七年级数学多项式同步测试题9

合集下载

七年级数学上册同步练习2023

七年级数学上册同步练习2023

七年级数学上册同步练习2023七年级数学上册同步练习测试题一、选择题(每小题2分,共30分)1. 下列语句错误的是( ).(A)锐角都小于(B)钝角都大于并且小于(C)直角大于锐角(D) 的角也是锐角2. 下列调查中不是用抽样调查方式收集数据的是( ).(A)为了解你班同学在周末参加社会实践活动的时间,从每个小组中各抽2人作调查(B)全市有4万毕业生参加中考,为作试卷分析,统计了随机抽出的500名考生的数学成绩(C)为检查一批产品的合格率,在每箱产品中抽出1件进行检查(D)为了解全班学生完成作业的情况,班主任检查了全班同学的各科作业3. 下面去括号正确的是( ).(A)a-(b-c)=a-b-c (B)a-(b-c)=a+b-c(C)a-(b-c)=a+b+c (D)a-(b-c)=a-b+c4. 如图,,,点B、O、D在同一直线上,则∠2的度数为( ).(A) (B) (C) (D)5. 如果a、b分别表示两个不相等的数,并且a+b=7,a×b=6,那么a、b所表示的数分别是( ).(A) a=2,b=5(B) a=1,b=6(C) a=2,b=3(D) a=3,b=46. 下列说法正确的个数是( )① 过直线上或直线外一点,都能且只能画这条直线的一条垂线;②过直线l 上一点A和直线l外一点B直线,使它与直线l垂直;③从直线外一点作这条直线的垂线段,叫做这个点到这条直线的距离;④过直线外一点画这条直线的垂线,垂线的长度叫做这点到这条直线的距离.(A)1 (B)2 (C)3 (D)47. 如果A和B都是三次多项式,则A+B一定是( )(A)六次多项式 (B)三次多项式(C)次数不低于三次的多项式(D)次数不高于三次的整式8. 下列语句:①过两点有且只有一条直线;②有公共点且相等的两个角是对顶角;③同旁内角相等,两直线平行;④邻补角的平分线互相垂直.其中正确的个数是( )个.(A)1 (B)2 (C)3 (D)49. 下列说法中:①两条直线相交只有一个交点;②两条直线不是一定有一个公共点;③直线AB与直线BA是两条不同直线;④两条不同直线不能有两个或更多个公共点,其中正确的是( )(A)①② (B)①④ (C)①②④ (D)②③④10. 几个不等于0的有理数相乘,积的符号( ).(A)由因数的个数来决定 (B)由正因数的个数来决定(C)由负因数个数的奇偶数来决定 (D)由负因数的大小来决定11. 下列四个命题中,正确的命题是( ).(A)射线AB与射线BA是同一条射线(B)有公共顶点且相等的两个角是对顶角(C)经过直线外一点有且只有一条直线与这条直线平行(D)两条直线被第三条直线所截,同旁内角互补12. 下列图形中为圆柱体的是( ).(A) (B) (C) (D)13. 下列说法正确的是( ).(A)3.14不是分数 (B)正整数和负整数统称为整数(C)正数和负数统称为有理数 (D)整数和分数统称为有理数14. 画一条线段的垂线,垂足在( ).(A)线段上 (B)线段的端点(C)线段的延长线上 (D)以上都有可能15. 下列说法种正确的是( ).(A)比-3大的负数有3个 (B)比-2大3的数是-5(C)比2小5的数是-3 (D)比-3小2的数是-1人教版七年级数学上册同步练习题知识检测1.若4xm-1-2=0是一元一次方程,则m=______.2.某正方形的边长为8cm,某长方形的宽为4cm,且正方形与长方形面积相等,•则长方形长为______cm.3.已知(2m-3)x2-(2-3m)x=1是关于x的一元一次方程,则m=______.4.下列方程中是一元一次方程的是( )A.3x+2y=5B.y2-6y+5=0C.x-3=D.4x-3=05.已知长方形的长与宽之比为2:1•周长为20cm,•设宽为xcm,得方程:________.6.)利润问题:利润率=.如某产品进价是400元,•标价为600元,销售利润为5%,设该商品x折销售,得方程( )-400=5%×400.7.某班外出军训,若每间房住6人,还有两间没人住,若每间住4人,恰好少了两间宿舍,设房间为x,两个式子分别为(x-2)6人,(x+2)4,得方程_______.8.某农户2023年种植稻谷x亩,2023•年比2023增加10%,2023年比2023年减少5%,三年共种植稻谷120亩,得方程_______.9.一个两位数,十位上数字为a,个位数字比a大2,且十位上数与个位上数和为6,列方程为______.10.某幼儿园买中、小型椅子共50把,中型椅子每把8元,小型椅子每把4•元,•买50把中型、小型椅子共花288元,问中、小型椅子各买了多少把•若设中型椅子买了x把,则可列方程为______.11.中国人民银行宣布,从2023年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%,某人于2023年6月5日存入定期为1年的人民币5000元(到期后银行将扣除5%的利息税).设到期后银行向储户支付现金x元,则所列方程正确的是( )A.x-5000=5000×3.06%B.x+5000×5%=5000×(1+3.06%)C.x+5000×3.06%×5%=5000×(1+3.06%)D.x+5000×3.06%×5%=5000×3.06%12.足球比赛的计分方法为:胜一场得3分,平一场得1分,负一场得0分,一个队共打了14场比赛,负了5场,得19分,设该队共x场,则得方程( ) A.3x+9-x=19 B.2(9-x)+x=19C.x(9-x)=19D.3(9-x)+x=1913.已知方程(m-2)x|m|-1+3=m-5是关于x的一元一次方程,求m的值,•并写出其方程.拓展提高14.小明爸爸把家里的空啤酒瓶让小明去换饮料,现有40个空啤酒瓶,1个空啤酒瓶回收是0.5元,一瓶饮料是2元,4个饮料瓶可换一瓶饮料,问小明可换回多少瓶饮料初一年级上数学单元同步练习题一、选择题:每题5分,共25分1. 下列各组量中,互为相反意义的量是( )A、收入200元与赢利200元B、上升10米与下降7米C、“黑色”与“白色”D、“你比我高3cm”与“我比你重3kg”2.为迎接即将开幕的广州亚运会,亚组委共投入了2 198 000 000元人民币建造各项体育设施,用科学记数法表示该数据是( )A 元B 元C 元D 元3. 下列计算中,错误的是( )。

初中数学七年级多项式专题训练试题(附答案)

初中数学七年级多项式专题训练试题(附答案)

初中数学七年级多项式专题训练试题一、选择题1.多项式4x2y-5xy-3的次数和常数项分别是( ) A .2和1 B .2和-1 C .3和-3 D .3和42.减去-4m+1等于5m2-3m-5的式子是( ) A .5m2 -7m-4 B .5m2 +m-6 C .5m2-6m-5 D .-(5m2+6m-5)3.在代数式2x2+6,-3a ,4x2-3x+2,2π,5x ,x2+31+x ,中,整式有( ) A .3个 B .4个 C .5个D .6个4、下列说法中错误的有( ) 个.A .4个B .3个C .2个D .1个5、已知mx=12 , my=3, 则mx-y 的值为( ) A .4 B .8C .12D .246. 下列代数式:其中整式有( )A .4个B .3个C .2个D .1个7. 如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“X幸运数”,因此4 , 12这两个数都是“幸运数”.介于1到101之间的所有“幸运数“之和为( )A, 576. B .496 C .676 D、7088、A.2个 B.3个 C.4个 D.5个9、下列代数式中, 次数为3的多项式是( )A.4xy B.2x²-y C.5xy² D. x²+2y²10、A.3个 B.4个 C.5个 D.6个11、下列计算正确的是()12、下列说法中错误的个数是()A.3个 B.4个 C.5个 D.6个13、下列计算正确的是()A、2x(1+3x)=2x+6x²B、3a×3a=6aC、1-4m+3m=mD、-a²÷a=a14、15、多项式8xy- 7xy2+6的次数及最高次项的系数分别是()A、2,8B、3, -7C、2, -7D、3, 816、下列说法正确的是()17、下列从左到右的变形,错误的是()18、下列说法正确的是()19、某水田的野草每天都在生长,且每天的面积是前一天的2倍,如果不加以清理,第1天野草的面积是a平方米,则第12天野草的面积是()A、29a米²B、210a米²C、 211a米D、212a米20、下列单项式中,与x2 y是同类项的是()A、-xyB、2x²y²C、3x²yD、5x²y²二、填空题21、多项式它是次三项式,最高次项的系数 . 常数项为。

七年级数学上册《多项式》同步练习题(附答案解析)

七年级数学上册《多项式》同步练习题(附答案解析)

七年级数学上册《多项式》同步练习题(附答案解析)课前练习1. 像ab ,a 2,-m ,12x 这些式子都是数或字母的积,这样的式子叫做_______.单独的一个数或一个字母也是__________.单项式中的数字因数叫做这个单项式的________.一个单项式中,所有字母的指数的和叫做这个单项式的_______.2. 1.3x +5y +2z ,212ab r π-,x 2+2x −18都可以看成几个单项式的和,像这样几个单项式的和,叫做________.其中,每个单项式叫做多项式的________,不含字母的项叫做________.多项式里,次数最高项的次数,叫做这个多项式的_______.例如:x 2+2x −18的项分别为________,常数项是_________,最高次项的次数是_______,因此x 2+2x −18是___次___项式.3. 单项式和多项式统称为__________.4. 多项式xy 2-9xy +5x 2y -25的二次项系数是_____________.5. 多项式4x 2y ﹣5x 3y 2+7xy 3﹣ 67 的次数是________,最高次项是________,常数项是________.6. 一个关于字母x 的二次三项式的二次项系数为4,一次项系数为1,常数项为7,则这个二次三项式为___.7. 多项式(x +3)a y b +12ab 2−5是关于a 、b 的四次三项式,且最高次项的系数为-2,则x =______,y = ___.课前练习参考答案1. ①. 单项式 ②. 单项式 ③. 系数 ④. 次数2. ①. 多项式 ②. 项 ③. 常数项 ④. 次数 ⑤. 2x ,2x ,-18, ⑥. -18,2 ⑦. 2x ⑧. 二 ⑨. 三3.整式【解析】根据整式的定义即可解答.【详解】单项式和多项式统称为整式.故答案是:整式.【点睛】本题考查了整式的定义,理解定义是关键.4. -95. ①. 5 ②. ﹣5x 3y 2③. ﹣676. 4x 2+x +77. ①. -5 ②. 3课堂练习1.下列整式中,单项式是________________;多项式是 ________________.a,25x −by 3,−13x 2y,2πr,x 2+xy +y 2,2x −1. 2.在代数式12x ﹣y ,5a ,x 2﹣y +23,1π,xyz ,−5y ,x+y+z 3中,有( )A .5个整式B .4个单项式,3个多项式C .6个整式,4个单项式D .6个整式,单项式与多项式的个数相同 3.在整式:3x −2y ,−8b 9,b−3y 36,0.2,5mn −n −7,6+a 2−b 中,有_____个单项式,_____个多项式,多项式分别是_______.4.−2xy 23+3xy −4是_______次_______项式.5.下列说法正确的是( )A .−3xy 5系数是-3B .x 2+x-1的常数项为1C .22ab 3的次数是6次D .2x-5x 2+7是二次三项式 6.多项式3232486xy x y x y y ----是____次_____项式,最高次项是______,常数项是_______.7.把多项式7x -12x 2+9按字母x 做降幂排列为___.8.把多项式442239235x y xy x y -+-按y 的降幂排列:______9.已知多项式x 2−3xy 2−4的次数是a ,二次项系数是b ,那么a +b 的值为( )A .4B .3C .2D .110.若A 是一个五次多项式,B 也是一个五次多项式,则A +B 一定是( )A .五次多项式B .不高于五次的整式C .不高于五次的多项式D .十次多项式11.四次三项式2x +5x 2yz -3y 2中,二次项的系数为______.12.多项式−2x −3x 3+4x 2+1,按x 的升幂排列为__________________.13.指出下列代数式中的单项式、多项式和整式.2πx 2, 1x , ﹣5,a ,π2, 0,n+m 2, 1﹣1a , 3ab ﹣2a ﹣1.课堂练习参考答案1.a,−13x 2y,2πr ; 25x −by 3,x 2+xy +y 2,2x −1【解析】单项式的定义:表示数或字母的积的式子叫做单项式.多项式的定义:若干个单项式的和组成的式子叫做多项式,再结合题目即可得出答案.【详解】根据单项式与多项式的定义可知:单项式有:a,−13x 2y,2πr ,多项式有:25x −by 3,x 2+xy +y 2,2x −1,故填a,−13x 2y,2πr ;25x −by 3,x 2+xy +y 2,2x −1.【点睛】本题考查多项式和单项式的定义,解题的关键是熟悉多项式和单项式的定义.2.D【分析】根据整式、单项式、多项式的概念即可判断.【详解】解:12x ﹣y ,5a ,x 2﹣y +23,1π,xyz ,x+y+z 3是整式, 其中式12x ﹣y ,x 2﹣y +23,x+y+z 3是多项式, 5a ,1π,xyz 是单项式,故选:D .【点睛】本题主要考查整式的概念及单项式与多项式,熟练掌握整式及单项式、多项式的概念是解题的关键.3.2 4 3x −2y 、b−3y 36、5mn −n −7、6+a 2−b【分析】根据单项式与多项式的概念即可求出答案.【详解】解:单项式有2个:−8b 9,0.2,,多项式有4个:3x −2y ,b−3y 36,5mn −n −76+a 2−b【点睛】本题考查单项式与多项式的概念,解题的关键是正确理解单项式与多项式之间的联系,本题属于基础题型.4.三三【分析】直接利用多项式的次数与项数确定方法分析得出答案.【详解】解:−2xy23+3xy−4是三次三项式,故答案为:三,三.【点睛】此题主要考查了多项式,正确把握多项式的次数与项数确定方法是解题关键.5.D【分析】根据单项式和多项式的相关概念逐一求解即可得到答案.【详解】解:A.−3xy5的系数是−35,故本选项错误;B.x2+x−1的常数项是−1,故本选项错误;C.22ab3的次数是4次,故本选项错误;D.2x−5x2+7的次数是二次三项式,故本选项正确.故选:D【点睛】本题考查了单项式、多项式的相关基本概念等知识点,熟练掌握相关知识是解题的关键.6.五五 -x3y2 -6【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【详解】解:多项式xy3-8x2y-x3y2-y4-6是五次五项式,最高次项是:-x3y2,常数项是-6.故答案为:五,五,-x3y2,-6.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.7.−12x2+7x+9【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列.【详解】解:多项式7x-12x2+9的项为7x,-12 x2,9,按字母x降幂排列为−12x2+7x+9,故答案为:−12x2+7x+9.【点睛】本题考查了多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.8.423242539y x y xy x --++【分析】多项式的项的概念和降幂排列的概念,可知多项式的项为:9x 4,−2y 4,+3xy 2,−5x 2y 3将各项按y 的指数由大到小排列为−2y 4,−5x 2y 3,+3xy 2,9x 4.【详解】解:把多项式442239235x y xy x y -+-,按y 的指数降幂排列后为423242539y x y xy x --++. 故答案是423242539y x y xy x --++.【点睛】本题考查了多项式的项的概念和降幂排列的概念.(1)多项式中的每个单项式叫做多项式的项;(2)一个多项式的各项按照某个字母指数从大到小或者从小到大的顺序排列,叫做降幂或升幂排列.在解题时要注意灵活运用.9.A【分析】根据多项式的有关定义得到a 、b 的值,然后计算它们的和即可.【详解】解:根据题意得a=3,b=1,所以a+b=3+1=4.故选:A .【点睛】本题考查了多项式:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.10.B【解析】几个多项式相加后所得的多项式可能增加项数,但不会增加次数.【详解】A 是五次多项式,B 也是五次多项式,∵几个多项式相加后所得的多项式可能增加项数,但不会增加次数,故A+B 的次数不高于五次.故选:B .【点睛】本题考查多项式的知识,难度不大,掌握多项式相加的特点是关键.11.-3【分析】先把多项式按降幂排列,找出二次项,再确定系数即可.【详解】解:四次三项式2x +5x 2yz -3y 2中进行降幂排列5x 2yz -3y 2+2x ,二次项为-3y 2,二次项的系数为-3,故答案为:-3.【点睛】本题考查多项式中二次项系数问题,掌握多项式的定义,项,项数,某项系数,常数项的区别与联系是解题关键.12.2312+43x x x--【分析】按照x的指数从小到大的顺序把各项重新排列即可.【详解】解:多项式−2x−3x3+4x2+1,按x的升幂排列为231243x x x-+-.故答案为:1-2x+4x2-3x3.【点睛】本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键.13.2πx2是单项式,是整式;1x 是分式;﹣5是单项式,是整式;a是单项式,是整式;π2是单项式,是整式;0是单项式,是整式;n+m2是多项式,是整式;1﹣1a是分式;3ab﹣2a﹣1是多项式,是整式.【分析】根据整式,单项式,多项式的概念进行分类即可.单项式是字母和数的乘积,多项式是若干个单项式的和,单项式和多项式统称为整式.【详解】解:2πx2是单项式,是整式;1x是分式;﹣5是单项式,是整式;a是单项式,是整式;π2是单项式,是整式;0是单项式,是整式;n+m2是多项式,是整式;1﹣1a是分式;3ab﹣2a﹣1是多项式,是整式.【点睛】主要考查了整式的概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.课后练习1.在下列说法中,正确的是()A.多项式ax2+bx+c是二次多项式B.四次多项式是指多项式中各项均为四次单项式C.−ab2,−x都是单项式,也都是整式D.−4a2b,3 ab,5是多项式2435a b ab-+-中的项2.多项式x2﹣3xy2﹣4的次数和常数项分别是()A.2和4 B.2和﹣4 C.3和4 D.3和﹣43.已知x m−1+3x−1是关于x的三次三项式,那么m的值为()A.3 B.4 C.5 D.64.将多项式6a2b+3b3−2ab2−a3按字母b的降幂排列正确的是()A.−a3+3b3−2ab2+6a2b B.3b3−2ab2+6a2b−a3C.3b3−a3+6a2b−2ab2D.−a3+6a2b−2ab2+3b35.在式子:2a , a3, 1x+y, −12, 1−x−5xy2,−x,6xy+1,a2−b2中,其中多项式有____个.6.多项式2x3−x2y2−3xy+x−1是______次______项式,常数项是______.7.若多项式25x3m y+1是四次多项式,m=______.8.若已知3a2−2ab3−7a n−1b2与−32π2x3y5的次数相等,则(−1)n+1=_______.9.指出下列各式中,哪些是单项式、哪些是多项式、哪些是整式?填在相应的横线上:①22m n+;②-x;③a+b3;④10;⑤6xy+1;⑥1x;⑦17m2n;⑧2x2-x-5;⑨a7;⑩2x+y单项式:____________________________;多项式:________________________;整式:________________________;10.已知多项式3x3−y3−5x2y−x2+1.(1)求次数为3的项的系数和.(2)当x=−1,y=−2时,求该多项式的值.11.已知整式(a−1)x3−2x−(a+3).(1)若它是关于x的一次式,求a的值并写出常数项;(2)若它是关于x的三次二项式,求a的值并写出最高次项.12.已知关于x,y的多项式x4+(m+2)x n y﹣xy2+3.(1)当m,n为何值时,它是五次四项式?(2)当m,n为何值时,它是四次三项式?课后练习参考答案1.C【分析】直接利用单项式的次数与系数以及多项式的定义、次数与系数分别分析得出答案.【详解】解:A、多项式ax2+bx+c,当a≠0时是二次多项式,故此选项不合题意;B、多项式中次数最高项的次数叫多项式的次数,故此选项不合题意;C、数与字母的积叫单项式,单项式和多项式统称整式,−ab2,−x都是单项式,也都是整式,正确,符合题意;D、−4a2b,3ab,5-是多项式2a b ab-+-中的项,故此选项不合题意.435故选C.【点睛】此题主要考查了多项式以及单项式有关定义,正确把握相关定义是解题关键.2.D【分析】根据多项式的次数和项的定义得出选项即可.【详解】解:多项式x2﹣3xy2﹣4的次数是3,常数项是﹣4,故选:D.【点睛】此题主要考查多项式的次数和项的判定,解题的关键是熟知多项式的次数和项的定义.3.B【分析】式子要想是三次三项式,则x m−1的次数必须为3,可得m的值.【详解】∵x m−1+3x−1是关于x的三次三项式∴x m−1的次数为3,即m-1=3解得:m=4故选:B.【点睛】本题考查多项式的概念,注意,多项式的次数指的是组成多项式的所有单项式中次数最高的那个单项式的次数.4.B【分析】按照字母b的次数由高到低进行排列得到答案.【详解】解:根据题意,6a2b+3b3−2ab2−a3按字母b的降幂排列正确的是3b3−2ab2+6a2b−a3;故选:B.【点睛】本题考查了多项式:几个单项式的和叫多项式.多项式中每个单项式都是多项式的项,这些单项式的最高次数,就是这个多项式的次数.5.3【分析】几个单项式的和为多项式,根据这个定义判定.【详解】2a ,1x y,分母有字母,不是单项式,也不是多项式;a 3,−12,−x,是单项式,不是多项式; 1−x−5xy2,6xy+1,a2−b2都是单项式相加得到,是多项式故答案为:3【点睛】本题考查多项式的概念,在判定中需要注意,当分母中包含字母时,这个式子就既不是单项式也不是多项式了.6.四五 -1【分析】根据多项式的次数、项数判断即可.【详解】解:多项式2x3−x2y2−3xy+x−1最高次项是四次,一共有五项,常数项是-1.故答案为:四,五,-1.【点睛】本题考查了多项式的有关概念,解题关键是熟记多项式的相关概念,注意:每一项都包括它的符号.7.1【分析】由多项式25x3m y+1是四次多项式,可得3m+1=4,解方程可得答案.【详解】解:∵多项式25x3m y+1是四次多项式,∴3m+1=4,∴3m=3,∴m=1.故答案为:1.【点睛】本题考查的是多项式的次数,掌握多项式的次数的概念是解题的关键.8.1【分析】先根据多项式与单项式的次数的定义求出n的值,再代入计算有理数的乘方即可得.【详解】单项式−32π2x3y5的次数为3+5=8,∵3a2−2ab3−7a n−1b2与−32π2x3y5的次数相等,∴n−1+2=8,解得n=7,则(−1)n+1=(−1)7+1=(−1)8=1,故答案为:1.【点睛】本题考查了多项式与单项式的次数、有理数的乘方运算,熟练掌握多项式与单项式的次数的概念是解题关键.9.②④⑦⑨;①③⑤⑧;①②③④⑤⑦⑧⑨.【分析】1x ,2x+y的分母中含有字母,所以它们既不是单项式,也不是多项式,再根据单项式、多项式和整式的概念来分类.【详解】解:单项式有:-x,10,17m2n,a7;多项式有:22m n+,a+b3,6xy+1,2x2-x-5;整式有:22m n+,-x,a+b3,10,6xy+1,17m2n,2x2-x-5,a7.【点睛】本题主要考查了整式的定义,掌握单项式、多项式和整式的概念和关系是解答此题的关键,注意分式与整式的区别在于分母中是否含有字母.10.(1)3;(2)15【分析】(1)先得到次数为3的项,再得到它们的系数,再相加;(2)将x和y值代入计算即可.【详解】解:(1)多项式3x3−y3−5x2y−x2+1中,次数为3的项是3x3,−y3和−5x2y,系数分别是3,-1,-5,∴和为3-1-5=-3;(2)当x=−1,y=−2时,3x3−y3−5x2y−x2+1=15.【点睛】本题考查了多项式的次数和系数,有理数的加法,代数式求值,重点掌握多项式的相关概念是解题的关键.11.(1)1a=,常数项为-4;(2)a=−3,最高次项为−4x3【分析】(1)已知多项式是一次式,则x的最高次数是1,由此可得a-1=0,据此可得a的值,求出常数项−(a+3)的值即可;(2)根据多项式是三次二项式,结合多项式的概念可得到a-1≠0且a+3=0,求解的a的值,再求出(a−1)x3即可解答此题.【详解】解:(1)若它是关于x的一次式,则a−1=0,∴1a=,常数项为−(a+3)=−4;(2)若它是关于x的三次二项式,则a−1≠0,a≠1,a+3=0,∴a=−3,所以最高次项为−4x3.【点睛】本题考查多项式的知识,需要根据多项式次数和项数的定义来解答.12.(1)n=4,m≠﹣2;(2)m=﹣2,n为任意实数【分析】(1)根据多项式是五次四项式可知n+1=5,m+2≠0,从而可求得m、n的取值;(2)根据多项式是四次三项式可知:m+2=0,n为任意实数.【详解】解:(1)∵多项式是五次四项式,∴n+1=5,m+2≠0,∴n=4,m≠﹣2;(2)∵多项式是四次三项式,∴m+2=0,n为任意实数,∴m=﹣2,n为任意实数.【点睛】本题主要考查的是多项式的定义,掌握多项式的定义是解题的关键.第11页共11页。

苏科版七年级数学下册9.3 多项式乘多项式 同步练习(包含答案解析)

苏科版七年级数学下册9.3 多项式乘多项式 同步练习(包含答案解析)

9.3多项式乘多项式一、选择题1.计算的结果为( )A. B. C. D.2.若,则( )A. B.C. D.3.若,则的值是( )A. B. C. D. 14.已知,,那么的值为( )A. B. C. 0 D. 55.设,,则A、B的大小关系为( )A. B. C. D. 无法确定6.下列各式中,计算正确的是( )A. B.C. D.7.若与的乘积中不含x的一次项,则n的值为( )A. B. 2 C. 0 D. 18.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为,宽为的大长方形,则需要A类、B类和C类卡片的张数分别为( )A. 2,3,7B. 3,7,2C. 2,5,3D. 2,5,79.如图,边长为的正方形纸片剪出一个边长为的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则另一边长为( )A. B. C. D.10.若a,b,k均为整数,则满足等式的所有k值有( )个.A. 2B. 3C. 6D. 8二、填空题11.计算:_________________.12.若矩形的面积为,长为,则宽为______.13.已知,则c的值为_____________.14.把化成的形式后为__________.15.已知多项式恰等于两个多项式和的积,则______.16.已知,则代数式的值为______ .17.小青和小红分别计算同一道整式乘法题:,小青由于抄错了一个多项式中a的符号,得到的结果为,小红由于抄错了第二个多项式中的x的系数,得到的结果为,则这道题的正确结果是______.18.若,那么________.三、计算题19.计算:四、解答题20.欢欢与乐乐两人共同计算,欢欢抄错为,得到的结果为;乐乐抄错为,得到的结果为.(1)式子中的a、b的值各是多少?(2)请计算出原题的正确答案.21.某市有一块长为米,宽为米的长方形地块,规划部门计划将阴影部分进行绿化中间修建一座边长是米的正方形雕像.(1)请用含a,b的代数式表示绿化面积S;(2)当,时,求绿化面积.22.如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证恒等式成立.(1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式______;(2)试将等式______补充完整,并用上述拼图的方法说明它的正确性.答案和解析1.【答案】B【解析】【分析】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.了多项式乘多项式,熟练掌握运算法则是解本题的关键.原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式,故选:B.2.【答案】D【解析】解:,而,,,,,.故选D.首先根据多项式的乘法法则展开,然后利用根据对应项的系数相等列式求解即可.此题主要考查了多项式的乘法法则,利用多项式的乘法法则展开多项式,再利用对应项的系数相等就可以解决问题.3.【答案】A【解析】解:,,解得:,,.故选:A.直接利用多项式乘以多项式运算法则计算得出m,n,再代入计算可得答案.此题主要考查了多项式乘以多项式运算,正确掌握运算法则是解题关键.4.【答案】C【解析】【分析】此题考查了整式的混合运算化简求值,涉及的知识有:多项式乘多项式,去括号合并,以及合并同类项法则,熟练掌握法则是解本题的关键.所求式子利用多项式乘多项式法则计算,整理后将与xy的值代入计算即可求出值.【解答】解:当、时,,故选C.5.【答案】A【解析】解:,,,;故选:A.根据多项式乘以多项式的法则,先把A、B进行整理,然后比较即可得出答案.本题主要考查多项式乘以多项式的法则,注意不要漏项,漏字母,有同类项的合并同类项.6.【答案】B【解析】【分析】本题考查了单项式与多项式相乘的法则、平方差公式、完全平方公式、多项式乘以多项式法则;熟记公式和法则是解决问题的关键.根据单项式与多项式相乘的法则得出选项A不正确;根据平方差公式得出选项B正确;根据完全平方公式得出选项C不正确;根据多项式乘以多项式法则得出选项D不正确;即可得出结论.【解答】解:,选项A不正确;B.,选项B正确;C.,选项C不正确;D.,选项D不正确;故选B.7.【答案】A【解析】解:,又与的乘积中不含x的一次项,,;故选:A.根据多项式乘以多项式的法则,可表示为,再根据与的乘积中不含x的一次项,得出,求出n的值即可.本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.8.【答案】A【解析】解:长为,宽为的长方形的面积为:,类卡片的面积为,B类卡片的面积为,C类卡片的面积为ab,需要A类卡片2张,B类卡片3张,C类卡片7张.故选:A.根据长方形的面积长宽,求出长为,宽为的大长方形的面积是多少,判断出需要A类、B类、C类卡片各多少张即可.此题主要考查了多项式乘多项式的运算方法,熟练掌握运算法则是解题的关键.9.【答案】B【解析】【分析】此题主要考查了多项式乘法,正确利用图形面积关系是解题关键.首先求出大正方形面积,进而利用图形总面积不变得出等式求出答案.【解答】解:,拼成的长方形一边长为m,.故另一边长为:.故选:B.10.【答案】C【解析】解:,,,,,b,k均为整数,,,;,,;,,;故k的值共有6个,故选:C.先把等式左边展开,由对应相等得出,;再由a,b,k均为整数,求出k的值即可.本题考查了多项式乘以多项式,是基础知识要熟练掌握.11.【答案】【解析】【分析】此题主要考查多项式乘多项式直接利用平方差公式计算解答即可.【解答】解:,故答案为.12.【答案】a【解析】解:矩形的宽,故答案为:a.根据多项式除以多项式的运算法则计算即可.本题考查的是整式的除法,掌握多项式除以多项式的运算法则、因式分解是解题的关键.13.【答案】【解析】【分析】本题考查了多项式乘多项式,已知等式右边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出c的值即可【解答】解:已知等式整理得:,则,故答案为.14.【答案】【解析】【分析】本题考查了二次函数的三种形式:一般式:b,c是常数,,该形式的优势是能直接根据解析式知道抛物线与y轴的交点坐标是;顶点式:h,k是常数,,其中为顶点坐标,该形式的优势是能直接根据解析式得到抛物线的顶点坐标为,熟练掌握二次函数的一般式是解题的关键,根据二次函数的一般式形式把整理即可.【解答】解:,把化成的形式后为.故答案为.15.【答案】【解析】解:,由题意知,,则,所以,故答案为:.先计算出,根据得出n、a的值,代入计算可得.本题主要考查多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则.16.【答案】【解析】【分析】此题主要考查了多项式乘以多项式以及代数式求值,正确利用整体思想代入是解题关键.直接利用已知得出,再利用多项式乘法去括号进而求出答案.【解答】解:,,.故答案为.17.【答案】【解析】解:根据题意可知小青由于抄错了一个多项式中a的符号,得到的结果为,那么,可得,小红由于抄错了第二个多项式中的x的系数,得到的结果为,可知,即,可得,解关于的方程组,可得,,.故答案为:.根据小青由于抄错了一个多项式中a的符号,得到的结果为,可知,根据等于号的性质可得;再根据小红由于抄错了第二个多项式中的x的系数,得到的结果为,可知常数项是,可知,可得,解关于的方程组即可求a、b的值,进而可求一次项系数.本题考查了多项式乘以多项式的法则、解方程组,解题的关键是理解题目表达的意思.18.【答案】1【解析】【分析】本题考查了多项式的乘法,完全平方公式等有关知识,先用完全平方公式计算出,再确定,、、、的值,得结论.【解答】解:,,,,,.故答案为1.19.【答案】解:原式;原式【解析】原式利用多项式乘以多项式法则计算,去括号合并即可得到结果;原式先利用幂的乘方与积的乘方运算法则计算,再利用单项式乘以多项式法则计算即可得到结果.此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.20.【答案】解:根据题意可知,由于欢欢抄错了第一个多项式中的a的符号,得到的结果为,那么,可得乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为,可知即,可得,解关于的方程组,可得,;正确的式子:【解析】根据由于欢欢抄错了第一个多项式中的a符号,得出的结果为,可知,于是;再根据乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为,可知常数项是,可知,可得到,解关于的方程组即可求出a、b的值;把a、b的值代入原式求出整式乘法的正确结果.本题主要是考查多项式的乘法,正确利用法则是正确解决问题的关键.21.【答案】解:根据题意得:长方形地块的面积,正方形雕像的面积为:,则绿化面积,即用含a,b的代数式表示绿化面积,把,代入,得,即绿化面积为87平方米.【解析】本题考查多项式乘多项式,正确掌握整式乘法法则是解题的关键.根据绿化面积长方形地块的面积正方形雕像的面积,列式计算即可,把,带入所求结果,计算后可得到答案.22.【答案】;;如图所示:恒等式是.故答案为:.【解析】【分析】本题主要考查对多项式乘多项式的理解和掌握,能表示各部分的面积是解此题的关键.根据图形是一个长方形求出长和宽,相乘即可;正方形的面积是2个长方形的面积加上2个正方形的面积,代入求出即可.【解答】解:观察图乙得知:长方形的长为:,宽为,面积为:;故答案为:.见答案.。

2020—2021年苏教版七年级数学下册《多项式的因式分解》同步检测题及答案详解.docx

2020—2021年苏教版七年级数学下册《多项式的因式分解》同步检测题及答案详解.docx

(新课标)苏教版2017-2018学年七年级下册9.5 多项式的因式分解一.选择题1.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2 C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣42.将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+a C.a2+a﹣2 D.(a+2)2﹣2(a+2)+1 3.已知a、b、c 为三正整数,且a、b的最大公因子为12,a、c的最大公因子为18.若a介于50与100之间,则下列叙述何者正确?()A.8是a的因子,8是b的因子B.8是a的因子,8不是b的因子C.8不是a的因子,8是c的因子D.8不是a的因子,8不是c的因子4.把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣45.把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1)B.8a2(a﹣1)C.2a(2a﹣1)2 D.2a(2a+1)26.分解因式a2b﹣b3结果正确的是()A.b(a+b)(a﹣b)B.b(a﹣b)2C.b(a2﹣b2)D.b(a+b)27.多项式77x2﹣13x﹣30可因式分解成(7x+a)(bx+c),其中a、b、c均为整数,求a+b+c之值为何?()A.0 B.10 C.12 D.228.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:州、爱、我、苏、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.苏州游C.爱我苏州D.美我苏州9.设681×2019﹣681×2018=a,2015×2016﹣2013×2018=b,,则a,b,c的大小关系是()A.b<c<a B.a<c<b C.b<a<c D.c<b<a10.多项式2x2﹣xy﹣15y2的一个因式为()A.2x﹣5y B.x﹣3y C.x+3y D.x﹣5y11.下列等式从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.2x2+8x﹣1=2x(x+4)﹣1C.a2﹣3a﹣4=(a+1)(a﹣4) D.12.下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y)B.x2+y2=(x+y)2C.x2+xy=x(x+y)D.x2+6x+9=(x+3)213.下列各式中,不能用完全平方公式分解的个数为()①x2﹣10x+25;②4a2+4a﹣1;③x2﹣2x﹣1;④;⑤.A.1个B.2个C.3个D.4个14.已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,判断△ABC的形状()A.等腰三角形 B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形15.10名运动员参加乒乓球比赛,其中每两名恰好比赛一场,比赛中,没有平局,第一名胜x1局,负y1局;第二名胜x2局,负y2局;…;第十名胜x10局,负y10局,若记M=x12+x22+…+x102,N=y12+y22+…+y102,则()A.M<N B.M>NC.M=N D.M、N的大小关系不确定二.填空题16.分解因式:a3﹣4a2b+4ab2= .17.若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于.18.分解因式:2a(b+c)﹣3(b+c)= .19.分解因式:4x2﹣4xy+y2= .20.分解因式:(m+1)(m﹣9)+8m= .21.分解因式:(2a+b)2﹣(a+2b)2= .22.将m3(x﹣2)+m(2﹣x)分解因式的结果是.三.解答题23.分解因式(1)x3﹣6x2+9x;(2)a2(x﹣y)+4(y﹣x).24.阅读与思考:整式乘法与因式分解是方向相反的变形由(x+p)(x+q)=x2+(p+q)x+pq得,x2+(p+q)x+pq=(x+p)(x+q);利用这个式子可以将某些二次项系数是1的二次三项式分解因式,例如:将式子x2+3x+2分解因式.分析:这个式子的常数项2=1×2,一次项系数3=1+2,所以x2+3x+2=x2+(1+2)x+1×2.解:x2+3x+2=(x+1)(x+2)请仿照上面的方法,解答下列问题(1)分解因式:x2+7x﹣18=启发应用(2)利用因式分解法解方程:x2﹣6x+8=0;(3)填空:若x2+px﹣8可分解为两个一次因式的积,则整数p的所有可能值是.25.“十字相乘法”能把二次三项式分解因式,对于形如ax2+bxy+cy2的关于x,y的二次三项式来说,方法的关键是把x2项系数a分解成两个因数a1,a2的积,即a=a1•a2,把y2项系数c分解成两个因数c1,c2的积,即c=c1•c2,并使a1•c2+a2•c1正好等于xy项的系数b,那么可以直接写成结果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y).例:分解因式:x2﹣2xy﹣8y2.解:如图1,其中1=1×1,﹣8=(﹣4)×2,而﹣2=1×2+1×(﹣4).∴x2﹣2xy﹣8y2=(x﹣4y)(x+2y)而对于形如ax2+bxy+cy2+dx+ey+f的x,y的二元二次式也可以用十字相乘法来分解,如图2,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k);例:分解因式:x2+2xy﹣3y2+3x+y+2解:如图3,其中1=1×1,﹣3=(﹣1)×3,2=1×2;而2=1×3+1×(﹣1),1=(﹣1)×2+3×1,3=1×2+1×1;∴x2+2xy﹣3y2+3x+y+2=(x﹣y+1)(x+3y+2)请同学们通过阅读上述材料,完成下列问题:(1)分解因式:①6x2﹣17xy+12y2=②2x2﹣xy﹣6y2+2x+17y﹣12=③x2﹣xy﹣6y2+2x﹣6y=(2)若关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,求m的值.26.通过对《因式分解》的学习,我们知道可以用拼图来解释一些多项式的因式分解.如图1中1、2、3号卡片各若干张,如果选取1号、2号、3号卡片分别为1张、2张、3张,你能通过拼图2形象说明a2+3ab+2b2=(a+b)(a+2b)的分解结果吗?请在画出图形.27.把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,…如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”.例如:32→32+22=13→12+32=10→12+02=1,70→72+02=49→42+92=97→92+72=130→12+32+02=10→12+02=1,所以32和70都是“快乐数”.(1)写出最小的两位“快乐数”;判断19是不是“快乐数”;请证明任意一个“快乐数”经过若干次运算后都不可能得到4;(2)若一个三位“快乐数”经过两次运算后结果为1,把这个三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,求出这个“快乐数”.28.能被3整除的整数具有一些特殊的性质:(1)定义一种能够被3整除的三位数的“F”运算:把的每一个数位上的数字都立方,再相加,得到一个新数.例如=213时,则:21336(23+13+33=36)243(33+63=243).数字111经过三次“F”运算得,经过四次“F”运算得,经过五次“F”运算得,经过2016次“F”运算得.(2)对于一个整数,如果它的各个数位上的数字和可以被3整除,那么这个数就一定能够被3整除,例如,一个四位数,千位上的数字是a,百位上的数字是b,十位上的数字为c,个为上的数字为d,如果a+b+c+d可以被3整除,那么这个四位数就可以被3整除.你会证明这个结论吗?写出你的论证过程(以这个四位数为例即可).29.生活中我们经常用到密码,例如支付宝支付时.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2可以因式分解为(x﹣1)(x+1)(x+2),当x=29时,x﹣1=28,x+1=30,x+2=31,此时可以得到数字密码283031.(1)根据上述方法,当x=15,y=5时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(2)已知一个直角三角形的周长是24,斜边长为11,其中两条直角边分别为x、y,求出一个由多项式x3y+xy3分解因式后得到的密码(只需一个即可).30.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的.A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.参考答案与试题解析一.选择题1.(2017•静安区一模)下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2 C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣4【分析】各项利用平方差公式及完全平方公式判断即可.【解答】解:A、原式不能分解;B、原式=(x+y)2﹣2=(x+y+)(x+y﹣);C、原式=(x+y)(x﹣y)+4(x+y)=(x+y)(x﹣y+4);D、原式=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2),故选A【点评】此题考查了实数范围内分解因式,熟练掌握因式分解的方法是解本题的关键.2.(2016•潍坊)将下列多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+a C.a2+a﹣2 D.(a+2)2﹣2(a+2)+1 【分析】先把各个多项式分解因式,即可得出结果.【解答】解:∵a2﹣1=(a+1)(a﹣1),a2+a=a(a+1),a2+a﹣2=(a+2)(a﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,∴结果中不含有因式a+1的是选项C;故选:C.【点评】本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.3.(2016•台湾)已知a、b、c 为三正整数,且a、b的最大公因子为12,a、c的最大公因子为18.若a介于50与100之间,则下列叙述何者正确?()A.8是a的因子,8是b的因子B.8是a的因子,8不是b的因子C.8不是a的因子,8是c的因子D.8不是a的因子,8不是c的因子【分析】根据a、b的最大公因子为12,a、c的最大公因子为18,得到a为12与18的公倍数,再由a的范围确定出a的值,进而表示出b,即可作出判断.【解答】解:∵(a,b)=12,(a,c)=18,∴a为12与18的公倍数,又[12,18]=36,且a介于50与100之间,∴a=36×2=72,即8是a的因子,∵(a,b)=12,∴设b=12×m,其中m为正整数,又a=72=12×6,∴m和6互质,即8不是b的因子.故选B【点评】此题考查了公因式,弄清公因式与公倍数的定义是解本题的关键.4.(2016•自贡)把a2﹣4a多项式分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣4【分析】直接提取公因式a即可.【解答】解:a2﹣4a=a(a﹣4),故选:A.【点评】此题主要考查了提公因式法分解因式,关键是掌握找公因式的方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.5.(2016•聊城)把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1)B.8a2(a﹣1)C.2a(2a﹣1)2 D.2a(2a+1)2【分析】首先提取公因式2a,进而利用完全平方公式分解因式即可.【解答】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2.故选:C.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.6.(2016•梅州)分解因式a2b﹣b3结果正确的是()A.b(a+b)(a﹣b)B.b(a﹣b)2C.b(a2﹣b2)D.b(a+b)2【分析】直接提取公因式b,进而利用平方差公式分解因式得出答案.【解答】解:a2b﹣b3=b(a2﹣b2)=b(a+b)(a﹣b).故选:A.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用平方差公式是解题关键.7.(2016•台湾)多项式77x2﹣13x﹣30可因式分解成(7x+a)(bx+c),其中a、b、c均为整数,求a+b+c之值为何?()A.0 B.10 C.12 D.22【分析】首先利用十字交乘法将77x2﹣13x﹣30因式分解,继而求得a,b,c的值.【解答】解:利用十字交乘法将77x2﹣13x﹣30因式分解,可得:77x2﹣13x﹣30=(7x﹣5)(11x+6).∴a=﹣5,b=11,c=6,则a+b+c=(﹣5)+11+6=12.故选C.【点评】此题考查了十字相乘法分解因式的知识.注意ax2+bx+c (a≠0)型的式子的因式分解:这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2).8.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:州、爱、我、苏、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.苏州游C.爱我苏州D.美我苏州【分析】对(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,即可得到结论.【解答】解:∵(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),∵x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,苏,州,∴结果呈现的密码信息可能是“爱我苏州”,故选C.【点评】本题考查了公式法的因式分解运用,熟练掌握因式分解的方法是解本题的关键.9.(2016•厦门)设681×2019﹣681×2018=a,2015×2016﹣2013×2018=b,,则a,b,c的大小关系是()A.b<c<a B.a<c<b C.b<a<c D.c<b<a【分析】根据乘法分配律可求a,将b变形为2015×2016﹣(2015﹣2)×(2016+2),再注意整体思想进行计算,根据提取公因式、平方差公式和算术平方根可求c,再比较大小即可求解.【解答】解:∵a=681×2019﹣681×2018=681×(2019﹣2018)=681×1=681,b=2015×2016﹣2013×2018=2015×2016﹣(2015﹣2)×(2016+2)=2015×2016﹣2015×2016﹣2×2015+2×2016+2×2=﹣4030+4032+4=6,c=====<681,∴b<c<a.故选:A.【点评】本题考查了因式分解的应用,熟记乘法分配律、平方差公式的结构特点是解题的关键.注意整体思想的运用.10.多项式2x2﹣xy﹣15y2的一个因式为()A.2x﹣5y B.x﹣3y C.x+3y D.x﹣5y【分析】直接利用十字相乘法分解因式得出即可.【解答】解:2x2﹣xy﹣15y2=(2x+5y)(x﹣3y).故选:B.【点评】此题主要考查了十字相乘法分解因式,熟练应用十字相乘法分解因式是解题关键.11.下列等式从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.2x2+8x﹣1=2x(x+4)﹣1C.a2﹣3a﹣4=(a+1)(a﹣4) D.【分析】分解因式就是把一个多项式化为几个整式的积的形式.因此,要确定从左到右的变形中是否为分解因式,只需根据定义来确定.【解答】解:A、是单项式乘单项式的逆运算,不符合题意;B、右边结果不是积的形式,不符合题意;C、a2﹣3a﹣4=(a+1)(a﹣4),符合题意;D、右边不是几个整式的积的形式,不符合题意.故选C.【点评】本题考查了因式分解的意义.这类问题的关键在于能否正确应用分解因式的定义来判断;同时还要注意变形是否正确.12.下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y)B.x2+y2=(x+y)2 C.x2+xy=x(x+y)D.x2+6x+9=(x+3)2【分析】分别利用平方差公式以及完全平方公式和提取公因式法分别分解因式进而判断即可.【解答】解:A、x2﹣y2=(x+y)(x﹣y),正确,不合题意;B、x2+y2,无法分解因式,故此选项正确;C、x2+xy=x(x+y),正确,不合题意;D、x2+6x+9=(x+3)2,正确,不合题意;故选:B.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用公式分解因式是解题关键.13.下列各式中,不能用完全平方公式分解的个数为()①x2﹣10x+25;②4a2+4a﹣1;③x2﹣2x﹣1;④;⑤.A.1个B.2个C.3个D.4个【分析】分别利用完全平方公式分解因式得出即可.【解答】解:①x2﹣10x+25=(x﹣5)2,不符合题意;②4a2+4a﹣1不能用完全平方公式分解;③x2﹣2x﹣1不能用完全平方公式分解;④=﹣(m2﹣m+)=﹣(m﹣)2,不符合题意;⑤不能用完全平方公式分解.故选:C.【点评】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.14.已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,判断△ABC的形状()A.等腰三角形 B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【分析】首先把等式的左右两边分解因式,再考虑等式成立的条件,从而判断△ABC的形状.【解答】解:由a2c2﹣b2c2=a4﹣b4,得a4+b2c2﹣a2c2﹣b4=(a4﹣b4)+(b2c2﹣a2c2)=(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=(a2﹣b2)(a2+b2﹣c2)=(a+b)(a﹣b)(a2+b2﹣c2)=0,∵a+b>0,∴a﹣b=0或a2+b2﹣c2=0,即a=b或a2+b2=c2,则△ABC为等腰三角形或直角三角形.故选:D.【点评】本题考查勾股定理的逆定理的应用、分类讨论.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.15.10名运动员参加乒乓球比赛,其中每两名恰好比赛一场,比赛中,没有平局,第一名胜x1局,负y1局;第二名胜x2局,负y2局;…;第十名胜x10局,负y10局,若记M=x12+x22+…+x102,N=y12+y22+…+y102,则()A.M<N B.M>NC.M=N D.M、N的大小关系不确定【分析】根据题意,对M和N作差,然后与零比较大小即可解答本题.【解答】解:由题意可得,x n+y n=9,∴y n=(9﹣x n),∴M﹣N=x12+x22+…+x102﹣(y12+y22+…+y102)=x12+x22+…+x102﹣,=﹣810+18(x1+x2+…+x10),∵10名运动员参加乒乓球比赛,其中每两名恰好比赛一场,比赛中,没有平局,x1+x2+…+x10=45,∴﹣810+18(x1+x2+…+x10)=﹣810+18×45=﹣810+810=0,∴M=N,故选C.【点评】本题考查因式分解的应用,解题的关键是明确题意,找出所求问题需要的条件.二.填空题16.分解因式:a3﹣4a2b+4ab2= a(a﹣2b)2.【分析】首先提公因式a,然后利用完全平方公式即可分解.【解答】解:原式=a(a2﹣4ab+4b2)=a(a﹣2b)2.故答案是:a(a﹣2b)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17.(2016•黔南州)若ab=2,a﹣b=﹣1,则代数式a2b﹣ab2的值等于﹣2 .【分析】首先提取公因式ab,进而将已知代入求出即可.【解答】解:∵ab=2,a﹣b=﹣1,∴a2b﹣ab2=ab(a﹣b)=2×(﹣1)=﹣2.故答案为:﹣2.【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.18.(2016•南京)分解因式:2a(b+c)﹣3(b+c)= (b+c)(2a﹣3).【分析】直接提取公因式b+c即可.【解答】解:原式=(b+c)(2a﹣3),故答案为:(b+c)(2a﹣3).【点评】此题主要考查了提公因式法分解因式,关键是正确找出公因式.19.(2016•赤峰)分解因式:4x2﹣4xy+y2= (2x﹣y)2.【分析】符合完全平方公式的特点:两项平方项,另一项为两底数积的2倍,直接利用完全平方公式分解因式即可.【解答】解:4x2﹣4xy+y2,=(2x)2﹣2×2x•y+y2,=(2x﹣y)2.【点评】本题考查运用完全平方公式分解因式,熟练掌握公式结构特点是解题的关键.20.(2016•荆门)分解因式:(m+1)(m﹣9)+8m= (m+3)(m﹣3).【分析】先利用多项式的乘法运算法则展开,合并同类项后再利用平方差公式分解因式即可.【解答】解:(m+1)(m﹣9)+8m,=m2﹣9m+m﹣9+8m,=m2﹣9,=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).【点评】本题考查了利用公式法分解因式,先利用多项式的乘法运算法则展开整理成一般多项式是解题的关键.21.(2016•威海)分解因式:(2a+b)2﹣(a+2b)2= 3(a+b)(a﹣b).【分析】原式利用平方差公式分解即可.【解答】解:原式=(2a+b+a+2b)(2a+b﹣a﹣2b)=3(a+b)(a﹣b).故答案为:3(a+b)(a﹣b).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.22.(2016•贺州)将m3(x﹣2)+m(2﹣x)分解因式的结果是m(x﹣2)(m﹣1)(m+1).【分析】先提公因式,再利用平方差公式进行因式分解即可.【解答】解:原式=m(x﹣2)(m2﹣1)=m(x﹣2)(m﹣1)(m+1).故答案为:m(x﹣2)(m﹣1)(m+1).【点评】本题考查的是多项式的因式分解,掌握提公因式法和平方差公式是解题的关键.三.解答题23.分解因式(1)x3﹣6x2+9x;(2)a2(x﹣y)+4(y﹣x).【分析】(1)原式提取x,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=x(x2﹣6x+9)=x(x﹣3)2;(2)原式=a2(x﹣y)﹣4(x﹣y)=(x﹣y)(a2﹣4)=(x ﹣y)(a+2)(a﹣2).【点评】此题考查了因式分解﹣分组分解法,以及提公因式法,熟练掌握因式分解的方法是解本题的关键.24.阅读与思考:整式乘法与因式分解是方向相反的变形由(x+p)(x+q)=x2+(p+q)x+pq得,x2+(p+q)x+pq=(x+p)(x+q);利用这个式子可以将某些二次项系数是1的二次三项式分解因式,例如:将式子x2+3x+2分解因式.分析:这个式子的常数项2=1×2,一次项系数3=1+2,所以x2+3x+2=x2+(1+2)x+1×2.解:x2+3x+2=(x+1)(x+2)请仿照上面的方法,解答下列问题(1)分解因式:x2+7x﹣18= (x﹣2)(x+9)启发应用(2)利用因式分解法解方程:x2﹣6x+8=0;(3)填空:若x2+px﹣8可分解为两个一次因式的积,则整数p的所有可能值是7或﹣7或2或﹣2 .【分析】(1)原式利用题中的方法分解即可;(2)方程利用因式分解法求出解即可;(3)找出所求满足题意p的值即可.【解答】解:(1)原式=(x﹣2)(x+9);(2)方程分解得:(x﹣2)(x﹣4)=0,可得x﹣2=0或x﹣4=0,解得:x=2或x=4;(3)﹣8=﹣1×8;﹣8=﹣8×1;﹣8=﹣2×4;﹣8=﹣4×2,则p的可能值为﹣1+8=7;﹣8+1=﹣7;﹣2+4=2;﹣4+2=﹣2.故答案为:(1)(x﹣2)(x+9);(3)7或﹣7或2或﹣2.【点评】此题考查了因式分解﹣十字相乘法,弄清题中的分解因式方法是解本题的关键.25.“十字相乘法”能把二次三项式分解因式,对于形如ax2+bxy+cy2的关于x,y的二次三项式来说,方法的关键是把x2项系数a分解成两个因数a1,a2的积,即a=a1•a2,把y2项系数c分解成两个因数c1,c2的积,即c=c1•c2,并使a1•c2+a2•c1正好等于xy项的系数b,那么可以直接写成结果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y).例:分解因式:x2﹣2xy﹣8y2.解:如图1,其中1=1×1,﹣8=(﹣4)×2,而﹣2=1×2+1×(﹣4).∴x2﹣2xy﹣8y2=(x﹣4y)(x+2y)而对于形如ax2+bxy+cy2+dx+ey+f的x,y的二元二次式也可以用十字相乘法来分解,如图2,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k);例:分解因式:x2+2xy﹣3y2+3x+y+2解:如图3,其中1=1×1,﹣3=(﹣1)×3,2=1×2;而2=1×3+1×(﹣1),1=(﹣1)×2+3×1,3=1×2+1×1;∴x2+2xy﹣3y2+3x+y+2=(x﹣y+1)(x+3y+2)请同学们通过阅读上述材料,完成下列问题:(1)分解因式:①6x2﹣17xy+12y2= (3x﹣4y)(2x﹣3y)②2x2﹣xy﹣6y2+2x+17y﹣12= (x﹣2y+3)(2x+3y﹣4)③x2﹣xy﹣6y2+2x﹣6y= (x﹣3y)(x+2y+2)(2)若关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,求m的值.【分析】(1)①直接用十字相乘法分解因式;②把某个字母看成常数用十字相乘法分解即可;③同②的方法分解;(2)用十字相乘法把能分解的集中情况全部列出求出m值.【解答】解:(1)①6x2﹣17xy+12y2=(3x﹣4y)(2x﹣3y),②2x2﹣xy﹣6y2+2x+17y﹣12=(x﹣2y+3)(2x+3y﹣4),③x2﹣xy﹣6y2+2x﹣6y=(x﹣3y)(x+2y+2),故答案为:①(3x﹣4y)(2x﹣3y),②(x﹣2y+3)(2x+3y ﹣4),③(x﹣3y)(x+2y+2),(2)如图,m=3×9+(﹣8)×(﹣2)=43或m=9×(﹣8)+3×(﹣2)=﹣78.【点评】此题是因式分解﹣十字相乘法,主要考查了二元二次多项式的分解因式的方法,解本题的关键是选好那个字母当做常数对待,再用十字相乘法分解.26.通过对《因式分解》的学习,我们知道可以用拼图来解释一些多项式的因式分解.如图1中1、2、3号卡片各若干张,如果选取1号、2号、3号卡片分别为1张、2张、3张,你能通过拼图2形象说明a2+3ab+2b2=(a+b)(a+2b)的分解结果吗?请在画出图形.【分析】根据题意可知:a2+3ab+2b2=(a+b)(a+2b),可以看作长为a+2b,宽为a+b的长方形面积,由此画出图形.【解答】解:如图所示:∵大长方形的面积=a2+3ab+2b2,大长方形的面积=(a+b)(a+2b),∴a2+3ab+2b2=(a+b)(a+2b).【点评】此题主要考查因式分解的运用,注意利用已知的等式转化为图形解决问题,这是数形结合思想的运用.27.把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,…如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”.例如:32→32+22=13→12+32=10→12+02=1,70→72+02=49→42+92=97→92+72=130→12+32+02=10→12+02=1,所以32和70都是“快乐数”.(1)写出最小的两位“快乐数”;判断19是不是“快乐数”;请证明任意一个“快乐数”经过若干次运算后都不可能得到4;(2)若一个三位“快乐数”经过两次运算后结果为1,把这个三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,求出这个“快乐数”.【分析】(1)根据“快乐数”的定义计算即可;(2)设三位“快乐数”为100a+10b+c,根据“快乐数”的定义计算.【解答】解:(1)∵12+02=1,∴最小的两位“快乐数”10,∵19→12+92=82→82+22=68→62+82=100→12+02+02=1,∴19是快乐数;证明:∵4→37→58=68→89→125→30→9→81→65→61→37,37出现两次,所以后面将重复出现,永远不会出现1,所以任意一个“快乐数”经过若干次运算后都不可能得到4.(2)设三位“快乐数”为100a+10b+c,由题意,经过两次运算后结果为1,所以第一次运算后结果一定是10或者100,则a2+b2+c2=10或100,∵a、b、c为整数,且a≠0,∴当a2+b2+c2=10时,12+32+02=10,①当a=1,b=3或0,c=0或3时,三位“快乐数”为130,103,②当a=2时,无解;③当a=3,b=1或0,c=0或1时,三位“快乐数”为310,301,同理当a2+b2+c2=100时,62+82+02=100,所以三位“快乐数”有680,608,806,860.综上一共有130,103,310,301,680,608,806,860八个,又因为三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,所以只有310和860满足已知条件.【点评】本题考查的是因式分解的定义、“快乐数”的定义,正确理解“快乐数”的定义、掌握分情况讨论思想是解题的关键.28.能被3整除的整数具有一些特殊的性质:(1)定义一种能够被3整除的三位数的“F”运算:把的每一个数位上的数字都立方,再相加,得到一个新数.例如=213时,则:21336(23+13+33=36)243(33+63=243).数字111经过三次“F”运算得351 ,经过四次“F”运算得153 ,经过五次“F”运算得153 ,经过2016次“F”运算得153 .(2)对于一个整数,如果它的各个数位上的数字和可以被3整除,那么这个数就一定能够被3整除,例如,一个四位数,千位上的数字是a,百位上的数字是b,十位上的数字为c,个为上的数字为d,如果a+b+c+d可以被3整除,那么这个四位数就可以被3整除.你会证明这个结论吗?写出你的论证过程(以这个四位数为例即可).【分析】(1)根据“F运算”的定义得到111经过三次“F运算”的结果,经过四次“F运算”的结果,经过五次“F运算”的结果,经过2016次“F运算”的结果即可;(2)首先根据题意可设a+b+c+d=3e,则此四位数1000a+100b+10c+d可表示为999a+99b+9c+a+b+c+d,即3(333a+33b+3c)+3e,所以可得这个四位数就可以被3整除.【解答】(1)解:1113(13+13+13=3)27(33=27)351(23+73=351)153(33+53+13=153)153(13+53+33=153)153(33+53+13=153).故数字111经过三次“F”运算得351,经过四次“F”运算得153,经过五次“F”运算得153,经过2016次“F”运算得153.(2)证明:设a+b+c+d=3e(e为整数),这个四位数可以写为:1000a+100b+10c+d,∴1000a+100b+10c+d=999a+99b+9c+a+b+c+d=3(333a+33b+3c)+3e,∴=333a+33b+3c+e,∵333a+33b+3c+e是整数,∴1000a+100b+10c+d可以被3整除.故答案为:351,153,153,153.【点评】本题考查了规律型:数字的变化类:认真观察、仔细思考,善用联想是解决这类问题的方法.同时考查了数的整除性问题.注意四位数的表示方法与整体思想的应用.29.生活中我们经常用到密码,例如支付宝支付时.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2可以因式分解为(x﹣1)(x+1)(x+2),当x=29时,x﹣1=28,x+1=30,x+2=31,此时可以得到数字密码283031.(1)根据上述方法,当x=15,y=5时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(2)已知一个直角三角形的周长是24,斜边长为11,其中两条直角边分别为x、y,求出一个由多项式x3y+xy3分解因式后得到的密码(只需一个即可).【分析】(1)先分解因式得到x3﹣xy2=x(x﹣y)(x+y),然后利用题中设计密码的方法写出所有可能的密码;(2)利用勾股定理和周长得到x+y=13,x2+y2=121,再利用完全平方公式可计算出xy=24,然后与(1)小题的解决方法一样.【解答】解:(1)x3﹣xy2=x(x﹣y)(x+y),当x=15,y=5时,x﹣y=10,x+y=20,可得数字密码是151020;也可以是152010;101520;102015,201510,201015;(2)由题意得:解得xy=24,而x3y+xy3=xy(x2+y2),所以可得数字密码为24121.【点评】本题考查了因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题;考查了用类比的方法解决问题;(2)小题中计算出xy的值为解决问题的关键.30.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的 C .A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?不彻底.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果(x﹣2)4.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.【分析】(1)根据分解因式的过程直接得出答案;(2)该同学因式分解的结果不彻底,进而再次分解因式得出即可;(3)将(x2﹣2x)看作整体进而分解因式即可.【解答】解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C;(2)该同学因式分解的结果不彻底,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:不彻底,(x﹣2)4。

沪科版七年级下册数学8.2.1单项式与单项式、多项式相乘同步练习(含解析)

沪科版七年级下册数学8.2.1单项式与单项式、多项式相乘同步练习(含解析)

沪科版七年级下册数学8.2整式的乘法(1)单项式与单项式、多项式相乘同步练习一、选择题(本大题共8小题)1. 计算3a·2b的结果是( )A.3abB.6aC.6abD.5ab2. 下列说法正确的是( )A.单项式乘以多项式的积可能是一个多项式,也可能是单项式B.单项式乘以多项式的积仍是一个单项式C.单项式乘以多项式的结果的项数与原多项式的项数相同D.单项式乘以多项式的结果的项数与原多项式的项数不同3. 下列计算中,错误的是( )A.(2xy)3(-2xy)2=32x5y5B.(-2ab2)2(-3a2b)3=-108a8b7C.=x4y3D.=m4n44. 当x=2时,代数式x2(2x)3-x(x+8x4)的值是( )A.4B.-4C.0D.15. 现规定一种运算:a*b=ab+a-b,其中a,b为有理数.求a*(a-b)+(b+a)*b的值.A. a2+a+b2+bB. a2+a+b2-bC. a2+a-b2+bD. -a2+a+b2+b6. 某商场4月份售出某品牌衬衣b件,每件c元,营业额a元.5月份采取促销活动,售出该品牌衬衣3b件,每件打八折,则5月份该品牌衬衣的营业额比4月份增加( )A.1.4a元B.2.4a元C.3.4a元D.4.4a元7. 如图,表示这个图形面积的代数式是( )A.ab+bcB.c(b-d)+d(a-c)C.ad+cb-cdD.ad-cd 8. 设P=a 2(-a+b-c),Q=-a(a 2-ab+ac),则P 与Q 的关系是( ) A.P=Q B.P >Q C.P <Q D.互为相反数 二、填空题(本大题共6小题) 9. (-2x 2)·(x 2-2x-12)=___ ____; 10. 计算:= .11. 若单项式-3a4m -n b 2与13a 3b m +n是同类项,则这两个单项式的积是( )A .-a 3b 2B .a 6b 4C .-a 4b 4D .-a 6b 412. 已知ab 2=-4,则-ab(a 2b 5-ab 3-b)的值是 . 13. 已知-2x3m+1y 2n 与7x n-6y-3-m的积与x 4y 是同类项,则m 2+n 的值是 .14. 设计一个商标图案如图中阴影部分所示,长方形ABCD 中,AB=a,BC=b,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F,则商标图案的面积是 .三、计算题(本大题共4小题)15.先化简,再求值.x(x 2-6x-9)-x(x 2-8x-15)+2x(3-x),其中x=-.16. 如图,一长方形地块用来建造住宅、广场、商厦,求这块地的面积.17.有理数x,y满足条件|2x-3y+1|+(x+3y+5)2=0,求代数式(-2xy)2·(-y2)·6xy2的值.18.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高12a米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长600米,那么这段防洪堤坝的体积是多少立方米参考答案:一、选择题(本大题共8小题)1.C分析:利用单项式乘单项式的乘法法则即可得到。

七年级上册数学2.1.2单项式与多项式课堂同步练习(含答案)

七年级上册数学2.1.2单项式与多项式课堂同步练习(含答案)

七年级数学上册同步练习2.1.2单项式与多项式时间:30分钟一、单选题1.代数式:①2a 3;①πr 2;①21x 12+;①﹣3a 2b ;①a bc +.其中整式的个数是( )A .2B .3C .4D .5 2.单项式﹣2πxy 2的系数和次数分别是( )A .﹣2和4B .2π和3C .2和4D .﹣2π和3 3.整式-0.3x 2y ,0,12x +,-22abc 2,13x 2,−14y ,−13ab 2-12a 2b 中单项式的个数有()A .6个B .5个C .4个D .3个 4.下列各式中不是单项式的是( )A .a +bB .-2aC .0D .π 5.多项式32281x x x -+-与多项式323253x mx x +-+的和不含二次项,则m 为( ) A .2 B .-2 C .4 D .-4 6.下列说法正确的是( )A .m 2+m ﹣1的常数项为1B .单项式32mn 3的次数是6次C .多项式5m n+的次数是1,项数是2D .单项式﹣12πmn 的系数是﹣127.下列判断中错误的是( )A .2a ab --是二次三项式B .3m n-是多项式C .22r π中,系数是2D .2020是单项式8.若(3x 3+M )(2x 2-1)是一个五次多项式,则下列说法中正确的是( ) A .M 是一个三次单项式 B .M 是一个三次多项式C .M 的次数不高于三D .M 不可能是一个常数9.下列说法正确的是( )A .﹣5,a 不是单项式B .﹣2abc的系数是﹣2C .223x y -的系数是﹣13,次数是4 D .x 2y 的系数为0,次数为210.下列各式是5次单项式的是( )A .45xy -B .32xyC .5x yD .32x x +二、填空题11.多项式112m x -﹣3x+7是关于x 的四次三项式,则m 的值是_____. 12.222324x y x y xy -+--的最高次项为_______.13.写出一个系数是﹣1,次数是3的单项式_____________.14.在112,,5,,22x y a x π+--中,是单项式的为_______. 15.在式子2a ,3a ,1+y x ,﹣12,1﹣x ﹣5xy 2,﹣x ,6xy+1,a 2+b 2中,多项式有_____个. 16.单项式317xy -的系数是____________,次数是____________. 17.写出系数为-1,含有字母x y 、的四次单项式___________.18.单项式212xy -的系数和次数的和为__________.三、解答题19.把下列各式式的序号分别填在相应的大括号内: ① 67ab -;① 23n p m -;① 1a +;① 2123xy xy +-;①3m y π;①2221352x y x y +-;①3. 单项式:{ };多项式:{ };20.分别写出下列各项的系数与次数(1)32x ;(2)2x y -;(3)35xy ; (4)23815x y -.21.已知多项式3322351x y x y x ---+.(1)求次数为3的项的系数和.(2)当1x =-,2y =-时,求该多项式的值.22.已知多项式2123536m x y xy x +-+--是六次四项式,且253n m x y -的次数跟它相同. (1)求m 、n 的值;(2)求多项式各项的系数和.23.把下列代数式的序号填入相应的集合括号里.A .3x 2+2y ;B .35x −x 2+1;C .2a b +;D .–23xy ;E .0;F .–x +3y ;G .2xy a . (1)单项式集合{____________________________…}(2)多项式集合{____________________________…}.24.若关于,x y 的多项式23m x nx y x --是一个三次三项式,且最高次项的系数是3-,求m n -的值. 25.一块原长分别为a 、b (1,1a b >>)的长方形,一边增加1,另一边减少1(1)当a b =时,变化后的面积是增加还是减少?(2)当a b >时,有两种方案,第一种方案如图1,第二种方案如图2,请你比较这两种方案,确定哪一种方案变化后的面积比较大.参考答案1.C【解析】①23a ;①πr 2;①12x 2+1;①﹣3a 2b ,都是整式, ①a b c+,分母中含有字母,不是整式,故选:C . 2.D【解析】解:单项式﹣2πxy 2的系数和次数分别是:﹣2π和3.故选:D .3.B【解析】根据单项式的定义:由数字和字母的积组成的代数式叫做单项式判断,有-0.3x 2y ,0,-22abc 2,13x 2,−14y 是单项式,共有5个,故选B. 4.A【解析】解:-2a ,0,π都是单项式,a +b 不是单项式,是多项式,故选A .5.C【解析】解:根据题意得:2x 3-8x 2+x -1+3x 3+2mx 2-5x +3=5x 3+(2m -8)x 2-4x +2, 由结果不含二次项,得到2m -8=0,解得:m =4.故选C .6.C【解析】解:A .m 2+m ﹣1的常数项为﹣1,故本选项错误;B .单项式32mn 3的次数是4次,故本选项错误;C .多项式5m n +的次数是1,项数是2,故本选项正确; D .单项式﹣12πmn 的系数是﹣12π,故本选项错误;故选:C .7.C【解析】解:A 、2a ab --是二次三项式,正确,不合题意;B 、3m n -是多项式,正确,不合题意;C 、22r π中,系数是2π,故此选项错误,符合题意;D 、2020是单项式,正确,不合题意.故选:C .8.C【解析】解:(3x 3+M )(2x 2-1)=6x 5-3x 3+2Mx 2-M ,因为结果是一个五次多项式,所以M 的次数不高于三,故选:C .9.C【解析】A 、﹣5,a 是单项式,故此选项错误;B 、2abc -的系数是12-,故此选项错误; C 、223x y -的系数是13-,次数是4,故此选项正确; D 、x 2y 的系数为1,次数为3,故此选项错误.故选:C .10.A【解析】解:A 、单项式45xy -的次数是1+4=5次,符合题意;B 、单项式32xy 的次数是1+1=2次,不符合题意;C 、单项式5x y 的次数是5+1=6次,不符合题意;D 、32x x +是多项式不是单项式,其次数是3次,不符合题意;故选择:A11.5【解析】解:①多项式112m x -﹣3x+7是关于x 的四次三项式, ①m ﹣1=4,解得m =5,故答案为:5.12.222x y -.【解析】解:222324x y x y xy -+--的最高次项为:222x y -.故答案为:222x y -.13.3a -.【解析】解:系数是-1、次数是3的单项式,如:3a -.故答案为:3a -.14.1,5,2a π- 【解析】解:在112,,5,,22x y a x π+--中, 单项式有:1,5,2a π-, 故答案为:1,5,2a π-. 15.3【解析】根据多项式的定义可知,上述各式中属于多项式的有:1﹣x ﹣5xy 2、6xy+1、a 2﹣b 2,共3个.故答案为3.16.17- 4 【解析】解:单项式317xy -的系数是17-,次数是1+3=4, 故答案为:17-;4. 17.3-x y【解析】解:系数为-1,含有字母x y 、的四次单项式为:3-x y .故答案为:3-x y .18.52【解析】解:单项式212xy -的系数和次数分别是:-12和3, ①单项式212xy -的系数和次数的和为-12+3=52. 故答案为:52. 19.① ① ①,① ① ①【解析】单项式:{ ① ① ① };多项式:{ ① ① ① };20.(1)系数:2,次数:3;(2)系数:-1,次数:3;(3)系数:35,次数:2;(4)系数:815-,次数:5 【解析】解:(1)32x 的系数:2,次数:3;(2)2x y -系数:-1,次数:3;(3)35xy 系数:35,次数:2; (4)23815x y -系数:815-,次数:5. 21.(1)3;(2)15【解析】解:(1)多项式3322351x y x y x ---+中,次数为3的项是33x ,3y -和25x y -,系数分别是3,-1,-5,①和为3-1-5=-3;(2)当1x =-,2y =-时,3322351x y x y x ---+=15.22.(1)3m =,2n =;(2)-13【解析】解:(1)①多项式2123536m x y xy x +-+--是六次四项式,①216m ++=,解得,3m =,5-m=5-3=2,253n m x y -的次数与多项式的次数相同,226n +=,解得,2n =.(2)各项的系数之和为:51(3)(6)13-++-+-=-.23.(1)D ,E (2)B ,C ,F【解析】(1)单项式集合:{D ,E…};(2)多项式集合:{B ,C ,F…}.24.-1【解析】①关于x ,y 的多项式23m x nx y x --是一个三次三项式,且最高次项的系数是3,①m +1=3,﹣n =- 3,解得:m =2,n =3, ①231m n -=-=-.25.(1)减小(2)方案2变化后面积大【解析】解:(1)设原来长方形的面积是S 前,变化后的长方形的面积是S 后, 根据题意得:S 前=ab ,S 后=(a +1)(b −1)=ab +b −a −1, ①S 后−S 前=ab +b −a −1−ab =b −a −1, ①a =b ,①b −a −1=−1<0,①S 后<S 前,①变化后面积减小了.(2)方案1,S 1=(a +1)(b −1)=ab −a +b −1, 方案2,S 2=(a −1)(b +1)=ab +a −b −1, ①S 1−S 2=−2a +2b =−2(a −b ), ①a >b ,①S 1−S 2<0,①方案2变化后面积大.。

七年级数学上册 3.3 整式 3.3.2 多项式跟踪训练(含解析)(新版)华东师大版-(新版)华东师

七年级数学上册 3.3 整式 3.3.2 多项式跟踪训练(含解析)(新版)华东师大版-(新版)华东师

多项式一.选择题(共9小题)1.多项式2a2b﹣a2b﹣ab的项数及次数分别是()A.3,3 B.3,2 C.2,3 D.2,22.如果整式x n﹣2﹣5x+2是关于x的三次三项式,那么n等于()A. 3 B.4 C.5 D.63.多项式1+2xy﹣3xy2的次数及最高次项的系数分别是()A.3,﹣3 B.2,﹣3 C.5,﹣3 D.2,34.多项式y﹣x2y+25的项数、次数分别是()A.3、2 B.3、5 C.3、3 D.2、35.一组按规律排列的多项式:a+b,a2﹣b3,a3+b5,a4﹣b7,…,其中第10个式子是()A.a10+b19B.a10﹣b19C.a10﹣b17D.a10﹣b216.下列叙述中,错误的是()A.﹣2y的系数是﹣2,次数是1 B.单项式ab2的系数是1,次数是2C.2x﹣3是一次二项式 D. 3x2+xy﹣4是二次三项式7.多项式x+xy2+1的次数是()A.0 B.1 C.2 D.38.下列说法中正确的个数是()(1)a和0都是单项式;(2)多项式﹣3a2b+7a2b2﹣2ab+1的次数是3;(3)单项式的系数为﹣2;(4)x2+2xy﹣y2可读作x2,2xy,﹣y2的和.A.1个B.2个C.3个D.4个9.若m,n为自然数,则多项式x m﹣y n﹣4m+n的次数应当是()A.m B.n C.m+n D.m,n中较大的数二.填空题(共7小题)10.多项式xy2﹣9xy+5x2y﹣25的二次项系数是_________ .11.下列各式中,单项式有_________ ;多项式有_________ .①,②﹣m,③,④﹣2,⑤,⑥,⑦2x2y2,⑧2(a2﹣b2),⑨x3y3﹣y2,⑩.12.多项式x2y﹣5x2﹣2x2y2+3x2y2是_________ 次_________ 项式,次数最高的项是_________ .13.如果(m﹣1)x4﹣x n+x﹣1是二次三项式,则m= _________ ,n= _________ .14.若多项式3x m y2+(m+2)x2y﹣1是四次三项式,则m的值为_________ .15.当k= _________ 时,多项式x2﹣3kxy﹣3y2+xy﹣8是不含xy的二次多项式,这时单项式的系数为_________ .16.把多项式2x2﹣3x+x3按x的降幂排列是_________ .三.解答题(共7小题)17.已知关于x、y的多项式mx2+2xy﹣x﹣3x2+2nxy﹣3y合并后不含有二次项,求n m的值.18.如果多项式4x4+4x2﹣与3x n+2+5x的次数相同,求代数式3n﹣4的值.19.化简关于x、y的多项式4xy+ax2+axy+9y﹣a﹣2bx2,发现不含二次项.(1)求常数a、b的值;(2)当y=﹣2时,求多项式的值.20.关于x的多项式(a﹣4)x3﹣x b+x﹣b的次数是2,求当x=﹣2时,这个多项式的值.21.若关于x的多项式﹣2x2+ax+bx2﹣5x﹣1的值与x无关,求a+b的值.22.当m为何值时,(m+2)x y2﹣3xy3是关于x、y的五次二项式.23.若要使多项式mx3+3nxy2+2x﹣xy2+y不含三次项,求m+3n.第三章整式加减多项式参考答案与试题解析一.选择题(共9小题)1.多项式2a2b﹣a2b﹣ab的项数及次数分别是()A.3,3 B.3,2 C.2,3 D.2,2考点:-多项式.分析:-多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.解答:-解:2a2b﹣a2b﹣ab是三次三项式,故次数是3,项数是3.故选:A.点评:-此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.2.如果整式x n﹣2﹣5x+2是关于x的三次三项式,那么n等于()A. 3 B.4 C.5 D.6考点:-多项式.专题:-计算题.分析:-根据题意得到n﹣2=3,即可求出n的值.解答:-解:由题意得:n﹣2=3,解得:n=5.故选:C点评:-此题考查了多项式,熟练掌握多项式次数的定义是解本题的关键.3.多项式1+2xy﹣3xy2的次数及最高次项的系数分别是()A.3,﹣3 B.2,﹣3 C·5,﹣3 D.2,3考点:-多项式.专题:-压轴题.分析:-根据多项式中次数最高的项的次数叫做多项式的次数可得此多项式为3次,最高次项是﹣3xy2,系数是数字因数,故为﹣3.解答:-解:多项式1+2xy﹣3xy2的次数是3,最高次项是﹣3xy2,系数是﹣3;故选:A.点评:-此题主要考查了多项式,关键是掌握多项式次数的计算方法与单项式的区别.4.多项式y﹣x2y+25的项数、次数分别是()A.3、2 B.3、5 C.3、3 D.2、3考点:-多项式.专题:-分类讨论.分析:-多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.解答:-解:多项式y﹣x2y+25的包括y、﹣x2y、25三项,y的次数为1,﹣x2y的次数为3,25是常数项,故多项式y﹣x2y+25是三次三项式.故选C.点评:-此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.5.一组按规律排列的多项式:a+b,a2﹣b3,a3+b5,a4﹣b7,…,其中第10个式子是()A.a10+b19B.a10﹣b19C.a10﹣b17D.a10﹣b21考点:-多项式.专题:-规律型.分析:-把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.解答:-解:多项式的第一项依次是a,a2,a3,a4,…,a n,第二项依次是b,﹣b3,b5,﹣b7,…,(﹣1)n+1b2n﹣1,所以第10个式子即当n=10时,代入到得到a n+(﹣1)n+1b2n﹣1=a10﹣b19.故选B.点评:-本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.6.下列叙述中,错误的是()A.﹣2y的系数是﹣2,次数是1 B.单项式ab2的系数是1,次数是2 C.2x﹣3是一次二项式D.3x2+xy﹣4是二次三项式考点:-多项式.分析:-根据单项式的系数和次数,多项式的项数和次数分别判断即可.解答:-解:A、系数为﹣2,y的指数为1,所以次数是1,所以正确;B、系数是1,但字母的指数和为3,所以次数为3,不正确;C、是一次二项式;D、最高次为2次,且有三项,所以是二次三项式;故选:B.点评:-本题主要考查单项式和多项式的有关概念,掌握单项式的系数和次数、多项式的项数和次数是解题的关键.7.多项式x+xy2+1的次数是()A.0 B.1 C.2 D.3考点:-多项式.分析:-根据多项式次数的定义确定即可,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.解答:-解:多项式x+xy2+1的次数是1+2=3.故选D.点评:-考查了多项式次数的定义,其中在确定单项式次数时,注意是所有字母的指数和,数字的指数不能加上.8.下列说法中正确的个数是()(1)a和0都是单项式;(2)多项式﹣3a2b+7a2b2﹣2ab+1的次数是3;(3)单项式的系数为﹣2;(4)x2+2xy﹣y2可读作x2,2xy,﹣y2的和.A.1个B.2个C.3个D.4个考点:-多项式;单项式.专题:-应用题.分析:-根据单项式、多项式的次数、单项式的系数、多项式的定义分别对4种说法进行判断,从而得到正确结果.解答:-解:(1)根据单项式的定义,可知a和0都是单项式,故说法正确;(2)根据多项式的次数的定义,可知多项式﹣3a2b+7a2b2﹣2ab+1的次数是4,故说法错误;(3)根据单项式的系数的定义,可知单项式的系数为﹣,故说法错误;(4)根据多项式的定义,可知x2+2xy﹣y2可读作x2,2xy,﹣y2的和,故说法正确.故说法正确的共有2个.故选:B.点评:-本题考查了单项式、单项式的系数,多项式、多项式的次数的定义.属于基础题型,比较简单.用到的知识点有:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.单项式中的数字因数叫做单项式的系数.几个单项式的和叫做多项式,其中每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数.9.若m,n为自然数,则多项式x m﹣y n﹣4m+n的次数应当是()A.m B.n C.m+n D.m,n中较大的数考点:-多项式.分析:-由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m,n均为自然数,而4m+n是常数项,所以多项式的次数应该是x,y的次数,由此可以确定选择项.解答:-解:∵多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,而4m+n是常数项,∴多项式x m﹣y n﹣4m+n的次数应该是x,y中指数大的,∴D是正确的.故选D.点评:-此题考查的是对多项式有关定义的理解.二.填空题(共7小题)10.多项式xy2﹣9xy+5x2y﹣25的二次项系数是﹣9 .考点:-多项式.分析:-先找出多项式的二次项,再找出二次项系数即可.解答:-解:多项式xy2﹣9xy+5x2y﹣25的二次项﹣9xy,系数是﹣9.点评:-多项式是由单项式组成的,本题首先要确定是由几个单项式组成,要记住常数项也是一项,单项式前面的符号不能漏掉.11.下列各式中,单项式有①②③④⑦;多项式有⑥⑧⑨.①,②﹣m,③,④﹣2,⑤,⑥,⑦2x2y2,⑧2(a2﹣b2),⑨x3y3﹣y2,⑩.考点:-多项式;单项式.分析:-解决本题关键是搞清单项式、多项式的概念,紧扣概念作出判断.解答:-解:在①,②﹣m,③,④﹣2,⑤,⑥,⑦2x2y2,⑧2(a2﹣b2),⑨x3y3﹣y2,⑩中,单项式有①②③④⑦;多项式有⑥⑧⑨.故答案为:①②③④⑦;⑥⑧⑨.点评:-主要考查了整式的有关概念.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.12.多项式x2y﹣5x2﹣2x2y2+3x2y2是四次三项式,次数最高的项是x2y2.考点:-多项式.分析:-根据多项式的项与次数,可得答案.解答:-解:x2y﹣5x2﹣2x2y2+3x2y2=x2y﹣5x2+x2y2,是四次三项式,最高次项是x2y2,故答案为:四,三,x2y2.点评:-本题考查了多项式,利用了多项式的项与次数,先合并再判断.13.如果(m﹣1)x4﹣x n+x﹣1是二次三项式,则m= 1 ,n= 2 .考点:-多项式.分析:-根据多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,多项式中次数最高的项的次数叫做多项式的次数可得m﹣1=0,n=2,再解即可.解答:-解:由题意得:m﹣1=0,n=2,解得:m=1,n=2,故答案为:1;2.点评:-此题主要考查了多项式,关键是掌握多项式的项数和次数定义.14.若多项式3x m y2+(m+2)x2y﹣1是四次三项式,则m的值为 2 .考点:-多项式.分析:-根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m的值.解答:-解:∵多项式3x m y2+(m+2)x2y﹣1是四次三项式,∴m+2=4,∴m=2.故答案为:2.点评:-本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.15.当k=时,多项式x2﹣3kxy﹣3y2+xy﹣8是不含xy的二次多项式,这时单项式的系数为0 .考点:-多项式;单项式.分析:-利用多项式的定义得出﹣3k+=0,进而得出答案.解答:-解:∵多项式x2﹣3kxy﹣3y2+xy﹣8是不含xy的二次单项式,∴﹣3kxy+xy=0,则﹣3k+=0,解得:k=,故这时单项式的系数为:0.故答案为:,0.点评:-此题主要考查了多项式的定义,得出﹣3k+=0是解题关键.16.把多项式2x2﹣3x+x3按x的降幂排列是x3+2x2﹣3x .考点:-多项式.分析:-按照x的次数从大到小排列即可.解答:-解:按x的降幂排列是x3+2x2﹣3x.点评:-主要考查降幂排列的定义,就是按照x的次数从大到小的顺序排列,操作时注意带着每一项前面的符号.三.解答题(共7小题)17.已知关于x、y的多项式mx2+2xy﹣x﹣3x2+2nxy﹣3y合并后不含有二次项,求n m的值.考点:-多项式.分析:-由于多项式mx2+2xy﹣x﹣3x2+2nxy﹣3y合并后不含有二次项,即二次项系数为0,在合并同类项时,可以得到二次项为0,由此得到故m、n的方程,即m﹣3=0,2n+2=0,解方程即可求出m,n,然后把m、n 的值代入n m,即可求出代数式的值.解答:-解:∵多项式mx2+2xy﹣x﹣3x2+2nxy﹣3y合并后不含有二次项,即二次项系数为0,即m﹣3=0,∴m=3;∴2n+2=0,∴n=﹣1,把m、n的值代入n m中,得原式=﹣1.点评:-考查了多项式,根据在多项式中不含哪一项,则哪一项的系数为0,由此建立方程,解方程即可求得待定系数的值.18.如果多项式4x4+4x2﹣与3x n+2+5x的次数相同,求代数式3n﹣4的值.考点:-多项式.分析:-由单项式的次数为所有字母的指数和,多项式中次数最高的项的次数叫做多项式的次数得出4+2=n+1,求出n的值,再代入计算即可.解答:-解:∵多项式4x4+4x2﹣与3x n+2+5x的次数相同,∴4+2=n+1,∴n=5.则3n﹣4=3×5﹣4=11,即3n﹣4=11.点评:-本题考查了单项式与多项式的次数的定义,牢记定义是解题的关键.19.化简关于x、y的多项式4xy+ax2+axy+9y﹣a﹣2bx2,发现不含二次项.(1)求常数a、b的值;(2)当y=﹣2时,求多项式的值.考点:-多项式.分析:-(1)直接利用多项式的定义进而求出即可;(2)利用(1)中所求,进而求出y=﹣2时得出值.解答:-解:(1)∵关于x、y的多项式4xy+ax2+axy+9y﹣a﹣2bx2,发现不含二次项,∴a=﹣4,a﹣2b=0,故b=﹣2;(2)故4xy+ax2+axy+9y﹣a﹣2bx2=9y+,当y=﹣2时,原式=9y+=﹣18+=﹣.点评:-此题主要考查了多项式的定义,正确把握定义是解题关键.20.关于x的多项式(a﹣4)x3﹣x b+x﹣b的次数是2,求当x=﹣2时,这个多项式的值.考点:-多项式;代数式求值.分析:-根据已知二次多项式得出a﹣4=0,b=2,求出a=4,b=2,代入二次多项式,最后把x=﹣2代入求出即可.解答:-解:∵关于x的多项式(a﹣4)x3﹣x b+x﹣b的次数是2,∴a﹣4=0,b=2,∴a=4,b=2,即多项式为:﹣x2+x﹣2,当x=﹣2时,﹣x2+x﹣2=﹣(﹣2)2﹣2﹣2=﹣8点评:-本题考查了求代数式的值的应用,关键是求出二次多项式.21.若关于x的多项式﹣2x2+ax+bx2﹣5x﹣1的值与x无关,求a+b的值.考点:-多项式.分析:-根据题意得出a﹣5=0,﹣2+b=0进而求出即可.解答:-解:∵关于x的多项式﹣2x2+ax+bx2﹣5x﹣1的值与x无关,∴a﹣5=0,﹣2+b=0解得:a=5,b=2,则a+b=7.点评:-此题主要考查了多项式,正确把握多项式的系数定义是解题关键.22.当m为何值时,(m+2)x y2﹣3xy3是关于x、y的五次二项式.考点:-多项式.分析:-根据多项式的次数是多项式中次数最高的单项式的次数,可得答案.解答:-解:(m+2)x y2﹣3xy3是关于x、y的五次二项式,,解得m=2,m=﹣2(不符合题意的要舍去).点评:-本题考查了多项式,利用了多项式的次数.23.若要使多项式mx3+3nxy2+2x﹣xy2+y不含三次项,求m+3n.考点:-多项式.分析:-根据多项式的定义进而得出m+3n﹣1=0,求出即可.解答:-解:∵多项式mx3+3nxy2+2x﹣xy2+y不含三次项,∴m+3n﹣1=0,∴m+3n=1.点评:-此题主要考查了多项式的定义,利用多项式不含三次项得出三次项系数和为0进而求出是解题关键.。

苏科版七年级数学下册9.2 单项式乘多项式同步练习(包含答案解析)

苏科版七年级数学下册9.2 单项式乘多项式同步练习(包含答案解析)

9.2单项式乘多项式一、选择题1.化简,结果正确的是()A. B. C. D.2.计算:的结果是()A. B.C. D.3.化简的结果为()A. B. C. 9 D.4.计算的结果是()A. B. C. D.5.要使的展开式中不含项,则k的值为()A. B. 0 C. 2 D. 36.一个多项式除以,其商为,则该多项式为()A. B.C. D.7.下列计算中:;;;,错误的个数有()A. 1个B. 2个C. 3个D. 4个8.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式,你认为其中正确的有();;;.A. B. C. D.9.若,则的值为()A. 216B. 246C.D. 17410.若与的值永远相等,则m、n、k分别为()A. 6,3,1B. 3,6,1C. 2,1,3D. 2,3,1二、填空题11.计算:_______________.12.已知,那么______.13.若多项式与单项式的积是,则该多项式为______.14.一个长方体的长、宽、高分别是、、x,则它的表面积为______.15.已知,则的值为______.16.若,则__________,__________.17.一个矩形的面积为,一边长为2ab cm,则它的周长为________cm.18.要使成立,则a和b的值分别为.三、计算题19.计算:;.四、解答题20.先化简,再求值:,其中.21.阅读:已知,求的值.解:.你能用上述方法解决以下问题吗试一试已知,求的值.22.某同学在计算一个多项式乘以时,因抄错运算符号,算成了加上,得到的结果是,那么正确的计算结果是多少?答案和解析1.【答案】B【解析】【分析】此题考查了单项式乘以多项式的知识,牢记法则是解答本题的关键,属于基础题,比较简单.按照单项式乘以多项式的运算法则进行运算即可.【解答】解:故选B.2.【答案】A【解析】【分析】本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:.故选:A.3.【答案】C【解析】解:原式.故选:C.直接利用完全平方公式以及单项式乘以多项式运算法则化简得出答案.此题主要考查了完全平方公式以及单项式乘以多项式运算,正确掌握相关运算法则是解题关键.4.【答案】C【解析】解:原式,故选C.【分析】原式利用单项式乘以多项式法则计算即可得到结果.此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.5.【答案】C【解析】【分析】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.直接利用单项式乘以多项式运算法则求出答案.【解答】解:的展开式中不含项,中不含项,,解得:.故选C.6.【答案】D【解析】【分析】本题考查了多项式除以单项式,弄清被除式、除式、商三者之间的关系是求解的关键.根据被除式商除式列出算式,再利用单项式乘多项式,用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:依题意:所求多项式.故选D.7.【答案】C【解析】【分析】此题考查了单项式乘多项式和完全平方公式,熟练掌握公式及运算法则是解本题的关键.各项计算得到结果,即可作出判断.【解答】解:,故错误;,故错误;,故错误;,故正确,错误的有3个.故选C.8.【答案】D【解析】解:表示该长方形面积的多项式正确;正确;正确;正确.故选:D.根据图中长方形的面积可表示为总长总宽,也可表示成各矩形的面积和,此题主要考查了多项式乘以多项式,关键是正确掌握图形的面积表示方法.9.【答案】B【解析】解:原式,当时,原式,故选:B.将原式变形为,再将代入计算可得.本题主要考查单项式乘多项式,解题的关键是熟练掌握单项式乘多项式的运算法则.10.【答案】A【解析】【分析】本题考查的是单项式乘以多项式有关知识,首先对该式进行相乘,然后再利用等式两边的式子相等进行解答即可.【解答】解:,,,,解得:,,.故选A.11.【答案】【解析】解:故答案为:单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.依此计算即可求解.此题考查了单项式乘多项式,单项式与多项式相乘时,应注意以下几个问题:单项式与多项式相乘实质上是转化为单项式乘以单项式;用单项式去乘多项式中的每一项时,不能漏乘;注意确定积的符号.12.【答案】【解析】解:,,解得.故答案为:.根据单项式与多项式相乘的运算法则进行计算,使结果对应相等,得到关于x的方程,解方程得到答案.本题考查的是单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.13.【答案】【解析】解:多项式与单项式的积是,该多项式为:.故答案为:.直接利用整式的除法运算法则计算得出答案.此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.14.【答案】【解析】解:表面积是,故答案为:.先根据题意列出算式,再求出即可.本题考查了整式的混合运算,能根据题意列出算式是解此题的关键.15.【答案】16【解析】解:,,即,则,故答案为:16.将已知等式去括号、合并可得,整体代入到原式可得答案.本题主要考查代数式的求值,解题的关键是掌握去括号、合并同类项的法则及因式分解的应用、整体代入思想的运用.16.【答案】;.【解析】【分析】这是一道考查单项式乘以多项式的题目,解题关键在于掌握法则,根据对应相等,即可求出M和N.【解答】解:,,,即,,故答案为;.17.【答案】【解析】【分析】此题考查了多项式除以单项式、单项式乘多项式在实际中的应用.求出矩形的另一边长是解题的关键.先根据矩形的面积公式求出另一边的长,再根据矩形的周长长宽列式,通过计算即可得出结果.解:,.故答案为.18.【答案】2,【解析】【分析】【分析】先将等式左边去括号合并同类项,再根据多项式相等的条件即可求出a与b的值.此题考查了整式的混合运算,涉及的知识有:去括号法则,合并同类项法则,以及多项式相等的条件,熟练掌握法则是解本题的关键.【解答】解:因为,所以,,解得,.19.【答案】解:原式;原式.【解析】本题考查了单项式乘以多项式,按照单项式乘以多项式法则进行计算即可;本题考查了幂的乘方与积的乘方、单项式乘以多项式,先算幂的乘方与积的乘方再算单项式乘以多项式即可求得答案.20.【答案】解:原式,,当时,原式.【解析】本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并同类项的法则和方法先根据整式相乘的法则进行计算,然后合并同类项,最后将字母的值代入求出原代数式的值.21.【答案】解:,,,,,.【解析】本题考查了单项式乘多项式,整体代入是解题关键.根据单项式乘多项式,可得一个多项式,根据把已知代入,可得答案.22.【答案】解:这个多项式是,正确的计算结果是:.【解析】用错误结果减去已知多项式,得出原式,再乘以得出正确结果.。

苏科版七年级数学下册 多项式的因式分解填空专题训练(Word版含答案)

苏科版七年级数学下册 多项式的因式分解填空专题训练(Word版含答案)

苏科版七年级数学下册《9-5多项式的因式分解》填空专题训练(附答案)1.分解因式:n2﹣100=.2.若x2+2x﹣5=0,则x3+3x2﹣3x﹣5的值为.3.运用公式“a2﹣b2=(a+b)(a﹣b)”计算:9992﹣1=,99982=.4.已知xy=,x+y=5,则2x3y+4x2y2+2xy3=.5.已知关于x的三次三项式2x3+3x﹣k有一个因式是2x﹣5,则另一个因式为.6.已知x≠y,且满足两个等式x2﹣2y=20212,y2﹣2x=20212,则x2+2xy+y2的值为.7.若a+b﹣2=0,则代数式a2﹣b2+4b的值等于.8.若多项式x2﹣mx+n(m、n是常数)分解因式后,有一个因式是x﹣3,则3m﹣n的值为.9.已知:a2+b2+c2﹣ab﹣ac﹣bc=0,则a、b、c的大小关系为.10.已知m2+2mn=384,3mn+2n2=560,那么2m2+13mn+6n2﹣444的值是.11.已知ab=2,a﹣2b=﹣3,则a3b﹣4a2b2+4ab3的值为.12.若m2=n+2021,n2=m+2021(m≠n),那么代数式m3﹣2mn+n3的值.13.代数式15ax2﹣15a与10x2+20x+10的公因式是.14.分解因式:m3(x﹣2)+m(2﹣x)=.15.分解因式:a2+4+4a﹣b2=.16.因式分解:y(2x﹣y)﹣x2+z2=.17.分解因式:=.18.因式分解:x2﹣2xy+y2﹣2x+2y+1=.19.计算:=20.正方形甲的周长比正方形乙的周长多96cm,它们的面积相差960cm2,则正方形甲的边长为cm,正方形乙的边长为cm.21.若a3+2a2+2a+1=0,则a2021+a2022+a2023=.22.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x+y)=18,(x﹣y)=0,(x2+y2)=162,于是就可以把“180162”作为一个六位数的密码,对于多项式9x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是(写出一个即可).参考答案1.解:n2﹣100=(n﹣10)(n+10),故答案为:(n﹣10)(n+10).2.解:∵x2+2x﹣5=0∴x2+2x=5,x2=5﹣2xx2=5﹣2x等式两边等式乘以x得:x3=5x﹣2x2,将其代入则x3+3x2﹣3x﹣5∴x3+3x2﹣3x﹣5=5x﹣2x2+3x2﹣3x﹣5=x2+2x﹣5=5﹣5=0.故答案为:03.解:9992﹣1=9992﹣12=(999+1)(999﹣1)=1000×998=998000;99982=99982﹣4+4=99982﹣22+4=(9998+2)(9998﹣2)+4=10000×9996+4=99960004.故答案为:998000,99960004.4.解:2x3y+4x2y2+2xy3=2xy(x2+2xy+y2)=2xy(x+y)2,∵xy=,x+y=5,∴原式=﹣25.故答案为﹣25.5.解:设另一个因式为x2+ax+b,则2x3+3x﹣k=(2x﹣5)(x2+ax+b)=2x3+(2a﹣5)x2+(2b﹣5a)x﹣5b,所以,解得:a=2.5,b=,即另一个因式为x2+2.5x+,故答案为:x2+2.5x+.6.解:,①﹣②得x2﹣y2+2x﹣2y=0,(x+y)(x﹣y)+2(x﹣y)=0,(x﹣y)(x+y+2)=0,∴x+y+2=0,即x+y=﹣2,∴x2+2xy+y2=(x+y)2=4.故答案为:4.7.解:∵a+b﹣2=0,∴a+b=2.∴a2﹣b2+4b=(a+b)(a﹣b)+4b=2(a﹣b)+4b=2a﹣2b+4b=2a+2b=2(a+b)=2×2=4.故答案为4.8.解:设另一个因式为x+a,则(x+a)(x﹣3)=x2+(﹣3+a)x﹣3a,∴﹣m=﹣3+a,n=﹣3a,∴m=3﹣a∴3m﹣n=3(3﹣a)﹣(﹣3a)=9﹣3a+3a=9,故答案为:9.9.解:∵a2+b2+c2﹣ab﹣bc﹣ac=0,∴2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=0,a2+b2﹣2ab+b2+c2﹣2bc+a2+c2﹣2ac=0,即(a﹣b)2+(b﹣c)2+(c﹣a)2=0,∴a﹣b=0,b﹣c=0,c﹣a=0,∴a=b=c,故答案为a=b=c10.解:∵2m2+13mn+6n2﹣444=2m2+4mn+9mn+6n2﹣444=2(m2+2mn)+3(3mn+2n2)而m2+2mn=384,3mn+2n2=560,∴2m2+13mn+6n2﹣444=2×384+3×560﹣444故答案为:2004.11.解:∵ab=2,a﹣2b=﹣3,∴a3b﹣4a2b2+4ab3=ab(a2﹣4ab+4b2)=ab(a﹣2b)2=2×(﹣3)2=18.故答案为18.12.解:将两式m2=n+2021,n2=m+2021相减,得m2﹣n2=n﹣m,(m+n)(m﹣n)=n﹣m,(因为m≠n,所以m﹣n≠0), m+n=﹣1,解法一:将m2=n+2021两边乘以m,得m³=mn+2021m①,将n2=m+2021两边乘以n,得n³=mn+2021n②,由①+②得:m³+n³=2mn+2021(m+n),m³+n³﹣2mn=2021(m+n),m³+n³﹣2mn=2021×(﹣1)=﹣2021.故答案为﹣2021.解法二:∵m2=n+2021,n2=m+2021(m≠n),∴m2﹣n=2021,n2﹣m=2021(m≠n),∴m3﹣2mn+n3=m3﹣mn﹣mn+n3=m(m2﹣n)+n(n2﹣m)=2021m+2021n=2021(m+n)=﹣2021,故答案为﹣2021.13.解:∵15ax2﹣15a=15a(x2﹣1)=15a(x+1)(x﹣1), 10x2+20x+10=10(x2+2x+1)=10(x+1)2,∴15ax2﹣15a与10x2+20x+10的公因式是5(x+1),故答案为:5(x+1).14.解:原式=m3(x﹣2)﹣m(x﹣2)=m(x﹣2)(m+1)(m﹣1),故答案为:m(x﹣2)(m+1)(m﹣1)15.解:原式=(a+2)2﹣b2=(a+2+b)(a+2﹣b).故答案为:(a+2+b)(a+2﹣b).16.解:y(2x﹣y)﹣x2+z2,=2xy﹣y2﹣x2+z2,=﹣(x﹣y)2+z2,=(z+x﹣y)(z﹣x+y).17.解:原式=(a2﹣a+)﹣b2=(a﹣)2﹣b2=(a﹣b﹣)(a+b﹣).故答案为:(a﹣b﹣)(a+b﹣).18.解:x2﹣2xy+y2﹣2x+2y+1==(x﹣y)2﹣2(x﹣y)+1=(x﹣y﹣1)2.故答案为:(x﹣y﹣1)2.19.解:原式==123 454 321.20.解:设正方形甲的边长为x,乙的边长为y(x>y)则由①式得x﹣y=24,③由②式得x2﹣y2=(x+y)(x﹣y)=960,即24(x+y)=960,∴x+y=40,④由③④解得x=32,y=8.故答案为32,8.21.解:∵a3+2a2+2a+1=0,∴(a+1)(a2+a+1)=0,∴a+1=0或a2+a+1=0,当a+1=0时,a2021+a2022+a2023=﹣1+1+(﹣1)=﹣1;当a2+a+1=0时,a2021+a2022+a2023=a2021(1+a+a2)=0.故答案为:﹣1或0.22.解:9x3﹣xy2=x(9x2﹣y2)=x(3x+y)(3x﹣y),当x=10,y=10时,密码可以是104020或102040等等都可以,答案不唯一。

七年级数学下册 第9章 9.3 多项式乘多项式同步练习(含解析)(新版)苏科版-(新版)苏科版初中七

七年级数学下册 第9章 9.3 多项式乘多项式同步练习(含解析)(新版)苏科版-(新版)苏科版初中七

第9章多项式乘多项式一、单选题(共5题;共10分)1、(x﹣1)(2x+3)的计算结果是()A、2x2+x﹣3B、2x2﹣x﹣3C、2x2﹣x+3D、x2﹣2x﹣32、若(x﹣3)(x+5)=x2+ax+b,则a+b的值是()A、﹣13B、13C、2D、﹣153、李老师做了个长方形教具,其中一边长为2a+b,另一边长为a﹣b,则该长方形的面积为()A、6a+bB、2a2﹣ab﹣b2C、3aD、10a﹣b4、已知则的值为()A、2B、-2C、0D、35、如果(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A、﹣3B、3C、0D、1二、填空题(共9题;共10分)6、如果要使(x+1)(x2﹣2ax+a2)的乘积中不含x2项,则a=________.7、计算:(a﹣2)(a+3)﹣a•a=________.8、若(x+2)(x﹣n)=x2+mx+8,则mn=________.9、a+b=5,ab=2,则(a﹣2)(3b﹣6)=________.10、已知x+y=5,xy=2,则(x+2)(y+2)=________.11、若多项式5x2+2x﹣2与多项式ax+1的乘积中,不含x2项,则常数a=________.12、计算:(x﹣1)(x+3)=________.13、如果(x+1)(x+m)的积中不含x的一次项,则m的值为________.14、我国南宋时期杰出的数学家杨辉是钱塘人,下面的图表是他在《详解九章算术》中记载的“杨辉三角”.此图揭示了(为非负整数)的展开式的项数及各项系数的有关规律.(1)请仔细观察,填出(a+b)4的展开式中所缺的系数.(a+b)4=a4+4a3b+________a2b2+4ab2+b4(2)此规律还可以解决实际问题:假如今天是星期三,再过7天还是星期三,那么再过天是星期________.三、计算题(共7题;共55分)15、解方程:(2x+5)(x﹣1)=2(x+4)(x﹣3)16、计算:(1)(2x﹣7y)(3x+4y﹣1);(2)(x﹣y)(x2+xy+y2).17、计算:①(x+2)(x﹣4)②(x+2)(x﹣2)18、计算:(1)(a2+3)(a﹣2)﹣a(a2﹣2a﹣2);(2)(2m+n)(2m﹣n)+(m+n)2﹣2(2m2﹣mn).19、已知(x3+mx+n)(x2﹣3x+1)展开后的结果中不含x3和x2项.(1)求m、n的值;(2)求(m+n)(m2﹣mn+n2)的值.20、计算题:(1)(a﹣2b﹣3c)2;(2)(x+2y﹣z)(x﹣2y﹣z)﹣(x+y﹣z)2.21、已知(x+my)(x+ny)=x2+2xy﹣8y2,求m2n+mn2的值.四、解答题(共1题;共10分)22、对于任意有理数,我们规定符号= ,例如:== .(1)求的值;(2)求的值,其中=0.答案解析部分一、单选题=2x2﹣2x+3x﹣3,=2x2+x﹣3.故选:A.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.2、【答案】A 【考点】多项式乘多项式【解析】【解答】解:∵(x﹣3)(x+5) =x2+5x ﹣3x﹣15=x2+2x﹣15,∴a=2,b=﹣15,∴a+b=2﹣15=﹣13.故选:A.【分析】先计算(x﹣3)(x+5),然后将各个项的系数依次对应相等,求出a、b的值,再代入计算即可.3、【答案】B 【考点】多项式乘多项式【解析】【解答】解:根据题意得:(2a+b)(a﹣b)=2a2﹣2ab+ab﹣b2=2a2﹣ab﹣b2.故选B.【分析】两边长相乘,利用多项式乘以多项式法则计算,合并即可得到长方形面积.4、【答案】B 【考点】多项式乘多项式【解析】【解答】 ( 2 −m ) ( 2 −n )=4-2(m+n)+mn=4-2×2-2=-2.故选B.【分析】计算 ( 2 − m ) ( 2 − n ),再将m + n = 2 , m n = − 2 代入求值.5、【答案】A 【考点】多项式乘多项式【解析】【解答】(x+m)(x+3)=x2+(3+m)x+3m,因为乘积不含x项,则3+m=0,则m=-3.故选A.【分析】求出它们的乘积,使含x项的系数为0,即可求出m的值.二、填空题6、【答案】【考点】多项式乘多项式【解析】【解答】解:原式=x3﹣2ax2+a2x+x2﹣2ax+a2=x3+(1﹣2a)x2+a2x+a2,∵乘积中不含x2项,∴1﹣2a=0,解得:a= ,故答案为:.【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.7、【答案】a﹣6 【考点】同底数幂的乘法,多项式乘多项式【解析】【解答】解:(a﹣2)(a+3)﹣a•a =a2+3a﹣2a﹣6﹣a2=a﹣6.故答案为:a﹣6.【分析】根据多项式乘以多项式,即可解答.8、【答案】-24 【考点】多项式乘多项式【解析】【解答】解:∵(x+2)(x﹣n)=x2+mx+8,∴x2﹣nx+2x﹣2n=x2+mx+8,x2+(2﹣n)x﹣2n=x2+mx+8则,解得:故mn=﹣24.故答案为:﹣24.【分析】直接利用多项式乘以多项式运算法则去括号,进而得出关于m,n的等式,即可求出答案.∴(a﹣2)(3b﹣6)=3ab﹣6a﹣6b+12=3ab﹣6(a+b)+12=3×2﹣6×5+12=﹣12.故答案为:﹣12.【分析】直接利用多项式乘以多项式运算法则去括号,进而将已知代入求出答案.10、【答案】16 【考点】多项式乘多项式【解析】【解答】解:当x+y=5,xy=2时,(x+2)(y+2)=xy+2x+2y+4=xy+2(x+y)+4=2+2×5+4=16,故答案为:16.【分析】将原式展开可得xy+2(x+y)+4,代入求值即可.11、【答案】﹣【考点】多项式乘多项式【解析】【解答】解:根据题意得:(5x2+2x﹣2)(ax+1)=5ax3+(5+2a)x2+2x﹣2ax﹣2,由结果不含x2项,得到5+2a=0,解得:a=﹣,故答案为:﹣【分析】根据题意列出算式,计算后根据结果不含二次项确定出a的值即可.12、【答案】x2+2x﹣3 【考点】多项式乘多项式【解析】【解答】解:(x﹣1)(x+3)=x2+3x﹣x﹣3=x2+2x﹣3.故答案为:x2+2x﹣3.【分析】多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.依此计算即可求解.13、【答案】-1 【考点】多项式乘多项式【解析】【解答】解:原式=x2+(1+m)x+m,由于式子中不含x的一次项,则x的一次项系数为零,则:1+m=0解得:m=-1【分析】先将括号去掉,然后将含x的项进行合并.14、【答案】(1)6(2)四【考点】多项式乘多项式【解析】【解答】(1)(a+b)4的系数在第5层,第3个系数刚好是上面相邻两个数的和是3+3=6;故答案为6.(2)∵814=(7+1)14=714+14×713+91×712+…+14×7+1,∴814除以7的余数为1,∴假如今天是星期三,那么再过814天是星期四,故答案为:四.【分析】(1)根据杨辉三角,下一行的系数是上一行相邻两系数的和,然后写出各项的系数即可;(2)运用前面的规律,将814化为(7+1)14.三、计算题15、【答案】解:∵(2x+5)(x﹣1)=2(x+4)(x﹣3),∴2x2+3x﹣5=2x2+2x﹣24,移项合并,得x=﹣19.【考点】多项式乘多项式【解析】【分析】根据多项式乘多项式的法则计算后,可得到一元一次方程,解方程即可求得.16、【答案】(1)解:原式=6x2+8xy﹣2x﹣21xy﹣28y2+7y =6x2﹣2x﹣13xy﹣28y2+7y(2)解:原式=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3【考点】多项式乘多项式【解析】【分析】(1)原式利用多项式乘多项式法则计算,合并即可得到结果;(2)原式利用多项式乘多项式法则计算,合并即可得到结果.17、【答案】解:①(x+2)(x﹣4)=x2﹣2x﹣8;②(x+2)(x﹣2)=x2﹣4.故答案为:①x2﹣2x﹣8;②x2﹣4 【考点】多项式乘多项式【解析】【分析】①原式利用多项式乘以多项式法则计算,合并即可得到结果;②原式利用平方差公式化简即可得到结果.18、【答案】(1)解:原式=a3﹣2a2+3a﹣6﹣a3+2a2+2a =5a﹣6(2)解:原式=4m2﹣n2+m2+2mn+n2﹣4m2+2mn =m2+4mn 【考点】多项式乘多项式【解析】【分析】(1)原式第一项利用多项式乘多项式法则计算,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果;(2)原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并即可得到结果.19、【答案】(1)解:原式=x5﹣3x4+(m+1)x3+(n﹣3m)x2+(m﹣3n)x+n,由展开式不含x3和x2项,得到m+1=0,n﹣3m=0,解得:m=﹣1,n=﹣3;(2)解:当m=﹣1,n=﹣3时,原式=m3﹣m2n+mn2+m2n﹣mn2+n3=m3+n3=﹣1﹣27=﹣28.【考点】多项式乘多项式【解析】【分析】(1)原式利用多项式乘以多项式法则计算,根据结果中不含x3和x2项,求出m与n的值即可;(2)原式利用多项式乘以多项式法则计算,将m与n的值代入计算即可求出值.20、【答案】(1)解:原式=(a﹣2b)2﹣2×(a﹣2b)×3c+9c2=a2+4b2﹣4ab﹣6ac+12bc+9c2=a2+4b2+9c2﹣4ab﹣6ac+12bc(2)解:原式=[(x﹣z)+2y][(x﹣z)﹣2y]﹣[(x﹣z)+y]2=(x﹣z)2﹣4y2﹣(x﹣z)2﹣2(x﹣z)y﹣y2=﹣5y2﹣2xy+2yz 【考点】多项式乘多项式,完全平方公式【解析】【分析】(1)将a﹣2b看做一个整体=[(a﹣2b)﹣3c]2,运用完全平方差公式,逐步展开去括号计算.(2)首先将(x+2y﹣z)(x﹣2y﹣z)看做[(x﹣z)+2y][(x﹣z)﹣2y]运用平方差公式,再运用完全平方式,对(x+y﹣z)2看做[(x﹣z)+y]2运用完全平方式,两式相减利用有理式的混合运算.21、【答案】解:∵(x+my)(x+ny)=x2+2xy﹣8y2,∴x2+nxy+mxy+mny2=x2+(m+n)xy+mny2=x2+2xy﹣8y2,∴m+n=2,mn=﹣8,∴m2n+mn2=mn(m+n)=﹣8×2=﹣16 【考点】多项式乘多项式【解析】【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn计算,再把m2n+mn2因式分解,即可得出答案.四、解答题22、【答案】(1)解:( - 2 , 3 )⊗( 4 , 5 )=(-2)×5-3×4=-10-12=-22.(2)解:(3 a+ 1 ,a- 2 )⊗( a+ 2 , a- 3 ) =(3a+1)(a-3)-(a-2)(a+2)=3a2-8a-3-a2+4=2a2-8a+1,因为a2- 4 a+ 1 =0,所以a2-4a=-1,则原式=2a2-8a+1=2(a2-4a)+1=2×(-1)+1=-1. 【考点】多项式乘多项式【解析】【分析】(1)根据题中的新定义,得( - 2 , 3 )⊗( 4 , 5 )=(-2)×5-3×4;(2)根据新定义化简(3 a+ 1 , a- 2 )⊗( a+ 2 , a- 3 ),根据a2 - 4 a+ 1 =0,得a2-4a=-1,。

七年级数学单项式与多项式达标测试题1

七年级数学单项式与多项式达标测试题1

数学学科七年级上册单项式与多项式达标测试题1、说出下列单项式的系数和次数①-5 x 3 ② xy3③ -a ④ -13x 22、指出下列多项式每一项的系数和次数, 分别是几次几项式① 3a -2b+1②2x 2-3x+5③2a -ab 3④1-x+ x23、已知多项式-13x 2y+3x 2+2x 2y2-21,回答下列问题:(1)这个多项式有几项?(2)这个多项式的最高次项是哪一项?写出它的次数和系数;(3)这个多项式有常数项吗?如果有,是哪一项?答案:1、①系数-5,次数3; ②系数1,次数4; ③系数-1,次数1; ④系数-13,次数2. 2、①第一项系数3,次数1;第二项系数-2,次数1;第三项系数1,次数0;一次三项式 ②第一项系数2,次数2;第二项系数-3,次数1;第三项系数5,次数0;二次三项式 ③第一项系数2,次数1;第二项系数-1,次数4;四次二项式④第一项系数1,次数0;第二项系数-2,次数1;第三项系数1,次数2;二次三项式 3、(1)有4项; (2)第3项,次数4,系数2; (3)有 ,是第四项-21数学学科七年级上册第六章第一节 6.1单项式与多项式达标测试题B 卷1、 下列代数式中,( )是单项式,( )是多项式,( )是整式。

① -x ② a1③ 2ab ④ 2a+b⑤13⑥ -2a2、指出下列多项式每一项的系数和次数① x 5- x 2y-2y2② 5a 2-21ab+7b2③ 4x 2-7x+5④ -2xy 2+4x 2y+3x23、下列多项式分别是几次几项式①-x 2y -2x 2y ② x 2-xy-2xy2③21a 3-3a 2b+ab 3④ -4m2-3m答案:1、①③⑤⑥是单项式,④是多项式,①③④⑤⑥是整式2、①第一项系数1,次数5;第二项系数-1,次数3;第三项系数-2,次数2; ②第一项系数5,次数2;第二项系数-21,次数2;第三项系数7,次数2; ③第一项系数4,次数2;第二项系数-7,次数1;第三项系数5,次数0; ④第一项系数-2,次数3;第二项系数4,次数2;第三项系数3,次数2; 3、①三次二项式 ②三次三项式 ③四次三项式 ④二次二项式数学学科七年级上册第六章第一节 6.1单项式与多项式达标测试题C 卷1、 下列代数式中,哪些是整式? -3x , 5xy + 21x ,13x 2-7,x1 , x+13.2、 写出下列单项式的系数和次数① -x 2y ② ab③ -0.5x 2y④ -2a3、写出下列多项式是几次几项式?①-21ab-5a2-7b2②-13x2y+3x2+2xy2-21③ 3x2-2xy2+4x2y④ a3-3a2b+ab3答案:1、-3x , 5xy +21x , 13x 2-7, x+ 13是整式 2、①系数-1,次数3 ②系数1,次数 2 ③系数-0.5,次数 3 ④系数-21,次数1 3、① 二次三项式 ② 三次四项式 ③ 三次三项式 ④ 四次三项式。

2019版苏科版七年级数学下册 9.3 多项式乘多项式 同步练习(II)卷

2019版苏科版七年级数学下册 9.3 多项式乘多项式 同步练习(II)卷

2019版苏科版七年级下册 9.3 多项式乘多项式同步练习(II)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 已知m+n=2,mn=-2,则(1-m)(1-n)的值为()A.B.1C.D.52 . 边长分别为、且的大小两个正方形如图所示摆放在一起,其中有一部分重叠,则阴影部分与阴影部分的面积差是()A.B.C.D.3 . 现定义运算“△”,对于任意有理数a,b,都有a△b=a2-ab+b.例如:3△5=32-3×5+5=-1,由此可知(x-1)△(2+x)等于()A.2x-5B.2x-3C.-2x+5D.-2x+34 . 若(-2x+a)(x-1)的展开式中不含x的一次项,则a的值是()A.-2B.2C.-1D.任意数5 . 用代数式表示”x的2倍与Y的差的平方”,正确的是()A.(2x-y)2B.2(x-y)2C.2x-y2D.(x-2y)26 . 要使多项式6x+2y﹣3+2ky+4k不含y的项,则k的值是()A.0B.1C.﹣1D.27 . 如(x+a)与(x+3)的乘积中不含x的一次项,则a的值为()A.3B.﹣3C.1D.﹣18 . 已知,则的值分别是()A.B.C.D.二、填空题9 . 计算:__________.10 . 长、宽分别为、的长方形,它的周长为16,面积为10,则的值为____.11 . 计算:b(2a+5b)+a(3a-2b)= .12 . 若(x+p)与(x+5)的乘积中不含x的一次项,则p=_____.13 . 如图,一个长方形被分成四块:两个小长方形,面积分别为S1,S2,两个小正方形,面积分别为S3,S4,若 2S1-S2 的值与AB 的长度无关,则S3 与S4 之间的关系是______.14 . 任何实数a,可用表示不超过a的最大整数,如,现对72进行如下操作:,这样对72只需进行3次操作后变为1,类似地,①对81只需进行次操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是.15 . 计算(x﹣1)(2x+3)的结果是_____.16 . 现有A、B、C三种型号地砖,其规格如图所示,用这三种地砖铺设一个长为x+y,宽为3x+2y的长方形地面,则需要A种地砖___________块.17 . 如图,某居民小区有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,计划将阴影部分进行绿化,中间将修建一个雕塑,底座是边长为(a+b)米的正方形.绿化的面积是多少平方米_____.18 . (2x-1)(-3x+2)=___________.三、解答题19 . 小明同学在学习多项式乘以多项式时发现:( x+6)(2x+3)(5x﹣4)的结果是一个多项式,并且最高次项为:x•2x•5x=5x3,常数项为:6×3×(﹣4)=﹣72,那么一次项是多少呢?要解决这个问题,就是要确定该一次项的系数.根据尝试和总结他发现:一次项系数就是:×3×(﹣4)+2×(﹣4)×6+5×6×3=36,即一次项为36x.认真领会小明同学解决问题的思路,方法,仔细分析上面等式的结构特征.结合自己对多项式乘法法则的理解,解决以下问题.(1)计算(x+1)(3x+2)(4x﹣3)所得多项式的一次项系数为.(2)(x+6)(2x+3)(5x﹣4)所得多项式的二次项系数为.(3)若计算(x2+x+1)(x2﹣3x+a)(2x﹣1)所所得多项式的一次项系数为0,则a=.(4)若(x+1)2018=a0x2018+a1x2017+a2x2016+a3x2015…+a2017x++a2018,则a2017=.20 . 对于任何实数,我们规定符号的意义是:=ad-bc.(1)按照这个规定计算的值;(2)按照这个规定计算:当x2-3x+1=0时,的值.21 . 如图,在长方形中,,,,请用关于的多项式表示图中阴影部分的面积.22 . 求下列各式中的值。

(新课标)湘教版七年级数学下册《多项式的因式分解》同步练习题及答案解析一

(新课标)湘教版七年级数学下册《多项式的因式分解》同步练习题及答案解析一

新课标 2017-2018学年湘教版七年级数学下册3.1 多项式的因式分解要点感知1 一般地,对于两个多项式f与g,如果有多项式h使得f=gh,那么我们把g叫做f的一个__________.此时h也是f的一个__________.要点感知2 一般地,把一个多项式表示成若干个多项式的__________的形式,称为把这个多项式因式分解.预习练习2-1 下列各式由左边到右边的变形中,是因式分解的为( )A.a(x+y)=ax+ayB.x2-4x+4=x(x-4)+4C.10x2-5x=5x(2x-1)D.x2-16+3x=(x+4)(x-4)+3x知识点1 因式分解1.下列等式从左到右的变形,属于因式分解的是( )A.a(x-y)=ax-ayB.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3D.x3-x=x(x+1)(x-1)2.下列因式分解正确的是( )A.x2-y2= (x-y) 2B.a2+a+1=(a+1)2C.xy-x=x(y-1) D.2x+y= 2(x+y)3.检验下列因式分解是否正确.(1)x2-2x=x(x-2);(2)x2-1=(x+1)(x-1);(3)x2-xy-2y2=(x+y)(x-2y);(4)a2-2ab+4b2=(a-2b)2.4.判断下列各式哪些是整式乘法?哪些是因式分解?(1)x2-4y2=(x+2y)(x-2y);(2)a(a-2b)=a2-2ab;(3)(a-1)2=a2-2a+1;(4)a2-6a+9=(a-3)2.知识点2 因式分解与整式乘法的关系5.(3x-y)(3x+y)是下列哪一个多项式因式分解的结果( )A.9x2+y2B.-9x2+y2C.9x2-y2D.-9x2-y26.把x2+x+m因式分解得(x-1)(x+2),则m的值为( )A.2B.3C.-2D.-37.在(x+y)(x-y)=x2-y2中,从左向右的变形是,从右向左的变形是__________.8.已知(x-2)(x-1)=x2-3x+2,则x2-3x+2因式分解为__________.9.如果多项式2x+B可以分解为2(x+2),那么B=__________.10.把多项式x2+mx+5因式分解得(x+5)(x+n),则m=__________,n=__________.11.已知多项式x2+3x+2因式分解的结果是(x+a)(x+b),请你确定a+b与ab的值.知识点3 最大公因数12.36和54的最大公因数是( )A.3B.6C.18D.3613.把60写成若干个素数的积的形式为__________.14.下列各式从左到右的变形中,是因式分解的个数是( )①x2-4=x(x-4x );②a2-1+b2=(a-1)(a+1)+b2;③12a2b-12ab2=12ab(a-b);④(x-2)2=x2-4x+4;⑤x2-1=(x+1)(x-1).A.1个B.2个C.3个D.4个15.多项式mx+n可分解为m(x-y),则n的值为( )A.mB.myC.-yD.-my16.若N=(x-2y)2,则N为( )A.x2+4xy+4y2B.x2-4y2C.x2-4xy+4y2D.x2-2xy+4y217.我们知道:a(b+c)=ab+ac,反过来则有ab+ac=a(b+c),前一个式子是整式乘法,后一个式子是因式分解.请你根据上述结论计算:2 0142-2 014×2013=__________.18.已知(2x-21)(3x-7)-(3x-7)·(x-13)可因式分解为(3x+a)(x+b),其中a,b均为整数,则a+3b=__________.19.检验下列因式分解是否正确.(1)a3-ab=a(a2-b);(2)x2-x-6=(x-2)(x-3);(3)2a2-3ab-2b2=(2a+b)(a-2b);(4)9m2-6mn+4n2=(3m-2n)2.),小峰和小欣两人产生20.学习了多项式的因式分解后,对于等式x2+1=x(x+1x了激烈的争论,小峰说这种变形不是因式分解,但又说不清理由;小欣说是因式分解,因为右边是乘积的形式.你认为他们是否正确,为什么?21.已知x2+mx-n可以分解为一次因式(x-5)和(x+8),求(13m-n)2 015的值.22.如果x2-ax+5有一个因式是x+5,求a的值,并求另一个因式.23.两位同学将一个二次三项式因式分解,一位同学因看错了一次项系数而分解成2(x-1)(x-9),另一位同学因看错了常数项而分解成2(x-2)·(x-4),试求原多项式.参考答案要点感知1 因式因式要点感知2 乘积预习练习2-1 C1.D2.C3.(1)正确;(2)正确;(3)正确;(4)不正确.4.(2)(3)是整式乘法,(1)(4)是因式分解.5.C6.C7.整式乘法因式分解8.(x-2)(x-1)9.4 10.61 11.由题意,知x2+3x+2=(x+a)(x+b),所以x2+3x+2=x2+(a+b)x+ab,因此有a+b=3,ab=2.12.C 13.2×2×3×514.B 15.D 16.C 17.2 014 18.-3119.(1)正确;(2)不正确;(3)正确;(4)不正确.20.小欣的说法不正确,这种变形不是因式分解.因为因式分解是把一个多项式不是多项式(分母含有字母化为若干个多项式乘积的形式,等式右边中的x+1xx),因此这种变形不是因式分解.21.x2+mx-n=(x-5)(x+8).即(x-5)(x+8)=x2+3x-40=x2+mx-n.所以m=3,n=40.所以(13m-n)2 015=-1.22.因为5=1×5,5=(-1)×(-5),又x2-ax+5有一个因式是x+5,因此5只能分解为1×5,所以x2-ax+5可以分解为(x+5)(x+1),即x2-ax+5=(x+5)(x+1).而(x+5)(x+1)=x2+6x+5,所以a=-6,且另一个因式为x+1.23.设原多项式为ax2+bx+c(其中a,b,c均为常数,且abc≠0).因为2(x-1)(x-9)=2(x2-10x+9)=2x2-20x+18,所以a=2,c=18.又因为2(x-2)(x-4)=2(x2-6x+8)=2x2-12x+16,所以b=-12.所以原多项式为2x2-12x+18.。

初中数学苏科版七年级上册第三章 代数式3.4 合并同类项-章节测试习题(9)

初中数学苏科版七年级上册第三章 代数式3.4 合并同类项-章节测试习题(9)

章节测试题1.【答题】下列单项式中,能够与a2b合并成一项的是()A. –2a2bB. a2b2C. ab2D. 3ab【答案】A【分析】本题考查了同类项的概念,只有同类项能够合并,不是同类项不能合并.能够与a2b合并成一项的单项式,必须是a2b的同类项,找出a2b的同类项即可.【解答】﹣2a2b与a2b是同类项,能够合并成一项.选A.2.【答题】已知mx2y n﹣1+4x2y9=0,(其中x≠0,y≠0)则m+n=()A. ﹣6B. 6C. 5D. 14【答案】B【分析】本题考查合并同类项法则,掌握合并同类项的法则是解题的关键.直接利用合并同类项法则得出m,n的值进而得出答案.【解答】∵mx2y n﹣1+4x2y9=0,∴m=−4,n−1=9,解得m=−4,n=10,则m+n=6.选B.3.【答题】若单项式与﹣2x b y3的和仍为单项式,则其和为______.【答案】【分析】本题考查合并同类项.【解答】若单项式x2y a与-2x b y3的和仍为单项式,则它们是同类项.由同类项的定义得a=3,b=2,则其和为-x2y3.4.【答题】若单项式﹣x m﹣2y3与x n y2m﹣3n的和仍是单项式,则m﹣n=______.【答案】【分析】本题考查同类项的定义.【解答】∵单项式﹣x m﹣2y3与x n y2m﹣3n的和仍是单项式,∴m﹣2=n,2m﹣3n=3,解得m=3,n=1,∴m﹣n=3﹣1=;故答案为.5.【答题】合并同类项:8m2﹣5m2﹣6m2=______.【答案】﹣3m2【分析】本题考查了合并同类项,正确掌握合并同类项法则是解题关键.根据合并同类项法则合并求出答案.【解答】8m2﹣5m2﹣6m2=(8-5-6)m2=-3m2.6.【答题】若-4x a y+x2y b=﹣3x2y,则b﹣a=______.【答案】﹣1【分析】本题考查合并同类项的法则,两个单项式合并成一个单项式,说明这两个单项式为同类项.两个单项式合并成一个单项式,说明这两个单项式为同类项.【解答】由同类项的的定义可知,故答案为7.【答题】若﹣4x a+5y3+x3y b=-3x3y3,则ab的值是______.【答案】﹣6【分析】本题考查合并同类项法则,熟练掌握合并同类项的法则是解题的关键.根据合并同类项得出a+5=3,b=3,求出a、b的值,再代入求出即可.【解答】﹣4x a+5y3+x3y b=3x3y3,a+5=3,b=3,a=−2,ab=−2×3=−6,故答案为−6.8.【题文】如果两个关于x、y的单项式2mx a y3与﹣4nx3a﹣6y3是同类项(其中xy≠0).(1)求a的值;(2)如果它们的和为零,求(m﹣2n﹣1)2017的值.【答案】(1)3;(2)-1.【分析】(1)根据同类项的概念可得关于a的方程,解方程即可得;(2)由已知可得2m-4n=0,从而得m-2n=0,代入进行计算即可得.【解答】(1)∵关于x、y的两个单项式2mx a y3和﹣4nx3a﹣6y3是同类项,∴a=3a﹣6,解得a=3;(2)∵2mx a y3+(﹣4nx3a﹣6y3)=0,则2m﹣4n=0,即m﹣2n=0,∴(m﹣2n﹣1)2017=(﹣1)2017=﹣1.9.【题文】合并同类项:(1)2xy2﹣3xy2﹣6xy2;(2)2a2﹣3a﹣3a2+5a.【答案】(1)原式=﹣7xy2;(2)原式=﹣a2+2a.【分析】本题考查合并同类项,合并同类项时,字母和字母的指数保持不变,只要系数相加减即可.(1)根据合并同类项的法则把系数相加即可.(2)根据合并同类项的法则把系数相加即可.【解答】(1)原式=(2﹣3﹣6)xy2=﹣7xy2;(2)原式=(2﹣3)a2+(﹣3+5)a=﹣a2+2a.10.【题文】如果代数式3x4﹣2x3+5x2+kx3+mx2+4x+5﹣7x,合并同类项后不含x3和x2项,求m k的值.【答案】m k=25.【分析】本题考查合并同类项,掌握多项式不含有的项的系数为零是解题的关键.根据合并后不含三次项,二次项,可得含三次项,二次项的系数为零,可得m,k的值,根据乘方的意义,可得答案.【解答】3x4﹣2x3+5x2+kx3+mx2+4x+5﹣7x=3x4+(k﹣2)x3+(m+5)x2﹣3x+5,由合并同类项后不含x3和x2项,得k﹣2=0,m+5=0,解得k=2,m=﹣5.m k=(﹣5)2=25.11.【题文】去括号,并合并同类项:(1)(3a+1.5b)﹣(7a﹣2b);(2)(8xy﹣x2+y2)﹣4(x2﹣y2+2xy﹣3).【答案】(1)﹣4a+3.5b;(2)﹣5x2+5y2+12.【分析】本题考查了去括号与添括号、合并同类项,解题的关键是掌握去括号与添括号,合并同类项.(1)先去掉括号,再找出同类项进行合并即可;(2)先把4与括号中的每一项分别进行相乘,再去掉括号,然后合并同类项即可.【解答】(1)(3a+1.5b)﹣(7a﹣2b)=3a+1.5b﹣7a+2b=﹣4a+3.5b;(2)(8xy﹣x2+y2)﹣4(x2﹣y2+2xy﹣3)=8xy﹣x2+y2﹣4x2+4y2﹣8xy+12=﹣5x2+5y2+12;12.【答题】下列各式中运算正确的是()A. B.C. D.【答案】C【分析】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.根据合并同类项的法则逐一进行计算即可.【解答】A.,故A选项错误;B.,故B选项错误;C.,正确;D.与不是同类项,不能合并,故D选项错误,选C.13.【答题】计算3x2﹣2x2的结果是()A. 1B. xC. x2D. ﹣x2【答案】C【分析】本题考查了合并同类项的知识,属于基础题,解答本题的关键是掌握合并同类项的法则.根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,进行计算即可.【解答】3x2﹣2x2=x2.选C.14.【答题】合并同类项:______.【答案】【分析】本题考查合并同类项,合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.【解答】原式,故答案为.15.【答题】下列计算正确的是()A. 3x2﹣x2=3B. ﹣3a2﹣2a2=﹣a2C. 3(a﹣1)=3a﹣1D. ﹣2(x+1)=﹣2x﹣2【答案】D【分析】本题考查合并同类项以及去括号法则.【解答】A.原式=2x2,不符合题意;B.原式=-5a2,不符合题意;C.原式=3a-3,不符合题意;D.原式=-2x-2,符合题意,选D.16.【答题】若a2m−5b2与-3ab3-n的和为单项式,则m+n=______.【答案】4【分析】本题考查合并同类项.【解答】∵a2m−5b2与-3ab3-n的和为单项式,∴2m-5=1,2=3-n,解得m=3,n=1.故m+n=4.故答案为4.17.【题文】去括号,合并同类项:(1)(x-2y)-(y-3x);(2)3a2−[5a−(a−3)+2a2]+4.【答案】(1)4x-3y;(2)a2-a+1.【分析】本题考查去括号法则以及合并同类项.【解答】(1)(x-2y)-(y-3x)=x-2y-y+3x=4x-3y;(2)3a2−[5a−(a−3)+2a2]+4=3a2−(5a−a+3+2a2)+4=3a2−5a+a-3-2a2+4=a2-a+1.18.【答题】多项式8x2﹣3x+5与多项式3x3+2mx2﹣5x+7相加后,不含二次项,则常数m的值是______.【答案】-4【分析】根据题意,二次项合并的结果为0.由合并同类项法则得方程求解.【解答】根据题意得8x2+2mx2=0,∴8+2m=0.解得m=﹣4.19.【答题】下列合并同类项中,正确的是()A. B.C. D.【答案】C【分析】本题考查合并同类项.【解答】∵3x与3y不是同类项,不能合并,∴A错误;∵不是同类项,不能合并,∴B错误;∵,∴C正确;∵7x–5x=2x,∴D错误;选C.20.【答题】下列合并同类项,正确的是()A. B.C. D.【答案】D【分析】本题考查合并同类项.【解答】A.不是同类项不能合并.故错误.B.故错误.C.D.正确.选D.。

浙教版七年级数学上册《4.3整式》同步测试题带答案

浙教版七年级数学上册《4.3整式》同步测试题带答案

浙教版七年级数学上册《4.3整式》同步测试题带答案 学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列各式中不是单项式的是( )A .a 3B .- 15C .0D .3a 2.单项式−3xy 22的系数与次数分别是( )A .-3,3B .−12,3C .−32,2D .−32,3 3.下列说法正确的是( )A .−7a 2b 4系数是−7,次数是2 B .多项式−4x 2+2x −5是二次二项式 C .(−3)2和−32的结果互为相反数 D .−a 是负数 4.一个关于a ,b 的多项式,除常数项为1外,其余各项次数都是4,系数为﹣1,并且各项都不相同,这个多项式最多有( )项?A .3B .5C .6D .7二、填空题5.写出一个含有字母x 、y 的三次单项式,这个单项式可是 .6.多项式 4x 2−πxy 22−13x +1 的三次项系数是 . 7.单项式−πx 2y 2的系数是 ,次数是 . 8.已知多项式3x m ﹣1+3x ﹣1是关于x 的四次三项式,那么m 的值为 . 9.已知关于x 、y 的多项式(a+b )x 5+(a -3)x 3-2(b+2)x 2+2ax+1不含x 3和x 2项,则当x=-1时,这个多项式的值为 .三、解答题10.指出下列各式中,哪些是单项式、哪些是多项式、哪些是整式?填在相应的横线上:①m 2+n 2 ;②-x ;③a+b 3;④10;⑤6xy+1;⑥1x ;⑦17 m 2n ;⑧2x 2-x -5;⑨a 7;⑩2x+y单项式: ;多项式:;整式:;11.已知多项式(m−3)x|m|−2y3+x2y−2xy2是关于x、y的四次三项式. (1)求m的值;(2)当x=12,y=−1时,求此多项式的值.12.(做一做)列代数式(1)已知一个三位数的个位数字是a,十位数字是b,百位数字是c,则这个三位数可表示为;(2)某地区夏季高山的温度从山脚处开始每升高100米,降低0.7℃,若山脚温度是28℃,则比山脚高x米处的温度为℃;(3)已知某礼堂第1排有18个座位,往后每一排比前一排多2个座位.则第n排共有座位数个.(4)(数学思考)上面所列的代数式都属于我们所学习的整式中的;(5)请你任意写一个关于x的这种类型的数字系数的二次式;(6)用字母表示系数,写一个关于x的二次三项式,并注明字母系数应满足的条件;(7)(问题解决)若代数式3x|m|﹣(m﹣2)x+4是一个关于x的二次三项式,求m的值.参考答案1、【答案】D2、【答案】D3、【答案】C4、【答案】C5、【答案】x2y(答案不唯一)6、【答案】−π27、【答案】−π2;38、【答案】59、【答案】-6【解析】【解答】解:∵多项式里面不含x3和x2项∴a−3=0,b+2=0,即a=3,b=−2∴原多项式化简为:x5+6x+1将x=-1代入多项式中,求得多项式的值为:-6故答案为:-6.10、【答案】②④⑦⑨;①③⑤⑧;①②③④⑤⑦⑧⑨.11、【答案】(1)∵多项式(m−3)x|m|−2y3+x2y−2xy2是关于x、y的四次三项式.∴|m|−2+3=4m−3≠0解得:m=−3;(2)当x=12,y=−1时此多项式的值为:−6×12×(−1)3+(12)2×(−1)−2×12×(−1)2=3−14−1=74.12、【答案】(1)100c+10b+c(2)(﹣0.007x+28)(3)(2n+16)(4)多项式(5)x2+1 (6)ax2+bx+c(a、b、c均不为0)(7)解:∵代数式3x|m|﹣(m﹣2)x+4是一个关于x的二次三项式∴|m|=2且m﹣2≠0解得:m=﹣2,即m的值是﹣2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档