08-09_1_概率统计B__经管类多学时__A卷

合集下载

《概率论与数理统计 经管类》第四版 (吴赣昌 著) 课后习题答案 中国人民大学出版社

《概率论与数理统计 经管类》第四版 (吴赣昌 著) 课后习题答案 中国人民大学出版社

点。
解: Ω = { (正,正),(正,反),(反,正),(反,反) }
A = { (正,正),(正,反) }; B = { (正,正),(反,反) }
C = { (正,正),(正,反),(反,正) }
2. 在掷两颗骰子的试验中,事件 A, B,C, D 分别表示“点数之和为偶数”,“点数
之和小于 5”,“点数相等”,“至少有一颗骰子的点数为 3”。试写出样本空间及事
即[1 − P(A)]P( AB) = P(A)[P(B) − P( AB)] ∴ P(AB) = P( A)P(B) ,故 A与 B 独立。 5. 设事件 A 与 B 相互独立,两个事件只有 A 发生的概率与只有 B 发生的概率都 是 1 ,求 P(A) 和 P(B). 4 解:∵ P(AB) = P(AB) = 1 ,又∵ A与 B 独立
n 9 9
网 c 11. 设一批产品共 100 件,其中 98 件正品,2 件次品,从中任意抽取 3 件(分三
案 . 种情况:一次拿 3 件;每次拿 1 件,取后放回拿 3 次;每次拿 1 件,取后不放回拿 3
p 次),试求:
答 sh (1) 取出的 3 件中恰有 1 件是次品的概率;
后 k (2) 取出的 3 件中至少有 1 件是次品的概率。
解:
令 A = “两件中至少有一件不合格”, B = “两件都不合格”
C42
P(B |
A) =
P( AB) P( A)
= P(B) 1− P(A)
=
1

C120 C62
C120
=1 5
n 3. 为了防止意外,在矿内同时装有两种报警系统 I 和 II。两种报警系统单独使用
网 c 时,系统 I 和 II 有效的概率分别 0.92 和 0.93,在系统 I 失灵的条件下,系统 II 仍有效

《概率论与数理统计》考试试题B(答案)

《概率论与数理统计》考试试题B(答案)

广东白云学院2007—2008学年第二学期期末考试《概率论与数理统计》B卷参考答案及评分标准适用专业及方向: 经济管理类各专业、土木工程层次: 本科年级: 07级限时: 120分钟考试形式: 闭卷考场要求: 笔试考试形式:闭卷考场要求:笔试.(×)2. 设、为两事件, 则.(×)3. 设, 则其一定是某连续型随机变量的密度函数.(√)4. 设随机变量~N(1, 9), 则.(√)5.设, , 与相互独立, 则.二、填空题(请将正确答案填写在括号内。

每空3分,共30分), 则( 0.6 ).7.设随机变量和都服从[0,2]上的均匀分布, 则( 2 ).8. 设为两个随机事件,且已知, , ,则条件概率(0.6).则常数c=(0.1),}5.15.0{<<-XP=(0.5).10. 已知~,函数值,则=(0.9772).11. 服从参数的泊松分布, 令, 则(13), (75).12. 设三次独立试验中, 事件出现的概率相等, 若已知至少出现一次的概率等1/3 ).,则下列关系成立的是( C )A. B.C. D.15.同时抛掷3枚均匀的硬币, 则恰好有两枚正面朝上的概率为( D )A. 0.5B. 0.125C. 0.25D. 0.37516. 10张奖券中含有3张中奖的奖券,每人购买一张,则第3个购买者中奖的概率为( B )A. B. 0.3 C. D.17. 设连续型随机变量服从参数为的指数分布,若方差,则数学期望( B )A. B. C. D.18. 如果离散型随机变量相互独立,且服从参数为的泊松分布,则当充分大时,离散型随机变量( D )近似服从标准正态分布.A. B. C. D.19. 设连续型随机变量的概率密度为,则( A )A. B. C.D.四、计算题(每小题8分,共32分)(1)若事件BA,互不相容,求α; (2)若事件BA,相互独立,求α.解 (1)因为BA,互不相容,所以φ=AB, (1分)所以)()()()(BPABPBPBAP=-= (2分)而)(1)()()()(APBAPBPAPBAP-=-+=(3分)所以α=0.3 (4分)(2)因为BA,相互独立,则A与B也相互独立, (5分))())(1)(()()()()()(BPBPAPBPAPBPAPBAP+-=-+=(7分)所以α=73(8分)21. 某产品主要由三个厂家供货.甲、乙、丙三个厂家的产品分别占总数的15%,80%,5%,其次品率分别为0.02,0.01,0.03,试计算(1)从这批产品中任取一件是不合格品的概率;(2)已知从这批产品中随机地取出的一件是不合格品,问这件产品由哪个厂家生产的可能性最大?解记=A{所取一件产品是不合格品},321,,BBB分别表示”产品来自甲、乙、丙厂” (1分) 依题意有:15.0)(1=BP, 80.0)(2=BP,05.0)(3=BP02.0)(1=BAP,01.0)(2=BAP,03.0)(3=BAP (2分) (1)由全概率公式0125.0)()()(31==∑=iiiBPBAPAP (5分) (2)由贝叶斯公式24.00125.002.015.0)()()()(111=⨯==APBAPBPABP, (6分)64.00125.001.080.0)()()()(222=⨯==APBAPBPABP, (7分)12.00125.003.005.0)()()()(333=⨯==A PB A P B P A B P (8分) 22.设连续型随机变量X 的密度函数⎩⎨⎧<<=其他020)(2x Ax x ϕ,求(1)常数A ;(2))(),(X D X E .解 因为138)(202===⎰⎰∞+∞-A dx Ax dx x ϕ (2分) 所以 83=A (3分)所以 ⎪⎩⎪⎨⎧<<=其他2083)(2x xx ϕ2383)()(203===⎰⎰∞+∞-dx x dx x x X E ϕ (5分) 51283)()(20422===⎰⎰∞+∞-dx x dx x x X E ϕ (7分) 20323512)]([)()(222=⎪⎭⎫ ⎝⎛-=-=X E X E X D (8分) 23. 已知电站供电网有10000盏电灯, 夜晚每一盏灯开灯的概率都是0.7, 而假定开、关时间彼此独立, 试用切贝谢夫不等式估计夜晚同时开着的灯数在6800与7200之间的概率。

自考概率论与数理统计(经管类)试题及答案

自考概率论与数理统计(经管类)试题及答案

全国年月自考概率论与数理统计(经管类)试题一、单项选择题(本大题共小题,每小题分,共分)解:本题考查的是和事件的概率公式,答案为.解:()()(|)1()()P B AB P AB P B AB P AB P AB ⋂===()()()0.50.15(|)0.5()()1()0.7P BA P B P AB P B A P B P A P A --=====- ()()0.15(|)0.3()()()0.5P B AB P AB P AB B P A P B P B ⋂=====()()(|)1()()P A AB P AB P A AB P AB P AB ⋂=== ,故选.解:本题考查的是分布函数的性质。

由()1F +∞=可知,、不能作为分布函数。

再由分布函数的单调不减性,可知不是分布函数。

所以答案为。

解:选。

{||2}{2}{2}1{2}{2}1(2)(2)1(2)1(2)22(2)P X P X P X P X P X >=>+<-=-≤+<-=-Φ+Φ-=-Φ+-Φ=-Φ解:因为(2)0.20.16P Y c ===+,所以0.04c =又(2)10.80.20.02P X c d ==-==++,所以10.020.040.14d =--= ,故选。

解:若~()X P λ,则()()E X D X λ==,故 。

解:由方差的性质和二项分布的期望和方差:1512(1)()()3695276633D X Y D X D Y -+=+=⨯⨯+⨯⨯=+= ,选。

解:由切比雪夫不等式2(){|()|}1D X P X E X εε-<>-,可得21600{78008200}{|8000|200}10.96200P X P X <<=-<>-= ,选。

解:由方差的计算公式22()()()D X E X E X =-, 可得2222()()()E X D X E X nσμ=+=+ ,选。

真题考试:2021 概率论与数理统计(经管类)真题及答案(4)

真题考试:2021 概率论与数理统计(经管类)真题及答案(4)

真题考试:2021 概率论与数理统计(经管类)真题及答案(4)共100道题1、设X,Y为随机变量,E(X)=E(Y)=1,Cov(X,Y)=2,则E(2XY)= 【】(单选题)A. -6B. -2C. 2D. 6试题答案:D2、设随机变量x的概率密度为(单选题)A. 0B. 1/4C. 1/2D. 1试题答案:B3、设P(B)=0.6, P(A|-B)=0.5,则P(A-B)= (单选题)A. 0.1B. 0.2C. 0.3D. 0.4试题答案:B4、设P(B)=0.6, P(A|-B)=0.5,则P(A-B)= (单选题)A. 0.1B. 0.2C. 0.3D. 0.4试题答案:B5、设随机变量x满足E(X2)=20, D(X)=4,则E(2X)= (单选题)A. 4B. 8C. 16D. 32试题答案:B6、设随机变量X的分布函数为F(x),则下列结论正确的是(单选题)A. F(+∞)=-1B. F(+∞)=0C. F(-∞)=0D. F(-∞)=1试题答案:C7、(单选题)A.B.C.D.试题答案:A8、(单选题)A. N(-1,3)B. N(-1,9)C. N(1,3)D. N(1,9)试题答案:B9、设随机变量X的分布律为(单选题)A. 0.2B. 0.4C. 0.6D. 0.8试题答案:B10、设随机变量X~ B(3,1/5),则P{X=2}= (单选题)A. 1/125B. 12/125C. 3/25D. 12/25试题答案:B11、(单选题)A.B.C.D.试题答案:C12、为样本方差,则下列结论成立的是(单选题)A.B.C.D.试题答案:A13、设X1,X2...X10是来自总体X的样本,且X ~ N(0,1),(单选题)A.B.C.D.试题答案:B14、已知X与Y的协方差Cov(X,Y)=-1/2,则Cov(一2X,Y)= 【】(单选题)A. -1/2B. 0C. 1/2D. 1试题答案:D15、有6部手机,其中4部是同型号甲手机,2部是同型号乙手机,从中任取3部,恰好取到一部乙手机的概率是(单选题)A. 1/20B. 1/10C. 3/10D. 3/5试题答案:D16、设随机变量X的分布函数为F(x),则下列结论中不一定成立的是(单选题)A.B.C.D.试题答案:D17、(单选题)A. N(-1,3)B. N(-1,9)C. N(1,3)D. N(1,9)试题答案:B18、设随机变量X与Y的相关系数为0.5,D(X)=9,D(Y)=4,则D(3X-Y)= 【】(单选题)A. 5B. 23C. 67D. 85试题答案:C19、设随机变量X在[-2,2]上服从均匀分布,则P{X≥1}= (单选题)A. 0B. 1/4C. 1/2D. 1试题答案:B20、设随机事件A,B满足P(A)=0.2,P(B)=0.4, P(B|A=0.6,则P(B-A)= (单选题)A. 0.16B. 0.2C. 0.28D. 0.32试题答案:C21、已知随机变量X~N(-2,2),则下列随机变量中,服从N(0,1) 分布的是(单选题)A.B.C.D.试题答案:D22、设二维随机变量(X,Y)的分布律为则P{x=0}=(单选题)A. 0.1B. 0.2C. 0.3D. 0.5试题答案:D23、设随机变量X~ B(3,1/5),则P{X=2}= (单选题)A. 1/125B. 12/125C. 3/25D. 12/25试题答案:B24、设二维随机变量(X,Y)的分布函数为F(x,y),则(X,Y)关于X的边缘分布函数Fx(x)=(单选题)A.B.C.D.试题答案:A25、设二维随机变量(X,Y)的分布律为则P{X=Y}=(单选题)A. 0.2B. 0.25C. 0.3D. 0.5试题答案:D26、设A,B为随机事件,则(单选题)A.B.C.D.试题答案:D27、甲袋中有3个红球1个白球,乙袋中有1个红球2个白球,从两袋中分别取出一个球,则两个球颜色相同的概率是(单选题)A. 1/6B. 1/4C. 1/3D. 5/12试题答案:D28、设总体X~ N(μ,σ2),x1,x2...x n为来自该总体的样本,X为样本均值,S2为样本方差,则μ的极大似然估计为(单选题)A.B.C.D.试题答案:A29、服从的分布是(单选题)A.B.C.D.试题答案:C30、有6部手机,其中4部是同型号甲手机,2部是同型号乙手机,从中任取3部,恰好取到一部乙手机的概率是(单选题)A. 1/20B. 1/10C. 3/10D. 3/5试题答案:D31、设随机变量x的概率密度为(单选题)A. 1/4B. 1/2C. 2/3D. 3/4试题答案:A32、设随机变量X的分布律为(单选题)A. 0.2B. 0.4C. 0.6D. 0.8试题答案:B33、设随机变量X~B(3,0.2),则P{X>2}= 【】(单选题)A. 0.008B. 0.488C. 0.512D. 0.992试题答案:A34、设α是假没检验中犯第一类错误的概率,H。

08-09概率论期末考试试卷A (1)

08-09概率论期末考试试卷A (1)

《概率论与数理统计》期末考试试卷(A1)2、下列叙述中正确的是( A ). (A) ()1X EX D DX -= (B) ~(0,1)X EXN DX- (C) 22)(EX EX = (D) 22()EX DX EX =-3、设θ是总体X 中的参数,称),(θθ为θ的置信度a -1的置信区间,下面说话正确的是( D ).(A) 以),(θθ估计θ的范围,不正确的概率是a -1 (B) θ 以概率a -1落入),(θθ (C) θ以概率a 落在),(θθ之外 (D) ),(θθ以概率a -1包含θ4、设(,)0,(,)(,)~(,)0,g x y x y GX Y f x y ≠∈⎧=⎨⎩其它,D 为一平面区域,记G,D 的面积分别为,G D S S ,则{(,)}(B )P x y D ∈=.(A)GD S S (B) ⎰⎰Ddxdy y x f ),( (C) (,)G g x y dxdy ⎰⎰ (D) G G D S S5、设总体分布为),(2σμN ,若μ未知,则要检验20:100H σ≥,应采用统计量( B ).(A)nS X /μ- (B)100)(21∑=-ni iX X(C)100)(21∑=-ni iXμ (D)22)1(σS n -6、有三类箱子,箱中装有黑、白两种颜色的小球,各类箱子中黑球、白球数目之比为,2:3,2:1,1:4已知这三类箱子数目之比为1:3:2,现随机取一个箱子,再从中随机取出一个球,则取到白球的概率为( A ).(A)157 (B)4519 (C)135(D)3019 7、设随机变量X 的概率密度函数为(),()(),()f x f x f x F x =-是X 的分布函数,则对任意实数a 有( B ). (A) ⎰-=-adx x f a F 0)(1)((B) ∑⎰-=-adx x f a F 0)(21)((C) )()(a F a F =- (D) 1)(2)(-=-a F a F题目 一 二 三 四 五 六 七 八 九 十 总分 得分一.填空题:(本大题共7小题,每小题3分,共21分)1. 已知样本1621,,,X X X 取自正态分布总体(3,1)N ,X 为样本均值,已知{}0.5P X λ<=,则=λ 3 。

上海市2008-2009学年第一学期期末模拟试题分类汇编——11概率统计

上海市2008-2009学年第一学期期末模拟试题分类汇编——11概率统计

上海市2008-2009学年第一学期期末模拟试题分类汇编第十一部分:概率统计一.选择题1. (上海虹口区08学年高三数学第一学期期末试卷15)小球A 在右图所示的通道由上到下随机地滑动,最后在下底面的某个出口落出,则一次投放小球,从“出口3”落出的概率为( )A. 15B. 14C. 316D. 38答案:D2.(上海市奉贤区2008年高三数学联考15)将1,2,…,9这9个数随机分给甲、乙、丙三人,每人三个数,则每人手中的三个数都能构成等差数列的概率为( )(A) 561 (B) 701 (C) 3361 (D) 4201答案:A1(南汇区2008学年度第一学期期末理科第12题)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4 8.4 9.4 9.9 9.6 9.4 9.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( ) A .9.4 ;0.484 B .9.4 ;0.016 C .9.5 ;0.04 D .9.5 ;0.016 答案:D二.填空题1.(上海市黄浦区2008学年高三年级第一次质量调研9)若用样本数据10-1213、、、、、来估计总体的标准差,则总体的标准差点估计值是____________.2. (上海市黄浦区2008学年高三年级第一次质量调研8)掷两颗骰子得两数,则事件“两数之和大于4”的概率为____________. 答案:563.( 2009年上海市普通高等学校春季招生考试10)一只猴子随机敲击只有26个小写英文字母的练习键盘. 若每敲1次在屏幕上出现一个字母,它连续敲击10次,屏幕上的10个字母依次排成一行,则出现单词“monkey ” 的概率为 (结果用数值表示).A12345答案:6265.1(嘉定区2008~2009第一次质量调研第8题)为了了解某校高中学生的近视眼发病率,在该校学生中进行分层抽样调查,已知该校高一、高二、高三分别有学生800名、600名、500名,若高三学生共抽取25名,则高一年级每一位学生被抽到的概率是___________. .答案:201 2(上海市卢湾区2008学年高三年级第一次质量调研第10题)若集合*{|100,3,}A a a a k k N =≤=∈,集合*{|100,2,}B b b b k k N =≤=∈,在A B 中随机地选取一个元素,则所选取的元素恰好在A B 中的概率为____________.答案:16673(上海市静安区2008学年高三年级第一次质量调研第7题)(理)8名同学排成前后两排,每排4人.如果甲、乙两同学必须排在前排,丙同学必须排在后排那么不同的排法共有_____________种(用数字作答).答案:57604 (上海市静安区2008学年高三年级第一次质量调研第7题)(文)某班上午要排语文、数学、体育、英语四门课,如果体育课不排在第一节也不排在第四节,则不同的排法共有_____________种(用数字作答). 答案:125 (上海市静安区2008学年高三年级第一次质量调研第9题)(理)某工厂的一位产品检验员在检验产品时,可能把正品错误地检验为次品,同样也会把次品错误地检验为正品.已知他把正品检验为次品的概率是0.02, 把次品检验为正品的概率为0.01.现有3件正品和1件次品,则该检验员将这4 件产品全部检验正确的概率是____________(结果保留三位小数). 答案:0.9326 (上海市静安区2008学年高三年级第一次质量调研第9题)(文)抛掷一枚均匀的骰子,则事件“出现的点数大于4”的概率是_____________.答案:137 (静安区部分中学08-09学年度第一学期期中数学卷第6题)(理)从书架上顺序排列的7本书中取出3本书,那么这3本书恰好是从互不相邻的位置上取出的概率为 .(结果用分数表示)答案:728 (静安区部分中学08-09学年度第一学期期中数学卷第6题)(文)在一个小组中有8名女同学和4名男同学,从中任意地挑选2名同学担任交通安全宣传志愿者,那么选到的两名都是女同学的概率是(结果用分数表示).答案:33149静安区部分中学08-09学年度第一学期期中数学卷第10题)(理)从某批灯泡中随机抽取10只做寿命试验,其寿命(以小时计)如下:1050,1100,1120,1280,1250,1040,1030,1110,1240,1300.则该批灯泡寿命标准差的点估计值等于.(结果保留一位小数)答案:104.9(或者104.8也算对)10(静安区部分中学08-09学年度第一学期期中数学卷第10题)(文)某班级在一次身高测量中,第一小组10名学生的身高与全班学生平均身高170 cm的差分别是4-,7-,8-,2-,1,10-,15,10,7,2-。

2024年概率论与数理统计试卷参考答案与评分标准

2024年概率论与数理统计试卷参考答案与评分标准

2023─2024学年第二学期《概率论与数理统计》课程考试试卷(A 卷)参考答案与评分标准一、填空题(每空3分,共30分)1.在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加样本容量.2.设随机变量X 具有数学期望()E X μ=与方差2()D X σ=,则有切比雪夫不等式{}2P X μσ-≥≤14.3.设X 为连续型随机变量,a 为实常数,则概率{}P X a ==0.4.设X 的分布律为,{}1,2,k k P X x p k === ,2Y X =,若1nkk k xp ∞=∑绝对收敛(n为正整数),则()E Y =21kk k xp ∞=∑.5.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为17.6.设X 服从参数为λ的poisson 分布,则(2)E X =2λ.7.设(2,3)Y N ,则数学期望2()E Y =7.8.(,)X Y 为二维随机变量,概率密度为(,)f x y ,X 与Y 的协方差(,)Cov X Y 的积分表达式为(())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰.9.设X 为总体N (3,4)中抽取的样本14,,X X 的均值,则{}15P X ≤≤=2(2)1Φ-.(计算结果用标准正态分布的分布函数()x Φ表示)10.随机变量2(0,)X N σ ,n X X X ,,,21 为总体X 的一个样本,221()(1)ni i Y k X χ==∑ ,则常数k =21n σ.A 卷第1页共4页二、概率论试题(45分)1、(8分)题略解:用A B C 、、,分别表示三人译出该份密码,所求概率为P A B C ()(2分)由概率公式P A B C P ABC P A P B P C ()=1-()=1-()()()(4分)1-1-1-p q r =1-()()()(2分)2、(8分)设随机变量()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====,求数学期望()E X Y +与方差(23)D X Y -.解:(1)()E X Y +=E X E Y ()+()=1+3=4(3分)(2)(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-(3分)8361244XY ρ=+--(2分)3、(8分)某种电器元件的寿命服从均值为100h 的指数分布,现随机地取16只,它们的寿命i T 相互独立,记161ii T T ==∑,用中心极限定理计算{1920}P T ≥的近似值(计算结果用标准正态分布的分布函数()x Φ表示).解:i i ET D T E T D T 2()=100,()=100,()=1600,()=160000(3分){1920}0.8}1P T P ≥=≈-Φ(0.8)(5分)(4分)4、(10分)设随机变量X 具有概率密度11()0x x f x ⎧-≤≤=⎨⎩,,其它,21Y X =+.(1)求Y 的概率密度()Y f y ;(2)求概率312P Y ⎧⎫-<<⎨⎩⎭.解:(1)12Y Y y F y y F y ≤>时()=0,时()=1(1分)A 卷第2页共4页212,{}{1}()d Y y F y P Y y P X y f x x<≤≤=+≤=()=(2分)02d 1x x y ==-(2分)概率密度函数2()=Y Y y f y F y ≤⎧'⎨⎩1,1<()=0,其它(2分)(2)3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222.(3分)5、(11分)设随机变量(,)X Y 具有概率分布如下,且{}1103P X Y X +===.XY-101013p114q112(1)求常数,p q ;(2)求X 与Y 的协方差(,)Cov X Y ,并问X 与Y 是否独立?解:(1)1111134123p q p q ++++=+=,即(2分)由{}{}{}{}{}101011010033P X Y X P Y X pP X Y X P X P X p +====+========+,,(2分)可得16p q ==(1分)X 01Y -11P1212P7121614(2)EX 1()=2,E Y 1()=-3,E XY 1()=-6(3分),-Cov X Y E XY E X E Y ()=()()()=0(2分)由..ij i j P P P ≠可知X 与Y 不独立(1分)三、数理统计试题(25分)1、(8分)题略.A 卷第3页共4页证明:222(1)(0,1),(1)X n S N n χσ-- ,22(1)X n S σ-相互独立(4分)2(1)Xt n - ,即(1)X t n - (4分)2、(10分)题略解:似然函数2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑(4分)由2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑可得221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑为2,μσ的最大似然估计(2分)由221ˆˆ(),()n nE E μμσσ-==可知11ˆni i x n μ==∑为μ的无偏估计量,2211ˆ()ni i x n σμ==-∑为2σ的有偏估计量(4分)3、(7分)题略解:01: 4.55: 4.55H H μμ=≠(2分)检验统计量x z =,拒绝域0.025 1.96z z ≥=(2分)而0.185 1.960.036z ==>(1分)因而拒绝域0H ,即不认为总体的均值仍为4.55(2分)A 卷第4页共4页。

历年自考概率论与数理统计(经管类)真题及参考答案(全套)

历年自考概率论与数理统计(经管类)真题及参考答案(全套)

2007年4月份全国自考概率论与数理统计(经管类)真题参考答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.A. AB. BC. CD. D答案:B解析:A,B互为对立事件,且P(A)>0,P(B)>0,则P(AB)=0P(A∪B)=1,P(A)=1-P(B),P(AB)=1-P(AB)=1.2.设A,B为两个随机事件,且P(A)>0,则P(A∪B|A)=()A. P(AB)B. P(A)C. P(B)D. 1答案:D解析:A,B为两个随机事件,且P(A)>0,P(A∪B|A)表示在A发生的条件下,A或B发生的概率,因为A发生,则必有A∪B发生,故P(A∪B|A)=1.3.下列各函数可作为随机变量分布函数的是()A. AB. BC. CD. D答案:B解析:分布函数须满足如下性质:(1)F(+∞)=1,F(-∞)=0,(2)F(x)右连续,(3)F(x)是不减函数,(4)0≤F(x)≤1.而题中F1(+∞)=0;F3(-∞)=-1;F4(+∞)=2.因此选项A、C、D中F(x)都不是随机变量的分布函数,由排除法知B正确,事实上B满足随机变量分布函数的所有性质.4.设随机变量X的概率密度为A. AB. BC. CD. D答案:A5.设二维随机变量(X,Y)的分布律为(如下图)则P{X+Y=0}=()A. 0.2B. 0.3C. 0.5D. 0.7答案:C解析:因为X可取0,1,Y可取-1,0,1,故P{X+Y=0}=P{X=0,Y=0}+P{X=1,Y=-1}=0.3+0.2=0.5.6.设二维随机变量(X,Y)的概率密度为A. AB. BC. CD. D答案:A7.设随机变量X服从参数为2的泊松分布,则下列结论中正确的是()A. E(X)=0.5,D(X)=0.5B. E(X)=0.5,D(X)=0.25C. E(X)=2,D(X)=4D. E(X)=2,D(X)=2答案:D解析:X~P(2),故E(X)=2,D(X)=2.8.设随机变量X与Y相互独立,且X~N(1,4),Y~N(0,1),令Z=X-Y,则D(Z)=()A. 1B. 3C. 5D. 6答案:C解析:X~N(1,4),Y~N(0,1),X与Y相互独立,故D(Z)=D(X-Y)=D(X)+D(Y)=4+1=5.9.A. 0.004B. 0.04C. 0.4D. 4答案:C10.A. AB. BC. CD. D答案:B二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

08-09(1)概率论与数理统计-广州大学(A卷)答案

08-09(1)概率论与数理统计-广州大学(A卷)答案

dx
=
1 2
………………………4

第3页共5页
(2)Y 服从二项分布 B(3, 1/ 2)
P(Y < 2) = P(Y = 0) + P(Y = 1) ……………………………………………6 分
=
(1 )3 2
+
C31
´
1 2
´ (1)2 2
=
1 2
…………………………………………8

六.(本题 12 分)已知 ( X ,
1.已知 X 的分布律为
X
0
1
2
概率
1
1
1
4
4
2
(1) 求 X 的分布函数 F (x) (2) 求 X 的数学期望与方差
第2页共5页
ì0
解:(1) F (x)
=
P( X
£
x)
=
ïï1/ 4 íï1/ 2
ïî 1
x<0 0£ x <1 1£ x < 2 x³2
………………………………4 分
(2) E( X ) = 0´1/ 4 +1´1/ 4 + 2 ´1/ 2 = 5 / 4 ……………………………6 分
x > 0, y > 0 其他
得 f (x , y) = fX (x) × fY ( y) 所以 X 与 Y 相互独立 ………………………………………………………12 分
七.(本题 10 分)某地考生的外语成绩 X 服从正态分布 N (72 , s 2 ) ,96 分以上
考生人数占考生总数的 2.3% ,(1)求出s 的值 (2)求考生的成绩在 60 分
x>0 其他

自考概率论与数理统计(经管类)教学大纲

自考概率论与数理统计(经管类)教学大纲

自考《概率论与数理统计》(经管类)课程教学大纲课程代码:04183 总学时:33学时一、课程性质与目标概率论与数理统计是高等院校经济和管理类学生必修的一门基础理论课。

概率论与数理统计是研究不确定性现象的数量规律性的一门学科,是对随机现象进行定量分析的重要工具,它具有广泛的实用性和应用性。

通过本课程的学习,使学生比较系统地了解概率论和数理统计等方面的基本知识,掌握概率论和数理统计的基本概念,了解它的基本理论和基本方法,从而使学生初步掌握处理随机现象的基本思想和方法,培养学生独特的概率论与数理统计思维模式和分析解决实际问题的能力,同时使学生了解概率论与数理统计在经济方面的简单应用,并为学生学习后继专业课程奠定必要的数学基础。

二、课程基本要求本课程分两个部分:概率论和数理统计。

概率论部分包括随机事件与概率、随机变量与概率分布、多维随机变量与概率分布、随机变量的数字特征、大数定律与中心极限定理初步等内容。

数理统计部分包括统计量与抽样分布、参数估计、假设检验以及回归分析等内容。

三.教学内容第一章随机事件的概率【教学目的与要求】1、理解事件,概率等概念2、了解事件的基本运算规则3、掌握概率基本运算,条件概率及独立性【教学重点和难点】重点:概率运算,条件概率难点:全概率公式,贝叶斯公式【教学学时】7学时【教学内容】第一节随机事件1、随机现象2、随机实验和样本空间3、随机事件的概念4、随机事件的关系和运算第二节概率1、频率与概率2、古典概率3、概率的定义与性质第三节条件概率1、条件概率与乘法公式2、全概率公式与贝叶斯公式第四节事件的独立性1、事件的独立性2、n重贝努力实验第二章随机事件及其概率分布【教学目的与要求】1、理解随机变量的划分2、了解离散型随机变量,连续型随机变量3、掌握离散型随机变量,连续型随机变量及其分布【教学重点和难点】重点:离散型随机变量,连续型随机变量及其分布难点:离散型随机变量,连续型随机变量及其分布【教学学时】6学时【教学内容】第一节离散型随机变量1、随机变量的概念2、离散型随机变量及其分布律3、0-1分布与二项分布4、泊松分布第二节随机变量的分布函数1、分布函数的概念2、分布函数的性质第三节连续型随机变量及其概率密度1、连续型随机变量及其概率密度2、均匀分布与指数分布3、正态分布第四节随机函数的概率分布1、离散型随机变量函数的概率分布2、连续型随机变量函数的概率分布第三章多维随机变量及其概率分布【教学目的与要求】1、理解二维随机变量的概念2、了解边缘分布,条件分布律3、掌握边缘分布与条件分布的确定【教学重点和难点】重点:边缘分布,条件分布的计算难点:两个随机变量的函数的分布【教学学时】3学时【教学内容】第一节多维随机变量的概念1、二维随机变量及其分布函数2、二维离散型随机变量3、二维连续型随机变量的概率密度和边缘概率密度第二节随机变量的独立性1、两个随机变量的独立性2、二维离散型随机变量的独立性3、二维连续型随机变量的独立性4、n维随机变量第三节两个随机变量的函数的分布1、离散型随机变量的函数的分布2、两个独立连续型随机变量之和的概率分布第四章随机变量的数字特征【教学目的与要求】1、理解各种数字特征的概念2、了解期望与方差的本质意义3、掌握期望与方差的计算【教学重点和难点】重点:期望,方差难点:协方差,相关系数【教学学时】6学时【教学内容】第一节随机变量的期望1、离散型随机变量的期望2、连续型随机变量的期望3、二维随机变量函数的期望4、期望的性质第二节方差1、方差的概念2、常见随机变量的方差3、方差的性质第三节协方差与相关系数1、协方差2、相关系数3、矩、协方差矩阵第五章大数定律及中心极限定理【教学目的与要求】1、理解大数定律相关内容2、了解中心极限定理3、掌握独立同分布的中心极限定理【教学重点和难点】重点:中心极限定理难点:中心极限定理【教学学时】2学时【教学内容】第一节切比雪夫不等式第二节大数定律1、贝努力大数定律2、独立同分布随机变量序列的切比雪夫大数定律第三节中心极限定理1、独立同分布序列的中心极限定理2、棣莫弗-拉普拉斯中心极限定理第六章统计量及其抽样分布【教学目的与要求】1、理解统计抽样的概念2、了解统计推断的资料收集,整理3、掌握统计推断的基本方法【教学重点和难点】重点:样本分布函数难点:正态分布【教学学时】2学时【教学内容】第一节引言第二节总体与样本1、总体与个体2、样本3、样本数据的整理与显示第三节统计量及其分布1、统计量与抽样分布2、经验分布函数3、样本均值及其抽样分布4、样本方差与样本标准差5、样本矩及其函数6、极大顺序统计量和极小顺序统计量7、正态总体的抽样分布第七章参数估计【教学目的与要求】1、理解参数估计的基本方法2、了解点估计与区间估计3、掌握点估计与正态总体参数的区间估计【教学重点和难点】重点:点估计,区间估计难点:正态总体参数的区间估计【教学学时】3学时【教学内容】第一节点估计的几种方法1、替换原理和矩法估计2、极大似然估计第二节点估计的评价标准1、相合性2、无偏性3、有效性第三节参数的区间估计1、置信区间概念2、单个正态总体参数的置信区间3、两个正态总体下的置信区间4、非正态总体参数的区间估计第八章假设检验【教学目的与要求】1、理解假设检验的基本概念2、了解假设检验的基本方法3、掌握【教学重点和难点】重点:正态总体均值,方差的假设检验难点:正态总体均值,方差的假设检验【教学学时】3学时【教学内容】第一节假设检验的基本思想和概念1、基本思想2、统计假设的概念3、两类错误4、假设检验的基本步骤第二节总体均值的假设检验1、u检验2、T检验3、大样本情况总体均值检验第三节正态总体方差的检验1、χ2检验2、F检验第四节单边检验第九章回归分析【教学目的与要求】1、理解回归分析的基本思路2、了解线性回归模型的参数估计3、掌握一元线性回归分析【教学重点和难点】重点:一元线性回归分析难点:线性回归的显著性检验【教学学时】1学时【教学内容】第一节回归直线方程的建立第二节回归方程的显著性检验第三节预测与控制。

(完整版)自考概率论与数理统计经管类

(完整版)自考概率论与数理统计经管类

Ⅱ、综合测试题概率论与数理统计(经管类)综合试题一(课程代码 4183)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列选项正确的是 ( B ).A. A B A B +=+B.()A B B A B +-=-C. (A -B )+B =AD. AB AB = 2.设()0,()0P A P B >>,则下列各式中正确的是( D ).A.P (A -B )=P (A )-P (B )B.P (AB )=P (A )P (B )C. P (A +B )=P (A )+P (B )D. P (A +B )=P (A )+P (B )-P (AB )3.同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是 ( D ). A.18 B. 16 C. 14 D. 124.一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1,2,3,4,5顺序的概率为 ( B ).A.1120 B. 160C. 15D. 12 5.设随机事件A ,B 满足B A ⊂,则下列选项正确的是 ( A ).A.()()()P A B P A P B -=-B. ()()P A B P B +=C.(|)()P B A P B =D.()()P AB P A =6.设随机变量X 的概率密度函数为f (x ),则f (x )一定满足( C ). A. 0()1f x ≤≤ B. f (x )连续C.()1f x dx +∞-∞=⎰D. ()1f +∞=7.设离散型随机变量X 的分布律为(),1,2,...2kbP X k k ===,且0b >,则参数b的值为( D ).A.12 B. 13 C. 15D. 1 8.设随机变量X , Y 都服从[0, 1]上的均匀分布,则()E X Y += ( A ). A.1 B.2 C.1.5 D.09.设总体X 服从正态分布,21,()2EX E X =-=,1210,,...,X X X 为样本,则样本均值101110ii X X ==∑~( D ).A.(1,1)N -B.(10,1)NC.(10,2)N -D.1(1,)10N - 10.设总体2123(,),(,,)X N X X X μσ:是来自X 的样本,又12311ˆ42X aX X μ=++ 是参数μ的无偏估计,则a = ( B ).A. 1B.14 C. 12 D. 13二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

统计学原理_期中考试试卷

统计学原理_期中考试试卷

08-09统计学原理期中考试试卷班级__________ 学号__________ 姓名__________ 成绩_______一、判断题(每题2分,共20分)1、在全国工业普查中,全国企业数是统计总体,每个工业企业是总体单位。

()2、数量指标是由数量标志汇总来的,质量指标是由品质标志汇总来的。

()3、在统计调查中,调查标志的承担者是调查单位。

()4、我国人口普查的总体单位和调查单位都是同一人,而填报单位是户。

()5、从全部总体单位中按照随机原则抽取部分单位组成样本,只可能组成一个样本。

()6、在一个总体中,算术平均数、众数、中位数可能相等。

()7、对我国主要粮食作物产区进行调查,以掌握全国主要粮食作物生长的基本情况,这种调查是典型调查。

()8、计算结构相对指标时,总体各部分数值与总体数值对比求得的比重之和一定为100%。

()9、标志变异指标数值越大,说明总体中各单位标志值的变异程度就越大,则平均指标的代表性就越小。

()10、相对指标可以反映总体规模的大小。

()二、单项选择题(每题2分,共12分)1、某班学生的平均年龄为22岁,这里的22岁为( )。

A.指标值B.标志值C.变量值D.数量标志值2、统计分组的关键是( )。

A.确定组数和组距B.抓住事物本质C.选择分组标志和划分各组界限D.统计表的形式设计3、构成总体的个别事物称为()。

A.调查总体 B.标志值C.品质标志 D.总体单位4、某地区农民家庭年人均纯收入最高为2600 元,最低为1000 元,据此分为八组形成闭口式等距数列,各组的组距为()。

A.300 B.200C.1600 D.1005、下列指标中属于结构相对数的指标是()。

A.计划完成程度B.劳动生产率C.人口密度D.食品消费支出占全部消费支出的比重6、权数对算术平均数的影响作用,实质上取决于()。

A、作为权数的各组单位数占总体单位数比重的大小B、各组标志值占总体标志总量比重的大小C、标志值本身的大小D、标志值数量的多少三、多项选择题(每题2分,共8分)1、抽样调查()A.是一种非全面调查B.其目的是根据抽样结果推断总体数量特征C.它具有经济性、时效性、准确性和灵活性等特点D.其调查单位是随机抽取的E.抽样推断的结果往往缺乏可靠性2、要了解某地区全部成年人口的就业情况,那么()。

概率论与数理统计B

概率论与数理统计B

江西财经大学08-09第二学期期末考试试卷试卷代码:03054B 授课课时:64 考试用时:110分钟 课程名称:概率论与数理统计 适用对象:2007级试卷命题人 徐晔 试卷审核人 何明一、填空题(将答案写在答题纸的相应位置,不写解答过程。

每小题3分,共15分)1. 设随机事件B A ,互不相容,且6.0)(,3.0)(==B P A P ,则=)(A B P _______ 。

2. 设二维随机变量),(Y X 的联合分布函数为),(y x F ,概率),(c Y b X a P ≤≤<可以用),(y x F 表示为 。

3. 设随机变量X ,Y 相互独立,X 服从]6,0[区间上的均匀分布,Y 服从二项分布)5.0,10(b 。

令Y X Z 2-=,则EZ = ,DZ = 。

4. 设54321,,,,X X X X X 是来自总体)1,0(~N X 的简单随机样本,统计量()n t X X X X X C ~)(25242321+++,则常数=C ,自由度=n 。

5. 若随机变量21,X X 相互独立,且)2,1(~),3,3(~2221N X N X 。

令212X X X -=,则)1(>X P = 。

1. 742. ),(),(c a F c b F -3.137-4.323 5.5.0二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号写在答题纸的相应位置。

答案选错或未选者,该题不得分。

每小题3分,共15分)1.下述函数中,可以作为某个随机变量的分布函数的是( )。

)(A 211)(xx F += )(B 21arctan 1)(+=x x F π )(C )1(21)(x e x F --= )1)(()()()(==⎰⎰+∞∞-∞-dx x f dx x f x F D x 其中2.设321,,X X X 是来自总体X 的一个样本,则当常数=C ( )时, 3212131ˆCX X X ++=μ 是总体均值μ的无偏估计量。

08-09I概率论与数理统计试卷(A)参考答案

08-09I概率论与数理统计试卷(A)参考答案

| | | | | | | |装| | | | |订| | | | | |线| | | | | | | | ||防灾科技学院2008~2009学年 第一学期期末考试概率论与数理统计试卷(A )使用班级07601/ 07602/07103 答题时间120分钟一填空题(每题2分,共20分)1、已知事件A ,B 有概率4.0)(=A P ,条件概率3.0)|(=A B P ,则=⋂)(B A P 0.28 ;2、设),(~1p n b X ,),(~2p n b Y 则~Y X +),(21p n n b +;3、若)2(~πX ,则=)(2X E 6 ;4、随机变量X 的分布函数是⎪⎪⎩⎪⎪⎨⎧≤<≤<≤--<=x x x x x F 3,131,8.011,6.01,0)(,则=≤<-)31(X P0.4 ;5、连续型随机变量的概率密度函数为)0(0,)(>⎩⎨⎧≤>=-λλλx x ex f x,则分布函数为⎩⎨⎧≤>-=-000,1)(x x e x F x λ;6、若)1,0(~),1,0(~N Y N X 且X 与Y 相互独立,则~2/)(22Y X X +)2(t ;7、若随机变量X ,1)(,2)(==X D X E ,则利用切比雪夫不等式估计概率()≥<-32X P 98;8、若总体),(~2σμN X ,则样本方差的期望=)(2S E 2σ;9、设随机变量)2,1(~-U X ,令⎩⎨⎧<≥=.0,0,0,1X X Y ,则Y10、已知灯泡寿命)100,(~2μN X ,今抽取25只灯泡进行寿命测试,得样本1200=x 小时,则μ的置信度为95%的置信区间是 (1160.8,1239.2) (96.1025.0=z )。

二、单项选择题(本大题共5小题,每题2分,共10分)1、若6.0)(,4.0)(,5.0)(===B A P B P A P ,则=)(A B P ( C )(A) 0.2 ; (B) 0.45; (C) 0.6; (D) 0.75;2、设离散型随机变量X 的分布律为k k X P αβ==}{, ,2,1=k 且0>α,则参数=β( C )(A )11-=αβ ;(B )1+=αβ;(C )11+=αβ;(D )不能确定; 3、设随机变量X 和Y 不相关,则下列结论中正确的是( B )(A )X 与Y 独立; (B ))(4)()2(Y D X D Y X D +=-;(C ))(2)()2(Y D X D Y X D +=-; (D ))(4)()2(X D Y D Y X D -=-;4、若)1,0(~N X ,则)2|(|>X P =( A )(A ))]2(1[2Φ-;(B )1)2(2-Φ;(C ))2(2Φ-;(D ))2(21Φ-; 5、下列不是评价估计量三个常用标准的是( D ))(A 无偏性; )(B 有效性; )(C 相合性; )(D 正态性。

自考-概率论与数理统计课件(经管类)

自考-概率论与数理统计课件(经管类)

贝叶斯定理
贝叶斯定理的表述
对于任何事件A和B,有P(B|A)=P(A∩B)/P(A)。
贝叶斯定理的应用
贝叶斯定理在统计推断、决策分析和机器学习等领域 有广泛的应用。
贝叶斯定理的推导
贝叶斯定理可以通过条件概率的定义和全概率公式进 行推导。
02 随机变量及其分布
离散随机变量
定义
离散随机变量是在一定区间内取有限个值的随机变量,通 常用整数或离散值表示。
04 数理统计基础
样本与抽样分布
总体与样本
总体是研究对象的全体,样 本是从总体中抽取的一部分 。
随机抽样
随机抽样是从总体中按照随 机原则抽取一部分个体的方 法。
抽样分布
抽样分布是描述样本统计量 的分布情况。
参数估计
点估计
点估计是利用样本数据对总体参数进行估计的 方法。
区间估计
区间估计是基于点估计,给出总体参数可能存 在的区间范围。
性质
随机变量的函数的概率分布可以 通过对原随机变量的概率分布进 行相应的运算得到。
03 数字特征与特征函数
期望与方差
期望
期望是概率论中用来度量随机变量取值的平均水平的数学工具,常用符号E表示。期望的计算公式为 E(X)=∑XP(X),其中X是随机变量,P(X)是随机变量取各个可能值的概率。
方差
方差是用来度量随机变量取值分散程度的数学工具,常用符号D表示。方差的计算公式为 D(X)=E[(X−E(X))^2],其中E(X)是随机变量的期望值。
市场调查数据分析
调查问卷设计
基于概率论与数理统计原理,设计有 效的调查问卷,确保数据收集的准确
性和代表性。
数据处理与分析
利用统计分析方法对市场调查数据进 行处理和分析,提取有价值的信息,

概率与统计试题08-09(2)A-B

概率与统计试题08-09(2)A-B

试卷 (A 卷)一﹑单项选择题1.设事件B A ,,满足A B ⊂,则下列式子正确的是(A ))()(A P B A P = (B ) )()(A P AB P =(C ) )()(B P A B P = (D ) )()()(A P B P A B P -=-2.某学生做电路实验,成功的概率是10(<<p p ),则在3次重复实验中至少失败1次的概率是(A )3p (B )3)1(p -(C )31p - (D )3)1(p -)1()1(22p p p p -+-+ 3.设Y X ,是任意随机变量,C 为常数,则下列各式中正确的是(A ))()()(Y D X D Y X D +=+ (B )C X D C X D +=+)()( (C ))()()(Y D X D Y X D -=+(D ))()(X D C X D =-4.已知1)(-=X E ,3)(=X D ,则=-)]2(3[2X E (A ) 9 (B ) 6 (C )30 (D )36 5.设随机变量)2(~2χX ,)3(~2χY ,且Y X ,相互独立,则YX 23服从的分布为(A )F (2,2) (B )F (3,2) (C )F (2,3)(D )F (3,3)二﹑填空题1、已知()0.5,()0.8P A P B ==且(|)0.8 P B A =,则=)(B A P .2、设随机变量X 服从),2(2σN 分布,且{}3.042=<<X P ,则{}0<X P = .3、1621,,,X X X 是来自总体),2(~2σN X 的一个样本,∑==161161i iX X ,则~84σ-X .三、计算题已知一批产品90%是合格品,其余是次品。

检查产品时,一个合格品被误认为是次品的概率为03.0,而一个次品被误认为是合格品的概率为06.0,求在检查中一个产品被认为是合格品的概率? 四、计算题某工厂生产的电子管的寿命为X (小时),其概率密度函数为⎪⎩⎪⎨⎧≤>=120,0120,120)(2x x x x f ,假定电子管的寿命不到150小时就不合格,现任取3只电子管,求其中恰好有1只不合格的概率? 五、计算题设随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≥=-其他,0510,0,25),(5y x e y x f x ,(1)求边缘概率密度函数)(),(y f x f Y X . (2)判别Y X ,是否相互独立. 六﹑计算题设10021,,,X X X 相互独立同分布,且100)(=i X E ,100)(=i X D ()100,,2,1 =i ,试用中心极限定理近似计算∑=>1001}10200{i i X P .七、计算题设总体X 的概率密度函数为⎪⎩⎪⎨⎧<<-=其他,01,)1(2)(322θθθx x x f ,其中θ是未知参数.n X X X ,,,21 是取自总体X 的一个容量为n 的简单随机样本,用矩估计法求θ的估计量. 八、计算题随机从一批灯泡中抽查16个灯泡,测得其使用时数的平均值为x =1500(小时), 样本方差2220=s (小时2), 设灯泡使用时数服从正态分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

附:参考数据:0(1)0.8413Φ=; 0(1.282)0.9000Φ=; 0.025 1.96u =; 0.05 1.645u =.
一、填空题(每小题3分, 共15分)
1、设A 、B 为两个随机事件,且()0.4P A =,()0.25P B =,()0.25P A B −=,则()
P A B =∩ . 2、已知离散型随机变量X 的分布列为:(1)0.2,(2)0.3P X P X ====,(3)0.5P X ==,则随机变量X 的分布函数为 .
3、掷一颗均匀的骰子600次,那么出现“一点”次数的均值为 .
4、设3{0,0}7P X Y ≥≥=
,4
{0}{0}7
P X P Y ≥=≥=,则{max{,}0}P X Y ≥= . 5、设1234,,,X X X X 是来自正态总体2(0,2)N 的样本,令22
1234()(),Y X X X X =++− 则当C =
时CY ~2
(2)χ.
二、单项选择题( 每小题 3分, 共 15分 ) 1、如果( )成立,则事件A 与B 互为对立. (A )Φ=AB ;(B )A B =Ω∪; (C )AB =Φ且A B =Ω∪; (D )A 与B 互不相容.
2、设每次试验成功的概率为)10(<<p p ,重复进行试验直到第5次才取得第2 次成功的概率为( ).
(A )2
3
4(1)p p −; (B )2
2
3
5(1)C p p −; (C )4
4(1)p p −; (D )2
3
(1)p p −. 3、设二维随机变量()()221
2
1
2
,~,;,;X Y N μμσσρ,则下列结论中错误的是( ).
(A )()2
1
1
~,X N
μσ
;()2
22
~,Y N μσ;
(B )X 与Y 相互独立的充分必要条件是0ρ= (C )()12E X Y μμ+=+ ; (D )()2
2
12D X Y σσ+=+.
4、设随机变量X 与Y 的概率密度分别为:()⎩
⎨⎧=01
x f X
其它10≤≤x ; ()⎩⎨⎧=−0
22y
Y e y f 00≤>y y , 若X 与Y 相互独立,则()XY E =( ).
(A )1; (B )
21; (C )31; (D )4
1. 5、在0H 为原假设,1H 为备择假设的假设检验中,若显著性水平为α,则( ).
(A ){}00P H H α接受成立=; (B ){}11P H H α接受成立=;
(C ){}10P H H α接受成立=; (D ){}01P H H α接受成立=
三、应用题 (本题12分)
某年级有甲、乙、丙三个班级,各班人数分别占年级总人数的14,13,5
12
,已知甲、乙、丙三个班级中集邮人数分别占该班总人数的
12,14,1
5。

试求: (1)从该年级中随机地选取一个人,此人为集邮者的概率;
(2)从该年级中随机地选取一个人,发现此人为集邮者,此人属于乙班的概率.
四、解答题 (本大题共16分,第1小题10分,第2小题6分)
1、设随机变量X 的概率密度为cos ()20A x x f x π⎧
<⎪
=⎨⎪⎩其他,
求:(1)常数A ; (2)X 落在0,4π⎛⎞
⎜⎟⎝⎠
内的概率.
2、设随机变量X 的概率密度为2301()0
x x f x ⎧<<=⎨
⎩其他,求2
1Y X =−的概率密度
五、解答题 (本题9分)
由水文资料估计,某流域年降水量X (单位:cm )~(
)
2
40,160N .(1)问年降水量至少有120cm 概率有多大?(2)问5年中至少有4年年降水量超过120cm 概率有多大?(3)假定出现干旱年概率是0.10,试用年降水量来确定干旱年的标准?
六、解答题 (本题7分)
已知随机变量),(Y X 的分布律为
Y X
1 2 3
1 1/6 1/9 1/18
2 1/3
α β
七、解答题(本题8分)
设二维随机变量(,)X Y 的联合密度函数⎩⎨⎧<<<=他其,
01
0,6),(y x x y x f , 求
(1),X Y 的边缘密度函数; (2)(1)P X Y +≤.
八、解答题:(本大题共18分,第1小题8分,第2小题10分)
1、已知幼儿的身高在正常情况下服从正态分布.现从某一幼儿园5岁至6岁的幼儿中随机地抽查了9人,其高度(以cm 为单位)分别为115,120,131,115,109,115,115,105,110.假设5岁至6岁幼儿身高总体服从标准差7σ=,在置信度为95%的条件下,试求总体均值μ的置信区间.
2、设总体X 的概率密度为1,()0,
f x x
ββ
+⎧⎪=⎨⎪⎩1
1x x >≤,其中未知参数1β>,12,,,n X X X 是来自总体X 的简单样本,求β的矩估计量和最大似然估计量.。

相关文档
最新文档