最新中考数学模拟卷(8)

合集下载

2020年中考数学模拟试题(八)及答案解析

2020年中考数学模拟试题(八)及答案解析
在Rt△ABC中,∵∠DBA=90°,∠D=30°,AB=2 ,
∴BD= .
考点:解直角三角形.
9.某种药品经过两次降价,由每盒50元调至36元,若第二次降价的百分率是第一次的2倍.设第一次降价的百分率为x,由题意可列得方程:__________________________.
【答案】50(1-x)(1-2x)=36
10.若点A(﹣3,y1),B(1,y2)在抛物线 上,那么y1与y2的大小关系是:y1_____y2(填“>”“<”)
【答案】>.
【解析】
【分析】
判断出 的开口方向及对称轴,由二次函数图像上点的坐标特征可判断出答案.
【详解】
∵ ,
∴ ,
∴抛物线 开口向上;对称轴为y轴(即x=0);在y轴左侧;y随x的增大而减小;在y轴右侧;y随x的增大而增大
绝密★启用前
2020年中考数学模拟试题(八)
学校:___________姓名:___________班级:___________考号:___________
题号



总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
评卷人
得分
一、选择题(本大题共6题,每题4分,满分24分。下列各题的四个选项中,有且只有一个选项是正确的)
考点:1.坡度;2.勾股定理.
8.如图,将一副三角板按图中方式叠放,BC=4,那么BD=
【答案】 .
【解析】
试题分析:先解等腰直角三角形ABC,求出AB的长,再解直角三角形ABD,即可求出BD.
试题解析:在Rt△ABC中,∵∠BAC=90°,∠C=45°,BC=4,

深圳市中考数学模拟试卷(八)含答案解析

深圳市中考数学模拟试卷(八)含答案解析

广东省深圳市中考数学模拟试卷(八)一、选择题.(本题共10小题,每小题3分,共30分,在每小题所给出的选项中,只有一项符合题目要求)1.2的倒数是()A.B.﹣C.2 D.﹣22.12月13日,嫦娥二号成功飞抵距地球约700万公里远的深空,7 000 000用科学记数法表示为()A.7×105B.7×106C.70×106D.7×1073.如图,OA⊥OB,若∠1=40°,则∠2的度数是()A.20° B.40°C.50°D.60°4.下列立体图形中,俯视图是正方形的是()A.B.C.D.5.二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是()A.(1,3)B.(﹣1,3) C.(1,﹣3) D.(﹣1,﹣3)6.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是()班级1班2班3班4班5班6班人数52 60 62 54 58 62A.极差是40 B.众数是60 C.平均数是58 D.中位数是587.已知A(﹣1,y1),B(2,y2)两点在双曲线y=上,且 y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m>﹣D.m<﹣8.圆锥底面圆的半径为3cm,其侧面展开图是半圆,则圆锥母线长为()A.3cm B.6cm C.9cm D.12cm9.△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是()A.csinA=a B.bcosB=c C.atanA=b D.ctanB=b10.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.二.填空题.(本大题共6小题,每小题4分,共24分)11.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=.12.从1,2,3这三个数字中任意取出两个不同的数字,则取出的两个数字都是奇数的概率是.13.一次函数y=kx+1的图象经过(1,2),则反比例函数的图象经过点(2,).14.点P在线段AB的垂直平分线上,PA=7,则PB=.15.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为.16.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为.三.解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:|﹣2|+﹣4sin45°﹣1﹣2.18.化简:÷(1﹣).19.如图:已知D、E分别在AB、AC上,AB=AC,∠B=∠C,求证:BE=CD.四、解答题(二)(本大题3小题,每小题7分,共21分)20.为响应我市“中国梦”•“宜宾梦”主题教育活动,某中学在全校学生中开展了以“中国梦•我的梦”为主题的征文比赛,评选出一、二、三等奖和优秀奖.小明同学根据获奖结果,绘制成如图所示的统计表和数学统计图.等级频数频率一等奖 a 0.1二等奖10 0.2三等奖 b 0.4优秀奖15 0.3请你根据以上图表提供的信息,解答下列问题:(1)a=,b=,n=.(2)学校决定在获得一等奖的作者中,随机推荐两名作者代表学校参加市级比赛,其中王梦、李刚都获得一等奖,请用画树状图或列表的方法,求恰好选中这二人的概率.21.4月20日,我省芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?生产任务是多少顶帐篷?22.宜宾是国家级历史文化名城,大观楼是标志性建筑之一(如图①).喜爱数学实践活动的小伟查资料得知:大观楼始建于明代(一说是唐代韦皋所建),后毁于兵火,乾隆乙酉年(1765年)重建,它是我国目前现存最高大、最古老的楼阁之一.小伟决定用自己所学习的知识测量大观楼的高度.如图②,他利用测角仪站在B处测得大观楼最高点P的仰角为45°,又前进了12米到达A处,在A处测得P的仰角为60°.请你帮助小伟算算大观楼的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABFE是菱形.24.数学活动﹣﹣求重叠部分的面积.问题情境:数学活动课上,老师出示了一个问题:如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点C.求重叠部分(△DCG)的面积.(1)思考:请解答老师提出的问题.(2)合作交流:“希望”小组受此问题的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,求出重叠部分(△DGH)的面积,请写出解答过程.(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF绕点D旋转,再提出一个求重叠部分面积的问题.“爱心”小组提出的问题是:如图3,将△DEF绕点D旋转,DE,DF分别交AC于点M,N,使DM=MN,求重叠部分(△DMN)的面积.任务:请解决“爱心”小组所提出的问题,直接写出△DMN的面积是.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0),经过点A和x轴正半轴上的点B,AO=OB=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连接OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.广东省深圳市中考数学模拟试卷(八)参考答案与试题解析一、选择题.(本题共10小题,每小题3分,共30分,在每小题所给出的选项中,只有一项符合题目要求)1.2的倒数是()A.B.﹣C.2 D.﹣2【考点】倒数.【分析】根据倒数的概念求解.【解答】解:2的倒数是.故选A.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.12月13日,嫦娥二号成功飞抵距地球约700万公里远的深空,7 000 000用科学记数法表示为()A.7×105B.7×106C.70×106D.7×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于7 000 000有7位,所以可以确定n=7﹣1=6.【解答】解:7 000 000=7×106.故选B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.如图,OA⊥OB,若∠1=40°,则∠2的度数是()A.20° B.40°C.50°D.60°【考点】余角和补角.【专题】计算题.【分析】根据互余两角之和为90°即可求解.【解答】解:∵OA⊥OB,∠1=40°,∴∠2=90°﹣∠1=90°﹣40°=50°.故选C.【点评】本题考查了余角的知识,属于基础题,掌握互余两角之和等于90°是解答本题的关键.4.下列立体图形中,俯视图是正方形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解;A、正方体的俯视图是正方形,故A正确;B、圆柱的俯视图是圆,故B错误;C、三棱锥的俯视图是三角形,故C错误;D、圆锥的俯视图是圆,故D错误,故选:A.【点评】本题考查了简单几何体的三视图,从上面看得到的图形是俯视图.5.二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标是()A.(1,3)B.(﹣1,3) C.(1,﹣3) D.(﹣1,﹣3)【考点】二次函数的性质.【分析】根据二次函数顶点式解析式写出顶点坐标即可.【解答】解:二次函数y=﹣2(x﹣1)2+3的图象的顶点坐标为(1,3).故选A.【点评】本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.6.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是()班级1班2班3班4班5班6班人数52 60 62 54 58 62A.极差是40 B.众数是60 C.平均数是58 D.中位数是58【考点】众数;算术平均数;中位数;极差.【分析】分别计算该组数据的众数、平均数、中位数及极差后,选择正确的答案即可.【解答】解:A.极差是62﹣52=10,故此选项错误;B.62出现了2次,最多,所以众数为62,故此选项错误;C. =(52+60+62+54+58+62)÷6=58;故此选项正确;D.∵6个数据按大小排列后为:52,54,58,60,62,62;∴中位数为:(60+58)÷2=59;故此选项错误;故选:C.【点评】此题主要考查了平均数、众数、中位数及极差的知识,解题时分别计算出众数、中位数、平均数及极差后找到正确的选项即可.7.已知A(﹣1,y1),B(2,y2)两点在双曲线y=上,且 y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m>﹣D.m<﹣【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】将A(﹣1,y1),B(2,y2)两点分别代入双曲线y=,求出 y1与y2的表达式,再根据 y1>y2则列不等式即可解答.【解答】解:将A(﹣1,y1),B(2,y2)两点分别代入双曲线y=得,y1=﹣2m﹣3,y2=,∵y1>y2,∴﹣2m﹣3>,解得m<﹣,故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,要知道,反比例函数图象上的点符合函数解析式.8.圆锥底面圆的半径为3cm,其侧面展开图是半圆,则圆锥母线长为()A.3cm B.6cm C.9cm D.12cm【考点】圆锥的计算.【专题】压轴题.【分析】首先求得圆锥的底面周长,然后根据圆的周长公式即可求得母线长.【解答】解:圆锥的底面周长是:6πcm,设母线长是l,则lπ=6π,解得:l=6.故选B.【点评】考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.9.△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是()A.csinA=a B.bcosB=c C.atanA=b D.ctanB=b【考点】勾股定理的逆定理;锐角三角函数的定义.【分析】由于a2+b2=c2,根据勾股定理的逆定理得到△ABC是直角三角形,且∠C=90°,再根据锐角三角函数的定义即可得到正确选项.【解答】解:∵a2+b2=c2,∴△ABC是直角三角形,且∠C=90°.A、sinA=,则csinA=a.故本选项正确;B、cosB=,则cosBc=a.故本选项错误;C、tanA=,则=b.故本选项错误;D、tanB=,则atanB=b.故本选项错误.故选A.【点评】本题考查了锐角三角函数的定义和勾股定理的逆定理.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.10.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.【考点】二次函数的图象;正比例函数的图象.【专题】压轴题.【分析】根据正比例函数图象的性质确定m<0,则二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴.【解答】解:∵正比例函数y=mx(m≠0),y随x的增大而减小,∴该正比例函数图象经过第二、四象限,且m<0.∴二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴.综上所述,符合题意的只有A选项.故选A.【点评】本题考查了二次函数图象、正比例函数图象.利用正比例函数的性质,推知m<0是解题的突破口.二.填空题.(本大题共6小题,每小题4分,共24分)11.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=80°.【考点】圆周角定理;垂径定理.【分析】根据垂径定理可得点B是中点,由圆周角定理可得∠BOD=2∠BAC,继而得出答案.【解答】解:∵,⊙O的直径AB与弦CD垂直,∴=,∴∠BOD=2∠BAC=80°.故答案为:80°.【点评】此题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.12.从1,2,3这三个数字中任意取出两个不同的数字,则取出的两个数字都是奇数的概率是.【考点】列表法与树状图法.【专题】压轴题.【分析】首先列出树状图,可以直观的看出总共有几种情况,再找出都是奇数的情况,根据概率公式进行计算即可.【解答】解:如图所示:取出的两个数字都是奇数的概率是: =,故答案为:.【点评】此题主要考查了画树状图,以及概率公式,关键是正确画出树状图.13.一次函数y=kx+1的图象经过(1,2),则反比例函数的图象经过点(2,).【考点】反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征.【专题】压轴题.【分析】把点(1,2)代入一次函数解析式求得k的值.然后利用反比例函数图象上点的坐标特征来填空.【解答】解:∵一次函数y=kx+1的图象经过(1,2),∴2=k+1,解得,k=1.则反比例函数解析式为y=,∴当x=2时,y=.故答案是:.【点评】本题考查了一次函数、反比例函数图象上点的坐标特征.利用待定系数法求得一次函数解析式是解题的关键.14.点P在线段AB的垂直平分线上,PA=7,则PB=7.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质得出PA=PB,代入即可求出答案.【解答】解:∵点P在线段AB的垂直平分线上,PA=7,∴PB=PA=7,故答案为:7.【点评】本题考查了对线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.15.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为(3,2).【考点】垂径定理;坐标与图形性质;勾股定理.【专题】压轴题;探究型.【分析】过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.【解答】解:过点P作PD⊥x轴于点D,连接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中,∵OP=,OD=3,∴PD===2,∴P(3,2).故答案为:(3,2).【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为20.【考点】菱形的判定与性质;直角三角形斜边上的中线;勾股定理.【专题】压轴题.【分析】首先可判断四边形BGFD是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD,则可判断四边形BGFD是菱形,设GF=x,则AF=13﹣x,AC=2x,在Rt△ACF中利用勾股定理可求出x的值.【解答】解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,∴BD=DF=AC,∴四边形BGFD是菱形,设GF=x,则AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,故四边形BDFG的周长=4GF=20.故答案为:20.【点评】本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质,解答本题的关键是判断出四边形BGFD是菱形.三.解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:|﹣2|+﹣4sin45°﹣1﹣2.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用绝对值的代数意义化简,第二项化为最简二次根式,第三项利用特殊角的三角函数值计算,最后一项利用负指数幂法则计算即可得到结果.【解答】解:原式=2+2﹣4×﹣1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.化简:÷(1﹣).【考点】分式的混合运算.【分析】先因式分解再约分求解即可.【解答】解:÷(1﹣)=×,=.【点评】本题主要考查了分式的混合运算,解题的关键是熟记因式分解的几种方法.19.如图:已知D、E分别在AB、AC上,AB=AC,∠B=∠C,求证:BE=CD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】要证明BE=CD,把BE与CD分别放在两三角形中,证明两三角形全等即可得到,而证明两三角形全等需要三个条件,题中已知一对边和一对角对应相等,观察图形可得出一对公共角,进而利用ASA可得出三角形ABE与三角形ACD全等,利用全等三角形的对应边相等可得证.【解答】证明:在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),∴BE=CD(全等三角形的对应边相等).【点评】此题考查了全等三角形的判定与性质,全等三角形的判定方法为:SSS;SAS;ASA;AAS;HL(直角三角形判定全等的方法),常常利用三角形的全等来解决线段或角相等的问题,在证明三角形全等时,要注意公共角及公共边,对顶角等隐含条件的运用.四、解答题(二)(本大题3小题,每小题7分,共21分)20.为响应我市“中国梦”•“宜宾梦”主题教育活动,某中学在全校学生中开展了以“中国梦•我的梦”为主题的征文比赛,评选出一、二、三等奖和优秀奖.小明同学根据获奖结果,绘制成如图所示的统计表和数学统计图.等级频数频率一等奖 a 0.1二等奖10 0.2三等奖 b 0.4优秀奖15 0.3请你根据以上图表提供的信息,解答下列问题:(1)a=5,b=20,n=144.(2)学校决定在获得一等奖的作者中,随机推荐两名作者代表学校参加市级比赛,其中王梦、李刚都获得一等奖,请用画树状图或列表的方法,求恰好选中这二人的概率.【考点】列表法与树状图法;频数(率)分布表;扇形统计图.【专题】图表型.【分析】(1)首先利用频数、频率之间的关系求得参赛人数,然后乘以一等奖的频率即可求得a 值,乘以三等奖的频率即可求得b值,用三等奖的频率乘以360°即可求得n值;(2)列表后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【解答】解:(1)观察统计表知,二等奖的有10人,频率为0.2,故参赛的总人数为10÷0.2=50人,a=50×0.1=5人,b=50×0.4=20.n=0.4×360°=144°,故答案为:5,20,144;(2)列表得:A B C 王李A ﹣AB AC A王A李B BA ﹣BC B王B李C CA CB ﹣C王C李王王A 王B 王C ﹣王李李李A 李B 李C 李王﹣∵共有20种等可能的情况,恰好是王梦、李刚的有2种情况,∴恰好选中王梦和李刚两位同学的概率P==.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.4月20日,我省芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?生产任务是多少顶帐篷?【考点】二元一次方程组的应用.【专题】应用题.【分析】设规定时间为x天,生产任务是y顶帐篷,根据不提速在规定时间内只能完成任务的90%,即提速后刚好提前一天完成任务,可得出方程组,解出即可.【解答】解:设规定时间为x天,生产任务是y顶帐篷,由题意得,,解得:.答:规定时间是6天,生产任务是800顶帐篷.【点评】本题考查了二元一次方程组的应用,解答本题的关键是仔细审题,设出未知数,利用等量关系得出方程组,难度一般.22.宜宾是国家级历史文化名城,大观楼是标志性建筑之一(如图①).喜爱数学实践活动的小伟查资料得知:大观楼始建于明代(一说是唐代韦皋所建),后毁于兵火,乾隆乙酉年(1765年)重建,它是我国目前现存最高大、最古老的楼阁之一.小伟决定用自己所学习的知识测量大观楼的高度.如图②,他利用测角仪站在B处测得大观楼最高点P的仰角为45°,又前进了12米到达A处,在A处测得P的仰角为60°.请你帮助小伟算算大观楼的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).【考点】解直角三角形的应用-仰角俯角问题.【专题】应用题.【分析】设大观楼的高OP=x,在Rt△POB中表示出OB,在Rt△POA中表示出OA,再由AB=12米,可得出方程,解出即可得出答案.【解答】解:设大观楼的高OP=x,在Rt△POB中,∠OBP=45°,则OB=OP=x,在Rt△POA中,∠OAP=60°,则OA==x,由题意得,AB=OB﹣OA=12m,即x﹣x=12,解得:x=18+6,故大观楼的高度OP=18+6≈28(米).答:大观楼的高度约为28米.【点评】本题考查了解直角三角形的应用,要求学生能借助仰角构造直角三角形并解直角三角形,注意方程思想的运用.五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,△ABC中,AB=AC,∠BAC=40°,将△ABC绕点A按逆时针方向旋转100°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数;(3)求证:四边形ABFE是菱形.【考点】全等三角形的判定与性质;菱形的判定;旋转的性质.【专题】证明题.【分析】(1)根据旋转角求出∠BAD=∠CAE,然后利用“边角边”证明△ABD和△ACE全等.(2)根据全等三角形对应角相等,得出∠ACE=∠ABD,即可求得.(3)根据对角相等的四边形是平行四边形,可证得四边形ABFE是平行四边形,然后依据邻边相等的平行四边形是菱形,即可证得.【解答】(1)证明:∵△ABC绕点A按逆时针方向旋转100°,∴∠BAC=∠DAE=40°,∴∠BAD=∠CAE=100°,又∵AB=AC,∴AB=AC=AD=AE,在△ABD与△ACE中∴△ABD≌△ACE(SAS).(2)解:∵∠CAE=100°,AC=AE,∴∠ACE=(180°﹣∠CAE)=(180°﹣100°)=40°;(3)证明:∵∠BAD=∠CAE=100°AB=AC=AD=AE,∴∠ABD=∠ADB=∠ACE=∠AEC=40°.∵∠BAE=∠BAD+∠DAE=140°,∴∠BFE=360°﹣∠BAE﹣∠ABD﹣∠AEC=140°,∴∠BAE=∠BFE,∴四边形ABFE是平行四边形,∵AB=AE,∴平行四边形ABFE是菱形.【点评】此题考查了全等三角形的判定与性质,等腰三角形的性质、旋转的性质以及菱形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.24.数学活动﹣﹣求重叠部分的面积.问题情境:数学活动课上,老师出示了一个问题:如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点C.求重叠部分(△DCG)的面积.(1)思考:请解答老师提出的问题.(2)合作交流:“希望”小组受此问题的启发,将△DEF绕点D旋转,使DE⊥AB交AC于点H,DF交AC于点G,如图2,求出重叠部分(△DGH)的面积,请写出解答过程.(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF绕点D旋转,再提出一个求重叠部分面积的问题.“爱心”小组提出的问题是:如图3,将△DEF绕点D旋转,DE,DF分别交AC于点M,N,使DM=MN,求重叠部分(△DMN)的面积.任务:请解决“爱心”小组所提出的问题,直接写出△DMN的面积是.【考点】几何变换综合题.【分析】(1)确定点G为AC的中点,从而△ADC为等腰三角形,其底边AC=8,底边上的高GD=BC=3,从而面积可求;(2)本问解法有多种,解答中提供了三种不同的解法.基本思路是利用相似三角形、勾股定理求解;(3)对于爱心小组提出的问题,如答图4所示,作辅助线,利用相似三角形、勾股定理、等腰三角形的性质,列方程求解.【解答】解:(1)【思考】∵∠ACB=90°,D是AB的中点,∴DC=DA=DB,∴∠B=∠DCB.又∵△ABC≌△FDE,∴∠FDE=∠B.∴∠FDE=∠DCB,∴DG∥BC.∴∠AGD=∠ACB=90°,∴DG⊥AC.又∵DC=DA,∴G是AC的中点,∴CG=AC=×8=4,DG=BC=×6=3,∴S△DGC=CG•DG=×4×3=6.(2)【合作交流】如下图所示:∵△ABC≌△FDE,∴∠B=∠1.∵∠C=90°,ED⊥AB,∴∠A+∠B=90°,∠A+∠2=90°,∴∠B=∠2,∴∠1=∠2,∴GH=GD.∵∠A+∠2=90°,∠1+∠3=90°,∴∠A=∠3,∴AG=GD,∴AG=GH,即点G为AH的中点.在Rt△ABC中,AB===10,∵D是AB中点,∴AD=AB=5.在△ADH与△ACB中,∵∠A=∠A,∠ADH=∠ACB=90°,∴△ADH∽△ACB,∴,即,解得DH=,∴S△DGH=S△ADH=××DH•AD=××5=.(3)【提出问题】解决“希望”小组提出的问题.如答图4,过点D作DK⊥AC于点K,则DK∥BC,又∵点D为AB中点,∴DK=BC=3.∵DM=MN,∴∠MND=∠MDN,由(2)可知∠MDN=∠B,∴∠MND=∠B,又∵∠DKN=∠C=90°,∴△DKN∽△ACB,∴,即,得KN=.设DM=MN=x,则MK=x﹣.在Rt△DMK中,由勾股定理得:MK2+DK2=MD2,即:(x﹣)2+32=x2,解得x=,∴S△DMN=MN•DK=××3═.【点评】本题是几何综合题,考查了相似三角形、全等三角形、等腰三角形、勾股定理、图形面积计算、解方程等知识点.题干信息量大,篇幅较长,需要认真读题,弄清题意与作答要求.试题以图形旋转为背景,在旋转过程中,重叠图形的形状与面积不断发生变化,需要灵活运用多种知识予以解决,有利于培养同学们的研究与探索精神,激发学习数学的兴趣,是一道好题.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0),经过点A和x轴正半轴上的点B,AO=OB=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)连接OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.【考点】二次函数综合题.【专题】压轴题.【分析】(1)根据AO=OB=2,∠AOB=120°,求出A点坐标,以及B点坐标,进而利用待定系数法求二次函数解析式;(2)根据(1)中解析式求出M点坐标,再利用锐角三角函数关系求出∠FOM=30°,进而得出答案;(3)分别根据当△ABC1∽△AOM以及当△C2BA∽△AOM时,利用相似三角形的性质求出C点坐标即可.【解答】解:(1)过点A作AE⊥y轴于点E,∵AO=OB=2,∠AOB=120°,∴∠AOE=30°,∴OE=,AE=1,∴A点坐标为:(﹣1,),B点坐标为:(2,0),将两点代入y=ax2+bx得:,解得:,∴抛物线的表达式为:y=x2﹣x;(2)过点M作MF⊥OB于点F,∵y=x2﹣x=(x2﹣2x)=(x2﹣2x+1﹣1)=(x﹣1)2﹣,∴M点坐标为:(1,﹣),∴tan∠FOM==,∴∠FOM=30°,∴∠AOM=30°+120°=150°;(3)当点C在x轴负半轴上时,则∠BAC=150°,而∠ABC=30°,此时∠C=0°,故此种情况不存在;当点C在x轴正半轴上时,∵AO=OB=2,∠AOB=120°,∴∠ABO=∠OAB=30°,∴AB=2EO=2,当△ABC1∽△AOM,∴=,∵MO==,∴=,解得:BC1=2,∴OC1=4,∴C1的坐标为:(4,0);当△C2BA∽△AOM,∴=,∴=,解得:BC2=6,∴OC2=8,∴C2的坐标为:(8,0).综上所述,△ABC与△AOM相似时,点C的坐标为:(4,0)或(8,0).【点评】此题主要考查了锐角三角函数的应用以及待定系数法求二次函数解析式和相似三角形的性质等知识,利用分类讨论思想以及数形结合得出是解题关键.。

2020年中考数学模拟试题(八)有答案

2020年中考数学模拟试题(八)有答案

2020年中考模拟试题(八)数学注意事项:1. 本试卷共8页,26个小题,满分为120分,考试时间为120分钟。

2. 根据阅卷需要,本试卷中的所有试题均按要求在答题卡上作答,答在本试卷上的答案无效。

3. 考试结束后,将本试卷保管好并将答题卡上交。

一、选择题(本大题包括10个小题,每小题3分,共30分,每小题只有一个正确选项,请在答题卡上将代表正确答案的字母用2B铅笔涂黑)1.下列各数,最小的数是()A.﹣2020B.0C.D.﹣12.下面运算中,结果正确的是()A.5ab﹣3b=2a B.(﹣3a2b)2=6a4b2C.a3•b÷a=a2b D.(2a+b)2=4a2+b23.新冠病毒疫情发生以来,我国邮政快递企业调配全网资源,迅速开通了国际和国内的航线,畅通陆路运输,全力保障武汉等重点地区的应急救援物资和人民群众日常基本生活物资运递,截止至2020年4月14日,累计为援鄂医疗队免费寄递物品19.71万件.其中数值19.71万可用科学记数法表示为()A.1.971×109B.19.71×104C.0.1971×106D.1.971×105 4.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.5.如图所示的主视图和俯视图,其对应的几何体(阴影所示如图)可以是下列()A.B.C.D.6.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A.B.C.D.7.如图,矩形ABCD的顶点A和对称中心均在反比例函数y=(k≠0,x>0)上,若矩形ABCD的面积为12,则k的值为()A.12 B.6C.4D.38.如图,直线PQ是矩形ABCD的一条对称轴,点E在AB边上,将△ADE沿DE折叠,点A恰好落在CE与PQ的交点F处,若S△DEC=4,则AD的长为()A.4B.2C.4D.29.函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,且x1>1,x2﹣x1=4,当1≤x≤3时,该函数的最小值m与b的关系式是()A.m=2b+5B.m=4b+8C.m=6b+15D.m=﹣b2+4 10.如图,棱长均为1的直三棱柱ABC﹣A1B1C1中,F是棱AC的中点.动点P从点A出发,沿着A→B→C的路线在该棱柱的棱上运动,运动到点C就停止.设点P运动的路程为x,y=FP+PB1,则y关于x的函数图象大致为()A.B.C.D.二、填空题(本题包括7个小题,每小题3分,共21分,将答案直接填在答题卡对应题的横线上)11.在函数y=中,自变量x的取值范围是.12.分解因式:a2b+4ab+4b=.13.如图,菱形OABC的边长为2,且点A、B、C在⊙O上,则劣弧的长度为.14.关于x的方程x2﹣(3k+1)x+2k2+2k=0,若等腰三角形△ABC一边长为a=6,另两边长b,c为方程两个根,则△ABC的周长为.15.如图,已知AB是⊙O的直径,弦CD交AB于点E,∠CEA=30°,OF⊥CD,垂足为点F,DE=5,OF=1,那么CD=.16.如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB=S△PCD,则PC+PD的最小值为.17.如图,菱形OAA1B1的边长为1,∠AOB=60°,以对角线OA1为一边,在如图所示的一侧作相同形状的菱形OA1A2B2,再依次作菱形OA2A3B3,菱形OA3A4B4,……,则菱形OA2019A2020B2020的边长为.三、解答题(本题包括9个小题,共69分,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18.计算:(π﹣3.14)0+﹣2sin45°+﹣(﹣1)2020;19.先化简,再求值:÷(﹣x+1),请从不等式组的整数解中选择一个合适的值代入求值.20.小锤和豆花要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边BC上有水池及建筑遮挡,没有办法直接测量其长度.小锤经测量得知AB=AD=5m,∠A=60°,DC=13m,∠ABC=150°.豆花说根据小锤所得的数据可以求出CB的长度.你同意豆花的说法吗?若同意,请求出CB的长度;若不同意,请说明理由.21.在新中国成立70周年之际,某校开展了“校园文化艺术”活动,活动项目有:书法、绘画、声乐和器乐,要求全校学生人人参加,并且每人只能参加其中一项活动.政教处在该校学生中随机抽取了100名学生进行调查和统计,并绘制了如图两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请补全条形统计图和扇形统计图;(2)该校初中学生中,参加“书法”项目的学生所占的百分比是多少?(3)若该校共有1500人,请估计其中参加“器乐”项目的高中学生有多少人?(4)经政教处对所有参加“绘画”项目的作品进行评比,共选出2名初中学生和2名高中学生的最佳作品,学校决定从这4名学生中随机抽取2人作为学生会“绘画社团”的团长,那么正好抽到一名初中学生和一名高中学生的概率是多少?22.如图,放置在水平桌面上的台灯灯臂AB长为42cm,灯罩BC长为32cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?23.预防新型冠状病毒期间,某种消毒液A地需要6吨,B地需要10吨,正好M地储备有7吨,N地储备有9吨.市预防新型冠状病毒领导小组决定将这16吨消毒液调往A地和B地.消毒液的运费价格如表(单位:元/吨).设从M地调运x(0<x≤6)吨到A地.(1)求调运16吨消毒液的总运费y关于x的函数关系式;(2)求出总运费最低的调运方案,最低运费为多少?A地B地终点起点M地70120N地458024.(1)【证法回顾】证明:三角形中位线定理.已知:如图1,DE是△ABC的中位线.求证:.(填写要求证的结论)证明:添加辅助线:如图1,在△ABC中,延长DE(D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF,请继续完成证明过程;(2)【问题解决】如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD 边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.25.如图F为⊙O上的一点,过点F作⊙O的切线与直径AC的延长线交于点D,过圆上的另一点B作AO的垂线,交DF的延长线于点M,交⊙O于点E,垂足为H,连接AF,交BM于点G.(1)求证:△MFG为等腰三角形.(2)若AB∥MD,求证:FG2=EG•MF.(3)在(2)的条件下,若DF=6,tan∠M=,求AG的长.26.如图,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y轴的负半轴交于点C.(1)求点B的坐标.(2)若△ABC的面积为6.①求这条抛物线相应的函数解析式;②在拋物线上是否存在一点P,使得∠POB=∠CBO?若存在,请求出点P的坐标;若不存在,请说明理由.2020年中考数学模拟试题(八)参考答案一.选择题(共10小题)1.下列各数,最小的数是()A.﹣2020B.0C.D.﹣1【分析】由于正数大于0,0大于负数,要求最小实数,只需比较﹣2020与﹣1即可.【解答】解:∵﹣2020<﹣1<0<,∴最小的数是﹣2020.故选:A.2.下面运算中,结果正确的是()A.5ab﹣3b=2a B.(﹣3a2b)2=6a4b2C.a3•b÷a=a2b D.(2a+b)2=4a2+b2【分析】根据合并同类项、积的乘方、单项式的除法和完全平方公式判断即可.【解答】解:A、5ab与﹣3b不是同类项,不能合并,选项错误,不符合题意;B、(﹣3a2b)2=9a4b2,选项错误,不符合题意;C、a3•b÷a=a2b,选项正确,符合题意;D、(2a+b)2=4a2+4ab+b2,选项错误,不符合题意;故选:C.3.新冠病毒疫情发生以来,我国邮政快递企业调配全网资源,迅速开通了国际和国内的航线,畅通陆路运输,全力保障武汉等重点地区的应急救援物资和人民群众日常基本生活物资运递,截止至2020年4月14日,累计为援鄂医疗队免费寄递物品19.71万件.其中数值19.71万可用科学记数法表示为()A.1.971×109B.19.71×104C.0.1971×106D.1.971×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:19.71万=19710000=1.971×105,故选:D.4.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、既是轴对称图形,又是中心对称图形,故此选项符合题意.故选:D.5.如图所示的主视图和俯视图,其对应的几何体(阴影所示如图)可以是下列()A.B.C.D.【分析】根据几何体的主视图确定A、B、C选项,然后根据俯视图确定D选项即.【解答】解:A、B、D选项的主视图符合题意;C选项的主视图和俯视图都不符合题意,D选项的俯视图符合题意,综上:对应的几何体为D选项中的几何体.故选:D.6.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A.B.C.D.【分析】关键描述语:单独使用B型包装箱比单独使用A型包装箱可少用6个;可列等量关系为:所用B型包装箱的数量=所用A型包装箱的数量﹣6,由此可得到所求的方程.【解答】解:根据题意,得:.故选:C.7.如图,矩形ABCD的顶点A和对称中心均在反比例函数y=(k≠0,x>0)上,若矩形ABCD的面积为12,则k的值为()A.12B.6C.4D.3【分析】设点A的坐标,利用矩形的面积,表示矩形的边长,再根据对称中心表示E的坐标,由点A、E都在反比例函数的图象上,由反比例函数k的几何意义求解即可.【解答】解:设矩形的对称中心为E,连接OA、OE,过E作EF⊥OC垂足为F,∵点E是矩形ABCD的对称中心,∴BF=FC=BC,EF=AB,设OB=a,AB=b,∵ABCD的面积为12,∴BC=,BF=FC=,∴点E(a+,b),∵S△AOB=S△EOF=k,∴ab=(a+)×b=k,即:ab=6=k,故选:B.8.如图,直线PQ是矩形ABCD的一条对称轴,点E在AB边上,将△ADE沿DE折叠,点A恰好落在CE与PQ的交点F处,若S△DEC=4,则AD的长为()A.4B.2C.4D.2【分析】根据矩形的性质和折叠的性质可得∠ADE=∠EDF=∠CDF=30°,再根据三角形面积公式可求AD的长.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,∵直线PQ是矩形ABCD的一条对称轴,∴∠DGF=90°,CD∥PQ,DG=AD,由折叠得∠EFD=∠A=90°,DF=AD,∠EDF=∠ADE,∴∠CFD=90°,∵EF=CF,∴∠EDF=∠CDF,∴∠ADE=∠EDF=∠CDF=30°,∴EF=DF,∴EC=AD,∵S△DEC=4,∴AD×AD÷2=4,解得AD=2.故选:D.9.函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,且x1>1,x2﹣x1=4,当1≤x≤3时,该函数的最小值m与b的关系式是()A.m=2b+5B.m=4b+8C.m=6b+15D.m=﹣b2+4【分析】由韦达定理得:x1•x2=6,而x2﹣x1=4,求出x1、x2的值,函数的对称轴为直线x=(x1+x2)=<3,故当1≤x≤3时,函数在x=3时,取得最小值,即可求解.【解答】解:函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,∴x1•x2=6,而x2﹣x1=4,解得:x1=﹣2±(舍去负数),则x2=2+,∵x1+x2=﹣2b,∴b=﹣;函数的对称轴为直线x=(x1+x2)=<3,故当1≤x≤3时,函数在x=3时,取得最小值,即m=y=x2+2bx+6=15+6b,故选:C.10.如图,棱长均为1的直三棱柱ABC﹣A1B1C1中,F是棱AC的中点.动点P从点A出发,沿着A→B→C的路线在该棱柱的棱上运动,运动到点C就停止.设点P运动的路程为x,y=FP+PB1,则y关于x的函数图象大致为()A.B.C.D.【分析】根据图象的对称性,确定图象的对称性即可求解.【解答】解:由题意知,FP+PB1关于BB1对称,故可知y关于x的函数图象关于直线x=1对称,故选:B.二.填空题(共7小题)11.在函数y=中,自变量x的取值范围是x≥0且x≠3.【分析】根据被开方数是非负数且分母不等于零,可得答案.【解答】解:由题意,得x≥0且x﹣3≠0,解得x≥0且x≠3,故答案为:x≥0且x≠3.12.分解因式:a2b+4ab+4b=b(a+2)2.【分析】原式提取b,再利用完全平方公式分解即可.【解答】解:原式=b(a2+4a+4)=b(a+2)2,故答案为:b(a+2)213.如图,菱形OABC的边长为2,且点A、B、C在⊙O上,则劣弧的长度为π.【分析】连接OB,根据菱形性质求出OB=OC=BC,求出△BOC是等边三角形,求出∠COB=60°,根据弧长公式求出即可.【解答】解:连接OB,∵四边形OABC是菱形,∴OC=BC=AB=OA=2,∴OC=OB=BC,∴△OBC是等边三角形,∴∠COB=60°,∴劣弧的长为=π,故答案为:π.14.关于x的方程x2﹣(3k+1)x+2k2+2k=0,若等腰三角形△ABC一边长为a=6,另两边长b,c为方程两个根,则△ABC的周长为16或22.【分析】先计算判别式的值得到△=(k﹣1)2≥0,利用求根公式得到x1=k+1,x2=2k,根据等腰三角形的性质讨论:当k+1=2k或k+1=6或2k=6时,分别计算出对应的k的值得到b、c的值,然后根据三角形三边的关系和三角形周长的定义求解.【解答】解:根据题意得△=(3k+1)2﹣4(2k2+2k)=(k﹣1)2≥0,所以x=,则x1=k+1,x2=2k,当k+1=2k时,解得k=1,则b、c的长为2,而2+2<6,不合题意舍去;当k+1=6时,解得k=5,则2k=10,此时三角形的周长为6+6+10=22;当2k=6时,解得k=3,则k+1=4,此时三角形的周长为6+6+4=16.综上所述,△ABC的周长为16或22.故答案为16或22.15.如图,已知AB是⊙O的直径,弦CD交AB于点E,∠CEA=30°,OF⊥CD,垂足为点F,DE=5,OF=1,那么CD=.【分析】根据AB是⊙O的直径,OF⊥CD,和垂径定理可得CF=DF,再根据30度角所对直角边等于斜边一半,和勾股定理即可求出EF的长,进而可得CD的长.【解答】解:∵AB是⊙O的直径,OF⊥CD,根据垂径定理可知:CF=DF,∵∠CEA=30°,∴∠OEF=30°,∴OE=2,EF=,∴DF=DE﹣EF=5﹣,∴CD=2DF=10﹣2.故答案为:10﹣2.16.如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB=S△PCD,则PC+PD的最小值为2.【分析】依据S△P AB=S△PCD,即可得出点P在BC的垂直平分线上,进而得到PB=PC,当点B,P,D在同一直线上时,BP+PD的最小值等于对角线BD的长,依据勾股定理求得BD的长,即可得到PC+PD的最小值为2.【解答】解:∵点P是矩形ABCD内一动点,且S△P AB=S△PCD,AB=CD,∴点P到AB的距离等于点P到CD的距离,∴点P在BC的垂直平分线上,∴PB=PC,∴PC+PD=BP+PD,当点B,P,D在同一直线上时,BP+PD的最小值等于对角线BD的长,又∵AB=CD=4,BC=6,∴对角线BD===2,∴PC+PD的最小值为2,故答案为:2.17.如图,菱形OAA1B1的边长为1,∠AOB=60°,以对角线OA1为一边,在如图所示的一侧作相同形状的菱形OA1A2B2,再依次作菱形OA2A3B3,菱形OA3A4B4,……,则菱形OA2019A2020B2020的边长为()2019.【分析】根据图形的变化发现规律即可求解.【解答】解:∵菱形OAA1B的边长为1,∠AOB=60°,对角线OA1为:2cos30°•OA=;∴菱形OA1A2B2的边长为:菱形OA2A3B3的边长为()2菱形OA3A4B4的边长为()3……,发现规律:则菱形OA2019A2020B2020的边长为()2019.故答案为:()2019.三.解答题(共23小题)18.(1)计算:(﹣)﹣1+﹣|π﹣3|﹣;(2)因式分解:a3﹣2a2b+ab2.【分析】(1)原式利用负整数指数幂法则,绝对值的代数意义,二次根式性质,以及特殊角的三角函数值计算即可求出值;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=﹣3+﹣(π﹣3)﹣=﹣3+﹣π+3﹣=﹣π;(2)原式=a(a2﹣2ab+b2)=a(a﹣b)2.19.(1)计算:(π﹣3.14)0+﹣2sin45°+﹣(﹣1)2020;(2)先化简,再求值:÷(﹣x+1),请从不等式组的整数解中选择一个合适的值代入求值.【分析】(1)直接利用零指数幂的性质以及二次根式的性质、负整数指数幂的性质分别化简得出答案;(2)直接利用将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【解答】解:(1)原式=1+﹣1﹣2×+﹣1=﹣1;(2)原式====,由不等式组,解得:﹣2≤x≤2,∵x+1≠0,(2+x)(2﹣x)≠0,∴x≠﹣1,x≠±2,∴当x=0时,原式==1.(或当x=1时,原式==).20.小锤和豆花要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边BC上有水池及建筑遮挡,没有办法直接测量其长度.小锤经测量得知AB=AD=5m,∠A=60°,DC=13m,∠ABC=150°.豆花说根据小锤所得的数据可以求出CB的长度.你同意豆花的说法吗?若同意,请求出CB的长度;若不同意,请说明理由.【分析】直接利用等边三角形的判定方法得出△ABD是等边三角形,再利用勾股定理得出答案.【解答】解:同意豆花的说法.理由:连接BD,∵AB=AD=5m,∠A=60°,∴△ABD是等边三角形,∴BD=5m,∠ABD=60°,∵∠ABC=150°,∴∠DBC=90°,∵DC=13m,BD=5m,∴CB==12(m).答:CB的长度为12m.21.在新中国成立70周年之际,某校开展了“校园文化艺术”活动,活动项目有:书法、绘画、声乐和器乐,要求全校学生人人参加,并且每人只能参加其中一项活动.政教处在该校学生中随机抽取了100名学生进行调查和统计,并绘制了如图两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请补全条形统计图和扇形统计图;(2)该校初中学生中,参加“书法”项目的学生所占的百分比是多少?(3)若该校共有1500人,请估计其中参加“器乐”项目的高中学生有多少人?(4)经政教处对所有参加“绘画”项目的作品进行评比,共选出2名初中学生和2名高中学生的最佳作品,学校决定从这4名学生中随机抽取2人作为学生会“绘画社团”的团长,那么正好抽到一名初中学生和一名高中学生的概率是多少?【分析】(1)求出参加高中声乐的人数即可补充条形统计图;由参加器乐和声乐的总人数看分别求出其所占的百分比则扇形统计图可补充完整;(2)首先求出参加各个项目的初中总人数即可得到参加“书法”项目的学生所占的百分比;(3)求出参加“器乐”项目的高中学生所占百分比,即可估计1500名学生中参加“器乐”项目的高中学生的人数;(4)记两名高中学生为A,B,两名初中学生为a,b.列表得到所有可能结果,进而可求出正好抽到一名初中学生和一名高中学生的概率.【解答】解:(1)补全条形统计图和扇形统计图如下:(2).答:该校初中学生中,参加“书法”项目的学生占45%.(3)(人).答:该校参加“器乐”项目的高中学生约有375人.(4)记两名高中学生为A,B,两名初中学生为a,b.列表如下:A B a bA(A,B)(A,a)(A,b)B(B,A)(B,a)(B,b)a(a,A)(a,B)(a,b)b(b,A)(b,B)(b,a)由上表可知,共有12种等可能结果,其中能抽到一名初中学生和一名高中学生的结果有8种,∴P(抽到一名初中学生和一名高中学生)=.答:正好抽到一名初中学生和一名高中学生的概率是.22.如图,放置在水平桌面上的台灯灯臂AB长为42cm,灯罩BC长为32cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?【分析】过点B作BM⊥CE于点M,BF⊥DA于点F,在Rt△BCM和Rt△ABF中,通过解直角三角形可求出CM、BF的长,再由CE=CM+BF+ED即可求出CE的长.【解答】解:过点B作BM⊥CE于点M,BF⊥DA于点F,如图所示.在Rt△BCM中,BC=32cm,∠CBM=30°,∴CM=BC•sin∠CBM=16cm.在Rt△ABF中,AB=42cm,∠BAD=60°,∴BF=AB•sin∠BAD=21cm.∵∠ADC=∠BMD=∠BFD=90°,∴四边形BFDM为矩形,∴MD=BF,∴CE=CM+MD+DE=CM+BF+ED=16+21+2=21+18(cm).答:此时灯罩顶端C到桌面的高度CE是(21+18)cm.23.预防新型冠状病毒期间,某种消毒液A地需要6吨,B地需要10吨,正好M地储备有7吨,N地储备有9吨.市预防新型冠状病毒领导小组决定将这16吨消毒液调往A地和B地.消毒液的运费价格如表(单位:元/吨).设从M地调运x(0<x≤6)吨到A地.(1)求调运16吨消毒液的总运费y关于x的函数关系式;(2)求出总运费最低的调运方案,最低运费为多少?A地B地终点起点M地70120N地4580【分析】(1)根据题意即可得调运16吨消毒液的总运费y关于x的函数关系式;(2)根据一次函数的性质即可求出总运费最低的调运方案和最低运费.【解答】解:(1)由题意可知:y=70x+120(7﹣x)+45(6﹣x)+80[(9﹣(6﹣x)]=﹣15x+1350(0<x≤6).(2)由(1)的函数可知:k=﹣15<0,所以函数的值随x的增大而减小,当x=6时,有最小值y=﹣15×6+1350=1260(元).答:总运费最低的调运方案是从M地调运6吨到A地,1吨到B地,最低运费为1260元.24.(1)【证法回顾】证明:三角形中位线定理.已知:如图1,DE是△ABC的中位线.求证:DE∥BC,DE=BC.(填写要求证的结论)证明:添加辅助线:如图1,在△ABC中,延长DE(D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF,请继续完成证明过程;(2)【问题解决】如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD 边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.【分析】(1)利用“边角边”证明△ADE和△CEF全等,根据全等三角形对应边相等可得AD=CF,然后判断出四边形BCFD是平行四边形,根据平行四边形的性质可得;(2)先判断出△AEG≌△DEH(ASA)进而判断出EF垂直平分GH,即可得出结论.【解答】解:DE∥BC,DE=BC,证明:如图,延长DE到点F,使得EF=DE,连接CF在△ADE和△CFE中,,∴△ADE≌△CFE(SAS),∴∠A=∠ECF,AD=CF,∴CF∥AB,又∵AD=BD,∴CF=BD,∴四边形BCFD是平行四边形,∴DE∥BC,DE=BC.故答案为:DE∥BC,DE=BC.(2)如图2,延长GE、FD交于点H,∵E为AD中点,∴EA=ED,且∠A=∠EDH=90°,在△AEG和△DEH中,,∴△AEG≌△DEH(ASA),∴AG=HD=2,EG=EH,∵∠GEF=90°,∴EF垂直平分GH,∴GF=HF=DH+DF=2+3=5.25.如图F为⊙O上的一点,过点F作⊙O的切线与直径AC的延长线交于点D,过圆上的另一点B作AO的垂线,交DF的延长线于点M,交⊙O于点E,垂足为H,连接AF,交BM于点G.(1)求证:△MFG为等腰三角形.(2)若AB∥MD,求证:FG2=EG•MF.(3)在(2)的条件下,若DF=6,tan∠M=,求AG的长.【分析】(1)连接OF,利用等角的余角相等证明∠MFG=∠MGF即可解决问题.(2)连接EF.证明△EGF∽△FGM,可得结论,(3)连接OB.证明∠M=∠FOD,推出tan∠M=tan∠FOD==,由DF=6,推出OF=8,再由tan∠M=tan∠ABH==,假设AH=3k,BH=4k,则AB=BG=5k,GH=k,AG=k,在Rt△OHB中,根据OH2+BH2=OB2,构建方程即可解决问题.【解答】(1)证明:连接OF.∵DM是⊙O的切线,∴DM⊥OF,∴∠MFG+∠OF A=90°,∵BM⊥AD,∴∠AHG=90°,∴∠OAF+∠AGH=90°,∵OF=OA,∴∠OF A=∠OAF,∵∠MGF=∠AGH,∴∠MFG=∠AGF,∴MF=MG,∴△MFG是等腰三角形.(2)证明:连接EF.∵AB∥DM,∴∠MF A=∠F AB,∵∠F AB=∠FEG,∠MFG=∠MGF,∴∠FEG=∠MFG,∵∠EGF=∠MGF,∴△EGF∽△FGM,∴=,∴FG2=EG•GM,∵MF=MG,∴FG2=EG•MF.(3)解:连接OB.∵∠M+∠D=90°,∠FOD+∠D=90°,∴∠M=∠FOD,∴tan M=tan∠FOD==,∵DF=6,∴OF=8,∵DM∥AB,∴∠M=∠ABH,∴tan M=tan∠ABH==,∴可以假设AH=3k,BH=4k,则AB=BG=5k,GH=k,AG=k,在Rt△OHB中,∵OH2+BH2=OB2,∴(8﹣3k)2+(4k)2=82,解得k=,∴AG=.26.如图,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y 轴的负半轴交于点C.(1)求点B的坐标.(2)若△ABC的面积为6.①求这条抛物线相应的函数解析式;②在拋物线上是否存在一点P,使得∠POB=∠CBO?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)令y=0,解方程可求出点A坐标为(a,0),点B坐标为(1,0);(2)①由(1)可得,点A的坐标为(a,0),点C的坐标为(0,a),a<0,再由△ABC 的面积得到a的值即可;②本题分两种情况讨论:当点P在x轴上方时,直线OP的函数表达式为y=3x,则直线与抛物线的交点P可求出;当点P在x轴下方时,直线OP的函数表达式为y=﹣3x,则直线与抛物线的交点P即可求出.【解答】解:(1)当y=0时,x2﹣(a+1)x+a=0,解得x1=1,x2=a.∵点A位于点B的左侧,与y轴的负半轴交于点C,∴a<0,∴点B坐标为(1,0).(2)①由(1)可得,点A的坐标为(a,0),点C的坐标为(0,a),a<0,∴AB=1﹣a,OC=﹣a,∵△ABC的面积为6,∴,∴a1=﹣3,a2=4.∵a<0,∴a=﹣3,∴y=x2+2x﹣3.②存在,理由如下:∵点B的坐标为(1,0),点C的坐标为(0,﹣3),∴设直线BC的解析式为y=kx﹣3,则0=k﹣3,∴k=3.∵∠POB=∠CBO,∴当点P在x轴上方时,直线OP∥直线BC,∴直线OP的函数解析式y=3x,则∴(舍去),,∴点的P坐标为当点P在x轴下方时,直线OP'与直线OP关于x轴对称,则直线OP'的函数解析式为y=﹣3x,则∴(舍去),,∴点P'的坐标为综上可得,点P的坐标为或.。

中考数学模拟考试卷(附带有答案解析)

中考数学模拟考试卷(附带有答案解析)

中考数学模拟考试卷(附带有答案解析)(满分:120分考试时间:120分钟)一选择题(本大题共8小题共24分)1.下列各组数中相加等于0的是()A. −(−1)与1B. (−1)2与1C. |−1|与1D. −12与12.自从扫描隧道显微镜发明后世界上便诞生了一门新科学这就是纳米技术.1纳米=0.000000001米则25纳米用科学记数法应表示为()A. 2.5×10−8米B. 25×10−8米C. 25×10−9米D. 2.5×10−9米3.下表是有关企业和世界卫生组织统计的5种新冠疫苗的有效率则这5种疫苗有效率的中位数是()疫苗名称克尔来福阿斯利康莫德纳辉瑞卫星V有效率79%76%95%95%92%A. 79%B. 92%C. 95%D. 76%4.如图是由4个完全相同的正方体组成的几何体它的左视图是()A. B. C. D.5.一个零件的形状如图所示AB//DE AD//BC∠CBD=60°∠BDE=40°则∠A的度数是()A. 70°B. 80°C. 90°D. 100°6.如图点B C D在⊙O上若∠BCD=130°则∠BOD的度数是()A. 50°B. 60°C. 80°D. 100°7.若a=√10则实数a在数轴上对应的点的大致位置是A. B.C. D.8.百位数字是十位数字是个位数字是则这个三位数是()A. B. C. D.二填空题(本大题共8小题共24分)9.分解因式:3mn2−12m2n=______.10.已知一组数据83m2的众数为3则这组数据的平均数是______.11.圆锥母线长为6底面半径为2则该圆锥的侧面积为______(结果用带π的数的形式表示).12.如图D E分别是△ABC边AB AC上的点DE//BC AD=5BD=3BC=4则DE长为______ .13.如图△ABC的面积为1第一次操作:分别延长AB BC CA至点A1B1C1使A1B=AB B1C=2BC C1A=2CA顺次连接A1B1C1得到△A1B1C1.第二次操作:分别延长A1B1B1C1C1A1至点A2B2C2使A2B1=A1B1B2C1=2B1C1C2A1=2C1A1顺次连接A2B2C2得到△A2B2C2按此规律要是得到的三角形的面积为38416需要经过______ 次操作.14.P是反比例函数y=k的图象上一点过P点分别向x轴y轴作垂线所得的图中阴影部分的面积为6x则这个反比例函数的解析式为______ .15.如图抛物线y=ax2+bx+c与x轴交于点A(−1,0)顶点坐标(1,n)与y轴的交点在(0,2)(0,3)之间(包含端点)则下列结论:①3a+b>0②−1≤a≤−23③对于任意实数m a+b≥am2+bm总成立④关于x的方程ax2+bx+c=n−1有两个不相等的实数根.其中正确结论为______.(只填序号)16.∠A=32°则∠A的补角等于______ °.三计算题(本大题共1小题共8分)17.如图AC是我市某大楼的高在地面上B点处测得楼顶A的仰角为45°沿.现打算从大楼顶端A点悬挂一BC方向前进18米到达D点测得tan∠ADC=53幅庆祝建国60周年的大型标语若标语底端距地面15m请你计算标语AE的长度应为多少?四解答题(本大题共10小题共58分)18.小明将一块含45°角的直角三角板按如图①所示的方式放置其中直角顶点A落在直线l上.由B C两点分别向直线l作垂线垂足分别为D E.(1)试猜想△ACE与______ 全等并说明理由.(2)小明改变三角板的位置如图②所示上述结论还成立吗?请说明理由.19.九(1)班同学为了解2020年某小区家庭月均用水情况随机调查了该小区部分家庭并将调查数据进行整理:月均用水量x(t)频数(户)频率0<x≤560.125<x≤10m0.2410<x≤15160.3215<x≤20100.2020<x≤254n25<x≤3020.04请解答以下问题:(1)这里采用的调查方式是______ (填“普查”或“抽样调查”)样本容量是______(2)填空:m=______ n=______ 若将月均用水量的频数绘成扇形统计图则月均用水量“15<x≤20”的圆心角的度数是______(3)若该小区有1000户家庭求该小区月均用水量超过10t的家庭大约有多少户?20.某学校甲乙两名同学去爱国主义教育基地参观该基地与学校相距2400米.甲从学校步行去基地出发5分钟后乙再出发乙从学校骑自行车到基地.乙骑行到一半时发现有东西忘带立即返回拿好东西之后再从学校出发.在骑行过程中乙的速度保持不变最后甲乙两人同时到达基地.已知乙骑行的总时间是甲步行时间的23.设甲步行的时间为x(分)图中线段OA表示甲离开学校的路程y(米)与x(分)的函数关系的图象.图中折线B−C−D表示乙离开学校的路程y(米)与x(分)函数关系的部分图象.根据图中所给的信息解答下列问题:(1)甲步行的速度为______ 米/分乙骑行的速度为______ 米/分(2)请求出甲出发多少时间后甲乙两人第二次相遇(3)请补全乙离开学校的路程y(米)与x(分)的函数关系图象.(4)若s(米)表示甲乙两人之间的距离当15≤x≤30时直接写出s(米)关于x(分)的函数关系式.21.先化简再求代数式x2−4x2−4x+4÷x+2x+1−xx−2的值其中x=2+√2.22.一辆高铁与一辆动车组列车在长为1320千米的京沪高速铁路上运行已知高铁列车比动车组列车平均速度每小时快99千米且高铁列车比动车组列车全程运行时间少3小时求这辆高铁列车全程运行的时间和平均速度.23.在一个不透明的布袋里有3个标有123的小球它们的形状大小完全相同小明从布袋中随机取出一个小球记下数字为x小红在剩下的2个小球中随机取出一个小球记下数字为y这样确定了点Q的坐标(x,y).(1)画树状图或列表写出点Q所有可能的坐标(2)小明和小红约定做一个游戏其规则为:若x y满足xy>4则小明胜若x y满足xy<4则小红胜这个游戏公平吗?说明理由.24.如图在所给的方格纸中每个小正方形的边长都是1点A B C位于格点处请按要求画出格点四边形.(1)在图1中画出格点P使AC=CP且以点A B C P为顶点的四边形面积为3(2)在图2中画出一个以点A B C P为顶点的格点四边形使AP2+CP2=15.25. 如图 抛物线y =ax 2+bx +2经过点A(−1,0) B(4,0) 交y 轴于点C(1)求抛物线的解析式(用一般式表示)(2)若点E 在抛物线上 且△BCE 是以BC 为底的等腰三角形 求点E 的横坐标.26. (1)计算:|√2−√3|+2√2 (2)计算:√0.04+√−83−√14+√0.49(3)解方程组:{m −n =22m +3n =14(4)解不等式:x 2−5x+73>1−3x−54(5)根据题意填空∵∠B =∠BCD(已知)∴AB//CD(______)∵∠BCD=∠CGF(已知)∴______//______(______)27.如图在△ABC中tanB=1∠C=45°AD=6AD⊥BC于点D动点E从点D出发沿2DB向点B以每秒1个单位长度的速度运动.将线段DE绕点D顺时针旋转90°得到线段DF过点F作FG//AC交射线DC于点G以EG FG为邻边▱EGFP▱EGFP与△ABC重叠部分面积为S.当点E与点B重合时停止运动设点E的运动时间为t秒(t>0).(1)求BC的长.(2)当点P落到AB边上时求t的值.(3)当点F在线段AD上时求S与t之间的函数关系式.(4)▱EGFP的边PE被AB分成1:3两部分时直接写出t的值.参考答案和解析1.【答案】D【解析】解:A−(−1)+1=2B(−1)2+1=2C|−1|+1=2D−12+1=0.故选:D.根据相反数的定义求解即可.本题考查了有理数的乘方实数的性质只有符号不同的数互为相反数.2.【答案】A【解析】解:25纳米用科学记数法应表示为25×10−9=2.5×10−8(米).故选:A.绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数一般形式为a×10−n其中1≤|a|<10n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】B【解析】解:从小到大排列此数据为:76%79%92%95%95%其中92%处在第3位为中位数.故选:B.找中位数要把数据按从小到大的顺序排列位于最中间的一个数(或两个数的平均数)为中位数.本题考查了中位数的概念.中位数是将一组数据从小到大(或从大到小)重新排列后最中间的那个数(最中间两个数的平均数)叫做这组数据的中位数如果中位数的概念掌握得不好不把数据按要求重新排列就会错误地将这组数据最中间的那个数当作中位数.4.【答案】B【解析】解:从左边看是竖着叠放的2个正方形故选:B.细心观察图中几何体中正方体摆放的位置根据左视图是从左面看到的图形判定则可.本题考查了由三视图判断几何体和简单组合体的三视图解题的关键是掌握几何体的三视图及空间想象能力.5.【答案】B【解析】解:∵AB//DE AD//BC∴∠ABD=∠BDE∠ADB=∠CBD∵∠CBD=60°∠BDE=40°∴∠ADB=60°∠ABD=40°∴∠A=180°−∠ADB−∠ABD=80°故选:B.根据平行线的性质可以得到∠ADB=60°和∠ABD的度数再根据三角形内角和即可得到∠A的度数.本题考查平行线的性质三角形内角和解答本题的关键是明确题意利用数形结合的思想解答.6.【答案】D【解析】此题考查了圆周角定理与圆的内接四边形的性质.此题比较简单解题的关键是注意数形结合思想的应用注意辅助线的作法.首先圆上取一点A连接AB AD根据圆的内接四边形的性质即可得∠BAD+∠BCD=180°即可求得∠BAD的度数再根据圆周角定理即可求得答案.【解答】解:如图圆上取一点A连接AB AD∵点A B C D在⊙O上∠BCD=130°∴∠BAD=50°∴∠BOD=100°故选:D.7.【答案】C【解析】本题考查了实数与数轴的对应关系以及估算无理数大小的能力.本题利用实数与数轴的关系解答首先估计√10的大小进而找到其在数轴的位置即可得答案.【解答】解:a=√10有3<a<4可得其在点3与4之间并且靠近3分析选项可得C符合.故选C.8.【答案】D【解析】三位数的表示方法:三位数=百位数字×100+十位数字×10+个位数字.由题意得这个三位数为100a+10b+c.故答案是:D.9.【答案】3mn(n−4m)【解析】解:3mn2−12m2n=3mn(n−4m).故答案为:3mn(n−4m).直接提取公因式3mn进而分解因式得出答案.此题主要考查了提取公因式法分解因式正确找出公因式是解题关键.10.【答案】4【解析】解:∵一组数据83m2的众数为3∴m=3=4∴这组数据的平均数:8+3+3+24故答案为:4.直接利用众数的定义得出m的值进而求出平均数此题考查了平均数和众数解题的关键是正确理解各概念的含义.11.【答案】12π【解析】解:圆锥的侧面积=2π×2×6÷2=12π故答案为:12π.圆锥的侧面积=底面周长×母线长÷2把相应数值代入即可求解.本题考查了圆锥的计算解题的关键是牢记圆锥的侧面积的计算方法.12.【答案】52【解析】解:∵DE//BC∴ADAB=DEBC∴58=DE4∴DE=5 2故答案为:52.根据平行线分线段成比例定理列出比例式求解即可得到答案.此题考查了平行线分线段成比例定理的运用利用平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例是解答此题的关键.13.【答案】4【解析】解:连接A1C B1A BC1S△AA1C=2S△ABC=2∴S△A1BC=1S△A1B1C=2S△CC1B1=6S△AA1C1=2S△AA1C=4所以S△A1B1C1=6+4+4=14同理得S△A2B2C2=14×14=361S△A3B3C3=196×14=6859从中可以得出一个规律延长各边后得到的三角形是原三角形的14倍所以延长第n次后得到△A nB nC n则其面积S n=14n⋅S1=14n=38416解得:n=4.故答案是:4.连接A1C B1A BC1找出延长各边后得到的三角形是原三角形的14倍的规律利用规律求延长第n 次后的面积为38416求出n即可.本题考查了三角形的面积.注意找到规律:S n=14n S1是解此题的关键.14.【答案】y=−6x的图象上一点过P点分别向x轴【解析】解:∵P是反比例函数y=kxy轴作垂线所得的图中阴影部分的面积为6∴|k|=6又∵函数图象位于二四象限k<0∴k=−6∴该反比例函数的表达式为y=−6.x故答案为y=−6.x由于图中阴影部分的面积为|k|=6且函数图象位于二四象限k<0则该反比例函数的表达式即可求出.本题考查反比例函数系数k的几何意义过双曲线上的任意一点分别向两条坐标轴作垂线与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点同学们应高度关注.15.【答案】②③④【解析】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时抛物线向上开口当a<0时抛物线向下开口一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时对称轴在y轴左侧当a与b异号时对称轴在y轴右侧.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2−4ac>0时抛物线与x轴有2个交点△=b2−4ac=0时抛物线与x轴有1个交点△=b2−4ac<0时抛物线与x轴没有交点.利用抛物线开口方向得到a<0再由抛物线的对称轴方程得到b=−2a则3a+b=a于是可对①进行判断利用2≤c≤3和c=−3a可对②进行判断利用二次函数的性质可对③进行判断根据抛物线y=ax2+bx+c与直线y=n−1有两个交点可对④进行判断.【解答】解:∵抛物线开口向下∴a<0=1即b=−2a而抛物线的对称轴为直线x=−b2a∴3a+b=3a−2a=a<0所以①错误把点A(−1,0)带入解析式可得a−b+c=0所以c=−3a∵2≤c≤3∴2≤−3a≤3∴−1≤a≤−23所以②正确∵抛物线的顶点坐标(1,n)∴x=1时二次函数值有最大值n=a+b+c∴a+b+c≥am2+bm+c即a+b≥am2+bm所以③正确∵抛物线的顶点坐标(1,n)∴抛物线y=ax2+bx+c与直线y=n−1有两个交点∴关于x的方程ax2+bx+c=n−1有两个不相等的实数根所以④正确.故答案为②③④.16.【答案】148【解析】解:∵∠A=32°∴∠A的补角=180°−32°=148°.故答案为:148.根据互为补角的两个角的和等于180°列式计算即可得解.本题考查了补角的定义是基础题熟记概念是解题的关键.17.【答案】解:在Rt△ABC中∠ACB=90°∠ABC=45°∴Rt△ABC是等腰直角三角形AC=BC.在Rt△ADC中∠ACD=90°tan∠ADC=ACDC =53∴DC=35AC.∵BC−DC=BD即AC−35AC=18∴AC=45.则AE=AC−EC=45−15=30.答:标语AE的长度应为30米.【解析】首先分析图形 根据题意构造直角三角形.本题涉及到两个直角三角形 即△ABC 和△ADC.根据已知角的正切函数 可求得BC 与AC CD 与AC 之间的关系式 利用公共边列方程求AC 后 AE 即可解答.本题要求学生借助仰角关系构造直角三角形 并结合图形利用三角函数解直角三角形.18.【答案】△BAD【解析】解:(1)△BAD .理由:∵含45°角的直角三角板ABC 为等腰直角三角形∴AC =BA ∠CAB =90°又∵∠CAE +∠CAB +∠BAD =180°∴∠CAE +∠BAD =90°.∵CE 是直线l 的垂线∴∠AEC =90°∴∠ACE +∠CAE =90°∴∠ACE =∠BAD .∵CE BD 分别垂直于直线l∴∠AEC =∠ADB =90°在△ACE 和△BAD 中{∠ACE =∠BAD∠AEC =∠ADB AC =BA∴△ACE ≌△BAD(AAS).故答案为△BAD .(2)成立.证明:∵∠CAE +∠BAD =∠BAD +∠ABD =90°∴∠CAE =∠ABD在△ACE 和△BAD 中{∠CAE =∠ABD∠AEC =∠ADB AC =AB∴△ACE ≌△BAD(AAS).(1)由直角三角形的性质得出∠ACE =∠BAD 根据AAS 可证明△ACE ≌△BAD(2)方法同(1).根据AAS 可证明△ACE ≌△BAD .本题考查全等三角形的判定与性质余角的性质关键是根据AAS证明三角形全等.19.【答案】抽样调查50120.0872°【解析】解:(1)由题意可得本次调查采用的调查方式是抽样调查样本容量是6÷0.12=50故答案为:抽样调查50=0.08(2)m=50×0.24=12n=450月均用水量“15<x≤20”的圆心角的度数是:360°×0.20=72°故答案为:120.0872°(3)1000×(0.32+0.20+0.08+0.04)=1000×0.64=640(户)答:该小区月均用水量超过10t的家庭大约有640户.(1)根据题意可以得到本次调查采用的调查方式再根据“0<x≤5”的频数和频率可以计算出样本容量(2)根据(1)中的结果和频数分布表中的数据可以计算出m n的值根据月均用水量“15<x≤20”的频率计算出月均用水量“15<x≤20”的圆心角度数(3)根据频数分布表中的数据可以计算出该小区月均用水量超过10t的的频率即可得该小区月均用水量超过10t的家庭大约有多少户.本题考查频数分布表扇形统计图用样本估计总体解答本题的关键是明确题意掌握频数÷频率=数据总数的计算方法.20.【答案】80240【解析】解:(1)由题意得:甲步行的速度为:2400÷30=80(米/分)=240(米/分)乙骑行的速度为:1200÷15−52故答案为:80240(2)由题意可得:C(10,1200)D(15,0)A(30,2400)设线段CD的解析式为:y=kx+b则{10k +b =120015k +b =0解得{k =−240b =3600∴线段CD 的解析式为:y =−240x +3600 线段OA 的解析式为:y =80x 根据题意得:−240x +3600=80x解得:x =454 ∴甲出发454分后 甲 乙两人第二次相遇(3)由题意得:甲步行时间为30分∴乙骑行的总时间为30×23=20(分)∴乙拿东西的时间为30−20−5=5(分)补全乙离开学校的路程y(米)与x(分)的函数关系图象如图(4)∵E(20,0) A(30,2400)设线段EA 的解析式为:y =mx +n{20m +n =030m +n =2400解得{m =240n =−4800∴线段EA 的解析式为:y =240x −4800∴当15≤x ≤20时 s =80x当20<x ≤30时 s =80x −(240x −4800)=−160x +4800∴s ={80x(15≤x ≤20)−160x +4800(20<x ≤30). (1)根据题意结合图象解答即可(2)根据题意得出点C D A 的坐标 进而得出线段CD 与线段OA 的解析式 联立成方程组解答即可(3)根据乙骑行的总时间是甲步行时间的23求出乙骑行的总时间.从而可得拿东西的时间 即可补全乙离开学校的路程y(米)与x(分)的函数关系图象(4)根据线段OA与线段EA的解析式解答即可.本题考查一次函数的应用解题的关键是明确题意认真分析图中的数量关系找出所求问题需要的条件利用数形结合的思想解答问题.21.【答案】解:x2−4x2−4x+4÷x+2x+1−xx−2=(x+2)(x−2)(x−2)2⋅x+1x+2−xx−2=x+1x−2−xx−2=1x−2当x=2+√2时原式=2+√2−2=√22.【解析】根据分式的除法和减法可以化简题目中的式子然后将x的值代入即可解答本题.本题考查分式的化简求值解答本题的关键是明确分式化简求值的计算方法.22.【答案】解:设动车组列车的平均速度为x千米/小时则高铁列车的平均速度为(x+99)千米/小时根据题意得:1320x −1320x+99=3解得:x1=165x2=−264(不合题意舍去)经检验x=165是原方程的解∴x+99=2641320÷(x+99)=5.答:这辆高铁列车全程运行的时间为5小时平均速度为264千米/小时.【解析】本题考查了分式方程的应用找准等量关系正确列出分式方程是解题的关键.设动车组列车的平均速度为x千米/小时则高铁列车的平均速度为(x+99)千米/小时根据时间=路程÷速度结合高铁列车比动车组列车全程运行时间少3小时即可得出关于x的分式方程解之经检验后即可得出结论.23.【答案】解:(1)画树状图为:所以点Q所有坐标为(1,2)(1,3)(2,1)(2,3)(3,1)(3,2)(2)不公平由树状图知共有6种等可能结果其中xy>4的有2种结果xy<4的有4种结果∴小明获胜的概率为26=13小红胜的概率为46=23∵13≠23∴此游戏不公平.【解析】(1)先利用树状图展示所有6种等可能的结果数即可得出点Q所有可能的坐标(2)找到所列6种等可能结果中xy>4和xy<4的结果数再利用概率公式求出两人获胜的概率比较大小即可得出答案.本题考查了列表法与树状图法:通过列表法或树状图法展示所有可能的结果求出n再从中选出符合事件A或B的结果数目m求出概率.24.【答案】解:(1)如图1中四边形即为所求(答案不唯一).(2)如图2中四边形即为所求(答案不唯一).【解析】(1)根据要求利用数形结合的思想解决问题即可.(2)利用数形结合的思想解决问题即可.本题考查作图−应用与设计三角形的面积等知识解题的关键是熟练掌握基本知识属于中考常考题型.25.【答案】解:(1)∵抛物线y =ax 2+bx +2经过点A(−1,0) B(4,0)∴{16a +4b +2=0a −b +2=0 解得{a =−12b =32∴抛物线解析式为y =−12x 2+32x +2①(2)由抛物线的表达式知 点C(0,2)设BC 的中点为H(2,1) 过点H 作BC 的中垂线交x 轴于点F 交抛物线于点E 则点E 为所求点在Rt △BOC 中 tan ∠CBO =OC OB =12 则tan ∠HFB =2故设直线EF 的表达式为y =2x +t将点H 的坐标代入上式得:1=2×2+t 解得t =−3故直线EF 的表达式为y =2x −3②联立①②并解得{x =−1+√412y =√41−4或{x =−1−√412y =−√41−4故点E 的坐标为(−1+√412,√41−4)或(−1−√412,−√41−4).【解析】(1)用待定系数法即可求解(2)设BC 的中点为H(2,1) 过点H 作BC 的中垂线交x 轴于点F 交抛物线于点E 则点E 为所求点 进而求解.本题是二次函数综合题 主要考查了一次函数的性质 解直角三角形 等腰三角形的性质等 有一定的综合性 但难度不大.26.【答案】内错角相等 两直线平行 EF CD 同位角相等 两直线平行【解析】解:(1)原式=√3−√2+2√2=√3+√2(2)原式=0.2−2−12+0.7=0.9−2.5=−1.6(3){m −n =2①2m +3n =14② ①×3+② 得:5m =20解得:m =4将m =4代入① 得:4−n =2解得:n =2∴{m =4n =2(4)去分母 得:6x −4(5x +7)>12−3(3x −5)去括号 得:6x −20x −28>12−9x +15移项 得:6x −20x +9x >12+15+28合并同类项 得:−5x >55系数化为1 得:x <−11(5)∵∠B =∠BCD(已知)∴AB//CD(内错角相等 两直线平行)∵∠BCD =∠CGF(已知)∴EF//CD(同位角相等 两直线平行)故答案为:内错角相等 两直线平行 EF CD 同位角相等 两直线平行.(1)根据绝对值性质去绝对值符号 再合并可得(2)先计算平方根 立方根 再计算加减可得(3)加减消元法求解可得(4)根据解不等式的基本步骤依次进行即可(5)根据平行线的判定和性质可得.本题主要考查解方程组 不等式 绝对值性质 平方根和立方根及平行线的判定和性质 掌握基本的运算和性质是解题的关键.27.【答案】解:(1)如图1中∵AD⊥BC∴∠ADB=∠ADC=90°∵∠C=45°∴∠DAC=∠C=45°∴AD=DC=6∵tanB=AD BD=12∴BD=12∴BC=BD+CD=18.(2)如图2中当点P落在AB上时则有6−t2t =12解得t=3.(3)当0<t≤3时如图1中重叠部分是平行四边形PFEG S=2t⋅t=2t2.当3<t≤6如图3中重叠部分是五边形MNFGE过点M作MH⊥PN于H则有PH=MH NH= 2MH∴MH =13PN =13[2t −2(6−t)]=13(4t −12) ∴S =S 平行四边形PFEG −S △MPN =2t 2−12×13(4t −12)2=−23t 2+16t −24.(4)如图4中 由题意PM :ME =1:3或PM :ME =3:1∵PN//BE∴PN BE =PM ME ∴4t−1212−t =13或4t−1212−t =3解得t =4813或487。

2020届信阳市新县中考数学模拟试卷(八)(有答案)(加精)

2020届信阳市新县中考数学模拟试卷(八)(有答案)(加精)

河南省信阳市新县中考数学模拟试卷(八)一、选择题(每小题3分,共24分)1.2的相反数是()A.2 B.﹣2 C.D.2.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A.0.845×1012元B.8.45×1011元C.8.45×1012元D.84.5×1010元3.如图,直线BD∥EF,AE与BD交于点C,若∠ABC=30°,∠BAC=75°,则∠CEF的大小为()A.60°B.75°C.90°D.105°4.已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根为()A.2 B.3 C.4 D.85.有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的()A.平均数B.中位数C.众数D.方差6.如图所示为某几何体的示意图,则该几何体的主视图应为()A.B.C.D.7.在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为()A.2,22.5°B.3,30°C.3,22.5°D.2,30°8.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,) B.(,)C.(,)D.(,4)二、填空题(每小题3分,共21分)9.25的算术平方根是.10.如图,AB∥CD,∠ABE=60°,∠F=50°,则∠E的度数为度.11.若不等式组的解集为3≤x≤4,则不等式ax+b<0的解集为.12.若根式有意义,则双曲线y=与抛物线y=x2+2x+2﹣2k的交点在第象限.13.如图,有四张卡片(形状、大小和质地都相同),正面分别写有字母A、B、C、D和一个不同的算式,将这四张卡片背面向上洗匀,从中随机抽取两张卡片,这两张卡片上的算式只有一个正确的概率是.14.如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为.15.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,F是BC的中点.若动点E以2cm/s 的速度从A点出发,沿着A→B→A的方向运动,设运动时间为t(s)(0≤t≤3),连接EF,当t为s时,△BEF是直角三角形.三、解答题(本大题共8小题,满分75分)16.先化简,再求值:(+2﹣x)÷,其中x满足x2﹣4x+3=0.17.我市民营经济持续发展,2013年城镇民营企业就业人数突破20万.为了解城镇民营企业员工每月的收入状况,统计局对全市城镇民营企业员工2013年月平均收入随机抽样调查,将抽样的数据按“2000元以内”、“2000~4000元”、“4000~6000元”和“6000元以上”分为四组,进行整理,分别用A,B,C,D表示,得到下面两幅不完整的统计图.由图中所给出的信息解答下列问题:(1)本次抽样调查的员工有人,在扇形统计图中x的值为,表示“月平均收入在2000元以内”的部分所对应扇形的圆心角的度数是;(2)将不完整的条形统计图补充完整,并估计我市2013年城镇民营企业20万员工中,每月的收入在“2000~4000元”的约多少人?(3)统计局根据抽样数据计算得到,2013年我市城镇民营企业员工月平均收入为4872元,请你结合上述统计的数据,谈一谈用平均数反映月收入情况是否合理?18.已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=°和∠AEB=°时,四边形ACED是正方形?请说明理由.19.天塔是天津市的标志性建筑之一,某校数学兴趣小组要测量天塔的高度,如图,他们在点A处测得天塔最高点C的仰角为45°,再往天塔方向前进至点B处测得最高点C的仰角为54°,AB=112m,根据这个兴趣小组测得的数据,计算天塔的高度CD(tan36°≈0.73,结果保留整数).20.如图,直线y=kx+k(k≠0)与双曲线交于C、D两点,与x轴交于点A.(1)求n的取值范围和点A的坐标;=4,求双曲线的解析式;(2)过点C作CB⊥y轴,垂足为B,若S△ABC(3)在(1)(2)的条件下,若AB=,求点C和点D的坐标,并根据图象直接写出反比例函数的值小于一次函数的值时,自变量x的取值范围.21.某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:月份(x)1月2月3月4月5月6月销售量(p) 3.9万台 4.0万台 4.1万台 4.2万台 4.3万台 4.4万台(1)求p关于x的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m 的值.22.问题背景:已知在△ABC中,AB边上的动点D由A向B运动(与A,B不重合),点E与点D同时出发,由点C沿BC的延长线方向运动(E不与C重合),连接DE交AC于F,点H是线段AF上一点.(1)初步尝试:如图1,若△ABC是等边三角形,DH⊥AC,且点D,E的运动速度相等,求证:HF=AH+CF.小王同学发现可以由以下两种思路解决此问题:思路一:过点D作DG∥BC,交AC于点G,先证GH=AH,再证GF=CF,从而证得结论成立;思路二:过点E作EM⊥AC,交AC的延长线于点M,先证CM=AH,再证HF=MF,从而证得结论成立;请你任选一种思路,完整地书写本小题的证明过程(如用两种方法作答,则以第一种方法评分)(2)类比探究:如图2,若在△ABC中,∠ABC=90°,∠ADH=∠BAC=30°,且点D,E的运动速度之比是:1,求的值.(3)延伸拓展:如图3,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,记=m,且点D,E的运动速度相等,试用含m的代数式表示(直接写出结果,不必写解答过程)23.如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.河南省信阳市新县中考数学模拟试卷(八)参考答案与试题解析一、选择题(每小题3分,共24分)1.2的相反数是()A.2 B.﹣2 C.D.【考点】相反数.【分析】根据相反数的定义求解即可.【解答】解:2的相反数为:﹣2.故选:B.2.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A.0.845×1012元B.8.45×1011元C.8.45×1012元D.84.5×1010元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:8450亿元用科学记数法表示为8.45×1011,故选:B.3.如图,直线BD∥EF,AE与BD交于点C,若∠ABC=30°,∠BAC=75°,则∠CEF的大小为()A.60°B.75°C.90°D.105°【考点】平行线的性质;三角形内角和定理.【分析】先根据三角形外角的性质求出∠1的度数,再由平行线的性质即可得出结论.【解答】解:∵∠1是△ABC的外角,∠ABC=30°,∠BAC=75°,∴∠1=∠ABC+∠BAC=30°+75°=105°,∵直线BD∥EF,∴∠CEF=∠1=105°.故选D.4.已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根为()A.2 B.3 C.4 D.8【考点】根与系数的关系.【分析】利用根与系数的关系来求方程的另一根.【解答】解:设方程的另一根为α,则α+2=6,解得α=4.故选C.5.有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的()A.平均数B.中位数C.众数D.方差【考点】统计量的选择.【分析】因为第10名同学的成绩排在中间位置,即是中位数.所以需知道这19位同学成绩的中位数.【解答】解:19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛,中位数就是第10位,因而要判断自己能否进入决赛,他只需知道这19位同学的中位数就可以.故选:B.6.如图所示为某几何体的示意图,则该几何体的主视图应为()A.B.C.D.【考点】简单组合体的三视图.【分析】几何体的主视图就是从正面看所得到的图形,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看可得到图形.故选A.7.在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为()A.2,22.5°B.3,30°C.3,22.5°D.2,30°【考点】切线的性质;等腰直角三角形.【分析】首先连接AO,由切线的性质,易得OD⊥AB,即可得OD是△ABC的中位线,继而求得OD的长;根据圆周角定理即可求出∠MND的度数.【解答】解:连接OA,∵AB与⊙O相切,∴OD⊥AB,∵在等腰直角三角形ABC中,AB=AC=4,O为BC的中点,∴AO⊥BC,∴OD∥AC,∵O为BC的中点,∴OD=AC=2;∵∠DOB=45°,∴∠MND=∠DOB=22.5°,故选A.8.如图,△AOB为等腰三角形,顶点A的坐标(2,),底边OB在x轴上.将△AOB绕点B按顺时针方向旋转一定角度后得△A′O′B,点A的对应点A′在x轴上,则点O′的坐标为()A.(,) B.(,)C.(,)D.(,4)【考点】坐标与图形变化-旋转.【分析】过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,根据点A的坐标求出OC、AC,再利用勾股定理列式计算求出OA,根据等腰三角形三线合一的性质求出OB,根据旋转的性质可得BO′=OB,∠A′BO′=∠ABO,然后解直角三角形求出O′D、BD,再求出OD,然后写出点O′的坐标即可.【解答】解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(2,),∴OC=2,AC=,由勾股定理得,OA===3,∵△AOB为等腰三角形,OB是底边,∴OB=2OC=2×2=4,由旋转的性质得,BO′=OB=4,∠A′BO′=∠ABO,∴O′D=4×=,BD=4×=,∴OD=OB+BD=4+=,∴点O′的坐标为(,).故选:C.二、填空题(每小题3分,共21分)9.25的算术平方根是5.【考点】算术平方根.【分析】根据算术平方根的定义即可求出结果,算术平方根只有一个正根.【解答】解:∵52=25,∴25的算术平方根是5.故答案为:5.10.如图,AB∥CD,∠ABE=60°,∠F=50°,则∠E的度数为10度.【考点】平行线的性质;三角形的外角性质.【分析】先根据平行线的性质求出∠CDE的度数,再由三角形外角的性质即可得出结论.【解答】解:∵AB∥CD,∠ABE=60°,∠F=50°,∴∠CDE=∠ABE=60°,∴∠E=∠CDE﹣∠F=60°﹣50°=10°.故答案为:10.11.若不等式组的解集为3≤x≤4,则不等式ax+b<0的解集为x>.【考点】解一元一次不等式组;不等式的解集;解一元一次不等式.【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可求出a,b的值,代入求出不等式的解集即可.【解答】解:∵解不等式①得:x≥,解不等式②得:x≤﹣a,∴不等式组的解集为:≤x≤﹣a,∵不等式组的解集为3≤x≤4,∴=3,﹣a=4,b=6,a=﹣4,∴﹣4x+6<0,x>,故答案为:x>12.若根式有意义,则双曲线y=与抛物线y=x2+2x+2﹣2k的交点在第二象限.【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0可得2﹣2k>0,再根据反比例函数的性质确定出反比例函数图象的位置,求出抛物线对称轴为直线x=﹣1,与y轴的交点在正半轴,确定出抛物线图象不在第四象限,从而判断出交点的位置.【解答】解:由题意得:2﹣2k>0,解得:k<1,∴2k﹣2<0,∴双曲线y=在第二、四象限,∵抛物线y=x2+2x+2﹣2k的对称轴为直线x=﹣=﹣1,与y轴的交点为(0,2﹣2k),在y轴正半轴,∴抛物线y=x2+2x+2﹣2k的图象不经过第四象限,∴双曲线y=与抛物线y=x2+2x+2﹣2k的交点在第二象限.故答案为:二.13.如图,有四张卡片(形状、大小和质地都相同),正面分别写有字母A、B、C、D和一个不同的算式,将这四张卡片背面向上洗匀,从中随机抽取两张卡片,这两张卡片上的算式只有一个正确的概率是.【考点】列表法与树状图法.【分析】首先此题需要两步完成,直接运用树状图法或者采用列表法,再根据列举求出所用可能数,再求出只有一次正确的情况数根据概率公式解答即可.【解答】解:列表如下:第1次第2次A B C DA BA CA DAB AB CB DBC AC BC DCD AD BD CD由表可知一共有12种情况,其中抽取的两张卡片上的算式只有一个正确的有8种,所以两张卡片上的算式只有一个正确的概率=,故答案为:.14.如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为π+1.【考点】旋转的性质;正方形的性质;扇形面积的计算.【分析】根据旋转的性质作出图形,再利用勾股定理列式求出正方形的对角线,然后根据点A运动的路径线与x轴围成的面积为三个扇形的面积加上两个直角三角形的面积,列式计算即可得解.【解答】解:如图,∵正方形ABCD的边长为1,∴对角线长:=,点A运动的路径线与x轴围成的面积为:+++×1×1+×1×1=π+π+π++=π+1.故答案为:π+1.15.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,F是BC的中点.若动点E以2cm/s 的速度从A点出发,沿着A→B→A的方向运动,设运动时间为t(s)(0≤t≤3),连接EF,当t为1s或3s或s或s时,△BEF是直角三角形.【考点】相似三角形的判定与性质;勾股定理的逆定理;三角形中位线定理.【分析】先利用含30度的直角三角形三边的关系得到AC=2,AB=4,然后讨论:当∠BFE=90°时,则EF∥AC,则可利用EF为△ABC的中位线得到AE=AB=2,于是可计算出t=1(s)或t=3(s);当∠FEB=90°,则证明△BEF∽△BCA,利用相似比可计算出BE=,则AE=,于是可计算出t=(s)或t=(s).【解答】解:∵∠ACB=90°,∠ABC=60°,BC=2cm,∴AC=BC=2,AB=2BC=4,当∠BFE=90°时,则EF∥AC,∵F是BC的中点,∴EF为△ABC的中位线,∴AE=AB=2,∴t==1(s)或t==3(s);当∠FEB=90°,∵∠FBE=∠ABC,∠BEF=∠C,∴△BEF∽△BCA,∴=,即=,解得BE=,∴AE=4﹣=,∴t==(s)或t==(s),综上所述,t的值为1s或3s或s或s.故答案为1s或3s或s或.三、解答题(本大题共8小题,满分75分)16.先化简,再求值:(+2﹣x)÷,其中x满足x2﹣4x+3=0.【考点】分式的化简求值;解一元二次方程-因式分解法.【分析】通分相加,因式分解后将除法转化为乘法,再将方程的解代入化简后的分式解答.【解答】解:原式=÷=•=﹣,解方程x2﹣4x+3=0得,(x﹣1)(x﹣3)=0,x1=1,x2=3.当x=1时,原式无意义;当x=3时,原式=﹣=﹣.17.我市民营经济持续发展,2013年城镇民营企业就业人数突破20万.为了解城镇民营企业员工每月的收入状况,统计局对全市城镇民营企业员工2013年月平均收入随机抽样调查,将抽样的数据按“2000元以内”、“2000~4000元”、“4000~6000元”和“6000元以上”分为四组,进行整理,分别用A,B,C,D表示,得到下面两幅不完整的统计图.由图中所给出的信息解答下列问题:(1)本次抽样调查的员工有500人,在扇形统计图中x的值为14,表示“月平均收入在2000元以内”的部分所对应扇形的圆心角的度数是21.6°;(2)将不完整的条形统计图补充完整,并估计我市2013年城镇民营企业20万员工中,每月的收入在“2000~4000元”的约多少人?(3)统计局根据抽样数据计算得到,2013年我市城镇民营企业员工月平均收入为4872元,请你结合上述统计的数据,谈一谈用平均数反映月收入情况是否合理?【考点】条形统计图;用样本估计总体;扇形统计图;加权平均数.【分析】(1)根据B组的人数是300,对应的百分比是60%,据此即可求得调查的总人数,然后利用百分比的意义求得x的值,利用360°乘以对应的比例求得圆心角的度数;(2)利用调查的总人数减去其它组的人数求得C组的人数,从而补全直方图,利用总人数20万乘以对应的比例求得每月的收入在“2000~4000元”的人数;(3)判断平均数是有代表性即可.【解答】解:(1)本次抽样调查的人数是300÷60%=500(人),x=100×=14,表示“月平均收入在2000元以内”的部分所对应扇形的圆心角的度数是360°×=21.6°;故答案是:500,14,21.6°;(2)C组的人数是500﹣30﹣300﹣70=100(人),估计我市2013年城镇民营企业20万员工中,每月的收入在“2000~4000元”的约有:20×=12(万人);(3)不合理,因为平均数不能代表大多数人的收入,应该用中位数或众数代表.18.已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=45°和∠AEB=45°时,四边形ACED是正方形?请说明理由.【考点】平行四边形的性质;全等三角形的判定与性质;正方形的判定.【分析】(1)首先根据O是CD的中点,可得DO=CO,再证明∠D=∠OCE,然后可利用ASA定理证明△AOD≌△EOC;(2)当∠B=45°和∠AEB=45°时,四边形ACED是正方形;首先证明∠BAE=90°,然后证明AC 是BE边上的中线,根据直角三角形的性质可得AC=CE,然后利用等腰三角形的性质证明AC⊥BE,可得结论.【解答】(1)证明:∵O是CD的中点,∴DO=CO,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠OCE,在△ADO和△ECO中,∴△AOD≌△EOC(ASA);(2)解:当∠B=45°和∠AEB=45°时,四边形ACED是正方形,∵∠B=45°和∠AEB=45°,∴∠BAE=90°,∵△AOD≌△EOC,∴AO=EO,∵DO=CO,∴四边形ACED是平行四边形,∴AD=CE,∵四边形ABCD是平行四边形,∴AD=BC,∴BC=CE,∵∠BAE=90°,∴AC=CE,∴平行四边形ACED是菱形,∵∠B=∠AEB,BC=CE,∴AC⊥BE,∴四边形ACED是正方形.故答案为:45,45.19.天塔是天津市的标志性建筑之一,某校数学兴趣小组要测量天塔的高度,如图,他们在点A处测得天塔最高点C的仰角为45°,再往天塔方向前进至点B处测得最高点C的仰角为54°,AB=112m,根据这个兴趣小组测得的数据,计算天塔的高度CD(tan36°≈0.73,结果保留整数).【考点】解直角三角形的应用-仰角俯角问题.【分析】首先根据题意得:∠CAD=45°,∠CBD=54°,AB=112m,在Rt△ACD中,易求得BD=AD ﹣AB=CD﹣112;在Rt△BCD中,可得BD=CD•tan36°,即可得CD•tan36°=CD﹣112,继而求得答案.【解答】解:根据题意得:∠CAD=45°,∠CBD=54°,AB=112m,∵在Rt△ACD中,∠ACD=∠CAD=45°,∴AD=CD,∵AD=AB+BD,∴BD=AD﹣AB=CD﹣112(m),∵在Rt△BCD中,tan∠BCD=,∠BCD=90°﹣∠CBD=36°,∴tan36°=,∴BD=CD•tan36°,∴CD•tan36°=CD﹣112,∴CD=≈≈415(m).答:天塔的高度CD约为:415m.20.如图,直线y=kx+k(k≠0)与双曲线交于C、D两点,与x轴交于点A.(1)求n的取值范围和点A的坐标;=4,求双曲线的解析式;(2)过点C作CB⊥y轴,垂足为B,若S△ABC(3)在(1)(2)的条件下,若AB=,求点C和点D的坐标,并根据图象直接写出反比例函数的值小于一次函数的值时,自变量x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)由反比例函数图象位于第二、四象限,得到比例系数小于0列出关于n的不等式,求出不等式的解集即可得到n的范围,对于直线解析式,令y=0求出x的值,确定出A的坐标即可;(2)设C(a,b),表示出三角形ABC的面积,根据已知的面积列出关于a与b的关系式,利用反比例函数k的几何意义即可求出k的值,确定出反比例解析式;(3)由CB垂直于y轴,得到B,C纵坐标相同,即B(0,b),在直角三角形AOB中,由AB 与OA的长,利用勾股定理求出OB的长,确定出B坐标,进而确定出C坐标,将C代入直线解析式求出k的值,确定出一次函数解析式,与反比例解析式联立求出D的坐标,由C,D两点的横坐标,利用图象即可求出反比例函数的值小于一次函数的值时,自变量x的取值范围.【解答】解:(1)由图象得:n+1<0,解得:n<﹣1,由y=kx+k,令y=0,解得:x=﹣1,则A坐标为(﹣1,0);(2)设C(a,b),=a•(﹣b)=4,∵S△ABC∴ab=﹣8,∵点C在双曲线上,∴y=﹣;(3)∵CB⊥y轴,∴B(0,b),在Rt△AOB中,AB=,OA=1,根据勾股定理得:OB=4,∴B(0,﹣4),∴C(2,﹣4),将C代入直线y=kx+k中,得:2k+k=﹣4,即k=﹣,∴直线AC解析式为y=﹣x﹣,联立直线与反比例解析式得:,解得:或,∴D(﹣3,),则由图象可得:当x<﹣3或0<x<2时,反比例函数的值小于一次函数的值.21.某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:月份(x)1月2月3月4月5月6月销售量(p) 3.9万台 4.0万台 4.1万台 4.2万台 4.3万台 4.4万台(1)求p关于x的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m 的值.【考点】二次函数的应用.【分析】(1)直接利用待定系数法求一次函数解析式即可;(2)利用销量×售价=销售金额,进而利用二次函数最值求法求出即可;(3)分别表示出1,2月份的销量以及售价,进而利用今年2月份这种品牌手机的销售额为6400万元,得出等式求出即可.【解答】解:(1)设p=kx+b,把p=3.9,x=1;p=4.0,x=2分别代入p=kx+b中,得:,解得:,∴p=0.1x+3.8;(2)设该品牌手机在去年第x个月的销售金额为w万元,w=(﹣50x+2600)(0.1x+3.8)=﹣5x2+70x+9880=﹣5(x﹣7)2+10125,当x=7时,w最大=10125,答:该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)当x=12时,y=2000,p=5,1月份的售价为:2000(1﹣m%)元,则2月份的售价为:0.8×2000(1﹣m%)元;1月份的销量为:5×(1﹣1.5m%)万台,则2月份的销量为:[5×(1﹣1.5m%)+1.5]万台;∴0.8×2000(1﹣m%)×[5×(1﹣1.5m%)+1.5]=6400,解得:m1%=(舍去),m2%=,∴m=20,答:m的值为20.22.问题背景:已知在△ABC中,AB边上的动点D由A向B运动(与A,B不重合),点E与点D同时出发,由点C沿BC的延长线方向运动(E不与C重合),连接DE交AC于F,点H是线段AF上一点.(1)初步尝试:如图1,若△ABC是等边三角形,DH⊥AC,且点D,E的运动速度相等,求证:HF=AH+CF.小王同学发现可以由以下两种思路解决此问题:思路一:过点D作DG∥BC,交AC于点G,先证GH=AH,再证GF=CF,从而证得结论成立;思路二:过点E作EM⊥AC,交AC的延长线于点M,先证CM=AH,再证HF=MF,从而证得结论成立;请你任选一种思路,完整地书写本小题的证明过程(如用两种方法作答,则以第一种方法评分)(2)类比探究:如图2,若在△ABC中,∠ABC=90°,∠ADH=∠BAC=30°,且点D,E的运动速度之比是:1,求的值.(3)延伸拓展:如图3,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,记=m,且点D,E的运动速度相等,试用含m的代数式表示(直接写出结果,不必写解答过程)【考点】三角形综合题.【分析】(1)过点D作DG∥BC,交AC于点G,先证明△ADG是等边三角形,得出GD=AD=CE,再证明GH=AH,由ASA证明△GDF≌△CEF,得出GF=CF,即可得出结论;(2)过点D作DG∥BC,交AC于点G,先证出AH=GH=GD,AD=GD,由题意AD=CE,得出GD=CE,再证明△GDF≌△CEF,得出GF=CF,即可得出结论;(3)过点D作DG∥BC,交AC于点G,先证出DG=DH=AH,再证明△ADG∽△ABC,△ADG ∽△DGH,△DGH∽△ABC,得出=m,=m,=m,证出△DFG∽△EFC,得出=m,即可得出结果.【解答】(1)证明(选择思路一):过点D作DG∥BC,交AC于点G,如图1所示:则∠ADG=∠B,∠AGD=∠ACB,∵△ABC是等边三角形,∴∠A=∠B=∠ACB=60°,∴∠ADG=∠AGD=∠A,∴△ADG是等边三角形,∴GD=AD=CE,∵DH⊥AC,∴GH=AH,∵DG∥BC,∴∠GDF=∠CEF,∠DGF=∠ECF,在△GDF和△CEF中,,∴△GDF≌△CEF(ASA),∴GF=CF,∴GH+GF=AH+CF,即HF=AH+CF;(2)解:过点D作DG∥BC,交AC于点G,如图2所示:则∠ADG=∠B=90°,∵∠BAC=∠ADH=30°,∴∠HGD=∠HDG=60°,∴AH=GH=GD,AD=GD,根据题意得:AD=CE,∴GD=CE,∵DG∥BC,∴∠GDF=∠CEF,∠DGF=∠ECF,在△GDF和△CEF中,,∴△GDF≌△CEF(ASA),∴GF=CF,∴GH+GF=AH+CF,即HF=AH+CF,∴=2;(3)解:=,理由如下:过点D作DG∥BC,交AC于点G,如图3所示:则∠ADG=∠B,∠AGD=∠ACB,AD=EC,∵AB=AC,∠BAC=36°,∴∠ACB=∠B=∠ADG=∠AGD=72°,∵∠ADH=∠BAC=36°,∴AH=GH,∠DHG=72°=∠AGD,∴DG=DH=AH,△ADG∽△ABC,△ADG∽△DGH,∴=m,=m,∴△DGH∽△ABC,∴=m,∴=m,∵DG∥BC,∴△DFG∽△EFC,∴=m,∴==m,即=m,∴=,∴=+1=.23.如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.【考点】二次函数综合题.【分析】(1)采用待定系数法求得二次函数的解析式;(2)先求得直线BC的解析式为y=x﹣4,则可设E(m,m﹣4),然后分三种情况讨论即可求得;(3)利用△PBD的面积S=S梯形﹣S△BOD﹣S△PFD即可求得.【解答】解:(1)∵二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,∴,解得,∴该二次函数的解析式为y=x2﹣x﹣4;(2)由二次函数y=x2﹣x﹣4可知对称轴x=3,∴D(3,0),∵C(8,0),∴CD=5,由二次函数y=x2﹣x﹣4可知B(0,﹣4),设直线BC的解析式为y=kx+b,∴,解得,∴直线BC的解析式为y=x﹣4,设E(m,m﹣4),当DC=CE时,EC2=(m﹣8)2+(m﹣4)2=CD2,即(m﹣8)2+(m﹣4)2=52,解得m1=8﹣2,m2=8+2(舍去),∴E(8﹣2,﹣);当DC=DE时,ED2=(m﹣3)2+(m﹣4)2=CD2,即(m﹣3)2+(m﹣4)2=52,解得m3=0,m4=8(舍去),∴E (0,﹣4);当EC=DE 时,(m ﹣8)2+(m ﹣4)2=(m ﹣3)2+(m ﹣4)2解得m 5=5.5, ∴E (,﹣).综上,存在点E ,使得△CDE 为等腰三角形,所有符合条件的点E 的坐标为(8﹣2,﹣)、(0,﹣4)、(,﹣).(3)过点P 作y 轴的平行线交x 轴于点F , ∵P 点的横坐标为m ,∴P 点的纵坐标为m 2﹣m ﹣4,∵△PBD 的面积S=S 梯形﹣S △BOD ﹣S △PFD =m [4﹣(m 2﹣m ﹣4)]﹣(m ﹣3)[﹣(m 2﹣m ﹣4)]﹣×3×4 =﹣m 2+m=﹣(m ﹣)2+∴当m=时,△PBD 的最大面积为,∴点P 的坐标为(,﹣).。

中考数学模拟测试卷带答案

中考数学模拟测试卷带答案

中考数学模拟测试卷带答案学校:___________班级:___________姓名:___________考号:___________一、单选题(本大题共8小题,每小题5分,共40分)1.由4个完全相同的小正方体组成的立体图形如图所示,则该立体图形的俯视图是( )A .B .C .D .2.如图,AB 是⊙O 的直径,CD 是OO 的弦,AB ⟂CD .垂足为E .若AB =26,CD =24,则⊙OCE 的余弦值为( )A .713 B .1213 C .712 D .13123.下列哪种影子不是中心投影( )A .月光下房屋的影子B .晚上在房间内墙上的手影C .都市冤虹灯形成的影子D .皮影戏中的影子4.若点()()()1232,1,1,A y B y C y --、、都在反比例函数21k y x +=(k 为常数)的图象上123y y y 、、的大小关系为( ) A .123y y y << B .231y y y << C .213y y y << D .312y y y <<5.如图,一个长方体的主视图和左视图如图所示(单位:cm ),则其俯视图的面积为( )A .210cmB .220cmC .212.5cmD .225cm6.如图,在ABC 中,点,D E 分别在边,AB AC 上DE BC ∥,若12AD DB =,下列结论正确的是( ) A .12AE AC = B .12DE BC = C .13ADE ABC S S ∆∆= D .13ADE ABC C C ∆∆= 7.反比例函数a y x =与二次函数2y ax ax =+在同一坐标轴中的图象大致是( )A .B .C .D .8.如图,等边三角形ABC 的边长为10,在AC ,BC 边上各取一点E ,F ,使AE CF =,连接AF ,BE 相交于点P ,若4AE =,则AP AF ⋅的值是( )A .16B .25C .36D .40二、填空题(本大题共4小题,每小题5分,共20分)9.计算:133tan30︒= .10.如图,点A 在双曲线30)y x =>上,过点A 作AC x ⊥轴,垂足为C ,OA 的垂直平分线交OC 于点B ,当1AC =时,ABC 的周长为 .11.如图,已知AB 是O 的直径,AB=2,C 、D 是圆周上的点,且1sin 3CDB ∠=,则BC 的长为 .12.如图,某数学兴趣小组为测量教学楼CD 的高,先在A 处用高1.5米的测角仪测得教学楼顶端D 的仰角DEG ∠为30°,再向前走30米到达B 处,又测得教学楼顶端D 的仰角DFG ∠为60°,A 、B 、C 三点在同一水平线上,则教学楼CD 的高为 米(结果保留根号).三、解答题(本大题共3小题,共40分)13.(10分)如图,某中学数学课题学习小组在“测量物体高度”的活动中,欲测量一棵古树DE 的高度,他们在这棵古树的正前方一平房顶A 点处测得古树顶端D 的仰角为30︒,在这棵古树的正前方C 处,测得古树顶端D 的仰角为60︒,在A 点处测得C 点的俯角为30︒,已知BC 为4米,且B 、C 、E 三点在同一条直线上.(1)求平房AB 的高度;(2)请求出古树DE 的高度.(根据以上条件求解时测角器的高度忽略不计)第5题图 第6题图 第8题图第10题图 第11题图 第12题图14.(10分)某饮水机开始加热时,水温每分钟上升20℃,加热到100℃时,停止加热,水温开始下降.此时水温()y ℃是通电时间()min x 的反比例函数.若在水温为20℃时开始加热,水温()y ℃与通电时间()min x 之间的函数关系如图.(1)在水温下降的过程中,求水温()y ℃关于通电时间()min x 的函数表达式;(2)若水温从20℃开始加热至100℃,然后下降至20℃,在这一过程中,水温不低于40℃的时间有多长?15.(20分)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,且AD 平分⊙CAB ,过点D 作AC 的垂线,与AC 的延长线相交于点E ,与AB 的延长线相交于点P .(1)求证:EP 与⊙O 相切;(2)连结BD ,求证:AD ·DP =BD ·AP(3)若AB =6,AD =42DP 的长.参考答案一、单选题(本大题共8小题,每小题5分,共40分)1.由4个完全相同的小正方体组成的立体图形如图所示,则该立体图形的俯视图是( B )B . B .C .D .2.如图,AB 是⊙O 的直径,CD 是OO 的弦,AB ⟂CD .垂足为E .若AB =26,CD =24,则⊙OCE 的余弦值为( B )B .713 B .1213 C .712 D .13123.下列哪种影子不是中心投影( A )A .月光下房屋的影子B .晚上在房间内墙上的手影C .都市冤虹灯形成的影子D .皮影戏中的影子4.若点()()()1232,1,1,A y B y C y --、、都在反比例函数21k y x+=(k 为常数)的图象上123y y y 、、的大小关系为( C ) A .123y y y << B .231y y y << C .213y y y << D .312y y y <<5.如图,一个长方体的主视图和左视图如图所示(单位:cm ),则其俯视图的面积为( A )A .210cmB .220cmC .212.5cmD .225cm6.如图,在ABC 中,点,D E 分别在边,AB AC 上DE BC ∥,若12AD DB =,下列结论正确的是( D ) A .12AE AC = B .12DE BC = C .13ADE ABC S S ∆∆= D .13ADE ABC C C ∆∆= 7.反比例函数a y x =与二次函数2y ax ax =+在同一坐标轴中的图象大致是( A )A .B .C .D .8.如图,等边三角形ABC 的边长为10,在AC ,BC 边上各取一点E ,F ,使AE CF =,连接AF ,BE 相交于点P ,若4AE =,则AP AF ⋅的值是( D )A .16B .25C .36D .40二、填空题(本大题共4小题,每小题5分,共20分)9.计算:133tan30︒= 1- .10.如图,点A 在双曲线30)y x =>上,过点A 作AC x ⊥轴,垂足为C ,OA 的垂直平分线交OC 于点B ,当1AC =时,ABC 的周长为 31 .第5题图 第6题图 第8题图11.如图,已知AB 是O 的直径,AB=2,C 、D 是圆周上的点,且1sin 3CDB ∠=,则BC 的长为 23 .12.如图,某数学兴趣小组为测量教学楼CD 的高,先在A 处用高1.5米的测角仪测得教学楼顶端D 的仰角DEG ∠为30°,再向前走30米到达B 处,又测得教学楼顶端D 的仰角DFG ∠为60°,A 、B 、C 三点在同一水平线上,则教学楼CD 的高为 ()153 1.5 米(结果保留根号). 三、解答题(本大题共3小题,共40分)13.(10分)如图,某中学数学课题学习小组在“测量物体高度”的活动中,欲测量一棵古树DE 的高度,他们在这棵古树的正前方一平房顶A 点处测得古树顶端D 的仰角为30︒,在这棵古树的正前方C 处,测得古树顶端D 的仰角为60︒,在A 点处测得C 点的俯角为30︒,已知BC 为4米,且B 、C 、E 三点在同一条直线上.(1)求平房AB 的高度;(2)请求出古树DE 的高度.(根据以上条件求解时测角器的高度忽略不计)1)由题意知60CAB ∠=︒,BC=4 ...................................................1分 ∴43tan603BC AB ==︒.................................................................3分 (2)43AB =30ACB ∠=︒ 90ABC ∠=︒ ⊙832AC AB = ...........................................................................................................................................................5分60BAC ∠=︒ 30ACB ∠=︒ 60DCE ∠=︒∴=90ACD ∠︒ 60DAC ∠=︒ ..........................................................................................................................................6分 ∴83tan6038DC AC =⋅︒== ...................................................................................................................................8分 在Rt CDE △中3sin60843DE CD =⋅︒==........................................................................................................10分 14.(10分)某饮水机开始加热时,水温每分钟上升20℃,加热到100℃时,停止加热,水温开始下降.此时水温()y ℃是通电时间()min x 的反比例函数.若在水温为20℃时开始加热,水温()y ℃与通电时间()min x 之间的函数关系如图.第10题图 第11题图 第12题图(1)在水温下降的过程中,求水温()y ℃关于通电时间()min x 的函数表达式;{}(2)若水温从20℃开始加热至100℃,然后下降至20℃,在这一过程中,水温不低于40℃的时间有多长? 1)解:设水温下降过程中,y 与x 的函数关系式为k y x=(k ≠0),...........................................1分 由题意得,点(4,100)在反比例函数k y x =的图象上 ∴4100k =..............................................................................................................................2分 解得:400k =∴水温下降过程中,y 与x 的函数关系式是400y x=;.....................................................3分 解:设在加热过程中,y 与x 的函数关系式为y=kx+b(k ≠0).......................................................................4分 把(0,20),(4,100)带入y=kx+b(k ≠0)得20=b, 100=4k+b.....................................................................................................................................................5分 解得:k=20,b=20..................................................................................................................................................6分 ∴y=20x+20当y=40时1x =.............................................................................................................................................7分在降温过程中,水温为40℃时40040x=..................................................................................................8分 解得:10x =...................................................................................................................................................9分1019-=........................................................................................................................................................10分∴一个加热周期内水温不低于40℃的时间为9min .15.(20分)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,且AD 平分⊙CAB ,过点D 作AC 的垂线,与AC 的延长线相交于点E ,与AB 的延长线相交于点P .(1)求证:EP 与⊙O 相切;(2)连结BD ,求证:AD ·DP =BD ·AP(3)若AB =6,AD =42DP 的长.(1)证明:如图所示,连接OD ,.........................................................1分∵AD 平分∠CAB∴∠OAD =∠EAD ...........................................................................................................................................................2分 ∵OD =OA∴∠ODA =∠OAD ............................................................................................................................................................3分 ∴∠ODA =∠EAD .∴OD ∥AE .........................................................................................................................................................................4分 ∵AE PE ⊥∴OD PE ⊥∵D 在⊙O 上∴EP 与⊙O 相切...........................................................................................................................................................5分 (2)证明:OD PE ⊥∵∴90ODB BDP ∠+∠=︒.............................................................................................................................................6分 ∵AB 是⊙O 的直径⊙90ADB ∠=︒............................................................................................................................................................7分 即90ODB ODA ∠+∠=︒∴=ODA BDP ∠∠......................................................................................................................................................8分 ∵OD =OA∴∠ODA =∠OAD .⊙=OAD BDP ∠∠.....................................................................................................................................................9分 又∵APD DPB ∠=∠∴APD DPB ∆∆∽.....................................................................................................................................................10分 ∴AD AP BD DP=............................................................................................................................................................11分 ∴AD ·DP =BD ·AP ...................................................................................................................................................12分 解:作DG ⊥AB 于G∵AB 是⊙O 的直径∴∠ADB =90°∵AB =6,AD =2∴BD 22-AB AD 2 132OD AB ==.................................................................................................................15分 ∵12AB •DG =12AD •BD∴DG 423分 ∵AD 平分∠CAB ,AE ⊥DE ,DG ⊥AB∴DE =DG 423∴AE 22AD DE -163............................................................................................................................................17分 ∵OD ∥AE∴△ODP ∽△AEP .........................................................................................................................................................18分 ∴DP EP =OD AE ,即DP DE DP OD AE += ∴4213363DPDP =........................................................................................................................................................19分 ∴2721DP =分。

江苏省中考数学模拟考试卷-附参考答案与解析

江苏省中考数学模拟考试卷-附参考答案与解析

江苏省中考数学模拟考试卷-附参考答案与解析学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共8小题,共16.0分。

在每小题列出的选项中,选出符合题目的一项)1. 3的相反数是( )A. 3B. −3C. 13D. −132. 若式子√ x−4有意义,则x的取值范围是( )A. x<4B. x>4C. x≤4D. x≥43. 某几何体的三视图如图所示,则该几何体是( )A. 三棱柱B. 三棱锥C. 四棱柱D. 圆锥4. 已知三角形的两边长分别为5cm和8cm,则第三边的长可以是( )A. 2cmB. 3cmC. 6cmD. 13cm5. 下列计算正确的是( )A. a3+a2=a5B. a3⋅a2=a5C. a3÷a2=a5D. (a3)2=a56. 已知圆锥的底面半径是4cm,母线长为6cm,则圆锥的侧面积是( )A. 48πcm2B. 36πcm2C. 24πcm2D. 12πcm27. 一辆汽车油箱中剩余的油量y(L)与已行驶的路程x(km)的对应关系如图所示.如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35L时,那么该汽车已行驶的路程为( )A. 150kmB. 165kmC. 125kmD. 350km8. 如图,在平面直角坐标系xOy中,点A的坐标是(0,4),点B的坐标是(3,4),将△AOB向右平移到△CED的位置,点C、E、D依次与点A、O、B对应点,F是DE的中点,若反比例函数y=kx(k≠0)的图象经过点C和点F,则k的值是( )A. 5B. 6C. 8D. 10二、填空题(本大题共10小题,共20.0分)9. √ 4=______.10. 计算:x+5x −5x=______ .11. 分解因式:x2−2x+1=______.12. 2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为______.13. 如图,数轴上的点A、B分别表示实数a、b则a+b______ 0(填写“>”、“<”或“=”).14. 若二次函数y=ax2−3x−1的图象开口向下,则实数a的取值范围是______ .15. 如图,在△ABC中AB=AC=8,点D,E,F分别在边AB,BC,AC上DE//AC,EF//AB则四边形ADEF的周长是______ .16. 如图,∠DCE 是⊙O 内接四边形ABCD 的一个外角,若∠DCE =72°,那么∠BOD 的度数为______.17. 如图,OP 平分∠MON ,点A 是OM 上一点,点B 是OP 上一点AB ⊥OP ,若AB =3,OB =4则点B 到ON 的距离是______ .18. 如图,正方形ABCD 的边长为2,G 是边CD 的中点,E 是边AD 上一动点,连接BE ,将△ABE 沿BE 翻折得到△FBE ,连接GF.当GF 最小时,它的长是______ .三、解答题(本大题共10小题,共84.0分。

中考数学模拟卷(含答案)

中考数学模拟卷(含答案)

中考数学一模试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣2的倒数是()A.﹣B.C.2D.﹣22.(3分)下列计算正确的是()A.2+=2B.a+a2=a3C.2a•3a=6a D.x6÷x2=x4 3.(3分)下列水平放置的几何体中,俯视图是三角形的()A.B.C.D.4.(3分)商店某天销售了14件衬衫,其领口尺寸统计如下表:领口尺寸(cm)3839404142件数15332则这14件衬衫领口尺寸的众数和中位数分别是()A.39cm、40cm B.39cm、39.5cmC.39cm、39cm D.40cm、40cm5.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2B.3C.4D.56.(3分)抛物线y=﹣(x+1)2+3的顶点坐标是()A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)7.(3分)用一个直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁轴截面如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L 的最大距离是18cm.若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为()A.60πcm2B.πcm2C.πcm2D.72πcm28.(3分)如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A’恰好在∠BCD的平分线上时,CA’的长为()A.3或4B.3或4C.3或4D.4或3二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)函数中自变量x的取值范围是.10.(3分)写分解因式a2﹣8ab+16b2的结果.11.(3分)长城是我国第一批成功入选世界遗产的文化古迹,长城总长约6700000米,将6700000用科学记数法表示应为.12.(3分)如图,AB是⊙O的直径,点C,D是圆上两点,∠AOC=100°,则∠D=度.13.(3分)如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,则∠2的度数为.14.(3分)钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过的弧长是cm.15.(3分)如图,在平面直角坐标系中,将两个全等的矩形OABC和OA'B'C'按图示方式进行放置(其中OA在x轴正半轴上,点B'在y轴正半轴上),OA'与BC相交于点D,若点B坐标为(3,1),则经过点D的反比例函数解析式是.16.(3分)如图,⊙O的半径为1,正方形ABCD顶点B坐标为(5,0),顶点D在⊙O上运动,则正方形面积最大时,正方形与⊙O重叠部分的面积是.三、解答题(本大题共11小题,共102分.请在答题卡上指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣2)2﹣.18.(6分)化简:19.(6分)解不等式组:20.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.21.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)22.(10分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF;(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.23.(10分)一艘小船从码头A出发,沿北偏东53°方向航行,航行一段时间到达小岛B 处后,又沿着北偏西22°方向航行了10海里到达C处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离(≈1.4,≈1.7,结果保留整数).24.(10分)某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?25.(12分)如图,A、F、B、C是⊙O上的四个点,连接OF交AB于点E,AO∥BC,AB ∥OC,∠AOF=30°,过点C作CD∥OF交AB的延长线于点D,延长AF交直线CD 于点H.(1)判断四边形ABCO的形状并说明理由;(2)求证:CD是⊙O的切线;(3)若DH=4,求EF的长.26.(12分)如图,在平面直角坐标系xOy中,直线y=x+m与坐标轴y轴交于点A,与x 轴交于点B,过A,B两点的抛物线y=x2+nx﹣8,点D为线段AB上一动点,过点D作CD垂直x轴于点C,交抛物线于点E.(1)求抛物线的解析式;(2)当DE=12时,求四边形CAEB的面积;(3)是否存在点D,使得△DEB和△DAC相似?若存在,求出点D的坐标,若不存在,请说明理由.27.(14分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证:当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=6,DE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDE,请求出相应的BF的长.中考数学一模试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣2的倒数是()A.﹣B.C.2D.﹣2【解答】解:∵(﹣2)×(﹣)=1,∴﹣2的倒数是﹣.故选:A.2.(3分)下列计算正确的是()A.2+=2B.a+a2=a3C.2a•3a=6a D.x6÷x2=x4【解答】解:A、2+和2不相等,故本选项不符合题意;B、a和a2不能合并,故本选项不符合题意;C、2a•3a=6a2,故本选项不符合题意;D、x6÷x2=x4,故本选项符合题意;故选:D.3.(3分)下列水平放置的几何体中,俯视图是三角形的()A.B.C.D.【解答】解:俯视图是三角形的是选项D,故选:D.4.(3分)商店某天销售了14件衬衫,其领口尺寸统计如下表:领口尺寸(cm)3839404142件数15332则这14件衬衫领口尺寸的众数和中位数分别是()A.39cm、40cm B.39cm、39.5cmC.39cm、39cm D.40cm、40cm【解答】解:同一尺寸最多的是39cm,共有5件,所以众数是39cm,14件衬衫按照尺寸从小到大排列,第7,8件的尺寸都是40cm,所以中位数是(40+40)=40cm.故选:A.5.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2B.3C.4D.5【解答】解:∵点A是反比例函数y=图象上一点,且AB⊥x轴于点B,∴S△AOB=|k|=2,解得:k=±4.∵反比例函数在第一象限有图象,∴k=4.故选:C.6.(3分)抛物线y=﹣(x+1)2+3的顶点坐标是()A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)【解答】解:抛物线y=﹣(x+1)2+3的顶点坐标是(﹣1,3).故选:B.7.(3分)用一个直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁轴截面如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L 的最大距离是18cm.若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为()A.60πcm2B.πcm2C.πcm2D.72πcm2【解答】解:连接OB,作BH⊥OA于H,如图,∵圆锥的母线AB与⊙O相切于点B,∴OB⊥AB,在Rt△AOB中,OA=18﹣5=13,OB=5,∴AB==12,∵OA•BH=OB•AB,∴BH==,∵圆锥形纸帽的底面圆的半径为BH=,母线长为12,∴形纸帽的表面=×2π××12=π(cm2).故选:C.8.(3分)如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A’恰好在∠BCD的平分线上时,CA’的长为()A.3或4B.3或4C.3或4D.4或3【解答】解:如图所示,过点A′作A′M⊥BC于点M.∵点A的对应点A′恰落在∠BCD的平分线上,∴设CM=A′M=x,则BM=7﹣x,又由折叠的性质知AB=A′B=5,∴在直角△A′MB中,由勾股定理得到:A′M2=A′B2﹣BM2=25﹣(7﹣x)2,∴25﹣(7﹣x)2=x2,∴x=3或x=4,∵在等腰Rt△A′CM中,CA′=A′M,∴CA′=3或4.故选:B.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)函数中自变量x的取值范围是x≥﹣2.【解答】解:根据题意得:4+2x≥0,解得:x≥﹣2.故答案为:x≥﹣2.10.(3分)写分解因式a2﹣8ab+16b2的结果(a﹣4b)2.【解答】解:原式=(a﹣4b)2,故答案为:(a﹣4b)2.11.(3分)长城是我国第一批成功入选世界遗产的文化古迹,长城总长约6700000米,将6700000用科学记数法表示应为 6.7×106.【解答】解:6700000=6.7×106.故答案为:6.7×106.12.(3分)如图,AB是⊙O的直径,点C,D是圆上两点,∠AOC=100°,则∠D=40度.【解答】解:∵∠AOC=100°,∴∠BOC=180°﹣100°=80°,∴∠D=40°.13.(3分)如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,则∠2的度数为35°.【解答】解:∵AB⊥BC,∠1=55°,∴∠2=90°﹣55°=35°.∵a∥b,∴∠2=∠3=35°.故答案为:35°.14.(3分)钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过的弧长是cm.【解答】解:圆心角的度数是:360°×=240°,弧长是=cm.15.(3分)如图,在平面直角坐标系中,将两个全等的矩形OABC和OA'B'C'按图示方式进行放置(其中OA在x轴正半轴上,点B'在y轴正半轴上),OA'与BC相交于点D,若点B坐标为(3,1),则经过点D的反比例函数解析式是y=.【解答】解:∵点B坐标为(3,1),∴AO=3,AB=CO=1,∵矩形OABC和OA′B′C′全等,∴OA′=OA=3,A′B′=AB=1,∵∠A′=∠DCO=90°,∠DOC=∠B′OA′,∴△CDO∽△A′B′O,∴=,即=,∴CD=,∴D(,1),设经过点D的反比例函数解析式为y=,∴k=×1=,∴经过点D的反比例函数解析式为:y=,故答案为:y=.16.(3分)如图,⊙O的半径为1,正方形ABCD顶点B坐标为(5,0),顶点D在⊙O上运动,则正方形面积最大时,正方形与⊙O重叠部分的面积是+1.【解答】解:如图所示,当点D运动到(﹣1,0)时,BD最长,此时,正方形面积最大,∠CDO=45°,∴∠CDO=45°,又∵∠FDO=45°,∴CD经过点F,同理可得,AD经过点E,∴正方形与⊙O重叠部分的面积是△DEF的面积与半圆面积的和,即×2×1+×π×12=1+,故答案为:+1.三、解答题(本大题共11小题,共102分.请在答题卡上指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣2)2﹣.【解答】解:原式=4﹣5﹣5=﹣6.18.(6分)化简:【解答】解:原式=•=•=.19.(6分)解不等式组:【解答】解:,解不等式①,得x≥﹣4,解不等式②,得x>﹣,故不等式的解集为x>﹣.20.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60人,扇形统计图中“基本了解”部分所对应扇形的圆心角为90度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.【解答】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;故答案为:60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.21.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)【解答】解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:;故答案为:;(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:;(3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;∴建议小明在第一题使用“求助”.22.(10分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF;(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,又∵BE=DF,∴△ABE≌△ADF,∴AE=AF;(2)连接AC,∵AE垂直平分BC,AF垂直平分CD,∴AB=AC=AD.∵AB=BC=CD=DA,∴△ABC和△ACD都是等边三角形.∴∠CAE=∠BAE=30°,∠CAF=∠DAF=30°.∴∠EAF=∠CAE+∠CAF=60°又∵AE=AF,∴△AEF是等边三角形.23.(10分)一艘小船从码头A出发,沿北偏东53°方向航行,航行一段时间到达小岛B 处后,又沿着北偏西22°方向航行了10海里到达C处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离(≈1.4,≈1.7,结果保留整数).【解答】解:∵∠BAC=53°﹣23°=30°,∴∠C=23°+22°=45°.过点B作BD⊥AC,垂足为D,则CD=BD.∵BC=10,∴CD=BC•cos45°=10×≈7.0,∴AD==5÷=5×=5×≈5×1.4×1.7≈11.9.∴AC=AD+CD=11.9+7.0=18.9≈19.答:小船到码头的距离约为19海里.24.(10分)某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?【解答】解:(1)当40≤x≤58时,设y与x之间的函数关系式为y=kx+b(k≠0),将(40,60),(58,24)代入y=kx+b,得:,解得:,∴当40≤x≤58时,y与x之间的函数关系式为y=2x+140;当理可得,当58<x≤71时,y与x之间的函数关系式为y=﹣x+82.综上所述:y与x之间的函数关系式为y=.(2)设当天的销售价为x元时,可出现收支平衡.当40≤x≤58时,依题意,得:(x﹣40)(﹣2x+140)=100×3+150,解得:x1=x2=55;当57<x≤71时,依题意,得:(x﹣40)(﹣x+82)=100×3+150,此方程无解.答:当天的销售价为55元时,可出现收支平衡.25.(12分)如图,A、F、B、C是⊙O上的四个点,连接OF交AB于点E,AO∥BC,AB ∥OC,∠AOF=30°,过点C作CD∥OF交AB的延长线于点D,延长AF交直线CD 于点H.(1)判断四边形ABCO的形状并说明理由;(2)求证:CD是⊙O的切线;(3)若DH=4,求EF的长.【解答】(1)解:四边形ABCO是菱形,理由如下:∵AO∥BC,AB∥OC,∴四边形ABCO是平行四边形,∵OA=OC,∴平行四边形ABCO是菱形;(2)证明:连接OB,∵四边形ABCO是菱形,∴OC=BC,∵OB=OC,∴OB=OC=BC,∴△BOC为等边三角形,同理,△BOA为等边三角形,∴∠AOB=60°,∠BOC=60°,∴∠AOC=120°,∵∠AOF=30°,∴∠COF=90°,∵CD∥OF,∴∠OCD=180°﹣90°=90°,∴CD是⊙O的切线;(3)解:∵CD∥OF,AB∥OC,∠OCD=90°,∴四边形OCDE为矩形,∴DE=OC,∠AEO=90°,∵∠AOF=30°,∴AE=OA=OC=DE,∵CD∥OF,∴==,∴EF=.26.(12分)如图,在平面直角坐标系xOy中,直线y=x+m与坐标轴y轴交于点A,与x 轴交于点B,过A,B两点的抛物线y=x2+nx﹣8,点D为线段AB上一动点,过点D作CD垂直x轴于点C,交抛物线于点E.(1)求抛物线的解析式;(2)当DE=12时,求四边形CAEB的面积;(3)是否存在点D,使得△DEB和△DAC相似?若存在,求出点D的坐标,若不存在,请说明理由.【解答】解:(1)∵直线y=x+m与抛物线y=x2+nx﹣8都经过A点,∴m=﹣8,∵直线y=x+m经过x轴上的B点,∴点B(8,0),又∵抛物线y=x2+nx﹣8经过B点,∴n=﹣7,∴抛物线为:y=x2﹣7x﹣8;(2)设点C为:(x,0),则点D为(x,x﹣8),点E为(x,x2﹣7x﹣8),∵DE=12,∴(x﹣8)﹣(x2﹣7x﹣8)=12,解得:x1=2,x2=6,当x=2时,x2﹣7x﹣8=﹣18,∴CE=18,四边形CAEB的面积=OB×CE=72,当x=6时,x2﹣7x﹣8=﹣14,∴CE=14,四边形CAEB的面积=OB×CE=56;(3)存在,当AC∥BE时,△DEB∽△DCA,过点A作AF⊥CE于点F,=,即=,∴x2+x﹣8=0,解得:x1=,x2=(舍去),当=时,△DEB∽△DAC,即=,∴x2﹣6x=0,解得:x1=6,x2=0(舍去),综上所述:当x=或x=6时,△DEB和△DAC相似,则x﹣8=或﹣2,此时点D的坐标为:(,)或(6,﹣2).27.(14分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是DE∥AC;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是S1=S2.(2)猜想论证:当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=6,DE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDE,请求出相应的BF的长.【解答】解:(1)①如图1中,由旋转可知:CA=CD,∵∠ACB=90°,∠B=30°,∴∠CAD=60°,∴△ADC是等边三角形,∴∠DCA=60°,∵∠ECD=90°,∠DEC=30°,∴∠CDE=60°,∴∠EDC=∠DCA,∴DE∥AC,②∵AB=2AC,AD=AC,∴AD=BD,∴S△BDC=S△ADC,∵DE∥AC,∴S△ADC=S△ACE,∴S1=S2.故答案为:DE∥AC,S1=S2.(2)如图3中,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴S△BDC=S△AEC.(3)如图4中,作DF∥BC交AB于F.延长CD交AB于H.∵DF∥BE,DE∥BF,∴四边形DEBF是平行四边形,∴S△BDF=S△BDE,S△BDF=S△DFC,∴S△DFC=S△BDE,∵∠ABC=60°,BD平分∠ABC,∴∠ABD=∠DBE=30°,∵DF∥BE,∴∠FDB=30°,∴∠FBD=∠FDB=30°,∴FB=FD,∴四边形DEBF是菱形,∵BD=CD=6,∴∠DBC=∠DCB=30°,∵∠DEC=∠ABC=60°,∴∠CDE=90°,∴DE=CD•tan30°=6×=2,∴BF=DE=2,∵DE∥AB,∴∠BHC=∠EDC=90°,∴CH⊥AB,作点F关于CH的对称点F′,连接DF′,易知S△DFC=S△DF′C,在Rt△DFH中,FH=HF′=DF•sin30°=,∴BF′=4,综上所述,满足条件的BF的值为2或4.。

2024年中考数学模拟考试试卷(含有答案)

2024年中考数学模拟考试试卷(含有答案)
【详解】解:
解不等式①得:
解不等式②得:
∴原不等式组的解集为:
∵不等式组的解集是



故选:B.
【点睛】本题考查了根据一元一次不等式组的解集求参数,准确熟练地进行计算是解题的关键.
7.象棋起源于中国,中国象棋文化历史悠久.如图所示是某次对弈的残图,如果建立平面直角坐标系,使棋子“帅”位于点 的位置,则在同一坐标系下,经过棋子“帅”和“马”所在的点的一次函数解析式为( )
3.中华鲟是地球上最古老的脊椎动物之一,距今约有140000000年的历史,是国家一级保护动物和长江珍稀特有鱼类保护的旗舰型物种,3月28日是中华鲟保护日,有关部门进行放流活动,实现鱼类物种的延续并对野生资源形成持续补充.将140000000用科学记数法表示应为( )
A. B. C. D.
【答案】B
8.如图,在 中 , 和 ,点 为 的中点,以 为圆心, 长为半径作半圆,交 于点 ,则图中阴影部分的面积是( )
A. B. C. D.
【答案】C
【解析】
【分析】连接 ,BD,作 交 于点 ,首先根据勾股定理求出 的长度,然后利用解直角三角形求出 、 的长度,进而得到 是等边三角形 ,然后根据 角直角三角形的性质求出 的长度,最后根据 进行计算即可.
【详解】解:如图所示,连接 ,BD,作 交 于点
∵在 中 ,AB=4

∵点 为 的中点,以 为圆心, 长为半径作半圆
∴ 是半圆的直径



又∵

∴பைடு நூலகம்是等边三角形



∴ .
故选:C.
【点睛】本题考查了 角直角三角形的性质,解直角三角形,等边三角形的性质和判定,扇形面积,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.

广东省东莞市虎门镇成才实验学校2023年中考数学模拟试题8

广东省东莞市虎门镇成才实验学校2023年中考数学模拟试题8

数学模拟试卷(八)(满分:120分,时间:90分钟)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2022·江西)下列各数中,负数是()A .-1B .0C .2D . 2 2.下列实数中最大的是() A .Π B .||-4C .327D .-53.下列图形中,不是中心对称图形的是()4.(2022·河南)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿.则1兆等于()A .108B .1012C .1016D .10245.(2022·河北)下列正确的是()A .4+9=2+3B .4×9=2×3C .94=32D . 4.9=0.76.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A .甲B .乙C .丙D .丁7.(2022·海南)如图,点A (0,3)、B (1,0),将线段AB 平移得到线段DC ,若∠ABC =90°,BC=2AB ,则点D 的坐标是()A .(7,2)B .(7,5)C .(5,6)D .(6,5)第7题图 第8题图 第10题图8.(2022·山西)如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,若∠B =20°,则∠CAD 的度数是()A .60°B .65°C .70°D .75°9.(2022·北京)不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是()A.14B.13C.12D.3410.(2022·天津)如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是() A.AB=AN B.AB∥NC C.∠AMN=∠ACN D.MN⊥AC二、填空题:本大题共5小题,每小题3分,共15分.11. a是方程2x2=x+4的一个根,则代数式4a2-2a的值是___.12. 因式分解:2x2-8xy+8y2=__________.13.(2022·滨州)若m+n=10,mn=5,则m2+n2的值为____.14.(2022·滨州)在Rt△ABC中,若∠C=90°,AC=5,BC=12,则sin A的值为_____. 15.(2022·青海)木材加工厂将一批木料按如图所示的规律依次摆放,则第n个图中共有木料__________根.三、解答题(一):本大题共3小题,每小题8分,共24分.16.(2022·河池)计算:||-2 2-3-1-4×2+(π-5)0.17.(2022·苏州)解方程:xx+1+3x=1.18.某校学生利用双休时间去距学校10 km的炎帝故里参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(2022·大庆)如图,在四边形ABDF中,点E,C为对角线BF上的两点,AB=DF,AC=DE,EB=CF.连接AE,CD.(1)求证:四边形ABDF是平行四边形;(2)若AE=AC,求证:AB=DB.20.(2022·陕西)有五个封装后外观完全相同的纸箱,且每个纸箱内各装有一个西瓜,其中,所装西瓜的重量分别为6 kg,6 kg,7 kg,7 kg,8 kg.现将这五个纸箱随机摆放.(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6 kg的概率是____;(2)若从这五个纸箱中随机选2个,请利用列表或画树状图的方法,求所选两个纸箱里西瓜的重量之和为15 kg的概率.21.阅读下列“问题”与“提示”后,将解方程的过程补充完整,求出x的值.【问题】解方程:x2+2x+4x2+2x-5=0.【提示】可以用“换元法”解方程.解:设x2+2x=t(t≥0),则有x2+2x=t2,原方程可化为:t2+4t-5=0.五、解答题(三):本大题共2小题,每小题12分,共24分.22.(2022·河南)如图,反比例函数y =k x (x >0)的图象经过点A (2,4)和点B ,点B 在点A 的下方,AC 平分∠OAB ,交x 轴于点C .(1)求反比例函数的表达式;(2)请用无刻度的直尺和圆规作出线段AC 的垂直平分线;(要求:不写作法,保留作图痕迹)(3)线段OA 与(2)中所作的垂直平分线相交于点D ,连接CD .求证:CD ∥AB .23.(2021·江西)如图1,四边形ABCD 内接于⊙O ,AD 为直径,过点C 作CE ⊥AB 于点E ,连接AC .(1)求证:∠CAD =∠ECB ;(2)若CE 是⊙O 的切线,∠CAD =30°,连接OC ,如图2.①请判断四边形ABCO 的形状,并说明理由;②当AB =2时,求AD ,AC 与CD ︵围成阴影部分的面积.。

初三中考数学模拟试题及答案

初三中考数学模拟试题及答案

初三中考数学模拟试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax^2 + bx + c + dD. y = ax^2 + bx + c + dx2. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 83. 以下哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/104. 一个数的相反数是-3,那么这个数是多少?A. 3B. -3C. 0D. 65. 一个等腰三角形的底角是45度,求顶角的度数。

A. 45度B. 60度C. 90度D. 135度6. 圆的半径是5厘米,求圆的面积。

A. 25π平方厘米B. 50π平方厘米C. 75π平方厘米D. 100π平方厘米7. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 08. 以下哪个选项是不等式的基本性质?A. 如果a > b,那么a + c > b + cB. 如果a > b,那么ac > bcC. 如果a > b,那么a/c > b/cD. 如果a > b,那么a^2 > b^29. 一个长方体的长、宽、高分别是2cm、3cm、4cm,求其体积。

A. 8立方厘米B. 12立方厘米C. 24立方厘米D. 36立方厘米10. 一个多项式的最高次项系数是-1,且次数为3,这个多项式可能是?A. -x^3 + 2x^2 - 3x + 4B. -x^3 + 2x^2 + 3x - 4C. x^3 + 2x^2 - 3x + 4D. x^3 + 2x^2 + 3x - 4二、填空题(每题3分,共15分)1. 一个数的立方根是2,那么这个数是______。

2. 一个数的平方是9,那么这个数是______或______。

福州市福清市中考数学模拟试卷(八)含答案解析

福州市福清市中考数学模拟试卷(八)含答案解析

福建省福州市福清市中考数学模拟试卷(八)一.选择题(共10小题,每小题4分,满分40分;在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)下列函数的解析式中是一次函数的是()A.y=B.y=x+1 C.y=x2+1 D.y=2.(4分)当k>0时,正比例函数y=kx的图象大致是()A. B. C. D.3.(4分)在下列性质中,平行四边形不一定具有的是()A.对边相等B.对边平行C.对角互补D.内角和为360°4.(4分)如图:在菱形ABCD中,AC=6,BD=8,则菱形的边长为()A.5 B.10 C.6 D.85.(4分)在一次数学阶段考试中,某小组7名同学的成绩(单位:分)分别是65,80,70,90,95,100,70,这组数据的众数是()A.90 B.85 C.80 D.706.(4分)甲,乙两个样本的容量相同,甲样本的方差为0.102,乙样本的方差是0.06,那么()A.甲的波动比乙的波动大B.乙的波动比甲的波动大C.甲,乙的波动大小一样D.甲,乙的波动大小无法确定7.(4分)已知一次函数y=(m﹣1)x﹣4的图象经过(2,4),则m的值为()A.7 B.5 C.8 D.28.(4分)一次函数y=2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限9.(4分)如图,下列四组条件中.不能判定四边形ABCD是平行四边形的是()A.AB=DC,AD=BC B.AB∥DC,AD∥BC C.AB∥DC,AD=BC D.AB∥DC,AB=DC10.(4分)如图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是()A.该学校教职工总人数是50人B.年龄在40≤x<42小组的教职工人数占学校教职工人数的20%C.教职工年龄的中位数一定落在40≤x<42这一组D.教职工年龄的众数一定在38≤x<40这一组二.填空题(本题共6题,每小题4分,满分24分)11.(4分)正比例函数y=﹣5x中,y随着x的增大而.12.(4分)已知函数y=﹣x+3,当x=时,函数值为0.13.(4分)在矩形ABCD中,再增加条件(只需填一个)可使矩形ABCD 成为正方形.14.(4分)有一组数据如下:3,a,4,6,7,它们的平均数是5,那么a=.15.(4分)将直线向下平移3个单位,得到直线.16.(4分)某招聘考试分笔试和面试两种.其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分.面试成绩为85分,那么小明的总成绩为分.三.解答题(共8小题,满分86分.)17.(8分)已知:函数y=(1﹣3k)x+2k﹣1,试回答:(1)k为何值时,图象过原点?(2)k为何值时,y随x的增大而增大?18.(8分)已知样本数据为1,2,3,4,5,求这个样本的:(1)平均数;(2)方差S2.(提示:S2= [x1﹣)2+(x2﹣)2+(x3﹣)2+(x4﹣)2+(x5﹣)2])19.(10分)已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(﹣1,1)是否在这个一次函数的图象上;(3)求此函数与x轴、y轴围成的三角形的面积.20.(10分)在矩形ABCD中,两条对角线相交于O,∠AOB=60°,AB=2,求AD 的长.21.(12分)为了培养学生勤俭节约的意识,从小养成良好的生活习惯.某校随机抽查部分初中生对勤俭节约的态度(态度分为:赞成、无所谓、反对),并对抽查对象的态度绘制成了图1和图2两个统计图(统计图不完整),请根据图中的信息解答下列问题:(1)此次共抽查名学生;(2)持反对意见的学生人数占整体的%,无所谓意见的学生人数占整体的%;(3)估计该校1200名初中生中,大约有名学生持反对态度.22.(12分)如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE.(1)求证:△BEC≌△DFA;(2)求证:四边形AECF是平行四边形.23.(12分)某商场欲购进果汁饮料和碳酸饮料共50箱,果汁饮料毎箱进价为55元,售价为63元;碳酸饮料毎箱进价为36元,售价为42元;设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注,总利润=总售价﹣总进价),(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;(2)求总利润W关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2000元,那么该商场如何进货才能获利最多?并求出最大利润.24.(14分)如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.福建省福州市福清市中考数学模拟试卷(八)参考答案与试题解析一.选择题(共10小题,每小题4分,满分40分;在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)下列函数的解析式中是一次函数的是()A.y=B.y=x+1 C.y=x2+1 D.y=【解答】解:A、是反比例函数,故此选项错误;B、是一次函数,故此选项正确;C、是二次函数,故此选项错误;D、不是一次函数,故此选项错误;故选:B.2.(4分)当k>0时,正比例函数y=kx的图象大致是()A. B. C. D.【解答】解:正比例函数的图象是一条经过原点的直线,且当k>0时,经过一、三象限.故选:A.3.(4分)在下列性质中,平行四边形不一定具有的是()A.对边相等B.对边平行C.对角互补D.内角和为360°【解答】解:A、平行四边形的对边相等,故A选项正确;B、平行四边形的对边平行,故B选项正确;C、平行四边形的对角相等不一定互补,故C选项错误;D、平行四边形的内角和为360°,故D选项正确;故选:C.4.(4分)如图:在菱形ABCD中,AC=6,BD=8,则菱形的边长为()A.5 B.10 C.6 D.8【解答】解:设AC与BD相交于点O,由菱形的性质知:AC⊥BD,OA=AC=3,OB=BD=4在Rt△OAB中,AB===5所以菱形的边长为5.故选:A.5.(4分)在一次数学阶段考试中,某小组7名同学的成绩(单位:分)分别是65,80,70,90,95,100,70,这组数据的众数是()A.90 B.85 C.80 D.70【解答】解:依题意得70出现了2次,次数最多,故这组数据的众数是70.故选:D.6.(4分)甲,乙两个样本的容量相同,甲样本的方差为0.102,乙样本的方差是0.06,那么()A.甲的波动比乙的波动大B.乙的波动比甲的波动大C.甲,乙的波动大小一样D.甲,乙的波动大小无法确定【解答】解:根据方差的意义,甲样本的方差大于乙样本的方差,故甲的波动比乙的波动大.故选:A.7.(4分)已知一次函数y=(m﹣1)x﹣4的图象经过(2,4),则m的值为()A.7 B.5 C.8 D.2【解答】解:∵一次函数y=(m﹣1)x﹣4的图象经过点A(2,4),∴4=2(m﹣1)﹣4,解得m=5.故选:B.8.(4分)一次函数y=2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵k=2>0,图象过一三象限,b=1>0,图象过第二象限,∴直线y=2x+1经过一、二、三象限,不经过第四象限.故选:D.9.(4分)如图,下列四组条件中.不能判定四边形ABCD是平行四边形的是()A.AB=DC,AD=BC B.AB∥DC,AD∥BC C.AB∥DC,AD=BC D.AB∥DC,AB=DC【解答】解:根据平行四边形的判定,A、B、D均符合是平行四边形的条件,C 则不能判定是平行四边形.故选:C.10.(4分)如图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是()A.该学校教职工总人数是50人B.年龄在40≤x<42小组的教职工人数占学校教职工人数的20%C.教职工年龄的中位数一定落在40≤x<42这一组D.教职工年龄的众数一定在38≤x<40这一组【解答】解:A、该学校教职工总人数是4+6+11+10+9+6+4=50(人),故正确;B、在40≤x<42小组的教职工人数占该学校全体教职工总人数的比例是:×100%=20%,故正确;C、教职工年龄的中位数一定落在40≤x<42这一组,正确;D、教职工年龄的众数一定在38≤x<40这一组.错误.故选:D.二.填空题(本题共6题,每小题4分,满分24分)11.(4分)正比例函数y=﹣5x中,y随着x的增大而减小.【解答】解:∵正比例函数y=﹣5x中k=﹣5<0,∴y随着x的增大而减小.故答案为:减小.12.(4分)已知函数y=﹣x+3,当x=3时,函数值为0.【解答】解:当y=0时,﹣x+3=0,解得:x=3.故答案为:3.13.(4分)在矩形ABCD中,再增加条件AB=BC(只需填一个)可使矩形ABCD 成为正方形.【解答】解:∵AB=BC,∴矩形ABCD为正方形,故答案为:AB=BC.14.(4分)有一组数据如下:3,a,4,6,7,它们的平均数是5,那么a=5.【解答】解:由题意知,3,a,4,6,7的平均数是5,则=5,∴a=25﹣3﹣4﹣6﹣7=5.故答案为:5.15.(4分)将直线向下平移3个单位,得到直线y=x﹣3.【解答】解:原直线的k=,b=0;向下平移3个单位长度得到了新直线,那么新直线的k=,b=0﹣3=﹣3.∴新直线的解析式为y=x﹣3.故答案为:y=x﹣316.(4分)某招聘考试分笔试和面试两种.其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分.面试成绩为85分,那么小明的总成绩为88分.【解答】解:∵笔试按60%、面试按40%,∴总成绩是(90×60%+85×40%)=88(分);故答案为:88.三.解答题(共8小题,满分86分.)17.(8分)已知:函数y=(1﹣3k)x+2k﹣1,试回答:(1)k为何值时,图象过原点?(2)k为何值时,y随x的增大而增大?【解答】解:(1)∵y=(1﹣3k)x+2k﹣1经过原点(0,0),∴0=(1﹣3k)×0+2k﹣1,解得,k=0.5,即当k=0.5时,图象过原点;(2)∵函数y=(1﹣3k)x+2k﹣1,y随x的增大而增大,∴1﹣3k>0,解得,k<,即当k<时,y随x的增大而增大.18.(8分)已知样本数据为1,2,3,4,5,求这个样本的:(1)平均数;(2)方差S2.(提示:S2= [x1﹣)2+(x2﹣)2+(x3﹣)2+(x4﹣)2+(x5﹣)2])【解答】解:(1)=(1+2+3+4+5)=3;(2)S2= [(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.19.(10分)已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(﹣1,1)是否在这个一次函数的图象上;(3)求此函数与x轴、y轴围成的三角形的面积.【解答】解:(1)设一次函数的表达式为y=kx+b,则,解得:k=2,b=1.∴函数的解析式为:y=2x+1.(2)将点P(﹣1,1)代入函数解析式,1≠﹣2+1,∴点P不在这个一次函数的图象上.(3)当x=0,y=1,当y=0,x=﹣,此函数与x轴、y轴围成的三角形的面积为:×1×=.20.(10分)在矩形ABCD中,两条对角线相交于O,∠AOB=60°,AB=2,求AD 的长.【解答】解:∵四边形ABCD是矩形,∴OA=OB=OC=OD,∠BAD=90°,∵∠AOB=60°,∴△AOB是等边三角形,∴OB=AB=2,∴BD=2BO=4,在Rt△BAD中,AD=.21.(12分)为了培养学生勤俭节约的意识,从小养成良好的生活习惯.某校随机抽查部分初中生对勤俭节约的态度(态度分为:赞成、无所谓、反对),并对抽查对象的态度绘制成了图1和图2两个统计图(统计图不完整),请根据图中的信息解答下列问题:(1)此次共抽查200名学生;(2)持反对意见的学生人数占整体的10%,无所谓意见的学生人数占整体的15%;(3)估计该校1200名初中生中,大约有120名学生持反对态度.【解答】解:(1)根据题意得:=200(名),答:此次共抽查了200名学生;(2)持反对意见的学生人数是200﹣150﹣30=20(名),持反对意见的学生人数占整体的×100%=10%;无所谓意见的学生人数占整体的×100%=15%;故答案为:10%,15%;(3)根据题意得:1200×10%=120(名),答:大约有120名学生持反对态度.故答案为:120.22.(12分)如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE.(1)求证:△BEC≌△DFA;(2)求证:四边形AECF是平行四边形.【解答】证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,又∵E、F分别是边AB、CD的中点,∴BE=DF,∵在△BEC和△DFA中,,∴△BEC≌△DFA(SAS).(2)由(1)得,CE=AF,AD=BC,故可得四边形AECF是平行四边形.23.(12分)某商场欲购进果汁饮料和碳酸饮料共50箱,果汁饮料毎箱进价为55元,售价为63元;碳酸饮料毎箱进价为36元,售价为42元;设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注,总利润=总售价﹣总进价),(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;(2)求总利润W关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2000元,那么该商场如何进货才能获利最多?并求出最大利润.【解答】解:(1)y与x之间的函数关系式为y=50﹣x;(2)W=(63﹣55)x+(42﹣36)(50﹣x),整理得:W=2x+300;(3)根据题意得:55x+36(50﹣x)≤2000整理得:19x≤200.∴x≤10.∴x的最大值为10.又∵W=2x+300,W随着x的增大而增大.∴当x=10时,W有最大值,最大值为320.24.(14分)如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.【解答】解:(1)对于直线AB:,当x=0时,y=2;当y=0时,x=4,则A、B两点的坐标分别为A(4,0)、B(0,2);(2)∵C(0,4),A(4,0)∴OC=OA=4,=×4×(4﹣t)=8﹣2t;当0≤t≤4时,OM=OA﹣AM=4﹣t,S△OCM=×4×(t﹣4)=2t﹣8;当t>4时,OM=AM﹣OA=t﹣4,S△OCM(3)分为两种情况:①当M在OA上时,OB=OM=2,△COM≌△AOB.∴AM=OA﹣OM=4﹣2=2∴动点M从A点以每秒1个单位的速度沿x轴向左移动2个单位,所需要的时间是2秒钟;M(2,0),②当M在AO的延长线上时,OM=OB=2,则M(﹣2,0),此时所需要的时间t=[4﹣(﹣2)]/1=6秒,即M点的坐标是(2,0)或(﹣2,0).。

中考数学模拟试卷(8)(有答案)

中考数学模拟试卷(8)(有答案)

中考数学模拟试卷(8)一、选择题(本大题共8小题,每小题3分,共24分)1.比﹣3大2的数是()A.﹣5 B.﹣1 C.1 D.52.下列计算正确的是()A.a+2a=3a2B.a•a2=a3C.(2a)2=2a2D.(﹣a2)3=a63.如图,由五个完全相同的小正方体组合成一个立体图形,它的俯视图是()A.B.C.D.4.一次数学考试后,小明想知道成绩是否能排在前一半,那么他应该知道本次成绩的统计量是()A.平均数B.众数 C.中位数D.方差5.如图,小手盖住的点的坐标可能为()A.(5,2)B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)6.小华拿24元钱购买火腿肠和方便面,已知一盒方便面3元,一根火腿肠2元,他买了4盒方便面,x根火腿肠,则关于x的不等式表示正确的是()A.3×4+2x<24 B.3×4+2x≤24 C.3x+2×4≤24 D.3x+2×4≥247.如图,点A在函数y=(x>0)的图象上,点B在函数y=(x>0)的图象上,且AB∥x轴,BC⊥x 轴于点C,则四边形ABCO的面积为()A.1 B.2 C.3 D.48.若一次函数y=kx+b的图象如图所示,则k,b的值可能为()A.k=3,b=3 B.k=3,b=﹣3 C.k=﹣3,b=3 D.k=﹣3,b=﹣3二、填空题(本大题共6小题,每小题3分,共18分)9.计算: = .10.方程=2的解是x= .11.在平面直角坐标系中,点A(1,2)关于y轴对称的点为B(a,b),则a= .12.二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表,则m的值为.x ﹣2 ﹣1 0 1 2 3 4y 7 2 ﹣1 ﹣2 m 2 713.如图,正五边形ABCDE内接于⊙O,若⊙O的半径为5,则弧AB的长为.14.如图1,是我们平时使用的等臂圆规,即CA=CB.若n个相同规格的等臂圆规的两脚依次摆放在同一条直线上如图2所示,其张角度数变化如下:∠A1C1A2=160°,∠A2C2A3=80°,∠A3C3A4=40°,∠A4C4A5=20°,….,根据上述规律请你写出∠A n+1A n C n= °.(用含n的代数式表示)三、解答题(本大题共10小题,共78分)15.先化简,再求值:,其中.16.将5个完全相同的小球分装在甲、乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2,3,4;乙袋中有2个球,分别标有数字2,4.从甲、乙两个口袋中各随机摸出一个球.(1)用列表法或画树状图法,求摸出的两个球上数字之和为5的概率.(2)摸出的两个球上数字之和为多少时的概率最大?17.海南五月瓜果飘香,某超市出售的“无核荔枝”和“鸡蛋芒果”单价分别为每千克26元和22元,李叔叔购买这两种水果共30千克,共花了708元.请问李叔叔购买这两种水果各多少千克?18.如图,已知直线a,b及∠POQ,以点O为圆心,a为半径作圆,交∠POQ两边于点M,N,再分别以点M,N为圆心,b为半径画弧,两弧交于点A,连结OA,MA,NA,则∠AMO=∠ANO,请证明.19.如图,小明想测山高度,他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.求这座山的高度(小明的身高忽略不计).【参考数据:tan31°≈,sin31°≈,tan39°≈,sin39°≈】20.为了了解某市初中学生上学的交通方式,从中随机调查了a名学生的上学交通方式,统计结果如图.(1)求a的值;(2)补全条形统计图并求出乘坐公共汽车上学占上学交通方式百分比的扇形圆心角的度数;(3)该市共有初中学生15000名,请估计其中坐校车上学的人数.21.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的函数图象如图所示.请你根据图象,回答下列问题:(1)慢车比快车早出发小时,快车追上慢车时行驶了千米,快车比慢车早小时到达B地;(2)在下列3个问题中任选一题求解(多做不加分):①快车追上慢车需几个小时?②求慢车、快车的速度;③求A、B两地之间的路程.22.定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.(2)在探究“等对角四边形”性质时:张同学画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;(3)已知:在“等对角四边形”ABCD中,∠DAB=45°,∠ABC=90°,AB=5,AD=4.则对角线AC的长为.23.如图,抛物线l1:y=x2﹣4的图象与x轴交于A,C两点,抛物线l2与l1关于x轴对称.(1)直接写出l2所对应的函数表达式;(2)若点B是抛物线l2上的动点(B与A,C不重合),以AC为对角线,A,B,C三点为顶点的平行四边形的第四个顶点为D,求证:D点在l2上.(3)当点B位于l1在x轴下方的图象上,平行四边形ABCD的面积是否存在最大值和最小值?若存在,判断它是何种特殊平行四边形,并求出它面积的最值;若不存在,请说明理由.24.已知:Rt△ABC中,∠ACB=90°,CA=3,CB=4,设P,Q分别为AB边,CB边上的动点,它们同时分别从A,C出发,以每秒1个单位长度的速度向终点B运动,设P,Q运动的时间为t秒.(1)求△CPQ的面积S与运动时间t之间的函数关系式,并求出S的最大值.(2)t为何值时,△CPQ为直角三角形.(3)①探索:△CPQ是否可能为正三角形,说明理由.②P,Q两点同时出发,若点P的运动速度不变,试改变点Q的运动速度,使△CPQ为正三角形,求出点Q 的运动速度和此时的t值.中考数学模拟试卷(8)参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.比﹣3大2的数是()A.﹣5 B.﹣1 C.1 D.5【考点】19:有理数的加法.【分析】有理数运算中加法法则:异号两数相加,取绝对值较大数的符号,并把绝对值相减.【解答】解:﹣3+2=﹣(3﹣2)=﹣1.故选B.2.下列计算正确的是()A.a+2a=3a2B.a•a2=a3C.(2a)2=2a2D.(﹣a2)3=a6【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.【解答】解:A、a+2a=3a,故本选项错误;B、a•a2=a3,故本选项正确;C、(2a)2=4a2,故本选项错误;D、(﹣a2)3=﹣a6,故本选项错误.故选B.3.如图,由五个完全相同的小正方体组合成一个立体图形,它的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看可得一行正方形的个数为3,故选D.4.一次数学考试后,小明想知道成绩是否能排在前一半,那么他应该知道本次成绩的统计量是()A.平均数B.众数 C.中位数D.方差【考点】WA:统计量的选择.【分析】据题意可得:由中位数的概念,即最中间一个或两个数据的平均数.参赛选手要想知道自己是否能排在前一半,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于想知道成绩是否能排在前一半,故应知道中位数.故选C.5.如图,小手盖住的点的坐标可能为()A.(5,2)B.(﹣6,3)C.(﹣4,﹣6)D.(3,﹣4)【考点】D1:点的坐标.【分析】根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.【解答】解:根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有D符合.故选D.6.小华拿24元钱购买火腿肠和方便面,已知一盒方便面3元,一根火腿肠2元,他买了4盒方便面,x根火腿肠,则关于x的不等式表示正确的是()A.3×4+2x<24 B.3×4+2x≤24 C.3x+2×4≤24 D.3x+2×4≥24【考点】C8:由实际问题抽象出一元一次不等式.【分析】此题中的不等关系:方便面与火腿肠的总价不能超过24元,也就是应<或等于24元.【解答】解:根据题意,得3×4+2x≤24.故选B.7.如图,点A在函数y=(x>0)的图象上,点B在函数y=(x>0)的图象上,且AB∥x轴,BC⊥x 轴于点C,则四边形ABCO的面积为()A.1 B.2 C.3 D.4【考点】G5:反比例函数系数k的几何意义.【分析】延长BA交y轴于D,则四边形OCBD为矩形.根据反比例函数系数k的几何意义,得出S△OAD=1,S =4,则四边形ABCO的面积=S矩形OCBD﹣S△OAD=3.矩形OCBD【解答】解:如图,延长BA交y轴于D,则四边形OCBD为矩形.∵点A在双曲线y=y=上,点B在双曲线y=上,∴S△OAD=1,S矩形OCBD=4,∴四边形ABCO的面积=S矩形OCBD﹣S△OAD=4﹣1=3.故选C.8.若一次函数y=kx+b的图象如图所示,则k,b的值可能为()A.k=3,b=3 B.k=3,b=﹣3 C.k=﹣3,b=3 D.k=﹣3,b=﹣3【考点】F7:一次函数图象与系数的关系.【分析】由一次函数图象经过第一、二、四象限,可得出k<0、b>0,对照四个选项后即可得出结论.【解答】解:∵一次函数y=kx+b的图象经过第一、二、四象限,∴k<0,b>0.故选C.二、填空题(本大题共6小题,每小题3分,共18分)9.计算: = .【考点】78:二次根式的加减法.【分析】根据二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:原式=3+=4.10.方程=2的解是x= ﹣2 .【考点】B3:解分式方程.【分析】根据解方程的步骤首先方程两边同时乘以x+1,去分母,然后去括号,移项,合并同类项,把x的系数化为1,进行计算即可,注意不要忘记检验.【解答】解:去分母得:x=2(x+1),去括号得:x=2x+2,移项得:x﹣2x=2,合并同类项得:﹣x=2,把x的系数化为1得:x=﹣2,检验:把x=﹣2代入最简公分母x+1≠0,∴原分式方程的解为:x=﹣2.11.在平面直角坐标系中,点A(1,2)关于y轴对称的点为B(a,b),则a= ﹣1 .【考点】P5:关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点(x,y)关于y轴的对称点的坐标是(﹣x,y)即可得到a的值.【解答】解:∵点A(1,2)关于y轴对称的点为B (a,b),∴a=﹣1.故答案为:﹣1.12.二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表,则m的值为﹣1 .x ﹣2 ﹣1 0 1 2 3 4y 7 2 ﹣1 ﹣2 m 2 7【考点】H8:待定系数法求二次函数解析式.【分析】二次函数的图象具有对称性,从函数值来看,函数值相等的点就是抛物线的对称点,由此可推出抛物线的对称轴,根据对称性求m的值.【解答】解:根据图表可以得到,点(﹣2,7)与(4,7)是对称点,点(﹣1,2)与(3,2)是对称点,∴函数的对称轴是:x=1,∴横坐标是2的点与(0,﹣1)是对称点,∴m=﹣1.13.如图,正五边形ABCDE内接于⊙O,若⊙O的半径为5,则弧AB的长为2π.【考点】MM:正多边形和圆;MN:弧长的计算.【分析】利用正五边形的性质得出中心角度数,进而利用弧长公式求出即可.【解答】解:如图所示:连接OA、OB.∵⊙O为正五边形ABCDE的外接圆,⊙O的半径为5,∴∠AOB==72°,∴的长为:=2π.故答案为2π.14.如图1,是我们平时使用的等臂圆规,即CA=CB.若n个相同规格的等臂圆规的两脚依次摆放在同一条直线上如图2所示,其张角度数变化如下:∠A1C1A2=160°,∠A2C2A3=80°,∠A3C3A4=40°,∠A4C4A5=20°,….,根据上述规律请你写出∠A n+1A n C n= (90﹣)°.(用含n的代数式表示)【考点】KH:等腰三角形的性质.【分析】利用三角形的内角和计算,同时注意利用等腰三角形的性质.【解答】解:由张角度数变化可知顶角∠A n+1C n A n=,则∠A n+1A n C n=÷2=90﹣.故答案为:(90﹣).三、解答题(本大题共10小题,共78分)15.先化简,再求值:,其中.【考点】6D:分式的化简求值.【分析】先将分式通分合并同类项再约分化成最简形式,将x的值代入计算即可.【解答】解:原式===当时,原式===1+16.将5个完全相同的小球分装在甲、乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2,3,4;乙袋中有2个球,分别标有数字2,4.从甲、乙两个口袋中各随机摸出一个球.(1)用列表法或画树状图法,求摸出的两个球上数字之和为5的概率.(2)摸出的两个球上数字之和为多少时的概率最大?【考点】X6:列表法与树状图法.【分析】依据题意先用列表法或画树状图法分析所有等可能和达到某种效果的可能,然后根据概率公式求出该事件的概率.【解答】解:(1)或甲袋2 3 4和乙袋2 4 5 64 6 7 8摸出的两个球上数字之和为5的概率为.(2)从表看,摸出的两个球上数字之和为6时概率最大.17.海南五月瓜果飘香,某超市出售的“无核荔枝”和“鸡蛋芒果”单价分别为每千克26元和22元,李叔叔购买这两种水果共30千克,共花了708元.请问李叔叔购买这两种水果各多少千克?【考点】9A:二元一次方程组的应用.【分析】设李叔叔购买“无核荔枝”x千克,购买“鸡蛋芒果”y千克,根据总质量为30千克,总花费为708元,可得出方程组,解出即可.【解答】解:设李叔叔购买“无核荔枝”x千克,购买“鸡蛋芒果”y千克,由题意,得:,解得:.答:李叔叔购买“无核荔枝”12千克,购买“鸡蛋芒果”18千克.18.如图,已知直线a,b及∠POQ,以点O为圆心,a为半径作圆,交∠POQ两边于点M,N,再分别以点M,N为圆心,b为半径画弧,两弧交于点A,连结OA,MA,NA,则∠AMO=∠ANO,请证明.【考点】N3:作图—复杂作图.【分析】利用作法得到OM=ON=a,MA=NA=b,则利用“SSS”可判定△AOM≌△AON,从而得到∠AMO=∠ANO.【解答】证明:由作法得OM=ON=a,MA=NA=b,在△AOM和△AON中,∴△AOM≌△AON,∴∠AMO=∠ANO.19.如图,小明想测山高度,他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.求这座山的高度(小明的身高忽略不计).【参考数据:tan31°≈,sin31°≈,tan39°≈,sin39°≈】【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】过点A作AD⊥BE于D,设山AD的高度为(x)m,在Rt△ABD和Rt△ACD中分别表示出BD和CD的长度,然后根据BD﹣CD=80m,列出方程,求出x的值.【解答】解:(1)过点A作AD⊥BE于D,设山AD的高度为(x)m,在Rt△ABD中,∵∠ADB=90°,tan31°=,∴BD=≈=x,在Rt△ACD中,∵∠ADC=90°,tan39°=,∴CD=≈=x,∵BC=BD﹣CD,∴x x=80,解得:x=180.即山的高度为180米.20.为了了解某市初中学生上学的交通方式,从中随机调查了a名学生的上学交通方式,统计结果如图.(1)求a的值;(2)补全条形统计图并求出乘坐公共汽车上学占上学交通方式百分比的扇形圆心角的度数;(3)该市共有初中学生15000名,请估计其中坐校车上学的人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)用乘坐私家车的人数除以其所占的百分比即可确定a值;(2)总数减去其他交通方式出行的人数即可确定乘坐校车的人数,从而补全统计图;(3)用学生总数乘以乘坐校车的所占的百分比即可.【解答】解:(1)观察两种统计图知:乘坐私家车上学的有600人,占20%,∴a=600÷20%=3000人;(2)乘坐校车的有3000﹣600﹣600﹣300﹣300=1200人,统计图为:乘坐公共汽车上学占上学交通方式百分比的扇形圆心角的度数为×360°=72°;(3)初中学生15000名中,坐校车上学的人数有15000×=6000人.21.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的函数图象如图所示.请你根据图象,回答下列问题:(1)慢车比快车早出发 2 小时,快车追上慢车时行驶了276 千米,快车比慢车早 4 小时到达B 地;(2)在下列3个问题中任选一题求解(多做不加分):①快车追上慢车需几个小时?②求慢车、快车的速度;③求A、B两地之间的路程.【考点】FH:一次函数的应用.【分析】(1)根据图中,快,慢车的函数图象可得出结果.(2)①快车追上慢车时,两者都行驶了276千米,再根据慢车比快车早走2小时,可在这段距离内,表示出两车的速度,然后根据行驶的总路程相等,来列出方程,求出未知数.②根据①求出的快车追上慢车时走的时间,可知道慢车和快车在相遇时分别用了多少小时,已知这段路程是276千米,因此根据速度=路程÷时间,即可求出两车的速度.③有了②求出的两车的速度,从图中又知道了两车走完全程用的时间,因此,可以得出AB两地的路程.【解答】解:(1)慢车比快车早出发2小时,快车追上慢车时行驶了276千米,快车比慢车早4小时到达B 地;(2)设快车追上慢车时,慢车行驶了x小时,则慢车的速度可以表示为千米/小时,快车的速度为千米/小时,根据两车行驶的路程相等,可以列出方程解得x=6(小时).所以,①快车追上慢车需6﹣2=4(小时);②慢车的速度为千米/小时,快车的速度为千米/小时;③A、B两地间的路程为46×18=828千米.22.定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.(2)在探究“等对角四边形”性质时:张同学画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;(3)已知:在“等对角四边形”ABCD中,∠DAB=45°,∠ABC=90°,AB=5,AD=4.则对角线AC的长为.【考点】LO:四边形综合题.【分析】(1)根据四边形ABCD是“等对角四边形”得出∠D=∠B=80°,根据多边形内角和定理求出∠C即可;(2)连接BD,由AB=AD,得出∠ABD=∠ADB,证出∠CBD=∠CDB,即可得出CB=CD;(3)分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,先用等腰直角三角形的性质求出AE,得出DE,再用三角函数求出CD,由勾股定理求出AC;②当∠BCD=∠DAB=45°时,过点D作DM⊥AB于点M,DN⊥BC于点N,则∠AMD=90°,四边形BNDM是矩形,先求出AM、DM,再由矩形的性质得出DN=BM=1,BN=DM=4,求出CN、BC,根据勾股定理求出AC即可.【解答】(1)解:∵四边形ABCD是“等对角四边形”,∠A≠∠C,∴∠D=∠B=80°,∴∠C=360°﹣∠A﹣∠B﹣∠D=360°﹣70°﹣80°﹣80°=130°;(2)证明:如图2所示,连接BD,∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,∴∠CBD=∠CDB,∴CB=CD;(3)解:分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,如图3所示:∵∠ABC=90°,∠DAB=45°,AB=5,∴∠E=45°,∴AE=AB=5,∴DE=AE﹣AD=5﹣4═,∵∠EDC=90°,∠E=45°,∴CD=,∴AC===;②当∠BCD=∠DAB=45°时,过点D作DM⊥AB于点M,DN⊥BC于点N,如图4所示:则∠AMD=90°,四边形BNDM是矩形,∵∠DAB=45°,∴∠ADM=45°,∴AM=DM=AD=4,∴BM=AB﹣AM=5﹣4=1,∵四边形BNDM是矩形,∴DN=BM=1,BN=DM=4,∵∠BCD=45°,∴CN=DN=1,∴BC=CN+BN=5,∴AC==5;故此情况不存在.综上所述:AC的长为,故答案为:.23.如图,抛物线l1:y=x2﹣4的图象与x轴交于A,C两点,抛物线l2与l1关于x轴对称.(1)直接写出l2所对应的函数表达式;(2)若点B是抛物线l2上的动点(B与A,C不重合),以AC为对角线,A,B,C三点为顶点的平行四边形的第四个顶点为D,求证:D点在l2上.(3)当点B位于l1在x轴下方的图象上,平行四边形ABCD的面积是否存在最大值和最小值?若存在,判断它是何种特殊平行四边形,并求出它面积的最值;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)根据抛物线l1的解析式求出点A、C的坐标,以及顶点坐标,再根据关于x轴对称的点的横坐标不变,纵坐标互为相反数,求出l2的顶点坐标,然后利用待定系数法求出l2的解析式;(2)设点B的坐标为(x1,x12﹣4),根据平行四边形的性质和关于原点对称的点的横坐标与纵坐标都互为相反数求出点D的坐标,代入解析式即可证明:点D在l2上;(3)首先表示出S的值,当点B在x轴下方时,﹣4≤y1<0,根据一次函数的增减性判断出点B的位置,再根据对角线互相垂直平分的四边形是菱形证明,并求出S最大=16.【解答】解:(1)∵l1与x轴的交点A(﹣2,0),C(2,0),顶点坐标是(0,﹣4),l1与l2关于x轴对称,∴l2过A(﹣2,0),C(2,0),顶点坐标是(0,4),设y=ax2+4,则4a+4=0,解得a=﹣1,∴l2的解析式为y=﹣x2+4;(2)设B(x1,y1),∵点B在l1上,∴B(x1,x12﹣4),∵四边形ABCD是平行四边形,A、C关于O对称,∴B、D关于O对称,∴D(﹣x1,﹣x12+4),将D(﹣x1,﹣x12+4)的坐标代入l2:y=﹣x2+4,∴左边=右边,∴点D在l2上;(3)当y=0时,﹣x2+4=0,解得:x1=2,x2=﹣2,所以AC=4,则S▱ABCD=AC•(﹣y B)=﹣4x2+16,当x=0时,S▱ABCD取得最大值16,∵当点B在x轴下方时,﹣4≤y1<0,∴S=﹣4y1,它是关于y1的正比例函数且S随y1的增大而减小,∴当y1=﹣4时,S有最大值16,但它没有最小值,此时B(0,﹣4)在y轴上,它的对称点D也在y轴上,∴AC⊥BD,∴平行四边形ABCD是菱形.24.已知:Rt△ABC中,∠ACB=90°,CA=3,CB=4,设P,Q分别为AB边,CB边上的动点,它们同时分别从A,C出发,以每秒1个单位长度的速度向终点B运动,设P,Q运动的时间为t秒.(1)求△CPQ的面积S与运动时间t之间的函数关系式,并求出S的最大值.(2)t为何值时,△CPQ为直角三角形.(3)①探索:△CPQ是否可能为正三角形,说明理由.②P,Q两点同时出发,若点P的运动速度不变,试改变点Q的运动速度,使△CPQ为正三角形,求出点Q 的运动速度和此时的t值.【考点】KY:三角形综合题.【分析】(1)作PD⊥AC于D,PE⊥BC于E,根据勾股定理求出AB,用t表示出AD、PD,根据三角形的面积公式计算即可;(2)根据勾股定理列出算式,求出t的值;(3)①根据等边三角形的三线合一列式计算即可;②设点Q的运动速度为a,根据等边三角形的性质列式求出a,根据等边三角形的性质、正切的概念计算即可.【解答】解:(1)作PD⊥AC于D,PE⊥BC于E,∵∠ACB=90°,CA=3,CB=4,∴AB==5,∵AP=t,∴AD=t,PD=t,∴PE=DC=3﹣t,∴S=×t×(3﹣t)=﹣t2+t,∵S=﹣t2+t=﹣(t﹣)2+,∴S的最大值为;(2)只有当PC2+PQ2=CQ2时,△CPQ为直角三角形,∴(t)2+(3﹣t)2+(3﹣t)2+(t﹣t)2=t2,解得,t1=3,t2=15(舍去),∴当t=3时,△CPQ为直角三角形;(3)①△CPQ不可能为正三角形,理由如下:若△CPQ是正三角形,则PC=PQ,EC=EQ,即t﹣t=t,解得,t=0,∴△CPQ不可能为正三角形;②设点Q的运动速度为a,当CE=EQ时,即t=at﹣t,解得,a=,∵∠PCQ=60°,∴PE=PD,解得,t=.。

中考数学模拟考试题卷(含答案) (8)

中考数学模拟考试题卷(含答案) (8)

考数学模拟试题一、选择题(每小题3分、共24分)1、下列各式中,正确的是( )(A )835a a a =+ (B )632a a a =⋅ (C )()63293a a -=-(D )9312=⎪⎭⎫ ⎝⎛- 2、下列命题中,真命题是( )(A)有两边相等的平行四边形是菱形 (B)有一个角是直角的四边形是矩形(C)四个角相等的菱形是正方形 (D)两条对角线互相垂直且相等的四边形是正方形3、某校举行“五·四”文艺会演,5位评委给各班演出的节目打分.在5个评分中,去掉一个最高分,再去掉 一个最低分,求出评分的平均数,作为该节目的实际得分.对于某节目的演出,评分如下8.9,9.1,9.3,9.4,9.2那么该节目实际得分是( )(A )9.4(B )9.3(C )9.2(D )9.184、如果一定电阻R 两端所加电压为5伏时,通过它的电流为1安,那么通过这一电阻的电流I 随它两端电压U 变化的图像是( )5、世界文化遗产长城总长约6 700 000m ,用科学记数法可表示为( )(A ) 6.7×105m (B ) 6.7×510-m (C ) 6.7×106m (D ) 6.7×610-m6、将一圆形纸片对折后再对折,得到图2,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )7、图1中几何体的主视图是( )(A ) (B ) (C ) (D ) 8、如图3,圆弧形桥拱的跨度AB =12米,拱高CD =4米,则拱桥的半径为( )(A )6.5米 (B )9米 (C )3米 (D )15米正面 A B C DA B C D图3二、填空题(每小题3分共24分)9、已知点P (-2,3),则点P 关于x 轴对称的点坐标是 10、如图,要给这个长、宽、高分别为x 、y 、z 的箱子打包,其打包方式如右图所示,则打包带的长至少要_________ (单位:mm )(用含x 、y 、z 的代数式表示)11、方程 x 2 = x 的解是__________________12、圆内接四边形ABCD 的内角∠A:∠B:∠C=2:3:4,则∠D =________°13、已知一个梯形的面积为222cm ,高为2 cm ,则该梯形的中位线的长等于________cm14、 如图,在⊙O 中,若已知∠BAC=48º,则∠BOC=_________15、若圆的一条弦长为6 cm ,其弦心距等于4 cm ,则该圆的半径等于________cm .16、函数b ax y +=的图像如图所示,则y 随 x 的增大而三、解答题:(共75分)17、(7分)解不等式组36412x x x x+⎧⎨+≥⎩18、(8分)先化简,再求值:21,22121222=÷--++--x x x x x x x x 其中19(8分)试比较下面两个几何图形的异同,请分别写出它们的两个相同点和两个不同点。

中考数学模拟试卷8带答案

中考数学模拟试卷8带答案

中考数学模拟试卷(8)1.−√2的倒数是( )A. √22B. √2 C. −√2 D. −√222.如图放置的几何体的左视图是( )A. B. C. D.3.下列计算正确的是( )A. x2⋅x3=x6B. x5+x5=2x10C. (−2x)3=8x3D. (−2x3)÷(−6x2)=13x4.下列事件中,必然事件是( )A. 抛掷一枚硬币,正面朝上B. 打开电视,正在播放广告C. 体育课上,小刚跑完1000米所用时间为1分钟D. 袋中只有4个球,且都是红球,任意摸出一球是红球5.下列一元二次方程中,有两个相等实数根的是( )A. x2−8=0B. 2x2−4x+3=0C. 9x2+6x+1=0D. 5x+2=3x26.从甲地到乙地有两条公路,一条是全长450公里的普通公路,一条是全长330公里的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快35公里/小时,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半.如果设该客车由高速公路从甲地到乙地所需时间为x小时,那么x满足的分式方程是( )A. 450x =330x+35×2 B. 450x=3302x−35C. 450x −3302x=35 D. 330x−4502x=357.如图,点A是双曲线y=−6在第二象限分支上的一个动点,x连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120∘,点C在第一象限,随着点A的运上运动,点C的位置也不断变化,但点C始终在双曲线y=kx动,则k的值为( )A. 1B. 2C. 3D. 48.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是( )A. B.C. D.+√18的运算结果应在哪两个连续自然数之间______.9.估计√8×√1210.张老师随机抽取6名学生,测试他们的打字能力,测得他们每分钟打字个数分别为:100,80,70,80,90,60,那么这组数据的中位数是______,方差是______.11.如图,▱ABCD中,AB>AD,AE,BE,CM,DM分别为∠DAB,∠ABC,∠BCD,∠CDA的平分线,AE与DM相交于点F,BE与CM相交于点N,连接EM.若▱ABCD的周长为42cm,FM=3cm,EF=4cm,则EM=______cm,AB=______cm.12.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABO与△A′B′O′是以点P为位似中心的位似图形,它们的顶点均在格点(网格线的交点)上,则点P的坐标为______.13.如图,在△ABC中,CA=CB,∠ACB=90∘,AB=2,点D为AB的中点,以点D为圆心作圆心角为90∘的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为______.14.在△ABC中,AB=6cm,AC=5cm,点D、E分别在AB、AC上.若△ADE与△ABC相似,且S△ADE::8,则AD=______ cm.15.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于______.16.如图,在平面直角坐标系中,A、B两点分别在x轴和y轴上,OA=1,OB=√3,连接AB,过AB中点C1分别作x轴和y轴的垂线,垂足分别是点A1、B1,连接A1B1,再过A1B1中点C2作x轴和y轴的垂线,照此规律依次作下去,则点C n的坐标为______.17.先化简,再求值:(4xx−3−xx+3)÷xx2−9,请在−3,0,1,3中选择一个适当的数作为x值.18.近年来,各地“广场舞”噪音干扰的问题倍受关注.相关人员对本地区15∼65岁年龄段的市民进行了随机调查,并制作了如下相应的统计图.市民对“广场舞”噪音干扰的态度有以下五种:A.没影响B.影响不大C.有影响,建议做无声运动D.影响很大,建议取缔E.不关心这个问题根据以上信息解答下列问题:(1)根据统计图填空:m=______ ,A区域所对应的扇形圆心角为______ 度;(2)在此次调查中,“不关心这个问题”的有25人,请问一共调查了多少人?(3)将条形统计图补充完整;(4)若本地共有14万市民,依据此次调查结果估计本地市民中会有多少人给出建议?19.数学课堂上,为了学习构成任意三角形三边需要满足的条件.甲组准备3根木条,长度分别是3cm、8cm、13cm;乙组准备3根木条,长度分别是4cm、6cm、12cm.老师先从甲组再从乙组分别随机抽出一根木条,放在一起组成一组.(1)用画树状图法(或列表法)分析,并列出各组可能.(画树状图或列表以及列出可能时不用写单位)(2)现在老师也有一根木条,长度为5cm,与(1)中各组木条组成三角形的概率是多少?20.快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自地早12出发地的路程y(千米)与所用时间x(小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y(千米)与x(小时)的函数关系式;(3)两车出发后经过多长时间相距90千米的路程?直接写出答案.21.如图,我南海某海域A处有一艘捕鱼船在作业时突遇特大风浪,船长马上向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到捕鱼船正西方向的B处,该渔政船收到渔政求救中心指令后前去救援,但两船之间有大片暗礁,无法直线到达,于是决定马上调整方向,先向北偏东60∘方向以每小时30海里的速度航行半小时到达C处,同时捕鱼船低速航行到A点的正北1.5海里D处,渔政船航行到点C处时测得点D在南偏东53∘方向上.(1)求CD两点的距离;(2)渔政船决定再次调整航向前去救援,若两船航速不变,并且在点E处相会合,求∠ECD的正弦值.(参考数据:sin53∘≈45,cos53∘≈35,tan53∘≈43)22.如图,在△ABC中,∠C=90∘,∠BAC的平分线交BC于点D,DE⊥AD,交AB于点E,AE为⊙O的直径(1)判断BC与⊙O的位置关系,并证明你的结论;(2)求证:△ABD∽△DBE;(3)若cosB=2√23,AE=4,求CD.23.某政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.物价部门规定,这种护眼台灯的销售单价不得高于32元.销售过程中发现,月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=−10x+n.(1)当销售单价x定为25元时,李明每月获得利润为w为1250元,则n=______ ;(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)当销售单价定为多少元时,每月可获得最大利润?并求最大利润为多少元.24.问题情境:已知,在等边△ABC中,∠BAC与∠ACB的角平分线交于点O,点M、N分别在直线AC,AB上,且∠MON=60∘,猜想CM、MN、AN三者之间的数量关系.方法感悟:小芳的思考过程是在CM上取一点,构造全等三角形,从而解决问题;小丽的思考过程是在AB取一点,构造全等三角形,从而解决问题;问题解决:(1)如图1,M、N分别在边AC,AB上时,探索CM、MN、AN三者之间的数量关系,并证明;(2)如图2,M在边AC上,点N在BA的延长线上时,请你在图2中补全图形,标出相应字母,探索CM、MN、AN三者之间的数量关系,并证明.25.如图,抛物线y=ax2+bx+c与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C(0,3),抛物线的对称轴与直线BC交于点D.(1)求抛物线的表达式;(2)在抛物线的对称轴上找一点M,使|BM−CM|的值最大,求出点M的坐标;(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,直接写出点E的坐标.答案和解析【答案】1. D2. C3. D4. D5. C6. D7. B8. A9. 6和710. 80500311. 5;1312. (−3,2)13. π4−1214. 2或53 15. √516. (12n ,√3 2n)17. 解:原式=4x(x+3)−x(x−3)(x+3)(x−3)⋅(x+3)(x−3)x=3x(x+5)(x+3)(x−3)⋅(x+3)(x−3)x=3x+15,当x=1时,原式=3+15=18.18. 32;7219. 解:(1)画树状图、列表得:∴一共有9种等可能的结果,各组可能为:(3,4),(3,6),(3,12),(8,4),(8,6),(8,12),(13,4),(13,6),(13,12);(2)与(1)中各组木条组成三角形的有:(3,4),(3,6),(8,4),(8,6),(8,12),(13,12)共6种情况,∴与(1)中各组木条组成三角形的概率是69=23.20. 解:(1)快车速度:180×2÷(72−12)=120千米/时,慢车速度:120÷2=60千米/时;(2)快车停留的时间:72−180120×2=12(小时),12+180120=2(小时),即C(2,180),设CD 的解析式为:y =kx +b ,则 将C(2,180),D(72,0)代入,得 {180=2k +b 0=72k +b ,解得{k =−120b =420,∴快车返回过程中y(千米)与x(小时)的函数关系式为y =−120x +420(2≤x ≤72);(3)相遇之前:120x +60x +90=180, 解得x =12;相遇之后:120x +60x −90=180, 解得x =32;快车从甲地到乙地需要180÷120=32小时, 快车返回之后:60x =90+120(x −12−32)解得x =52综上所述,两车出发后经过12或32或52小时相距90千米的路程.21. 解:(1)过点C 、D 分别作CG ⊥AB ,DF ⊥CG ,垂足分别为G ,F ,∵在Rt △CGB 中,∠CBG =90∘−60∘=30∘, ∴CG =12BC =12×(30×12)=7.5, ∵∠DAG =90∘, ∴四边形ADFG 是矩形,∴CF=CG−GF=7.5−1.5=6,在Rt△CDF中,∠CFD=90∘,∵∠DCF=53∘,∴COS∠DCF=CFCD,∴CD=CFCOS53∘=635=10(海里).答:CD两点的距离是10;(2)如图,设渔政船调整方向后t小时能与捕渔船相会合,由题意知CE=30t,DE=1.5×2×t=3t,∠EDC=53∘,过点E作EH⊥CD于点H,则∠EHD=∠CHE=90∘,∴sin∠EDH=EHED,∴EH=EDsin53∘=3t×45=125t,∴在Rt△EHC中,sin∠ECD=EHCE =125t30t=225.答:sin∠ECD=225.22. (1)结论:BC与⊙O相切.证明:如图连接OD.∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠CAD=∠DAB,∴∠CAD=∠ADO,∴AC//OD,∵AC⊥BC,∴OD⊥BC.∴BC是⊙O的切线.(2)∵BC是⊙O切线,∴∠ODB=90∘,∴∠BDE+∠ODE=90∘,∵AE是直径,∴∠DAE+∠AED=90∘,∵OD=OE,∴∠ODE=∠OED,∴∠BDE=∠DAB,∵∠B=∠B,∴△ABD∽△DBE.(3)在Rt△ODB中,∵cosB=BDOB =2√23,设BD=2√2k,OB=3k,∵OD2+BD2=OB2,∴4+8k2=9k2,∴k=2,∴BO=6,BD=4√2,∵DO//AC,∴BDCD =BOAO,∴4√2CD =62,∴CD=4√23.23. 50024. 解:(1)CM=AN+MN,理由如下:在AC上截取CD=AN,连接OD,∵△ABC为等边三角形,∠BAC与∠ACB的角平分线交于点O,∴∠OAC=∠OCA=30∘,∴OA=OC,在△CDO和△ANO中,{OC=OA∠OCD=∠OAN CD=AN,∴△CDO≌△ANO(SAS)∴OD=ON,∠COD=∠AON,∵∠MON=60∘,∴∠COD+∠AOM=60∘,∵∠AOC=120∘,在△DMO和△NMO中,{OD=ON∠DOM=∠NOM OM=OM,∴△DMO≌△NMO,∴DM=MN,∴CM=CD+DM=AN+MN;(2)补全图形如图2所示:CM=MN−AN,理由如下:在AC延长线上截取CD=AN,连接OD,在△CDO和△ANO中,{CD=AN∠OCD=∠OAN=150∘OC=OA,∴△CDO≌△ANO(SAS)∴OD=ON,∠COD=∠AON,∴∠DOM=∠NOM,在△DMO和△NMO中,{OD=ON∠DOM=∠NOM OM=OM,∴△DMO≌△NMO(SAS)∴MN=DM,∴CM=DM−CD=MN−AN.25. 解:(1)∵抛物线y=ax2+bx+c经过点A(1,0)、B(3,0)、C(0,3),∴{a+b+c=09a+3b+c=0 c=3,解得{a=1b=−4 c=3,∴抛物线的表达式为y=x2−4x+3;(2)∵抛物线对称轴是线段AB的垂直平分线,∴AM=BM,由三角形的三边关系,|BM−CM|=|AM−CM|<AC,∴点A、C、M三点共线时,|BM−CM|最大,设直线AC 的解析式为y =mx +n ,则{m +n =0n =3, 解得{m =−3n =3, ∴直线AC 的解析式为y =−3x +3,又∵抛物线对称轴为直线x =−−42×1=2, ∴x =2时,y =−3×2+3=−3,故,点M 的坐标为(2,−3);(3))∵OB =OC =3,OB ⊥OC ,∴△BOC 是等腰直角三角形,∵EF//y 轴,直线BC 的解析式为y =−x +3,∴△DEF 只要是直角三角形即可与△BOC 相似,∵D(2,1),A(1,0),B(3,0),∴点D 垂直平分AB 且到点AB 的距离等于12AB ,∴△ABD 是等腰直角三角形,∴∠ADB =90∘,如图,①点F 是直角顶点时,点F 的纵坐标与点D 的纵坐标相同,是1,∴x 2−4x +3=1,整理得x 2−4x +2=0,解得x =2±√2,当x =2−√2时,y =−(2−√2)+3=1+√2,当x =2+√2时,y =−(2+√2)+3=1−√2,∴点E 1(2−√2,1+√2)E 2(2+√2,1−√2),②点D 是直角顶点时,易求直线AD 的解析式为y =x −1,联立{y =x −1y =x 2−4x +3, 解得{x 1=1y 1=0,{x 2=4y 2=3, 当x =1时,y =−1+3=2,当x =4时,y =−4+3=−1,∴点E 3(1,2),E 4(4,−1),综上所述,存在点E 1(2−√2,1+√2)或E 2(2+√2,1−√2)或E 3(1,2)或E 4(4,−1),使以D 、E 、F 为顶点的三角形与△BCO 相似.【解析】1. 解:−√2的倒数是−√22,故D 正确, 故选:D.根据乘积为1的两个数互为倒数,可得答案.本题考查了实数的性质,利用了倒数的定义. 2. 解:左视图可得一个正方形,上半部分有条看不到的线,用虚线表示.故选:C.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意中间看不到的线用虚线表示.3. 解:A 、原式=x 5,错误;B 、原式=2x 5,错误;C 、原式=−8x 3,错误;D 、原式=13x ,正确, A 、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;B 、原式合并同类项得到结果,即可做出判断;C 、原式利用积的乘方运算法则计算得到结果,即可做出判断;D 、原式利用单项式除以单项式法则计算得到结果,即可做出判断.此题考查了整式的除法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.4. 解:A 、是可能发生也可能不发生的事件,属于不确定事件,故A 不符合题意;B 、是可能发生也可能不发生的事件,属于不确定事件,故B 不符合题意;C、是可能发生也可能不发生的事件,属于不确定事件,故C不符合题意;D、袋中只有4个球,且都是红球,任意摸出一球是红球,是必然事件,故D符合题意.故选:D.必然事件就是一定发生的事件,即发生的概率是1的事件.考查了随机事件,解决本题要正确理解必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5. 解:A、x2−8=0,这里a=1,b=0,c=−8,∵△=b2−4ac=02−4×1×(−8)=32>0,∴方程有两个不相等的实数根,故本选项错误;B、2x2−4x+3=0,这里a=2,b=−4,c=3,∵△=b2−4ac=(−4)2−4×2×3=−8<0,∴方程没有实数根,故本选项错误;C、9x2+6x+1=0,这里a=9,b=6,c=1,∵△=b2−4ac=62−4×9×1=0,∴方程有两个相等的实数根,故本选项正确;D、5x+2=3x2,3x2−5x−2=0,这里a=3,b=−5,c=−2,∵△=b2−4ac=(−5)2−4×3×(−2)=49>0,∴方程有两个不相等的实数根,故本选项错误;故选C.分别计算四个方程的判别式的值,然后根据判别式的意义判断各方程根的情况.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6. 解:设该客车由高速公路从甲地到乙地所需时间为x小时,那么由普通公路从甲地到乙地所需时间为2x,由题意得,330x −4502x=35,故选:D.设出未知数,根据客车在高速公路上行驶的平均速度比在普通公路上快35公里/小时,列出方程即可.本题考查的是列分式方程解应用题,正确设出未知数、找出合适的等量关系是解题的关键.7. 解:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,∵连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120∘,∴CO⊥AB,∠CAB=30∘,则∠AOD+∠COE=90∘,∵∠DAO+∠AOD=90∘,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90∘,∴△AOD∽△OCE,∴ADEO =DOEC=AOCO=tan60∘=√3,则S△ADOS△COE=3,∵点A是双曲线y=−6x在第二象限分支上的一个动点,∴12|xy|=12AD⋅DO=12×6=3,∴12k=12EC×EO=1,则EC×EO=2.故选:B.根据题意得出△AOD∽△OCE,进而得出ADEO =DOEC=AOCO,即可得出k=EC×EO=2.此题主要考查了反比例函数与一次函数的交点以及相似三角形的判定与性质,得出△AOD∽△OCE是解题关键.8. 解:当F在PD上运动时,△AEF的面积为y=12AE⋅AD=2x(0≤x≤2),当F在AD上运动时,△AEF的面积为y=12AE⋅AF=12x(6−x)=−12x2+3x(2<x≤4),图象为:故选:A.分F 在线段PD 上,以及线段DQ 上两种情况,表示出y 与x 的函数解析式,即可做出判断.此题考查了动点问题的函数问题,解决本题的关键是读懂图意,得到相应y 与x 的函数解析式.9. 解:√8×√12+√18=2√2×√22+3√2=2+3√2, ∵4<3√2<5,∴6<2+3√2<7,∴√8×√12+√18的运算结果应在6和7两个连续自然数之间;故答案为:6和7.先把各二次根式化为最简二次根式,再进行计算,然后估算出无理数的大小即可.本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.最后估计无理数的大小. 10. 解:这组数据按从小到大的顺序排列为:60,70,80,80,90,100,则中位数为:12(80+80)=80;平均数是16(100+80+70+80+90+60)=80,则方差是16[(100−80)2+2(80−80)2+(70−80)2+(60−80)2+(90−80)2]=5003; 故答案为:80,5003.根据中位数的定义求出这组数据的中位数,再根据平均数的计算公式求出这组数据的平均数,然后代入方差公式S 2=1n [(x 1−x −)2+(x 2−x −)2+…+(x n −x −)2],进行计算即可得出答案.本题考查了中位数和方差,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量,一般地设n 个数据,x 1,x 2,…x n 的平均数为x −,则方差S 2=1n [(x 1−x −)2+(x 2−x −)2+…+(x n −x −)2]. 11. 解:∵AE 为∠DAB 的平分线,∴∠DAE =∠EAB =12∠DAB ,同理:∠ABE =∠CBE =12∠ABC ,∠BCM =∠DCM =12∠BCD ,∠CDM =∠ADM =12∠ADC. ∵四边形ABCD 是平行四边形,∴∠DAB=∠BCD,∠ABC=∠ADC,AD=BC.∴∠DAF=∠BCN,∠ADF=∠CBN.在△ADF和△CBN中,{∠DAF=∠BCN AD=CB∠ADF=∠CBN.∴△ADF≌△CBN(ASA).∴DF=BN.∵四边形ABCD是平行四边形,∴AD//BC,∴∠DAB+∠ABC=180∘.∴∠EAB+∠EBA=90∘.∴∠AEB=90∘.同理可得:∠AFD=∠DMC=90∘.∴∠EFM=90∘.∵FM=3,EF=4,∴ME=√32+42=5(cm).∵∠EFM=∠FMN=∠FEN=90∘.∴四边形EFMN是矩形.∴EN=FM=3.∵∠DAF=∠EAB,∠AFD=∠AEB,∴△AFD∽△AEB.∴DFBE=AFAE.∴DF3+DF=AF4+AF.∴4DF=3AF.设DF=3k,则AF=4k.∵∠AFD=90∘,∴AD=5k.∵∠AEB=90∘,AE=4(k+1),BE=3(k+1),∴AB=5(k+1).∵2(AB+AD)=42,∴AB+AD=21.∴5(k+1)+5k=21.∴k =1.6.∴AB =13(cm).故答案为:5;13.由条件易证∠AEB =∠AFD =∠DMC =90∘.进而可证到四边形EFMN 是矩形及∠EFM =90∘,由FM =3cm ,EF =4cm 可求出EM.易证△ADF ≌△CBN ,从而得到DF =BN ;易证△AFD ∽△AEB ,从而得到4DF =3AF.设DF =3k ,则AF =4k.AE =4(k +1),BE =3(k +1),从而有AD =5k ,AB =5(k +1).由▱ABCD 的周长为42cm 可求出k ,从而求出AB 长. 本题考查了平行四边形的性质、平行线的性质、矩形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识,综合性较强.12. 解:∵△ABO 与△A′B′O′是以点P 为位似中心的位似图形,∴点P 为B′B 的延长线与O′O 的延长线的交点,∵点B′和点B 的横坐标为−3,∴点P 的横坐标为−3,设直线O′O 的解析式为:y =kx ,∵点O′的坐标为(3,−2),∴−2=3k ,解得,k =−23, ∴直线O′O 的解析式为:y =−23x ,当x =−3时,y =2,∴点P 的坐标为:(−3,2),故答案为:(−3,2).根据题意得到点P 的横坐标为−3,利用待定系数法求出直线O′O 的解析式,根据位似图形的定义计算,得到答案.本题考查的是位似变换的概念和性质,掌握相似图形的对应顶点的连线相交于一点是解题的关键. 13. 解:连接CD ,作DM ⊥BC ,DN ⊥AC.∵CA =CB ,∠ACB =90∘,点D 为AB 的中点,∴DC =12AB =1,四边形DMCN 是正方形,DM =√22. 则扇形FDE 的面积是:90π×12360=π4. ∵CA =CB ,∠ACB =90∘,点D 为AB 的中点,∴CD 平分∠BCA ,又∵DM⊥BC,DN⊥AC,∴DM=DN,∵∠GDH=∠MDN=90∘,∴∠GDM=∠HDN,在△DMG和△DNH中,{∠DMG=∠DNH ∠GDM=∠HDN DM=DN,∴△DMG≌△DNH(AAS),则阴影部分的面积是:π4−12.故答案为π4−12.连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则,求得扇形FDE的面积,则阴影部分的面积即可求得.本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△DMG≌△DNH,得到是关键.14. 解:∵S△ADE::8,∴S△ADE:S△ABC=1:9,∴△ADE与△ABC相似比为:1:3,①若∠AED对应∠B时,则ADAC =13,∵AC=5cm,∴AD=53cm;②当∠ADE对应∠B时,则ADAB =13,∵AB=6cm,∴AD=2cm;故答案为:由于△ADE与△ABC相似,但其对应角不能确定,所以应分两种情况进行讨论.本题考查的是相似三角形的性质,相似三角形的对应边成比例,相似三角形的面积比等于相似比的平方,意识到有两种情况分类讨论是解决问题的关键.15. 解:过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF//DE//CM,∵OD=AD=3,DE⊥OA,∴OE=EA=12OA=2,由勾股定理得:DE=√OD2−OE2=√5,设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF//DE//CM,∴△OBF∽△ODE,△ACM∽△ADE,∴BFDE =OFOE,CMDE=AMAE,∵AM=PM=12(OA−OP)=12(4−2x)=2−x,即√5=x2,√5=2−x2,解得:BF=√52x,CM=√5−√52x,∴BF+CM=√5.故答案为:√5过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,则BF+CM是这两个二次函数的最大值之和,BF//DE//CM,求出AE=OE=2,DE=√5,设P(2x,0),根据二次函数的对称性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出BFDE =OFOE,CM DE =AMAE,代入求出BF和CM,相加即可求出答案.此题考查了二次函数的最值,勾股定理,等腰三角形性质,以及相似三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题.16. 解:∵过AB中点C1分别作x轴和y轴的垂线,垂足分别是点A1、B1,∴B1C1和C1A1是三角形OAB的中位线,∴B1C1=12OA=12,C1A1=12OB=√32,∴C1的坐标为(12,√32),同理可求出B2C2=14=122,C2A2=√34=√322∴C2的坐标为(14,√34),…以此类推,可求出B n C n=12n ,C n A n=√32n,∴点C n的坐标为(12,√32),故答案为:(12n ,√3 2n).首先利用三角形中位线定理可求出B1C1的长和C1A1的长,即C1的横坐标和纵坐标,以此类推即可求出点C n的坐标.本题考查了规律型:点的坐标的求解,用到的知识点是三角形中位线定理,解题的关键是正确求出C1和C2点的坐标,由此得到问题的一般规律.17. 本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.先把括号内通分,再把分子分母因式分解和除法运算化为乘法运算,然后约分得到原式=3x+15,在原分式中,为了使分式有意义,分母不等于0,即x2−9≠0,解得x≠3且x≠−3,因此把x=1代入计算即可.18. 解:(1)m%=1−33%−20%−5%−10%=32%,所以m=32,A区域所对应的扇形圆心角为:360∘×20%=72∘,故答案为:32,72.(2)一共调查的人数为:25÷5%=500(人)(3)500×(32%+10%)=210(人)25−35岁的人数为:210−10−30−40−70=60(人)(4)14×(32%+10%)=5.88(万人)答:估计本地市民中会有5.88万人给出建议.(1)用1减去A,D,B,E的百分比即可,运用A的百分比乘360∘即可.(2)用不关心的人数除以对应的百分比可得.(3)求出25−35岁的人数再绘图.(4)用14万市民乘C与D的百分比的和求解.本题主要考查了条形统计图,扇形统计图和用样本估计总体,解题的关键是把条形统计图和扇形统计图的数据相结合求解.19. (1)根据题意画树状图,然后根据树状图即可求得所有等可能的结果;(2)首先由树状图,求得长度为5cm,与(1)中各组木条组成三角形的情况,然后由概率公式即可求得长度为5cm,与(1)中各组木条组成三角形的概率.此题考查了树状图法与列表法求概率的知识.注意树状图法与列表法可以不重不漏地表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.20. (1)根据路程与相应的时间,求得快车与慢车的速度;(2)先求得点C的坐标,再根据点D的坐标,运用待定系数法求得CD的解析式;(3)分三种情况:在两车相遇之前;在两车相遇之后;在快车返回之后,分别求得时间即可.本题主要考查了一次函数的应用,解决问题的关键是掌握待定系数法求一次函数解析式.求一次函数y=kx+b,需要两组x,y的值或图象上两个点的坐标.在解题时注意分类思想的运用.21. (1)过点C、D分别作CG⊥AB,DF⊥CG,垂足分别为G,F,根据直角三角形的性质得出CG,再根据三角函数的定义即可得出CD的长;(2)如图,设渔政船调整方向后t小时能与捕渔船相会合,由题意知CE=30t,DE=1.5×2×t=3t,∠EDC=53∘,过点E作EH⊥CD于点H,根据三角函数表示出EH,在Rt△EHC中,根据正弦的定义求值即可.考查了解直角三角形的应用-方向角问题,此题是一道方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.22. (1)结论:BC与⊙O相切,连接OD只要证明OD//AC即可.(2)欲证明△ABD∽△DBE,只要证明∠BDE=∠DAB即可.(3)在Rt△ODB中,由cosB=BDOB =2√23,设BD=2√2k,OB=3k,利用勾股定理列出方程求出k,再利用DO//AC,得BDCD =BOAO列出方程即可解决问题.本题考查圆的综合题、切线的判定、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,学会添加常用辅助线,学会用方程的思想思考问题,属于中考常考题型.23. 解:(1)∵y=−10x+n,当销售单价x定为25元时,李明每月获得利润为w为1250元,∴则W=(25−20)×(−10×25+n)=1250,解得:n=500;故答案为:500.(2)由题意,得:w=(x−20)⋅y,=(x−20)⋅(−10x+500)=−10x2+700x−10000,令:−10x2+700x−10000=2000,解这个方程得:x1=30,x2=40(舍).答:李明想要每月获得2000元的利润,销售单价应定为30元.=35.(3)由(2)知:w=−10x2+700x−10000,∴x=−b2a∵−10<0,∴抛物线开口向下.∵x≤32∴w随x的增大而增大.∴当x=32时,答:销售单价定为32元时,每月可获得最大利润,最大利润为2160元.(1)根据已知得出w=(x−20)⋅y进而代入x=25,W=1250进而求出n的值即可;(2)利用w=(x−20)⋅y得出W与x之间的函数关系式,令:函数关系式的关系式−10x2+ 700x−10000=2000,进而求出即可;(3)利用公式法求出x=35时二次函数取到最值,再利用这种护眼台灯的销售单价不得高于32元得出答案即可.此题主要考查了二次函数的应用以及二次函数的最值求法,根据已知得出W与x的函数关系式是解题关键.24. (1)在AC上截取CD=AN,连接OD,证明△CDO≌△ANO,根据全等三角形的性质得到OD=ON,∠COD=∠AON,证明△DMO≌△NMO,得到DM=MN,结合图形证明结论;(2)在AC延长线上截取CD=AN,连接OD,仿照(1)的方法解答.本题考查的是等边三角形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.25. (1)把点A、B、C的坐标代入抛物线解析式,利用待定系数法求二次函数解析式解答;(2)根据线段垂直平分线上的点到线段两端点的距离相等可得AM=BM,再根据三角形的任意两边之差小于第三边判断出点A、C、M三点共线时,|BM−CM|最大,然后求出直线AC 的解析式,再根据抛物线的对称轴求解即可;(3)先判断出△BOC是等腰直角三角形,根据EF//y轴和直线BC的解析判断出△DEF是直角三角形即可与△BOC相似,然后求出∠ADB=90∘,再分①点F是直角顶点时,求出点F的纵坐标,代入抛物线求出点F的横坐标,然后代入直线BC解析式求解即可,②点D是直角顶点时,求出直线AD的解析式,与抛物线联立求解得到点F的横坐标,再代入直线BC求解即可.本题是二次函数综合题型,主要利用了待定系数法求二次函数的解析式,待定系数法求一次函数的解析式,根据线段垂直平分线的性质和三角形的三边关系判断出点M的位置是解(2)题的关键,判断出△DEF是直角三角形是解(3)题的关键,难点在于要分情况讨论.。

中考数学综合模拟参考8卷 人教新课标版

中考数学综合模拟参考8卷 人教新课标版

中考数学综合模拟参考8卷人教新课标版考生须知:1.本科目试卷分试题卷和答题卷两部分.满分120分,考试时间100分钟.2.答题前,必须在答题卷的密封区内填写姓名与准考证号.3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4.考试结束后,只需上交答题卷.一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1.(原创)已知x=-2是方程2x-3a=2的根,那么a的值是()A.a=2B.a=-2C.a=23D.a=23-2.(原创)已知点M(1-a,a+3)在第二象限,则a的取值范围是()A.a>-2B. -2<a<1C. a<-2D. a>13.(原创)如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC△相似的是(4.(原创)若每人每天浪费水0.32L,那么100万人每天浪费的水,用科学记数法表示为()A. L7102.3⨯ B. L6102.3⨯ C. L5102.3⨯ D. L4102.3⨯5.(原创)已知2343221x y kx y k+=⎧⎨+=+⎩,,且10x y-<-<,则k的取值范围为()A.112k-<<- B.12k<< C.01k<< D.112k<<6.(原创)已知圆锥的底面半径为6cm,高为8cm,则圆锥的侧面积为()A. 236cmπ B. 248cmπ C. 260cmπ D. 280cmπ7.(原创)如图所示实数a b,在数轴上的位置,以下四个命题中是假命题的是()A.320a ab-<a b=+C.11a b a<-D. 22a b<8.(根据2009年浙江嘉兴中考第9题改编)如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且OPAB//.若阴影部分的面积为π9,则弦AB的长为()A.3 B.4 C.6 D.99.(原创)∵1sin302=,12=-,∴sin210sin(18030)sin30=+=-;∵2sin452=,sin2252=-,∴sin225sin(18045)sin45=+=-,由此猜想、推理知:一般地当α为锐角时有sin(180)sinαα+=-,由此可知:sin240=()(第8题)A.B.C.D.AB CA .12-B .22-C .3-D .3-10.(根据2009年湖北咸宁中考第16题改编)如图,两个反比例函数x k y 1=和xky 2=(其中1k >2k >0)在第一象限内的图象依次是1C 和2C ,设点P 在1C 上,PC ⊥x 轴于点C ,交2C 于点A ,PD ⊥y 轴于点D ,交于2C 点B ,下列说法正确的是( ) ①ODB ∆与OCA ∆的面积相等;②四边形PAOB 的面积等于12k k -;③PA 与PB 始终相等;④当点A 是PC 的三等分点时,点B 一定是PD 三等分点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年长沙市初中毕业学业水平考试模拟试卷
数 学(八)
注意事项:
1.答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对答题卡上的姓名、
准考证号、考室和座位号;
2.必须在答题卡上答题,在草稿纸、试题卷上答题无效;
3.答题时,请考生注意各大题题号后面的答题提示;
4.请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;
5.答题卡上不得使用涂改液、涂改胶和贴纸;
6.本学科试卷共26个小题,考试时量120分钟,满分120分.
一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共12个小题,每小题3分,共36分)
1.清明节是中国传统节日,它不仅是人们远足踏青的日子,更是祭奠祖先、缅怀先人 的节日.市民政局提供的数据显示,今年清明节当天全市213处祭扫点共接待群众 264000人,则数据264000用科学记数法表示为
A .264⨯103
B .2.64⨯104
C .2.64⨯105
D .0.264⨯106 2.下列运算正确的是
A .23a a a +=
B .(2)(3)6a a a ⋅= C
.2
36a
a
a ⋅= D .236()a a =
3.下列手机软件图标中,是轴对称图形但不是中心对称图形的是
A B C D
4.一个袋子中只装有黑、白两种颜色的球,这些球的形状、质地等完全相同,其中白
色球有2个,黑色球有n 个.在看不到球的条件下,随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀.同学们进行了大量重复试验,发现摸出白球的频率稳定在0.4附近,则n 的值为
A .2
B .3
C .4
D .5
5.某篮球队12
名队员的年龄统计如图所示,则该队队员年龄的众数和中位数分别是
A .16,15
B .15,15.5
C .15,17
D .15,16
6.如图,等腰直角三角板的顶点A 、C 分别在直线a 、b 上.若a ∥b ,∠1=35°,则 ∠2的大小为
A .35°
B .15°
C .10°
D .5°
第7题图
7.如图,螺母的一个面的外沿可以看作是正六边形,这个正六边形ABCDEF 的半径是
cm ,则这个正六边形的周长是
A .cm
B .12 cm
C .
D .36 cm
8.反比例函数2y x
=-的图象上有两点111()P x y ,、222()P x y ,,若120x x <<,则下列结论正确的是
A .120y y <<
B .120y y <<
C .120y y >>
D .120y y >>
9.现有A 、B 两种商品,买3件A 商品和2件B 商品用了160元,买2件A 商品和3
件B 商品用了190元.如果准备购买A 、B 两种商品共10件,则下列方案中,费用最低的为
A .A 商品7件和
B 商品3件 B .A 商品6件和B 商品4件
C .A 商品5件和B 商品5件
D .A 商品4件和B 商品6件
10.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图
2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为 A .富 B .强 C .文 D .民
11.如图,△ABC 为等边三角形,点O 在过点A 且平行于BC 的直线上运动,以点O 为
圆心,且以△ABC 的高为半径的⊙O 分别交线段AB 、AC 于点E 、F ,则 EF
所对的 圆周角的度数
A .从0°到30°变化
B .从30°到60°变化
C .总等于30°
D .总等于60°
12.如图,二次函数2y ax bx c =++(a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于
点C ,且OA =OC .现有下列结论:①abc <0;②244b ac a
->0;③ac -b +1=0;④ OA ⋅OB =c a
-.其中正确结论的个数是 A .4 B .3 C .2 D .1
二、填空题(本大题共6个小题,每小题3分,共18分)
13x 的取值范围是 .
14.分解因式:22a b ab b -+= .
15.若关于x 的方程2230kx x -+=有两个不相等的实数根,则k 的取值范围是 .
16.已知一个正多边形的内角和是外角和的4倍,则这个正多边形的边数是 .
17.如图,在⊙O 中,AB 为⊙O 的弦,半径OC ⊥AB 于点D ,若OB 的长为10,4sin 5
BOD ∠=, 则AB 的长为 .
18.如图所示,点E 、F 分别是正方形纸片ABCD 的边BC 、CD 上的一点,将正方形纸
片ABCD 分别沿AE 、AF 折叠,使得点B 、D 恰好都落在点G 处,且EG =2,FG =3,则正方形纸片ABCD 的边长为 .
三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题8分,
第23、24题每小题9分,第25、26题每小题10分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)
19
.计算:10(2)1)4cos 45---++︒.
20.解不等式组3(1)612
x x x x -⎧⎪⎨+⎪⎩<,≤并写出它的所有整数解. 21.为创建文明、和谐的社会,进一步提高我市市民的文明素质,某校对九年级各班文
明行为劝导志愿者人数进行了统计,各班志愿者人数有6名,5名,4名,3名,2名,1名共计六种情况,并绘制成下面两个不完整的统计图:
(1)该年级共有 个班级,并将条形统计图补充完整;
(2)求志愿者人数是6名的班级所占的圆心角的度数; (3)为了了解志愿者在这次活动中的感受,校学生会准备从只有2名志愿者的班级
中任选两名志愿者参加座谈会,请用列表或画树状图的方法,求所选志愿者来自同一个班级的概率.
22.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,过点B 作AC 的平行线交DC 的 延长线于点E .
(1)求证:BD =BE ;
(2)若BE =10,CE =6,连接OE ,求tan ∠OED 的值.
23.今年3月12日植树节前夕,我校购进A 、B 两个品种的树苗,已知一株A 品种树苗 比一株B 品种树苗多20元,买一株A 品种树苗和2株B 品种树苗共需110元.
(1)问A 、B 两种树苗每株分别是多少元?
(2)4月,为美化校园,学校花费4000元再次购入A 、B 两种树苗,已知A 品种树 苗数量不少于B 品种树苗数量的一半,则此次至多购买B 品种树苗多少株?
24.如图,在△ACE 中,CA =CE ,∠CAE =30°,⊙O 经过点C ,且圆的直径AB 在线
段AE 上.
(1)求证:CE 是⊙O 的切线;
(2)若△ACE 中AE 边上的高为h ,试用含h 的代数式
表示⊙O 直径AB 的长;
(3)设点D 是线段AC 上任意一点(不含端点),连接
OD ,当
12
CD +OD 的最小值为6时,求⊙O 直径AB 的长. 25.对于某一函数给出如下定义:若存在实数p ,当其自变量的值为p 时,其函数值等
于p ,则称p 为这个函数的不变值...
.在函数存在不变值时,该函数的最大不变值与 最小不变值之差q 称为这个函数的不变长度.....特别地,当函数只有一个不变值时, 其不变长度q 为零.例如,下图中的函数有0,1两个不变值,其不变长度q 等于1.
(1)分别判断函数y =x -1、y =1x
、y =x 2有没有不变值? 如果有,直接写出其不变长度;
(2)函数y =2x 2-bx .
①若其不变长度为0,求b 的值;
②若1≤b ≤3,求其不变长度q 的取值范围;
(3)记函数y =x 2-2x (x ≥m )的图象为G 1,将G 1沿x=m 翻折后得到的函数图象记 为G 2.函数G 的图象由G 1和G 2两部分组成,若其不变长度q 满足0≤q ≤3, 求m 的取值范围. 26.如图,直线y =-x +1与x 轴、y 轴分别交于A 、B 两点,点P (a ,b )为双曲线12y x
=
(x >0)上的一动点,PM ⊥x 轴于点M ,交线段AB 于点F ,PN ⊥y 轴于点N ,交 线段AB 于点E .
(1)求点E 、F 两点的坐标(用含有a ,b 的式子表示);
(2)当a =34
时,求△EOF 的面积; (3)当点P 运动且线段PM 、PN 均与线段AB 有交点时,
探究:
①BE 、EF 、F A 这三条线段是否能组成一个直角三角
形?并说明理由;
②∠EOF 的大小是否会改变?若不变,求出∠EOF 的度数;若改变,请说明 理由.。

相关文档
最新文档