Analog Applications Journal BRIEF bq25012:适用于蓝牙耳机的单芯片、具有锂离子电池充电器的、高效

合集下载

bq500211A 5V, WPC1.1 compliant wireless power tran

bq500211A 5V, WPC1.1 compliant wireless power tran

010203040506070800.00.51.01.52.0 2.53.0 3.54.04.55.0Output Power (W)E f f i c i e n c y (%)G000bq500211AZHCSAO7–DECEMBER 20125V ,符合WPC1.1标准的无线电源发送器管理器查询样品:bq500211A特性说明•无线电源传输的智能控制bq500211A 是第二代数字无线电源控制器,此控制器集成了控制到一个单WPC 兼容接收器的无线电源传输•符合无线电源联盟(WPC)类型A5和类型A11发送器规范的5V 运行所需的全部功能。

它与WPC1.1标准兼容并设计用于•WPC1.1兼容,包括外来物体检测(FOD)5V 系统,被用作一个WPC 类型A5发送器(具有一•增强型寄生金属检测(PMOD)确保了安全性个磁定位导向装置)或者作为一个WPC 类型A11发•针对USB 和受限源运行的Dynamic Power 送器(无磁导向装置)。

bq500211A 询问周围环境以Limiting™寻找将被供电的WPC 兼容器件,安全使用器件,接收•数字解调减少了组件来自被供电器件的数据包通信并管理电源传输。

为了•充电状态和故障状态的LED 指示大大增加无线电源应用中的灵活性,Dynamic Power Limiting™(DPL)被特别应用于bq500211A 。

通过无应用范围缝优化受限输入电源上可用功率的使用,DPL 提高了•与WPC 1.1兼容的无线充电器用于:用户体验。

通过持续监测已建立的电源传输的效–经Qi 认证的智能手机和其它手持设备率,bq500211A 支持外来物体检测(FOD)和寄生金属–密封封装器件和工具检测(PMOD),从而防止由于在无线电源传输路径上错–汽车和其它车辆误放置金属物体而导致的电源丢失。

如果在电源传输–桌面充电接口期间发生任何异常情况,bq500211A 对其进行处理并•TI 无线充电解决方案的更多信息,请提供指示器输出。

【电子技术应用】_亚太区_期刊发文热词逐年推荐_20140725

【电子技术应用】_亚太区_期刊发文热词逐年推荐_20140725
2008年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
科研热词 首席执行官 设备解决方案 董事会 节能技术 美国国家半导体公司 网络通信 绿色产业 移动电话 电源管理芯片 生态系统 战略方向 总经理 市场发展趋势 工业设备 奥林匹克竞赛 卡尔 半导体 创新设计 创新 健康安全 产品市场 亚太区 world sopc fpga altera公司
推荐指数 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2013年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
科研热词 车载导航 电子元器件 娱乐体验 车载信息娱乐系统 汽车市场 推出 平台 导航卫星系统 娱乐系统 大集团 制造商 分销商 信息 位置感知 csr
推荐指数 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
推荐指数 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2009年 序号 1 2 3 4 5 6 7 8 9 10
科研热词 系统解决方案 电子科技大学 总经理 嵌入式 实验室 卡尔 半导体 信息工程学 供应商 亚太区
推荐指数 1 1 1 1 1 1 1 1 1 1
2011年 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
2011年 科研热词 亚太区 行业需求 照明技术 高能效 驱动器 集成电路 集成平台 解决方案 营业收入 网站 管理解决方案 电子商务 电子元件 热管理 灵活性 模拟世界 新课程 技术研讨会 性能模拟 应用领域 应用程序 工程师 客户端 安防监控 培训 半导体 分销商 公司 元素 信号调节 会场 产品设计 产品导入 产品 推荐指数 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

基于小波变换的图像去噪方法的研究开题报告

基于小波变换的图像去噪方法的研究开题报告

基于小波变换的图像去噪方法的研究开题报告硕士研究生学位论文选题报告基于小波变换的图像去噪方法的研究一、拟选题目在图像处理中,图像通常都存在着各种不易消除的噪声。

寻求一种既能有效地减小噪声、又能很好地保留图像边缘信息的方法,一直是人们努力追求的目标。

传统的去噪方法很难同时兼顾这两个方面。

而小波分析由于在时域频域同时具有良好的局部化性质和多分辨率分析等优点,所以本文拟用小波变换的方法对图像去噪进行分析研究。

二、课题的目的和意义图像降噪是图像预处理的主要任务之一,其作用是为了提高图像的信噪比,突出图像的期望特征。

不同性质的噪声应采用不同的方法进行消噪。

最简单的也[1]比较通用的消噪算法,是用傅立叶变换直接进行低通滤波或带通滤波。

这种方法虽然简单、易于实现,但它对滤去有用信号频带中的噪声无能为力,并且带宽的选择和高分辨率是有矛盾的。

带宽选的过宽,达不到去噪的目的;选的过窄,噪声虽然滤去的多,但同时信号的高频部分也损失了,不但带宽内的信噪比得不到改善,某些突变点的信息也可能被模糊掉了。

[2]将小波变换应用于信号处理中,是因为它的主要优点是在时间域和频率域中同时具有良好的局部化特性,从而非常适合时变信号的分析和处理。

特别在图像去噪领域中,小波理论受到了许多学者的重视,他们应用小波进行去噪,并获得了非常好的效果。

具体来说,小波去噪方法的成功主要得益于小波变换具有以下特点:(1)低熵性由于小波系数的稀疏分布,使得图像变换后的熵降低了;(2)多分辨率由于小波采用了多分辨率的方法,所以可以非常好地刻画信号的非平稳特征,如边缘、尖峰、断点等;(3)去相关性因为小波变换可以对信号进行去相关,且噪声在变换后有白1硕士研究生学位论文选题报告化趋势,所以小波域比时域更利于去噪;(4)选基灵活性由于小波变换可以灵活选择变换基,所以对不同应用场合,对不同的研究对象,可以选用不同的小波母函数,以获得最佳的去噪效果。

因此,就信号消噪问题而言,它比传统的傅立叶频率域滤波和匹配滤波器更具有灵活性。

信号处理中英文对照外文翻译文献

信号处理中英文对照外文翻译文献

信号处理中英文对照外文翻译文献(文档含英文原文和中文翻译)译文:一小波研究的意义与背景在实际应用中,针对不同性质的信号和干扰,寻找最佳的处理方法降低噪声,一直是信号处理领域广泛讨论的重要问题。

目前有很多方法可用于信号降噪,如中值滤波,低通滤波,傅立叶变换等,但它们都滤掉了信号细节中的有用部分。

传统的信号去噪方法以信号的平稳性为前提,仅从时域或频域分别给出统计平均结果。

根据有效信号的时域或频域特性去除噪声,而不能同时兼顾信号在时域和频域的局部和全貌。

更多的实践证明,经典的方法基于傅里叶变换的滤波,并不能对非平稳信号进行有效的分析和处理,去噪效果已不能很好地满足工程应用发展的要求。

常用的硬阈值法则和软阈值法则采用设置高频小波系数为零的方法从信号中滤除噪声。

实践证明,这些小波阈值去噪方法具有近似优化特性,在非平稳信号领域中具有良好表现。

小波理论是在傅立叶变换和短时傅立叶变换的基础上发展起来的,它具有多分辨分析的特点,在时域和频域上都具有表征信号局部特征的能力,是信号时频分析的优良工具。

小波变换具有多分辨性、时频局部化特性及计算的快速性等属性,这使得小波变换在地球物理领域有着广泛的应用。

随着技术的发展,小波包分析 (Wavelet Packet Analysis) 方法产生并发展起来,小波包分析是小波分析的拓展,具有十分广泛的应用价值。

它能够为信号提供一种更加精细的分析方法,它将频带进行多层次划分,对离散小波变换没有细分的高频部分进一步分析,并能够根据被分析信号的特征,自适应选择相应的频带,使之与信号匹配,从而提高了时频分辨率。

小波包分析 (wavelet packet analysis) 能够为信号提供一种更加精细的分析方法,它将频带进行多层次划分,对小波分析没有细分的高频部分进一步分解,并能够根据被分析信号的特征,自适应地选择相应频带 , 使之与信号频谱相匹配,因而小波包具有更广泛的应用价值。

利用小波包分析进行信号降噪,一种直观而有效的小波包去噪方法就是直接对小波包分解系数取阈值,选择相关的滤波因子,利用保留下来的系数进行信号的重构,最终达到降噪的目的。

各种专业课程英文名称翻译

各种专业课程英文名称翻译

课程的英文词汇(一)生物物理学Biophysics真空冷冻干燥技术Vacuum Freezing & Drying Technology16位微机16 Digit MicrocomputerALGOL语言ALGOL LanguageBASIC 语言BASIC LanguageBASIC 语言及应用BASIC Language & ApplicationC 语言C LanguageCAD 概论Introduction to CADCAD/CAM CAD/CAMCOBOL语言COBOL LanguageCOBOL语言程序设计COBOL Language Program DesigningC与UNIX环境C Language & Unix EnvironmentC语言与生物医学信息处理C Language & Biomedical Information Processing dBASE Ⅲ课程设计C ourse Exercise in dBASE ⅢFORTRAN语言FORTRAN LanguageIBM-PC/XT Fundamentals of Microcomputer IBM-PC/XTIBM-PC微机原理Fundamentals of Microcomputer IBM-PCLSI设计基础Basic of LSI DesigningPASCAL大型作业PASCAL Wide Range WorkingPASCAL课程设计Course Exercise in PASCALX射线与电镜X-ray & Electric MicroscopeZ-80汇编语言程序设计Z-80 Pragramming in Assembly Languages板壳理论Plate Theory板壳力学Plate Mechanics半波实验Semiwave Experiment半导体变流技术Semiconductor Converting Technology半导体材料Semiconductor Materials半导体测量Measurement of Semiconductors半导体瓷敏元件Semiconductor Porcelain-Sensitive Elements半导体光电子学Semiconductor Optic Electronics半导体化学Semiconductor Chemistry半导体激光器Semiconductor Laser Unit半导体集成电路Semiconductor Integrated Circuitry半导体理论Semiconductive Theory半导体器件Semiconductor Devices半导体器件工艺原理Technological Fundamentals of Semiconductor Device 半导体物理Semiconductor Physics半导体专业Semiconduction Specialty半导体专业实验Specialty Experiment of Semiconductor薄膜光学Film Optics报告文学专题Special Subject On Reportage报刊编辑学Newspaper & Magazine Editing报纸编辑学Newspaper Editing泵与风机Pumps and Fans泵与水机Pumps & Water Turbines毕业设计Graduation Thesis编译方法Methods of Compiling编译技术Technique of Compiling编译原理Fundamentals of Compiling变电站的微机检测与控制Computer Testing & Control in Transformer Substatio n变分法与张量Calculus of Variations & Tensor变分学Calculus of Variations变质量系统热力学与新型回转压Variable Quality System Thermal Mechanics & N eo-Ro表面活性物质Surface Reactive Materials并行算法Parallel Algorithmic波谱学Wave Spectrum材料的力学性能测试Measurement of Material Mechanical Performance材料力学Mechanics of Materials财务成本管理Financial Cost Management财政学Public Finance财政与金融Finance & Banking财政与信贷Finance & Credit操作系统Disk Operating System操作系统课程设计Course Design in Disk Operating System操作系统原理Fundamentals of Disk Operating System策波测量技术Technique of Whip Wave Measurement测量原理与仪器设计Measurement Fundamentals & Meter Design测试技术Testing Technology测试与信号变换处理Testing & Signal Transformation Processing产业经济学Industrial Economy产业组织学Industrial Organization Technoooligy场论Field Theory常微分方程Ordinary Differentical Equations超导磁体及应用Superconductive Magnet & Application超导及应用Superconductive & Application超精微细加工Super-Precision & Minuteness Processing城市规划原理Fundamentals of City Planning城市社会学Urban Sociology成组技术Grouping Technique齿轮啮合原理Principles of Gear Connection冲击测量及误差Punching Measurement & Error冲压工艺Sheet Metal forming Technology抽象代数Abstract Algebra传动概论Introduction to Transmission传感器与检测技术Sensors & Testing Technology传感器原理Fundamentals of Sensors传感器原理及应用Fundamentals of Sensors & Application传热学Heat Transfer传坳概论Introduction to Pass Col船舶操纵Ship Controling船舶电力系统Ship Electrical Power System船舶电力系统课程设计Course Exercise in Ship Electrical Power System船舶电气传动自动化Ship Electrified Transmission Automation船舶电站Ship Power Station船舶动力装置Ship Power Equipment船舶概论Introduction to Ships船舶焊接与材料Welding & Materials on Ship船舶机械控制技术Mechanic Control Technology for Ships船舶机械拖动Ship Mechamic Towage船舶建筑美学Artistic Designing of Ships船舶结构力学Structual Mechamics for Ships船舶结构与制图Ship Structure & Graphing船舶静力学Ship Statics船舶强度与结构设计Designing Ship Intensity & Structure船舶设计原理Principles of Ship Designing船舶推进Ship Propeling船舶摇摆Ship Swaying船舶阻力Ship Resistance船体建造工艺Ship-Building Technology船体结构Ship Structure船体结构图Ship Structure Graphing船体振动学Ship Vibration创造心理学Creativity Psychology磁测量技术Magnetic Measurement Technology磁传感器Magnetic Sensor磁存储设备设计原理Fundamental Design of Magnetic Memory Equipment 磁记录技术Magnetographic Technology磁记录物理Magnetographic Physics磁路设计与场计算Magnetic Path Designing & Magnetic Field Calculati磁盘控制器Magnetic Disk Controler磁性材料Magnetic Materials磁性测量Magnetic Measurement磁性物理Magnetophysics磁原理及应用Principles of Catalyzation & Application大电流测量Super-Current Measurement大电源测量Super-Power Measurement大机组协调控制Coordination & Control of Generator Networks大跨度房屋结构Large-Span House structure大型锅炉概况Introduction to Large-Volume Boilers大型火电机组控制Control of Large Thermal Power Generator Networks大学德语College German大学俄语College Russian大学法语College French大学日语College Japanese大学英语College English大学语文College Chinese大众传播学Mass Media代用运放电路Simulated Transmittal Circuit单片机原理Fundamentals of Mono-Chip Computers单片机原理及应用Fundamentals of Mono-Chip Computers & Applications 弹性力学Theory of Elastic Mechanics当代国际关系Contemporary International Relationship当代国外社会思维评价Evaluation of Contemporary Foreign Social Thought 当代文学Contemporary Literature当代文学专题Topics on Contemporary Literature当代西方哲学Contemporary Western Philosophy当代戏剧与电影Contemporary Drama & Films党史History of the Party导波光学Wave Guiding Optics等离子体工程Plasma Engineering低频电子线路Low Frequency Electric Circuit低温传热学Cryo Conduction低温固体物理Cryo Solid Physics低温技术原理与装置Fundamentals of Cryo Technology & Equipment低温技术中的微机原理Priciples of Microcomputer in Cryo Technology低温绝热Cryo Heat Insulation低温气体制冷机Cryo Gas Refrigerator低温热管Cryo Heat Tube低温设备Cryo Equipment低温生物冻干技术Biological Cryo Freezing Drying Technology低温实验技术Cryo Experimentation Technology低温物理导论Cryo Physic Concepts低温物理概论Cryo Physic Concepts低温物理概念Cryo Physic Concepts低温仪表及测试Cryo Meters & Measurement低温原理Cryo Fundamentals低温中的微机应用Application of Microcomputer in Cryo Technology低温装置Cryo Equipment低噪声电子电路Low-Noise Electric Circuit低噪声电子设计Low-Noise Electronic Designing低噪声放大与弱检Low-Noise Increasing & Decreasing低噪声与弱信号检测Detection of Low Noise & Weak Signals地理Geography第二次世界大战史History of World War II电测量技术Electric Measurement Technology电厂计算机控制系统Computer Control System in Power Plants电磁测量实验技术Electromagnetic Measurement Experiment & Technology电磁场计算机Electromagnetic Field Computers电磁场理论Theory of Electromagnetic Fields电磁场数值计算Numerical Calculation of Electromagnetic Fields电磁场与电磁波Electromagnetic Fields & Magnetic Waves电磁场与微波技术Electromagnetic Fields & Micro-Wave Technology电磁场中的数值方法Numerical Methods in Electromagnetic Fields电磁场中的数值计算Numerical Calculation in Electromagnetic Fields电磁学Electromagnetics电动力学Electrodynamics电镀Plating电分析化学Electro-Analytical Chemistry电工测试技术基础Testing Technology of Electrical Engineering电工产品学Electrotechnical Products电工电子技术基础Electrical Technology & Electrical Engineering电工电子学Electronics in Electrical Engineering电工基础Fundamental Theory of Electrical Engineering电工基础理论Fundamental Theory of Electrical Engineering电工基础实验Basic Experiment in Electrical Engineering电工技术Electrotechnics电工技术基础Fundamentals of Electrotechnics电工实习Electrical Engineering Practice电工实验技术基础Experiment Technology of Electrical Engineering电工学Electrical Engineering电工与电机控制Electrical Engineering & Motor Control电弧电接触Electrical Arc Contact电弧焊及电渣焊Electric Arc Welding & Electroslag Welding电化学测试技术Electrochemical Measurement Technology电化学工程Electrochemical Engineering电化学工艺学Electrochemical Technology电机测试技术Motor Measuring Technology电机电磁场的分析与计算Analysis & Calculation of Electrical Motor & Electromagnetic Fields电机电器与供电Motor Elements and Power Supply电机课程设计Course Exercise in Electric Engine电机绕组理论Theory of Motor Winding电机绕组理论及应用Theory & Application of Motor Winding电机设计Design of Electrical Motor电机瞬变过程Electrical Motor Change Processes电机学Electrical Motor电机学及控制电机Electrical Machinery Control & Technology电机与拖动Electrical Machinery & Towage电机原理Principle of Electric Engine电机原理与拖动Principles of Electrical Machinery & Towage电机专题Lectures on Electric Engine电接触与电弧Electrical Contact & Electrical Arc电介质物理Dielectric Physics电镜Electronic Speculum电力电子电路Power Electronic Circuit电力电子电器Power Electronic Equipment电力电子器件Power Electronic Devices电力电子学Power Electronics电力工程Electrical Power Engineering电力生产技术Technology of Electrical Power Generation电力生产优化管理Optimal Management of Electrical Power Generation电力拖动基础Fundamentals for Electrical Towage电力拖动控制系统Electrical Towage Control Systems电力系统Power Systems电力系统电源最优化规划Optimal Planning of Power Source in a Power System 电力系统短路Power System Shortcuts电力系统分析Power System Analysis电力系统规划Power System Planning电力系统过电压Hyper-Voltage of Power Systems电力系统继电保护原理Power System Relay Protection电力系统经济分析Economical Analysis of Power Systems电力系统经济运行Economical Operation of Power Systems电力系统可靠性Power System Reliability电力系统可靠性分析Power System Reliability Analysis电力系统无功补偿及应用Non-Work Compensation in Power Systems & Applicati 电力系统谐波Harmonious Waves in Power Systems电力系统优化技术Optimal Technology of Power Systems电力系统优化设计Optimal Designing of Power Systems电力系统远动Operation of Electric Systems电力系统远动技术Operation Technique of Electric Systems电力系统运行Operation of Electric Systems电力系统自动化Automation of Electric Systems电力系统自动装置Power System Automation Equipment电路测试技术Circuit Measurement Technology电路测试技术基础Fundamentals of Circuit Measurement Technology电路测试技术及实验Circuit Measurement Technology & Experiments电路分析基础Basis of Circuit Analysis电路分析基础实验Basic Experiment on Circuit Analysis电路分析实验Experiment on Circuit Analysis电路和电子技术Circuit and Electronic Technique电路理论Theory of Circuit电路理论基础Fundamental Theory of Circuit电路理论实验Experiments in Theory of Circuct电路设计与测试技术Circuit Designing & Measurement Technology电器学Electrical Appliances电器与控制Electrical Appliances & Control电气控制技术Electrical Control Technology电视接收技术Television Reception Technology电视节目Television Porgrams电视节目制作Television Porgram Designing电视新技术New Television Technology电视原理Principles of Television电网调度自动化Automation of Electric Network Management电影艺术Art of Film Making电站微机检测控制Computerized Measurement & Control of Power Statio电子材料与元件测试技术Measuring Technology of Electronic Material and Element电子材料元件Electronic Material and Element电子材料元件测量Electronic Material and Element Measurement电子测量与实验技术Technology of Electronic Measurement & Experiment电子测试Electronic Testing电子测试技术Electronic Testing Technology电子测试技术与实验Electronic Testing Technology & Experiment电子机械运动控制技术Technology of Electronic Mechanic Movement Control电子技术Technology of Electronics电子技术腐蚀测试中的应用Application of Electronic Technology in Erosion Measurement电子技术基础Basic Electronic Technology电子技术基础与实验Basic Electronic Technology & Experiment电子技术课程设计Course Exercise in Electronic Technology电子技术实验Experiment in Electronic Technology电子理论实验Experiment in Electronic Theory电子显微分析Electronic Micro-Analysis电子显微镜Electronic Microscope电子线路Electronic Circuit电子线路设计与测试技术Electronic Circuit Design & Measurement Technology电子线路实验Experiment in Electronic Circuit电子照相技术Electronic Photographing TechnologyPurPoison2006-03-15 14:56课程的英文词汇(二)雕塑艺术欣赏Appreciation of Sculptural Art调节装置Regulation Equipment动态规划Dynamic Programming动态无损检测Dynamic Non-Destruction Measurement动态信号分析与仪器Dynamic Signal Analysis & Apparatus锻压工艺Forging Technology锻压机械液压传动Hydraulic Transmission in Forging Machinery锻压加热设备Forging Heating Equipment锻压设备专题Lectures on Forging Press Equipments锻压系统动力学Dynamics of Forging System锻造工艺Forging Technology断裂力学Fracture Mechanics对外贸易概论Introduction to International Trade多层网络方法Multi-Layer Network Technology多目标优化方法Multipurpose Optimal Method多项距阵Multi-Nominal Matrix多元统计分析Multi-Variate Statistical Analysis发电厂Power Plant发电厂电气部分Electric Elements of Power Plants法律基础Fundamentals of Law法学概论An Introduction to Science of Law法学基础Fundamentals of Science of Law翻译Translation翻译理论与技巧Theory & Skills of Translation泛函分析Functional Analysis房屋建筑学Architectural Design & Construction非电量测量Non-Electricity Measurement非金属材料Non-Metal Materials非线性采样系统Non-Linear Sampling System非线性光学Non-Linear Optics非线性规划Non-Linear Programming非线性振荡Non-Linear Ocsillation非线性振动Non-Linear Vibration沸腾燃烧Boiling Combustion分析化学Analytical Chemistry分析化学实验Analytical Chemistry Experiment分析力学Analytical Mechanics风机调节Fan Regulation风机调节.使用.运转Regulation,Application & Operation of Fans风机三元流动理论与设计Tri-Variate Movement Theory & Design of Fans风能利用Wind Power Utilization腐蚀电化学实验Experiment in Erosive Electrochemistry复变函数Complex Variables Functions复变函数与积分变换Functions of Complex Variables & Integral Transformation复合材料力学Compound Material Mechanics傅里叶光学Fourier Optics概率论Probability Theory概率论与数理统计Probability Theory & Mathematical Statistics概率论与随机过程Probability Theory & Stochastic Process钢笔画Pen Drawing钢的热处理Heat-Treatment of Steel钢结构Steel Structure钢筋混凝土Reinforced Concrete钢筋混凝土及砖石结构Reinforced Concrete & Brick Structure钢砼结构Reinforced Concrete Structure高层建筑基础设计Designing bases of High Rising Buildings高层建筑结构设计Designing Structures of High Rising Buildings高等材料力学Advanced Material Mechanics高等代数Advanced Algebra高等教育管理Higher Education Management高等教育史History of Higher Education高等教育学Higher Education高等数学Advanced Mathematics高电压技术High-Voltage Technology高电压测试技术High-Voltage Test Technology高分子材料High Polymer Material高分子材料及加工High Polymer Material & Porcessing高分子化学High Polymer Chemistry高分子化学实验High Polymer Chemistry Experiment高分子物理High Polymer Physics高分子物理实验High Polymer Physics Experiment高级英语听说Advanced English Listening & Speaking高能密束焊High Energy-Dense Beam Welding高频电路High-Frenquency Circuit高频电子技术High-Frenquency Electronic Technology高频电子线路High-Frenquency Electronic Circuit高压测量技术High-Voltage Measurement Technology高压测试技术High-Voltage Testing Technology高压电场的数值计算Numerical Calculation in High-Voltage Electronic Field 高压电器High-Voltage Electrical Appliances高压绝缘High-Voltage Insulation高压实验High-Voltage Experimentation高压试验技术High-Voltage Experimentation Technology工程材料的力学性能测试Mechanic Testing of Engineering Materials工程材料及热处理Engineering Material and Heat Treatment工程材料学Engineering Materials工程测量Engineering Surveying工程测试技术Engineering Testing Technique工程测试实验Experiment on Engineering Testing工程测试信息Information of Engineering Testing工程动力学Engineering Dynamics工程概论Introduction to Engineering工程概预算Project Budget工程经济学Engineering Economics工程静力学Engineering Statics工程力学Engineering Mechanics工程热力学Engineering Thermodynamics工程项目评估Engineering Project Evaluation工程优化方法Engineering Optimizational Method工程运动学Engineering Kinematics工程造价管理Engineering Cost Management工程制图Graphing of Engineering工业分析Industrial Analysis工业锅炉Industrial Boiler工业会计学Industrial Accounting工业机器人Industrial Robot工业技术基础Basic Industrial Technology工业建筑设计原理Principles of Industrial Building Design工业经济理论Industrial Economic Theory工业经济学Industrial Economics工业企业财务管理Industrial Enterprise Financial Management工业企业财务会计Accounting in Industrial Enterprises工业企业管理Industrial Enterprise Management工业企业经营管理Industrial Enterprise Adminstrative Management 工业社会学Industrial Sociology工业心理学Industrial Psychology工业窑炉Industrial Stoves工艺过程自动化Technics Process Automation公差Common Difference公差技术测量Technical Measurement with Common Difference公差与配合Common Difference & Cooperation公共关系学Public Relations公文写作Document Writing古代汉语Ancient Chinese古典文学作品选读Selected Readings in Classical Literature固体激光Solid State Laser固体激光器件Solid Laser Elements固体激光与电源Solid State Laser & Power Unit固体物理Solid State Physics管理概论Introduction to Management管理经济学Management Economics管理数学Management Mathematics管理系统模拟Management System Simulation管理心理学Management Psychology管理信息系统Management Information Systems光波导理论Light Wave Guide Theory光电技术Photoelectric Technology光电信号处理Photoelectric Signal Processing光电信号与系统分析Photoelectric Signal & Systematic Analysis光辐射探测技术Ray Radiation Detection Technology光谱Spectrum光谱分析Spectral Analysis光谱学Spectroscopy光纤传感Fibre Optical Sensors光纤传感器Fibre Optical Sensors光纤传感器基础Fundamentals of Fibre Optical Sensors光纤传感器及应用Fibre Optical Sensors & Applications光纤光学课程设计Course Design of Fibre Optical光纤技术实验Experiments in Fibre Optical Technology光纤通信基础Basis of Fibre Optical Communication光学Optics光学测量Optical Measurement光学分析法Optical Analysis Method光学计量仪器设计Optical Instrument Gauge Designing光学检测Optical Detection光学设计Optical Design光学信息导论Introduction of Optical Infomation光学仪器设计Optical Instrument Designing光学仪器与计量仪器设计Optical Instrument & Gauge Instrument Designing 光学仪器装配与校正Optical Instrument Installation & Adjustment广播编辑学Broadcast Editing广播新闻Broadcast Journalism广播新闻采写Broadcast Journalism Collection & Composition广告学Advertisement锅炉燃烧理论Theory of Boiler Combustion锅炉热交换传热强化Boiler Heat Exchange,Condction & Intensification锅炉原理Principles of Boiler国际金融International Finance国际经济法International Economic Law国际贸易International Trade国际贸易地理International Trade Geography国际贸易实务International Trade Affairs国际市场学International Marketing国际市场营销International Marketing国民经济计划National Economical Planning国外社会学理论Overseas Theories of Sociology过程(控制)调节装置Process(Control) Adjustment Device过程调节系统Process Adjustment System过程控制Process Control过程控制系统Process Control System海洋测量Ocean Surveying海洋工程概论Introduction to Ocean Engineering函数分析Functional Analysis焊接方法Welding Method焊接方法及设备Welding Method & Equipment焊接检验Welding Testing焊接结构Welding Structure焊接金相Welding Fractography焊接金相分析Welding Fractography Analysis焊接冶金Welding Metallurgy焊接原理Fundamentals of Welding焊接原理及工艺Fundamentals of Welding & Technology焊接自动化Automation of Welding汉语Chinese汉语与写作Chinese & Composition汉语语法研究Research on Chinese Grammar汉字信息处理技术Technology of Chinese Information Processing毫微秒脉冲技术Millimicrosecond Pusle Technique核动力技术Nuclear Power Technology合唱与指挥Chorus & Conduction合金钢Alloy Steel宏观经济学Macro-Economics宏微观经济学Macro Micro Economics红外CCD Infrared CCD红外电荷耦合器Infrared Electric Charge Coupler红外探测器Infrared Detectors红外物理Infrared Physics红外物理与技术Infrared Physics & Technology红外系统Infrared System红外系统电信号处理Processing Electric Signals from Infrared Systems厚薄膜集成电路Thick & Thin Film Integrated Circuit弧焊电源Arc Welding Power弧焊原理Arc Welding Principles互换性技术测量基础Basic Technology of Exchangeability Measurement互换性技术测量Technology of Exchangeability Measurement互换性与技术测量Elementary Technology of Exchangeability Measurement互换性与技术测量实验Experiment of Exchangeability Measurement Technology 画法几何及机械制图Descriptive Geometry & Mechanical Graphing画法几何与阴影透视Descriptive Geometry,Shadow and Perspective化工基础Elementary Chemical Industry化工仪表与自动化Chemical Meters & Automation化工原理Principles of Chemical Industry化学Chemistry化学反应工程Chemical Reaction Engineering化学分离Chemical Decomposition化学工程基础Elementary Chemical Engineering化学计量学Chemical Measurement化学文献Chemical Literature化学文献及查阅方法Chemical Literature & Consulting Method化学粘结剂Chemical Felter环境保护理论基础Basic Theory of Environmental Protection环境化学Environomental Chemistry环境行为概论Introduction to Environmental Behavior换热器Thermal Transducer回旧分析与试验设计Tempering Analysis and Experiment Design回转式压缩机Rotary Compressor回转压缩机数学模型Mathematical Modeling of Rotary Compressors会计学Accountancy会计与财务分析Accountancy & Financial Analysis会计与设备分析Accountancy & Equipment Analysis会计原理及外贸会计Principles of Accountancy & Foreign Trade Accountancy 会计原理与工业会计Principles of Accountancy & Industrial Accountancy活力学Energy Theory活塞膨胀机Piston Expander活塞式制冷压缩机Piston Refrigerant Compreessor活塞式压缩机Piston Compressor活塞式压缩机基础设计Basic Design of Piston Compressor活塞压缩机结构强度Structural Intensity of Piston Compressor活赛压机气流脉动Gas Pulsation of Piston Pressor货币银行学Currency Banking基本电路理论Basis Theory of Circuit基础写作Fundamental Course of Composition机床电路Machine Tool Circuit机床电器Machine Tool Electric Appliance机床电气控制Electrical Control of Machinery Tools机床动力学Machine Tool Dynamics机床设计Machine Tool design机床数字控制Digital Control of Machine Tool机床液压传动Machinery Tool Hydraulic Transmission机电传动Mechanical & Electrical Transmission机电传动控制Mechanical & electrical Transmission Control机电耦合系统Mechanical & Electrical Combination System机电系统计算机仿真Computer Simulation of Mechanic/Electrical Systems机电一体化Mechanical & Electrical Integration机构学Structuring机器人Robot机器人控制技术Robot Control Technology机械产品学Mechanic Products机械产品造型设计Shape Design of Mechanical Products机械工程控制基础Basic Mechanic Engineering Control机械加工自动化Automation in Mechanical Working机械可靠性Mechanical Reliability机械零件Mechanical Elements机械零件设计Course Exercise in Machinery Elements Design机械零件设计基础Basis of Machinery Elements Design机械设计Mechanical Designing机械设计基础Basis of Mechanical Designing机械设计课程设计Course Exercise in Mechanical Design机械设计原理Principle of Mechanical Designing机械式信息传输机构Mechanical Information Transmission Device机械原理Principle of Mechanics机械原理和机械零件Mechanism & Machinery机械原理及机械设计Mechanical Designing机械原理及应用Mechanical Principle & Mechanical Applications机械原理课程设计Course Exercise of Mechanical Principle机械原理与机械零件Mechanical Principle and Mechanical Elements机械原理与机械设计Mechanical Principle and Mechanical Design机械噪声控制Control of Mechanical Noise机械制造概论Introduction to Mechanical Manufacture机械制造工艺学Technology of Mechanical Manufacture机械制造基础Fundamental of Mechanical Manufacture机械制造基础(金属工艺学) Fundamental Course of Mechanic Manufacturing (Meta机械制造系统自动化Automation of Mechanical Manufacture System机械制造中计算机控制Computer Control in Mechanical Manufacture机制工艺及夹具Mechanical Technology and Clamps积分变换Integral Transformation积分变换及数理方程Integral Transformation & Mathematical Equations积分变换控制工程Integral Transformation Control Engineering积分变换与动力工程Integral Transforms & Dynamic Engineering激光电源Laser Power Devices激光焊Laser Welding激光基础Basis of Laser激光技术Laser Technology激光加工Laser Processing激光器件Laser Devices激光器件与电源Laser Devices & Power Source激光原理Principles of Laser激光原理与技术Laser Principles & Technology极限分析Limit Analysis集合论与代数结构Set Theory & Algebraical Structure技术管理Technological Management技术经济Technological Economy技术经济学Technological Economics技术市场学Technological Marketing计量经济学Measure Economics计算方法Computational Method计算机导论Introduction to Computers计算机导论与实践Introduction to Computers & Practice计算机辅助设计CAD计算机辅助设计与仿真Computer Aided Design & Imitation 计算机辅助语言教学Computer-Aided Language Teaching计算机辅助制造Computer-Aided Manufacturing计算机概论Introduction to Computers计算机绘图Computer Graphics计算机基础Basis of Computer Engineering计算机接口技术Computer Interface Technology计算机接口与通讯Computer Interface & Communication计算机局域网Regional Network of Computers计算机控制Computer Controling计算机设计自动化Automation of Computer Design计算机实践Computer Practice计算机数据库Computer Database计算机算法基础Basis of Computer Algorithm计算机图形显示Computer Graphic Demonstration计算机图形学Computer Graphics计算机网络Computer Networks计算机系统结构Computer Architecture计算机语言处理Computer Language Processing计算机原理Principle of Computer Engineering计算机在化学中的应用Application of Computer in Chemistry 计算机组成原理Principles of Computer Composition计算力学Computational Mechanics计算力学基础Basis of Computational Mechanics计算流体Fluid Computation继电保护新技术New Technology of Relay Protection继电保护原理Principles of Relay Protection继电保护运行Relay-Protected Operation检测技术Measurement Technique检测系统动力学Detection System Dynamics检测与控制Detection & Controling简明社会学Concise Sociology简明世界史Brief World History减振设计Vibration Absorption Designing渐近方法Asymptotical Method建筑材料Building Materials建筑初步Elementary Architecture建筑防火Building Fire Protection建筑概论Introduction to Architecture建筑构造Architectural Construction建筑结构Architectural Structure建筑结构抗震设计Anti-quake Architectural Structure Design建筑经济与企业管理Architectural Economy & Enterprise Management建筑力学Architectural Mechanics建筑名作欣赏Appreciation of Architectural Works建筑入门Elementary Architecture建筑摄影Architectural Photographing建筑设备Architectural Equipment建筑设计Architectural Design建筑施工Construction Technology建筑绘画Architectural Drawing建筑物理Architecural Physics建筑制图Architectural Graphing胶体化学Colloid Chemistry交流调速系统Alternating Current Governor System教育心理学Pedagogic Psychology接口与控制器Interface and Controler接口与通讯Interface and Communication结构程序设计Structural Program Designing结构动力学Structural Dynamics结构化学Structural Chemistry结构检验Structural Testing结构力学Structural Mechanics结构素描Structure Sketching结构塑性分析Structural Plasticity Analysis结构稳定Stability Analysis of Structures结构先进技术Advanced Structuring Technology结构优化理论Optimal Structure Theory结构优化设计Optimal Structure DesigningPurPoison2006-03-15 14:56课程的英文词汇(三)解析几何Analytic Geometry介质波导Medium Wave Guide介质测量Medium Measurement介质光学Medium Optics金属X射线学Metal X-Ray Analysis金属材料焊接Metal Material Welding金属材料学Metal Material Science金属材料与热处理Metal Material & Heat Treatment金属腐蚀与保护Metal Erosion & Protection金属腐蚀原理Principles of Metal Erosion金属工艺学Metal Technics金属焊接性基础Elementary Metal Weldability金属焊接原理Principles of Metal Welding金属机械性能Mechanical Property of Metal金属力学性能Metal Mechanic Property金属切削机床Metal Cutting Machine Tool金属切削原理及刀具Principles of Metal Cutting & Cutters金属熔焊原理Principles of Metal Molten Welding金属熔焊原理及工艺Principles of Metal Molten Welding & Technique 金属熔炼Metal Melting金属塑性成形原理Principles of Metal forming金属物理性能Physical Property of Metal金属学Metallography金属学与热处理Metallography & Heat Treatment金属学原理Principles of Metallography金相分析Metallographic Analysis金相技术Metallographic Techniques近代光学测试技术Modern Optical Testing Technology近代光学计量技术Modern Optical Measuring Technology近代经济史Modern History of Economics近代物理实验Lab of Modern Physics近世代数Modern Algebra晶体管原理Principles of Transistors晶体光学Crystallographic Optics精密测量技术Technology of Precision Measurement精密电气测量Precise Electric Measurement精密合金Precise Alloy精密机械CAD CAD for Precision Machinery精密机械课程设计Course Design for Precision Machinery精密机械零件Precision Machinery Elements精密机械设计基础Elementary Precision Machinery Design精密机械学Precision Machinery精细有机合成Minute Organic Synthesis经济地理Economical Geography经济法Law of Economy经济法学Law of Economy经济分析基础Basis of Economic Analysis经济控制论Economical Cybernetics经济社会学Economic Sociology经济新闻Economic News经济学说史History of Economics经济学原理Principles of Economics经济预测Economic Predicting经济预测与管理奖惩Economic Predicting & Management经济原理Principles of Economy经济运筹学Economic Operation Research经济增长理论Theory of Economic Growth经营管理Operation Management经营管理学Operation Management静力学Statics纠错编码Error Correction of Coding决策分析Analysis of Policy Making绝缘在线检测Insulation Live Testing军事理论Military Theory抗干扰技术Anti-Jamming Technique科技翻译Scientific English Translation科技管理Technological Management科技史History of Science & Technology科技史及新技术知识Historry of Science & Knowledge of New Techndogy 科技写作Scientific Writing科技新闻Scientific News科技英语Scientific English科技英语基础Elementary Scientific English科技英语阅读Readings of Scientific English科技与社会Science & Society科学方法论Scientific Methodology科学技术史History of Science & Technology科学计量Scientific Measurement科学社会学概论Introduction to Scientific Socialism科学社会主义Scientific Socialism科学思维方法Methods of Scinetific Thinking科学学Scientology可计算性Calculability可靠性Reliability可靠性及故障诊断Reliability & Error Diagnosis可靠性技术导论Introduction to Reliability Technology可靠性数学Reliable Mathematics可靠性物理Reliability Physics可逆式机组Reversible Machinery Group可逆式水力机械Reversible Hydraulic Machinery空气调节与通风Air Regulation & Ventilation空气动力学Aerodynamics。

电池均衡2

电池均衡2

On the other hand, in discharge, the weak cells tend to have lower voltage than the other cells, due to either higher internal resistance or the faster rate of discharge that results from their smaller capacity. This means that if any of the weak cells hits the cell undervoltage-protection limit while the pack voltage is still sufficient to power the system, the full capacity of the battery will not be used.
Cell-balancing techniques
The impact of cell imbalance on run-time performance and battery life in applications using series-connected cells is certainly undesirable. The fundamental solution of cell balancing equalizes the voltage and SOC among the cells when they are at full charge. Cell balancing is usually categorized into two types—passive and active. The passive cell-balancing method, also known as “resistor bleeding balancing,” is simple and straightforward: Discharge the cells that need balancing through a dissipative bypass route. This bypass can be either integrated or external to the IC. Such an approach is favorable in low-cost system applications.

Analog Applications Journal TPS621lx电源供应设计的实际考虑 BRIEF

Analog Applications Journal TPS621lx电源供应设计的实际考虑 BRIEF


均 可 实 现 开 漏 输 出 ,可 向 用 户 提 供 最 大 程 度 的 灵活 性 ,若 使 用 该 功 能 , 需 要 配 置 上 拉 电 阻 器 : 不 使 用 ,也可 以使 其 处 于 则 若 浮 动状 态 。
图 1: 典型 应用
输出稳压与输 出 电流的关 系
本 文将提 供T S 2 1x P 6 1 1 降压 转换 器的 示例 应 用井对 关键 特性 进行 总结 ,以供 实 际设计 参考 。
量 的 栅 极 驱 动 ,以便 在 从 无 负 载 至 15 .A负 载 的 范 围 内 确 保 稳 压 误 差 不超 过 ±3 。当 输 人 电 压较 低 时 , 6 > l> .V情 况 下 % 如 V VN 43 的 无 负 载 至 12 .A范 围 ,4 3 V.> . V情 况 下 的 无 负 载 至 V> 3 5 50 0 mA范 围 以及 35 V…> .V 况 下 的 无 负载 至 3 0 .V> 31 情 0 mA范 围
同步 。另外 ,由于 同 步 F T允许 电流 回流 至 输 人 端 ,因此 在整 个 E
负 载范 围 内 ,电 感 器 中 总 有 电流 , 使得 电 感 器 处 于 连 续 传 导 这
P S F T . 以1 0 MO E  ̄ 够 0 %的 占空 比工作 , 从而达到高效利用即
将 耗 尽 的 电 池 能 量 、尽 可 能 延 长 电池 使 用寿 命 的 目 的 。如 使 用 推 荐 的 输 出滤 波 器 产 品 , 对 该 器 件 具 有 补 偿 作 用 ,从 而 提 供 将


连接 AD 4 4 1 位 1 5 S5 2 MSP 转 换 器 4 0 s ( 用于 欠 采 样 应 用 ) 低 功 率 、 的 高截 取 接 口

模拟应用期刊2015第2季

模拟应用期刊2015第2季

如需查阅《模拟应用期刊》 To view past issues of the (Analog Applications Journal) Analog Applications Journal, visit the Web site: 的过往期刊,敬请访问以下网址: /aaj /aaj 通过下面的网址订阅 Subscribe to the AAJ: AAJ: /subscribe-aaj /subscribe-aaj
4
Bandstop filters and the Bainter topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
工业 在频域中设计一款用于 ADC 的抗混叠滤波器 ...................................................... 7
由于差动放大器拓扑以及要求低输出阻抗、低失真、低噪声和高 CMRR 的缘故,实现头戴式耳机放大器的稳定是 一项独特的挑战。本文介绍了一款增强型放大器解决方案,其可为电容性负载提供稳定的操作,且不会在低频条 件下增加输出阻抗,或者损害共模抑制性能。
TI 全球技术支持 ..................................................................................................... 29
模拟应用期刊 Analog Applications
Journal
引言 3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 .......................................................................................................................

国际管理类的UT24种期刊与FT45种期刊

国际管理类的UT24种期刊与FT45种期刊

UT/DALLAS界定的24种期刊Number Journals ABS SCI SSCI1 Academy of Management Journal Grade Four * Y2 Academy of Management Review Grade Four * Y3 Administrative Science Quarterly Grade Four * YDecision AnalysisInterfaces4 Information Systems Research Grade Four * YINFORMS Journal on ComputingINFORMS Transactions on Education5 Journal of Accounting and Economics Grade Four * Y6 Journal of Accounting Research Grade Four * Y7 Journal of Consumer Research Grade Four * Y8 Journal of Finance Grade Four * Y9 Journal of Financial Economics Grade Four Y10 Journal of International Business Studies Grade Four Y11 Journal of Marketing Grade Four * Y12 Journal of Marketing Research Grade Four * Y13 Journal of Operations Management Grade Four 一区Y14 Journal on Computing Grade Three 三区15 Management Science Grade Four * Y16 Manufacturing and Service Operations Management Grade Three Y17 Marketing Science Grade Four * Y18 MIS Quarterly Grade Four * Y19 Operations Research Grade Four * 二区Y20 Organization Science Grade Four * Y21 Production and Operations Management Grade Three 一区Service Science22 Strategic Management Journal Grade Four * Y23 The Accounting Review Grade Four * Y24 The Review of Financial Studies Grade Four * YTransportation Science附录2:金融时报45种期刊Number Journals ABS SCI SSCI1 Entrepreneurship Theory and Practice (Baylor University,Waco, Texas)Grade FourY2 Harvard Business Review (Harvard Business SchoolPublishing)Grade FourY3 Human Resource Management (John Wiley and Sons) Grade Four Y4 Journal of Applied Psychology (American PsychologicalAssociation) Grade Four Y5 Journal of Business Venturing (Elsevier) Grade Four Y6 Journal of Consumer Psychology (Elsevier) Grade Four Y7 Journal of Financial and Quantitative Analysis Grade Four Y8 Journal of Financial Economics (Elsevier) Grade Four Y9 Journal of International Business Studies (Academy ofInternational Business)Grade FourY10 Journal of Management Studies (Wiley) Grade Four Y11 Journal of Operations Management (Elsevier) Grade Four 一区Y12 Organization Studies (SA GE) Grade Four Y13 Organizational Behaviour and Human Decision Processes(Academic Press) Grade Four Y14 Quarterly Journal of Economics (MIT) Grade Four Y15 Review of Accounting Studies (Springer) Grade Four Y16 Academy of Management Journal (Academy ofManagement, Ada, Ohio) Grade Four *Y17 Academy of Management Review (Academy ofManagement) Grade Four *Y18 Accounting, Organisations and Society (Elsevier) Grade Four *Y19 Accounting Review (A merican Accounting Association) Grade Four *Y20 Administrative Science Quarterly (Cornell University) Grade Four * Y21 American Economic Review (A merican EconomicAssociation, Nashville) Grade Four *Y22 Econometrica (Econometric Society, University ofChicago) Grade Four *一区Y23 Information Systems Research (Informs) Grade Four *Y24 Journal of Accounting and Economics (Elsevier) Grade Four *Y25 Journal of Accounting Research (University of Chicago) Grade Four *Y26 Journal of Consumer Research (University of Chicago) Grade Four *Y27 Journal of Finance (Blackwell) Grade Four *Y28 Journal of Marketing (A merican Marketing Association) Grade Four *Y29 Journal of Marketing Research (A merican MarketingAssociation) Grade Four *Y30 Journal of Political Economy (University of Chicago) Grade Four *Y31 Management Science (Informs) Grade Four *Y32 Marketing Science (Informs) Grade Four *Y33 MIS Quarterly (Management Information SystemsResearch Centre, Unviersity of Minnesota)Grade Four *Y34 Operations Research (Informs) Grade Four *二区Y35 Organization Science (Informs) Grade Four *Y36 Review of Financial Studies (Oxford University Press) Grade Four *Y37 Strategic Management Journal (John Wiley and Sons) Grade Four *Y38 Academy of Management Perspectives (AMP) Grade Three Y39 California Management Review (UC Berkely) Grade Three Y40 Contemporary Accounting Research (Wiley) Grade Three Y41 Journal of Business Ethics (Kluwer Academic) Grade Three Y42 Rand Journal of Economics (The Rand Corporation) Grade Three Y43 Sloan Management Review (MIT) Grade Three Y44 Journal of the A merican Statistical Association(American Statistical Association) Grade Four 一区45 Production and Operations Management (POMS) Grade Three 一区。

BQ27500_1资料

BQ27500_1资料

1INTRODUCTION1.1FEATURES1.2APPLICATIONS1.3DESCRIPTION•Battery Fuel Gauge for 1-Series Li-Ion •Smartphones Applications•PDAs•Resides on System Main Board•Digital Still and Video Cameras –Works With Embedded or Removable •Handheld TerminalsBattery Packs •MP3or Multimedia Players•Two Varieties–bq27500:Uses PACK+,PACK–,and T Battery Terminals–bq27501:Works With Battery ID Resistor in Battery PackThe Texas Instruments bq27500/01system-side Li-Ion battery fuel gauge is a microcontroller •Microcontroller Peripheral Provides:peripheral that provides fuel gauging for single-cell –Accurate Battery Fuel GaugingLi-Ion battery packs.The device requires little system –Internal Temperature Sensor for System microcontroller firmware development.The Temperature Reportingbq27500/01resides on the system main board,and –Battery Low Interrupt Warning manages an embedded battery (non-removable)or a –Battery Insertion Indicator removable battery pack.–Battery ID Detection–96Bytes of Non-Volatile Scratch-Pad The bq27500/01uses the patented Impedance FLASHTrack™algorithm for fuel gauging,and provides information such as remaining battery capacity •Battery Fuel Gauge Based on Patented (mAh),state-of-charge (%),run-time to empty (min.),Impedance Track™Technologybattery voltage (mV),and temperature (°C).–Models the Battery Discharge Curve for Accurate Time-to-Empty Predictions Battery fuel gauging with the bq27500requires only –Automatically Adjusts for Battery Aging,PACK+(P+),PACK–(P–),and Thermistor (T)Battery Self-Discharge,andconnections to a removable battery pack or Temperature/Rate Inefficienciesembedded battery.The bq27501works with –Low-Value Sense Resistor (10m Ωor Less)identification resistors in battery packs to gauge •I 2C™Interface for Connection to System batteries of different fundamental chemistries and/or Microcontroller Portsignificantly different rated capacities.•12-Pin 2,5-mm ×4-mm SON PackageTYPICAL APPLICATIONPlease be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this document.Impedance Track is a trademark of Texas Instruments.I 2C is a trademark of Philips Electronics.PRODUCTION DATA information is current as of publication date.Copyright ©2007–2008,Texas Instruments IncorporatedProducts conform to specifications per the terms of the Texas Instruments standard warranty.Production processing does not necessarily include testing of all parameters.Contents1INTRODUCTION..........................................4.1DATA COMMANDS..................................1.1FEATURES........................................... 4.2DATA FLASH INTERFACE.........................1.2APPLICATIONS...................................... 4.3MANUFACTURER INFORMATION BLOCKS......1.3DESCRIPTION....................................... 4.4ACCESS MODES...................................2DEVICE INFORMATION.................................4.5SEALING/UNSEALING DATA FLASH..............2.1AVAILABLE OPTIONS............................... 4.6DATA FLASH SUMMARY...........................2.2PIN DIAGRAMS......................................5FUNCTIONAL DESCRIPTION........................2.3TERMINAL FUNCTIONS............................. 5.1FUEL GAUGING....................................3ELECTRICAL SPECIFICATIONS......................5.2IMPEDANCE TRACK™VARIABLES...............3.1ABSOLUTE MAXIMUM RATINGS................... 5.3DETAILED DESCRIPTION OF DEDICATED PINS.3.2RECOMMENDED OPERATING CONDITIONS...... 5.4TEMPERATURE MEASUREMENT.................3.3DISSIPATION RATINGS............................. 5.5OVERTEMPERATURE INDICATION...............5.6CHARGING AND CHARGE-TERMINATION3.4POWER-ON RESET..................................INDICATION.........................................3.5INTERNAL TEMPERATURE SENSORCHARACTERISTICS................................. 5.7POWER MODES....................................3.6HIGH-FREQUENCY OSCILLATOR.................. 5.8POWER CONTROL.................................3.7LOW-FREQUENCY OSCILLATOR.................. 5.9AUTOCALIBRATION................................3.8INTEGRATING ADC(COULOMB COUNTER)6APPLICATION-SPECIFIC INFORMATION..........CHARACTERISTICS.................................6.1BATTERY PROFILE STORAGE AND SELECTION3.9ADC(TEMPERATURE AND CELL6.2APPLICATION-SPECIFIC FLOW AND CONTROL.MEASUREMENT)CHARACTERISTICS.............7COMMUNICATIONS3.10DATA FLASH MEMORY CHARACTERISTICS...................................................................3.11I2C-COMPATIBLE INTERFACE COMMUNICATION7.1I2C INTERFACE.....................................TIMING CHARACTERISTICS........................8REFERENCE SCHEMATICS..........................4GENERAL DESCRIPTION..............................8.1SCHEMATIC........................................2Contents Submit Documentation Feedback2DEVICE INFORMATION2.1AVAILABLE OPTIONS2.2PIN DIAGRAMSBAT V SSSRN SRPV CC BAT_GD SDA SCLBAT_LOW TSBI/TOUTBAT V SSV CC BAT_LOW TS BI/TOUTNCSRN SRPBAT_GD SDA SCLRID 2.3TERMINAL FUNCTIONSTAPE and FIRMWARE COMMUNICATIONPART NUMBER PACKAGE (2)T AREEL VERSION (1)FORMATQUANTITY bq27500DRZR 3000V1.06bq27500DRZT 250bq27500DRZR-V100300012-pin,2,5-mm ×4-mmV1.08–40°C to 85°CI 2CSONbq27500DRZT-V100250bq27501DRZR 3000V1.08bq27501DRZT250(1)Ordering the device with the latest firmware version is recommended.To check the fiirmware revision and Errata list see SLUZ015(2)For the most current package and ordering information,see the Package Option Addendum at the end of this document,or see the TI website at .TERMINALTYPE (1)DESCRIPTIONbq27500bq27501NAME PIN NO.PIN NO.BAT 44I Cell-voltage measurement input.ADC inputBattery-good indicator.Active-low by default,though polarity can be configured through BAT_GD 1212O the [BATG_POL]of Operation Configuration .Open-drain outputBattery-low output indicator.Active-high by default,though polarity can be configured BAT_LOW 11O through the [BATL_POL]in Operation Configuration .Push-pull outputBattery-insertion detection input.Power pin for pack thermistor network.ThermistorBI/TOUT 22I/O multiplexer control pin.Open-drain I/e with pullup resistor >1M Ω(1.8M Ωtypical).NC 9––No connection (bq27500)RID –9I Resistor ID input (bq27501).Analog input with current sourcing capabilitiesSlave I 2C serial communications clock input line for communication with system (master).SCL 1111I Open-drain I/e with 10-k Ωpullup resistor (typical).Slave I 2C serial communications data line for communication with system (master).SDA 1010I/O Open-drain I/e with 10-k Ωpullup resistor (typical).Analog input pin connected to the internal coulomb counter where SRN is nearest the SRN 88IA System V SS connection.Connect to 5-m Ωto 20-m Ωsense resistor.Analog input pin connected to the internal coulomb counter,where SRP is nearest the SRP 77IA PACK–connection.Connect to 5-m Ωto 20-m Ωsense resistor.TS 33IA Pack thermistor voltage sense (use 103AT-type thermistor).ADC input V CC 55P Processor power input.Decouple with 0.1-µF capacitor,minimum.Device ground.Electrically connected to the IC exposed thermal pad (do not use thermal V SS 66Ppad as primary ground.Connect thermal pad to Vss via a PCB trace).(1)I =Digital input,O =Digital output,I/O =Digital input/output,IA =Analog input,P =Power connectionSubmit Documentation Feedback DEVICE INFORMATION 33ELECTRICAL SPECIFICATIONS3.1ABSOLUTE MAXIMUM RATINGS3.2RECOMMENDED OPERATING CONDITIONSover operating free-air temperature range (unless otherwise noted)(1)PARAMETERVALUE UNIT V CC Supply voltage range–0.3to 2.75V V IOD Open-drain I/O pins (BI/TOUT,SDA,SDL,BAT_GD)–0.3to 6VV BAT BAT input pin–0.3to 6V I Input voltage range to all other pins (TS,SRP,SRN,RID [bq27501only],NC –0.3to V CC +0.3V [bq27500only])Human-body model (HBM),BAT pin 1.5ESD kV Human-body model (HBM),all other pins 2T A Operating free-air temperature range –40to 85°C T F Functional temperature range –40to 100°C T stg Storage temperature range–65to 150°C(1)Stresses beyond those listed under "absolute maximum ratings"may cause permanent damage to the device.These are stress ratings only,and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions"is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.T A =25°C,V CC =2.5V (unless otherwise noted)PARAMETERTEST CONDITIONSMIN TYP MAX UNIT V CC Supply voltage2.42.5 2.6V Fuel gauge in NORMAL mode.I CC Normal operating-mode current 100µA I LOAD >Sleep Current Fuel gauge in SLEEP mode.I SLP Low-power storage-mode current 15µA I LOAD <Sleep CurrentFuel gauge in HIBERNATE mode.I HIB Hibernate operating-mode current 1µA I LOAD <Hibernate Current V OL Output voltage,low (SDA,BAT_LOW,I OL =0.5mA 0.4V BI/TOUT)V OH(PP)Output voltage,high (BAT_LOW)I OH =–1mAV CC –0.5V External pullup resistor connected to V OH(OD)Output voltage,high (SDA,SCL,BI/TOUT)V CC –0.5VV CCInput voltage,low (SDA,SCL)–0.30.6V IL Input voltage,low (BI/TOUT)BAT INSERT CHECK MODE active –0.30.6VInput voltage,high (SDA,SCL) 1.26V IH(OD)Input voltage,high (BI/TOUT)BAT INSERT CHECK MODE active1.26C IN Input capacitance (SDA,SCL,BI/TOUT)35pF V A1Input voltage range (TS,RID [bq27501only])V SS –0.1252V V A2Input voltage range (BAT)V SS –0.1255V V A3Input voltage range (SRP,SRN)V SS –0.1250.125V t PUCDPower-up communication delay250ms ELECTRICAL SPECIFICATIONS 4Submit Documentation Feedback3.3DISSIPATION RATINGS3.4POWER-ON RESET3.5INTERNAL TEMPERATURE SENSOR CHARACTERISTICS3.6HIGH-FREQUENCY OSCILLATOR3.7LOW-FREQUENCY OSCILLATORT A ≤40°C DERATING FACTORPACKAGE R θJA POWER RATINGT A >40°C12-pin DRZ (1)482mW5.67mW/°C176°C/W(1)This data is based on using a four-layer JEDEC high-K board with the exposed die pad connected to a Cu pad on the board.The board pad is connected to the ground plane by a 2-×2-via matrix.T A =–40°C to 85°C,typical values at T A =25°C and V BAT =3.6V (unless otherwise noted)PARAMETERTEST CONDITIONSMIN TYP MAX UNIT V IT+Positive-going battery voltage input at V CC 2.09 2.2 2.31V V HYSHysteresis voltage45115185mVT A =–40°C to 85°C,2.4V <V CC <2.6V;typical values at T A =25°C and V CC =2.5V (unless otherwise noted)PARAMETERTEST CONDITIONSMINTYP MAXUNIT G TEMPTemperature sensor voltage gain–2mV/°CT A =–40°C to 85°C,2.4V <V CC <2.6V;typical values at T A =25°C and V CC =2.5V (unless otherwise noted)PARAMETERTEST CONDITIONSMINTYP MAXUNIT f OSC Operating frequency 2.097MHzT A =0°C to 60°C–2%0.38%2%f EIO Frequency error (1)(2)T A =–20°C to 70°C –3%0.38%3%T A =–40°C to 85°C–4.5%0.38%4.5%t SXO Start-up time (3)2.55ms(1)The frequency error is measured from 2.097MHz.(2)The frequency drift is included and measured from the trimmed frequency at V CC =2.5V,T A =25°C.(3)The start-up time is defined as the time it takes for the oscillator output frequency to be within ±3%of typical oscillator frequency.T A =–40°C to 85°C,2.4V <V CC <2.6V;typical values at T A =25°C and V CC =2.5V (unless otherwise noted)PARAMETERTEST CONDITIONSMIN TYP MAXUNIT f LOSC Operating frequency 32.768kHzT A =0°C to 60°C–1.5%0.25% 1.5%f LEIO Frequency error (1)(2)T A =–20°C to 70°C –2.5%0.25% 2.5%T A =–40°C to 85°C–4%0.25%4%t LSXO Start-up time(3)500µs(1)The frequency drift is included and measured from the trimmed frequency at V CC =2.5V,T A =25°C.(2)The frequency error is measured from 32.768kHz.(3)The start-up time is defined as the time it takes for the oscillator output frequency to be within ±3%of typical oscillator frequency.Submit Documentation Feedback ELECTRICAL SPECIFICATIONS 53.8INTEGRATING ADC (COULOMB COUNTER)CHARACTERISTICS3.9ADC (TEMPERATURE AND CELL MEASUREMENT)CHARACTERISTICS3.10DATA FLASH MEMORY CHARACTERISTICS3.11I 2C-COMPATIBLE INTERFACE COMMUNICATION TIMING CHARACTERISTICST A =–40°C to 85°C,2.4V <V CC <2.6V;typical values at T A =25°C and V CC =2.5V (unless otherwise noted)PARAMETERTEST CONDITIONSMIN TYPMAX UNIT V SR Input voltage range (V SR =V (SRN)–V (SRP))–0.1250.125V t SR_CONV Conversion time Single conversion1s Resolution 1415bits V SR_OS Input offset10µV INL Integral nonlinearity error ±0.007±0.034%FSR Z SR_IN Effective input resistance (1)2.5M ΩI SR_LKG Input leakage current(1)0.3µA(1)Specified by design.Not tested in production.T A =–40°C to 85°C,2.4V <V CC <2.6V;typical values at T A =25°C and V CC =2.5V (unless otherwise noted)PARAMETERTEST CONDITIONSMIN TYPMAXUNIT V ADC_IN Input voltage range –0.21V t ADC_CONV Conversion time 125ms Resolution 1415bits V ADC_OS Input offset1mV Effective input resistance (TS,RID Z ADC18M Ω[bq27501only])(1)bq27500/1not measuring cell voltage 8M ΩZ ADC2Effective input resistance (BAT)(1)bq27500/1measuging cell voltage100k ΩI ADC_LKG Input leakage current (1)0.3µA(1)Specified by design.Not tested in production.T A =–40°C to 85°C,2.4V <V CC <2.6V;typical values at T A =25°C and V CC =2.5V (unless otherwise noted)PARAMETERTEST CONDITIONSMIN TYPMAXUNIT t ONData retention (1)10Years Flash-programming write cycles (1)20,000Cycles t WORDPROG Word programming time (1)2ms I CCPROG Flash-write supply current (1)510mA(1)Specified by design.Not production testedT A =–40°C to 85°C,2.4V <V CC <2.6V;typical values at T A =25°C and V CC =2.5V (unless otherwise noted)PARAMETERTEST CONDITIONSMINTYPMAXUNIT t r SCL/SDA rise time 1µs t f SCL/SDA fall time 300ns t w(H)SCL pulse duration (high)4µs t w(L)SCL pulse duration (low) 4.7µs t su(STA)Setup for repeated start 4.7µs t d(STA)Start to first falling edge of SCL 4µs t su(DAT)Data setup time250nsELECTRICAL SPECIFICATIONS 6Submit Documentation FeedbackI2C-COMPATIBLE INTERFACE COMMUNICATION TIMING CHARACTERISTICS(continued)T A=–40°C to85°C,2.4V<V CC<2.6V;typical values at T A=25°C and V CC=2.5V(unless otherwise noted)PARAMETER TEST CONDITIONS MIN TYP MAX UNITReceive mode0t h(DAT)Data hold time nsTransmit mode300t su(STOP)Setup time for stop4µst(BUF)Bus free time between stop and start 4.7µsf SCL Clock frequency10100kHzt BUSERR Bus error time-out17.321.2sFigure3-1.I2C-Compatible Interface Timing DiagramsSubmit Documentation Feedback ELECTRICAL SPECIFICATIONS74GENERAL DESCRIPTIONThe bq27500/1accurately predicts the battery capacity and other operational characteristics of a single Li-based rechargeable cell.It can be interrogated by a system processor to provide cell information,such as state-of-charge(SOC),time-to-empty(TTE)and time-to-full(TTF).Information is accessed through a series of commands,called Standard Commands.Further capabilities are provided by the additional Extended Commands set.Both sets of commands,indicated by the general format Command(),are used to read and write information contained within the bq27500/1control and status registers,as well as its data flash mands are sent from system to gauge using the bq27500/1I2C serial communications engine,and can be executed during application development,pack manufacture,or end-equipment operation.Cell information is stored in the bq27500/1in non-volatile flash memory.Many of these data flash locations are accessible during application development.They cannot be accessed directly during end-equipment operation.Access to these locations is achieved by either use of the bq27500/1 companion evaluation software,through individual commands,or through a sequence of data-flash-access commands.To access a desired data flash location,the correct data flash subclass and offset must be known.The bq27500/1provides96bytes of user-programmable data flash memory,partitioned into three32-byte blocks:Manufacturer Info Block A,Manufacturer Info Block B,and Manufacturer Info Block C.This data space is accessed through a data flash interface.For specifics on accessing the data flash,see Section4.3,Manufacturer Information Blocks.The key to the high-accuracy fuel gauging prediction of the bq27500/1is Texas Instruments'proprietary Impedance Track™algorithm.This algorithm uses cell measurements,characteristics,and properties to create state-of-charge predictions that can achieve less than1%error across a wide variety of operating conditions and over the lifetime of the battery.The bq27500/1measures charge/discharge activity by monitoring the voltage across a small-value series sense resistor(5mΩto20mΩ,typ.)located between the system Vss and the battery PACK–terminal.When a cell is attached to the bq27500/1,cell impedance is computed,based on cell current,cell open-circuit voltage(OCV),and cell voltage under loading conditions.The bq27500/1must use an NTC thermistor Semitec103AT for temperature measurement,or can also be configured to use its internal temperature sensor.The bq27500/1uses temperature to monitor the battery-pack environment,which is used for fuel gauging and cell protection functionality.To minimize power consumption,the bq27500/1has several power modes:NORMAL,SLEEP, HIBERNATE,and BAT INSERT CHECK.The bq27500/1passes automatically between these modes, depending upon the occurrence of specific events,though a system processor can initiate some of these modes directly.More details can be found in Section5.7,Power Modes.NOTEFORMATTING CONVENTIONS IN THIS DOCUMENT:Commands:italics with parentheses and no breaking spaces,e.g.,RemainingCapacity().Data flash:italics,bold,and breaking spaces,e.g.,Design CapacityRegister bits and flags:brackets and italics,e.g.,[TDA]Data flash bits:brackets,italics and bold,e.g.,[LED1]Modes and states:ALL CAPITALS,e.g.,UNSEALED mode.8Submit Documentation Feedback GENERAL DESCRIPTION4.1DATA COMMANDS4.1.1STANDARD DATA COMMANDSThe bq27500/1uses a series of2-byte standard commands to enable system reading and writing of battery information.Each standard command has an associated command-code pair,as indicated in Table4-1.Because each command consists of two bytes of data,two consecutive I2C transmissions must be executed both to initiate the command function,and to read or write the corresponding two bytes of data.Additional options for transferring data,such as spooling,are described in Section7,I2C Interface.Standard commands are accessible in NORMAL operation.Read/write permissions depend on the active access mode,SEALED or UNSEALED(for details on the SEALED and UNSEALED states,see Section4.4,Access Modes).Table4-1.Standard CommandsNAME COMMAND CODE UNITS SEALED ACCESS UNSEALED ACCESS Control()CNTL0x00/0x01N/A R/W R/WAtRate()AR0x02/0x03mA R/W R/W AtRateTimeToEmpty()ARTTE0x04/0x05Minutes R R/W Temperature()TEMP0x06/0x070.1K R R/WVoltage()VOLT0x08/0x09mV R R/WFlags()FLAGS0x0a/0x0b N/A R R/W NominalAvailableCapacity()NAC0x0c/0x0d mAh R R/W FullAvailableCapacity()FAC0x0e/0x0f mAh R R/W RemainingCapacity()RM0x10/0x11mAh R R/W FullChargeCapacity()FCC0x12/0x13mAh R R/W AverageCurrent()AI0x14/0x15mA R R/W TimeToEmpty()TTE0x16/0x17Minutes R R/W TimeToFull()TTF0x18/0x19Minutes R R/W StandbyCurrent()SI0x1a/0x1b mA R R/W StandbyTimeToEmpty()STTE0x1c/0x1d Minutes R R/W MaxLoadCurrent()MLI0x1e/0x1f mA R R/W MaxLoadTimeToEmpty()MLTTE0x20/0x21Minutes R R/W AvailableEnergy()AE0x22/0x23mWh R R/W AveragePower()AP0x24/0x25mW R R/W TimeToEmptyAtConstantPower()TTECP0x26/0x27Minutes R R/WReserved RSVD0x28/0x29N/A R R/W CycleCount()CC0x2a/0x2b Counts R R/W StateOfCharge()SOC0x2c/0x2d%R R/WSubmit Documentation Feedback GENERAL DESCRIPTION94.1.1.1Control():0x00/0x01Issuing a Control()command requires a subsequent2-byte subcommand.These additional bytes specify the particular control function desired.The Control()command allows the system to control specific features of the bq27500/1during normal operation and additional features when the bq27500/1is in different access modes,as described in Table4-2.Table4-2.Control()SubcommandsCNTL SEALEDCNTL FUNCTION DESCRIPTIONDATA ACCESSCONTROL_STATUS0x0000Yes Reports the status of DF checksum,hibernate,IT,etc. DEVICE_TYPE0x0001Yes Reports the device type(eg:"bq27500")FW_VERSION0x0002Yes Reports the firmware version on the device typeHW_VERSION0x0003Yes Reports the hardware version of the device typeEnables a data flash checksum to be generated andDF_CHECKSUM0x0004Noreports on a readRESET_DATA0x0005Yes Returns reset dataReserved0x0006No Not to be usedPREV_MACWRITE0x0007Yes Returns previous MAC command codeReports the chemical identifier of the Impedance Track™CHEM_ID0x0008YesconfigurationBOARD_OFFSET0x0009No Forces the device to measure and store the board offset CC_INT_OFFSET0x000a No Forces the device to measure the internal CC offset WRITE_OFFSET0x000b No Forces the device to store the internal CC offsetSET_HIBERNATE0x0011Yes Forces CONTROL_STATUS[HIBERNATE]to1CLEAR_HIBERNATE0x0012Yes Forces CONTROL_STATUS[HIBERNATE]to0SEALED0x0020No Places the bq27500/1in SEALED access modeIT_ENABLE0x0021No Enables the Impedance Track™algorithmIF_CHECKSUM0x0022No Reports the instruction flash checksumCAL_MODE0x0040No Places the bq27500/1in calibration modeRESET0x0041No Forces a full reset of the bq27500/14.1.1.1.1CONTROL_STATUS:0x0000Instructs the fuel gauge to return status information to control addresses0x00/0x01.The status word includes the following information.Table4-3.CONTROL_STATUS Bit DefinitionsFlags()bit7bit6bit5bit4bit3bit2bit1bit0 High byte–FAS SS CSV CCA BCA––Low byte–HIBERNATE–SLEEP LDMD RUP_DIS VOK QENFAS=Status bit indicating the bq27500/1is in FULL ACCESS SEALED state.Active when set.SS=Status bit indicating the bq27500/1is in SEALED state.Active when set.CSV=Status bit indicating a valid data flash checksum has been generated.Active when set.CCA=Status bit indicating the bq27500/1coulomb counter calibration routine is active.Active when set.BCA=Status bit indicating the bq27500/1board calibration routine is active.Active when set.HIBERNATE=Status bit indicating a request for entry into HIBERNATE from SLEEP mode.True when set.Default is0.SLEEP=Status bit indicating the bq27500/1is in SLEEP mode.True when set.LDMD=Status bit indicating the bq27500/1Impedance Track™algorithm is using constant-power mode.True when set.Default is0 (constant-current mode).RUP_DIS=Status bit indicating the bq27500/1Ra table updates are disabled.Updates disabled when set.VOK=Status bit indicating the bq27500/1voltages are okay for Qmax.True when set.QEN=Status bit indicating the bq27500/1Qmax updates enabled.True when set.10Submit Documentation Feedback GENERAL DESCRIPTION4.1.1.1.2DEVICE_TYPE:0x0001Instructs the fuel gauge to return the device type to addresses0x00/0x01.4.1.1.1.3FW_VERSION:0x0002Instructs the fuel gauge to return the firmware version to addresses0x00/0x01.4.1.1.1.4HW_VERSION:0x0003Instructs the fuel gauge to return the hardware version to addresses0x00/0x01.4.1.1.1.5DF_CHECKSUM:0x0004Instructs the fuel gauge to compute the checksum of the data flash memory.Once the checksum has been calculated and stored,CONTROL_STATUS[CVS]is set.The checksum value is written and returned to addresses0x00/0x01(UNSEALED mode only).The checksum is not calculated in SEALED mode;however,the checksum value can still be read.4.1.1.1.6RESET_DATA:0x0005Instructs the fuel gauge to return the reset data to addresses0x00/0x01,with the low byte(0x00)being the number of full resets and the high byte(0x01)the number of partial resets.4.1.1.1.7PREV_MACWRITE:0x0007Instructs the fuel gauge to return the previous command written to addresses0x00/0x01.4.1.1.1.8CHEM_ID:0x0008Instructs the fuel gauge to return the chemical identifier for the Impedance Track™configuration to addresses0x00/0x01.4.1.1.1.9BOARD_OFFSET:0x0009Instructs the fuel gauge to compute the coulomb counter offset with internal short and then without internal short applied across the SR inputs.The difference between the two measurements is the board offset. After a delay of approximately32seconds,this offset value is returned to addresses0x00/0x01and written to data flash.The coulomb counter offset is also written to data flash.The CONROL STATUS [BCA]is also set.The user must prevent any charge or discharge current from flowing during the process. This function is only available when the fuel gauge is UNSEALED.When SEALED,this command only reads back the board-offset value stored in data flash.4.1.1.1.10CC_INT_OFFSET:0x000AInstructs the fuel gauge to compute the coulomb counter offset with internal short applied across the SR inputs.The offset value is returned to addresses0x00/0x01after a delay of approximately16seconds. This function is only available when the fuel gauge is UNSEALED.When SEALED,this command only reads back the CC_INT_OFFSET value stored in data flash.4.1.1.1.11WRITE_OFFSET:0x000BControl data of0x000b causes the fuel gauge to write the coulomb counter offset to data flash.4.1.1.1.12SET_HIBERNATE:0x0011Instructs the fuel gauge to force the CONTROL_STATUS[HIBERNATE]bit to1.This allows the gauge to enter the HIBERNATE power mode after the transition to SLEEP power state is detected.The [HIBERNATE]bit is automatically cleared upon exiting from HIBERNATE mode.4.1.1.1.13CLEAR_HIBERNATE:0x0012Instructs the fuel gauge to force the CONTROL_STATUS[HIBERNATE]bit to0.This prevents the gauge from entering the HIBERNATE power mode after the transition to the SLEEP power state is detected.It can also be used to force the gauge out of HIBERNATE mode.4.1.1.1.14SEALED:0x0020Instructs the fuel gauge to transition from the UNSEALED state to the SEALED state.The fuel gauge must always be set to the SEALED state for use in end equipment.4.1.1.1.15IT_ENABLE:0x0021This command forces the fuel gauge to begin the Impedance Track™algorithm,sets the active UpdateStatus n location to0x01and causes the[VOK]and[QEN]flags to be set in the CONTROL_STATUS register.[VOK]is cleared if the voltages are not suitable for a Qmax update.Once set,[QEN]cannot be cleared.This command is only available when the fuel gauge is UNSEALED.4.1.1.1.16IF_CHECKSUM:0x0022This command instructs the fuel gauge to compute the instruction flash checksum.In UNSEALED mode, the checksum value is returned to addresses0x00/0x01.The checksum is not calculated in SEALED mode;however,the checksum value can still be read.4.1.1.1.17CAL_MODE:0x0040This command instructs the fuel gauge to enter calibration mode.This command is only available when the fuel gauge is UNSEALED.4.1.1.1.18RESET:0x0041This command instructs the fuel gauge to perform a full reset.This command is only available when the fuel gauge is UNSEALED.4.1.1.2AtRate():0x02/0x03The AtRate()read-/write-word function is the first half of a two-function command set used to set the AtRate value used in calculations made by the AtRateTimeToEmpty()function.The AtRate()units are in mA.The AtRate()value is a signed integer,with negative values interpreted as a discharge current value.The AtRateTimeToEmpty()function returns the predicted operating time at the AtRate value of discharge.The default value for AtRate()is zero and forces AtRate()to return65,535.Both the AtRate()and AtRateTimeToEmpty()commands must only be used in NORMAL mode.4.1.1.3AtRateTimeToEmpty():0x04/0x05This read-word function returns an unsigned integer value of the predicted remaining operating time if the battery is discharged at the AtRate()value in minutes with a range of0to65,534.A value of65,535 indicates AtRate()=0.The fuel gauge updates AtRateTimeToEmpty()within1s after the system sets the AtRate()value.The fuel gauge automatically updates AtRateTimeToEmpty()based on the AtRate() value every1s.Both the AtRate()and AtRateTimeToEmpty()commands must only be used in NORMAL mode.4.1.1.4Temperature():0x06/0x07This read-word function returns an unsigned integer value of the temperature in units of0.1K measured by the fuel gauge and has a range of0to6,553.5K.4.1.1.5Voltage():0x08/0x09This read-word function returns an unsigned integer value of the measured cell-pack voltage in mV with a range of0to6,000mV.4.1.1.6Flags():0x0a/0x0bThis read-word function returns the contents of the fuel-gauge status register,depicting the current operating status.。

APA文献引用书写格式

APA文献引用书写格式

APA文献引用书写格式论文中文献引用书写格式为求统一,须以2001年(第5版)美国心理学会(American Psychological Association,简称AP A)出版手册之格式为准。

而中文的论文格式要完全以英文的APA格式书写,确实有某些困难。

因此,在尽可能维持APA基本格式的原则之下,针对中文的格式有下列几点说明:1.内文及文末之引用文献,所有的出版年均以公元年代表达,以求统一。

2.内文之中文作者均以全名(姓与名)来书写,不像英文作者只使用姓而不使用名。

3.文末引用文献之中文姓名和(出版年)之间不再有句点(。

),以增加顺畅性。

4.文末引用文献之书名和期刊均以斜体字来表达,不再使用划底线的方式。

5.中文文献应使用中式(全角)的标点符号,而英文文献则使用西式(半角)的标点符号。

6.在西式标点符号后需空一格(space) 后才继续文字的书写。

7.本数据无法详述APA手册中所有的格式规定,仅提出国内较常用到的内容。

数据若有争议,仍得回归到英文的APA出版手册,以其格式为准。

8.本学会针对APA格式中文化的诠释及决定采用的中文格式,或许与其他体育运动之学术刊物有所不同,如有意见或建议,欢迎随时提出。

惠赐处:中华民国体育学会,电话:02-89317287,或e-mail:*******************.tw以下将分成二大部分来说明APA之文献引用书写格式:壹、内文引注格式;贰、文末引用文献格式。

壹、内文引注格式APA采用姓名-年代的内文引注格式,而不使用文献编号的书写方式。

一、单一作者格式:作者(出版年)(作者,出版年)范例:Smith (2001) 指出方硕一(1998)指出(Smith, 2001)(方硕一,1998)注:西式左括号的左侧与右括号的右侧均需各空一格。

二、两位作者格式:甲作者与乙作者(出版年)(注:中文用“与”,英文用“and”)(甲作者、乙作者,出版年)(注:中文用“、”,英文用“&”)范例:方硕一与余博四(2002)发现Roger and Smith (2001) 发现(方硕一、余博四,2002)(Roger & Smith, 2001)注:在上述英文引注中,若作者为两位,在书写完第一位作者姓氏后不加逗号(,),并在“&” 符号的前后各空一格。

《信息检索与应用》总复习题

《信息检索与应用》总复习题

《信息检索》期末复习一、单项选择题1、文摘、题录、目录等属于(B )。

A、一次文献B、二次文献C、零次文献D、三次文献2、从文献的(B )角度区分,可将文献分为印刷型、电子型文献。

A、内容公开次数 B 载体类型 C 出版类型 D 公开程度3、按照出版时间的先后,应将各个级别的文献排列成(C )。

A、三次文献、二次文献、一次文献B、一次文献、三次文献、二次文献C、一次文献、二次文献、三次文献D、二次文献、三次文献、一次文献4、手稿、私人笔记等属于(C )文献,辞典、手册等属于(C )文献。

A、一次,三次 B 零次、二次C、零次、三次 D 一次、二次5、逻辑“与”算符是用来组配(C)。

A、不同检索概念,用于扩大检索范围。

B、相近检索概念,扩大检索范围。

C、不同检索概念,用于缩小检索范围。

D.相近检索概念,缩小检索范围。

6、利用文献后面所附的参考文献进行检索的方法称为(A)A、追溯法B、直接法C、抽查法D 综合法7、如果检索结果过少,查全率很低,需要调整检索范围,此时调整检索策略的方法有(B )等。

A、用逻辑“与”或者逻辑“非”增加限制概念。

B.用逻辑”或“或截词增加同族概念。

C、用字段算符或年份增加辅助限制。

D、用”在结果中检索“增加限制条件。

8、根据国家相关标准,文献的定义是指“记录有关(C)的一切载体。

A、情报 B 、信息C、知识D、数据9、以作者本人取得的成果为依据而创作的论文、报告等,并经公开发表或出版的各种文献,称为(B )A、零次文献B、一次文献C、二次文献D、三次文献10、哪一种布尔逻辑运算符用于交叉概念或限定关系的组配?(A )A、逻辑与(AND)B、逻辑或(OR)C、逻辑非(NOT)D、逻辑与和逻辑非11、逻辑算符包括(D)算符。

A、逻辑“与”B、逻辑“或”C、逻辑“非”D、A、B和C12、事实检索包含检索课题(A )等内容。

A、背景知识、事件过程、人物机构B、相关文献、人物机构、统治数据C、事件过程、国外文献、国内文献D、国内文献、国外文献、统计数据13、区别于一般期刊论文或者教科书,参考工具书的突出特点是(C )。

ANALOG DEVICES AD9012 数据手册

ANALOG DEVICES AD9012 数据手册

REV. DInformation furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.aAD9012One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.Tel: 781/329-4700World Wide Web Site: Fax: 781/326-8703© Analog Devices, Inc., 1999High Speed 8-Bit TTL A/D ConverterGENERAL DESCRIPTIONThe AD9012 is an 8-bit, ultrahigh speed, analog-to-digital converter. The AD9012 is fabricated in an advanced bipolar process that allows operation at sampling rates up to one hun-dred megasamples/second. Functionally, the AD9012 is com-prised of 256 parallel comparator stages whose outputs are decoded to drive the TTL compatible output latches.The exceptionally wide large-signal analog input bandwidth of 160 MHz is due to an innovative comparator design and very close attention to device layout considerations. The wide input bandwidth of the AD9012 allows very accurate acquisition of high speed pulse inputs without an external track-and-hold. The comparator output decoding scheme minimizes false codes,which is critical to high speed linearity.The AD9012 is available in two grades: one with 0.5 LSB linear-ity and one with 0.75 LSB linearity. Both versions are offered inFEATURES100 MSPS Encode RateVery Low Input Capacitance—16 pF Low Power—1 WTTL Compatible OutputsMIL-STD-883 Compliant Versions Available APPLICATIONS Radar GuidanceDigital Oscilloscopes/ATE Equipment Laser/Radar Warning Receivers Digital RadioElectronic Warfare (ECM, ECCM, ESM)Communication/Signal IntelligenceFUNCTIONAL BLOCK DIAGRAMan industrial grade, –25°C to +85°C, packaged in a 28-lead DIP and a 28-lead JLCC. The military temperature range devices,–55°C to +125°C, are available in ceramic DIP and LCC pack-ages and are compliant to MIL-STD-883 Class B.The AD9012 is available in versions compliant with MIL-STD-883. Refer to the Analog Devices Military Products Databook or current AD9012/883B data sheet for detailed specifications.查询AD9012供应商AD9012–SPECIFICATIONSELECTRICAL CHARACTERISTICS (+V S = +5.0 V; –V S = –5.2 V; Differential Reference Voltage = 2.0 V; unless otherwise noted)Test AD9012AQ/AJ AD9012BQ/BJ AD9012SQ/SE AD9012TQ/TEParameter Temp Level Min Typ Max Min Typ Max Min Typ Max Min Typ Max Units RESOLUTION8888BitsDC ACCURACYDifferential Linearity+25°C I0.60.750.40.50.60.750.40.5LSBFull VI 1.00.75 1.00.75LSB Integral Linearity+25°C I0.6 1.00.40.50.6 1.00.40.5LSBFull VI 1.2 1.2 1.2 1.2LSB No Missing Codes Full VI GUARANTEED GUARANTEED GUARANTEED GUARANTEEDINITIAL OFFSET ERRORTop of Reference Ladder+25°C I715715715715mVFull VI18181818mV Bottom of Reference Ladder+25°C I610610610610mVFull VI13131313mV Offset Drift Coefficient Full V25252525µV/°C ANALOG INPUTInput Bias Current1+25°C I60200602006020060200µAFull VI200200200200µA Input Resistance+25°C I25200252002520025200kΩInput Capacitance+25°C III1618161816181618pF Large Signal Bandwidth2+25°C V160160160160MHz Analog Input Slew Rate3+25°C V440440440440V/µs REFERENCE INPUTReference Ladder Resistance+25°C VI4080110408011040801104080110ΩLadder Temperature Coefficient V0.250.250.250.25Ω/°C Reference Input Bandwidth+25°C V10101010MHz DYNAMIC PERFORMANCEConversion Rate+25°C I75100751007510075100MSPS Aperture Delay+25°C V 3.8 3.8 3.8 3.8ns Aperture Uncertainty (Jitter)+25°C V15151515ps Output Delay (t PD)4, 5+25°C I4 4.9114 4.9114 4.9114 4.911ns Transient Response6+25°C V8888ns Overvoltage Recovery Time7+25°C V8888ns Output Rise Time4+25°C I 6.68.0 6.68.0 6.68.0 6.68.0ns Output Fall Time4+25°C I 3.3 4.3 3.3 4.3 3.3 4.3 3.3 4.3ns Output Time Skew4, 8+25°C V 3.0 3.0 3.0 3.0ns ENCODE INPUTLogic “1” Voltage4Full VI 2.0 2.0 2.0 2.0V Logic “0” Voltage4Full VI0.80.80.80.8V Logic “1” Current Full VI250250250250µA Logic “0” Current Full VI400400400400µA Input Capacitance+25°C V 2.5 2.5 2.5 2.5pF Encode Pulsewidth (Low)9+25°C I 2.5 2.5 2.5 2.5ns Encode Pulsewidth (High)9+25°C I 2.5 2.5 2.5 2.5ns OVERFLOW INHIBIT INPUT0 V Input Current Full VI200250200250200250200250µAAC LINEARITY10Effective Bits11+25°C V7.57.57.57.5Bits In-Band Harmonicsdc to 1.23 MHz+25°C I4855485548554855dBc dc to 9.3 MHz+25°C V50505050dBc dc to 19.3 MHz+25°C V44444444dBc Signal-to-Noise Ratio12+25°C I4647.64647.64647.64647.6dBc Noise Power Ratio13+25°C V37373737dBc DIGITAL OUTPUTLogic “1” Voltage Full VI 2.4 2.4 2.4 2.4V Logic “0” Voltage Full VI0.40.40.40.4V POWER SUPPLY14Positive Supply Current (+5.0 V)+25°C I3345334533453345mAFull VI48484848mA Supply Current (–5.2 V)+25°C I152179152179152179152179mAFull VI191191191191mA Nominal Power Dissipation+25°C V955955955955mW Reference Ladder Dissipation+25°C V44444444mW Power Supply Rejection Ratio15+25°C I0.85 2.50.85 2.50.8 2.50.8 2.5mV/VREV. D–2–AD9012 CAUTIONESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD9012 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper E SD precautions are recommended to avoid performance degradation or loss of functionality.NOTES1Measured with Analog Input = 0 V.2Measured by FFT analysis where fundamental is –3 dBc.3Input slew rate derived from rise time (10% to 90%) of full-scale step input.4Outputs terminated with two equivalent ’LS00 type loads. (See load circuit.)5Measured from ENCODE into data out for LSB only.6For full-scale step input, 8-bit accuracy is attained in specified time.7Recovers to 8-bit accuracy in specified time, after 150% full-scale input overvoltage. 8Output time skew includes high-to-low and low-to-high transitions as well a sbit-to-bit time skew differences.9ENCODE signal rise/fall times should be less than 30 ns for normal operation.10Measured at 75 MSPS encode rate. Harmonic data based on worst case harmonics.11Analog input frequency = 1.23 MHz.12RMS signal to rms noise, including harmonics with 1.23 MHz. analog input signal.13******************.NoiseSourceis250mW(rms)from0.5MHzto 8 MHz.14Supplies should remain stable within ±5% for normal operation.15Measured at –5.2 V ± 5% and +5.0 V ± 5%.Specifications subject to change without notice.ORDERING GUIDETemperature Package Device Linearity Ranges Options* AD9012AQ0.75 LSB–25°C to +85°C Q-28AD9012BQ0.50 LSB–25°C to +85°C Q-28AD9012AJ0.75 LSB–25°C to +85°C J-28A AD9012BJ0.50 LSB–25°C to +85°C J-28A AD9012SQ0.75 LSB–55°C to +125°C Q-28AD9012SE0.75 LSB–55°C to +125°C E-28A AD9012TQ0.50 LSB–55°C to +125°C Q-28AD9012TE0.50 LSB–55°C to +125°C E-28A*E = Leadless Ceramic Chip Carrier; J = Ceramic Leaded Chip Carrier;Q = Cerdip.EXPLANATION OF TEST LEVELSTest LevelI–100% production tested.II–100% production tested at +25°C, and sample tested at specified temperatures. AC testing done on sample basis. III–Sample tested only.IV–Parameter is guaranteed by design and characterization testing.V–Parameter is a typical value only.VI–All devices are 100% production tested at +25°C. 100% production tested at temperature extremes for extendedtemperature devices; guaranteed by design andcharacterization testing for industrial devices.ABSOLUTE MAXIMUM RATINGS1Positive Supply Voltage (+V S) . . . . . . . . . . . . . . . . . . . . .+6 V Analog to Digital Supply Voltage Differential (–V S) . . . .0.5 V Negative Supply Voltage (–V S) . . . . . . . . . . . . . . . . . . . .–6 V Analog Input Voltage . . . . . . . . . . . . . . . . . . . . .–V S to +0.5 V ENCODE Input Voltage . . . . . . . . . . . . . . . . .–0.5 V to +5 V OVERFLOW INH Input Voltage . . . . . . . . . . .–5.2 V to 0 V Reference Input Voltage (+V REF –V REF)2 . . . .–3.5 V to +0.1 V Differential Reference Voltage . . . . . . . . . . . . . . . . . . . . .2.1 V Reference Midpoint Current . . . . . . . . . . . . . . . . . . . .±4 mA Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . .30 mA Operating Temperature RangeAD9012AQ/BQ/AJ/BJ . . . . . . . . . . . .. . . . –25°C to +85°C AD9012SE/SQ/TE/TQ . . . . . . . . . . . . . .–55°C to +125°C Storage Temperature Range . . . . . . . .. . . . –65°C to +150°C Junction Temperature3 . . . . . . . . . . . . . . . . . . . . . . . .+175°C Lead Soldering Temperature (10 sec) . . . . . . . . . . . . .+300°C NOTES1Absolute maximum ratings are limiting values, to be applied individually, and beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.2+VREF ≥ –V REF under all circumstances.3Maximum junction temperature (tJmax) should not exceed +175°C for ceramic packages, and +150°C for plastic packages:t J = PD (θJA) + t APD (θJC) + tcwherePD = power dissipationθJA = thermal impedance from junction to ambient (°C/W)θJC = thermal impedance from junction to case (°C/W)t A = ambient temperature (°C)t C = case temperature (°C)typical thermal impedances are:Ceramic DIP θJA = 42°C/W; θJC = 10°C/WCeramic LCC θJA = 50°C/W; θJC = 15°C/WJLCC θJA = 59°C/W; θJC= 15°C/W.Recommended Operating ConditionsInput VoltageParameter Min Nominal Max–V S–5.46–5.20–4.94+V S+4.75 5.00+5.25+V REF–V REF0.0 V+0.1–V REF–2.1–2.0+V REFAnalog Input–V REF+V REFFigure 1.Load CircuitREV. D–3–REV. DAD9012–4–PIN FUNCTION DESCRIPTIONSPin #NameDescription11DIGITAL +V SOne of three positive digital supply pins (nominally +5.0 V).12OVERFLOW INHOVERFLOW INHIBIT controls the data output coding for overvoltage inputs (AIN ≥ + V REF ).13 HYSTERESIS The Hysteresis control voltage varies the comparator hysteresis from 0 mV to 10 mV, for a change from –5.2 V to –2.2 V at the Hysteresis control pin.14+V REFThe most positive reference voltage for the internal resistor ladder.15ANALOG INPUT One of two analog input pins. Both analog input pins should be connected together.16ANALOG GROUND One of two analog ground pins. Both analog ground pins should be connected together.17ENCODE TTL level encode command input. ENCODE is rising edge sensitive.18DIGITAL +V SOne of three positive digital supply pins (nominally +5.0 V).19ANALOG GROUND One of two analog ground pins. Both analog ground pins should be connected together.10ANALOG INPUT One of two analog input pins. Both analog inputs should be connected together.11–V REF The most negative reference voltage for the internal resistor ladder.12REF MIDThe midpoint tap on the internal resistor ladder.13DIGITAL +V S One of three positive digital supply pins (nominally +5.0 V).14DIGITAL –V SOne of two negative digital supply pins (nominally –5.2 V). Both digital supply pins should be connected together.15D 1 (LSB)Digital data output. D 1 (LSB) is the least significant bit of the digital output word.16–19D 2–D 5Digital data output.20DIGITAL GROUND One of two digital ground pins. Both digital grounds pins should be connected together.21, 22ANALOG –V SOne of two negative analog supply pins (nominally –5.2 V). Both analog supply pins should be connected together.23DIGITAL GROUND One of two digital ground pins. Both digital ground pins should be connected together.24, 25D 6, D 7Digital data output.26D 8 (MSB)Digital data output D 8 (MSB) is the most significant bit of the digital output word.27OVERFLOW Overflow data output. Logic HIGH indicates an input overvoltage (V IN > + V REF ), ifOVERFLOW INHIBIT is enabled (overflow enabled, floating). See OVERFLOW INHIBIT.28DIGITAL –V SOne of two negative digital supply pins (nominally –5.2 V). Both digital supply pins should be connected together.ANALOG OVERFLOW ENABLED (FLOATING)OVERFLOW INHIBITED (GND)INPUT OF D l D 2 D 3 D 4 D 5 D 6 D 7 D 8OF D l D 2 D 3 D 4 D 5 D 6 D 7 D 8V IN ≥ + V REF 1 0 0 0 0 0 0 0 00 1 1 1 1 1 1 1 1V IN < + V REF0 X X X X X X X X0 X X X X X X X XPIN CONFIGURATIONSDIGITAL VS +REF MID –V REF ANALOG INPUTANALOG GROUND DIGITAL V S +DIGITAL V S +OVERFLOW INH HYSTERESIS+V REFENCODE ANALOG GROUNDANALOG INPUT D 1 (LSB)D 2D 3D 4D 5DIGITAL GROUND ANALOG V S –DIGITAL V S –OVERFLOW D 8 (MSB)D 7ANALOG V S –DIGITAL GROUNDD 6DIGITAL V S –D 7D 6DIGITAL GROUND ANALOG V S –ANALOG V S –D 5ANALOG INPUT ANALOG GROUND ENCODE DIGITAL V S +ANALOG INPUT –V REF +V R E FH Y S T E R E S I SO V E R F L O W I N H D I G I T A L V S +D I G I T A L V S –O V E R F L O WD 8 (M S B )R E F M I DD I G I T A L V S +D I G I T A L V S –D 1 (L S B )D 2D 3D 4DIGITAL GROUND ANALOG GROUNDREV. DAD9012–5–Figure 2.Timing DiagramENCODEDIGITAL OUTPUTSFigure 3.Input Output CircuitsDIE LAYOUT AND MECHANICAL INFORMATIONDie Dimensions . . . . . . . . . . . . . . . .111 × 123 × 15 (±2) mils Pad Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 × 4 mils Metalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Gold Backing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .None Substrate Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .–V S Passivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Nitride Die Attach . . . . . . . . . . . . . . . . . . . .Gold Eutectic (Ceramic) Epoxy (Plastic)Bond Wire . . . . . . . . . . . . . 1–1.3 mil Gold; Gold Ball BondingALL RESISTORS ؎ 5%ALL CAPACITORS ؎ 20%ALL SUPPLY VOLTAGES ؎ 5%AD1AD2–2.0VOPTION #1 (STATIC) AD1 = –2.0V; AD2 = +2.4V OPTION #2 (DYNAMIC) SEE WAVEFORMS0V –2V AD1AD2Figure 4.Burn-In DiagramREV. DAD9012–6–APPLICATION INFORMATIONThe AD9012 is compatible with all standard TTL logic fami-lies. However, to operate at the highest encode rates, the sup-porting logic around the AD9012 will need to be equally fast.Two possible choices are the AS and the ALS families. Which-ever of the TTL logic families is used, special care must be exercised to keep digital switching noise away from the analog circuits around the AD9012. The two most critical items are the digital supply lines and the digital ground return.The input capacitance of the AD9012 is an exceptionally low 16 pF. This allows the use of a wide range of input amplifiers,both hybrid and monolithic. To take full advantage of the 160 MHz input bandwidth of the AD9012, a hybrid amplifier like the AD9610/AD9611 will be required. For those applica-tions that do not require the full input bandwidth of the AD9012,some of the more traditional monolithic amplifiers, like the AD846, should work very well. Overall performance with mono-lithic amplifiers can be improved by inserting a 40 Ω resistor in series with the amplifier output.The output data is buffered through the TTL compatible out-put latches. In addition to the latch propagation delay (t PD ), all data is delayed by one clock cycle, before becoming available at the outputs. Both the analog-to-digital conversion cycle and the data transfer to the output latches are triggered on the rising edge of the TTL-compatible ENCODE signal (see timing diagram).The AD9012 also incorporates a HYSTERESIS control pin which provides from 0 mV to 10 mV of additional hysteresis in the comparator input stages. Adjustments in the HYSTERESIS control voltage may help to improve noise immunity and overall performance in harsh environments.The OVERFLOW INHIBIT pin of the AD9012 determines how the converter handles overrange inputs (AIN ≥ + V REF ). In the “enabled” state (floating at –5.2 V), the OVERFLOW out-put will be at logic HIGH and all other outputs will be at logic LOW for overrange inputs (return-to-zero operation). In the “inhibited” state (tied to ground), the OVERFLOW output will be at logic LOW for overrange inputs, and all other digital out-puts will be at logic HIGH (nonreturn-to-zero operation).The AD9012 provides outstanding error rate performance. This is due to tight control of comparator offset matching and a fault tolerant decoding stage. Additional improvements in error rate are possible through the addition of hysteresis (see HYSTER-ESIS control pin). This level of performance is extremely impor-tant in fault sensitive applications such as digital radio (QAM).Dramatic improvements in comparator design and construction give the AD9012 excellent dynamic characteristics, namely SNR (signal-to-noise ratio). The 160 MHz input bandwidth and low error rate performance give the AD9012 an SNR of 47 dB with a 1.23 MHz input. High SNR performance is particularly im-portant in broadcast video applications where signals may pass through the converter several times before the processing is complete. Pulse signature analysis, commonly performed in advanced radar receivers, is another area that is especially dependent on high quality dynamic performance.LAYOUT SUGGESTIONSDesigns using the AD9012, like all high-speed devices, must follow a few basic layout rules to insure optimum performance.Essentially, these guidelines are meant to avoid many of the problems associated with high-speed designs. The first require-ment is for a substantial ground plane around and under the AD9012. Separate ground plane areas for the digital and analog components may be useful, but the separate grounds should be connected together at the AD9012 to avoid the effects of “ground loop” currents.The second area that requires an extra degree of attention involves the three reference inputs, +V REF , REF MID , and –V REF .The +V REF input and the –V REF input should both be driven from a low impedance source (note that the +V REF input is typically tied to analog ground). A low drift amplifier should provide satisfactory results, even over an extended temperature range. Adjustments at the REF MID input may be useful in im-proving the integral linearity by correcting any reference ladder skews.The reference inputs should be adequately decoupled to ground through 0.1 µF chip capacitors to limit the effects of system noise on conversion accuracy. The power supply pins must also be decoupled to ground to improve noise immunity; 0.1 µF and 0.01 µF chip capacitors should be very effective.The analog input signal is brought into the AD9012 through two separate input pins. It is very important that the two input pins be driven symmetrically with equal length electrical connections. Otherwise, aperture delay errors may degrade converter performance at high frequencies.␮FTTL ENCODE INPUTFigure 5.Typical ApplicationREV. DAD9012–7–LINEARITY OUTPUT RECONSTRUCTEDFigure 6.Evaluation CircuitANALOG INPUT FREQUENCY – MHz651d B c605550454035301001070Figure 7.Dynamic PerformanceREV. DAD9012–8–OUTLINE DIMENSIONSDimensions shown in inches and (mm).C 1169c –0–8/99P R I N T E D I N U .S .A .28-Lead JLCC(J-28A)0.171 (4.34)0.019 (0.483)28-Lead Cerdip(Q-28)15؇0؇0.008 (0.203)MINLEAD NO. 1 IDENTIFIED BY DOT OR NOTCHLEADS ARE SOLDER OR TIN PLATED KOVAR OR ALLOY 4228-Terminal Leadless Chip Carrier(E-28A)1NOTES1THIS DIMENSION CONTROLS THE OVERALL PACKAGE THICKNESS.2APPLIES TO ALL FOUR SIDES.TERMINALS ARE GOLD PLATED OR SOLDER DIPPED.。

片式电阻器包封玻璃浆料的研究

片式电阻器包封玻璃浆料的研究

片式电阻器包封玻璃浆料的研究2~37第6卷第4期混奢擞电子技术!!:!竺!片式电阻器包封玻璃浆料的研究T卜,2…昆明青空属研究所曼I,f-,摘要论述片式电阻嚣的破璃包封浆料对电阻特性的髟响?通过国产楚墅与国外琥璃关蕾谒墨皇里曼包封玻璃浆科,di,9k AStudyontheEncapsulationGlassPasteforChipResistorsSongXingyiAbs‟ndThispaperdescribeseffectsoftheencapsulati onglasspasteonresis- tartc~characteristicsot”thechipresistors.Throughthecomparisontests∞the do-mesticglasspasteandthosefromabroad.itisdemonstratedthatthedomesticgl asspastec~f1.beperfectlyusedinintrodu~lproduet|oalines. Keywordschipresistor,eneapsuhtionglasspaste1前t1986年成都无线电四厂曾向我们提出片式电阻器用浆料国产化的设想,我们在原低温包封玻璃的基础上进行了片式电阻器的中温包封玻璃的研究,同时也进行了片式电阻器电阻浆料的研究.1987开始到该厂进行包封玻璃浆料与电阻浆料的试验,着重做与国外浆料的对比试验,取得了较好的结果.开始由于我们对片式电阻器的工艺条俘吃不透,因而研究中也出现了一些弯路,白花了不少时间.如为了得到耐酸而且釉面非常光亮的包封玻璃,差不多我们为此花去了半年多的时间.最后厂方告诉我们.他们不收蕾日期一1995.10-1726希望带光泽的黑玻璃釉面.因光泽太厉害, 目测质量时会使眼睛容易疲劳.还有电镀的预处理问题.由于当时不知道包封后的电阻还要在稀硫酸中进行活化处理,因而在研究过程中就没有考虑耐酸问题.玻璃从外观看,表面质量得到了厂方的好评,认为玻璃不会有问题.可是上生产线时,经稀硫酸活化处理后则黑釉光泽不见了,变成灰色玻璃,且附着力也变差,而且溶解物还会污染电镀液.困而这时不得不再反过来研究玻璃的耐酸问题,此问题基本于1988年8月得到解决.此外又出现一个新问题,即电阻器经玻璃包封后,与国外玻璃比较,阻值的变化较大.开始采用简单的单一氧化物作为着色剂,颜色与国外无差异,但包封后的阻值变化比国外大.经过研究,1989年4月采用复合.氧化物着色剂,玻璃包封后阻值增大? 问题终于得到解决.同时又查清了阻值的变化还与玻璃的酸碱度有关.与此同时,也对片式电阻器的电阻浆料进行了研究,井到厂进行试验.由于电阻浆料要适应片式电阻器的生产工艺,难度很大,技术复杂,每个阻值要求达到的指标多,阻值范围又大,最小阻值与最大阻值相差6~7个数量级,虽然这当中某几个阻值可能符合要求了,但另一些阻值又很难达到要求.所以片式电阻浆料的国产化问题尚待今后进一步研究解决,关于片式电阻器的材料国产化问题.作者已有文介绍.率课题能顺利完成与应用,要特别感谢成都无线电四厂,丹东无线电十八厂,四平半导体厂以及沧州无线电三厂.他们为我们进行了无偿的条件试验.2试驻与结果当玻璃主体成分定下之后,关键问题是推广与应用,在推广试验当中发现问题解决问题.不少问题是在推广试验过程中发现的,如耐酸问题,玻璃包封后阻值变化等问题.这些问翘是在实践中不断改进与提高的,这当中也包括有机载体的改进.由于片式电阻器本身工艺的复杂性,我们每次试验都是与国外玻璃浆料做平行试验,否则所得结果很难说明差异.经过反复试验,结果说明我们的片式电阻用的包封玻璃已达到或者巳接近国外包封玻璃的水平.2?1片式电阻器的I艺特点试验工作分别在昆明及国内有关工厂进行,在昆明进行一切试验条件尽量与工厂条件吻合,试验电阻器主要是从成都无线电四厂生产线上带回的t有的已激光调阻有的则未调阻,未激光调阻的电阻器在玻璃包封后,比经激光调阻的电阻器在包封后阻值变{干i意.70~m)‟干燥loo一125C.1O一15丹钟.干撰膜厚l6—2m}烧成蜂温85o‟C.9分钟,烧应膜厚9—1】m.一次玻璃印刷——1—9760A.200目,调(总厚7m)l干燥ti00~i25C.i0~15分钟.干燥膜厚l8~22mI烧成t蜂温BoOC.5分钟,挠成膜厚9~1l1.阻——擞光调阻不同阻值,根据精度的要求,选用最佳条件.27二璃卵捌——l一9B2.(黑色).2oo目I(总厚7曲)?{1--9821(螺色).20o茸l(总厚?7m)Ii干燥.100~125”C,1o一151分钟.干燥膜厚35~4【m.文宇玻璃印尉——各件,325目1‟总厚z709m);I干爆l100~125”C.10~15{分钟II烧盘.峰疆600‟~.5分钟一…烧戚腱厚21~24pm.一次分开f二极印lil——s一82.oI干燥I100~125”C.10—15分钟.干燥膜厚2O一3mI烧成;蜂温600℃,5分钟,烧成膜厚1O~15m.二次分开l电‟镀——镀镍.镀扞镉(镀铒)住友公司的片式电阻器的制造工艺是当前世界上比较标准的工艺,国内不少厂家往往根据自己的条件对工艺作了一些修改, 当然,有些修改对片式电阻质量也无防碍, 而且还简化了工艺.目前国内片式电阻的引进线.由于厂家不同,条件也不尽相同.下面就谈谈各厂之间的一些差异.成都无线电四厂:电阻烧成后高于lOOk0/口电阻,先印刷绿色一层玻璃烧结后激光调阻,调阻后再印刷二层包封玻璃. 低于lO.Okfi/口的阻值,电阻烧成后先调阻. 再印包封玻璃与文字玻璃烘干烧成.其余工艺基本与住友一致.电阻包封后要求两次烧结后△R&lt;±Io,一般iook~/口以上阻值变化ARs一5~一7,1okfl/f”]下一般为正变化.△R=3~7-一般情况包封玻璃对电阻包封后烧结时闻越长,阻值盎化越太.该厂烧结温度及工艺与住友一致.电镀前活化处理的硫酸为4.丹东无线电十八厂;所有工艺基本与住友一样,其是二层包封玻璃印副两次,以达到工艺要求的厚度.四平半导体厂:该厂工艺基本与住友一致.但包封玻璃的烧缩温度却提高50℃?即650℃烧成.提高烧结温度会给低阻带来不利影响.使阻值变化相应增大.从片式电阻器生产的工艺流程中可知,它有不少独特的地方:片式电阻的电极与一般的网络电阻的电极不一样.一般的阿络电阻的电掇都采用Ag—Pd电极浆料,且含钯量不低于5,最高钯含量又不超过2O,且印刷烧成一次就算完了,最多也就是烧结两次.而片式电阻器的电极部分采用二层,多数采用三层结构,这是片式电阻器的一大特征.初期的电阻器电极只有Ag~Pd一层.容易被焊料侵蚀.不得不低温短时问进行焊接作业.多层结构(多达三层)能防止焊料侵蚀,采用流动焊式浸焊可以稳定地进行焊接操作.第一层(底层)由于直接与电阻接触,使用膜层(表面)电阻比较低的Ag—Pd为材料.第二层作为防止银熔析在焊料中的阻挡层,镀以熔析少的锿,铜等金属.最上一层,镀锡或焊料.以保证可焊性. 片式电阻规定电极的可焊性和耐焊热性分别为23O℃5秒和270~C10秒,这与传统电阻器是相同的.片式电阻器,为了面朝下使用对的绝缘性,及在制造工艺和组装工艺中保护电阻表面.所以使用玻璃作保护层,也有使用环氧树脂作保护层,不过我国几条片式电阻的生产线皆使用玻璃作保护层,而网络电阻厂有部分使用环氡树脂作保护层.2?2玻璃包封莱轷在片式电阻器上的试骚这里主要介绍昆明做的玻璃包封试验?试验条件与工厂基本相仿,试验结果与数据处理列于表1~6.不同电阻值,经玻璃包封后烧结的次数与阻值的变纯规律是不一样的,5n电阻每重烧一次阻值升高一次,每次重饶近成倍变化,1.75kn阻值则不同,它铄重烧一次阻值变化率相对减小,而900k~1电阻.重蹙瞳值几乎不变化.以上规律不管是中13种牌号的玻璃包封皆如此(衷1)表1中,日玻璃对电酲包封烧结的次数与阻值变他的关系棱包封的玻璃牌号△R()△R()△R()电阻值(n)M5l203.g512..5l9,07SGM87024.BD1O.8816.5OSGM87033.5310.o5l5.B0M51201.7S一1.7S—1.34—0.S69GB7o21.S一】.BS一1.4璺—0.99S6;MB7O31.T秘【一2.1l一1.7B—1.:7M5l2.n踟±..2O一仉i毛O.躔sGMe7D2n蛳—n】五nS2一O.{5SG础7030.9一刁.20一n13D.∞说明=车文中蓟所谓前中,丑薮璃对比,串系指中国昆明蠹金藕所,丑幕指丑奉.oGl一一次包封玻璃,绿色.O62——二农包封玻璃,黑色.丑率薮璃浆科韵摔号M5120(OG2),M52‟oG1),M6o2O(OG1).中国戛嚼贵金曩所玻璃浆斜斡髀号,SGMg702COG1).SG~[gT03(OG2).△R】一△焉所列豹相对壹亿事数据,暂系六个敏据舶平均擅△R是指电阻经玻璃包封后600℃烧成的驵癌变化率,△Ri墨soD℃第一斑重烧后的阻值变化率,△R,是500”C第二跃重烧后柏驵值变化率,△即6O0℃计烧三次柏阻值相对变化率.以下各表△R豆△妁平均殖管系六十效据掳平均氇,萁物理涵义葡袭1.以下各表的试验数据凡未标明烧结温度皆系6oo℃烧锗29表2中,8玻璃不同烧结温度与阻值变化的关系玻璃牌号被包封的电匪值(n)烧结温度△R1△R2 平均最大最小平均最大最小M51:0M5120M5120SGMS7O2SGM8702 SGM8702 SGM8703 SGM8703 SGM8703 MS120M5120M5lZO SGM87O2 SGM8702 SGM8702 SGM8703 SGM8703 SGM8703 M5120M5l2Ohf5比4~M88o2 sGMe孛o2 SGM‟87o2 i尊+ SGM8703弓6M两3 910kr91ok plOk9l畦580600620580600620580500620580600620580600620600 680 580 …500 620 580 6.o 620 580 600 62O 2.Ol l2.66 26.84 3.04 l2.28 25.24 2.31 l2.19 O4225.65 1.72 l0.81 23.38 1.69 9.O9 24.04 —2.87 —0.25 0.78 —2.S3 —1.53 0.03 —2.68 一1.300.05 —0.5l ——0.33 0.96 —0.68 —0.26 —0.29 —0.40 —0.16 一O.47 3O 一一mmm眦毗佻m畦_二LLLL_二r二_二二三虬;:虹由表2看出.玻璃包封后不同温度烧结,其阻值的相对变化也不尽相同,对于低阻尤为明显.50电阻.即使温度相差2O℃其电阻值的相对变化的差异也是不能忽视的.当温度较高时其重烧后的阻值变化率也成倍变化,因而对于低阻玻璃包封的烧结温度要严格控制在600℃,由于端面涂银的烧结要求不能再降低烧结温度,否则再降低一点烧结温度更好.包封玻璃不同烧结温度对于1k0以上电阻古lMn电阻其阻值的相对变化率的差异是小的,甚至烧结温度略高,阻值相对变化率还要小一些.重烧后阻值也几乎不变.甩中,日玻璃包封电阻器,阻值相对变化规律基本是一致的.襄3中,日玻璃对不周电阻的包封试磕技包封的△Rl△R:玻璃牌号电阻值(f1)平均最大最小平均最大最小SGM87o28.5k9.0510.778.131S.01I7.2813.98SGM87038.5k9.489.778.9l15-3216.4214.10M51208.5k5.345.67s_I99.8310‟359.57SGM8702IM—0.35——0.83一o.14一1.14——1.52——0.89 SGM8703IM一I.99—2.74一o.56—2.5I—3.89一I.23M;120IM—0.17——0.27一O.04——1.03—1.1O——0.94 SGM87021.75k—1.8l—2.2l—0.58—1.54一2.44——0.3B SGM81.75k一1.93一2.31—1.59—1.57—1.91一1.14MS1201.7$k一1.71—1.99—1.42—1-20一1.45—0.98由表3看出,除个别阻值的变化略大外-大部分的电阻值经中,日不同玻璃的牌号包封后.阻值相对变化差异是不大的.表4中910kf~电阻中,日玻璃包封后,△R变化率接近,可是8.5kn的电阻有些特别,中,日三种玻璃包封后,△变化达30?除此之外其它三种电阻器经中日玻璃包封后电阻的相对变化率很接近.8?5kn电阻经包封后阻值变化太-也可能与此电阻原配方的材料选择及工艺不当有关.电阻包封后阻值相对变化率除与阻值太小及烧结温度有关外还与激光调阻的槽长短有关,如同一基片上计有七只电阻,阻值为60kf~,其中有五个电阻刻槽为L型槽,阻值变化皆为一1O~一12,有两只电阻刻槽为单直槽,阻值变化率为一3~一5.说明激光刻槽越长阻值变化越大,短则小.3l表4中日玻璃包封试验被包封的△RI△R2玻璃牌号平均最大最小电阻值(0)平均最大最小M512Oo.9Mo.2103,1n10”—0.75——0.88—062M52500.9M士o.5l——o.93o.18一o.67——1.42一O.20 SGM8703n9M士0.170.31——002——o.77—097——055M51208.5k4.3l4.534.O47567.847.20M525o8.5kl95921.3516.2329.oo31.5425.26sGM87038.5k8.849.7l8.1513.O114.56l1.92M5l20lM士o.30—o.780.I2——o.79—1.25—0.6lM5250lM—0.67——1.520.03—1.36—2.32—O.81SGM87∞1M—1.09—2.350.04一】7l—2.52——0.82M51201.75k一1.23——1.89—0.95一1.3l——1.88——1.0-1 M52501.75k—1.32—1.79O.O7一104——I.400.48SGM87031.75k—1.50—2.18——0..98一1.64—2.25—0.99 寰5中,日琏璃对慑咀色封试验被包封的△R1.△R2号砬靖鼻号电阻值(a)平均最大最小平均最大最小1M512O57.327.7l7.ogl5.98l6.2ll5.532M525055.755.885.5915.33l5.73l5.n3M523e55.‟76.064.99l3-5814.3‟713.03…sGM870255.185.894.74l3.42l4.04l309598‟/0355.0l5.794.6913.24l4.0212.956M51205l1.34l1.65l1.17l9.842O.2119.367SGM870359.4810.148.77l8.2l18.7117.80注1~5号电阻未经墩光调阻.6~7号电阻已激光调阻. 32?从表5中,日玻璃包封5,Q电阻结果看,SGM8702及SGM8703玻璃包封阻值变化率相对比日本玻璃变化小,不管是未调阻或是已调阻皆如此.由此还可看出激光调阻后的电阻变化较大.表6中,日玻璃对不同电阻值(已激光调阻)的包封试验被包封的△R1△R=玻璃牌号电阻值(f1)平均晟大最小平均最大最小M512O8.5k3.6914.243.058.77g.458.07M5250B.5k17.08L87114.9631.0834,9l27.79M52388.5k4.024.523.7710.38l0.839.96SGM87028.5k6.987.666,28l4.5516.07l2.89SGM87038.5k7.177.526.43l4.?2l5.26186,8M5l201M—0.83——1.31一O.5l一O.48—0l93—0.18M52501M一O.22一O.650.040.220.470.10M52381M一】.06—1.72一O.43—0.60一1.18——0.26 SGM8702IM——4.06——6.43—1.06—3.15—5.OS——0.85 1SGM87031M——1.67—3,44—0.33一I.25一3_05—0.15M51201.75k一1.10——1.26一D.89一O.49一ot6S一O.32 M52s01.75一饥l7——0.30—0_lO0.9S1.180.64M52381.75k—1.38一1.92—1.16—1.00一1.1g一1.74SGM87021.‟/51k-2.63—3.32—1.96—2.39一2.90一1.9翻盯Oil1.7k一1.14一1.27——1.00一ot86一l_04一仉72 由表6看出,8.5k的电阻采用日本的三种玻璃与我们的两种玻璃包封,其阻值的变化都很大.从而说明此电阻的本身特性不好.而1MO与1.75k,.q,电阻对于五种玻璃的包封,其阻值变化皆相近,也就是说此五种玻璃都可用于生产.表1~6试验数据,全在昆明贵金属所试验测得,试验条件尽量与片式电阻厂接近.所用片式电阻(调阻的或者是未调阻的)全是片式电阻厂带回的.电阻浆料全部为进口浆料.表7~1】所列试验数据是在国内片式电阻引进生产线上测得的,从下列各表试验数据结果可看出昆明贵金属所的片式电阻包封玻璃已达到或接近日本同类浆料的水平,完全可以应用于片式电阻器的生产.2-3玻璃包封浆料在片式电阻生产线上的试验-33?下列试验.是用昆明贵金属所的两种脾号的玻璃带到有关的生产线上与日本玻璃浆料进行对比试验.或者用昆明贵金屑所玻璃单独试验,以考核昆明贵金屑所玻璃是否达到与符合片式电阻的有关标准.袭7中,日玻璃对不周电阻的包封试验技包封的△RI△Rl玻璃葬号电阻值&lt;n)平均最大最小平均最太最小M5120962.352.462.253.66a.7ga.46M5120lok一】.72—2.02—1.Ol一1.22一1.29一o.23M$i203Sk—6.2l—6.92一5.7l—5.29—6.0l—4.96M512OlM一0.26—1.9SO1.9l0●20.‟M51201.7sk—0.09—o.270.021.602.121.32M6020963.Og3.660Sg3.明4.1口3.80M6020l0k一1.78—2.Ol一1.25一1.1a一1.35—0.76M602034k—5.97一7.2l—5.65—S.35—6.49—4.49M6o2OlM—1.93一7.7On40—035—6.18—0.50M60201.75k—0.40一0.830.12】.422540.803GM8埘953.003.622.Z23.624.163.22SC,M8‟/‟02l—1.88—2.79—1.20—1.18—1.89—0.63 SGM8‟/‟0234k—5.52—6.02—5,04—5.09—5.73—4.34 SC,M8‟/‟021M—4.42—10.58——0.80—2.47一B.09O.10 SGMS7O21.75k—0.72一1.12—0.48O.370.770.O2SC-M8703963.754.033.584.O14.153.88SGM8‟/‟03lO k—1.26—3.41一O.7O一1.8l—3.OO—0.87 SG姐B70335k—6.52—7.36一5.92一5.99一6.92—5.42SGMS7∞lM—2.46—7.66一O.3O2.724.921.4lSC,M87031.7——0.71—1.0G一0.440.450.66O.17注:试验时间t1991年4月25日?地点成都羌钱电四厂.34此表所列数据平均值皆为10~12个数据的平均值.由表7看,五种电阻值用四个牌号的玻璃包封,阻值的相对变化率,对于95~1,10kfl,35kfl,1Mfl差异都不大,很接近;而1.75kfl电阻,用昆贵所的SGM87132,SGM8703两种牌号的玻璃的包封比日本两种玻璃包封的变化率小得多,差不多为Et本包封玻璃的1/4变化率.因而对此阻值说-它优于日本包封玻璃.表8昆贯所SC-M8703对120kf~电阻包封结果(90只电阻) l21.6120123.O122.8l20.9lZ2.9124.2122.0l21.5121.6l23.812l-2l22.O124.5122.6l22.3122.3123—8123.2120.6 122.2123.6l19.8l22.3120.2l22.3120-1119.2l21.9120.{121.2119.4122.3121.2120.4ll7.912l一7116.8l1&amp;‟7122.7 12nll2l-ll21.8121.6l21.0121.1121.8121.6l21.0122.7114.012l-7122.7120.5l19.1121.1119.5122.2120.0122.1l21.0121.2ll9.2121.2l19.{120.4124.2121.BlZO.5l14.5 121.3116-5123.1l14.3124.3120.6116.6l22.0124.0l23.2l22.6121.9121.7123.6122.7l21.0120.8124.1l22.1124.0表9昆贯所SC‟M8703对22n电阻的包封结果22.O22.O21.921.921.821.920.822.021.821.7—21.721.821.921.921.921.921.921.821.621.521.922.521.521.620.521.721.92l+921.921.9—22.O21.921.721.521.621.321.921.821.921.921.921.922.022.122.021.821.721.922—021.822.O22.021.821.821.821.921.97.3.121.921.9—21.921.821.721.621.521.021.822.O21.g21.721.721.721.421.421.821.922.322.521.721.921.920.921.721.921.921.821.721.721.921.9—3S1991年4月25日在戚部无线电四厂还用SGM8703对120k~及22n两种电阻值进行包封试验.电阻包封后两次烧结其阻值变化见表8~9.按厂家要求120kfl的电阻经包封后凡阻值在115k~IZ5kfl之问都屑合格产品.要求成品台格率95.O,从试验结果看,试验共投9O只电阻,其中87只电阻在合格范圈,结果昆贵所的玻璃包封产品台格率是96.7?符台厂方要求?按厂家要求,220电阻经玻璃包封凡阻值在21.O~22.9n之闻都属台格产品,要求舍格率95,试验共投入9O只电阻,其中86只电阻在合格范围内.4只电阻超出范围.结果成品合格率为95.5.选到了厂家要求表lO昆贵所SGM87O3习电强包封试验序号Ro(kn)R1(k0)△R()序号.(kn)R:(kn)△R()l81.0677g.E一1.毛315甚2.1S881.?94一_..47 283.O6lB2.511—1.3D¨.37571.898一n右5 342.15741.5Il--I.乱j7柏.9457毒.8鲇一1.3J ●璺盘.l怎1.5Il一.48l言.5筋78.五确一1D7 暑暑t8●t1.蜘--1.耋暮a9.a.t57姐.7懿--I.稍…gjl舾E锕--1.21明7薯.蜘霭.17,一乳妇~,害5.{3OJ目臣姒一D.埘l79.霉El7叠.0酋I--J..07I.榴托.i盯一口._珀盘脏7皿8|.7霸—1.业,嚣0.3n相.锄--1.蝣2蓦丑..782鹤一.柚j口基3.番l2豇Ⅲ一1.订247B.1端了7.133--1.西U毫】■3殂.】,---1.3225髓.m87,3B5.一1.船12毫5.丑‟8l,噶—1.312五朝327璐.$61一0.商Bl3S1.穗I8t..研一乱鞠279o.瑚鹤.4gS—O.萼0lls1.耋2|ng睹一0.毫S.瑚93.9139106一O.蹦拄-试验对翔19毗牟5勇8~旦丑?地赢西平半导体广.——索包封前的龟强煎,R广一经玻璃包封君豹皂苴蠹.试驻电阻为lO0兄.为藏多着梧,赦疆牟取嚣努屯显敦鬻剜囊.t璃包封君650C奠站?嚣其龟短平均变毫率为△R】-36?()一一1.02,最大变他率~1.63最小变诧率为一D.o4,符合厂方要束.裹11SGM8703对lookN电阻包封卮经耐酸.电镀后的阻值变化宰{身号Rn(kIt)R,It)△R】()编号Ro(klt)R,(kn)△Rl(“)199.7599.71一n04ll99.oo98.97一o.032IO0.9610o.050.08121oi.731oi.73o.0o3‟98.g298.79—0.031399.o79g.o70oo497.8897.970.091498.3598.33一0.02599.9799.93——o.041599.2l99,23o.O261oi.2l1oi.19—0.o8l699.3399.330.00799.4499.35——o.091799.2299.3o一O.028103.961o3.97o.oi18loi.04lO1.03—0.oi91o0.421oo.4l—O.oIl998.2198.21o.oo1098.8998.86~o.03注;试验对闯:TL99~.年5月8~9日,地点:四平半导体厂Ro——电阻包封后的电阻值;R——电阻经耐酸,镀镍,镀铅一锡后的阻值;△R一试验后阻值的相对变化率. 从表¨试验结果看.昆贵所的包封玻璃经耐酸电镀后.阻值变化很小.完全符合厂方要求.3结论昆明贵金属所的片式电阻的包封玻璃经过反复多批的中,日包封玻璃对不同阻值的电阻包封对比试验.结果说明其玻璃特性基本达到或接近日本包封玻璃的水平.完全可以用于片式电阻的生产.1993年已销售片式电阻的包封玻璃40多公斤,未发现任何产品质量问题.采用昆贵所玻璃浆料.既节约了外汇又降低了生产成本.参考文献[1]文渊.国外片状元件发展动态.电子材料,1983第6辑(总第16辑)P1—9[2]佐藤忠士他,受动手7部品0新L, 动;.电子技术(日).V o!.24,No4,P54~57[3]日本片状元件制造商的生产和销售活动?电子材料,1983,第6辑(总第16 辑),P34—38[4]El本片状元件的标准化,电子材料.第6 辑(总第16辑),P39—51E5]本田义夫,抵抗器,电子技术(日),1983, No6,P53—56[6]采兴义,浅谈我国片式电阻浆料的国产化.电子元件与材料,1993,V.J.12,N04,P39—4O37。

射频功率放大器的多谐波失真特性建模

射频功率放大器的多谐波失真特性建模
Firstly, this dissertation summarizes the characters of the existed models for RFPA, for example, Physical Level Model, Circuit Level Model and Behavior Level Model and analyses the merits and shortcomings of these models. And then the dissertation systematically introduces the performance criterions of RFPA, including Output Power, Power Efficiency, Harmonic Distortion, Intermodulate Distortion and Band Range etc. With regard to the nonlinear characteristics of RFPA, this dissertation contrastively analyses the time-domain and frequencydomain methods of nonlinear analysis, introduces the fundamental principals of harmonic balance methods and the prerequisites for nonlinear behaviors analysis of RFPA.
最后,本文着重强调了上述多谐波失真特性模型广泛的应用价值。继而 为了验证理论的正确性,本文基于大信号网络分析仪设计了针对高电子迁移 率晶体管的建模实验,结合测量数据,运用不同的建模方法对晶体管建模。 最终,通过对比线性化散射函数和经典的散射参数所建立模型的优缺点,总 结该技术应用于射频功率放大器建模具有很大的可行性和广泛的应用前景。

在多站式集成电路制造室中的射频(RF)功率不均衡化[发明专利]

在多站式集成电路制造室中的射频(RF)功率不均衡化[发明专利]

专利名称:在多站式集成电路制造室中的射频(RF)功率不均衡化
专利类型:发明专利
发明人:杰里米·大卫·菲尔兹,阿维尼什·古普塔,陈俊豪,亚斯万斯·兰吉尼,弗兰克·洛伦·帕斯夸里
申请号:CN202080074587.4
申请日:20201023
公开号:CN114600223A
公开日:
20220607
专利内容由知识产权出版社提供
摘要:输送至多站式集成电路制造室的各个处理站的射频功率可进行调整,以使制造处理发生的速率和/或制造处理结果彼此对准。

在射频功率下的该调整可对输送至每一单个处理站的功率产生不均衡,该调整可通过调整RF分配网络的一个或多个电抗元件来实现。

申请人:朗姆研究公司
地址:美国加利福尼亚州
国籍:US
代理机构:上海胜康律师事务所
更多信息请下载全文后查看。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。






TT 8A2
IT S 2 E
图 1:b 2 01 应 用 电路 q5 2
V A ( 电池 电压) B T即 即为输 人 电压 。同步 P M 控 制器 的工作 W
频 率为 1 z・ 使过 滤 电感器 及 电容的体 积 降低 到最 小值 。 MH 井
单体锂 离 子 电池 充 电器
以此为 例 : 型 的蓝牙 耳机需 要 充 电电池 、电池充 电器 以及可 典

使 用 TP 6 × 计 电 源 时 需 要 考 虑 的 注 意 事 项 S 21 设 1
为内核 芯片 供 电的 18 CD 转 换器 。 .V D / C 由于 具有 体积 小 、 重 量轻 、 成本低 等主 要特点 , q 5 1 是上述 应用 的理想 解决 方 b 2 0 2
的 独特 的快速 响 应电压模 式控 制器方 案 , 以达到 良好的线 路及
负载稳压 , 而使 用较 小的陶 瓷输 入 、 出 电容 器 当负载 电 从 输
流 减 小肘 , 换器将 进人 节 电模 式 。 转
核心动 力( 一部分 ) 第
:b●I ●b - -

及D /C CD 转换器 l的市场 需求也 不断增 长 。 目的不仅仅 是缩 c 其
小便 携 式设备 的体 积 , 也是 为了集 合更 多的功 能井 提高 谚断 、 监控 、 控制 、 护 等方面 的性能 。 保


T S7 91 DO支持 向S rt Fa h P 9 8 RFL ta a Is @ 嵌人式 存储 器的升级 ( 3 ) P 0
锂离子电池充 电器的 、 高效开关 D / C转换器 I CD C
作 者 : ig i h o一 便携 式 电源管理 部 l Ln ynZ a 盏甬I程 师
介 绍
随著 便携 式 电源 管 理技 术的不 断发 展 , 高度 集成 的充 电器 以 对
最新一期糟彩内窖

了解井 比较 高速A C  ̄ 品说 明书 D B产 为 目前 的多轨 F G P A及D P 供 S 提
8 A I T T
IE 1 S T

高效 D / C转 换器 CD
该高 效 、同步 开关 D / C C D 转换 器 集 台 了功率 MOS E , 大 FT 最 可提 供 1 0 的 电流 。 q 5 1 可 提供 18 a D / C 换器 5 mA b 20 2 .V 9 C D 转 固 定 输 出 电 压 以及 0 7 至 4 2 .V . V范 围 内 的 可 调 节 输 出 电压
( 省板级 空间 ) D / C 节 的 CD 转换器 , 缩短 系统的设 计时 间 。 1 可 图
为b 5 的典 型应 用 电路 ( 用18 q2 01 2 采 .V、1 0 0 mA电源转 换器 与 50 0 mA线 性 电池 充 电器)。
b 50 2 q2 1
A da er pt
C 用于启 用或禁 用充 电过程 。 E
j 上 E S _ 嚣_ S V
V8 8
E— 一 N
F WM — P ——_ .
削: k 1n 0


R : k A 2 2 0 C
Char g
[8 C V 8 E
VB ^T
, ,
PG
BAT/ UT O

案 。 该单 芯 片采 用3 5 x 4 5 . . 毫米 QF 封 装 , 含一 个运 用 于 N 内 AC 适配 器及 US 的双 路 输入 线性 充 电器 , B 以及 一 个集 成F T E

高速 陷波滤 波器 ( o c i e ) n t hf t I r 如欲 下载该 版本 , 敬请 访问 : WWW . m/ a tc io a j
维普资讯
T X SI T U E A NS R ME T N S
A a o pl a o sJ r a n l g Ap i n o n c t i u
b 2 0 适用于蓝牙耳机的单芯片 、 q51 2: 具有 BRI F ’ E
b 2 02 q 5 1 结合 了功 率 MOS E 及 充 电控 制器 , FT 戟单 体锂 离 子
电池应 用而 言 , 可编 程 充 电 电流 最 高可 达5 0 其 0 mA 。既可 以 通 过AC 配器 也 可 以通过 U B , 电池充 电 井为 系统 供 电 , 适 S 为
欠 压锁定 电路 能够防 止转 换器 在较低 的输 人 电压 或低于预 设值 的情 况下打 开开 关或整 流器 MOS E 。 FT
在 P M - !期 间 ,转换 器采 用一 种具 备输 人 电压前 馈 功能 W Fi Z
且 电源 选 择 是 自动 完 成 的 。在 失 去 V c 源 的 情 况 下 , c 电
b 2 0 x 自动进 人睡眠模 式 , q 5 1将 井进行 反向 阻断保 护 , 以延长 电池 的使 用时间 。

b 2 0 2 电池充 电过 程 分为 三个 阶 段( 个阶 段 的 电流 及稳 q 51的 每 压精 度部非 常高 ) 预 充 电 、 : 恒定 电流充 电以及恒 定电压充 电 。 根 据最 小 电流 确定 停止 充电的 时间 。 内置 充 电计时器 能够 为停 止充 电提 供 更 多 的安 全 特性 。当电 池 电压低 于 内部 电压 闻 值 ( 即稳压点 以下 1 0 1 ) b 2 0 × 自动对 电池再充 电 。 0 mV] , q 5 1 将  ̄
L2 p :2 H
1 V1 0 0 mA B

S— W—、 ・ —’ 1 r^
FB


S A 及S A 2 T T1 T T 漏极 开路输 出 /P G可表 示充 电器及 电池的 各 种状 态 , 引脚 则 表示 是否 已连接 至AC 配器 。 而 适 数字输 人 /
相关文档
最新文档