浙教版2017-2018学年八年级数学第二学期期中检测题(含答案)

合集下载

2017-2018学年度第二学期浙教版八年级数学期中试题卷-附答案

2017-2018学年度第二学期浙教版八年级数学期中试题卷-附答案

(第12题)2017-2018学年第二学期期中考试八年级数学试题卷一、选择题(本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1,则x 的取值范围是()A .3x >B .3x ≥C .3x <D .3x ≠2.一元二次方程2231x x -=的二次项系数a 、一次项系数b 和常数c 分别是()A .2,3,1a b c ===-B .2,1,3a b c ===-C .2,3,1a b c ==-=-D .2,3,1a b c ==-=3.下列图形,既是轴对称图形又是中心对称图形的是()A .平行四边形B .正五边形C .等边三角形D .矩形4.五边形的内角和是()A .360°B .540°C .720°D .900°5.在平行四边形ABCD 中,已知∠A :∠B =1:2,则∠B 的度数是()A .45°B .90°C .120°D .135°6.用反证法证明某一命题的结论“b a <”时,应假设() A .b a >B .b a ≥C .b a =D .b a ≤7.已知点M (-2,3)在双曲线xky =上,则下列一定在该双曲线上的是( ) A .(3,一2) B .(一2,一3) C . (2,3) D . (3,2) 8.正方形具有而矩形不一定具有的性质是()A. 对角线相等B. 对角互相垂直C. 对角线互相平分D. 对边线平分一组对角 9.关于x 的一元二次方程ax 2-2x +1=0有实数根,则整数a 的最大值是( )A .1B .1-C .2D .2-10.如图,在矩形ABCD 中,AB =6,BC =8,M 是AD 上任意一点,且ME ⊥AC 于E , MF ⊥BD 于F ,则ME +MF 为( ) A .245B .125C .65D .不能确定二、填空题(本大题共有6小题,每小题4分,共24分)11.在菱形ABCD 中,对角线AC 、BD 长分别为8cm 、6cm ,则菱形的面积为 12.如图,A 、B 两点分别位于山脚的两端,小明想测量A 、B 两点间的距离,于是想了个主意:先在地上取一个可以直接达到A 、B 两点的点C ,找到AC 、BC 的中点D 、E ,并且测出DE 的长为 15m ,则A 、B 两点间的距离为 _m . 13.点()1,A m ,()3,B n 是双曲线3y x=上的点,则m n (填“>”,“<”,“=”). 14.已知06)(5)(22222=-+++y x y x ,则22y x +的值为 .(第10题)15.如图,已知矩形ABCD 的边长AB =4,BC =6,对角线AC 的垂直平分线分别交AC 、AD 、BC 于O 、E 、F ,连结AF 、CE ,则AEBF= .. 16.如图,已知函数y =2x 和函数y =的图象交于A 、B 两点,过点A 作AE ⊥x 轴于点E ,若△AOE 的面积为4,P 是坐标平面上的点,且以点B 、O 、E 、P 为顶点的四边形是平行四边形,则k = ,满足条件的P 点坐标是 .(第16题)三、解答题(本题有8小题,共66分) 17.(本题满分6分)计算(1)64)7()3(22--+-(2)2)32()31)(31(+--+18.(本题满分6分)解方程(1)240x x +=; (2)2670x x -+=. -19.(本题满分6分)已知关于x 的方程. x 2-2(m+1)x+m 2+2=0 (1)若方程总有两个实数根,求m 的取值范围; (2) 若两实数根x 1,x 2满足(x 1+1)(x 2+1)=8,求m 的值。

八年级下册数学期中测试卷及答案2017浙教版

八年级下册数学期中测试卷及答案2017浙教版

精心整理八年级下册数学期中测试卷及答案2017浙教版一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)仁下列图形中,既是轴对称图形,又是中心对称图形的是()I /「V 八二——2. 下列事件中最适合使用普查方式收集数据的是( )A. 了解全市每天丢弃的废旧电池数B. 了解某班同学的身高情况C. 了解50发炮弹的杀伤半径D. 了解我省农民的年人均收入情况3. 为了了解某校八年级1000名学生的身高,从中抽取了50名学生并I \ \ •对他们的身高进行统计分析,以下说法正确的是()A. 1000名学生是是总体B.抽取的50名学生是样本容量\ \ Y IC.每位学生的身高是个体D.被抽取的50名学生是总体的一个样本4. 事件A:某射击运动员射击一次,命中靶心;事件B:明天太阳从西边升起;C. 13名同学中至少有两名同学的出生月份相同.3个事件的概率分别记为P (A)、P ( B)、P (C),贝V P (A)、P (B)、P (C)的大小关系正确的是( )A.P ( B) 20. (8分)粗心的小明在计算减去一个分式时,误将减号抄成了加号,算得的结果为,请你帮他算出正确的结果,并取一组合适的a、b的值代入求值.21. (8分)如图,在平面直角坐标系中,A(0,4),B(-3,0).(1)①画出线段AB关于y轴对称线段AC;②将线段AC绕点C顺时针旋转一个角,得到对应线段CD使得AD//x 轴,请画出线段CD(2)判断四边形ABCD勺形状;(3)若直线平分四边形ABCD勺面积,请直接写出实数k的值.22. (10分)“低碳环保,你我同行”.两年来,扬州市区的公共自行车给市民出行带来切实方便.电视台记者在某区街头随机选取了市民进行调查,调查的问题是“您大概多久使用一次公共自行车?”,将本次调查结果归为四种情况: A.每天都用;B.经常使用;C.偶尔使用;D.从未使用.将这次调查情况整理并绘制如下两幅统计图:根据图中的信息,解答下列问题:(1)本次活动共有位市民参与调查;(2)补全条形统计图和扇形统计图;(3)扇形统计图中A项所对应的圆心角的度数为(4)根据统计结果,若该区有46万市民,请估算每天都用公共自行车的市民约有多少人?23. (8分)已知线段AB BC,Z ABC=90 ,求作矩形ABCD.(1) 小王同学的作图痕迹如图1,请你写出他的作法;(2) 请你再设计另一种尺规作图的方法作出所求图形,保留痕迹,不必写作法.24. (8分)在三只乒乓球上,分别写有三个不同的正整数(用a、b、c表示),三只乒乓球除标的数字不同外,其余都相同,将三只乒乓球放在一个不透明的盒中搅拌均匀,无放回的从中依次摸出2只乒乓球,将球上面的数字相加求和.当和为偶数时,记为事件A,当和为奇数时,记为事件B.(1)设计一组a、b、c的值,使得事件A为必然发生的事件.(2)设计一组a、b、c的值,使得事件B发生的概率大于事件A发生的概率.25. (10分)已知:如图,在口ABCD中,AE是BC边上的高,将沿方向平移,使点E与点C重合,得.(1)求证:;(2)若,当AB与BC满足什么数量关系时,四边形是菱形?并说明理由.注:(直角三角形中30°角所对直角边等于斜边的一半).26 (10分)观察下面的变形规律:…解答下列问题:(1)若n为正整数,请你猜想=;(2)证明你的猜想;(3)计算:27. (12分)如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B'的位置,AB与CD交于点E.(1)试找出一个与△ AED全等的三角形,并加以证明.(2)若AB=8 DE=3 P为线段AC上的任意一点,PGLAE于G,PH L EC 于H,试求PG+PH的值,并说明理由.28. (12分)如图,在边长为4的正方形ABCD中,点P在AB上从A向B 运动,连接DP交AC于点Q.(1)试证明:无论点P运动到AB上何处时,都有△ABQ(2)当点P在AB上运动到什么位置时,△ ADQ的面积是正方形ABCD 面积的;(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ ADQ恰为等腰三角形.一、选择题(共8小题,每题3分,共24分)题号12345678答案CBCACADB二、填空题(每空3分,计30分)9、100; 10、-3 ; 11、12、1; 13、14;14、15、4; 16、0,617、1.5;18、(63,32)三、解答题(共96分)19、计算(每小题5分,共10分)解:(1)原式= ------------ 2 分= ----- 4 分= ----- 5 分(2)原式= .......... 2分= ............. 4分20. 解:= ......... 3 分........... 6分代入求值,其中 ......... 8分21. (1)图略.................. 2 分(2)................................. 平行四边形4分(3)..... 8 分22. (1) 200; ................................................... 2 分(2)........... 6分(3)18・・・8分(4)46X 5%^ 2.3 (万人).。

浙教版2017-2018学年下学期八年级期中考试数学测试卷及答案

浙教版2017-2018学年下学期八年级期中考试数学测试卷及答案

B.每一个内角都小于 60°
C.有一个内角大于 60°
D.每一个内角都大于 60°
12、已知点 D 与点 A 5 , 0 ,B 0 , 12 ,C a , a 是一平行四边形的四个顶点, 则 CD 长的最小值为 ( ▲ )
A. 13
13 B. 2
2
17 C. 2
2
D. 12
二、填空题(本题有 6 个小题,每小题 3 分,共 18 分)
13、若 n 边形的内角和为 1800 ,则 n =
▲.
14、已知一组数据 1, a , 3, 2, 4,它的平均数是 3,这组数据的方差是

15、某种产品原来售价为 200 元,经过连续两次大幅度降价处理,现按
72 元的售价销售.设平均每次降
价的百分率为 x,列出方程:

16、若正三角形的边长为 2 cm,则这个正三角形的面积是
B、 k 为任何实数,方程都有两个不相等的实数根
C 、 k 为任何实数,方程都有两个相等的实数根
D、根据 k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数
根三种
11、用反证法证明 “三角形中至少有一个内角大于或等于 60° ”时,应先假设( ▲ )
A.有一个内角小于 60°
际出厂单价-成本 )
26、( 12 分)如图,在四边形 ABCD 中, AD∥ BC ,∠ C=90°, BC 16 , DC 12, AD 21,动点 P 从
三、计算题(本题有 8 个小题,共 66 分)
2
2
19、( 6 分)计算 ( 1) 6
25
3
(2)
1 27 3
3
20、( 6 分)解方程

2017--2018学年度第二学期浙教版八年级期中考试数学试卷

2017--2018学年度第二学期浙教版八年级期中考试数学试卷

绝密★启用前2017--2018学年度第二学期 浙教版八年级期中考试数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.本卷25题,答卷时间100分钟,满分120分=-2 B. =-2=±=±22.(本题3 ) A. a=b-1 B. a=b+1 C. a+b=1 D. a+b=-13.(本题3分)若a =, b =,则a 、b 两数的关系是( )A. a b =B. 5ab =C. a b 、互为相反数D. a b 、互为倒数4.(本题3分)已知关于x 的方程x 2+3x +a =0有一个根为-2,则另一个根为A. 5B. -1C. 2D. -5 5.(本题3分)(2017山东烟台第10题)若是方程的两个根,且,则的值为( ) A.或2 B. 1或C.D. 16.(本题3分)(2017湖南常德第3题)一元二次方程3x 2−4x +1=0的根的情况为( )A. 没有实数根B. 只有一个实数根C. 两个相等的实数根D. 两个不相等的实数根 7.(本题3分)从一块正方形铁皮的四角上各剪去一个边长为3cm 的小正方形,制成一个无盖的盒子,若盒子的容积为300cm 3,则铁皮的边长为( ) A. 16cm B. 14cm C. 13cm D. 11cm均数均是9.2环,方差分别为s 甲2=0.56,s 乙2=0.60,s 丙2=0.50,s 丁2=0.45,则成绩最稳定的是( )A. 甲B. 乙C. 丙D. 丁 9.(本题3分)数据3,2,4,2,5,3,2的中位数和众数分别是 ( ) A. 2,3 B. 4,2 C. 3,2 D. 2,2 10.(本题3分)小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的( )A. 众数是6吨B. 平均数是5吨C. 中位数是5吨D. 方差是43二、填空题(计32分)11.(本题4分)(÷.12.(本题4分)如果,3,那么x 2y+xy 2=________.13.(本题4分)若正三角形的边长为,则这个正三角形的面积是_______cm 2。

2018年浙教版八年级数学下册期中联考数学试卷及答案

2018年浙教版八年级数学下册期中联考数学试卷及答案

2017-2018学年第二学期期中联考八年级数学试卷 亲爱的同学:欢迎参加考试!请你认真审题,仔细答题,发挥最佳水平。

一、选择题:(每题3分,共30分)1、下列二次根式中,不能与合并的是( ) A . B . C . D .2、边长为3cm 的菱形的周长是( )A .6cmB .9cmC .12cmD .15cm3、下列运算正确的是( )A . 532)(a a = B . 222)(b a b a -=- C . 3553=- D . 3273-=-4、平行四边形ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件使△ABE ≌△CDF ,则添加的条件是( )A .AE =CFB .BE =FDC .BF =DED .∠1=∠25、如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A .1,2,3B .1,1,C .1,1,D .1,2,6、已知四边形ABCD 是平行四边形,再从①AB =BC ,②∠ABC =90°,③AC =BD ,④AC ⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是正方形,现有下列四种选法,其中错误的是( )A .选①②B .选②③C .选①③D .选②④7、汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s (千米)与行驶的时间t (时)的函数关系的大致图象是( )A.B.C.D.8、如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC 的面积分别是S1、S2的大小关系是()A.S1>S2 B.S1=S2 C.S1<S2 D.3S1=2S29、如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3B.4C.5D.610、如图,正方形ABCD的对角线BD长为2,若直线l满足:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A.1 B.2C.3D.4(第8题图)(第9题图)(第10题图)二、填空题:(每题3分,共30分)11、化简:二次根式中,x的取值范围是12、如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件____________,使ABCD成为菱形.(只需添加一个即可)13、计算:﹣=.14、如图是小明从家跑步到学校,接着马上步行回家. 如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行米.15、如图在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= .(第12题图) (第14题图)(第15题图)16、一直角三角形的两边长分别为3和4.则第三边的长为______________17将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角为_____度.18如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为_________19、矩形ABCD中,点E、F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若AB=22,BC=23,则图中阴影部分的面积为.20、如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是_________(第18题图)(第19题图)(第20题图)解答题(共60分)21、(第1小题6分,第2小题8分,共14分)(1))化简:(﹣)﹣﹣|﹣3|(2)已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.22、(本题6分)如图。

2017—2018学年度第二学期八年级数学期中试卷(含答案)

2017—2018学年度第二学期八年级数学期中试卷(含答案)

2017—2018学年度第二学期期中教学质量评估测试八年级数学试卷题号一 二 三 总分 得分注意事项:全卷共120分,考试时间120分钟.一、选择题:(每小题3分,共30分)1.下列二次根式中,最简二次根式的是( )A .B .C .D . 2.下列计算正确的是( ).A.2(3)9=B .822÷=C .236⨯=D .2(2)2-=-3. 下列各组数中,能构成直角三角形的是( )A. 4,5,6B. 1,1,C. 6,8,11D. 5,12,23 4. 在Rt△ABC 中,△C =90°,△B =45°,c =10,则a 的长为( )A. B. C.5 D.5.在下列给出的条件中,能判定四边形ABCD 为平行四边形的是( ) A. AB=BC,CD=DA B. AB//CD,AD=BC C. AB//CD,C A ∠=∠ D.D C B A ∠=∠∠=∠, 6.正方形面积为36,则对角线的长为( ) A.B .6C .9D. 7.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为( )A. 10mB. 15mC. 18mD. 20m8.如图,在平行四边形ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分△BAD 交BC 边于点E ,则EC 等于( )A .1cmB .2cmC .3cmD .4cm9.如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF=3,则菱形ABCD 的周长是( )A .12B .16C .20D .2410.如图,在矩形ABCD 中,AB=8,BC=4,将矩形沿AC 折叠,点D 落在点D′处,则重叠部分△AFC 的面积为( )A .6B .8C .10D .12二、填空题:(每小题3分,共30分)11. 木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面 .(填“合格”或“不合格” ) 12.若式子 在实数范围内有意义,则 的取值范围是 .13.在数轴上表示实数a 的点如图所示,化简()2-a 5-a 2+的结果为______.14.计算()2252-的结果是________.15.一个直角三角形的两边长分别为4与5,则第三边长为________.16.平行四边形ABCD 中一条对角线分△A 为35°和45°,则△B= 度. 17. 如右图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则EF= cm . 18. 在△ABC 中,△C=90°,AC=12,BC=16,则AB 边上的中线CD 为 .19.在平面直角坐标系中,点A (﹣1,0)与点B (0,2)的距离是 . 20.对于任意不相等的两个数a ,b ,定义一种运算△如下:a△b = ,座号得 分 评卷人 题号1 2 3 4 5 6 7 8 9 10 答案得 分 评卷人学校 年级 姓名 学号密封线内不要答题八年级 数学 第1页 (共6页) 八年级 数学 第2页 (共6页)212510252612-+x x x 8.04529a b a b+-如3△2= =5.那么12△4= .三.解答题:(本大题共60分)21. (6分)(共2小题,每小题3分)(1) (2)22.(8分)若最简二次根式31025311x x y x y -+--+和是同类二次根式. (1)求x y 、的值; (5分) (2)求22y x +的值.(3分)23.(7分)有如图所示的一块地,已知AD=4米,CD=3米,090ADC ∠=,AB=13米,BC=12米.(1)试判断以点A 、点B 、点C 为顶点的三角形是什么三角形?并说明理由. ( 4分)(2)求这块地的面积.(3分)24. (8分)如图,四边形ABCD 中,AC ,BD 相交于点O ,O 是AC 的中点,AD △BC ,AC =8,BD =6.(1)求证:四边形ABCD 是平行四边形; (4分) (2)若AC △BD ,求平行四边形ABCD 的面积. (4分)25 . (8分)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E 是CD 的中点,连接OE .过点C 作CF △BD 交线段OE 的延长线于点F ,连接DF . 求证:(1)△ODE △△FCE (4分)(2)四边形ODFC 是菱形 (4分)得 分 评卷人DACB八年级 数学 第3页 (共6页) 八年级 数学 第4页 (共6页)3232+-)227(328--+5232232⨯÷26.(8分)已知:如图,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形EFGH (即四边形ABCD 的中点四边形). (1)四边形EFGH 的形状是 ,证明你的结论;(4分)(2)当四边形ABCD 的对角线满足 条件时,四边形EFGH 是矩形(不证明)(2分) (3)你学过的哪种特殊四边形的中点四边形是矩形? (不证明)(2分)27.(6分)某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口 小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?28.(9分)观察下列等式: △ △ + = △……回答下列问题:(1)仿照上列等式,写出第n 个等式: ; (2分) (2)利用你观察到的规律,化简:(3分)(3)计算: + + +……+(4分)八年级 数学 第5页 (共6页) 八年级 数学 第6页 (共6页)23321+211+231+34)34)(34(34341-=-+-=+231+1031+)23)(23(23-+-23-2017—2018学年度第二学期期中教学质量评估测试八年级数学参考答案一、选择题1.D 2.B 3. B 4.A 5.C 6. A 7.C 8.B 9.D 10. C 二、填空题11.合格 12.x ≥﹣2且x ≠1 13. 3 14. 15.3或41 16.100 17 . 2.5 18. 10 19. . 20.1.2三、解答题:(共60分)21(1)解: + 2 ﹣(﹣ ) =2 +2 ﹣3 + ------(2分) =3 ﹣ ------(3分) (2)解: ÷ ×== ------(2分)= -------(3分) 22.(1)x=4,y=3;(5分) (2)5 (3分) 解:(1)由题意得:3x-10=2 , ---------(2分)2x+y-5=x-3y+11 ----------(4分)解得x=4 y=3 --------(5分)(2)当x=4 , y=3时22y x += =5 -----(3分) 23.解(1)以点A 、点B 、点C 为顶点的三角形是直角三角形(4分)(2)这块地的面积24m 2. (3分) 解:(1)连接AC . -------(1分) 由勾股定理可知:AC=---(2分)又∵AC 2+BC 2=52+122=132=AB 2--------(3分) ∴△ABC 是直角三角形 --------(4分) (2)这块地的面积=△ABC 的面积-△ACD 的面积 ----(1分)=×5×12- ×3×4 --- (2分) =24(m 2). ----(3分)24. (1)证明:∵O 是AC 的中点,∴OA =OC. ------(1分) ∵AD ∥BC ,∴∠DAO =∠BCO. -------(2分) 又∵∠AOD =∠COB ,∴△AOD ≌△COB ,(ASA ) -----------------(3分) ∴OD =OB ,∴四边形ABCD 是平行四边形 --------------(4分) (2)∵四边形ABCD 是平行四边形,AC ⊥BD ,∴四边形ABCD 是菱形 ---------------(2分)∴ ABCD 的面积= AC •BD = ×8×6=24 ---------------(4分)25 .证明:(1)∵CF ∥BD ∴∠ODE=∠FCE----------------(1分)∵E 是CD 中点 ∴CE=DE , -------------------(2分) 在△ODE 和△FCE 中2222435AD CD +=+=12121222410.-1.232322528528332⨯⨯10110102234+32722332235∴△ODE ≌△FCE (ASA ) --------------(4分) (2)∵△ODE ≌△FCE ∴OD=FC , -------------(1分) 又∵CF ∥BD , ∴四边形ODFC 是平行四边形-----(2分)∵矩形ABCD ∴AC=BD OC= AC,OD= BD ∴ OC=OD ----------------(3分)∴四边形ODFC 是菱形. -----------------------(4分) 26(1)平行四边形;(4分)(2)互相垂直(2分)(3)菱形.(2分)(1)证明:连结BD . -------------------- (1分)∵E 、H 分别是AB 、AD 中点,∴EH ∥BD ,EH= BD , ----------------------(2分)同理FG ∥BD ,FG= BD , ---------------------(3分)∴EH ∥FG ,EH=FG ,∴四边形EFGH 是平行四边形 --------------------------(4分) 27. 解:根据题意,得PQ=16×1.5=24(海里) - -----------(1分)PR=12×1.5=18(海里) -----------(2分) QR=30(海里)∵242+182=302, 即PQ 2+PR 2=QR 2∴∠QPR=90°. ----------------(4分) 由“远洋号”沿东北方向航行可知∠QPS=45°,则∠SPR=45°(5分) 即“海天”号沿西北方向航行. -------(6分)28. (1)(2)2311- (3)解:(1)第n 个等式 (2分)(2)原式=1121123111211=-=-+. (3分)原式=2-1+3-2+4-3+……+10-9=10-1 ( 4分)12121212=-+++=++)1)(1(11n n n n n n 101nn -+1=-+++=++)1)(1(11n n n n n n nn -+1n n -+1n n -+1。

2017-2018学年浙教版数学八年级下册期中考试试卷含答案

2017-2018学年浙教版数学八年级下册期中考试试卷含答案

2017-2018学年第二学期期中考试八年级数学试卷
一、选择题:(每小题3分,共30分)
1.要使二次根式3x 有意义,则x 应满足(
)A .3x B .3x C .3x D .3
x 2.下列方程是一元二次方程的是(
)A .32x x B .220x C .221x y D .1
12x
x 3.下列运算中,结果正确的是(
) A .636 B .3223C .235 D .2
3
434.在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:
金额(元)20 30 35 50 100
学生数(人) 5 15 5 10 10
在这次活动中,该班同学捐款金额的众数和中位数分别是(
) A .50,50 B .30,35 C .30,50 D .15,50
5.下列二次根式中,最简二次根式是()
A .8
B .2.1
C .2
D .3
a
6.将方程2x +4x +3=0配方后,原方程变形为(
) A .2(2)x =1 B .2(4)x =1 C .2(2)x =-3 D. 2(2)x =-1
7.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率为(
) A.%10 B.%15 C.%20 D.%
258.已知关于x 的方程0112x k kx ,下列说法正确的是()
A .当0k 时,方程无解
B .当1k 时,方程有一个实数解
C .当1k 时,方程有两个相等的实数解
D .当0k 时,方程总有两个不相等的实数解。

2017-2018学年浙教版八年级下册数学期中测试题及答案

2017-2018学年浙教版八年级下册数学期中测试题及答案

2017-2018学年八年级数学下册期中检测题(时间:100分钟,满分:120分) 一、选择题(每小题4分,共40分)1.若0a <,则aa 2-的值为 ( ) A .1 B .1- C .±1 D .a - 2.下列各式计算正确的是( )A.==C.=D.=3.已知直角三角形的一条直角边长为9,斜边长为10,则另一条直角边长为( )4.已知:a =b -,则与的关系为( ) A.B. C.D.5.若0)3(12=++-+y y x ,则y x -的值为 ( )A .1B .-1C .7D .-76.若,则的值是( )A .B .C .D .7.若关于的一元二次方程有实数根,则( ) A .B .C .D .8.(广东珠海·3分)一元二次方程+x +=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定根的情况9.利华机械厂四月份生产零件万个,若五、六月份平均每月的增长率是,•则第二季度共生产零件( )A .100万个B .160万个C.180万个 D.182万个10.(2015 • 山东泰安中考)某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是()第10题图A.94分,96分B.96分,96分C.94分,96.4分D.96分,96.4分二、填空题(每小题4分,共32分)11. 计算的结果是.12. 计算1)(2=_______________.13.若,则________.14.若(是关于的一元二次方程,则的值是________.15.若且,则一元二次方程必有一个定根,它是_______.16.(2015 • 湖北黄冈中考)若方程-2x-1=0的两根分别为,,则的值为.17.(2015• 南京中考)某工程队有14名员工,他们的工种及相应每人每月工资如下表所示.现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名.与调整前相比,该工程队员工月工资的方差______(填“变小”,“不变”或“变大”).18.(2015 • 成都中考)为响应“书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是_________小时.第18题图三、解答题(共48分)19.(6分)求证:关于x 的方程01)12(2=-+++k x k x 有两个不相等的实数根. 20.(6分)已知关于的方程( 的两根之和为,两根之差为1,•其中是△的三边长.(1)求方程的根; (2)试判断△的形状.21.(8分)化简:(1 (0,0)a b >> ;(2(0)x y >>.22.(9分)有一道练习题是:对于式子2a 后求值,其中a =小明的解法如下:2a 2a 2(2)a a --=2a +2.小明的解法对吗?如果不对,请改正.23.(9分)(2015 • 山东东营中考)2013年,东营市某楼盘以每平方米6 500元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5 265元. (1)求平均每年下调的百分率;(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)24.(10分)(2015·天津中考)某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额数据,绘制出如图所示的统计图①和②.请根据相关信息,解答下列问题:① ②第24题图(1)该商场服装部营业员的人数为 ,图①中m 的值为 ; (2)求统计的这组销售额数据的平均数、众数和中位数.期中检测题参考答案1.A 解析:若,则,故12==-aa a a .2.C 解析:A 选项中×=48,错误;B 选项中5×=25,错误;C 选项中4×=8,正确;D 选项错误.3.B 解析:由勾股定理得另一条直角边长为1991022=-.4.A 解析:由于,所以.5.C 解析: 若0)3(12=++-+y y x ,根据两个非负数的和为零,则这两个非负数均为零,得,且()23=0y +,即,且,所以,,故选C.6.C 解析:根据方程的特点,可考虑用换元法求值,设,原式可化为,解得,7.D 解析:把原方程移项,.由于实数的平方均为非负数,故,•则.8.B 解析:∵ 22141411104b ac -=-⨯⨯=-=,∴ 一元二次方程+x +=0有两个相等的实数根.9.D 解析:五月份生产零件(万个),六月份生产零件()250120%=72+(万个), 所以第二季度共生产零件(万个),故选D .10.D 解析:根据92分的有6人,占10%,可求出参加竞赛的职工总人数为60人.根据94分的占20%可求出94分的人数是60×20%=12(人).96分、100分的人数所占的百分比分别是1560=25%,960=15%,从而求出98分的人数所占的百分比,进而求出98分的有18人.因为这组数据共60个,所以第30与31个数的平均数是这组数据的中位数,将这组数据按从小到大的顺序排列后,第30、31个数据都是96,故中位数是96分,再由加权平均数的计算方法,得926941296159818100960?????=96.4(分),故选项D 正确.11.3 解析: 32232)222(52)850(=÷=÷-=÷-.解析: .222222)21)(22(=-+-=-+13.14 解析:由,得.两边同时平方,得,即,所以.注意整体代入思想的运用.14.1 解析:由()212,30,m m m ì+-=ïïíï+?ïî解得m =1. 15. 1 解析:由,得,原方程可化为,解得x 1=1,x 2=ca .所以一元二次方程的一个定根为x =1.16.3 解析:因为,是方程-2x -1=0的两根,所以=2,=-1,因此=2+1=3.17.变大 解析:减少木工2名,增加电工、瓦工各1名后,14名员工的工资少了两个6 000,多了一个7 000和一个5 000,调整前后工程队员工月平均工资不变,均是6 000元,但调整后各数据与平均数的差的平方和变大了,所以方差变大了.18.1 解析:把一组数据按从小到大的顺序排列,在中间的一个数字(或中间两个数字的平均值)叫做这组数据的中位数.本题中阅读时间的中位数是1小时. 19.证明:∵ 2224(21)41(1)450b ac k k k -=+-⨯⨯-=+>恒成立, ∴ 方程有两个不相等的实数根. 20.解:(1)设方程的两根分别为,则解得(2)当时,,所以. 当时,所以.所以,所以△为等边三角形.21.解:(1)b ab a b a b a 87)8(7644964492222===.(2)y xy y xy y x y x 22122215.0225252==⋅⋅=.22.分析:本题中有一个隐含条件2a =,即20a -<(2)a --.对这个隐含条件的敏感度是正确解决问题的关键.解:小明的解法不对.改正如下:由题意得2a =,∴ (2)2a a =--=-+.∴ 2a 2a 2(2)a a --+=32a -=2.23. 解:(1)设平均每年下调的百分率为x ,根据题意,得 6 500=5 265,解得,(不合题意,舍去).答:平均每年下调的百分率为10%.(2)如果下调的百分率相同,2016年的房价为5 265(1-10%)=4 738.5(元/),则100平方米的住房的总房款为100 4 738.5=473 850(元)=47.385(万元). ∵ 20+3047.385,∴张强的愿望可以实现.24.解:(1)25;28(2)观察条形统计图,∵=12215518721824360?????=18.6,∴这组数据的平均数是18.6.∵在这组数据中,21出现了8次,出现的次数最多,∴这组数据的众数是21.∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是18,∴这组数据的中位数是18.。

八年级下册数学期中测试卷及答案2017浙教版

八年级下册数学期中测试卷及答案2017浙教版

八年级下册数学期中测试卷及答案2017浙教版一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.. 下列图形中,既是轴对称图形,又是中心对称图形的是()2.下列事件中最适合使用普查方式收集数据的是()A.了解全市每天丢弃的废旧电池数B.了解某班同学的身高情况C.了解50发炮弹的杀伤半径D.了解我省农民的年人均收入情况3. 为了了解某校八年级1 000名学生的身高,从中抽取了50名学生并对他们的身高进行统计分析,以下说法正确的是()A.1 000名学生是是总体B.抽取的50名学生是样本容量C.每位学生的身高是个体D.被抽取的50名学生是总体的一个样本4. 事件A:某射击运动员射击一次,命中靶心;事件B:明天太阳从西边升起;C.13名同学中至少有两名同学的出生月份相同.3个事件的概率分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P(C)的大小关系正确的是()A. P(B)20. (8分)粗心的小明在计算减去一个分式时,误将减号抄成了加号,算得的结果为,请你帮他算出正确的结果,并取一组合适的a、b的值代入求值.21. (8分)如图,在平面直角坐标系中,A(0,4),B(-3,0).(1)①画出线段AB关于y轴对称线段AC;②将线段AC绕点C顺时针旋转一个角,得到对应线段CD,使得AD//x轴,请画出线段CD;(2)判断四边形ABCD的形状;(3)若直线平分四边形ABCD的面积,请直接写出实数k的值.22.(10分)“低碳环保,你我同行”.两年来,扬州市区的公共自行车给市民出行带来切实方便.电视台记者在某区街头随机选取了市民进行调查,调查的问题是“您大概多久使用一次公共自行车?”,将本次调查结果归为四种情况:A.每天都用;B.经常使用;C.偶尔使用;D.从未使用.将这次调查情况整理并绘制如下两幅统计图:根据图中的信息,解答下列问题:(1)本次活动共有位市民参与调查;(2)补全条形统计图和扇形统计图;(3)扇形统计图中A项所对应的圆心角的度数为(4)根据统计结果,若该区有46万市民,请估算每天都用公共自行车的市民约有多少人?23.(8分)已知线段AB、BC, ∠ABC=90°,求作矩形ABCD.(1) 小王同学的作图痕迹如图1,请你写出他的作法;(2) 请你再设计另一种尺规作图的方法作出所求图形,保留痕迹,不必写作法.24. (8分)在三只乒乓球上,分别写有三个不同的正整数(用a、b、c表示),三只乒乓球除标的数字不同外,其余都相同,将三只乒乓球放在一个不透明的盒中搅拌均匀,无放回的从中依次摸出2只乒乓球,将球上面的数字相加求和.当和为偶数时,记为事件A,当和为奇数时,记为事件B.(1)设计一组a、b、c的值,使得事件A为必然发生的事件.(2)设计一组a、b、c的值,使得事件B发生的概率大于事件A发生的概率.25. (10分)已知:如图,在□ABCD中,AE是BC边上的高,将沿方向平移,使点E与点C重合,得.(1)求证:;(2)若,当AB与BC满足什么数量关系时,四边形是菱形?并说明理由.注:(直角三角形中30°角所对直角边等于斜边的一半).26(10分)观察下面的变形规律:…解答下列问题:(1)若n为正整数,请你猜想= ;(2)证明你的猜想;(3)计算:27.(12分)如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD 交于点E.(1)试找出一个与△AED全等的三角形,并加以证明.(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH 的值,并说明理由.28.(12分)如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC 于点Q.(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的;(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.一、选择题(共8小题,每题3分,共24分)题号1 2 3 4 5 6 7 8答案C B C A C A D B二、填空题(每空3分,计30分)9、100 ;10、-3 ;11、12、1 ;13、14 ;14、15、4 ;16、0,6 17、1.5 ; 18、(63,32)三、解答题(共96分)19、计算(每小题5分,共10分)解:(1)原式= -------------2分= - -------4分= --------5分(2)原式= …………2分= …………4分= ………………5分20. 解:= ………3分………6分代入求值,其中……………8分21、(1)图略………………………2分(2)平行四边形………4分(3)………8分22.(1)200;……………………………2分(2)(3)18 …8分(4)46×5%=2.3(万人).。

2017-2018学年度第二学期浙教版八年级期中考试数学试卷

2017-2018学年度第二学期浙教版八年级期中考试数学试卷

装…………………_姓名:________级:________…………○………………○…绝密★启用前2017-2018学年度第二学期 浙教版八年级期中考试数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.本卷25题,答卷时间100分,满分120分A. 1B. 2C. 3D. 4 2.(本题3分)如图,▱ABCD 中,对角线AC 和BD 相交于点O ,如果AC=12、BD=10、AB=m ,那么m 的取值范围是( )A. 1<m <11B. 2<m <22C. 10<m <12D. 5<m <6 3.(本题3分) 下列方程中,属于一元二次方程的是( )A .2x 2-3y -5=0B .x 2=2xC .1x +4=x 2D .y 2-2y -3=04.(本题3分) 已知关于x 的方程x 2+m 2x -2=0的一个根是1,则m 的值是( ) A .1 B .2 C .±1 D .±2 5.(本题3分)若关于x 的一元二次方程x 2-4x -k =0有两个实数根,则( ) A .k >4 B .k >-4 C .k ≥4 D .k ≥-4 6.(本题3分)选择用反证法证明“已知:∠A ,∠B ,∠C 是△ABC 的三个内角,求证:∠A ,∠B ,∠C 三个内角中至少有一个角大于或等于60°”时,应先假设( ) A .∠A >60°,∠B >60°,∠C >60° B .∠A ≥60°,∠B ≥60°,∠C ≥60° C .∠A <60°,∠B <60°,∠C <60° D .∠A ≤60°,∠B ≤60°,∠C ≤60° 7.(本题3分)在某校“我的中国梦”演讲比赛中,有9名学生参加比赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ) A. 众数 B. 方差 C. 平均数 D. 中位数8.(本题3分)如果关于x 的一元二次方程x 2+px+q=0的两根分别为…………外…○…………………订……○…………※※请※※不※※※线※※内※※※※……………………○21x ,那么这个一元二次方程是( )A. x 2+3x+4=0 B. x 2+4x ﹣3=0 C. x 2﹣4x+3=0 D. x 2+3x ﹣4=0 9.(本题3分)如图,平行四边形ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件使△ABE ≌△CDF ,则添加的条件不能..是( )A. AE =CFB. BE =FDC. BF =DED. ∠1=∠210.(本题3分)某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:则这20户家庭该月用电量的众数和中位数分别是( ) A. 180,160 B. 160,180 C. 160,160 D. 180,180二、填空题(计32分)ABCD 的一边BC 延长至E ,若∠A=110°,则∠1=____.12.(本题4分)如图,在Rt △ABC 中,∠ACB=90°,AC=BC=6cm ,点P 从点A 出发,沿AB 方向以每秒 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P ′,设Q 点运动的时间为t 秒,若四边形QPCP ′为菱形,则t 的值为_____.13.(本题4分)已知一个多边形的内角和等于900°,则这个多边形的边数是 _____.90分,方差S 甲2=12分2,S 乙2=51分2,据此可以判断 的成绩比较稳定. 15.(本题4分)数据-1,2,0,1,-2的标准差是 . 16.(本题4分)某药品经过两次降价,每瓶零售价由162元降为128元,已知两次降价的百分率相同,设每次降价的百分率为x ,则根据题意可得方程 . 17.(本题4分)已知a=4,b,c 是方程x 2﹣5x+6=0的两个根,则以a 、b 、c 为三边的三角形面积是__________. 18.(本题4分)如图,在□ABCD 中,点E 在BC 上,AE 平分∠BAD ,且AB=AE ,连接DE 并延长与AB 的延长线交于点F ,连接CF ,若AB=1cm ,则△CEF 面积是 cm 2三、解答题(计58分)19.(本题8分)化简: (1) (2) 20.(本题8分)解下列方程:(1)x 2+3=3(x +1). (2)2x 2-x -3=0.21.(本题8分)在我校的“五水共治”献爱心捐款活动中,金老师随机了解到10名学生的捐款金额如下(单位:元):10,8,12,15,10,12,11,9,13,10. (1)则这组数据的中位数是 ,众数是 . (2)已知我校有学生近3千人(按3千人计),求这次我校学生捐款的总金额. 22.(本题8分)如图,在□ABCD 中,AC 与BD 交于点O ,点E ,F 都在BD 上, BE =DF .(1)求证:四边形AECF 是平行四边形.(2)若AB ⊥AC ,AB =4,AC =6,当□AECF 是矩形时,求BE 的长. BADC OE F装…………_姓名:__________…………○………… 23.(本题8分)某商场销售一批童装,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,减少库存,商场决定适当降价.据测算,每件童装每降价1元,商场平均每天可多售出2件.若商场每天要盈利1200元,且要让顾客有更多的实惠,则每件童装应降价多少元? 24.(本题9分)如图,在平行四边形ABCD 中,E 、F 分别在AD 、BC 边上,且AE=CF . 求证:(1)△ABE ≌△CDF ;(2)四边形BFDE 是平行四边形.25.(本题9分)如图,在四边形ABCD 中,AB ∥CD ,∠BCD =90°,AB =AD =10cm ,BC =8cm .点P 从点A 出发,以3cm /s 的速度沿折线ABCD 方向运动,点Q 从点D 出发,以2cm /s 的速度沿线段DC 向点C 运动.已知P ,Q 两点同时出发,当点Q 到达点C 时,P ,Q 停止运动,设运动时间为t (s ).(1)、求CD 的长. (2)、当四边形PBQD 为平行四边形时,求四边形PBQD 的周长. (3)、当点P 在折线BCD 上运动时,是否存在某一时刻,使得△BPQ 的面积为16cm 2?若存在,请求出满足条件的t 的值;若不存在,请说明理由.D参考答案1.B【解析】试题分析:结合车标图案,根据轴对称图形与中心对称图形的概念求解. 解:第一个图形,既是中心对称图形,又是轴对称图形,故选项错误; 第二个图形,是轴对称图形,不是中心对称图形,故选项错误; 第三个图形,是轴对称图形,不是中心对称图形,故选项错误; 第四、五个是中心对称图形而不是轴对称图形,故选项正确. 故选B .【点评】考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180度后与原图重合. 2.A【解析】AB 在△ABO 中,欲求AB 的取值范围,需求OA 、OB 的长,由平行四边形对角线互相平分的性质可得OA=AC=6,OB=BD=5.又根据三角形任意两边之和大于第三边,任意两边之差小于第三边,有OA -OB <AB <OA +OB .所以6-5<m <6+5,即1<m <11. “点睛”本题考查了平行四边形的性质以及三角形的三边关系,能够熟练求解此问题是解题关键.在运用三角形的三边关系时,要注意“两边之和大于第三边,两边之差小于第三边,”的运用,以防解题出错. 3.B【解析】试题分析:一元二次是指只含有一个未知数,且未知数的最高次数为2次的整式方程.根据定义可得:B 为一元二次方程. 考点:一元二次方程的定义 4.C【解析】试题分析:将x=1代入方程可得:2m -1=0,解得:m=1或m=-1. 考点:解一元二次方程 5.D【解析】试题分析:根据方程有两个实数根可得:△=ac b 42-=16+4k ≥0,解得:k ≥-4. 考点:根的判别式 6.C【解析】试题分析:利用反证法进行证明时,首先需要假设的是三个角都小于60°. 考点:反证法 7.D【解析】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少。

2017-2018学年度最新浙教版八年级数学下册期中考试模拟试题及答案解析十精品试卷

2017-2018学年度最新浙教版八年级数学下册期中考试模拟试题及答案解析十精品试卷

浙教版2017-2018学年度下学期期中模拟试题八年级数学试卷一、选择题(每小题3分,共30分)1.下列图形分别是中国银行、中国农业银行、交通银行、民生银行的标志,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D. 2. 若121x -在实数范围内有意义,则x 的取值范围是( ) A. 0x ≥ B. 12x ≥C. 12x ≠D.12x > 3.一元二次方程2332x x x -=+化为一般形式20ax bx c ++=后,,,a b c 的值分别是( ) A.3、-3、2 B.3、-4、-2 C.3、-2、2 D.3、-4、2 4.下列计算中正确的是( )A.2(13)13-=± B.111111442=⨯= C.()1331-=- D.22225454541-=-=-=5.在平行四边形ABCD 中,∠A :∠B :∠C=1:2:1,则∠D 等于( ) A .30° B .60° C .120° D .150°6. 关于x 的一元二次方程2(1)230k x x --+=有两个不相等的实根,则k 的取值范围是( )A. 43k <B.43k <且1k ≠C. 403k ≤≤ D.1k ≠ 7.近几年,我国经济高速发展,但退休人员待遇持续偏低.为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2013年月退休金为1500元,2015年达到2160元.设李师傅的月退休金从2013年到2015年年平均增长率为x ,可列方程为( ) A. 22160(1)1500x -= B .21500(1)2160x +=C .21500(1)2160x -=D .215001500(1)1500(1)2160x x ++++= 8.利用反证法证明“直角三角形至少有一个锐角不小于45”,应先假设( ) A. 直角三角形的每个锐角都小于45 B. 直角三角形有一个锐角大于45C. 直角三角形的每个锐角都大于45D. 直角三角形有一个锐角小于459.如图,分别以Rt ABC ∆ 的斜边AB ,直角边AC 为边向外作等边ABD ∆和ACE ∆,F 为AB 的中点,DE ,AB 相交于点G ,若∠BAC=30°,下列结论:①EF ⊥AC ;②四边形ADFE 为平行四边形;③AD=4AG ;④△DBF ≌△EFA ,其中正确结论的序号是( ) A. ①②④ B.①③ C.②③④ D.①②③④10. 在▱ABCD 中,∠ACB=25°,现将▱ABCD 沿EF 折叠,使点C 与点A 重合,点D 落在G 处,则∠GFE 的度数( )A.135°B.120°C.115°D.100°(第9题图) (第10题图)二、填空题(每小题3分,共24分)11.一个多边形的每一个内角都是140,则这个多边多边形是______边形.12.已知37m =⨯若,a b 是两个两个连续整数,且a m b <<,则a b +=__________ 13.某校体育期末考核“立定跳远”、“800米”、“仰卧起坐”三项,并按3:5:2的比重算出期末成绩.已知小林这三项的考试成绩分别为80分、90分、100分,则小林的体育期末成绩为______分.14.设7a =,23b =+,132c =-,则a ,b ,c 从小到大的顺序是_________.15.把方程21230x x --=化为2()x m n +=,(其中m ,n 为常数)的形式后为_____________16. 如图,▱ABCD 的对角线AC,BD 相交于点O,点E,F 分别是线段AO,BO 的中点.若AC+BD=24cm,△OAB 的周长是18cm,则EF= cm.17. 如图,是一个长为30m ,宽为20m 的长方形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为5322m ,那么小道进出口的宽度应为______m .18. 已知平行四边形ABCD 的周长为28,自顶点A 作AE ⊥DC 于点E , AF ⊥BC 于点F .若AE=3,AF=4,则CE+CF=_________.三、解答题(共8大题,共66分) 19.(6分)计算:(1)11842432-+÷ (2) 2(65)(65)(-5)π+-+20.(8分)解方程:2(1)460x x --=22(2)4(1)9(2)x x +=-21.(8分)八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制): 甲 7 8 9 7 10 10 9 10 10 10 乙10879810109109(1)甲队成绩的中位数是_______分,乙队成绩的众数是_______分; (2)计算甲队的平均成绩和方差;(3)已知乙队成绩的方差是12分,则成绩较为整齐的是哪一队.22.(8分)如12,x x 是一元二次方程20(0)ax bx c a ++=≠的两根,那么12b x x a+=-,12c x x a∙=,这就是著名的韦达定理。

2017~2018学年第二学期初二数学期中考试试卷及答案

2017~2018学年第二学期初二数学期中考试试卷及答案

2017~2018学年第二学期期中考试试卷初 二 数学 2018.04一、选择题:(本大题共8小题,每小题2分,共16分.)1.下列图形中,既是轴对称图形又是中心对称图形的是2.若分式23x x +-的值为零,则A.3x = B.3x =- C.2x = D.2x =- 3.若反比例函数的图象经过点(2,3)-,则该反比例函数图象一定经过点A.(2,3)-B.(2,3)--C.(2,3)D.(1,6)--4. 一个不透明的盒子中装有3个红球,2个黄球,这些球除了颜色外其余都相同,从中随机摸出3个小球,则事件“所摸3个球中必含有红球”是A.确定事件B.必然事件C.不可能事件D.随机事件5.如图,△ABC 中,∠ACB=90°,∠ABC=25°,以点C 为旋转中心顺时针旋转后得到△A ′B ′C ,且点A 在边A ′B ′上,则旋转角的度数为A .65°B . 60°C .50°D . 40°6.如图,在□ABCD 中,BM 是ABC ∠的平分线,交CD 于点M ,且DM=2, □ABCD 的周长是14,则BC 的长等于A .2 B . 2. 5 C .3 D . 3. 5(第5题) (第6题) (第7题) (第8题)7.如图,P 为边长为2的正方形ABCD 的对角线BD 上任一点,过点P 作PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF .给出以下4个结论:①AP=EF ;②AP ⊥EF ;③EF 最短长度为;④若∠BAP=30°时,则EF 的长度为2.其中结论正确的有A .①②③B .①②④C .②③④D .①③④8.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数(0)k y x x=>与AB 相交于点D ,与BC 相交于点E ,若3BD AD =,且ODE ∆的面积是9,则k 的值是A. 92 B. 74 C. 245D. 12 二、 填空题:(本大题共10小题,每小题2分,共20分.)9.使式子11-x 有意义的x 的取值范围是 . 10.分式3212x y 、213x y 的最简公分母是 . 11.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复.下表是活动中的一组数据,则摸到白球的概率约是__________.12.关于x 的方程122x a x x +=--有增根,则a 的值为 . 13.若点A (a ,b )在反比例函数2y x =的图像上,则代数式ab -4的值为________. 14.平行四边形ABCD 的周长是30,AC ,BD 相交于点O ,OAB ∆的周长比OBC ∆的周长大3,则AB = .15.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为 。

【最新】2017-2018学年八年级数学(浙教版)下册期中测试卷及答案

【最新】2017-2018学年八年级数学(浙教版)下册期中测试卷及答案

2017-2018学年八年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.化简的结果是()A.B.±C.2 D.±22.下列三条线段能构成直角三角形的是()A.4,5,6 B.1,2,3 C.3,6,9 D.6,8,103.下列关于正比例函数y=3x的说法中,正确的是()A.当x=3时,y=1B.它的图象是一条过原点的直线C.y随x的增大而减小D.它的图象经过第二、四象限4.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直 D.对角线平分对角5.估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间6.直线y=ax+b经过第一、二、四象限,则直线y=bx﹣a的图象只能是图中的()A.B.C.D.7.在?ABCD中,BC边上的高为AE=4,AB=5,EC=2,则?ABCD的周长等于()A.12 B.16 C.16或24 D.208.将直线y=2x向右平移2个单位所得的直线的解析式是()A.y=2x+2 B.y=2x﹣2 C.y=2(x﹣2)D.y=2(x+2)9.如图是用火柴棍摆成的边长分别是1、2、3根火柴棍时的正方形,当边长为6根火柴棍时,摆出的正方形所用的火柴棍的根数为()A.60 B.84 C.96 D.11210.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(每小题4分,共24分)11.当x<1时,=.12.顺次连接矩形四条边的中点,所得到的四边形一定是形.13.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是度.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.15.如图所示,函数y1=|x|和y2=kx+b的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.A.60 B.84 C.96 D.11210.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(每小题4分,共24分)11.当x<1时,=.12.顺次连接矩形四条边的中点,所得到的四边形一定是形.13.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是度.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.15.如图所示,函数y1=|x|和y2=kx+b的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.第2页(共24页)A.60 B.84 C.96 D.11210.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(每小题4分,共24分)11.当x<1时,=.12.顺次连接矩形四条边的中点,所得到的四边形一定是形.13.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是度.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.15.如图所示,函数y1=|x|和y2=kx+b的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.第2页(共24页)A.60 B.84 C.96 D.11210.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(每小题4分,共24分)11.当x<1时,=.12.顺次连接矩形四条边的中点,所得到的四边形一定是形.13.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是度.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.15.如图所示,函数y1=|x|和y2=kx+b的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.第2页(共24页)A.60 B.84 C.96 D.11210.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(每小题4分,共24分)11.当x<1时,=.12.顺次连接矩形四条边的中点,所得到的四边形一定是形.13.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是度.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.15.如图所示,函数y1=|x|和y2=kx+b的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.第2页(共24页)A.60 B.84 C.96 D.11210.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(每小题4分,共24分)11.当x<1时,=.12.顺次连接矩形四条边的中点,所得到的四边形一定是形.13.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是度.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.15.如图所示,函数y1=|x|和y2=kx+b的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.第2页(共24页)A.60 B.84 C.96 D.11210.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(每小题4分,共24分)11.当x<1时,=.12.顺次连接矩形四条边的中点,所得到的四边形一定是形.13.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是度.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.15.如图所示,函数y1=|x|和y2=kx+b的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.第2页(共24页)A.60 B.84 C.96 D.11210.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(每小题4分,共24分)11.当x<1时,=.12.顺次连接矩形四条边的中点,所得到的四边形一定是形.13.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是度.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.15.如图所示,函数y1=|x|和y2=kx+b的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.第2页(共24页)A.60 B.84 C.96 D.11210.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(每小题4分,共24分)11.当x<1时,=.12.顺次连接矩形四条边的中点,所得到的四边形一定是形.13.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是度.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.15.如图所示,函数y1=|x|和y2=kx+b的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.第2页(共24页)A.60 B.84 C.96 D.11210.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(每小题4分,共24分)11.当x<1时,=.12.顺次连接矩形四条边的中点,所得到的四边形一定是形.13.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是度.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.15.如图所示,函数y1=|x|和y2=kx+b的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.第2页(共24页)A.60 B.84 C.96 D.11210.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(每小题4分,共24分)11.当x<1时,=.12.顺次连接矩形四条边的中点,所得到的四边形一定是形.13.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是度.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.15.如图所示,函数y1=|x|和y2=kx+b的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.第2页(共24页)A.60 B.84 C.96 D.11210.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(每小题4分,共24分)11.当x<1时,=.12.顺次连接矩形四条边的中点,所得到的四边形一定是形.13.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是度.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.15.如图所示,函数y1=|x|和y2=kx+b的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.第2页(共24页)A.60 B.84 C.96 D.11210.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(每小题4分,共24分)11.当x<1时,=.12.顺次连接矩形四条边的中点,所得到的四边形一定是形.13.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是度.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.15.如图所示,函数y1=|x|和y2=kx+b的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.第2页(共24页)A.60 B.84 C.96 D.11210.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(每小题4分,共24分)11.当x<1时,=.12.顺次连接矩形四条边的中点,所得到的四边形一定是形.13.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是度.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.15.如图所示,函数y1=|x|和y2=kx+b的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.第2页(共24页)A.60 B.84 C.96 D.11210.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(每小题4分,共24分)11.当x<1时,=.12.顺次连接矩形四条边的中点,所得到的四边形一定是形.13.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是度.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.15.如图所示,函数y1=|x|和y2=kx+b的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.第2页(共24页)A.60 B.84 C.96 D.11210.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(每小题4分,共24分)11.当x<1时,=.12.顺次连接矩形四条边的中点,所得到的四边形一定是形.13.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是度.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.15.如图所示,函数y1=|x|和y2=kx+b的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.第2页(共24页)A.60 B.84 C.96 D.11210.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(每小题4分,共24分)11.当x<1时,=.12.顺次连接矩形四条边的中点,所得到的四边形一定是形.13.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是度.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.15.如图所示,函数y1=|x|和y2=kx+b的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.第2页(共24页)A.60 B.84 C.96 D.11210.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(每小题4分,共24分)11.当x<1时,=.12.顺次连接矩形四条边的中点,所得到的四边形一定是形.13.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是度.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.15.如图所示,函数y1=|x|和y2=kx+b的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.第2页(共24页)A.60 B.84 C.96 D.11210.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(每小题4分,共24分)11.当x<1时,=.12.顺次连接矩形四条边的中点,所得到的四边形一定是形.13.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是度.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.15.如图所示,函数y1=|x|和y2=kx+b的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.第2页(共24页)A.60 B.84 C.96 D.11210.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(每小题4分,共24分)11.当x<1时,=.12.顺次连接矩形四条边的中点,所得到的四边形一定是形.13.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是度.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.15.如图所示,函数y1=|x|和y2=kx+b的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.第2页(共24页)A.60 B.84 C.96 D.11210.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(每小题4分,共24分)11.当x<1时,=.12.顺次连接矩形四条边的中点,所得到的四边形一定是形.13.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是度.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.15.如图所示,函数y1=|x|和y2=kx+b的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.第2页(共24页)A.60 B.84 C.96 D.11210.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(每小题4分,共24分)11.当x<1时,=.12.顺次连接矩形四条边的中点,所得到的四边形一定是形.13.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是度.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.15.如图所示,函数y1=|x|和y2=kx+b的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.第2页(共24页)A.60 B.84 C.96 D.11210.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(每小题4分,共24分)11.当x<1时,=.12.顺次连接矩形四条边的中点,所得到的四边形一定是形.13.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是度.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.15.如图所示,函数y1=|x|和y2=kx+b的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.第2页(共24页)。

八年级下册数学期中测试卷及答案2017浙教版

八年级下册数学期中测试卷及答案2017浙教版

精心整理八年级下册数学期中测试卷及答案2017浙教版一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1..2.AC3.A.C4.边升起;C.13名同学中至少有两名同学的出生月份相同.3个事件的概率分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P(C)的大小关系正确的是()A.P(B)20.(8分)粗心的小明在计算减去一个分式时,误将减号抄成了加号,算得的结果为,请你帮他算出正确的结果,并取一组合适的a、b的值代入求值.21.(8分)如图,在平面直角坐标系中,A(0,4),B(-3,0).(1)①画出线段AB关于y轴对称线段AC;②将线段AC绕点C顺时针旋转一个角,得到对应线段CD,使得AD//x 轴,请画出线段CD;(2)判断四边形ABCD的形状;(3)若直线平分四边形ABCD的面积,请直接写出实数k的值.22.(10分)“低碳环保,你我同行”.两年来,扬州市区的公共自行车给市民出行带来切实方便.电视台记者在某区街头随机选取了市民进行调查,调查的问题是“您大概多久使用一次公共自行车?”,将本次调查结果归为四种情况:A.每天都用;B.经常使用;C.偶尔使用;D.从未使用.将这次调查情况整理并绘制如下两幅统计图:根据图中的信息,解答下列问题:(1)本次活动共有位市民参与调查;(2)补全条形统计图和扇形统计图;(3)扇形统计图中A项所对应的圆心角的度数为(4)根据统计结果,若该区有46万市民,请估算每天都用公共自行车的市民约有多少人?23.(8分)已知线段AB、BC,∠ABC=90°,求作矩形ABCD.(1)小王同学的作图痕迹如图1,请你写出他的作法;(2)请你再设计另一种尺规作图的方法作出所求图形,保留痕迹,不必写作法.24.(8分)在三只乒乓球上,分别写有三个不同的正整数(用a、b、c表示),三只乒乓球除标的数字不同外,其余都相同,将三只乒乓球放在一个不透明的盒中搅拌均匀,无放回的从中依次摸出2只乒乓球,将球上面的数字相加求和.当和为偶数时,记为事件A,当和为奇数时,记为事件B.(1)设计一组a、b、c的值,使得事件A为必然发生的事件.(2)设计一组a、b、c的值,使得事件B发生的概率大于事件A发生的概率.25.(10分)已知:如图,在□ABCD中,AE是BC边上的高,将沿方向平移,使点E与点C重合,得.(1)求证:;(2)若,当AB与BC满足什么数量关系时,四边形是菱形?并说明理由.注:(直角三角形中30°角所对直角边等于斜边的一半).26(10分)观察下面的变形规律:…解答下列问题:(1)若n为正整数,请你猜想=;(2)证明你的猜想;(3)计算:27.(12分)如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明.(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC 于H,试求PG+PH的值,并说明理由.28.(12分)如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD 面积的;(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.一、选择题(共8小题,每题3分,共24分)题号12345678答案CBCACADB二、填空题(每空3分,计30分)9、100;10、-3;11、12、1;13、14;14、15、4;16、0,617、1.5;18、(63,32)三、解答题(共96分)19、计算(每小题5分,共10分)解:(1) 原式=-------------2分=--------4分=--------5分(2)原式=…………2分=…………4分=………………5分20.解:=………3分………6分代入求值,其中……………8分21、(1)图略………………………2分(2)平行四边形………4分(3)………8分22.(1)200;……………………………2分(2)………6分(3)18…8分(4)46×5%=2.3(万人).。

2017-2018学年度第二学期浙教版八年级期中考试备考数学试卷

2017-2018学年度第二学期浙教版八年级期中考试备考数学试卷

………订…:___________考号:………○……………绝密★启用前2017-2018学年度第二学期 教版八年级期中考试备考数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.本卷25题,答卷时间100分,满分120分 答案1.(本题3分)下列图形中既是轴对称图形,又是中心对称图形的是( )A. B. C. D.2.(本题3分)下列计算,正确的是( )A. (−2)2=-2B. (−2)×(−2)=2C. 3 2− 2=3D. 8+ 2= 103.(本题3分)a 是 的整数部分,则a 为( )A. -1B. 1C. 0D. -2 4.(本题3分)若m 、n 是一元二次方程x 2−5x −2=0的两个实数根,则m +n −mn 的值是( )A. −7B. 7C. 3D. −3 5.(本题3分)在平行四边形ABCD 中,AB =3 cm ,BC =5 cm ,对角线AC ,BD 相交于点O ,则OA 的取值范围是( ) A. 2 cm <OA <5 cm B. 2 cm <OA <8 cm C. 1 cm <OA <4 cm D. 3 cm <OA <8 cm 6.(本题3分)某开发公司今年一月份收益达50万元,且一月份、二月份、三月份的收益共为175万元,问二、三月平均每月的增长率是多少?设平均每月的增长率为x ,根据题意可列方程( )A. 50(1+x )2=175B. 50+50(1+x )2=175C. 50(1+x )+50(1+x )2=175D. 50+50(1+x )+50(1+x )2=175 7.(本题3分)方差反映了一组数据的波动大小.有两组数据,甲组数据:-1,-1,0,1,2;乙组数据:-1,-1, 0,1,1;它们的方差分别记为S 甲2和S 乙2,则……装……………订……………线……※不※※要※※在※※线※※内※※答………………○…A. S甲2=S乙2 B. S甲2>S乙2 C. S甲2<S乙2 D. 无法比较8.(本题3分)小华班上比赛投篮,每人5次,如图是班上所有学生的投篮进球数的扇形统计图,则下列关于班上所有学生投进球数的统计量正确的是()A. 中位数是3个B. 中位数是2.5个C. 众数是2个D. 众数是5个9.(本题3分)如图,在▱ABCD中,AB=4,BC=5,对角线相交于点O,过点O的直线分别交AD,BC于点E,F,且OE=1.5,则四边形EFCD的周长为( )A. 10B. 12C. 14D. 1610.(本题3分)如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P、Q分别从点A、B同时开始移动,点P的速度为1 cm/秒,点Q的速度为2 cm/秒,点Q移动到点C后停止,点P也随之停止运动下列时间瞬间中,能使△PBQ的面积为15cm²的是()A. 2秒钟B. 3秒钟C. 4秒钟D. 5秒钟二、填空题(计32分)11.(本题4分)分式x−2有意义时,x的取值范围是_____.12.(本题4分)若y=x−3+3−x+2,则x y =_____________.13.(本题4分)已知a-b=2+3,b-c=3-2,求a-c的值是___________。

【新课标】浙教版最新2018年八年级数学下册期中考试模拟试题及答案解析一

【新课标】浙教版最新2018年八年级数学下册期中考试模拟试题及答案解析一

浙教版2017-2018学年度下学期期中模拟试题八年级数学试卷一、选择题(每小题2分,共20分)1. 在下列方程中,是一元二次方程的是( ) A. x+y=0B. x+5=0C. x2-2014=0D. x-x1=0 2. 下列计算正确的是( ) A.3+2=5 B. 2·3=6C.8-2=6D.8÷2=43. 已知一个多边形的内角和是540°,则这个多边形是( ) A . 六边形 B . 七边形 C . 四边形D . 五边形4. 用配方法解方程x2+4x+1=0,配方后的方程是( A ) A. (x+2)2=3 B. (x-2)2=3 C. (x-2)2=5D. (x+2)2=55. 王老师对甲、乙两人五次数学成绩进行统计,两人平均成绩均为90分,方差S 甲2=12,S 乙2=51,则下列说法正确的是( )A .甲同学的成绩更稳定B .乙同学的成绩更稳定C .甲、乙两位同学的成绩一样稳定D . 不能确定6. 某中学篮球队12名队员的年龄情况如下表,则这个队队员年龄的众数和中位数分别是( )A. 15,16B. 15,15C. 15,15.5D. 16,157. 已知关于x 的方程ax2+bx+c=0(a ≠0),则下列判断中不正确的是( ) A . 若方程有一根为1,则a+b+c=0B . 若a ,c 异号,则方程必有解C . 若b=0,则方程两根互为相反数D . 若c=0,则方程有一根为08. 在一幅长80cm ,宽50cm 的长方形风景画的四周镶一条金色纸边,制成一幅长方形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm ,那么x 满足的方程(化为一般形式)是( )A . x2+130x-1400=0B . x2+65x-350=0C . x2-130x-1400=0D . x2-65x-350=09. 如果关于x 的一元二次方程kx2-12 k x+1=0有两个不相等的实数根,那么k 的取值范围是( ) A . k <21 B . k <21且k ≠0 C . -21≤k <21 D . -21≤k <21且k ≠0 10. 如图,在长方形ABCD 中,AD=6,AB=4,点E 、G 、H 、F 分别在AB 、BC 、CD 、AD 上,且AF =CG =2,BE =DH =1,点P 是直线EF 、GH 之间任意一点,连结PE 、PF 、PG 、PH ,则△PEF 和△PGH 的面积和为( )A . 5B . 6C . 7D . 8二、填空题(每小题3分,共24分)11. 已知关于x 的方程x2+kx+3=0的一个根为x=3,则方程的另一个根为.12. 同学们对公园的滑梯很熟悉吧!如图是某公园新增设的一台滑梯,该滑梯高度AC=2米,滑梯AB 的坡比是1∶2(即AC:BC=1∶2),则滑梯AB 的长是米.13. 计算(15+4)2015·(15-4)2016= .14. 某种产品原来售价为200元,经过连续两次大幅度降价处理,现按72元的售价销售. 设平均每次降价的百分率为x ,列出方程:.15. 如图,小明要给正方形桌子买一块正方形桌布. 铺成图1时,四周垂下的桌布长度均为20cm ;铺成图2时,四周垂下的桌布都是等腰直角三角形,且桌面四个角的顶点恰好在桌布边上,则要买桌布的边长是cm.16. 如果一个平行四边形一个内角的平分线分它的一边为1∶2的两部分,那么称这样的平行四边形为“协调平行四边形”,当“协调边”为3时,这个平行四边形的周长为.17. 在△ABC 中,已知两边a=3,b=4,第三边为c . 若关于x 的方程x2+(c-4)x+41=0有两个相等的实数根,则该三角形的面积是 .18. 如图,在平行四边形ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连结EF 、CF ,则下列结论中一定成立的是(把所有正确结论的序号都填在横线上). ①∠DCF =21∠BCD ;②EF =CF ;③S △BEC =2S △CEF ;④∠DFE =3∠AEF.三、解答题(共56分) 19. (8分)计算:(1)(-6)2-25+2)3( ; (2)(18-24)÷6+(1-3)2.20. (8分)解方程: (1)2x2-x-1=0; (2)(2x+1)2=(x-1)2.21. (7分)如图所示,在?荀ABCD 中,E ,F 分别是AC ,CA 的延长线上的点,且CE=AF. 求证:BF ∥DE .22. (8分)如图,在5×5的正方形网格中,每个小正方形的边长为1,请在所给网格中按下列要求画出图形.(1)已知点A在格点(即小正方形的顶点)上,画一条线段AB,长度为10,且点B在格点上. (2)以上题所画的线段AB为一边,另外两条边长分别为5,13. 画一个△ABC,使点C在格点上(只需画出符合条件的一个三角形).(3)所画出的△ABC的边AB上的高线长为 .(直接写出答案)23. (8分)甲乙两人在相同条件下各射靶10次,甲10次射靶的成绩的情况如图所示,乙10次射靶的成绩依次是:3环、4环、5环、8环、7环、7环、8环、9环、9环、10环.(1)请在图中画出乙的射靶成绩的折线图.(2)请将下表填完整:平均数方差中位数命中9环及以上次数甲7 1.2乙 4.8 3(3)请从下列两个不同角度对这次测试结果进行分析.①从平均数和方差相结合看(分析谁的成绩稳定些);②从平均数和中位数相结合看(分析谁的成绩好些).24. (8分)商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件. 设每件商品降价x 元. 据此规律,请回答:(1)商场日销售量增加件,每件商品盈利 元(用含x 的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?25. (9分)小明和同桌小聪在课后复习时,对一道思考题进行了认真地探索.思考题:如图,一架2.5米长的梯子AB 斜靠在竖直的墙DC 上,这时B 到墙底端DC 的距离为0.7米.如果梯子的顶端沿墙下滑0.4米,那么点B 将向外移动多少米? (1)请你将小明对“思考题”的解答补充完整;解:设点B 将向外移动x 米,即BB1=x ,则B1C =x +0.7,A1C =AC -AA1=227.05.2 -0.4=2,而A1B1=2.5,在Rt △A1B1C 中,由B1C2+A1C2=A1B12,得方程,解方程得x 1=,x 2=,∴点B 将向外移动米.(2)解完“思考题”后,小聪提出了如下两个问题:问题①:在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么? 问题②:在“思考题”中,梯子的顶端从A处沿墙DC 下滑的距离与点B 向外移动的距离,有可能相等吗?为什么?请你解答小聪提出的这两个问题.参考答案期中测试(1.1—4.3)一、选择题1—5. CBDAA 6—10. ACBDC 二、填空题 11. x=1 12. 25 13. 4-1514. 200(1-x )2=72 15. (80+402) 16. 8或10 17. 6或2518. ①②④ 【点拨】如图,分别延长EF 、CD 相交于点G. ∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,AB =CD ,又∵AD =2AB ,F 是AD 的中点,∴DF =DC ,∴∠DCF =∠DFC ,又∵∠DFC =∠FCB ,∴∠DCF =∠DFC =∠FCB ,∴∠DCF =21∠BCD ,∴①正确;∵AB ∥CD ,∴∠BEC =∠ECD ,又∵CE ⊥AB ,∴∠ECD =90°,又∵∠A =∠FDG ,AF =DF ,∠AFE =∠DFG ,∴△AFE ≌△DFG (ASA ),∴EF =GF ,∴EF =CF ,∴②正确;∵S △BEC =21BE ×CE ,S △ECG =21CG ×CE ,又∵E 在线段AB 上,∴BE <AB =CD <CG ,∴S △BEC <S △ECG ,又∵EF =GF ,∴S △EFC =S △FCG (等底同高的三角形面积相等),∴S △ECG =2S △EFC ,∴S △BEC <2S △EFC ,∴③错误;∵FG =FC ,∴∠G =∠FCG ,∴∠AEF =∠FCG ,∴∠BCD =2∠AEF ,又∵∠BCD =∠A ,∴∠A =2∠AEF ,又∵∠DFE =∠A +∠AEF ,∴∠DFE =3∠AEF ,∴④正确. 故答案填①②④.三、解答题19. (1)4 (2)2-320. (1)x1=1,x2=-21(2)x1=0,x2=-2 21. ∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB=CD. ∴∠1=∠2,∠3=∠4,又∵AF=CE ,∴在△ABF 和△CDE 中,有AB=CD ,∠3=∠4,AF=CE ,∴△ABF ≌△CDE ,∴∠F=∠E ,∴BF ∥DE.22. (1)(2)图略 (3)10710 23. (1)如图(2)7 1 7 7.5(3)①∵平均数相同,S 甲2<S 乙2,∴甲的成绩比乙的成绩稳定; ②∵平均数相同,甲的中位数<乙的中位数,乙的成绩比甲的成绩好些. 24. (1)2x (50-x )(2)由题意得:(50-x )(30+2x )=2100 化简得:x2-35x+300=0 解得:x1=15,x2=20由于该商场为了尽快减少库存,则x=15不合题意,舍去. 所以x=20. 答:每件商品降价20元,商场日盈利可达2100元. 25. (1)(x+0.7)2+22=2.52 0.8 -2.2(舍去) 0.8(2)①不会是0.9米,若AA1=BB1=0.9米,则A1C=2.4米-0.9米=1.5米,B1C=0.7米+0.9米=1.6米,1.52+1.62=4.81,2.52=6.25,∵A1C2+B1C2≠A1B12,∴该题的答案不会是0.9米.②有可能. 设梯子顶端从A 处下滑x 米,点B 向外也移动x 米,则有(x+0.7)2+(2.4- x )2=2.52,解得:x1=1.7或x2=0(舍去),∴当梯子顶端从A 处下滑1.7米时,点B 向外也移动1.7米,即梯子顶端从A处沿墙AC下滑的距离与点B向外移动的距离有可能相等.。

2017-2018学年浙教版八年级下册期中考试数学测试卷及答案

2017-2018学年浙教版八年级下册期中考试数学测试卷及答案

2017-2018学年八年级数学下册期中检测题(时间:100分钟满分:120分)、精心选一选(每小题3分,共30分) 1.下列计算结果正确的是() A. 2+ 5 = 7 B . 3 2- 2 = 32.某小组7位同学的中考体育测试成绩 (满分30分)依次为27, 30, 29, 27, 30, 28, 30,则这组数据的众数与中位数分别是 ()A . 30, 27B . 30, 29C . 29, 30D . 30, 283.学校广播站要招聘 1名记者,小明、小亮和小丽报名参加了 3项素质测试,成绩如F 表:采访写作 计算机 创意设计 小明 70分 60分 86分 小亮90分 75分 51分 小丽60分84分72分现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权比由 3 :5 : 2变成5 : 3 : 2,成绩变化情况是()A .小明增加最多B .小亮增加最多C .小丽增加最多D .三人的成绩都增加4. 若关于x 的方程x 2 + 2x - 3 = 0与亠=丄有一个解相同,则a 的值为()x + 3 x — a A . 1 B . 1 或—3 C . — 1 D . — 1 或 3 5.若 2v a v 3,则〔(2 — a ) 2— . (a — 3) 2等于() A. 两地气温的平均数相同B. 甲地气温的中位数是 6C C .乙地气温的众数是 4CD .乙地气温相对比较稳定aA. a B A ./ — a C . — ■/— a D . — '-/a8 .已知关于x 的一元二次方程(k — 2)2x 2 + (2k + 1)x + 1 = 0有两个不相等的实数根 k 的取值范围是()C. 2X 5 = 10a7.已知a v b ,化简—-a — b——a D .亠型+疋的结果是(5— 2a B . 1 — 2a C . 2a — 5 D . 2a — 1 甲、乙两地去年A . k> 3B . k>3C . k>3且k半2D . k>4且k-29.王叔叔从帀场上买了一块长80 cm,宽70 cm 的长万形铁皮,准备制作一个工具箱.女口图,他将长方形铁皮的四个角各剪掉一个边长x cm 的正方形后,剩余的部分刚好能围成一个底面积为3000 cm 2的无盖长方体工具箱,根据题意列方程为()A. (80 — x)(70 — X) = 3000B. 80X 70 — 4x 2= 3000 C . (80 — 2x)(70 — 2x)= 3000 2D . 80 X 70 — 4x — (70+ 80)x = 30001 1 110 .若x 为实数,且X 2+ ~2+ 3(X + 一)= 2,则x + -的值为() A . — 4 B . 4 C . — 4 或 1 D . 4 或—1 二、细心填一填(每题4分,共24分) 11 .若代数式73 2x有意义,则x 的取值范围是___.x — 2-12 .已知实数 x , y 满足(x 2+ y 2)2— 9 = 0,则 x 2+ y 2= ____ .人数*13.国家规定“中小学生每天在校体育活动时间不低于1小时” •为此,我市就“你每天在校体育活动时间是多少”的问题随机调查了某区 300名初中学生.根据调查结果绘制14•数据1, 3, 5,12, a ,其中整数a 是这组数据的中位数,则该组数据的平均数是15 .如果方程2x 2— 2x + 3m — 4 = 0有两个不相等的实数根,那么化简|m — 2| -寸m 2— 8m + 16的结果是 _______ .16. _________________________________________________________________ 已知关于x 的方程x — (a + b )x + ab — 1 = 0, X 1, X 2是此方程的两个实数根 ,现给 出三个结论:①X 1^ X 2;②X 1X 2< ab ;③x/+ X 22v a 2 + b 2.则正确结论的序号是 _________________________________ _ .(填 上你认为正确结论的所有序号 )三、耐心做一做(共66分) 17. (8分)计算或解方程:f组------- 成的统计图(部分)如图所示,其中分组情况是: 1 h < t v 1.5 h ; D 组:t > 1.5 h .根据上述信息 组. A 组:t v 0.5 h ; B 组:0.5 h w t v 1 h ; C 组:,你认为本次调查数据的中位数应落在 000-0 oo Co- 420-86 4 2⑵(2x + 1)2+ 4(2x + 1)+ 3= 0.⑴3 45■ ;5x 3 2318. (6分)同学们已经学习了不少关于二次根式的知识,老师为了解同学们掌握知识的情况,请同学们根据所给条件求式子.25—x2+ .15—x2的值,可达达却把题目看错了,根据条件他得到25 —X2—15- x2= 2 ,你能利用达达的结论求出.25—x2+ 15-X2的值吗?219. (7分)做一个底面积为24 cm ,长,宽,高的比为4:2: 1的长方体•求:(1) 这个长方体的长、宽、高分别是多少?(2) 长方体的表面积是多少?(2) 根据上表,可以算得该公司员工月收入的平均数为6276元,你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.21. (7分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元,可售出180个,定价每增加1元,销售量将减少10个;定价每减少1元,销售量将增加10个.因受库存影响,每批进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?22. (9分)已知关于x的一元二次方程x2—2(k—1)x+ k2= 0有两个实数根冷,x2.(1)求实数k的取值范围;⑵是否存在实数k,使X1+ X2= X1X2—5•若存在,求出实数k的值;若不存在,请说明理由.23. (10分)王大伯几年前承包了甲、乙两片荒山,各栽了100棵杨梅树,成活率为98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算出甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;(2)试通过计算说明,哪个山上的杨梅产量较稳定?24. (12分)某厂生产一种旅行包,每个旅行包的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订一个,订购的全部旅行包的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过550个.(1)设销售商一次订购量为x个,旅行包的实际出厂单价为y元,写出当一次订购量超过100个时,y与x的函数关系式;(2)求当销售商一次订购多少个旅行包时,可使该厂获得利润6000元?(售出一个旅行包的利润=实际出厂单价一成本)2017-2018学年七年级数学下册期中检测题(时间:100分钟满分:120分)一、精心选一选(每小题3分,共30分)1.下列计算结果正确的是(C )rA. 2+ 5 = 7B. 3 2- 2 = 3C. 2X 5 = 10 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年八年级数学下册期中测试题(时间:100分钟满分:120分)一、精心选一选(每小题3分,共30分)1.下列计算结果正确的是( )A.2+5=7 B.32-2=3 C.2×5=10 D.25=5102.某小组7位同学的中考体育测试成绩(满分30分)依次为27,30,29,27,30,28,30,则这组数据的众数与中位数分别是( )A.30,27 B.30,29 C.29,30 D.30,283.学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下表:现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权比由3∶5∶2变成5∶3∶2,成绩变化情况是( )A.小明增加最多 B.小亮增加最多 C.小丽增加最多 D.三人的成绩都增加4.若关于x的方程x2+2x-3=0与2x+3=1x-a有一个解相同,则a的值为( )A.1 B.1或-3 C.-1 D.-1或35.若2<a<3,则(2-a)2-(a-3)2等于( )A.5-2a B.1-2a C.2a-5 D.2a-16.甲、乙两地去年12月前5天的日平均气温如图所示,下列描述错误的是( )A.两地气温的平均数相同B.甲地气温的中位数是6℃C.乙地气温的众数是4℃D.乙地气温相对比较稳定7.已知a<b,化简aa-ba2-2ab+b2a的结果是( )A.aB.-a C.--a D.-a8.已知关于x的一元二次方程(k-2)2x2+(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是( )A.k>43 B.k>34C.k>43且k≠2 D.k>34且k≠29.王叔叔从市场上买了一块长80 cm,宽70 cm的长方形铁皮,准备制作一个工具箱.如图,他将长方形铁皮的四个角各剪掉一个边长x cm的正方形后,剩余的部分刚好能围成一个底面积为3000 cm2的无盖长方体工具箱,根据题意列方程为( )A.(80-x)(70-x)=3000B.80×70-4x2=3000C.(80-2x)(70-2x)=3000D.80×70-4x2-(70+80)x=300010.若x为实数,且x2+1x2+3(x+1x)=2,则x+1x的值为( )A.-4 B.4 C.-4或1 D.4或-1二、细心填一填(每题4分,共24分)11.若代数式3-2xx-2有意义,则x的取值范围是__ __.12.已知实数x,y满足(x2+y2)2-9=0,则x2+y2=__ __.13.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,我市就“你每天在校体育活动时间是多少”的问题随机调查了某区300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t <0.5 h;B组:0.5 h≤t<1 h;C组:1 h≤t<1.5 h;D组:t≥1.5 h.根据上述信息,你认为本次调查数据的中位数应落在__ __组.14.数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是__ __.15.如果方程2x2-2x+3m-4=0有两个不相等的实数根,那么化简|m-2|-m2-8m+16的结果是__ _.16.已知关于x的方程x2-(a+b)x+ab-1=0,x1,x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③x12+x22<a2+b2.则正确结论的序号是__ __.(填上你认为正确结论的所有序号)三、耐心做一做(共66分)17.(8分)计算或解方程:(1)345÷15×23223; (2)(2x+1)2+4(2x+1)+3=0.18.(6分)同学们已经学习了不少关于二次根式的知识,老师为了解同学们掌握知识的情况,请同学们根据所给条件求式子25-x2+15-x2的值,可达达却把题目看错了,根据条件他得到25-x2-15-x2=2,你能利用达达的结论求出25-x2+15-x2的值吗?19.(7分)做一个底面积为24 cm2,长,宽,高的比为4∶2∶1的长方体.求:(1)这个长方体的长、宽、高分别是多少?(2)长方体的表面积是多少?20.(7分)某公司共25名员工,下表是他们月收入的资料.(1)该公司员工月收入的中位数是__ __元,众数是__ __元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元,你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.解:21.(7分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元,可售出180个,定价每增加1元,销售量将减少10个;定价每减少1元,销售量将增加10个.因受库存影响,每批进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?解:22.(9分)已知关于x的一元二次方程x2-2(k-1)x+k2=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k,使x1+x2=x1x2-5.若存在,求出实数k的值;若不存在,请说明理由.解:23.(10分)王大伯几年前承包了甲、乙两片荒山,各栽了100棵杨梅树,成活率为98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算出甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;(2)试通过计算说明,哪个山上的杨梅产量较稳定?24.(12分)某厂生产一种旅行包,每个旅行包的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订一个,订购的全部旅行包的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过550个.(1)设销售商一次订购量为x个,旅行包的实际出厂单价为y元,写出当一次订购量超过100个时,y与x的函数关系式;(2)求当销售商一次订购多少个旅行包时,可使该厂获得利润6000元?(售出一个旅行包的利润=实际出厂单价-成本)解:2017-2018学年八年级数学下册期中测试题(时间:100分钟满分:120分)一、精心选一选(每小题3分,共30分)1.下列计算结果正确的是( C )A.2+5=7 B.32-2=3 C.2×5=10 D.25=5102.某小组7位同学的中考体育测试成绩(满分30分)依次为27,30,29,27,30,28,30,则这组数据的众数与中位数分别是( B )A.30,27 B.30,29 C.29,30 D.30,283.学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下表:现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权比由3∶5∶2变成5∶3∶2,成绩变化情况是( B )A.小明增加最多 B.小亮增加最多 C.小丽增加最多 D.三人的成绩都增加4.若关于x的方程x2+2x-3=0与2x+3=1x-a有一个解相同,则a的值为( C )A.1 B.1或-3 C.-1 D.-1或35.若2<a<3,则(2-a)2-(a-3)2等于( C )A.5-2a B.1-2a C.2a-5 D.2a-16.甲、乙两地去年12月前5天的日平均气温如图所示,下列描述错误的是( C )A.两地气温的平均数相同B.甲地气温的中位数是6℃C.乙地气温的众数是4℃D.乙地气温相对比较稳定7.已知a<b,化简aa-ba2-2ab+b2a的结果是( D )A.aB.-a C.--a D.-a8.已知关于x的一元二次方程(k-2)2x2+(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是( D )A.k>43 B.k>34C.k>43且k≠2 D.k>34且k≠29.王叔叔从市场上买了一块长80 cm,宽70 cm的长方形铁皮,准备制作一个工具箱.如图,他将长方形铁皮的四个角各剪掉一个边长x cm的正方形后,剩余的部分刚好能围成一个底面积为3000 cm2的无盖长方体工具箱,根据题意列方程为( C )A.(80-x)(70-x)=3000B.80×70-4x2=3000C.(80-2x)(70-2x)=3000D.80×70-4x2-(70+80)x=300010.若x为实数,且x2+1x2+3(x+1x)=2,则x+1x的值为( A )A.-4 B.4 C.-4或1 D.4或-1 二、细心填一填(每题4分,共24分)11.若代数式3-2xx-2有意义,则x的取值范围是__x≤32__.12.已知实数x,y满足(x2+y2)2-9=0,则x2+y2=__3__.13.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,我市就“你每天在校体育活动时间是多少”的问题随机调查了某区300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t <0.5 h;B组:0.5 h≤t<1 h;C组:1 h≤t<1.5 h;D组:t≥1.5 h.根据上述信息,你认为本次调查数据的中位数应落在__C__组.14.数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是__4.8或5或5.2__.15.如果方程2x2-2x+3m-4=0有两个不相等的实数根,那么化简|m-2|-m2-8m+16的结果是__-2__.16.已知关于x的方程x2-(a+b)x+ab-1=0,x1,x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③x12+x22<a2+b2.则正确结论的序号是__①②__.(填上你认为正确结论的所有序号)三、耐心做一做(共66分)17.(8分)计算或解方程:(1)345÷15×23223; (2)(2x+1)2+4(2x+1)+3=0.解:原式=20 6 解:x1=-1,x2=-218.(6分)同学们已经学习了不少关于二次根式的知识,老师为了解同学们掌握知识的情况,请同学们根据所给条件求式子25-x2+15-x2的值,可达达却把题目看错了,根据条件他得到25-x2-15-x2=2,你能利用达达的结论求出25-x2+15-x2的值吗?解:由题意得(25-x2-15-x2)(25-x2+15-x2)=25-x2-(15-x2)=10,∵25-x2-15-x2=2,∴25-x2+15-x2=519.(7分)做一个底面积为24 cm2,长,宽,高的比为4∶2∶1的长方体.求:(1)这个长方体的长、宽、高分别是多少?(2)长方体的表面积是多少?解:(1)设长方体的高为x,则长为4x,宽为2x,由题意得4x×2x=24解得x=3,则4x=43,2x=2 3.答:这个长方体的长、宽、高分别是4 3 cm,2 3 cm,3 cm (2)(43×23+3×43+23×3)×2=(24+12+6)×2=42×2=84(cm2).答:长方体的表面积是84 cm220.(7分)某公司共25名员工,下表是他们月收入的资料.(1)该公司员工月收入的中位数是__3400__元,众数是__3000__元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元,你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.解:(1)3400;3000 (2)用中位数或众数来描述更为恰当.理由:平均数受极端值45000元的影响,且只有3个人的工资达到了6276元,∴用平均数来描述不恰当21.(7分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元,可售出180个,定价每增加1元,销售量将减少10个;定价每减少1元,销售量将增加10个.因受库存影响,每批进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?解:设每个商品的定价是x元,由题意得(x-40)[180-10(x-52)]=2000,整理得x2-110x+3000=0,解得x1=50,x2=60.当x=50时,进货180-10(x-52)=200(个),不符合题意,舍去;当x=60时,180-10(x-52)=100(个).答:该商品每个定价为60元,进货100个22.(9分)已知关于x 的一元二次方程x 2-2(k -1)x +k 2=0有两个实数根x 1,x 2.(1)求实数k 的取值范围;(2)是否存在实数k ,使x 1+x 2=x 1x 2-5.若存在,求出实数k 的值;若不存在,请说明理由.解:(1)k ≤12(2)∵x 1+x 2=2(k -1),x 1·x 2=k 2,∴2(k -1)=k 2-5,k 2-2k -3=0,解得k 1=3(不合题意,舍去),k 2=-1,∴k =-123.(10分)王大伯几年前承包了甲、乙两片荒山,各栽了100棵杨梅树,成活率为98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算出甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;(2)试通过计算说明,哪个山上的杨梅产量较稳定?解:(1)x 甲=40(千克),x 乙=40(千克),总产量为40×100×98%×2=7840(千克) (2)S 甲2=14[(50-40)2+(36-40)2+(40-40)2+(34-40)2]=38(千克2),S 乙2=14[(36-40)2+(40-40)2+(48-40)2+(36-40)2]=24(千克2),∵S 甲2>S 乙2,∴乙山上的杨梅产量较稳定24.(12分)某厂生产一种旅行包,每个旅行包的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订一个,订购的全部旅行包的出厂单价就降低0.02元.根据市场调查,销售商一次订购量不会超过550个.(1)设销售商一次订购量为x个,旅行包的实际出厂单价为y元,写出当一次订购量超过100个时,y与x的函数关系式;(2)求当销售商一次订购多少个旅行包时,可使该厂获得利润6000元?(售出一个旅行包的利润=实际出厂单价-成本)解:(1)y=62-0.02x(100<x≤550) (2)当x=100时,获利为(60-40)×100=2000(元)<6000元,∴x>100,则[60-(x-100)×0.02-40]x=6000,解得x1=600(舍去),x2=500,∴当销售商一次订购500个旅行包时,可使该厂获得利润6000元。

相关文档
最新文档