示.则可设抛物线方程为x 2=-2py (p >0).由于点(2,-2)在抛物线上,所以p =1, 即抛物线方程为x 2=-2y . 当y =-3时,x =± 6.所以水位下降1米后,水面宽为26米. 2 6直线与抛物线的位置关系(2022·高考全国卷乙)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.【解】 (1)由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t . 又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t ,ON 的方程为y =ptx ,代入y 2=2px ,整理得px 2-2t 2x =0, 解得x 1=0,x 2=2t2p.因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t . 所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其他公共点.理由如下:直线MH 的方程为y -t =p2t x ,即x =2tp(y -t ).代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其他公共点.解决直线与抛物线位置关系问题的常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系. (2)有关直线与抛物线的弦长问题,要留意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=|x 1|+|x 2|+p ,若不过焦点,则必需用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系接受“设而不求”“整体代入”等解法.涉及弦的中点、斜率时,一般用“点差法”求解.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.(1)由题意得直线AB 的方程为y =22·⎝ ⎛⎭⎪⎫x -p 2,与y 2=2px 联立,消去y 有4x 2-5px +p 2=0,所以x 1+x 2=5p4.由抛物线定义得|AB |=x 1+x 2+p =5p4+p =9,所以p =4,从而该抛物线的方程为y 2=8x . (2)由(1)得4x 2-5px +p 2=0, 即x 2-5x +4=0, 则x 1=1,x 2=4,于是y 1=-22,y 2=42,从而A (1,-22),B (4,42),设C (x 3,y 3), 则OC →=(x 3,y 3)=(1,-22)+λ(4,42) =(4λ+1,42λ-22). 又y 23=8x 3,所以2=8(4λ+1), 整理得(2λ-1)2=4λ+1, 解得λ=0或λ=2.,)——忽视焦点位置而致误已知抛物线的顶点在原点,对称轴为y 轴,它与圆x 2+y 2=9相交,公共弦MN 的长为25,求该抛物线的方程,并写出它的焦点坐标与准线方程.【解】 由题意,设抛物线方程为x 2=2ay (a ≠0). 设公共弦MN 交y 轴于A , 则|MA |=|AN |,且|AN |= 5. 由于|ON |=3,所以|OA |=32-(5)2=2,所以N (5,±2).由于N 点在抛物线上,所以5=2a ·(±2),即2a =±52,故抛物线的方程为x 2=52y 或x 2=-52y .抛物线x 2=52y 的焦点坐标为⎝ ⎛⎭⎪⎫0,58,准线方程为y =-58.抛物线x 2=-52y 的焦点坐标为⎝ ⎛⎭⎪⎫0,-58,准线方程为y =58.(1)解决本题易忽视焦点位置可在y 轴的正半轴也可在负半轴上两种状况,误认为a >0,从而导致漏解.(2)对称轴确定,而开口方向不确定的抛物线方程有如下特点: ①当焦点在x 轴上时,可将抛物线方程设为y 2=ax (a ≠0); ②当焦点在y 轴上时,可将抛物线方程设为x 2=ay (a ≠0).若抛物线y 2=2px 的焦点与椭圆x 29+y 25=1的焦点重合,则抛物线的准线方程为________.由椭圆x 29+y 25=1,得c 2=9-5=4,即c =2,故椭圆的焦点坐标为(±2,0). 即抛物线的焦点坐标为(±2,0).所以当p >0时,抛物线的准线方程为x =-2;当p <0时,抛物线的准线方程为x =2. x =2或x =-2,)1.若抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A .1716 B .1516 C .78D .0B M 到准线的距离等于M 到焦点的距离,又准线方程为y =-116,设M (x ,y ),则y +116=1,所以y =1516.2.若抛物线y 2=2x 上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为( ) A .⎝ ⎛⎭⎪⎫14,±22B .⎝ ⎛⎭⎪⎫14,±1C .⎝ ⎛⎭⎪⎫12,±22D .⎝ ⎛⎭⎪⎫12,±1 A 设抛物线的顶点为O ,焦点为F ,P (x P ,y P ),由抛物线的定义知,点P 到准线的距离即为点P 到焦点的距离,所以|PO |=|PF |,过点P 作PM ⊥OF 于点M (图略),则M 为OF 的中点,所以x P =14,代入y 2=2x ,得y P =±22,所以P ⎝ ⎛⎭⎪⎫14,±22. 3.(2022·高考全国卷甲)设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k =( )A .12 B .1C .32D .2D 易知抛物线的焦点为F (1,0),设P (x P ,y P ),由PF ⊥x 轴可得x P =1,代入抛物线方程得y P =2(-2舍去),把P (1,2)代入曲线y =k x(k >0)得k =2.4.设F 为抛物线y 2=2x 的焦点,A 、B 、C 为抛物线上三点,若F 为△ABC 的重心,则|FA →|+|FB →|+|FC →|的值为( )A .1B .2C .3D .4C 依题意,设点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),又焦点F ⎝ ⎛⎭⎪⎫12,0,x 1+x 2+x 3=3×12=32, 则|FA →|+|FB →|+|FC →|=⎝⎛⎭⎪⎫x 1+12+⎝ ⎛⎭⎪⎫x 2+12+⎝ ⎛⎭⎪⎫x 3+12=(x 1+x 2+x 3)+32=32+32=3.5.直线l 过抛物线y 2=-2px (p >0)的焦点,且与抛物线交于A 、B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线的方程是( )A .y 2=12x B .y 2=-8x C .y 2=6xD .y 2=-4xB 设A (x 1,y 1)、B (x 2,y 2),由抛物线定义可得|x 1|+|x 2|+p =8,又AB 的中点到y 轴的距离为2,即|x 1|+|x 2|=4,所以p =4,所以y 2=-8x .故选B.6.已知抛物线y 2=4x ,圆F :(x -1)2+y 2=1,过点F 作直线l ,自上而下顺次与上述两曲线交于点A ,B ,C ,D (如图所示),则下列关于|AB |·|CD |的值的说法中,正确的是( )A .等于1B .等于4C .最小值是1D .最大值是4A 设直线l :x =ty +1,代入抛物线方程,得y 2-4ty -4=0.设A (x 1,y 1),D (x 2,y 2),依据抛物线的定义知,|AF |=x 1+1,|DF |=x 2+1,故|AB |=x 1,|CD |=x 2,所以|AB |·|CD |=x 1x 2=y 214·y 224=(y 1y 2)216.而y 1y 2=-4,故|AB |·|CD |=1.7.(2021·资阳模拟)顶点在原点,对称轴是y 轴,并且经过点P (-4,-2)的抛物线方程是________. 设抛物线方程为x 2=my ,将点P (-4,-2)代入x 2=my ,得m =-8. 所以抛物线方程是x 2=-8y . x 2=-8y8.(2021·云南省第一次统一检测)已知抛物线C 的方程为y 2=2px (p >0),○· M 的方程为x 2+y 2+8x +12=0,假如抛物线C 的准线与○·M 相切,那么p 的值为________.将○·M 的方程化为标准方程:(x +4)2+y 2=4,圆心坐标为(-4,0),半径r =2,又由于抛物线的准线方程为x =-p2,所以⎪⎪⎪⎪⎪⎪4-p 2=2,p =12或4.12或49.经过抛物线C 的焦点F 作直线l 与抛物线C 交于A ,B 两点,假如A ,B 在抛物线C 的准线上的射影分别为A 1,B 1,那么∠A 1FB 1=________.由抛物线定义可知|BF |=|BB 1|,|AF |=|AA 1|,故∠BFB 1=∠BB 1F ,∠AFA 1=∠AA 1F . 又∠OFB 1=∠BB 1F ,∠OFA 1=∠AA 1F , 故∠BFB 1=∠OFB 1,∠AFA 1=∠OFA 1, 所以∠OFA 1+∠OFB 1=12×π=π2,即∠A 1FB 1=π2.π210.(2021·豫东、豫北十校联考)已知抛物线的顶点在原点,焦点在x 轴的正半轴上,若抛物线的准线与双曲线5x 2-y 2=20的两条渐近线围成的三角形的面积为45,则抛物线方程为________.由双曲线方程5x 2-y 2=20知其渐近线方程为y =±5x ,由题意可设抛物线方程为y 2=2px (p >0),故其准线方程为x =-p 2,设准线与双曲线的两条渐近线的交点为A ,B ,则不妨令A ⎝ ⎛⎭⎪⎫-p2,52p ,B ⎝ ⎛⎭⎪⎫-p 2,-52p ,故S △ABO =12×5p ×p 2=54p 2=45,解得p 2=16,又由于p >0,所以p =4,故抛物线方程为y 2=8x .y 2=8x11.已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)若过M 作MN ⊥FA ,垂足为N ,求点N 的坐标. (1)抛物线y 2=2px 的准线为x =-p2,于是4+p2=5,所以p =2.所以抛物线方程为y 2=4x .(2)由于点A 的坐标是(4,4), 由题意得B (0,4),M (0,2). 又由于F (1,0),所以k FA =43,由于MN ⊥FA ,所以k MN =-34.所以FA 的方程为y =43(x -1),①MN 的方程为y -2=-34x ,②联立①②,解得x =85,y =45,所以N 的坐标为⎝ ⎛⎭⎪⎫85,45.12.(2021·长春一模)过抛物线y 2=2px (p >0)的焦点F 且倾斜角为120°的直线l 与抛物线在第一、四象限分别交于A ,B 两点,则|AF ||BF |的值等于( ) A .13B .23 C.34 D.43A 记抛物线y 2=2px 的准线为l ′,如图,作AA 1⊥l ′,BB 1⊥l ′,AC ⊥BB 1,垂足分别是A 1,B 1,C ,则有cos ∠ABB 1=|BC ||AB |=|BB 1|-|AA 1||AF |+|BF |=|BF |-|AF ||AF |+|BF |,即cos 60°=|BF |-|AF ||AF |+|BF |=12,由此得|AF ||BF |=13.13.已知抛物线C :y 2=4x 的焦点为F ,直线l 经过点F 且与抛物线C 相交于A 、B 两点. (1)若线段AB 的中点在直线y =2上,求直线l 的方程; (2)若线段|AB |=20,求直线l 的方程.(1)由已知得抛物线的焦点为F (1,0).由于线段AB 的中点在直线y =2上,所以直线l 的斜率存在,设直线l 的斜率为k ,A (x 1,y 1),B (x 2,y 2),AB 的中点M (x 0,y 0),则⎩⎪⎨⎪⎧x 0=x 1+x 22,y 0=y 1+y 22.由⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2得(y 1+y 2)(y 1-y 2)=4(x 1-x 2),所以2y 0k =4. 又y 0=2,所以k =1,故直线l 的方程是y =x -1. (2)设直线l 的方程为x =my +1,与抛物线方程联立得⎩⎪⎨⎪⎧x =my +1,y 2=4x ,消元得y 2-4my -4=0,所以y 1+y 2=4m ,y 1y 2=-4,Δ=16(m 2+1)>0. |AB |=m 2+1|y 1-y 2|=m 2+1·(y 1+y 2)2-4y 1y 2 =m 2+1·(4m )2-4×(-4) =4(m 2+1).所以4(m 2+1)=20,解得m =±2, 所以直线l 的方程是x =±2y +1,即x ±2y -1=0.14.已知圆C 过定点F ⎝ ⎛⎭⎪⎫-14,0,且与直线x =14相切,圆心C 的轨迹为E ,曲线E 与直线l :y =k (x +1)(k ∈R )相交于A ,B 两点.(1)求曲线E 的方程;(2)当△OAB 的面积等于10时,求k 的值.(1)由题意,点C 到定点F ⎝ ⎛⎭⎪⎫-14,0和直线x =14的距离相等, 故点C 的轨迹E 的方程为y 2=-x .(2)由方程组⎩⎪⎨⎪⎧y 2=-x ,y =k (x +1),消去x 后,整理得ky 2+y -k =0. 设A (x 1,y 1),B (x 2,y 2),由根与系数的关系有y 1+y 2=-1k,y 1y 2=-1.设直线l 与x 轴交于点N ,则N (-1,0). 所以S △OAB =S △OAN +S △OBN =12|ON ||y 1|+12|ON ||y 2|, =12|ON ||y 1-y 2| =12×1×(y 1+y 2)2-4y 1y 2 =12⎝ ⎛⎭⎪⎫-1k 2+4=10, 解得k =±16.。
抛物线【九大题型】(举一反三)(新高考专用)(解析版)—2025年高考数学一轮复习
抛物线【九大题型】专练【题型1 抛物线的定义及其应用】........................................................................................................................3【题型2 抛物线的标准方程】................................................................................................................................5【题型3 抛物线的焦点坐标及准线方程】............................................................................................................6【题型4 抛物线的轨迹方程】................................................................................................................................7【题型5 抛物线上的点到定点的距离及最值】....................................................................................................9【题型6 抛物线上的点到定点和焦点距离的和、差最值】..............................................................................11【题型7 抛物线的焦半径公式】..........................................................................................................................14【题型8 抛物线的几何性质】..............................................................................................................................16【题型9 抛物线中的三角形(四边形)面积问题】 (18)1、抛物线【知识点1 抛物线及其性质】1.抛物线的定义(1)定义:平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫作抛物线.点F叫作抛物线的焦点,直线l叫作抛物线的准线.(2)集合语言表示设点M(x,y)是抛物线上任意一点,点M到直线l的距离为d,则抛物线就是点的集合P={M||MF|=d}.2.抛物线的标准方程与几何性质(0,0)(0,0)3.抛物线与椭圆、双曲线几何性质的差异抛物线与椭圆、双曲线几何性质的差异:①它们都是轴对称图形,但椭圆和双曲线又是中心对称图形;②顶点个数不同,椭圆有4个顶点,双曲线有2个顶点,抛物线只有1个顶点;③焦点个数不同,椭圆和双曲线各有2个焦点,抛物线只有1个焦点;④离心率取值范围不同,椭圆的离心率范围是0<e<1,双曲线的离心率范围是e>1,抛物线的离心率是e=1;⑤椭圆和双曲线都有两条准线,而抛物线只有一条准线;⑥椭圆是封闭式曲线,双曲线和抛物线都是非封闭式曲线.【知识点2 抛物线标准方程的求解方法】1.抛物线标准方程的求解待定系数法:求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.【知识点3 抛物线的焦半径公式】1.焦半径公式设抛物线上一点P的坐标为,焦点为F.(1)抛物线:;(2)抛物线:(3)抛物线:;(4)抛物线:.注:在使用焦半径公式时,首先要明确抛物线的标准方程的形式,不同的标准方程对应于不同的焦半径公式.【知识点4 与抛物线有关的最值问题的解题策略】1.与抛物线有关的最值问题的两个转化策略(1)转化策略一:将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”“三角形两边之和大于第三边”,使问题得以解决.(2)转化策略二:将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.【方法技巧与总结】1.通径:过焦点与对称轴垂直的弦长等于2p.2.抛物线P,也称为抛物线的焦半径.【题型1 抛物线的定义及其应用】【例1】(2024·贵州贵阳·二模)抛物线y2=4x上一点M与焦点间的距离是10,则M到x轴的距离是()A.4B.6C.7D.9【解题思路】借助抛物线定义计算即可得.【解答过程】抛物线y2=4x的准线为x=―1,由抛物线定义可得x M+1=10,故x M=10―1=9,则|y M|===6,即M到x轴的距离为6.故选:B.【变式1-1】(2024·河北·模拟预测)已知点P为平面内一动点,设甲:P的运动轨迹为抛物线,乙:P到平面内一定点的距离与到平面内一定直线的距离相等,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【解题思路】根据已知条件,结合充分条件、必要条件的定义,即可求解.【解答过程】解:当直线经过定点时,点的轨迹是过定点且垂直于该直线的另一条直线,当直线不经过该定点时,点的轨迹为抛物线,故甲是乙的充分条件但不是必要条件.故选:A.【变式1-2】(2024·北京大兴·三模)已知抛物线y2=4x的焦点为F,过F且斜率为―1的直线与直线x=―1交于点A,点M在抛物线上,且满足|MA|=|MF|,则|MF|=()A.1B C.2D.【解题思路】由题意先求出过F且斜率为―1的直线方程,进而可求出点A,接着结合点M在抛物线上且|MA|=|MF|可求出x M,从而根据焦半径公式|MF|=x M+1即可得解.【解答过程】由题意可得F(1,0),故过F且斜率为―1的直线方程为y=―(x―1)=―x+1,令x=―1⇒y=2,则由题A(―1,2),因为|MA|=|MF|,所以MA垂直于直线x=―1,故y M=2,又M 在抛物线上,所以由22=4x M ⇒x M =1,所以|MF |=x M +1=2.故选:C.【变式1-3】(2024·福建莆田·模拟预测)若抛物线C 的焦点到准线的距离为3,且C 的开口朝左,则C 的标准方程为( )A .y 2=―6xB .y 2=6xC .y 2=―3xD .y 2=3x【解题思路】根据开口设抛物线标准方程,利用p 的几何意义即可求出.【解答过程】依题意可设C 的标准方程为y 2=―2px(p >0),因为C 的焦点到准线的距离为3,所以p =3,所以C 的标准方程为y 2=―6x .故选:A.【题型2 抛物线的标准方程】【例2】(2024·山东菏泽·模拟预测)已知点A (a,2)为抛物线x 2=2py (p >0)上一点,且点A 到抛物线的焦点F 的距离为3,则p =( )A .12B .1C .2D .4【解题思路】由题意,根据抛物线的性质,抛物线x 2=2py (p >0),则抛物线焦点为F 0,M (x 1,y 1)为 抛物线上一点,有|MF |=y 1+p 2,可得|AF |=2+p2=3,解得p =2.【解答过程】因为抛物线为x 2=2py (p >0),则其焦点在y 轴正半轴 上,焦点坐标为由于点A (a,2)为抛物线x 2=2py ,(p >0)为上一点,且点A 到抛物线的焦点F 的距离为3, 所以点A 到抛物线的焦点F 的距离为|AF |=2+p2=3,解得p =2,故选:C.【变式2-1】(2024·陕西安康·模拟预测)过点(2,―3),且焦点在y 轴上的抛物线的标准方程是( )A .x 2=―3yB .x 2=―43yC .x 2=―23yD .x 2=―4y【解题思路】利用待定系数法,设出抛物线方程,把点代入求解即可.【解答过程】设抛物线的标准方程为x 2=ay (a ≠0),将点点(2,―3)代入,得22=―3a,解得a=―43,所以抛物线的标准方程是x2=―43y.故选:B.【变式2-2】(2024·新疆·三模)已知抛物线y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1,则抛物线的标准方程为()A.y2=x B.y2=2x C.y2=4x D.y2=8x【解题思路】根据抛物线的定义求解.【解答过程】由题意抛物线y2=2px(p>0)上任意一点到焦点F的距离与它到直线x=―1的距离相,因此―p2=―1,p=2,抛物线方程为y2=4x.故选:C.【变式2-3】(2024·宁夏石嘴山·三模)如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于两点A、B,交其准线于C,AE与准线垂直且垂足为E,若|BC|=2|BF|,|AE|=3,则此抛物线的方程为()A.y2=3x2B.y2=9xC.y2=9x2D.y2=3x【解题思路】过点A,B作准线的垂线,设|BF|=a,得到|AC|=3+3a,结合抛物线的定义,求得a=1,再由BD//FG,列出方程求得p的值,即可求解.【解答过程】如图所示,分别过点B作准线的垂线,垂足为D,设|BF|=a,则|BC|=2|BF|=2a,由抛物线的定义得|BD|=|BF|=a,在直角△BCD中,可得sin∠BCD=|BD||BC|=12,所以∠BCD=30∘,在直角△ACE中,因为|AE|=3,可得|AC|=3+3a,由|AC |=2|AE |,所以3+3a =6,解得a =1,因为BD //FG ,所以1p =2a3a ,解得p =32,所以抛物线方程为y 2=3x .故选:C.【题型3 抛物线的焦点坐标及准线方程】【例3】(2024·内蒙古赤峰·二模)已知抛物线C 的方程为 x =―116y 2, 则此抛物线的焦点坐标为( )A .(-4,0)B .―14,C .(-2,0)D .―12,【解题思路】由抛物线的几何性质求解.【解答过程】依题意得:y 2=―16x ,则此抛物线的焦点坐标为:―4,0,故选:A.【变式3-1】(2024·黑龙江大庆·模拟预测)已知抛物线C:y =6x 2,则C 的准线方程为( )A .y =―32B .y =32C .y =―124D .y =124【解题思路】根据抛物线的准线方程直接得出结果.【解答过程】抛物线C :y =6x 2的标准方程为x 2=16y ,所以其准线方程为y =―124.故选:C.【变式3-2】(2024·河南·三模)抛物线y 2=―28x 的焦点坐标为( )A .(0,―14)B .(0,―7)C .(―14,0)D .(―7,0)【解题思路】根据抛物线的标准方程直接得出结果.【解答过程】∵2p =28,∴p =14,∴抛物线y 2=―28x 的焦点坐标为(―7,0).故选:D.【变式3-3】(2024·福建厦门·模拟预测)若抛物线y 2=mx 的准线经过双曲线x 2―y 2=2的右焦点,则m的值为()A.―4B.4C.―8D.8【解题思路】根据题意,分别求得双曲线的右焦点以及抛物线的准线方程,代入计算,即可得到结果.【解答过程】因为双曲线x2―y2=2的右焦点为(2,0),又抛物线y2=mx的准线方程为x=―m4,则―m4=2,即m=―8.故选:C.【题型4 抛物线的轨迹方程】【例4】(2024·湖南衡阳·三模)已知点F(2,0),动圆P过点F,且与x=―2相切,记动圆圆心P点的轨迹为曲线Γ,则曲线Γ的方程为()A.y2=2x B.y2=4x C.y2=8x D.y2=12x【解题思路】分析题意,利用抛物线的定义判断曲线是抛物线,再求解轨迹方程即可.【解答过程】由题意知,点P到点F的距离和它到直线x=―2的距离相等,所以点P的轨迹是以(2,0)为焦点的抛物线,所以Γ的方程为y2=8x,故C正确.故选:C.【变式4-1】(23-24高二上·北京延庆·期末)到定点F(1,0)的距离比到y轴的距离大1的动点且动点不在x轴的负半轴的轨迹方程是()A.y2=8x B.y2=C.y2=2x D.y2=x【解题思路】根据抛物线的定义即可得解.【解答过程】因为动点到定点F(1,0)的距离比到y轴的距离大1,所以动点到定点F(1,0)的距离等于到x=―1的距离,所以动点的轨迹是以F(1,0)为焦点,x=―1为准线的抛物线,所以动点的轨迹方程是y2=4x.故选:B.【变式4-2】(23-24高二上·重庆·期末)已知点P(x,y)=|x+1|,则点P的轨迹为()A.椭圆B.双曲线C.抛物线D.圆【解题思路】根据已知条件及抛物线的定义即可求解.P(x,y)到点(1,0)的距离;|x+1|表示点P(x,y)到直线x=―1的距离.=|x+1|,所以点P(x,y)到点(1,0)的距离等于点P(x,y)到直线x=―1的距离,所以P的轨迹为抛物线.故选:C.【变式4-3】(23-24高二上·宁夏石嘴山·阶段练习)一个动圆与定圆F:(x+2)2+y2=1相内切,且与定直线l:x=3相切,则此动圆的圆心M的轨迹方程是( )A.y2=8x B.y2=4x C.y2=―4x D.y2=―8x【解题思路】先利用圆与圆的位置关系,直线与圆的位置关系找到动点M的几何条件,再根据抛物线的定义确定动点M的轨迹,最后利用抛物线的标准方程写出轨迹方程.【解答过程】设动圆M的半径为r,依题意:|MF|=r―1,点M到定直线x=2的距离为d=r―1,所以动点M到定点F(―2,0)的距离等于到定直线x=2的距离,即M的轨迹为以F为焦点,x=2所以此动圆的圆心M的轨迹方程是y2=―8x.故选:D.【题型5 抛物线上的点到定点的距离及最值】【例5】(2024·全国·模拟预测)已知A是抛物线C:y2=4x上的点,N(4,0),则|AN|的最小值为()A.2B.C.4D.【解题思路】由抛物线的方程,利用二次函数的性质求最值【解答过程】设,t,则|AN|===≥当且仅当t=±故选:D.【变式5-1】(2024高三·全国·专题练习)已知P是抛物线y2=2x上的点,Q是圆(x―5)2+y2=1上的点,则|PQ |的最小值是( )A .2B .C .D .3【解题思路】将问题转化为求|PC|的最小值,根据两点之间的距离公式,求得|PC|的最小值再减去半径即可.【解答过程】如图,抛物线上点P (x,y )到圆心C (5,0)的距离为|PC |,|CP |≤|CQ |+|PQ |,因此|PQ |≥|CP |―1,当|CP |最小时,|PQ |=|CP |―1最小,而|CP |2=(x ―5)2+y 2=―52+y 2=2―82+9,当y =±|CP |min =3,因此|PQ |的最小值是2.故选:A.【变式5-2】(2024·湖南益阳·三模)已知M 是抛物线y²=4x 上一点,圆C 1:(x ―1)2+(y ―2)2=1关于直线y =x ―1对称的圆为C 2,N 是圆C 2上的一点,则|MN |的最小值为( )A .1B ―1C―1D .37【解题思路】根据对称性求出圆C 2的方程,设y 0,求出|MC 2|的最小值,即可求出|MN |的最小值.【解答过程】圆C 1:(x ―1)2+(y ―2)2=1圆心为C 1(1,2),半径r =1,设C 2(a,b ),=―1―1=0,解得a =3b =0,则C 2(3,0),所以圆C2 :(x ―3)2+y 2=1,设y 0,则|MC 2|==所以当y 20=4,即y 0=±2时,|MC 2|min=所以|MN |的最小值是―1.故选:A.【变式5-3】(2024·黑龙江齐齐哈尔·二模)已知抛物线C:y2=8x的焦点为F,M为C上的动点,N为圆A:x2+ y2+2x+8y+16=0上的动点,设点M到y轴的距离为d,则|MN|+d的最小值为()A.1B C D.2【解题思路】作出图形,过点M作ME垂直于抛物线的准线,垂足为点E,利用抛物线的定义可知d=|MF|―2,分析可知,当且仅当N、M为线段AF分别与圆A、抛物线C的交点时,|MN|+d取最小值,即可得解.【解答过程】根据已知得到F(2,0),圆A:(x+1)2+(y+4)2=1,所以A(―1,―4),圆A的半径为1,抛物线C的准线为l:x=―2,过点M作ME⊥l,垂足为点E,则|ME|=d+2,由抛物线的定义可得d+2=|ME|=|MF|,所以,|MN|+d=|MN|+|MF|―2≥|AM|+|MF|―1―2≥|AF|―1―2=1―2=2.当且仅当N、M为线段AF分别与圆A、抛物线C的交点时,两个等号成立,因此,|MN|+d的最小值为3.故选:D.【题型6 抛物线上的点到定点和焦点距离的和、差最值】【例6】(2024·四川成都·模拟预测)设点A(2,3),动点P在抛物线C:y2=4x上,记P到直线x=―2的距离为d,则|AP|+d的最小值为()A.1B.3C1D【解题思路】根据抛物线的定义,P到焦点F的距离等于P到准线的距离,可得d=|PF|+1,从而转化为求|AP|+|PF|+1的值,当A,P,F三点共线时,d=|PF|+1取得最小值,即可求解.【解答过程】由题意可得,抛物线C的焦点F(1,0),准线方程为x=―1,由抛物线的定义可得d=|PF|+1,所以|AP|+d=|AP|+|PF|+1,因为|AP|+|PF|≥|AF|==所以|AP|+d=|AP|+|PF|+1≥+1.当且仅当A,P,F三点共线时取等号,所以|AP|+d+1.故选:D.【变式6-1】(2024·湖南常德·一模)已知抛物线方程为:y2=16x,焦点为F.圆的方程为(x―5)2+(y―1)2 =1,设P为抛物线上的点,Q|PF|+|PQ|的最小值为()A.6B.7C.8D.9【解题思路】根据抛物线定义将点到焦点的距离转化为点到直线的距离,即|PF|=|PN|,从而得到|PF|+ |PQ|=|PN|+|PQ|,P、Q、N三点共线时和最小;再由Q在圆上,|QN|min=|MN|―r得到最小值.【解答过程】由抛物线方程为y2=16x,得到焦点F(4,0),准线方程为x=―4,过点P做准线的垂线,垂足为N,因为点P在抛物线上,所以|PF|=|PN|,所以|PF|+|PQ|=|PN|+|PQ|,当Q点固定不动时,P、Q、N三点共线,即QN垂直于准线时和最小,又因为Q在圆上运动,由圆的方程为(x―5)2+(y―1)2=1得圆心M(5,1),半径r=1,所以|QN|min=|MN|―r=8,故选:C.【变式6-2】(2024·全国·模拟预测)在直角坐标系xOy中,已知点F(1,0),E(―2,0),M(2,2),动点P满足线段PE的中点在曲线y2=2x+2上,则|PM|+|PF|的最小值为()A.2B.3C.4D.5【解题思路】设P(x,y),由题意求出P的轨迹方程,继而结合抛物线定义将|PM|+|PF|的最小值转化为M 到直线l的距离,即可求得答案.【解答过程】设P(x,y),则PE y2=2x+2,可得y2=4x,故动点P的轨迹是以F为焦点,直线l:x=―1为准线的抛物线,由于22<4×2,故M(2,2)在抛物线y2=4x内部,过点P作PQ⊥l,垂足为Q,则|PM|+|PF|=|PM|+|PQ|,(抛物线的定义),故当且仅当M,P,Q三点共线时,|PM|+|PQ|最小,即|PM|+|PF|最小,最小值为点M到直线l的距离,所以(|PM|+|PF|)min=2―(―1)=3,故选:B.【变式6-3】(2024·陕西西安·一模)设P为抛物线C:y2=4x上的动点,A(2,6)关于P的对称点为B,记P到直线x=―1、x=―4的距离分别d1、d2,则d1+d2+|AB|的最小值为()A B.C+3D.+3【解题思路】根据题意得到d1+d2+|AB|=2d1+3+2|PA|=2(d1+|PA|)+3,再利用抛物线的定义结合三角不等式求解.【解答过程】抛物线C:y2=4x的焦点为F(1,0),准线方程为x=―1,如图,因为d 2=d 1+3,且A (2,6)关于P 的对称点为B ,所以|PA |=|PB |,所以d 1+d 2+|AB |=2d 1+3+2|PA |=2(d 1+|PA |)+3 =2(|PF |+|PA |)+3≥2|AF |+3 ==.当P 在线段AF 与抛物线的交点时,d 1+d 1+|AB |取得最小值,且最小值为.故选:D.【题型7 抛物线的焦半径公式】【例7】(2024·青海西宁·一模)已知F 是抛物线C:x 2=4y 的焦点,点M 在C 上,且M 的纵坐标为3,则|MF |=( )A .B .C .4D .6【解题思路】利用抛物线的标准方程和抛物线的焦半径公式即可求解.【解答过程】由x 2=4y ,得2p =4,解得p =2.所以抛物线C:x 2=4y 的焦点坐标为F (0,1),准线方程为y =―1,又因为M 的纵坐标为3,点M 在C 上,所以|MF |=y M +p2=3+22=4.故选:C.【变式7-1】(2024·河南·模拟预测)已知抛物线C:y 2=2px (p >0)上的点(m,2)到原点的距离为为F ,准线l 与x 轴的交点为M ,过C 上一点P 作PQ ⊥l 于Q ,若∠FPQ =2π3,则|PF |=( )A .13B .12C D .23【解题思路】根据点(m,2)到原点的距离为再设点P 坐标,利用抛物线的定义和等腰三角形的性质列出方程即可求解.【解答过程】因为点(m,2)到原点的距离为所以m 2+22=8,解得m =2,(负值舍),将点(2,2)代入抛物线方程y 2=2px (p >0),得4=4p ,所以p =1,所以C:y 2=2x,F(12,0),l:x =―12.由于抛物线关于x 轴对称,不妨设,因为|PQ|=|PF|=x +12,∠FPQ =2π3,所以△PQF 为等腰三角形,∠PQF =π6,所以|QF|=+12),所以|QF|==+12),解得x =16或x =―12(舍),所以|PF |=16+12=23.故选:D.【变式7-2】(2024·新疆·三模)已知抛物线C :y 2=x 的焦点为F ,在抛物线C 上存在四个点P ,M ,Q ,N ,若弦PQ 与弦MN 的交点恰好为F ,且PQ ⊥MN ,则1|PQ |+1|MN |=( )A B .1C D .2【解题思路】由抛物线的方程可得焦点F 的坐标,应用抛物线焦点弦性质|PF |=p1―cos θ,|QF |=p1+cos θ,|MF |=p1+sin θ,|NF |=p1―sin θ,结合三角的恒等变换的化简可得1|PQ |+1|MN |=12p ,即可求解.【解答过程】由抛物线C:y 2=x 得2p =1,则p =12,F(14,0),不妨设PQ 的倾斜角为θ0<θ<则由|PF |cos θ+p =|PF |,p ―|QF |cos θ=|QF |,得|PF |=p 1―cos θ,|QF |=p1+cos θ,所以|MF |==p1+sin θ,|NF |==p1―sin θ,得|PQ |=|PF |+|QF |=p1―cos θ+p1+cos θ=2psin 2θ,|MN |==2pcos 2θ,所以1|PQ |+1|MN |=12p =1.故选:B.【变式7-3】(2024·北京西城·三模)点F 抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若FA +FB +FC =0,则|FA |+|FB |+|FC |=( )A .2B .C .3D .【解题思路】设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),根据抛物线方程求出焦点坐标和准线方程,再由FA +FB +FC =0可得F 为△ABC 的重心,从而可求出x 1+x 2+x 3,再根据抛物线的定义可求得结果.【解答过程】设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),由y 2=2x ,得p =1,所以F(12,0),准线方程为x =―12,因为FA +FB +FC =0,所以F 为△ABC 的重心,所以x 1+x 2+x 33=12,所以x 1+x 2+x 3=32,所以|FA |+|FB |+|FC |=x 1+12+x 2+12+x 3+12=x 1+x 2+x 3+32=32+32=3,故选:C.【题型8 抛物线的几何性质】【例8】(2024·重庆·模拟预测)A,B 是抛物线y 2=2px(p >0)上的不同两点,点F 是抛物线的焦点,且△OAB 的重心恰为F ,若|AF|=5,则p =( )A .1B .2C .3D .4【解题思路】根据重心可得x 1+x 2=3p 2y 1=―y 2,结合对称性可得x 1=3p4,再根据抛物线的定义运算求解.【解答过程】设A (x 1,y 1),B (x 2,y 2),因为△OAB 的重心恰为F=p2=0,解得x 1+x 2=3p2y 1=―y 2,由y 1=―y 2可知A,B 关于x 轴对称,即x 1=x 2,则x 1+x 2=2x 1=3p2,即x 1=3p 4,又因为|AF |=x 1+p2=5p 4=5,解得p =4.故选:D.【变式8-1】(23-24高二下·福建厦门·期末)等边三角形的一个顶点位于原点,另外两个顶点在抛物线y 2=2x 上,则这个等边三角形的边长为( )A .2B .C .4D.【解题思路】正三角形的另外两个顶点关于x 轴对称,设另外两个顶点坐标分别是A ),B―a),把顶点代入抛物线方程化简即可求解.【解答过程】设正三角形得边长为2a ,由图可知正三角形的另外两个顶点关于x 轴对称,可设另外两个顶点坐标分别是A),B―a ),把顶点代入抛物线方程得a 2=解得a =所以正三角形的边长为故选:D.【变式8-2】(23-24高三下·北京·阶段练习)设抛物线C 的焦点为F ,点E 是C 的准线与C 的对称轴的交点,点P 在C 上,若∠PEF =30°,则sin ∠PFE =( )A B C D 【解题思路】先设P(x 0,y 0),根据图形分别表示出tan ∠ P EF 和sin ∠ P FE 即可得解.【解答过程】由于抛物线的对称性,不妨设抛物线为C:y 2=2px(p >0),则其焦点为F(p2,0),点E 是C 的准线与C 的对称轴的交点,其坐标为E(―p2,0),点P 在C 上,设为P(x 0,y 0),若∠ P EF =30∘,则tan ∠ P EF =|y 0|x 0+p 2=且|PF|=x 0+p 2,则sin ∠ P FE =sin (π―∠ P FE )=|y 0||PF|=故选:B.【变式8-3】(23-24高二下·重庆·阶段练习)已知x 轴上一定点A (a,0)(a >0),和抛物线y 2=2px (p >0)上的一动点M ,若|AM |≥a 恒成立,则实数a 的取值范围为( )A .B .(0,p ]C .D .(0,2p ]【解题思路】设M (x 0,y 0) (x 0≥0),表示出|AM |,依题意可得x 20―(2a ―2p )x 0≥0恒成立,分x 0=0和x 0>0两种情况讨论,当x0>0时x0≥2a―2p恒成立,即可得到2a―2p≤0,从而求出a的取值范围.【解答过程】设M(x0,y0)(x0≥0),则y20=2px0,所以|AM|====因为|AM|≥a恒成立,所以x20―(2a―2p)x0+a2≥a2恒成立,所以x20―(2a―2p)x0≥0恒成立,当x0=0时显然恒成立,当x0>0时x0≥2a―2p恒成立,所以2a―2p≤0,则a≤p,又a>0,所以0<a≤p,即实数a的取值范围为(0,p].故选:B.【题型9 抛物线中的三角形(四边形)面积问题】【例9】(2024·江西新余·二模)已知点Q(2,―2)在抛物线C:y2=2px上,F为抛物线的焦点,则△OQF (O为坐标原点)的面积是()A.12B.1C.2D.4【解题思路】将点Q代入抛物线C的方程,即可求解p,再结合抛物线的公式,即可求解【解答过程】∵点Q(2,―2)在抛物线C:y2=2px上,F为抛物线C的焦点,∴4=4p,解得p=1,故抛物线C的方程为y2=2x,F(12,0),则△OQF的面积S△OQF=12×12×2=12.故选:A.【变式9-1】(23-24高二上·广东广州·期末)已知抛物线C:y2=2px(p>0)的焦点为F,直线l与C相交于A、B两点,与y轴相交于点E.已知|AF|=5,|BF|=3,若△AEF的面积是△BEF面积的2倍,则抛物线C的方程为()A .y 2=2xB .y 2=4xC .y 2=6xD .y 2=8x【解题思路】过A,B 分别作C 的准线的垂线交y 轴于点M,N ,根据抛物线定义可得|AM |=5―p2,|BN |=3―p 2,再由S △AEF S △BEF=|AE ||BE |=|AM ||BN |即可求参数p ,进而可得抛物线方程.【解答过程】如图,过A,B 分别作C 的准线的垂线交y 轴于点M,N ,则AM //BN ,故|AE ||BE |=|AM ||BN |,因为C 的准线为x =―p2,所以|AM |=|AF |―p2=5―p2,|BN |=|BF |―p2=3―p2,所以S △AEFS △BEF=12|EF ||AE |sin ∠AEF 12|EF ||BE |sin ∠BEF =|AE ||BE |=|AM ||BN |=5―p 23―p 2=2,解得p =2,故抛物线C 的方程为y 2=4x .故选:B.【变式9-2】(23-24高二上·广东广州·期末)设F 为抛物线y 2=4x 的焦点,A,B,C 为该抛物线上不同的三点,且FA +FB +FC =0,O 为坐标原点,若△OFA 、△OFB 、△OFC 的面积分别为S 1、S 2、S 3,则S 21+S 22+S 23=( )A .3B .4C .5D .6【解题思路】设点A,B,C 的坐标,再表示出△OFA,△OFB,△OFC 的面积,借助向量等式即可求得答案.【解答过程】设点A,B,C 的坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),而抛物线的焦点F(1,0),|OF|=1,FA =(x 1―1,y 1),FB =(x 2―1,y 2),FC =(x 3―1,y 3),由FA +FB +FC =0,得x 1+x 2+x 3=3,于是S 1=12|y 1|,S 2=12|y 2|,S 3=12|y 3|,所以S 21+S 22+S 23=14(y 21+y 22+y 23)=x 1+x 2+x 3=3.故选:A.【变式9-3】(23-24高二·全国·课后作业)已知抛物线C:y2=8x,点P为抛物线上任意一点,过点P向圆D:x2+y2―4x+3=0作切线,切点分别为A,B,则四边形PADB的面积的最小值为()A.1B.2C D【解题思路】由题意圆的圆心与抛物线的焦点重合,可得连接PD,则S四边形PADB=2S Rt△PAD=|PA|,而|PA|=|PD|最小时,四边形PADB的面积最小,再抛物线的定义转化为点P到抛物线的准线的距离的最小值,结合抛物线的性质可求得结果【解答过程】如图,连接PD,圆D:(x―2)2+y2=1,该圆的圆心与抛物线的焦点重合,半径为1,则S四边形PADB=2S Rt△PAD=|PA|.又|PA|=PADB的面积最小时,|PD|最小.过点P向抛物线的准线x=―2作垂线,垂足为E,则|PD|=|PE|,当点P与坐标原点重合时,|PE|最小,此时|PE|=2.==故S四边形PADBmin故选:C.一、单选题1.(2024·江西·模拟预测)若抛物线x 2=8y 上一点(x 0,y 0)到焦点的距离是该点到x 轴距离的2倍.则y 0=( )A .12B .1C .32D .2【解题思路】根据抛物线的方程,结合抛物线的标准方程,得到抛物线的焦点和准线,利用抛物线的定义,得到抛物线上的点(x 0,y 0)到焦点的距离,根据题意得到关于y 0的方程,求解即可.【解答过程】已知拋物线的方程为x 2=8y ,可得p =4.所以焦点为F (0,2),准线为l :y =―2.抛物线上一点A (x 0,y 0)到焦点F 的距离等于到准线l 的距离,即|AF |=y 0+2,又∵A 到x 轴的距离为y 0,由已知得y 0+2=2y 0,解得y 0=2.故选:D .2.(2024·四川·模拟预测)已知抛物线C:x 2=8y 的焦点为F,P 是抛物线C 上的一点,O 为坐标原点,|OP |=4|PF |=( )A .4B .6C .8D .10【解题思路】求出抛物线焦点和准线方程,设P (m,n )(m ≥0),结合|OP |=n =4,由焦半径公式得到答案.【解答过程】抛物线C:x 2=8y 的焦点为F (0,2),准线方程为y =―2,设P (m,n )(m ≥0)=,解得n =4或n =―12(舍去),则|PF |=n +2=6.故选:B .3.(23-24高二下·甘肃白银·期中)若圆C 与x 轴相切且与圆x 2+y 2=4外切,则圆C 的圆心的轨迹方程为( )A .x 2=4y +4B .x 2=―4y +4C .x 2=4|y |+4D .x 2=4y ―4【解题思路】设圆心坐标为(x,y )=2+|y |,化简整理即可得解.【解答过程】设圆心坐标为(x,y)=2+|y|,化简得x2=4|y|+4,即圆C的圆心的轨迹方程为x2=4|y|+4.故选:C.4.(2024·北京海淀·三模)已知抛物线y2=4x的焦点为F、点M在抛物线上,MN垂直y轴于点N,若|MF|=6,则△MNF的面积为()A.8B.C.D.【解题思路】确定抛物线的焦点和准线,根据|MF|=6得到M.【解答过程】因为抛物线y2=4x的焦点为F(1,0),准线方程为x=―1,所以|MF|=x M+1=6,故x M=5,不妨设M在第一象限,故M×(5―0)×=所以S△MNF=12故选:C.5.(2024·西藏林芝·模拟预测)已知抛物线y2=8x上一点P到准线的距离为d1,到直线l:4x―3y+12=0的距离为d2,则d1+d2的最小值为()A.1B.2C.3D.4【解题思路】点P到直线l:4x―3y+12=0的距离为|PA|,到准线l1:x=―2的距离为|PB|,利用抛物线的定义得|PF|=|PB|,当A,P和F共线时,点P到直线l:4x―3y+12=0和准线l1:x=―2的距离之和的最小,由点到直线的距离公式求得答案.【解答过程】由抛物线y2=8x知,焦点F(2,0),准线方程为l:x=―2,根据题意作图如下;点P到直线l:4x―3y+12=0的距离为|PA|,到准线l1:x=―2的距离为|PB|,由抛物线的定义知:|PB|=|PF|,所以点P到直线l:4x―3y+12=0和准线l1:x=―2的距离之和为|PF|+|PA|,=4,且点F(2,0)到直线l:4x―3y+12=0的距离为d=|8―0+12|5所以d1+d2的最小值为4.故选:D.6.(2024·四川雅安·三模)已知过圆锥曲线的焦点且与焦点所在的对称轴垂直的弦被称为该圆锥曲线的通径,清代数学家明安图在《割圆密率捷法》中,也称圆的直径为通径.已知圆(x―2)2+(y+1)2=4的一条直径与拋物线x2=2py(p>0)的通径恰好构成一个正方形的一组邻边,则p=()B.1C.2D.4A.12【解题思路】根据圆的通径的上端点就是抛物线通径的上右端点,可得抛物线x2=2py(p>0)经过点(2,1),从而可得答案.【解答过程】因为圆(x―2)2+(y+1)2=4的一条直径与抛物线x2=2py(p>0)的通径恰好构成一个正方形的一组邻边,而抛物线x2=2py(p>0)的通径与y轴垂直,所以圆(x―2)2+(y+1)2=4的这条直径与x轴垂直,且圆的直径的上端点就是抛物线通径的右端点,因为圆(x―2)2+(y+1)2=4的圆心为(2,―1),半径为2,所以该圆与x轴垂直的直径的上端点为(2,1),即抛物线x2=2py(p>0)经过点(2,1),则4=2p,即p=2.故选:C.7.(2024·山西运城·三模)已知抛物线C:y 2=4x 的焦点为F ,动点M 在C 上,点B 与点A (1,―2)关于直线l:y =x ―1对称,则|MF ||MB |的最小值为( )AB .12CD .13【解题思路】根据对称性可得B(―1,0),即点B 为C 的准线与x 轴的交点,作MM ′垂直于C 的准线于点M ′,结合抛物线的定义可知|MF ||MB |=|MM ′||MB |= cos θ(∠MBF =θ),结合图象可得当直线MB 与C 相切时,cos θ最小,求出切线的斜率即可得答案.【解答过程】依题意,F(1,0),A(1,―2),设B(m,n)=―1m+12―1,解得m =―1n =0,即B(―1,0),点B 为C 的准线与x 轴的交点,由抛物线的对称性,不妨设点M 位于第一象限,作MM ′垂直于C 的准线于点M ′,设∠MBF =θ,θ∈ (0,π2),由抛物线的定义得|MM ′|=|MF |,于是|MF ||MB |=|MM ′||MB |= cos θ,当直线MB 与C 相切时,θ最大,cos θ最小,|MF||MB|取得最小值,此时直线BM 的斜率为正,设切线MB 的方程为x =my ―1(m >0),由x =my ―1y 2=4x消去x 得y 2―4my +4=0,则Δ=16m 2―16=0,得m =1,直线MB 的斜率为1,倾斜角为π4,于是θmax =π4,(cos θ)min =,所以|MF||MB|的最小值为故选:A.8.(2024·江西九江·二模)已知抛物线C:y 2=2px 过点A (1,2),F 为C 的焦点,点P 为C 上一点,O 为坐标原点,则( )A .C 的准线方程为x =―2B .△AFO 的面积为1C .不存在点P ,使得点P 到C 的焦点的距离为2D .存在点P ,使得△POF 为等边三角形【解题思路】求解抛物线方程,得到准线方程,判断A ;求解三角形的面积判断B ;利用|PF|=2.判断C ;判断P 的位置,推出三角形的形状,判断D .【解答过程】由题意抛物线C:y 2=2px 过点A(1,2),可得p =2,所以抛物线方程为C:y 2=4x ,所以准线方程为x =―1,A 错误;可以计算S △AFO =12×1×2=1,B 正确;当P(1,2)时,点P 到C 的焦点的距离为2,C 错误;△POF 为等边三角形,可知P 的横坐标为:12,当x =12时,纵坐标为:则12×=≠则△POF 为等腰三角形,不是等边三角形,故等边三角形的点P 不存在,所以D 错误.故选:B .二、多选题9.(2024·湖南长沙·二模)已知抛物线C 与抛物线y 2=4x 关于y 轴对称,则下列说法正确的是( )A .抛物线C 的焦点坐标是(―1,0)B .抛物线C 关于y 轴对称C .抛物线C 的准线方程为x =1D .抛物线C 的焦点到准线的距离为4【解题思路】依题意可得抛物线C 的方程为y 2=―4x ,即可得到其焦点坐标与准线方程,再根据抛物线的性。
高考数学一轮复习第七章第七讲抛物线课件
解析:如图 D81,分别过 P,Q 两点作准线 x=-2p的垂线,
垂足分别为 P1,Q1.分别过 P,Q 两点ห้องสมุดไป่ตู้ x 轴
的垂线,垂足分别为 P2,Q2.准线 x=-p2交
x 轴于点 D-p2,0.
∵|PP1|=|PF|=4,|FP2|=12|PF|=2,
图 D81
∴|DF|=|DP2|-|FP2|=4-2=2. ∵|FQ2|=21|QF|=12|QQ1|, ∴|DF|=|QQ1|+|FQ2|=23|QF|. ∴32|QF|=2,|QF|=43. 答案:34
A.直线 AB 的斜率为 2 6 B.|OB|=|OF| C.|AB|>4|OF| D.∠OAM+∠OBM<180°
解析:如图 7-7-5,
图 7-7-5 ∵Fp2,0,M(p,0),且|AF|=|AM|,
∴A34p, 26p, 由抛物线焦点弦的性质可得 xA·xB=p42,则 xB=p3,
则 Bp3,- 36p,
F0,-p2 y≤0,x∈R
(续表) 准线方程 开口方向
焦半径 通径长
x=-p2 向右 x0+p2
x=p2 向左 -x0+2p
2p
y=-p2 向上 y0+p2
y=p2 向下 -y0+2p
【名师点睛】 如图 7-7-1,设 AB 是过抛物线 y2=2px(p>0)焦点 F 的弦,若 A(x1,y1),B(x2,y2),则
由yy= 2=k4(xx-,1), 得 k2x2-(2k2+4)x+k2=0,
得 xA·xB=1,① 因为|AF|=2|BF|,由抛物线的定义得 xA+1=2(xB+1), 即 xA=2xB+1,② 由①②解得 xA=2,xB=21, 所以|AB|=|AF|+|BF|=xA+xB+p=29. 答案:B
考点40 抛物线-备战2021年高考数学(理)一轮复习考点一遍过
考点40 抛物线抛物线也是高考的重点、难点,常出现在高考的选择题或填空题中,多考查抛物线的几何性质,也常出现在高考中的解答题中,作为压轴题,多考查直线与抛物线的位置关系.(1)了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用. (2)掌握抛物线的定义、几何图形、标准方程及简单性质.一、抛物线的定义和标准方程 1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F ) 距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.抛物线关于过焦点F 与准线垂直的直线对称,这条直线叫抛物线的对称轴,简称抛物线的轴.注意:直线l 不经过点F ,若l 经过F 点,则轨迹为过定点F 且垂直于定直线l 的一条直线. 2.抛物线的标准方程(1)顶点在坐标原点,焦点在x 轴正半轴上的抛物线的标准方程为22(0)y px p =>; (2)顶点在坐标原点,焦点在x 轴负半轴上的抛物线的标准方程为22(0)y px p =->; (3)顶点在坐标原点,焦点在y 轴正半轴上的抛物线的标准方程为22(0)x py p =>; (4)顶点在坐标原点,焦点在y 轴负半轴上的抛物线的标准方程为22(0)x py p =->.注意:抛物线标准方程中参数p 的几何意义是抛物线的焦点到准线的距离,所以p 的值永远大于0,当抛物线标准方程中一次项的系数为负值时,不要出现p <0的错误. 二、抛物线的几何性质 1.抛物线的几何性质标准方程22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =->图 形几 何 性质范 围 0,x y ≥∈R0,x y ≤∈R0,y x ≥∈R0,y x ≤∈R对称性 关于x 轴对称关于x 轴对称关于y 轴对称关于y 轴对称焦点(,0)2p F (,0)2p F -(0,)2p F(0,)2p F -准线方程 2p x =-2p x =2p y =-2p y =顶 点 坐标原点(0,0)离心率1e =2.抛物线的焦半径抛物线上任意一点00(),P x y 与抛物线焦点F 的连线段,叫做抛物线的焦半径. 根据抛物线的定义可得焦半径公式如下表:抛物线方程22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =->焦半径公式0||2pPF x =+ 0||2pPF x =- 0||2pPF y =+ 0||2pPF y =- 3.抛物线的焦点弦抛物线的焦点弦即过焦点F 的直线与抛物线所成的相交弦.焦点弦公式既可以运用两次焦半径公式得到,也可以由数形结合的方法求出直线与抛物线的两交点坐标,再利用两点间的距离公式得到,设AB 为焦点弦,11(,)A x y ,22(,)B x y ,则其中,通过抛物线的焦点作垂直于对称轴而交抛物线于A ,B 两点的线段AB ,称为抛物线的通径. 对于抛物线22(0)y px p =>,由(,)2p A p ,(,)2pB p -,可得||2AB p =,故抛物线的通径长为2p . 4.必记结论直线AB 过抛物线22(0)y px p =>的焦点,交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如图:(1)y 1y 2=-p 2,x 1x 2=p 24.(2)|AB |=x 1+x 2+p ,x 1+x 2≥p ,即当x 1=x 2时,弦长最短为2p . (3)1|AF |+1|BF |为定值2p. (4)弦长AB =2psin 2α(α为AB 的倾斜角).(5)以AB 为直径的圆与准线相切.(6)焦点F 对A ,B 在准线上射影的张角为90°.考向一 抛物线的定义和标准方程1.抛物线定义的实质可归结为“一动三定”:一个动点M ,一个定点F (抛物线的焦点),一条定直线l (抛物线的准线),一个定值 1(抛物线的离心率).2.抛物线的离心率e =1,体现了抛物线上的点到焦点的距离等于到准线的距离,因此,涉及抛物线的焦半径、焦点弦的问题,可以优先考虑利用抛物线的定义将点到焦点的距离转化为点到准线的距离,即2PF p x =+或2PF py =+,使问题简化.典例1 设定点(0,1)F ,动圆D 过点F 且与直线1y =-相切,则动圆圆心D 的轨迹方程为 A .24x y = B .22x y = C .24y x =D .22y x =【答案】A【解析】由题意知,动圆圆心到定点(0,1)F 与到定直线1y =-的距离相等, 所以动圆圆心的轨迹是以F 为焦点的抛物线,则方程为24x y =. 故选A.【名师点睛】本题考查抛物线的定义,属于简单题.由题意,动圆圆心的轨迹是以F 为焦点的抛物线,求得p ,即可得到答案.典例2 已知抛物线y 2=2px (p >0)A .)B .(0)C .)D .(0,)【答案】A【解析】抛物线y 2=2px (p >0),即2p=则抛物线的焦点坐标为0).故选A .【名师点睛】本题主要考查抛物线的定义和准线方程,属于基础题.抛物线上的点到准线的最小距离即为顶点到焦点的距离,进而列方程求解即可.1.已知抛物线24y x =上一点P 到焦点的距离是它到y 轴的距离的2倍,则点P 到焦点的距离为_________.考向二求抛物线的标准方程1.求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点的位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.2.用待定系数法求抛物线标准方程的步骤:若无法确定抛物线的位置,则需分类讨论.特别地,已知抛物线上一点的坐标,一般有两种标准方程.典例3 若点A,B在抛物线y2=2px(p>0)上,O是坐标原点,若正三角形OAB的面积为4√3,则该抛物线的方程是x B.y2=√3xA.y2=3C.y2=2√3x D.y2x【答案】A【解析】根据对称性,可知AB⊥x轴,由于正三角形OAB的面积是4√3,2=4√3,故AB=4,正三角形OAB的高为2√3,故可设点A的坐标为(2√3,2),代入抛物线方程得4=4√3p,解得p,故所求抛物线的方程为y2=x.典例4 求满足下列条件的抛物线的标准方程,并求出对应抛物线的准线方程.(1)过点(32)-,;(2)焦点在直线240x y --=上.【解析】(1)设所求抛物线的方程为22y px =-或20)2(x py p >=.∵过点(32)-,,∴3()42p =-⨯-或922p =⨯(2)令0x =得2y =-∴抛物线的焦点为(4)0,或(0)2-,.当焦点为(4)0,8p =,此时抛物线的方程为216y x =;当焦点为(0)2-,4p =,此时抛物线的方程为28x y =-. 故所求抛物线的方程为216y x =或28x y =-,对应的准线方程分别是4x =-,2y =.2.已知抛物线C :()220x py p =>的焦点为F ,准线为l ,过抛物线上一点A 作l 的垂线AB ,垂足为B且ABF 是边长为8的正三角形,则抛物线C 的方程为( ) A .24x y = B .26x y = C .28x y =D .210x y =考向三 抛物线的简单几何性质及其应用确定及应用抛物线性质的关键与技巧:(1)关键:利用抛物线方程确定及应用其焦点、准线等性质时,关键是将抛物线方程化成标准方程. (2)技巧:要结合图形分析,灵活运用平面几何的性质以图助解.典例5 已知等腰三角形OPM 中,OP ⊥MP ,O 为抛物线2y =2px (p >0)的顶点,点M 在抛物线的对称轴上,点P 在抛物线上,则点P 与抛物线的焦点F 之间的距离是A .B .52pC .2pD p【答案】B【解析】由题意得222,P P P P P y x x px x p =∴=∴=因此点P 与抛物线的焦点F 之间的距离为522P p px +=,选B. 【名师点睛】(1)凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.(2)解答本题的关键是画出图形,利用抛物线的简单几何性质转化求解即可.3.已知抛物线C 的顶点在坐标原点,焦点F 在x 轴正半轴上,点M 为圆22:12O x y +=与C 的一个交点,且3MF =,则C 的标准方程是( ). A .22y x = B .23y x = C .24y x =D .26y x =考向四 焦点弦问题与抛物线的焦点弦长有关的问题,可直接应用公式求解.解题时,需依据抛物线的标准方程,确定弦长公式是由交点横坐标定还是由交点纵坐标定,是p 与交点横(纵)坐标的和还是与交点横(纵)坐标的差,这是正确解题的关键.典例6 过抛物线y 2=4x 的焦点作直线交抛物线于点A (x 1,y 1),B (x 2,y 2),若|AB |=7,求AB 的中点M 到抛物线准线的距离.【解析】抛物线的焦点为F (1,0),准线方程为x =-1.由抛物线的定义知|AB|=|AF|+|BF|=x 1+p2+x 2+p2=x 1+x 2+p ,即x 1+x 2+2=7,得x 1+x 2=5,于是弦AB 的中点M 的横坐标为52, 因此点M 到抛物线准线的距离为57122+=.典例7 已知过抛物线y 2=2px (p >0)的焦点,斜率为2√2的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB|=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗ ,求λ的值. 【解析】(1)直线AB 的方程是y =2√2(x-2p),与y 2=2px 联立,从而有4x 2-5px+p 2=0, 所以x 1+x 2=54p . 由抛物线的定义,得|AB|=x 1+x 2+p =9, 所以p =4,从而抛物线的方程是y 2=8x . (2)因为p =4,所以4x 2-5px+p 2=0,可简化为x 2-5x+4=0, 从而x 1=1,x 2=4,y 1=-2√2,y 2=4√2, 从而A (1,-2√2),B (4,4√2).设C (x 3,y 3),则OC⃗⃗⃗⃗⃗ =(x 3,y 3)=(1,-2√2)+λ(4,4√2)=(4λ+1,4√2λ-2√2). 又y 32=8x 3, 所以[2√2(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.4.过抛物线22y px =焦点F 的直线,与抛物线交于A 、B 两点,设11(,)A x y ,22(,)B x y ,则1212y y x x = ( ) A .-4 B .4 C .4pD .-4p考向五 抛物线中的最值问题1.抛物线中经常根据定义把点到焦点的距离和点到准线的距离进行互相转化,从而求解.2.有关抛物线上一点M 到抛物线焦点F 和到已知点E (E 在抛物线内)的距离之和的最小值问题,可依据抛物线的图形,过点E 作准线l 的垂线,其与抛物线的交点到抛物线焦点F 和到已知点E 的距离之和是最小值.典例8 如图,已知点Q(2√2,0)及抛物线24xy 上的动点Ρ(x,y),则y+|ΡQ|的最小值是A.2 B.3C.4 D.2√2【答案】A【解析】如图,作ΡB⊥x轴于A点,并与准线相交于B点.抛物线x2=4y的焦点为F(0,1),准线为y=−1,由抛物线的几何意义可得|ΡB|=|ΡF|,所以y+|ΡQ|= |ΡA|+|ΡQ|=| ΡB|+|ΡQ|−1=| ΡF|+|ΡQ|−1≥|FQ|−1=√1+8−1=2.故选A.典例9 已知抛物线的方程为x2=8y,F是焦点,点A(-2,4),在此抛物线上求一点P,使|PF|+|PA|的值最小.【解析】∵(-2)2<8×4,∴点A(-2,4)在抛物线x2=8y的内部.如图所示,设抛物线的准线为l,过点P作PQ⊥l于点Q,过点A作AB⊥l于点B,连接AQ.由抛物线的定义可知,|PF|+|PA|=|PQ|+|PA|≥|AQ|≥|AB|,当且仅当P,Q,A三点共线时,|PF|+|PA|取得最小值,即|AB|.∵A(-2,4),∴不妨设|PF|+|PA|的值最小时,点P的坐标为(-2, y0),代入抛物线方程x2=8y得y0=1 2 .∴使|PF|+|PA|的值最小的抛物线上的点P的坐标为(-2,1 2 ).5.已知M 是抛物线24y x =上一点,F 为其焦点,点A 在圆22:(6)(1)1C x y -++=上,则||||MA MF +的最小值是__________.1.抛物线214x y =的准线方程为( ) A .1x =- B .116x =-C .1y =-D .116y =-2.若抛物线24y x =上的点M 到焦点的距离为10,则M 点到y 轴的距离是( ) A .6 B .8 C .9D .103.已知抛物线2:C y x =的焦点为F ,00(,)A x y 是C 上一点,05||4AF x =,则0x =( ) A .1 B .2 C .4D .84.过抛物线E :y 2=2x 焦点的直线交E 于A ,B 两点,线段AB 中点M 到y 轴距离为1,则|AB |=( ) A .2 B .52C .3D .45.抛物线2(0)y mx m =≠的准线与直线1y =的距离为3,则此抛物线的方程为( ) A .216x y =-B .28x y =C .216x y =或28x yD .28x y =或216x y =-6.若抛物线22y px =的焦点与双曲线22154x y -=的右焦点重合,则下列各点中,在抛物线22y px =上的是( ) A .(1,2) B .(3,6)-C .(2,2)-D .7.已知抛物线22(0)y px p =>上一点M 到其准线及对称轴的距离分别为3和,则p =( ) A .2 B .2或4 C .1或2D .18.已知抛物线28x y =的焦点为F ,点P 在抛物线上,且6PF =,点Q 为抛物线准线与其对称轴的交点,则PFQ ∆的面积为( )A .B .C .D .9.如果1P ,2P ,…,n P 是抛物线C :()220y px p =>上的点,它们的横坐标依次为1x ,2x ,…,n x ,点F 是抛物线C 的焦点.若12+n x x x ++…=10,12+++n PF P F P F …=10+n ,则p 等于( ) A .2 B .32C .52D .410.已知抛物线2:2(0)C y px p =>的焦点为F ,点A ,B 在抛物线C 上,过线段AB 的中点M 作抛物线C 的准线的垂线,垂足为N ,若90AFB ∠=︒,则||||AB MN 的最小值为( )A .1 BC .2D11.若抛物线2:2(0)C x py p =>上的点P 到焦点的距离为8,到x 轴的距离为6,则抛物线C 的方程是_________.12.在平面直角坐标系xOy 中,若抛物线()220x py p =>上纵坐标为1的一点到焦点的距离为4,则该抛物线的焦点到准线的距离为______.13.已知点1(,0)2A -,抛物线22y x =的焦点为F ,点P 在抛物线上,且|||AP PF =,则||___.OP = 14.已知抛物线C :()220x py p =>的焦点为F ,准线为l ,点P 在C 上,过点P 作l 的垂线交l 于点E ,且60PFE ∠=,4PF =,则抛物线C 的方程为:______________.15.已知点(0,2)A ,抛物线22(0)y px p =>的焦点为F ,准线为l ,线段FA 交抛物线于点B .过B 作l 的垂线,垂足为M ,若AM MF ⊥,则三角形AFM 的面积S =__________. 16.已知动圆M 过点(2,0)F ,且与直线2x =-相切. (1)求圆心M 的轨迹E 的方程;(2)斜率为1的直线l 经过点F ,且直线l 与轨迹E 交于点,A B ,求线段AB 的垂直平分线方程.17.已知抛物线22(0)i C y px p =>过点()1,1,(1)求物线C 的方程;(2)O 为坐标原点,A 、B 为抛物线C 上异于原点O 的不同两点,直线,OA OB 的斜率分别为12,k k ,若122k k =-,求证:直线AB 过定点.18.已知抛物线C 的顶点在原点,对称轴是x 轴,并且经过点()1,2-,抛物线C 的焦点为F ,准线为l . (1)求抛物线C 的方程;(2)过F 的直线h 与抛物线C 相交于两点A 、B ,过A 、B 分别作准线l 的垂线,垂足分别为D 、E ,求四边形ABED 的面积.1.【2020年高考全国Ⅰ卷理数】已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p = A .2 B .3C .6D .92.【2020年高考全国Ⅰ卷理数】设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E两点,若OD OE ⊥,则C 的焦点坐标为A . 1,04⎛⎫⎪⎝⎭B . 1,02⎛⎫ ⎪⎝⎭C . (1,0)D . (2,0)3.【2020年高考北京】设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线A . 经过点OB . 经过点PC . 平行于直线OPD . 垂直于直线OP4.【2019年高考全国Ⅱ卷理数】若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A .2B .3C .4D .85.【2018新课标I 理】设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅= A .5 B .6 C .7D .86.【2017新课标全国I 理科】已知F 为抛物线C :24y x =的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16 B .14 C .12D .107.【2017新课标全国II 理科】已知F 是抛物线:C 28y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则FN =_______________.8.【2018新课标Ⅰ理】已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=︒,则k =________.9.【2020年新高考全国ⅠC :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB=________.10.【2019年高考全国Ⅰ卷理数】已知抛物线C :y 2=3x 的焦点为F ,斜率为的直线l 与C 的交点为A ,B ,32与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若,求|AB |.11.【2019年高考北京卷理数】已知抛物线C :x 2=−2py 经过点(2,−1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.12.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S .3AP PB =(1)求p 的值及抛物线的准线方程; (2)求12S S 的最小值及此时点G 的坐标.13.【2018新课标Ⅱ理】设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.1.【答案】2 【分析】设点P 的横坐标为()0m m >,利用抛物线的定义和条件建立方程求出m 即可. 【详解】设点P 的横坐标为()0m m >因为抛物线的方程为24y x =,所以其准线方程为1x =-所以根据抛物线的定义可得,点P 到焦点的距离为+1m ,所以+1=2m m ,解得1m = 所以点P 到焦点的距离为2. 故答案为:2. 2.【答案】C 【分析】依题意,画出草图,则8BF =,30DBF ∠=︒,即可求出p ,即可得解; 【详解】解:依题意,设准线l 与y 轴相交于点D ,则8BF =,60ABF ∠=︒,所以30DBF ∠=︒,所以4DF =,即4p =,所以抛物线方程为28x y =故选:C【点睛】本题考查抛物线的简单几何性质,属于基础题. 3.【答案】C【分析】根据条件作出图示,分别表示出22,,MO MM M O ,利用勾股定理求解出抛物线方程中参数p 的值,由此确定出C 的方程. 【详解】设抛物线的方程为22y px =,连接MO ,过M 作1MM ⊥准线,交y 轴于2M ,因为32M p MF x ==+,所以232M pMM x ==-,所以2M M O y === 在2Rt OMM 中有:22222M O M M MO +=,所以2263122p p p ⎛⎫-+-= ⎪⎝⎭,解得:2p =,所以抛物线的方程为:24y x =,故选:C. 【点睛】结论点睛:本题考查圆与抛物线的综合应用,其中涉及抛物线的焦半径公式的运用,属于中档题.抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF x =+; (2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02pPF x =-+;(3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02pPF y =+;(4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02pPF y =-+.4.【答案】A 【分析】设直线AB 的方程为2p my x =-,与抛物线方程联立,化为2220y pmy p --=,利用根与系数的关系即可得出 【详解】解:设直线AB 的方程为2pmy x =-,设1122(,),(,)A x y B x y , 联立222p my x y px ⎧=-⎪⎨⎪=⎩, 消去x 化为2220y pmy p --=,所以21212,2y y p y y pm =-+=,所以2212121212()()()2224p p mp p x x my my m y y y y =++=+++22222244mp p p p m mp =-+⨯+=, 所以21221244y y p px x -==-, 故选:A 【点睛】结论点睛:此题考查抛物线的焦点弦问题,焦点弦有如下常用的结论设AB 是过抛物线22(0)y px p =>的焦点F 的弦,若1122(,),(,)A x y B x y ,则(1)2212124p x x y y p ==-;(2)弦长1222sin pAB x x p α=++=(α是直线AB 的倾斜角); (3)112FA FB p+= 5.【答案】6【分析】根据抛物线方程求得准线方程,过点M 作MN 垂直于准线于N ,根据抛物线的定义判断MN MF =,问题转化为求||||MA MN +的最小值,根据A 在圆C 上,判断出当,,M N C 三点共线时,||||MA MN +有最小值,进一步求出结果 【详解】解:M 是抛物线24y x =上一点,抛物线的准线方程为1x =-, 过点M 作MN 垂直于准线于N ,则MN MF =, 所以||||MA MF MA MN +=+,因为点A 在圆C 上,圆22:(6)(1)1C x y -++=的圆心(6,1)C -,半径为1, 所以当,,M N C 三点共线时,||||MA MN +取得最小值6, 故答案为:6【点睛】关键点点睛:此题考查了抛物线的简单性质的应用,解题的关键是利用了抛物线的定义,结合图形将||||MA MF +转化为||||MA MN +进行求解,考查数形结合的思想和转化思想,属于中档题.1.【答案】D 【分析】求出1216p =,即得抛物线214x y =的准线方程. 【详解】 因为124p =, 所以1216p =, 故准线方程为116y =-. 故选:D 2.【答案】C 【分析】求出抛物线的准线方程,利用抛物线的定义转化求解即可. 【详解】抛物线24y x =的焦点()10F ,,准线为1x =-,由M 到焦点的距离为10, 可知M 到准线的距离也为10,故到M 到的距离是9,故选C . 【点睛】本题考查抛物线的简单性质的应用,考查计算能力. 3.【答案】A 【分析】利用抛物线的定义、焦半径公式列方程即可得出. 【详解】由抛物线2:C y x =可得11,224p p ==, 准线方程14x =-,0(A x ,0)y 是C 上一点,054AF x =,00x >. ∴00051442p x x x =+=+, 解得01x =. 故选:A .4.【答案】C 【分析】设焦点为F ,过A ,B ,M 分别作准线12x =-的垂线,垂足为A′,B′,M′,求出3||2MM '=,即得解.【详解】设焦点为F ,过A ,B ,M 分别作准线12x =-的垂线,垂足为A′,B′,M′,则有|AA′|=|AF |,|BB′|=|BF |,|AA′|+|BB′|=2|MM′|, ∵M 到y 轴距离为1, ∴3||2MM '=, ∴|AB |=|AF |+|BF |=2|MM′|=3. 故选:C . 【点睛】本题主要考查抛物线的定义和几何性质,意在考查学生对这些知识的理解掌握水平. 5.【答案】D 【分析】将抛物线的方程化为标准形式,求出准线方程14y m =-,根据题意可得124m -=-或144m-=,解方程即可. 【详解】将2(0)y mx m =≠化为21x y m=, 其准线方程为14y m=-.由题意知124m -=-或144m-=,解得18m =或116m =-.则所求抛物线的标准方程为28x y =或216x y =-. 故选:D 【点睛】本题考查了抛物线的标准方程、由抛物线的定义求标准方程,属于基础题. 6.【答案】B 【分析】求出双曲线的焦点,即为抛物线的焦点,根据焦点坐标求出抛物线的方程,逐项验证点的坐标是否满足抛物线的范围即可. 【详解】因为双曲线22154x y -=的右焦点为(3,0),所以抛物线22y px =的焦点为(3,0),因此362pp =⇒=,则抛物线方程为212y x =, 当3x =时,2366y y =⇒=±,所以点(3,6)-在该抛物线上. 故选:B 【点睛】本题考查双曲线的焦点、根据焦点求抛物线的方程,属于基础题. 7.【答案】B 【分析】由题意,得到32M M y px ⎧=⎪⎨+=⎪⎩,结合抛物线方程,即可求出结果. 【详解】因为抛物线22(0)y px p =>上一点M 到其准线及对称轴的距离分别为3和所以32M M y p x ⎧=⎪⎨+=⎪⎩,即32M M y p x ⎧=⎪⎨=-⎪⎩,代入抛物线方程可得8232p p ⎛⎫=- ⎪⎝⎭, 整理得2680p p -+=,解得2p =或4p =.故选:B. 8.【答案】D 【分析】先由抛物线的方程得到焦点坐标和准线方程,进而求出点Q 的坐标,再由定义求出点P 坐标,结合三角形面积公式可得出结果. 【详解】因为28x y =,所以其焦点()02F ,,准线为y 2=-,所以()0,2Q -设().P m n ,由6PF =得26n +=,所以4n =,所以m =±则11S 422PFQ FQ m ∆=⨯⨯=⨯⨯=【点睛】本题主要考查抛物线的简单性质,属于基础题型. 9.【答案】A 【分析】根据抛物线的定义得n 个等式,相加后,利用已知条件可得结果. 【详解】抛物线C :()220y px p =>的准线为2px =-, 根据抛物线的定义可知,11||2p PF x =+,22||2p PF x =+,,||2n n p PF x =+, 所以1212||||||222n n p p pPF PF PF x x x +++=++++++,所以12102n npn x x x +=++++,所以10102npn +=+,所以2p =.故选:A 【点睛】关键点点睛:利用抛物线的定义解题是解题关键,属于基础题. 10.【答案】B 【分析】设AF m =,BF n =,由抛物线的定义可得112AA BB MN +=再根据勾股定理及不等式求出2||AB数值,代入22||||AB MN 化简即得答案.【详解】设AF m =,BF n =,过点A ,B 分别作抛物线C 的准线的垂线,垂足分别为1A ,1B ,由抛物线的定义可得1AA m =,1BB n =,因为M 为线段AB 的中点,所以112AA BB MN +==2m n+,又90AFB ∠=︒,所以222||AB m n =+,所以()()()2222224||241||m n AB mn MN m n m n ⎡⎤+==-⎢⎥++⎢⎥⎣⎦,又()24m n mn +≥,所以()2212mnm n ≤+,当且仅当m n =时取等号,所以22||1412||2AB MN ⎛⎫≥⨯-= ⎪⎝⎭,即AB MN≥AB MNB .【点睛】本题考查抛物线的定义、简单几何性质,基本不等式求最值,勾股定理的应用等知识,属于中档题. 11.【答案】28x y = 【分析】根据抛物线的定义,可得结果. 【详解】 根据抛物线定义,8622p=-=,解得4p =, 故抛物线C 的方程是28x y =. 故答案为:28x y = 【点睛】本题考查抛物线的定义,一般来讲,抛物线中焦点和准线伴随出现,属基础题. 12.【答案】6 【分析】根据抛物线的定义可得,点到准线的距离也是4,从而可得p ,即可求抛物线的焦点到准线的距离. 【详解】因为抛物线()220x py p =>上纵坐标为1的一点到焦点的距离为4,所以由抛物线定义可知该点到准线的距离也是4,即142p+=, 所以6p,即该抛物线的焦点到准线的距离为6.故答案为:6 【点睛】本题主要考查抛物线的定义,根据定义两种距离的相互转化是求解的关键,侧重考查数学运算的核心素养.13【分析】 设21,2P m m ⎛⎫⎪⎝⎭,根据条件结合距离公式求出21m =,即可求得||OP . 【详解】 由已知可得1,02F ⎛⎫⎪⎝⎭,设21,2P m m ⎛⎫⎪⎝⎭,|||AP PF =,222AP PF ∴=则22222211()2()2222m m m m ⎡⎤++=-+⎢⎥⎣⎦,解得21m =,∴OP ===.. 14.【答案】24x y = 【分析】如图作PE l ⊥,60PFE ∠=,由抛物线定义知PFE △是等边三角形,再过焦点F 作FM PE ⊥,知M 为PE 的中点,所以2PM ME ==,即焦点到准线的距离是2p =,即可求得抛物线方程.【详解】抛物线C :()220x py p =>,焦点(0,)2p F ,准线:2p l y =-如图,PE l ⊥,60PFE ∠=,4PF =,由抛物线定义知4PF PE ==,故PFE △是等边三角形, 过焦点F 作FM PE ⊥,交PE 于M ,则M 为PE 的中点,所以2PM ME ==,即焦点到准线的距离是2p = 故答案为:24x y =【点睛】关键点睛:本题考查球抛物线的方程,解题的关键是要熟悉抛物线的定义,动点到定点的距离与动点到定直线的距离相等,即可知PF PE =,再利用60PFE ∠=知PFE △是等边三角形,再利用等边三角形性质求解,考查学生的逻辑推导能力,属于中档题.15 【分析】由抛物线的定义可知BF BM =,(2pF ,0),再由直角三角形的性质可知,点B 为AF 的中点,利用中点坐标公式求出点B 的坐标,代入抛物线方程求出p 的值,根据2AFM BMF S S ∆∆=即可算出结果.【详解】 解:如图所示:,由抛物线的定义可知BF BM =,(2pF ,0), 又AM MF ⊥,∴由直角三角形的性质可知,点B 为AF 的中点,(4pB ∴,1),把点(4p B ,1)代入抛物线方程:22(0)y px p =>得,124p p =⨯,解得p =,4B ∴,1),1221()2424AFM BFM S S ∆∆∴==⨯⨯⨯+=,. 【点睛】关键点点睛:本题主要考查了抛物线的性质,解题的关键是结合图形由抛物线的定义得BF BM =,(2pF ,0),再由直角三角形的性质得,点B 为AF 的中点,利用中点坐标公式表示出点B 的坐标,考查了直角三角形的性质,是中档题. 16.【答案】(1)28y x =;(2)100x y +-=. 【分析】(1)由题意得圆心M 到点(2,0)F 等于圆心到直线2x =-的距离,利用两点间距离公式,列出方程,即可求得答案.(2)求得直线l 的方程,与椭圆联立,利用韦达定理,可得1212,x x x x +的值,即可求得AB 中点00(,)P x y 的坐标,根据直线l 与直线AB 垂直平分线垂直,可求得直线AB 垂直平分线的斜率,利用点斜式即可求得方程. 【详解】(1)设动点(,)M x y |2|x =+, 化简得轨迹E 的方程:28y x =;(2)由题意得:直线l 的方程为:2y x =-,由228y x y x=-⎧⎨=⎩,得21240x x -+=,2124140∆=-⨯⨯>, 设1122(,),(,)A x y B x y ,AB 中点00(,)P x y 则121212,4x x x x +==, 所以12062x x x +==,0024y x =-=, 又AB 垂直平分线的斜率为-1,所以AB 垂直平分线方程为100x y +-=. 【点睛】本题考查抛物线方程的求法,抛物线的几何性质,解题的关键是直线与曲线联立,利用韦达定理得到1212,x x x x +的表达式或值,再根据题意进行化简和整理,考查计算求值的能力,属基础题.17.【答案】(1)2y x =;(2)证明见解析. 【分析】(1)根据抛物线22(0)i C y px p =>过点()1,1,由12p =求解.(2)设点A 、B 的坐标分别为()()221122,,,y y y y ,由122k k =-,易得1212y y =-,当直线AB 的斜率存在时,设直线AB 的方程为(0)y kx m m =+≠,联立方程2y x y kx m⎧=⎨=+⎩,利用韦达定理由1212m y y k ==-求解即可.注意直线AB 的斜率不存在的情况. 【详解】(1)因为抛物线22(0)i C y px p =>过点()1,1,所以12p =,解得12p =, 所以抛物线C 的方程为2y x =.(2)设点A 、B 的坐标分别为()()221122,,,y y y y , 所以121222112211,y y k k y y y y ====, 由题意有121212k k y y ==-,得1212y y =-, ①当直线AB 的斜率不存在时,此时12y y =-,直线AB 的方程为12x =, ②当直线AB 的斜率存在时,设直线AB 的方程为(0)y kx m m =+≠,联立方程2y x y kx m⎧=⎨=+⎩,消去x 后整理为20ky y m -+=,可得1212m y y k ==-,得2k m =-, 直线AB 的方程为2y mx m =-+,可化为122y m x ⎛⎫=--⎪⎝⎭, 由①②知直线AB 过定点1,02⎛⎫ ⎪⎝⎭. 【点睛】方法点睛:定点问题的常见解法:①假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;②从特殊位置入手,找出定点,再证明该点适合题意. 18.【答案】(1)24y x =;(2)9【分析】(1)设抛物线为()220y px p =>,根据点()1,2-在抛物线上,求出p ,得到结果;(2)不妨设()11,A x y ,()22,B x y ,直线h的方程为)1y x =-,联立直线与抛物线得231030x x -+=,解出方程,然后求解A 、B 坐标,转化求解四边形的面积.【详解】(1)根据题意,设抛物线为()220y px p =>,因为点()1,2-在抛物线上,所以()222p -=,即2p =,所以抛物线的方程为24y x =.(2)由(1)可得焦点()10F ,,准线为:1l x =-, 不妨设()11,A x y ,()22,B x y ()12x x >,过F的直线h的方程为)1y x =-,由)24 1y x y x ⎧=⎪⎨=-⎪⎩,得231030x x -+=,所以13x =,213x =,代入)1y x =-,得1y =2y =,所以(3,A,1,3B ⎛ ⎝⎭, 所以142p AD x +==,2423p BE x +==,12DE y y =-= 因为四边形ABED 是直角梯形,所以四边形ABED 的面积为()129AD BE DE +⨯=.【点睛】本题考查抛物线方程的求法,直线与抛物线的位置关系的综合应用,考查转化思想以及计算能力,是中档题.1.【答案】C【解析】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p=+,解得6p.故选:C .【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题. 2.【答案】B【解析】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B .【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目. 3.【答案】B【解析】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P . 故选:B .【点睛】本题主要考查抛物线的定义的应用,属于基础题. 4.【答案】D【解析】因为抛物线22(0)y px p =>的焦点(,0)2p 是椭圆2231x y p p +=的一个焦点,所以23()2p p p -=,。
高考数学一轮复习第八章第五节抛物线讲义含解析
第五节 抛物线突破点一 抛物线的定义及其应用[基本知识]抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.[基本能力]一、判断题(对的打“√”,错的打“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( ) (2)AB 为抛物线y 2=4x 的过焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=1,y 1y 2=-4,弦长|AB |=x 1+x 2+2.( )答案:(1)× (2)√ 二、填空题1.已知动点P 到定点(2,0)的距离和它到直线l :x =-2的距离相等,则点P 的轨迹方程为________.答案:y 2=8x2.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=________.答案:13.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为________.答案:54[全析考法]考法一 抛物线的定义及应用[例1] (1)(2019·赣州模拟)若点A 的坐标为(3,2),F 是抛物线y 2=2x 的焦点,点M 在抛物线上移动时,使|MF |+|MA |取得最小值的M 的坐标为( )A .(0,0) B.⎝ ⎛⎭⎪⎫12,1 C .(1,2)D .(2,2)(2)(2019·襄阳测试)已知抛物线y =12x 2的焦点为F ,准线为l ,M 在l 上,线段MF 与抛物线交于点N ,若|MN |=2|NF |,则|MF |=( )A .2B .3 C. 2D. 3[解析] (1)过M 点作准线的垂线,垂足是N ,则|MF |+|MA |=|MN |+|MA |,当A ,M ,N 三点共线时,|MF |+|MA |取得最小值,此时M (2,2).(2)如图,过N 作准线的垂线NH ,垂足为H .根据抛物线的定义可知|NH |=|NF |,在Rt △NHM 中,|NM |=2|NH |,则∠NMH =45°.在△MFK 中,∠FMK =45°,所以|MF |=2|FK |.而|FK |=1.所以|MF |= 2.故选C.[答案] (1)D (2)C [方法技巧]利用抛物线的定义解决问题时,应灵活地进行抛物线上的点到焦点距离与其到准线距离间的等价转化.“看到准线应该想到焦点,看到焦点应该想到准线”,这是解决抛物线距离有关问题的有效途径.考法二 焦点弦问题焦点弦的常用结论以抛物线y 2=2px (p >0)为例,设AB 是抛物线的过焦点的一条弦(焦点弦),F 是抛物线的焦点,A (x 1,y 1),B (x 2,y 2),A ,B 在准线上的射影为A 1,B 1,则有以下结论:(1)x 1x 2=p 24,y 1y 2=-p 2;(2)|AB |=x 1+x 2+p =2psin 2θ(其中θ为直线AB 的倾斜角),抛物线的通径长为2p ,通径是最短的焦点弦;(3)1|AF |+1|BF |=2p为定值; (4)以AB 为直径的圆与抛物线的准线相切; (5)以AF (或BF )为直径的圆与y 轴相切;(6)以A 1B 1为直径的圆与直线AB 相切,切点为F ,∠A 1FB 1=90°; (7)A ,O ,B 1三点共线,B ,O ,A 1三点也共线.[例2] (2019·长沙四校联考)过抛物线C :y 2=4x 的焦点F 的直线l 与抛物线C 交于P ,Q 两点,与抛物线的准线交于点M ,且FM ―→=3FP ―→,则|FP ―→|=( )A.32B.23C.43D.34[解析] 如图,不妨设Q 点在第一象限,过P 作PN 垂直于抛物线的准线,垂足为N , 由抛物线定义可知|PF |=|PN |, 又因为FM ―→=3FP ―→, 所以PM ―→=2FP ―→,所以|PM |=2|PF |=2|PN |, 在Rt △PNM 中,cos ∠MPN =|PN ||PM |=12, 由抛物线焦点弦的性质可知|PF ―→|=p 1+cos ∠MPN =21+12=43.故选C.[答案] C [方法技巧]焦点弦问题的求解策略解决焦点弦问题的关键是“设而不求”方法的应用,解题时,设出直线与抛物线两交点的坐标,根据抛物线的方程正确表示出焦点弦长,再利用已知条件求解.[集训冲关]1.[考法一]若抛物线y 2=4x 上一点P 到其焦点F 的距离为2,O 为坐标原点,则△OFP 的面积为( )A.12 B .1 C.32D .2解析:选B 设P (x P ,y P ),由题意可得抛物线的焦点为F (1,0),准线方程为x =-1,又点P 到焦点F 的距离为2,∴由抛物线的定义知点P 到准线的距离为2,∴x P +1=2,得x P =1,代入抛物线方程得|y P |=2,∴△OFP 的面积为S =12·|OF |·|y P |=12×1×2=1.故选B.2.[考法二]已知AB 是抛物线y 2=2x 的一条焦点弦,|AB |=4,则AB 中点C 的横坐标是( )A.2B.12C.32D.52解析:选C 设A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p =4, 又p =1,∴x 1+x 2=3,∴点C 的横坐标是x 1+x 22=32.故选C.3.[考法一]已知M 是抛物线x 2=4y 上一点,F 为其焦点,点A 在圆C :(x +1)2+(y -5)2=1上,则|MA |+|MF |的最小值是________.解析:依题意,由点M 向抛物线x 2=4y 的准线l :y =-1引垂线,垂足为M 1(图略),则有|MA |+|MF |=|MA |+|MM 1|,结合图形可知|MA |+|MM 1|的最小值等于圆心C (-1,5)到y =-1的距离再减去圆C 的半径,即等于6-1=5,因此|MA |+|MF |的最小值是5.答案:5突破点二 抛物线的标准方程及性质[基本知识][基本能力]一、判断题(对的打“√”,错的打“×”)(1)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫a4,0,准线方程是x =-a4.( )(2)抛物线既是中心对称图形,又是轴对称图形.( )(3)若直线与抛物线只有一个交点,则直线与抛物线一定相切.( ) 答案:(1)× (2)× (3)× 二、填空题1.已知抛物线的对称轴为x 轴,顶点在原点,焦点在直线2x -4y +11=0上,则此抛物线的方程是________.答案:y 2=-22x2.抛物线y =ax 2的准线方程是y =1,则a 的值为________. 答案:-143.已知F 是抛物线x 2=8y 的焦点,若抛物线上的点A 到x 轴的距离为5,则|AF |=________.答案:7[全析考法]考法一 求抛物线的标准方程[例1] (1)(2019·河南中原名校联考)抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且|MF |=4|OF |,△MFO 的面积为43,则抛物线的方程为( )A .y 2=6x B .y 2=8x C .y 2=16xD .y 2=15x 2(2)(2019·江西协作体联考)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5.若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8x B .y 2=2x 或y 2=8x C .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x[解析] (1)设M (x ,y ),因为|OF |=p2,|MF |=4|OF |,所以|MF |=2p ,由抛物线定义知x +p 2=2p ,所以x =32p ,所以y =±3p ,又△MFO 的面积为43,所以12×p 2×3p =43,解得p =4(p =-4舍去).所以抛物线的方程为y 2=8x .(2)由已知得抛物线的焦点F ⎝ ⎛⎭⎪⎫p 2,0,设点A (0,2),抛物线上点M (x 0,y 0),则AF ―→=⎝ ⎛⎭⎪⎫p 2,-2,AM ―→=⎝ ⎛⎭⎪⎫y 202p ,y 0-2.由已知得AF ―→·AM ―→=0,即y 20-8y 0+16=0,因而y 0=4,M ⎝ ⎛⎭⎪⎫8p ,4.由|MF |=5得, ⎝ ⎛⎭⎪⎫8p -p 22+16=5,又p >0,解得p =2或p =8,故选C. [答案] (1)B (2)C [方法技巧]求抛物线方程的3个注意点(1)当坐标系已建立时,应根据条件确定抛物线方程属于四种类型中的哪一种.(2)要注意把握抛物线的顶点、对称轴、开口方向与方程之间的对应关系. (3)要注意参数p 的几何意义是焦点到准线的距离,利用它的几何意义来解决问题.考法二 抛物线的几何性质[例2] (1)(2019·兰州双基过关考试)抛物线y 2=2px (p >0)上横坐标为6的点到此抛物线焦点的距离为10,则该抛物线的焦点到准线的距离为( )A .4B .8C .16D .32(2)(2018·赣州二模)抛物线C :y 2=2px (p >0)的焦点为F ,A 是抛物线上一点,若A 到F 的距离是A 到y 轴距离的两倍,且三角形OAF 的面积为1,O 为坐标原点,则p 的值为( )A .1B .2C .3D .4[解析] (1)设抛物线的准线方程为x =-p2(p >0),如图,则根据抛物线的性质有|PF |=p2+6=10,解得p =8,所以抛物线的焦点到准线的距离为8. (2)不妨设A (x 0,y 0)在第一象限,由题意可知⎩⎪⎨⎪⎧ x 0+p2=2x 0,S △OAF=12·p2·y 0=1,即⎩⎪⎨⎪⎧x 0=p2,y 0=4p ,∴A ⎝ ⎛⎭⎪⎫p 2,4p ,又∵点A 在抛物线y 2=2px 上,∴16p 2=2p ×p 2,即p 4=16,又∵p >0,∴p =2,故选B. [答案] (1)B (2)B [方法技巧]用抛物线几何性质的技巧涉及抛物线几何性质的问题常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题.[集训冲关]1.[考法一]顶点在原点,对称轴为坐标轴,且过点P (-4,-2)的抛物线的标准方程是( )A .y 2=-x B .x 2=-8yC .y 2=-8x 或x 2=-y D .y 2=-x 或x 2=-8y解析:选D 设抛物线为y 2=mx ,代入点P (-4,-2),解得m =-1,则抛物线方程为y 2=-x ;设抛物线为x 2=ny ,代入点P (-4,-2),解得n =-8,则抛物线方程为x 2=-8y .2.[考法二]已知抛物线C :y 2=4x 的焦点为F ,点A (0,-3).若线段FA 与抛物线C 相交于点M ,则|MF |=( )A.43B.53C.23D.33解析:选A 由题意,F (1,0),|AF |=2,设|MF |=d ,则M 到准线的距离为d ,M 的横坐标为d -1,由三角形相似,可得d -11=2-d2,所以d =43,故选A. 3.[考法一、二]已知A 是抛物线y 2=2px (p >0)上一点,F 是抛物线的焦点,O 为坐标原点,当|AF |=4时,∠OFA =120°,则抛物线的准线方程是( )A .x =-1B .y =-1C .x =-2D .y =-2解析:选A 过A 向准线作垂线,设垂足为B ,准线与x 轴的交点为D .因为∠OFA =120°,所以△ABF 为等边三角形,∠DBF =30°,从而p =|DF |=2,因此抛物线的准线方程为x =-1.选A.。
高三数学第一轮复习:抛物线的定义、性质及标准方程 知识精讲
高三数学第一轮复习:抛物线的定义、性质及标准方程【本讲主要内容】抛物线的定义及相关概念、抛物线的标准方程、抛物线的几何性质【知识掌握】 【知识点精析】1. 抛物线定义:平面内与一个定点F 和一条直线l 的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线,定点F 不在定直线l 上。
它与椭圆、双曲线的第二定义相仿,仅比值(离心率e )不同,当e =1时为抛物线,当0<e<1时为椭圆,当e>1时为双曲线。
2. 抛物线的标准方程有四种形式,参数p 的几何意义,是焦点到准线的距离,掌握不同形式方程的几何性质(如下表):标准方程y px p 220=>() y px p 220=->() x py p 220=>() x py p 220=->()图形xy l PO Fx y lPOFy x F O P lyx FO P l范围 0,x y R ≥∈0,x y R ≤∈0,y x R ≥∈0,y x R ≤∈对称轴 x 轴y 轴顶点坐标 原点O (0,0)焦点坐标 ,02p ⎛⎫ ⎪⎝⎭,02p ⎛⎫- ⎪⎝⎭0,2p ⎛⎫ ⎪⎝⎭0,2p ⎛⎫- ⎪⎝⎭准线方程 2p x =-2p x =2p y =-2p y =离心率 e=1焦半径02p PF x =+02p PF x =-+02p PF y =+02p PF y =-+其中()00,P x y 为抛物线上任一点。
3. 对于抛物线()220y px p =≠上的点的坐标可设为200,2y y p ⎛⎫⎪⎝⎭,以简化运算。
4. 抛物线的焦点弦:设过抛物线y px p 220=>()的焦点F 的直线与抛物线交于()()1122,A x y B x y 、,,直线OA 与OB 的斜率分别为12k k 、,直线l 的倾斜角为α,则有212y y p =-,2124p x x =,124k k =-,1cos pOA α=-,1cos p OB α=+,22sin pAB α=,12AB x x p =++。
高考数学一轮复习第8章解析几何第7讲抛物线
第七讲 抛物线知识梳理·双基自测 知识梳理知识点一 抛物线的定义 抛物线需要满足以下三个条件: (1)在平面内;(2)动点到定点F 的距离与到定直线l 的距离__相等__; (3)定点F 与定直线l 的关系为__点F ∉l __. 知识点二 抛物线的标准方程与几何性质标准 方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F ⎝⎛⎭⎫p 2,0 F ⎝⎛⎭⎫-p2,0 F ⎝⎛⎭⎫0,p 2 F ⎝⎛⎭⎫0,-p 2 离心率 e =__1__ 准线 方程 __x =-p 2____x =p 2____y =-p 2____y =p 2__范围 x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 开口方向 向右 向左 向上 向下 焦半径 (其中P (x 0,y 0)) |PF |=__x 0+p2__|PF |=__-x 0+p2__|PF |=__y 0+p2__|PF |=__-y 0+p2__重要结论抛物线焦点弦的处理规律直线AB 过抛物线y 2=2px (p >0)的焦点F ,交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如图.(1)y 1y 2=-p 2,x 1x 2=p 24. (2)|AB |=x 1+x 2+p ,x 1+x 2≥2x 1x 2=p ,即当x 1=x 2时,弦长最短为2p . (3)1|AF |+1|BF |=2p. (4)弦长AB =2psin 2α(α为AB 的倾斜角).(5)以AB 为直径的圆与准线相切.(6)焦点F 对A ,B 在准线上射影的张角为90°. (7)A 、O 、D 三点共线;B 、O 、C 三点共线.双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( × )(2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝⎛⎭⎫a 4,0,准线方程是x =-a4.( × ) (3)抛物线既是中心对称图形,又是轴对称图形.( × ) (4)AB 为抛物线y 2=2px (p >0)的过焦点F ⎝⎛⎭⎫p 2,0的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p24,y 1y 2=-p 2,弦长|AB |=x 1+x 2+p .( √ )(5)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( √ )题组二 走进教材2.(必修2P 69例4)(2021·甘肃张掖诊断)过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |等于( B )A .9B .8C .7D .6[解析] 抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.根据题意可得,|PQ |=|PF |+|QF |=x 1+1+x 2+1=x 1+x 2+2=8.3.(2021·河南郑州名校调研)抛物线y =-4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( B ) A .-1716B .-1516C .716D .1516[解析] 由抛物线的方程y =-4x 2,可得标准方程为x 2=-14y ,则焦点坐标为F ⎝⎛⎭⎫0,-116,准线方程为y =116,设M (x 0,y 0),则由抛物线的定义可得-y 0+116=1,解得y 0=-1516.故选B . 题组三 走向高考4.(2019·课标全国Ⅱ)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p =( D ) A .2 B .3 C .4D .8[解析] ∵抛物线y 2=2px (p >0)的焦点坐标为⎝⎛⎭⎫p 2,0, ∴椭圆x 23p +y 2p =1的一个焦点为⎝⎛⎭⎫p 2,0, ∴3p -p =p 24,∴p =8.故选D .5.(2020·新课标Ⅰ)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( C )A .2B .3C .6D .9[解析] A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,因为抛物线上的点到焦点的距离和到准线的距离相等,故有:9+p2=12⇒p =6;故选C .考点突破·互动探究考点一 抛物线的定义及应用——多维探究 角度1 轨迹问题例1 (1)动圆与定圆A :(x +2)2+y 2=1外切,且和直线x =1相切,则动圆圆心的轨迹是( D ) A .直线 B .椭圆 C .双曲线D .抛物线[解析] 设动圆的圆心为C ,则C 到定圆A :(x +2)2+y 2=1的圆心的距离等于r +1,而动圆的圆心到直线x =1的距离等于r ,所以动圆到直线x =2距离为r +1,即动圆圆心到定点(-2,0)和定直线x =2的距离相等,根据抛物线的定义知,动圆的圆心轨迹为抛物线,所以答案为D .角度2 到焦点与到定点距离之和最小问题(2)①(2021·河北保定七校联考)已知M是抛物线x2=4y上一点,F为其焦点,C为圆(x+1)2+(y-2)2=1的圆心,则|MF|+|MC|的最小值为(B)A.2 B.3C.4 D.5②(2021·山西运城联考)已知抛物线C:x2=8y的焦点为F,O为原点,点P是抛物线C的准线上的一动点,点A在抛物线C上,且|AF|=4,则|P A|+|PO|的最小值为(B)A.4 2 B.213C.313 D.4 6[解析]①设抛物线x2=4y的准线方程为l:y=-1,C为圆(x+1)2+(y-2)2=1的圆心,所以C的坐标为(-1,2),过M作l的垂线,垂足为E,根据抛物线的定义可知|MF|=|ME|,所以问题求|MF|+|MC|的最小值,就转化为求|ME|+|MC|的最小值,由平面几何的知识可知,当C,M,E在一条直线上时,此时CE⊥l,|ME|+|MC|有最小值,最小值为|CE|=2-(-1)=3,故选B.②由抛物线的定义知|AF|=y A+p2=y A+2=4,∴y A=2,代入x2=8y,得x A=±4,不妨取A(4,2),又O关于准线y=-2的对称点为O′(0,-4),∴|P A|+|PO|=|P A|+|PO′|≥|AO′|=(-4-2)2+(0-4)2=213,当且仅当A、P、O′共线时取等号,故选B.[引申]本例(2)①中,(ⅰ)|MC|-|MF|的最大值为__2__;最小值为__-2__;(ⅱ)若N为⊙C上任一点,则|MF|+|MN|的最小值为__2__.角度3到准线与到定点距离之和最小问题(3)已知圆C:x2+y2+6x+8y+21=0,抛物线y2=8x的准线为l,设抛物线上任意一点P到直线l的距离为d,则d+|PC|的最小值为(A)A.41 B.7C.6 D.9[解析]由题意得圆的方程为(x+3)2+(y+4)2=4,圆心C的坐标为(-3,-4).由抛物线定义知,当d+|PC |最小时为圆心与抛物线焦点间的距离,即d +|PC |=(-3-2)2+(-4)2=41.角度4 到两定直线的距离之和最小问题(4)(2021·北京人大附中测试)点P 在曲线y 2=4x 上,过P 分别作直线x =-1及y =x +3的垂线,垂足分别为G ,H ,则|PG |+|PH |的最小值为( B )A .322B .2 2C .322+1D .2+2[解析] 由题可知x =-1是抛物线的准线,焦点F (1,0),由抛物线的性质可知|PG |=|PF |,∴|PG |+|PH |=|PF |+|PH |≤|FH |=|1-0+3|2=22,当且仅当H 、P 、F 三点共线时取等号,∴|PG |+|PH |的最小值为22.故选B .名师点拨利用抛物线的定义可解决的常见问题(1)轨迹问题:用抛物线的定义可以确定动点与定点、定直线距离有关的轨迹是否为抛物线. (2)距离问题:涉及抛物线上的点到焦点的距离和到准线的距离问题时,注意在解题中利用两者之间的关系进行相互转化.(3)看到准线想焦点,看到焦点想准线,这是解决抛物线焦点弦有关问题的重要途径. 〔变式训练1〕(1)(角度1)到定点A (0,2)的距离比到定直线l :y =-1大1的动点P 的轨迹方程为__x 2=8y __. (2)(角度1)(2021·吉林省吉林市调研)已知抛物线y 2=4x 的焦点F ,点A (4,3),P 为抛物线上一点,且P 不在直线AF 上,则△P AF 周长取最小值时,线段PF 的长为( B )A .1B .134C .5D .214(3)(角度2)(2021·山西大学附中模拟)已知点Q (22,0)及抛物线y =x 24上一动点P (x ,y ),则y +|PQ |的最小值是__2__.(4)(角度3)(2021·上海虹口区二模)已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和l 2的距离之和的最小值为( C )A .3716B .115C .2D .74[解析] (1)由题意知P 到A 的距离等于其到直线y =-2的距离,故P 的轨迹是以A 为焦点,直线y =-2为准线的抛物线,所以其方程为x 2=8y .(2)求△P AF 周长的最小值,即求|P A |+|PF |的最小值,设点P 在准线上的射影为D ,根据抛物线的定义,可知|PF |=|PD |,因此,|P A |+|PF |的最小值,即|P A |+|PD |的最小值.根据平面几何知识,可得当D ,P ,A 三点共线时|P A |+|PD |最小,此时P (94,3),且|PF |=94+1=134,故选B .(3)抛物线y =x 24即x 2=4y ,其焦点坐标为F (0,1),准线方程为y =-1.因为点Q 的坐标为(22,0),所以|FQ |=(22)2+12=3.过点P 作准线的垂线PH ,交x 轴于点D ,如图所示.结合抛物线的定义,有y +|PQ |=|PD |+|PQ |=|PH |+|PQ |-1=|PF |+|PQ |-1≥|FQ |-1=3-1=2,即y +|PQ |的最小值是2.(4)直线l 2:x =-1是抛物线y 2=4x 的准线,抛物线y 2=4x 的焦点为F (1,0),则点P 到直线l 2:x =-1的距离等于PF ,过点F 作直线l 1:4x -3y +6=0的垂线,和抛物线的交点就是点P ,所以点P 到直线l 1:4x -3y +6=0的距离和到直线l 2:x =-1的距离之和的最小值就是点F (1,0)到直线l 1:4x -3y +6=0的距离,所以最小值为|4-0+6|32+42=2,故选C .考点二 抛物线的标准方程——自主练透例2 (1)过点P (-3,2)的抛物线的标准方程为__y 2=-43x 或x 2=92y __.(2)焦点在直线x -2y -4=0上的抛物线的标准方程为__y 2=16x 或x 2=-8y __,准线方程为__x =-4或y =2__.(3)如图,过抛物线y 2=2px (p >0)的焦点F 的直线依次交抛物线及准线于点A ,B ,C ,若|BC |=2|BF |,且|AF |=3,则抛物线的方程为( B )A .y 2=32xB .y 2=3xC .y 2=92xD .y 2=9x[解析] (1)设所求抛物线的方程为y 2=-2px (p >0)或x 2=2py (p >0). ∵过点(-3,2),∴4=-2p ·(-3)或9=2p ·2. ∴p =23或p =94.∴所求抛物线的标准方程为y 2=-43x 或x 2=92y .(2)令x =0,得y =-2,令y =0,得x =4. ∴抛物线的焦点为(4,0)或(0,-2). 当焦点为(4,0)时,p2=4,∴p =8,此时抛物线方程为y 2=16x ; 当焦点为(0,-2)时,p2=2,∴p =4,此时抛物线方程为x 2=-8y .∴所求的抛物线的标准方程为y 2=16x 或x 2=-8y , 对应的准线方程分别是x =-4,y =2.(3)如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设|BF |=a ,则由已知得|BC |=2a ,由定义得|BD |=a ,故∠BCD =30°. 在直角三角形ACE 中,∵|AE |=|AF |=3,|AC |=3+3a ,2|AE |=|AC |, ∴3+3a =6,从而得a =1.∵BD ∥FG ,∴|BD ||FG |=|BC ||FC |,即1p =23,求得p =32,因此抛物线的方程为y 2=3x .名师点拨求抛物线的标准方程的方法(1)求抛物线的标准方程常用待定系数法,若焦点位置确定,因为未知数只有p ,所以只需一个条件确定p 值即可.(2)因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.一般焦点在x 轴上的抛物线的方程可设为y 2=ax (a ≠0);焦点在y 轴上的抛物线的方程可设为x 2=ay (a ≠0).〔变式训练2〕(1)(2021·重庆沙坪坝区模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,过点(p,0)且垂直于x 轴的直线与抛物线C 在第一象限内的交点为A ,若|AF |=1,则抛物线C 的方程为( A )A .y 2=43xB .y 2=2xC .y 2=3xD .y 2=4x(2)(2021·安徽蚌埠一中期中)已知抛物线的顶点在原点,焦点在y 轴上,其上的点P (m ,-3)到焦点的距离为5,则抛物线方程为( D )A .x 2=8yB .x 2=4yC .x 2=-4yD .x 2=-8y[解析] (1)由题意知x A =p ,又|AF |=x A +p 2=3p 2=1,∴p =23,∴抛物线C 的方程为y 2=43x ,故选A .(2)由题意可知抛物线的焦点在y 轴负半轴上,故设其方程为x 2=-2py (p >0),所以3+p2=5,即p =4,所以所求抛物线方程为x 2=-8y ,故选D .考点三 抛物线的几何性质——师生共研例3 (1)(2021·广西四校联考)已知抛物线y 2=2px (p >0)上横坐标为4的点到此抛物线焦点的距离为9,则该抛物线的焦点到准线的距离为( C )A .4B .9C .10D .18(2)(2021·四川眉山模拟)点F 为抛物线C :y 2=2px (p >0)的焦点,过F 的直线交抛物线C 于A ,B 两点(点A 在第一象限),过A 、B 分别作抛物线C 的准线的垂线段,垂足分别为M 、N ,若|MF |=4,|NF |=3,则直线AB 的斜率为( D )A .1B .724C .2D .247[解析] (1)抛物线y 2=2px 的焦点为⎝⎛⎭⎫p 2,0,准线方程为x =-p 2.由题意可得4+p2=9,解得p =10,所以该抛物线的焦点到准线的距离为10.故选C .(2)由抛物线定义知|AM |=|AF |,|BN |=|BF |,∴∠AFM +∠BFM =360°-∠MAF -∠NBF2=90°,∴∠MFN =90°, 又|MF |=4,|NF |=3, ∴|MN |=5,∴p =|KF |=|MF |·|NF ||MN |=125, 又∠AFM =∠AMF =∠MFK ,∴k AB =tan(180°-2∠MFK )=-2tan ∠MFK 1-tan 2∠MFK =-831-⎝⎛⎭⎫432=247.故选D .名师点拨在解决与抛物线的性质有关的问题时,要注意利用几何图形形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.〔变式训练3〕(1)(2021·广东茂名五校联考)设抛物线y 2=2px (p >0)的焦点为F (1,0),过焦点的直线交抛物线于A 、B 两点,若|AF |=4|BF |,则|AB |=__254__.(2)(2021·湖北荆州模拟)从抛物线y 2=4x 在第一象限内的一点P 引抛物线准线的垂线,垂足为M ,且|PM |=9,设抛物线的焦点为F ,则直线PF 的斜率为( C )A .627B .1827C .427D .227[解析] (1)∵p2=1,∴p =2,不妨设直线AB 方程为x =my +1, A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y 2=4x x =my +1,得y 2-4my -4=0, ∴y 1y 2=-4,又|AF |=4|BF |,∴y 1=-4y 2, ∴y 2=-1,从而x 2=14,∴|BF |=1+14=54,∴|AB |=5|BF |=254.(2)设P (x 0,y 0),由抛物线y 2=4x , 可知其焦点F 的坐标为(1,0), 故|PM |=x 0+1=9,解得x 0=8, 故P 点坐标为(8,42), 所以k PF =0-421-8=427.故选C .考点四 直线与抛物线的综合问题——师生共研例4 (1)已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 212-y 24=1的一个焦点重合,直线y =x -4与抛物线交于A ,B 两点,则|AB |等于( B )A .28B .32C .20D .40(2)(2021·陕西师大附中期中)已知抛物线y 2=4x 的一条弦AB 恰好以P (1,1)为中点,则弦AB 所在直线的方程是( B )A .y =x -1B .y =2x -1C .y =-x +2D .y =-2x +3(3)(2021·湖南五市十校联考)已知抛物线C :y 2=2px (p >0),直线y =x -1与C 相交所得的长为8. ①求p 的值;②过原点O 的直线l 与抛物线C 交于M 点,与直线x =-1交于H 点,过点H 作y 轴的垂线交抛物线C 于N 点,求证:直线MN 过定点. [解析] (1)双曲线x 212-y 24=1的焦点坐标为(±4,0),故抛物线的焦点F 的坐标为(4,0).因此p =8,故抛物线方程为y 2=16x ,易知直线y =x -4过抛物线的焦点.设A 、B 两点坐标分别为(x 1,y 1),(x 2,y 2).由⎩⎪⎨⎪⎧y 2=16x ,y =x -4,可得x 2-24x +16=0,故x 1+x 2=24. 故|AB |=x 1+x 2+p =24+8=32.故选B .(2)设A (x 1,y 1),B (x 2,y 2),∴y 1+y 2=2,由⎩⎪⎨⎪⎧y 21=4x 1y 22=4x 2,知k AB =y 1-y 2x 1-x 2=4y 1+y 2=2, ∴AB 的方程为y -1=2(x -1),即2x -y -1=0,故选B .(3)①由⎩⎪⎨⎪⎧y 2=2px y =x -1,消x 可得y 2-2py -2p =0,∴y 1+y 2=2p ,y 1y 2=-2p ,∴弦长为1+12·(y 1+y 2)2-4y 1y 2=2·4p 2+8p =8,解得p =2或p =-4(舍去),∴p =2,②由①可得y 2= 4x ,设M ⎝⎛⎭⎫14y 20,y 0, ∴直线OM 的方程y =4y 0x , 当x =-1时,∴y H =-4y 0, 代入抛物线方程y 2=4x ,可得x N =4y 20, ∴N ⎝⎛⎭⎫4y 20,-4y 0, ∴直线MN 的斜率k =y 0+4y 0y 204-4y 20=4y 0y 20-4, 直线MN 的方程为y -y 0=4y 0y 20-4⎝⎛⎭⎫x -14y 20,整理可得y =4y 0y 20-4(x -1), 故直线MN 过点(1,0).名师点拨(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要将两方程联立,消元,用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点(设焦点在x 轴的正半轴上),可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率问题一般用“点差法”求解.〔变式训练4〕(1)(2021·甘肃诊断)直线l 过抛物线y 2=2px (p >0)的焦点,且交抛物线于A ,B 两点,交其准线于C 点,已知|AF |=4,CB →=3BF →,则p =( C )A .2B .43C .83D .4(2)(2021·安徽皖南八校模拟)已知抛物线C :y 2=2px (p >0)的焦点F 到直线x -y +1=0的距离为2. ①求抛物线C 的方程;②过点F 的直线l 与C 交于A ,B 两点,交y 轴于点P .若|AB →|=3|BP →|,求直线l 的方程.[解析] (1)过A ,B 分别作准线的垂线交准线于E ,D 两点,设|BF |=a ,根据抛物线的性质可知,|BD |=a ,|AE |=4,根据平行线段比例可知|BD ||AE |=|CB ||AC |, 即a 4=3a 3a +a +4,解得a =2, 又|BD ||GF |=|BC ||CF |,即a p =3a 4a, 解得p =43a =83,故选C .(2)①由抛物线C :y 2=2px (p >0),可得焦点F ⎝⎛⎭⎫p 2,0,因为焦点到x -y +1=0的距离为2,即⎪⎪⎪⎪p 2+12=2,解得p =2,所以抛物线C 的方程y 2=4x .②由①知焦点F (1,0),设直线l :y =k (x -1),A (x 1,y 1),B (x 2,y 2),联立方程组⎩⎪⎨⎪⎧y =k (x -1)y 2=4x ,整理得 k 2x 2-(2k 2+4)x +k 2=0,所以x 1+x 2=2+4k2, ① x 1x 2=1,②又由|AB →|=3|BP →|,得AB →=3BP →,可得x 1=4x 2,③ 由②③,可得x 1=2,x 2=12, 代入①,可得2+4k 2=52,解得k =±22, 所以直线l 的方程为22x - y -22=0或22x +y -22=0.名师讲坛·素养提升巧解抛物线的切线问题例5 (1)抛物线C 1:x 2=2py (p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( D )A .316B .38C .233D .433(2)(2019·新课标Ⅲ,节选)已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B .证明:直线AB 过定点.[解析] (1)抛物线C 1:x 2=2py (p >0)的焦点坐标为⎝⎛⎭⎫0,p 2,双曲线x 23-y 2=1的右焦点坐标为(2,0),两点连线的方程为y =-p 4(x -2),联立⎩⎨⎧ y =-p 4(x -2),y =12p x 2,得2x 2+p 2x -2p 2=0.设点M 的横坐标为m ,易知在M 点处切线的斜率存在,则在点M 处切线的斜率为y ′⎪⎪⎪⎪x =m =⎝⎛⎭⎫12p x 2′x=m =m p. 又双曲线x 23-y 2=1的渐近线方程为x 3±y =0,其与切线平行,所以m p =33,即m =33p ,代入2x 2+p 2x -2p 2=0,得p =433或p =0(舍去). (2)设D ⎝⎛⎭⎫t ,-12,A (x 1,y 1),则x 21=2y 1,由于y ′=x , ∴切线DA 的斜率为x 1,故y 1+12x 1-t=x 1, 整理得:2tx 1-2y 1+1=0.设B (x 2,y 2),同理可得2tx 2-2y 2+1=0.故直线AB 的方程为2tx -2y +1=0,即y -12=tx . ∴直线AB 过定点⎝⎛⎭⎫0,12.名师点拨利用导数工具解决抛物线的切线问题,使问题变得巧妙而简单,若用判别式解决抛物线的切线问题,计算量大,易出错.注意:直线与抛物线只有一个公共点是直线与抛物线相切的必要不充分条件,过抛物线外一点与抛物线只有一个公共点的直线有0条或3条;过抛物线上一点和抛物线只有一个公共点的直线有2条.〔变式训练5〕(1)已知抛物线C :y 2=2px (p >0),过点M ⎝⎛⎭⎫-p 2,0作C 的切线,则切线的斜率为__±1__. (2)已知抛物线x 2=8y ,过点P (b,4)作该抛物线的切线P A ,PB ,切点为A ,B ,若直线AB 恒过定点,则该定点为( C )A .(4,0)B .(3,2)C .(0,-4)D .(4,1)[解析] (1)设斜率为k ,则切线为y =k ⎝⎛⎭⎫x +p 2代入y 2=2px 中得k 2x 2+p (k 2-2)x +k 2p 24=0. Δ=0,即p 2(k 2-2)2-4·k 2·k 2p 24=0.解得k 2=1,∴k =±1.(2)设A ,B 的坐标为(x 1,y 1),(x 2,y 2),∵y =x 28,y ′=x4,∴P A ,PB 的方程y -y 1=x 14(x -x 1),y -y 2=x 24(x -x 2),由y 1=x 218,y 2=x 228,可得y =x 14x -y 1,y =x 24x -y 2,∵切线P A ,PB 都过点P (b,4),∴4=x 14×b -y 1,4=x 24×b -y 2,故可知过A ,B 两点的直线方程为4=b4x -y ,当x =0时,y =-4,∴直线AB 恒过定点(0,-4).故选C .。
2022届高考数学统考一轮复习第九章抛物线学案文含解析新人教版
高考数学统考一轮复习:第七节 抛物线【知识重温】一、必记2个知识点1.抛物线定义、标准方程及几何性质 (p >0) ________ ________ ________x 轴 ⑤________ y 轴 ⑥________ 设AB 是过抛物线y 2=2px (p >0)的焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则(1)x 1x 2=p 24,y 1y 2=-p 2.(2)弦长|AB |=x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角).(3)以弦AB 为直径的圆与准线相切.(4)通径:过焦点且垂直于对称轴的弦,长等于2p . 二、必明2个易误点1.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.2.抛物线标准方程中参数p 易忽视,只有p >0,才能证明其几何意义是焦点F 到准线l 的距离,否则无几何意义. 【小题热身】一、判断正误1.判断下列说法是否正确(请在括号中打“√”或“×”).(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( ) (2)抛物线y 2=4x 的焦点到准线的距离是4.( )(3)抛物线既是中心对称图形,又是轴对称图形.( )(4)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝⎛⎭⎫a 4,0,准线方程是x =-a4.( )二、教材改编2.过点P (-2,3)的抛物线的标准方程是( )A .y 2=-92x 或x 2=43yB .y 2=92x 或x 2=43yC .y 2=92x 或x 2=-43yD .y 2=-92x 或x 2=-43y3.抛物线y 2=8x 上到其焦点F 距离为5的点P 有( ) A .0个 B .1个 C .2个 D .4个三、易错易混4.已知抛物线C 与双曲线x 2-y 2=1有相同的焦点,且顶点在原点,则抛物线C 的方程是( )A .y 2=±22xB .y 2=±2xC .y 2=±4xD .y 2=±42x5.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是________.四、走进高考 6.[2020·全国卷Ⅰ]已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( )A .2B .3C .6D .9考点一 抛物线的定义和标准方程[自主练透型] 1.[2020·北京卷]设抛物线的顶点为O ,焦点为F ,准线为l ,P 是抛物线上异于O 的一点,过P 作PQ ⊥l 于Q .则线段FQ 的垂直平分线( )A .经过点OB .经过点PC .平行于直线OPD .垂直于直线OP 2.[2021·湖北鄂州调研]过抛物线y 2=2px (p >0)的焦点F 作斜率为3的直线,与抛物线在第一象限内交于点A ,若|AF |=4,则p =( )A .2B .1 C.3 D .4 3.[2021·成都高三摸底考试]已知顶点在坐标原点的抛物线的焦点坐标为(0,-2),则此抛物线的标准方程为________.4.[2021·郑州一中高三摸底考试]从抛物线y =14x 2上一点P 引抛物线准线的垂线,垂足为M ,且|PM |=5.设抛物线的焦点为F ,则△MPF 的面积为________.悟·技法应用抛物线定义的2个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P (x ,y )到焦点F 的距离|PF |=|x |+p 2或|PF |=|y |+p2.考点二 抛物线的几何性质[互动讲练型] [例1] (1)[2021·合肥市第二次质量检测]已知抛物线y 2=2px (p >0)上一点M 到焦点F 的距离等于2p ,则直线MF 的斜率为( )A .±3B .±1C .±34D .±33(2)[2021·福州市高三毕业班适应性练习卷]抛物线C :y 2=2x 的焦点为F ,点P 为C 上的动点,点M 为C 的准线上的动点,当△FPM 为等边三角形时,其周长为( )A. 2 B .2 C .3 2 D .6 悟·技法1.求抛物线的标准方程的方法(1)求抛物线的标准方程常用待定系数法,因为未知数只有p ,所以只需一个条件确定p 值即可. (2)因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.2.确定及应用抛物线性质的技巧(1)利用抛物线方程确定及应用其焦点、准线等性质时,关键是将抛物线方程化为标准方程.(2)要结合图形分析,灵活运用平面几何的性质以图助解. [变式练]——(着眼于举一反三) 1.[2021·山西晋城一模]已知P 是抛物线C :y 2=2px (p >0)上的一点,F 是抛物线C 的焦点,O 为坐标原点.若|PF |=2,∠PFO =π3,则抛物线C 的方程为( )A .y 2=6xB .y 2=2xC .y 2=xD .y 2=4x 2.[2021·东北四市模拟]若点P 为抛物线y =2x 2上的动点,F 为抛物线的焦点,则|PF |的最小值为________.考点三 直线与抛物线的位置关系 [互动讲练型][例2] [2019·全国卷Ⅰ]已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程;(2)若AP →=3PB →,求|AB |.悟·技法解决直线与抛物线位置关系问题的常用方法1.直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.2.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.3.涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时,一般用“点差法”求解.[变式练]——(着眼于举一反三)3.已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)若过M 作MN ⊥F A ,垂足为N ,求点N 的坐标.第七节 抛物线【知识重温】①相等 ②y 2=-2px (p >0) ③x 2=-2py (p >0) ④x 2=2py (p >0) ⑤x 轴 ⑥y 轴⑦F (-p 2,0) ⑧F (0,-p 2) ⑨F (0,p 2)⑩e =1 ⑪x =-p 2 ⑫y =-p 2 ⑬-y 0+p 2 ⑭y 0+p2 ⑮y ≤0 ⑯y ≥0【小题热身】1.答案:(1)× (2)× (3)× (4)×2.解析:设抛物线的标准方程为y 2=kx 或x 2=my ,代入点P (-2,3),解得k =-92,m =43.∴y 2=-92x 或x 2=43y . 答案:A3.解析:抛物线y 2=8x 的准线方程为x =-2,则抛物线顶点到准线的距离为2,因为抛物线到焦点的距离和到准线的距离相等,则根据抛物线的对称性可知抛物线y 2=8x 上到其焦点F 距离为5的点有2个.答案:C 4.解析:由已知可知双曲线的焦点为(-2,0),(2,0).设抛物线方程为y 2=±2px (p >0),则p2=2,所以p =22,所以抛物线方程为y 2=±42x ,故选D. 答案:D5.解析:Q (-2,0),当直线l 的斜率不存在时,不满足题意,故设直线l 的方程为y =k (x +2),代入抛物线方程,消去y 整理得k 2x 2+(4k 2-8)x +4k 2=0,由Δ=(4k 2-8)2-4k 2·4k 2=64(1-k 2)≥0,解得-1≤k ≤1.答案:[-1,1]6.解析:设焦点为F ,点A 的坐标为(x 0,y 0),由抛物线定义得|AF |=x 0+p2,∵点A 到y 轴距离为9,∴x 0=9,∴9+p2=12,∴p =6.故选C. 答案:C 课堂考点突破考点一1.解析:解法一 不妨设抛物线的方程为y 2=2px (p >0),P (x 0,y 0)(x 0>0),则Q ⎝⎛⎭⎫-p2,y 0,F ⎝⎛⎭⎫p 2,0,直线FQ 的斜率为-y 0p ,从而线段FQ 的垂直平分线的斜率为py 0,又线段FQ 的中点为⎝⎛⎭⎫0,y 02,所以线段FQ 的垂直平分线的方程为y -y 02=py 0(x -0),即2px -2y 0y +y 20=0,将点P 的横坐标代入,得2px 0-2y 0y +y 20=0,又2px 0=y 20,所以y =y 0,所以点P 在线段FQ 的垂直平分线上,故选B.解法二 连接PF ,由题意及抛物线的定义可知|PQ |=|FP |,则△QPF 为等腰三角形,故线段FQ 的垂直平分线经过点P .故选B.答案:B2.解析:过点A 作AB 垂直x 轴于点B ,则在Rt △ABF 中,∠AFB =π3,|AF |=4,∴|BF |=12|AF |=2,则x A =2+p 2,∴|AF |=x A +p2=2+p =4,得p =2,故选A. 答案:A3.解析:依题意可设抛物线的方程为x 2=-2py (p >0),因为焦点坐标为(0,-2),所以-p2=-2,解得p =4.故所求抛物线的标准方程为x 2=-8y . 答案:x 2=-8y4.解析:由题意,得x 2=4y ,则抛物线的准线方程为y =-1.从抛物线上一点P 引抛物线准线的垂线,设P (x 0,y 0),则由抛物线的定义知|PM |=y 0+1,所以y 0=4,所以|x 0|=4,所以S △MPF =12×|PM |×|x 0|=12×5×4=10.答案:10 考点二例1 解析:(1)设M (x M ,y M ),由抛物线定义可得|MF |=x M +p 2=2p ,解得x M =3p2,代入抛物线方程可得y M =±3p ,则直线MF 的斜率为y M x M -p 2=±3pp =±3,选项A 正确.(2)解法一 作出图形如图所示,因为△FPM 为等边三角形,所以PM 垂直C 的准线于M ,易知|PM |=4|OF |,因为|OF |=12,所以|PM |=2,所以△FPM 的周长为3×2=6,故选D.解法二 因为△FPM 为等边三角形,|PF |=|PM |,所以PM 垂直C 的准线于M ,设P ⎝⎛⎭⎫m 22,m ,则M ⎝⎛⎭⎫-12,m ,所以|PM |=12+m 22,又F ⎝⎛⎭⎫12,0,且|PM |=|MF |,所以12+m 22=⎝⎛⎭⎫12+122+m 2,解得m 2=3,所以|PM |=2,所以△FPM 的周长为3×2=6,故选D. 答案:(1)A (2)D 变式练 1.解析:过点P 作PQ 垂直于x 轴,垂足为Q .∵∠PFO =π3,|PF |=2,∴|PQ |=3,|QF |=1,不妨令点P 坐标为⎝⎛⎭⎫p 2-1,3,将点P 的坐标代入y 2=2px ,得3=2p ⎝⎛⎭⎫p2-1,解得p =3(负值舍去),故抛物线C 的方程为y 2=6x .故选A.答案:A2.解析:由题意知x 2=12y ,则F ⎝⎛⎭⎫0,18, 设P (x 0,2x 20),则|PF |=x 20+⎝⎛⎭⎫2x 20-182 =4x 40+12x 20+164=2x 20+18, 所以当x 20=0时,|PF |min =18. 答案:18考点三例2 解析:设直线l :y =32x +t ,A (x 1,y 1),B (x 2,y 2).(1)由题设得F ⎝⎛⎭⎫34,0,故|AF |+|BF |=x 1+x 2+32,由题设可得x 1+x 2=52. 由⎩⎪⎨⎪⎧y =32x +t ,y 2=3x可得9x 2+12(t -1)x +4t 2=0,则x 1+x 2=-12(t -1)9.从而-12(t -1)9=52,得t =-78.所以l 的方程为y =32x -78.(2)由AP →=3PB →可得y 1=-3y 2.由⎩⎪⎨⎪⎧y =32x +t ,y 2=3x可得y 2-2y +2t =0.所以y 1+y 2=2.从而-3y 2+y 2=2,故y 2=-1,y 1=3.代入C 的方程得x 1=3,x 2=13.故|AB |=4133.变式练3.解析:(1)抛物线y 2=2px 的准线为x =-p2,于是4+p2=5,所以p =2.所以抛物线方程为y 2=4x . (2)因为点A 的坐标是(4,4), 由题意得B (0,4),M (0,2).又因为F (1,0),所以k F A =43.因为MN ⊥F A ,所以k MN =-34.又F A 的方程为y =43(x -1),①MN 的方程为y -2=-34x ,②联立①②,解得x =85,y =45,所以点N 的坐标为⎝⎛⎭⎫85,45.。
高考数学大一轮复习 第九章 平面解析几何 第7节 抛物
焦点到直线x=m的距离为4,则m的值为( )
A.5
B.-3或5
C.-2或6
D.6
解析 抛物线y2=4x的焦点为F(1,0),它与直线x=m的距
离为d=|m-1|=4,
∴m=-3或5,故选B.
答案 B
4.(教材习题改编)已知抛物线的顶点是原点,对称轴为坐标轴, 并 且 经 过 点 P( - 2 , - 4) , 则 该 抛 物 线 的 标 准 方 程 为 解__析____很__明. 显点P在第三象限,所以抛物线的焦点可能在x 轴负半轴上或y轴负半轴上. 当焦点在x轴负半轴上时,设方程为y2=-2px(p>0),把点 P(-2,-4)的坐标代入得(-4)2=-2p×(-2),
物线的______.
(2)其数学表达式:{M||MF|=d}(d为点M到准线l的距离).
2.抛物线的标准方程与几何性质
图形
x2= 标准 y2=2px(p>0) y2=-2px(p>0)
2py(p>0)
x2=- 2py(p>0)
方程
p的几何意义:焦点F到准线l的距离
顶点
O(0,0)
对称轴
y=0
x=0
第7节 抛物线
最新考纲 1.了解抛物线的实际背景,了解抛物线在刻画现 实世界和解决实际问题中的作用;2.掌握抛物线的定义、几 何图形、标准方程及简单几何性质.
知识梳
1.抛物线的定义
理
(1)平面内与一个定点F和一条定直线相l(F等∉l)的距离______的点
的轨迹叫做抛物线.定点F叫做抛物准线线的焦点,定直线l叫做抛
5.已知抛物线方程为y2=8x,若过点Q(-2,0)的直线l与抛物 线有公共点,则直线l的斜率的取值范围是________. 解析 设直线l的方程为y=k(x+2),代入抛物线方程,消去 y整理得k2x2+(4k2-8)x+4k2=0,当k=0时,显然满足题意; 当k≠0时,Δ=(4k2-8)2-4k2·4k2=64(1-k2)≥0,解得- 1≤k<0或0<k≤1,因此k的取值范围是[-1,1]. 答案 [-1,1]
2025高考数学一轮复习-3.3.1-抛物线的标准方程【课件】
(2)焦点在 y 轴上,焦点到准线的距离为 5; [ 解 ] (2) 已 知 抛 物 线 的 焦 点 在 y 轴 上 , 可 设 方 程 为 x2 = 2my(m≠0),由焦点到准线的距离为 5,知|m|=5,m=±5,所以满足 条件的抛物线有两条,它们的标准方程分别为 x2=10y 和 x2=-10y.
焦点坐标 _F__0_,__p2___
准线方程 __y_=__-__p2__
__x_2_=__-__2_p_y__(p>0)
_F_0_,__-__p2__
___y_=__p2___
1.思考辨析(正确的打“√”,错误的打“×”)
(1)y=4x2 的焦点坐标为(1,0).
()
(2)以(0,1)为焦点的抛物线的方程为 x2=4y.
()
[答案] (1)× (2)√
2.抛物线 y=4ax2(a∈R 且 a≠0)的焦点坐标为________.
0,116a [把方程化为标准形式为 x2=41ay,所以焦点在 y 轴上, 坐标为0,116a.]
关键能力·合作探究释疑难
类型1 类型2 类型3
类型 1 求抛物线的标准方程 【例 1】 分别求满足下列条件的抛物线的标准方程. (1)准线方程为 2y+4=0; [解] (1)准线方程为 2y+4=0,即 y=-2,故抛物线焦点在 y 轴 的正半轴上,设其方程为 x2=2py(p>0).又p2=2,∴2p=8,故所求抛 物线的标准方程为 x2=8y.
知识点 1 抛物线的定义 平面内到一个定点 F 和一条定直线 l(F 不在 l 上)的距离相__等__的点 的轨迹叫作抛物线.定点 F 叫作抛物线的焦__点__,定直线 l 叫作抛物线 的准__线__.
么?
抛物线的定义中,若点 F 在直线 l 上,那么点的轨迹是什
抛物线的定义及其标准方程(1)- 2020年高考数学(文)一轮复习
抛物线的定义及其标准方程(1)高考频度:★★★☆☆ 难易程度:★★★☆☆顶点在原点,且过点()44-,的抛物线的标准方程是A .24y x =-B .24x y =C .24y x =-或24x y =D .24y x =或24x y =- 【参考答案】C【试题解析】∵抛物线的顶点在原点,且过点()44-,,∴设抛物线的标准方程为22x py =(0p >)或22y px =-(0p >),将点()44-,的坐标代入抛物线的标准方程22x py =(0p >)得:168p =, ∴2p =,∴此时抛物线的标准方程为24x y =;将点()44-,的坐标代入抛物线的标准方程22y px =-(0p >),同理可得2p =, ∴此时抛物线的标准方程为24y x =-.综上可知,顶点在原点,且过点()44-,的抛物线的标准方程是24y x =-或24x y =.故选C . 【解题必备】(1)由一次项(是x 还是y )及其符号(是正还是负)可确定抛物线的开口方向,进而得焦点和准线的位置;由一次项的系数可确定2p (大于零)的值,进而可得焦点坐标和准线方程.(2)抛物线中经常把点到焦点的距离转化为点到准线的距离,或者把点到准线的距离转化为点到焦点的距离,然后根据平面几何的有关知识求解.(3)有关抛物线上一点P 到抛物线焦点F 与到已知点M (M 在抛物线内)的距离之和的最小值问题,只要点P 到抛物线准线l 的距离与到点M 的距离之和最小即可.由抛物线的图形可知,过点M 作准线l 的垂线,其与抛物线的交点到抛物线焦点F 与到已知点M 的距离之和最小.解题时注意平面几何知识的应用,例如两点之间线段最短、点与直线上的点的连线中垂线段最短等.(4)求抛物线的标准方程一般采用待定系数法:即先定位(即确定抛物线开口方向),再定量(即确定参数p 的值).若无法定位,则需分类讨论.1.抛物线24y x =的准线方程为A .1y =-B .1y =C .116y =D .116y =- 2.点()00,P x y 是抛物线C :28y x =上一点,若P 到C 的焦点的距离为8,则A .08x =B .08y =C .06x =D .06y =3.若抛物线22y px =的准线为圆2240x y x ++=的一条切线,则抛物线的方程为A .216y x =-B .28y x =-C .216y x =D .24y x =1.【答案】D【解析】将24y x =化为214x y =,则该抛物线的准线方程为116y =-. 【名师点睛】本题考查抛物线的标准方程、准线方程等知识,意在考查学生的基本计算能力.先将抛物线方程化为标准方程,再写出准线方程.2.【答案】C【解析】根据抛物线的定义,P 到C 的焦点F 的距离等于P 到抛物线准线的距离,得028PF x =+=,则06x =.故选C. 【名师点睛】本题考查抛物线的定义以及焦半径公式:02p PF x =+,是基础题. 3.【答案】C 【解析】抛物线22y px =的准线方程为2p x =-,且垂直于x 轴. 而圆2240x y x ++=垂直于x 轴的一条切线为4x =-,则42p =,即8p =. 故抛物线的方程为216y x =.故选C . 【名师点睛】本题主要考查抛物线方程的求法,考查直线和圆的位置关系,意在考查学生对这些知识的理解掌握水平.求解时,先求出抛物线22y px =的准线方程为2p x =-,再根据直线和圆相切求出p 的值得解.。
高考一轮复习 抛物线 知识点+例题+练习
自主梳理1.抛物线的概念平面内到一个定点F 和一条定直线l (F 不在l 上)的距离________的点的轨迹叫做抛物线.点F 叫做抛物线的________,直线l 叫做抛物线的________.2.抛物线的标准方程与几何性质标准方程y 2=2px (p >0) y 2=-2px (p >0) x 2=2py (p >0) x 2=-2py (p >0) p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F (p2,0) F (-p2,0)F (0,p 2)F (0,-p2)离心率 e =1准线 方程 x =-p 2x =p 2 y =-p 2y =p 2 范围 x ≥0, y ∈R x ≤0, y ∈R y ≥0, x ∈R y ≤0, x ∈R 开口 方向向右向左向上向下自我检测1.抛物线y 2=8x 的焦点到准线的距离是________.2.若抛物线y 2=2px 的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为________.3.设抛物线的顶点在原点,准线方程为x =-2,则抛物线的方程是________.4.设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若F A →+FB →+FC →=0,则|F A →|+|FB →|+|FC →|=________.5.已知抛物线方程为y 2=2px (p >0),过该抛物线焦点F 且不与x 轴垂直的直线AB 交抛物线于A 、B 两点,过点A 、点B 分别作AM 、BN 垂直于抛物线的准线,分别交准线于M 、N 两点,那么∠MFN =________.学生姓名 教师姓名班主任 日期时间段年级课时教学内容 抛物线复习教学目标 1.掌握抛物线的定义、几何图形和标准方程,知道它们的简单几何性质. 2.理解数形结合的思想. 重点 同上 难点同上探究点一抛物线的定义及应用例1已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),求P A +PF的最小值,并求出取最小值时P点的坐标.变式迁移1已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为________.探究点二求抛物线的标准方程例2已知抛物线的顶点在原点,焦点在y轴上,抛物线上一点M(m,-3)到焦点的距离为5,求m的值、抛物线方程和准线方程.变式迁移2 根据下列条件求抛物线的标准方程:(1)抛物线的焦点F 是双曲线16x 2-9y 2=144的左顶点; (2)过点P (2,-4).探究点三 抛物线的几何性质例3 过抛物线y 2=2px 的焦点F 的直线和抛物线相交于A ,B 两点,如图所示.(1)若A ,B 的纵坐标分别为y 1,y 2,求证:y 1y 2=-p 2;(2)若直线AO 与抛物线的准线相交于点C ,求证:BC ∥x 轴.变式迁移3 已知AB 是抛物线y 2=2px (p >0)的焦点弦,F 为抛物线的焦点,A (x 1,y 1),B (x 2,y 2).求证:(1)x 1x 2=p 24;(2)1AF +1BF为定值.一、填空题1.已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB 等于________.2.将两个顶点在抛物线y 2=2px (p >0)上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则n =________.3.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是________.4.抛物线y 2=x 上到其准线和顶点距离相等的点的坐标为________.5.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上一点,若OA →·AF →=-4,则点A 的坐标为________.6.设圆C 位于抛物线y 2=2x 与直线x =3所围成的封闭区域(包含边界)内,则圆C 的半径能取到的最大值为________.7.已知A 、B 是抛物线x 2=4y 上的两点,线段AB 的中点为M (2,2),则AB =________.8.设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).若线段F A 的中点B 在抛物线上,则B 到该抛物线准线的距离为________.二、解答题9.已知顶点在原点,焦点在x 轴上的抛物线截直线y =2x +1所得的弦长为15,求抛物线方程.10.已知抛物线C:x2=8y.AB是抛物线C的动弦,且AB过F(0,2),分别以A、B为切点作轨迹C的切线,设两切线交点为Q,证明:AQ⊥BQ.轨迹方程自主梳理1.曲线的方程与方程的曲线如果曲线C 上点的坐标(x ,y )都是方程f (x ,y )=0的解,且以方程f (x ,y )=0的解(x ,y )为坐标的点都在曲线C 上,那么,方程f (x ,y )=0叫做曲线C 的方程.曲线C 叫做方程f (x ,y )=0的曲线.2.求曲线方程的一般方法(五步法)求曲线(图形)的方程,一般有下面几个步骤:(1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合P ={M |p (M )}; (3)用坐标表示条件p (M ),列出方程f (x ,y )=0; (4)化方程f (x ,y )=0为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上.3.求曲线方程的常用方法:(1)直接法;(2)定义法;(3)代入法;(4)参数法.自我检测1.已知动点P 在曲线2x 2-y =0上移动,则点A (0,-1)与点P 连线中点的轨迹方程为______________.2.一动圆与圆O :x 2+y 2=1外切,而与圆C :x 2+y 2-6x +8=0内切,那么动圆的圆心P 的轨迹是__________________________________________________________________.3.已知A (0,7)、B (0,-7)、C (12,2),以C 为一个焦点作过A 、B 的椭圆,椭圆的另一个焦点F 的轨迹方程是______________________.4.若M 、N 为两个定点且MN =6,动点P 满足PM →·PN →=0,则P 点的轨迹方程为________.5.若曲线C 1:x 2+y 2-2x =0与曲线C 2:y (y -mx -m )=0有四个不同的交点,则实数m 的取值范围是__________________.探究点一 直接法求轨迹方程例1 动点P 与两定点A (a,0),B (-a,0)连线的斜率的乘积为k ,试求点P 的轨迹方程,并讨论轨迹是什么曲线.变式迁移1 已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN →||MP →|+MN →·NP →=0,则动点P (x ,y )的轨迹方程为______________.探究点二 定义法求轨迹方程例2 已知两个定圆O 1和O 2,它们的半径分别是1和2,且O 1O 2=4.动圆M 与圆O 1内切,又与圆O 2外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线.变式迁移2 在△ABC 中,A 为动点,B 、C 为定点,B ⎝⎛⎭⎫-a 2,0,C ⎝⎛⎭⎫a2,0,且满足条件sin C -sin B =12sin A ,则动点A 的轨迹方程为____________________________________.探究点三 相关点法(代入法)求轨迹方程例3 如图所示,从双曲线x 2-y 2=1上一点Q 引直线x +y =2的垂线,垂足为N . 求线段QN 的中点P 的轨迹方程.变式迁移3 已知长为1+2的线段AB 的两个端点A 、B 分别在x 轴、y 轴上滑动,P是AB 上一点,且AP →=22PB →.求点P 的轨迹C 的方程.一、填空题1.已知椭圆的焦点是F 1、F 2,P 是椭圆的一个动点,如果M 是线段F 1P 的中点,则动点M 的轨迹是_________________________________________________________________.2.已知A 、B 是两个定点,且AB =3,CB -CA =2,则点C 的轨迹方程为______________.3.长为3的线段AB 的端点A 、B 分别在x 轴、y 轴上移动,AC →=2CB →,则点C 的轨迹方程为____________.4.如图,圆O :x 2+y 2=16,A (-2,0),B (2,0)为两个定点.直线l 是圆O 的一条切线,若经过A 、B 两点的抛物线以直线l 为准线,则抛物线焦点所在的轨迹是________.5.P 是椭圆x 216+y 29=1上的动点,作PD ⊥y 轴,D 为垂足,则PD 中点的轨迹方程为____________.6.已知两定点A (-2,0),B (1,0),如果动点P 满足P A =2PB ,则点P 的轨迹所包围的图形的面积等于______.7.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长CD =3,则顶点A 的轨迹方程为______________.8.平面上有三点A (-2,y ),B ⎝⎛⎭⎫0,y 2,C (x ,y ),若AB →⊥BC →,则动点C 的轨迹方程为__________.二、解答题9.已知抛物线y2=4px (p>0),O为顶点,A,B为抛物线上的两动点,且满足OA⊥OB,如果OM⊥AB于点M,求点M的轨迹方程.10.已知椭圆C的中心为平面直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1.(1)求椭圆C的方程;(2)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的一点,OPOM=λ,求点M 的轨迹方程,并说明轨迹是什么曲线.。
东北师大附中高考数学第一轮复习 抛物线(文理)(1)
抛物线(教案)A一、 知识梳理: 1. 抛物线的定义定义的理解:定点在直线上,轨迹是: . 2. 抛物线的标准方程及性质(见下表) 标准方程图 形 顶 点 对称轴 焦 点 准 线 离心率焦半径 焦点弦公式()022>=p px yxyOFl()0,0x 轴⎪⎭⎫ ⎝⎛0,2p 2px -=1=e02x pPF += )(21x x p l ++= ()022>-=p pxyxyOFl()0,0 x 轴 ⎪⎭⎫⎝⎛-0,2p2p x =1=e 02x pPF -= )(21x x p l +-=()022>=p py x()0,0y 轴⎪⎭⎫ ⎝⎛2,0p2py -=1=e02y pPF +=)(21y y p l ++=()022>-=p pyx()0,0y 轴⎪⎭⎫ ⎝⎛-2,0p2py =1=e02y pPF -=)(21y y p l +-=3、焦半径公式=2px (p>0) , M(,)为抛物线上任意一点。
F 为抛物线的焦点,|MF|=+(2)、n= , m=+=4、若抛物线过焦点的弦AB,设A()B(),则有下列结论:(1)、|AB|=p++(2)、|AB|=( =2px (p>0), |AB|=( =2py (p>0))(3)、|AB|=( =2py (p>0))(通径是最短的焦点弦)(4)、= ,=-(5)、过焦点且垂直于对称轴的弦叫通径:|AB|=2p(6)、焦点弦端点与顶点构成的三角形面积:=|AB||ON|=|OF|||=|OF|||(7)、以焦点弦为直径的圆与准线相切(8)、过焦点弦的端点的切线互相垂直且交点在准线上过抛物线焦点弦的两端点作抛物线的切线,两切线交点位置有何特殊之处?以为例说明特例:当弦xAB⊥轴时,则点P的坐标为在准线上.证明:当弦AB过焦点F,设()11,yxA、()22,yxB则过A点的切线方程是:()11xxpyy+=①过B点的切线方程是:()22xxpyy+=②由①-②可得:()()2121x x p y y y -=-即:()p y y p y y y 2222121-⋅=-∴221y y y +=代入①式可得:px y y 221=⋅∵弦AB 过焦点弦,由焦点弦性质可知221p y y -=,∴x=,即交点P坐标为⎪⎭⎫ ⎝⎛+-2,221y y p .结论延伸:切线交点与弦中点连线平行于对称轴结论发散:当弦AB 不过焦点即切线交点P 不在准线上时,切线交点与弦中点的连线也平行于对称轴.(9)、过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点。
高三一轮复习抛物线
1.设抛物线的顶点在原点,准线方程为 x=-2,则抛物线
的方程是( C )
A.y2=-8x
B.y2=-4x
C.y2=8x
D.y2=4x
栏目 导引
第八章 平面解析几何
2.(2014·山东济南市模拟考试)若抛物线 y2=2px(p>0)的焦点
在直线 x-2y-2=0 上,则该抛物线的准线方程为( A )
于点 N,则|FM|∶|MN|=( C )
A.2∶ 5
B.1∶2
C. 1∶ 5
D.1∶3
栏目 导引
第八章 平面解析几何
【解析】(1)由题知点 A 在抛物线内部,根据抛物线定义, 问题等价于求抛物线上一点 P,使得该点到点 A 与到抛物线 的准线的距离之和最小,显然点 P 是直线 x=1 与抛物线的 交点.故所求 P 点的坐标是(1,2).
焦点坐标
性 准线方程 质 对称轴
范围 顶点坐标 离心率
F(0,-p2)
F(0,p2)
__y_=__p2___ __y_轴_____
__y_=__-__p2_ __y_轴_____
___y_≤_0___
__y_≥_0____
_O_(_0_,__0_)_
___e_=__1__
栏目 导引
第八章 平面解析几何
栏目 导引
第八章 平面解析几何
利用抛物线的定义解决此类问题,应灵活地运用抛物线上的 点到焦点的距离与到准线距离的等价转化.“看到准线想到 焦点,看到焦点想到准线”,这是解决抛物线焦点弦有关问 题的有效途径.
栏目 导引
第八章 平面解析几何
1.(1)在抛物线 C:y=2x2 上有一点 P,若它到点 A(1,3)
2.抛物线的标准方程和几何性质
抛物线(4)
在抛物线上有一动点 P 到 y 轴的距离为 d1,P 到直线 l 的距离为 d2,则 d1+d2 的最 小值是( )
5 A. 2
2+2
5 B. 2
2+1
5 C. 2
2-2
5 D. 2
2-1
上一页
返回首页
下一页
高三一轮总复习
【解析】 设抛物线 y2=4x 的焦点为 F(1,0),则 d1=|PF|-1,d1+d2=d2+|PF|
上一页
返回首页
下一页
高三一轮总复习
2.必知联系 (1)若抛物线的开口方向不能确定,可设抛物线的标准方程为 y2=mx 或 x2= my(m≠0). (2)若直线与抛物线只有一个公共点,则直线与抛物线相切,或直线平行于对 称轴,即由直抛线物方线程方程 得 ay2+by+c=0 或 ax2+bx+c=0.当aΔ≠=0b,2-4ac=0 时,直线与抛物线相切,当 a=0 时,此时直线就是与对称轴平行的直线.
-1,点
F
到直线
l
的距离
d=|1+24|=5
2
2 .
则 d1+d2≥522-1,故选 D. 【答案】 D
上一页
返回首页
下一页
高三一轮总复习
————|规律方法|———————————————————————— 与抛物线有关的最值问题的求解策略
与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.由于抛物线 的定义在运用上有较大的灵活性,因此此类问题也有一定的难度.“看到准线想 焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径.
高三一轮总复习 (2)(2015·福建高考)已知点 F 为抛物线 E:y2=2px(p>0)的焦点,点 A(2,m) 在抛物线 E 上,且|AF|=3. ①求抛物线 E 的方程; ②已知点 G(-1,0),延长 AF 交抛物线 E 于点 B,证明:以点 F 为圆心且与直 线 GA 相切的圆,必与直线 GB 相切.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学第一轮复习:抛物线的定义、性质及标准方程
【本讲主要内容】
抛物线的定义及相关概念、抛物线的标准方程、抛物线的几何性质
【知识掌握】
【知识点精析】
1. 抛物线定义:
平面内与一个定点和一条直线的距离相等的点的轨迹叫做抛物线,点叫做抛物线的焦点,直线叫做抛物线的准
线,定点不在定直线上。
它与椭圆、双曲线的第二定义相仿,仅比值(离心率e)不同,当e=1时为抛物线,当0<e <1时为椭圆,当e>1时为双曲线。
2. 抛物线的标准方程有四种形式,参数的几何意义,是焦点到准线的距离,掌握不同形式方程的几何性质(如下表):
其中为抛物线上任一点。
3. 对于抛物线上的点的坐标可设为,以简化运算。
4. 抛物线的焦点弦:设过抛物线的焦点的直线与抛物线交于,直线
与的斜率分别为,直线的倾斜角为,则有,,,
,,,。
说明:
1. 求抛物线方程时,若由已知条件可知曲线是抛物线一般用待定系数法;若由已知条件可知曲线的动点的规律一般用轨迹法。
2. 凡涉及抛物线的弦长、弦的中点、弦的斜率问题时要注意利用韦达定理,能避免求交点坐标的复杂运算。
3. 解决焦点弦问题时,抛物线的定义有广泛的应用,而且还应注意焦点弦的几何性质。
【解题方法指导】
例1. 已知抛物线的顶点在坐标原点,对称轴为轴,且与圆相交的公共弦长等于,求此抛物线的方程。
解析:设所求抛物线的方程为或
设交点(y1>0)
则,∴,代入得
∴点在上,在上
∴或,∴
故所求抛物线方程为或。
例2. 设抛物线的焦点为,经过的直线交抛物线于两点,点在抛物线的准线上,且
∥轴,证明直线经过原点。
解析:证法一:由题意知抛物线的焦点
故可设过焦点的直线的方程为
由,消去得
设,则
∵∥轴,且在准线上
∴点坐标为
于是直线的方程为
要证明经过原点,只需证明,即证
注意到知上式成立,故直线经过原点。
证法二:同上得。
又∵∥轴,且在准线上,∴点坐标为。
于是
,知三点共线,从而直线经过原点。
证法三:如图,
设轴与抛物线准线交于点,过作,是垂足
则∥∥,连结交于点,则
又根据抛物线的几何性质,
∴
因此点是的中点,即与原点重合,∴直线经过原点。
评述:本题考查抛物线的概念和性质,直线的方程和性质,运算能力和逻辑推理能力。
其中证法一和二为代数法,证法三为几何法,充分运用了抛物线的几何性质,数形结合,更为巧妙。
【考点突破】
【考点指要】
抛物线部分是每年高考必考内容,考点中要求掌握抛物线的定义、标准方程以及几何性质,多出现在选择题和填空题中,主要考查基础知识、基础技能、基本方法,分值大约是5分。
考查通常分为四个层次:
层次一:考查抛物线定义的应用;
层次二:考查抛物线标准方程的求法;
层次三:考查抛物线的几何性质的应用;
层次四:考查抛物线与平面向量等知识的综合问题。
解决问题的基本方法和途径:待定系数法、轨迹方程法、数形结合法、分类讨论法、等价转化法。
【典型例题分析】
例3. (2006江西)设为坐标原点,为抛物线的焦点,为抛物线上一点,若,则点的坐标为()
A. B.
C. D.
答案:B
解析:解法一:设点坐标为,则
,
解得或(舍),代入抛物线可得点的坐标为。
解法二:由题意设,则,
即,,求得,∴点的坐标为。
评述:本题考查了抛物线的动点与向量运算问题。
例4. (2006安徽)若抛物线的焦点与椭圆的右焦点重合,则的值为()
A. -2
B. 2
C. -4 D. 4
答案:D
解析:椭圆的右焦点为,所以抛物线的焦点为,则。
评述:本题考查抛物线与椭圆的标准方程中的基本量的关系。
【达标测试】
一. 选择题:
1. 抛物线的准线方程为,则实数的值是()
A. B. C. D.
2. 设抛物线的顶点在原点,其焦点在轴上,又抛物线上的点,与焦点的距离为4,则等于()
A. 4
B. 4或-4
C. -2
D. -2或2
3. 焦点在直线上的抛物线的标准方程为()
A. B. 或
C. D. 或
4. 圆心在抛物线上,并且与抛物线的准线及轴都相切的圆的方程为()
A. B.
C. D.
5. 正方体的棱长为1,点在棱上,且,点是平面上的动点,且点到
直线的距离与点到点的距离的平方差为1,则点的轨迹是()
A. 抛物线
B. 双曲线
C. 直线
D. 以上都不对
6. 已知点是抛物线上一点,设点到此抛物线准线的距离为,到直线的距离为,则
的最小值是()
A. 5
B. 4
C.
D.
7. 已知点是抛物线上的动点,点在轴上的射影是,点的坐标是,则的最小值是()
A. B. 4 C. D. 5
8. 过抛物线的焦点的直线交抛物线于两点,为坐标原点,则的值是()
A. 12
B. -12
C. 3
D. -3
二. 填空题:
9. 已知圆和抛物线的准线相切,则的值是_____。
10. 已知分别是抛物线上两点,为坐标原点,若的垂心恰好是此抛物线的焦点,则直线
的方程为_____。
11. 过点(0,1)的直线与交于两点,若的中点的横坐标为,则___。
12. 已知直线与抛物线交于两点,那么线段的中点坐标是_____。
三. 解答题:
13. 已知抛物线顶点在原点,对称轴为轴,抛物线上一点到焦点的距离是5,求抛物线的方程。
14. 过点(4,1)作抛物线的弦,恰被所平分,求所在直线方程。
15. 设点F(1,0),M点在轴上,点在轴上,且。
⑴当点在轴上运动时,求点的轨迹的方程;
⑵设是曲线上的三点,且成等差数列,当的垂直平分线与轴交于E(3,0)时,求点的坐标。
【综合测试】
一. 选择题:
1. (2005上海)过抛物线的焦点作一条直线与抛物线相交于两点,它们的横坐标之和等于5,则这样的直线()
A. 有且仅有一条
B. 有且仅有两条
C. 有无穷多条
D. 不存在
2. (2005江苏)抛物线上的一点到焦点的距离为1,则点的纵坐标是()
A. B. C. D. 0
3. (2005辽宁)已知双曲线的中心在原点,离心率为,若它的一条准线与抛物线的准线重合,则该双曲线与
抛物线的交点与原点的距离是()
A. B. C. D. 21
4. (2005全国Ⅰ)已知双曲线的一条准线与抛物线的准线重合,则该双曲线的离心率为()
A. B. C. D.
5. (2004全国)设抛物线的准线与轴交于点,若过点的直线与抛物线有公共点,则直线的斜率的取值范围是()
A. B. C. D.
6. (2006山东)动点是抛物线上的点,为原点,当时取得最小值,则的最小值为()
A. B. C. D.
7. (2004北京)在一只杯子的轴截面中,杯子内壁的曲线满足抛物线方程,在杯内放一个小球,
要使球触及杯子的底部,则该球的表面积的取值范围是()
A. B. C. D.
8. (2005北京)设抛物线的准线为,直线与该抛物线相交于两点,则点及点到准线
的距离之和为()
A. 8
B. 7
C. 10
D. 12
二. 填空题:
9. (2004全国Ⅳ)设是曲线上的一个动点,则点到点的距离与点到轴的距离之和的最小值是_____。
10. (2005北京)过抛物线的焦点且垂直于轴的弦为,以为直径的圆为,则圆与抛物线准线的位置关系是_____,圆的面积是_____。
11. (2005辽宁)已知抛物线的一条弦,,所在直线与轴交点坐标为(0,
2),则_____。
12. (2004黄冈)已知抛物线的焦点在直线上,现将抛物线沿向量进行平移,且使得抛
物线的焦点沿直线移到点处,则平移后所得抛物线被轴截得的弦长_____。
三. 解答题:
13. (2004山东)已知抛物线C:的焦点为,直线过定点且与抛物线交于两点。
⑴若以弦为直径的圆恒过原点,求的值;
⑵在⑴的条件下,若,求动点的轨迹方程。
14. (2005四川)
如图,是抛物线的焦点,点为抛物线内一定点,点为抛物线上一动点,的最小值为8。
⑴求抛物线方程;
⑵若为坐标原点,问是否存在点,使过点的动直线与抛物线交于两点,且,若存在,求动点的坐标;若不存在,请说明理由。
15. (2005河南)已知抛物线,为顶点,为焦点,动直线与抛物线交于两点。
若总存在一个实数,使得。
⑴求;
⑵求满足的点的轨迹方程。