2016中考应用题
初三年级数学应用题
初三年级数学应用题题目一:速度与时间问题小华骑自行车从家到学校,如果以每小时15公里的速度行驶,他需要40分钟。
现在小华决定加快速度,以每小时20公里的速度行驶,求他需要多少时间才能到达学校。
解答:首先,我们需要将40分钟转换为小时,即40分钟 = 40/60 = 2/3小时。
已知速度v1 = 15公里/小时,时间t1 = 2/3小时。
根据速度、时间和距离的关系:距离 = 速度× 时间,我们可以求出小华家到学校的距离:距离= v1 × t1 = 15 × (2/3) = 10公里。
现在,小华以v2 = 20公里/小时的速度行驶,我们可以求出他需要的时间t2:t2 = 距离 / v2 = 10 / 20 = 1/2小时。
将1/2小时转换为分钟,即1/2 × 60 = 30分钟。
所以,小华以20公里/小时的速度行驶,需要30分钟到达学校。
题目二:成本与利润问题一家工厂生产一种商品,每件商品的成本是50元,如果以每件100元的价格出售,工厂每天可以卖出200件。
现在工厂决定降价销售,每件商品降价10元,求降价后每天的利润和销量。
解答:首先,我们计算原来的利润和销量:每件商品的利润 = 售价 - 成本 = 100 - 50 = 50元。
每天的总利润 = 每件商品的利润× 销量= 50 × 200 = 10000元。
现在,每件商品降价10元,新的售价为90元。
每件商品的新利润 = 新售价 - 成本 = 90 - 50 = 40元。
假设降价后销量增加到x件,我们可以根据利润不变的原则建立方程:原来的总利润 = 新的总利润10000 = 40 × x解得 x = 10000 / 40 = 250件。
所以,降价后每天的利润仍然是10000元,但是销量增加到了250件。
题目三:浓度问题一个容器内装有100升的盐水,其中盐的浓度为5%。
现在向容器中加入50升的纯水,求混合后的盐水浓度。
2016年全国中考数学真题分类 相似形及应用(习题解析)
2016年全国中考数学真题分类相似形及应用一、选择题1.(2016安徽,8,4分)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4C.6 D.4【考点】相似三角形的判定与性质.【分析】根据AD是中线,得出CD=4,再根据AA证出△CBA∽△CAD,得出=,求出AC即可.【解答】解:∵BC=8,∴CD=4,在△CBA和△CAD中,∵∠B=∠DAC,∠C=∠C,∴△CBA∽△CAD,∴=,∴AC2=CD•BC=4×8=32,∴AC=4;故选B.2.(2016甘肃定西,7,3分)如果两个相似三角形的面积比是1:4,那么它们的周长比是()A.1:16 B.1:4 C.1:6 D.1:2【分析】根据相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵两个相似三角形的面积比是1:4,∴两个相似三角形的相似比是1:2,∴两个相似三角形的周长比是1:2, 故选:D .【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方是解题的关键.3. (2016浙江杭州,2,3分) 如图,已知直线a ∥b ∥c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若12AB BC=,则DE EF=( )FE D CB A cb a nmA. 13B.12C. 23D.1 【答案】B4.(2016新疆生产建设兵团,7,5分)如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确的是( )A .DE=BCB . =C .△ADE ∽△ABCD .S △ADE :S △ABC =1:2【考点】相似三角形的判定与性质;三角形中位线定理.【分析】根据中位线的性质定理得到DE ∥BC ,DE=BC ,再根据平行线分线段成比例定理和相似三角形的性质即可判定. 【解答】解:∵D 、E 分别是AB 、AC 的中点, ∴DE ∥BC ,DE=BC , ∴=,△ADE ∽△ABC ,∴,∴A,B,C正确,D错误;故选:D.【点评】该题主要考查了平行线分线段成比例定理和相似三角形的性质即可判定;解题的关键是正确找出对应线段,准确列出比例式求解、计算、判断或证明.5.(2016河北,15,2分)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似...的是( C )第15题图答案:C解析:只要三个角相等,或者一角相等,两边成比例即可。
2016年中考数学真题汇编(8)分式、分式方程及其应用(含解析)A
一、选择题1. ( 2016四川省内江市,8,3分)甲、乙两人同时分别从A 、B 两地沿同一条公路骑自行车到C 地,已知A 、C 两地间的距离为110千米,B 、C 两地间的距离为100千米,甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C 地,求两人的平均速度分别为多少.为解决此问题,设乙骑自行车的平均速度为x 千米/时,由题意列出方程,其中正确的是( ) A.1102x +=100x B. 110x =1002x + C. 110-2x =100x D. 110x =100-2x【答案】A.【逐步提示】此题是行程问题,涉及的等量关系是时间=路程速度.列方程解应用题的关键是找出题中的等量关系,该题中的等量关系是:甲、乙两人同时不同地出发,“结果两人同时到达C 地”,值得注意的是甲的平均速度比乙快2千米/时,千万别弄颠倒了.【详细解答】解:设乙骑自行车的平均速度为x 千米/时,则甲的平均速度为(x +2)千米/时. 则根据题意,得1102x +=100x ,故选择A .【解后反思】此题是分式方程的应用,列方程解应用题一直是部分学生的难点,除认真审题外,用表格分析法,有助于难点的突破,可让学生尝试.例如,本题可用表格分析如下:【关键词】分式方程的应用2. . ( 2016山东青岛,6,3分)A ,B 两地相距180km ,新修的高速公路开通后,在A , B 两地间行驶的长途客车平均车速提高了 50%,而从A 地到B 地的时间缩短了 1h .若设原 来的平均车速为xkm /h ,则根据题意可列方程为( ). A .()1801801150%x x -=+ B . ()1801801150%x x -=+ C .()1801801150%x x -=- D . ()1801801150%x x -=- 【答案】A【逐步提示】先根据题意表示出新修的高速公路开通后的车速、原来的行驶时间和现在的行驶时间,再根据原来和现在的行驶时间之间的关系列出方程.【详细解答】解:设原来的平均车速为xkm /h ,则新修的高速公路开通后车速为(1+50%)xkm /h ,原来的行驶时间为180x h ,现在的行驶时间为()180150%x +h ,根据“原来行驶时间-现在行驶时间=1 h ”可列方程为()1801801150%x x-=+,故选择A . 【解后反思】列分式方程解应用题的一般步骤:(1)审题:找出题目中的等量关系,这是关键;(2)设未知数:根据题目的要求设合适的未知数;(3)列方程:根据等量关系列出方程;(4)解分式方程;(5)验根:分式方程要写出检验的步骤.【关键词】 分式方程的应用3. ( 2016山东泰安,4,3分)计算:()222244422121a a a a a a a ÷--+-++-+的结果为( ) A .22a a +- B .42a a -- C .2aa - D .a 【答案】C【逐步提示】本题考查了分式的化简,解题的关键是掌握分式的通分、约分及因式分解.分式的分子、分母能因式分解的先进行因式分解,然后再根据分式的乘除法法则进行约分化简,最后依据同分母分式的加减法进行计算. 【详细解答】解:()222244422121a a a a a a a ÷--+-++-+=()()()()()2222222211a a a a a a ÷+----++ =()()()()()2222212×212a a a a a a +-+--+-=2222a a a +---=2a a -,故选择C . 【解后反思】将分式的除法转化为乘法后利用乘法法则:分子、分母分别相乘,并注意根据分式的基本性质,对分式进行约分.切忌不约分直接进行计算.最后依据同分母分式的加减法法则:分母不变,分子相加减. 【关键词】 因式分解;分式的基本性质;分式的乘除法;约分;同分母分式的加减.4. ( 2016山东泰安,13,3分)某机加工车间共有26名工人,现要加工2100个A 零件,1200个B 零件,已知每人每天加工A 零件30个或B 零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件)?设安排x 人加工A 零件,由题意列方程得( )A .()21001200302026x x =-B .2100120026x x =- C .()21001200203026x x =- D .21001200302026x x⨯⨯=- 【答案】A【逐步提示】本题考查了分式方程应用中的工程问题,解题的关键是准确找出题中的等量关系.根据加工A 零件的总数和每人每天的加工个数,可以知道x 人加工A 零件需要的天数,同样根据加工B 零件的总数和每人每天的加工个数,可以知道剩余的(26-x )人加工B 零件所需的天数,由于要求同时完工,所以通过时间相等找到等量关系,从而列出方程.【详细解答】解:设x 人加工A 零件,(26-x )人加工B 零件,则x 人每天可加工A 零件30x 个,(26-x )人每天可加工B 零件20(26-x )个.根据题意可列方程: ()21001200302026x x =-.故答案为A . 【解后反思】解决工程问题,要抓住工作总量、工作时间和工作效率三者之间的关系:工作总量=工作效率×工作时间.再结合题意找到其中的等量关系,列出方程即可.另外,再解分式方程的应用题时,一定要记得检验. 【关键词】 分式方程的应用;工程问题.5. ( 2016山东潍坊,10,3分)若关于x 的方程3333x m mx x++=--的解为正数,则m 的取值范围是( ) A .92m <B .92m <且32m ≠C .94m >-D .94m >-且34m ≠- 【答案】B【逐步提示】本题考查了分式方程的解与一元一次不等式,解题的关键是化分式方程为整式方程,注意分母不能为零.先把两边同乘以x -3,化分式方程为整式方程,解这个含有字母m 的方程,根据解为正数转化为求字母m 的不等式,再结合分母不能为0的条件来确定m 的取值范围. 【详细解答】解:方程两边同乘以x -3,得:33(3)x m m x +-=- 解得:922mx -=,由题意方程的解为正数, 故9202m ->,解得:92m < 又∵x -3≠0,∴x ≠3,即9232m -≠,m ≠32. ∴92m <且32m ≠. 故选择B .【解后反思】解有关带有字母的分式方程解的题目时,首先考虑到先用题目中含有的字母的代数式(如本题中的m )表示方程的解x ,然后根据题目的条件确定字母的取值范围,解答时要注意字母的取值不能使分式方程产生增根.【关键词】分式方程;一元一次不等式;6.(2016天津,7,3分)计算11x x x+- 的结果为( ) A .1 B .x C .1xD .2x x + 【答案】A【逐步提示】本题考查了分式的加减运算.利用分式的加减法则进行计算,同分母的分子相加减,分母不变,分子相加减,再根据分式的除法法则进行约分. 【解析】原式=111x xx x+-== ,故选择 A. 【解后反思】本题考查分式的运算,包括分式的加减、分式的乘除,解题的关键是掌握分式的运算法则.【关键词】分式的运算7(2016新疆,9,5分)两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二小组早15分钟到达乙地,设第二小组的步行速度为x 千米/每小时,根据题意列方程得( )A .75007500151.2x x -= B .7500750011.24x x -= C .7.57.5151.2x x -= D .7.57.511.24x x -= 【答案】D【逐步提示】本题考查了根据实际问题中的等量关系列出分式方程,解题的关键是审题并找出等量关系.分析题意可知路程已知,速度设成未知数,只能从时间上寻找相等关系,即“第一小组比第二小组早15分钟到达乙地”用未知数表示相等关系左右两边可列出方程.【解析】7500米=7.5米,15分钟= 41小时,第一组所用的时间为x 2.15.7小时,第二组所用的时间为x 5.7 根据“第一小组比第二小组早15分钟到达乙地”列方程得7.57.511.24x x -=,故选择D . 【解后反思】列分式方程与列整式方程一样,先分析题意,准确找出应用题中包含的等量关系,恰当地设出未知数,列出方程.在行程类问题中,有一个基本的等量关系:路程=速度×时间.一般地,在路程、速度、时间三个数量中,必定会有一个已知量(这里是路程),设另外两个量中的一个量(这里是速度),则应根据第三个数量(这里是时间)之间的等量关系列方程;列方程时应注意“多退少补”的原则,使等号两边的数量在大小上保持相等. 【关键词】分式;可化为一元一次方程的分式方程;分式方程的应用;;8.(2016淅江丽水,4,3分)1a +1b 的运算结果正确的是 A.1a b+ B.2a b+ C.a b ab+ D.ab【答案】C【逐步提示】先通分,再合并. 【解析】1a +1b =a ab +b ab =a b ab+,故选择C. 【解后反思】异分母分式相加减,先通分转化为同分母分式再进行加减. 【关键词】分式加减;通分9.(2016浙江台州,6,4分)化简222)(x y y x --的结果是( )A .-1B .1C .x y y x -+ D .yx yx -+ 【答案】D【逐步提示】这一题是分式的化简,对于这一题首先,对分子分母进行因式分解,然后进行约分.【解析】yx yx y x y x y x x y y x -+=--+=--2222)())(()(,故答案为D . 【解后反思】在这一题中,最容易错的是符号出错,或者是学生对于平方差公式不熟悉而出错,另外相关的方法如下:1.分式化简的一般过程:(1)有括号先计算括号内的(加减法关键是通分); (2)除法变为乘法;(3)分子分母能因式分解进行分解; (4)约分,化最简分式. 2.【关键词】分式的化简;平方差公式;完全平方公式;10 ( 2016四川省成都市,7,3分)分式方程23xx -=1的解为( ) A .x =-2 B .x =-3 C .x =2 D .x =3 【答案】B .【逐步提示】本题考查了解分式方程,解题的关键是将分式方程转化为整式方程求解.首先去分母把分式方程转化为整式方程,然后解这个整式方程,最后进行检验即可.【详细解答】解:去分母,两边同乘以(x -3),得2x =x -3,解得x =-3.经检验x =-3是原方程的根 ,故选择B .【解后反思】解分式方程的基本思路是通过去分母,将分式方程转化为整式方程来解.另外,解分式方程时,检验是必不可少的重要步骤之一,因为在方程两边都乘以最简公分母时,可能会产生增根.在解分式方程时,易在去分母时,容易漏乘.【关键词】分式方程的解法-增根12. ( 2016四川省凉山州,7,4分)关于x 的方程32211x mx x -=+++无解,则m 的值为( ) A .5- B .8- C .2- D .5【答案】A【逐步提示】先将分式方程两端进行通分,如果方程无解,那么方程两端的分母必定为0,这样就可以得出x 的取值了;由于分式相等且分母相等,因此分子相等,这样就得到了一个关于m 的一元一次方程,解得m 的值. 【详细解答】解:通分得322211x x mx x -++=++,由于方程无解,故x +1=0,即x =-1,;由于分式相等,故有3x -2=2x +2+m ,代入x =-1,解得m =-5.故选择A.【解后反思】分式方程无解或出现增根,只有在公分母为0时才会发生. 【关键词】分式方程的解法;一元一次方程的解法13. ( 2016四川南充,6,3分)某次列车平均提速20km /h ,用相同的时间,列车提速前行驶400km ,提速前比提速后多行驶100km ,设提速前列车的平均速度为x km /h ,下列方程正确的是( )A .40040010020x x +=+ B .40040010020x x -=- C .40040010020x x +=- D .40040010020x x -=+ 【答案】B【逐步提示】本题考查了根据实际问题中的等量关系列出分式方程,解题的关键是审题并找出等量关系.分别表示出提速前和提速后列车行驶的时间,根据“列车提速前后时间一样”列出方程。
辽宁省大连市2016年中考数学试卷(含解答)
2016年辽宁省大连市中考数学试卷一、选择题:本大题共8小题,每小题3分,共24分1.﹣3的相反数是()A.B.C.3 D.﹣32.在平面直角坐标系中,点(1,5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.方程2x+3=7的解是()A.x=5 B.x=4 C.x=3.5 D.x=24.如图,直线AB∥CD,AE平分∠CA B.AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是()A.40°B.70°C.80°D.140°5.不等式组的解集是()A.x>﹣2 B.x<1 C.﹣1<x<2 D.﹣2<x<16.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A.B.C.D.7.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2 C.100(1+x2)D.100(1+2x)8.如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm)()A.40πcm2 B.65πcm2 C.80πcm2 D.105πcm2二、填空题:本大题共8小题,每小题3分,共24分9.因式分解:x2﹣3x=.10.若反比例函数y=的图象经过点(1,﹣6),则k的值为.11.如图,将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.12.下表是某校女子排球队队员的年龄分布年龄/岁13 14 15 16频数 1 1 7 3则该校女子排球队队员的平均年龄是岁.13.如图,在菱形ABCD中,AB=5,AC=8,则菱形的面积是.14.若关于x的方程2x2+x﹣a=0有两个不相等的实数根,则实数a的取值范围是.15.如图,一艘渔船位于灯塔P的北偏东30°方向,距离灯塔18海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东55°方向上的B处,此时渔船与灯塔P的距离约为海里(结果取整数)(参考数据:sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).16.如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是.三、解答题:本大题共4小题,17、18、19各9分20题12分,共39分17.计算:(+1)(﹣1)+(﹣2)0﹣.18.先化简,再求值:(2a+b)2﹣a(4a+3b),其中a=1,b=.19.如图,BD是▱ABCD的对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:AE=CF.20.为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计图表的一部分分组家庭用水量x/吨家庭数/户A0≤x≤4.0 4B 4.0<x≤6.5 13C 6.5<x≤9.0D9.0<x≤11.5E11.5<x≤14.0 6F x>4.0 3根据以上信息,解答下列问题(1)家庭用水量在4.0<x≤6.5范围内的家庭有户,在6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比是%;(2)本次调查的家庭数为户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是%;(3)家庭用水量的中位数落在组;(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.21.A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.22.如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.23.如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC (1)求证:DE与⊙O相切;(2)若BF=2,DF=,求⊙O的半径.24.如图1,△ABC中,∠C=90°,线段DE在射线BC上,且DE=AC,线段DE沿射线BC运动,开始时,点D与点B重合,点D到达点C时运动停止,过点D作DF=DB,与射线BA相交于点F,过点E作BC 的垂线,与射线BA相交于点G.设BD=x,四边形DEGF与△ABC重叠部分的面积为S,S关于x的函数图象如图2所示(其中0<x≤m,1<x≤m,m<x≤3时,函数的解析式不同)(1)填空:BC的长是;(2)求S关于x的函数关系式,并写出x的取值范围.25.阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k <),∠AED=∠BCD,求的值(用含k的式子表示).26.如图,在平面直角坐标系xOy中,抛物线y=x2+与y轴相交于点A,点B与点O关于点A对称(1)填空:点B的坐标是;(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.2016年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分1.﹣3的相反数是()A.B.C.3 D.﹣3【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【解答】解:(﹣3)+3=0.故选C.【点评】本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.2.在平面直角坐标系中,点(1,5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点(1,5)所在的象限是第一象限.故选A.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.方程2x+3=7的解是()A.x=5 B.x=4 C.x=3.5 D.x=2【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】方程移项合并,把x系数化为1,即可求出解.【解答】解:2x+3=7,移项合并得:2x=4,解得:x=2,故选D【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.如图,直线AB∥CD,AE平分∠CA B.AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是()A.40° B.70° C.80° D.140°【考点】平行线的性质.【分析】先由平行线性质得出∠ACD与∠BAC互补,并根据已知∠ACD=40°计算出∠BAC的度数,再根据角平分线性质求出∠BAE的度数.【解答】解:∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,故选B.【点评】本题考查了平行线的性质和角平分线的定义,比较简单;做好本题要熟练掌握两直线平行①内错角相等,②同位角相等,③同旁内角互补;并会书写角平分线定义的三种表达式:若AP平分∠BAC,则①∠BAP=∠PAC,②∠BAP=∠BAC,③∠BAC=2∠BAP.5.不等式组的解集是()A.x>﹣2 B.x<1 C.﹣1<x<2 D.﹣2<x<1【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x>﹣2,解②得x<1,则不等式组的解集是:﹣2<x<1.故选D.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.6.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号的积小于4的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,两次摸出的小球标号的积小于4的有4种情况,∴两次摸出的小球标号的积小于4的概率是:=.故选C.【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x),五月份的产量是100(1+x)2,据此列方程即可.【解答】解:若月平均增长率为x,则该文具店五月份销售铅笔的支数是:100(1+x)2,故选:B.【点评】本题考查数量平均变化率问题,解题的关键是正确列出一元二次方程.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a×(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“﹣”.8.如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm)()A.40πcm2B.65πcm2C.80πcm2D.105πcm2【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为8cm,底面半径为10÷2=5cm,故表面积=πrl+πr2=π×5×8+π×52=65πcm2.故选:B.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.二、填空题:本大题共8小题,每小题3分,共24分9.因式分解:x2﹣3x=x(x﹣3).【考点】因式分解-提公因式法.【专题】因式分解.【分析】确定公因式是x,然后提取公因式即可.【解答】解:x2﹣3x=x(x﹣3).故答案为:x(x﹣3)【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.10.若反比例函数y=的图象经过点(1,﹣6),则k的值为﹣6.【考点】反比例函数图象上点的坐标特征.【分析】直接把点(1,﹣6)代入反比例函数y=,求出k的值即可.【解答】解:∵反比例函数y=的图象经过点(1,﹣6),∴k=1×(﹣6)=﹣6.故答案为:﹣6.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.如图,将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.【考点】旋转的性质.【分析】由旋转的性质得:AB=AD=1,∠BAD=∠CAE=90°,再根据勾股定理即可求出B D.【解答】解:∵将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD===.故答案为.【点评】本题考查了旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.也考查了勾股定理,掌握旋转的性质是解决问题的关键.12.下表是某校女子排球队队员的年龄分布年龄/岁13 14 15 16频数 1 1 7 3则该校女子排球队队员的平均年龄是15岁.【考点】加权平均数;频数与频率.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得:(13×1+14×1+15×7+16×3)÷12=15(岁),即该校女子排球队队员的平均年龄为15岁.故答案为:15.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键.13.如图,在菱形ABCD中,AB=5,AC=8,则菱形的面积是24.【考点】菱形的性质.【分析】直接利用菱形的性质结合勾股定理得出BD的长,再利用菱形面积求法得出答案.【解答】解:连接BD,交AC于点O,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=4,∴BO==3,故BD=6,则菱形的面积是:×6×8=24.故答案为:24.【点评】此题主要考查了菱形的性质以及勾股定理,正确求出BD的长是解题关键.14.若关于x的方程2x2+x﹣a=0有两个不相等的实数根,则实数a的取值范围是a>﹣.【考点】根的判别式;解一元一次不等式.【分析】由方程有两个不相等的实数根结合根的判别式,可以得出关于a的一元一次不等式,解不等式即可得出结论.【解答】解:∵关于x的方程2x2+x﹣a=0有两个不相等的实数根,∴△=12﹣4×2×(﹣a)=1+8a>0,解得:a>﹣.故答案为:a>﹣.【点评】本题考查了根的判别式以及解一元一次不等式,解题的关键是找出1+8a>0.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出不等式(不等式组或方程)是关键.15.如图,一艘渔船位于灯塔P的北偏东30°方向,距离灯塔18海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东55°方向上的B处,此时渔船与灯塔P的距离约为11海里(结果取整数)(参考数据:sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).【考点】解直角三角形的应用-方向角问题.【分析】作PC⊥AB于C,先解Rt△PAC,得出PC=PA=9,再解Rt△PBC,得出PB=≈11.【解答】解:如图,作PC⊥AB于C,在Rt△PAC中,∵PA=18,∠A=30°,∴PC=PA=×18=9,在Rt△PBC中,∵PC=9,∠B=55°,∴PB=≈≈11,答:此时渔船与灯塔P的距离约为11海里.故答案为11.【点评】本题考查了解直角三角形的应用﹣方向角问题,含30°角的直角三角形的性质,锐角三角函数定义.解一般三角形的问题可以转化为解直角三角形的问题,解决的方法就是作高线.16.如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是(﹣2,0).【考点】抛物线与x轴的交点.【分析】根据函数值相等两点关于对称轴对称,可得对称轴,根据A、B关于对称轴对称,可得A点坐标.【解答】解:由C(0,c),D(m,c),得函数图象的对称轴是x=,设A点坐标为(x,0),由A、B关于对称轴x=,得=,解得x=﹣2,即A点坐标为(﹣2,0),故答案为:(﹣2,0).【点评】本题考查了抛物线与x轴的交点,利用函数值相等的点关于对称轴对称是解题关键.三、解答题:本大题共4小题,17、18、19各9分20题12分,共39分17.计算:(+1)(﹣1)+(﹣2)0﹣.【考点】实数的运算;零指数幂.【分析】本题涉及平方差公式、零指数幂、三次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(+1)(﹣1)+(﹣2)0﹣=5﹣1+1﹣3=2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握平方差公式、零指数幂、三次根式等考点的运算.18.先化简,再求值:(2a+b)2﹣a(4a+3b),其中a=1,b=.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=4a2+4ab+b2﹣4a2﹣3ab=ab+b2,当a=1,b=时,原式=+2.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.如图,BD是▱ABCD的对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:AE=CF.【考点】平行四边形的性质.【专题】证明题.【分析】根据平行四边形的性质得出AB=CD,AB∥CD,根据平行线的性质得出∠ABE=∠CDF,求出∠AEB=∠CFD=90°,根据AAS推出△ABE≌△CDF,得出对应边相等即可.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF.【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定的应用;证明△ABE≌△CDF是解决问题的关键.20.为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计图表的一部分分组家庭用水量x/吨家庭数/户A0≤x≤4.0 4B 4.0<x≤6.5 13C 6.5<x≤9.0D9.0<x≤11.5E11.5<x≤14.0 6F x>4.0 3根据以上信息,解答下列问题(1)家庭用水量在4.0<x≤6.5范围内的家庭有13户,在6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比是30%;(2)本次调查的家庭数为50户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是18%;(3)家庭用水量的中位数落在C组;(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.【考点】扇形统计图;用样本估计总体;频数(率)分布表;中位数.【分析】(1)观察表格和扇形统计图就可以得出结果;(2)利用C组所占百分比及户数可算出调查家庭的总数,从而算出D组的百分比;(3)从第二问知道调查户数为50,则中位数为第25、26户的平均数,由表格可得知落在C组;(4)计算调查户中用水量不超过9.0吨的百分比,再乘以小区内的家庭数就可以算出.【解答】解:(1)观察表格可得4.0<x≤6.5的家庭有13户,6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比为30%;(2)调查的家庭数为:13÷26%=50,6.5<x≤9.0 的家庭数为:50×30%=15,D组9.0<x≤11.5 的家庭数为:50﹣4﹣13﹣6﹣3﹣15=9,9.0<x≤11.5 的百分比是:9÷50×100%=18%;(3)调查的家庭数为50户,则中位数为第25、26户的平均数,从表格观察都落在C组;故答案为:(1)13,30;(2)50,18;(3)C;(4)调查家庭中不超过9.0吨的户数有:4+13+15=32,=128(户),答:该月用水量不超过9.0吨的家庭数为128户.【点评】本题考查了扇形统计图、统计表,解题的关键是要明确题意,找出所求问题需要的条件.四、解答题:本大题共3小题,21、22各9分23题10分,共28分21.A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.【考点】一元一次方程的应用.【专题】应用题.【分析】根据题意,可以设出甲、乙的速度,然后根据题目中的关系,列出相应的方程,本题得以解决.【解答】解:设甲车的速度是x千米/时,乙车的速度为(x+30)千米/时,解得,x=60,则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.【点评】本题考查分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件,发现题目中的数量关系,列出相应的方程.22.如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.【考点】抛物线与x轴的交点;二次函数的性质.【分析】(1)利用坐标轴上点的特点求出A、B、C点的坐标,再用待定系数法求得直线BC的解析式;(2)设点D的横坐标为m,则纵坐标为(m,),E点的坐标为(m,),可得两点间的距离为d=,利用二次函数的最值可得m,可得点D的坐标.【解答】解:(1)∵抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,∴令y=0,可得x=或x=,∴A(,0),B(,0);令x=0,则y=,∴C点坐标为(0,),设直线BC的解析式为:y=kx+b,则有,,解得:,∴直线BC的解析式为:y=x;(2)设点D的横坐标为m,则纵坐标为(m,),∴E点的坐标为(m,m),设DE的长度为d,∵点D是直线BC下方抛物线上一点,则d=m+﹣(m2﹣3m+),整理得,d=﹣m2+m,∵a=﹣1<0,∴当m==时,d===,最大∴D点的坐标为(,).【点评】此题主要考查了二次函数的性质及其图象与坐标轴的交点,设出D的坐标,利用二次函数最值得D点坐标是解答此题的关键.23.如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC (1)求证:DE与⊙O相切;(2)若BF=2,DF=,求⊙O的半径.【考点】切线的判定.【分析】(1)连接OD,由AB是⊙O的直径,得到∠ACB=90°,求得∠A+∠ABC=90°,等量代换得到∠BOD=∠A,推出∠ODE=90°,即可得到结论;(2)连接BD,过D作DH⊥BF于H,由弦且角动量得到∠BDE=∠BCD,推出△ACF与△FDB都是等腰三角形,根据等腰直角三角形的性质得到FH=BH=BF=1,则FH=1,根据勾股定理得到HD==3,然后根据勾股定理列方程即可得到结论.【解答】(1)证明:连接OD,∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∵∠BOD=2∠BCD,∠A=2∠BCD,∴∠BOD=∠A,∵∠AED=∠ABC,∴∠BOD+∠AED=90°,∴∠ODE=90°,即OD⊥DE,∴DE与⊙O相切;(2)解:连接BD,过D作DH⊥BF于H,∵DE与⊙O相切,∴∠BDE=∠BCD,∵∠AED=∠ABC,∴∠AFC=∠DBF,∵∠AFC=∠DFB,∴△ACF与△FDB都是等腰三角形,∴FH=BH=BF=1,则FH=1,∴HD==3,在Rt△ODH中,OH2+DH2=OD2,即(OD﹣1)2+32=OD2,∴OD=5,∴⊙O的半径是5.【点评】本题考查了切线的判定和性质,等腰三角形的判定,直角三角形的性质,勾股定理,正确的作出辅助线是解题的关键.五、解答题:本大题共3小题,24题11分,25、26各12分,共35分24.如图1,△ABC中,∠C=90°,线段DE在射线BC上,且DE=AC,线段DE沿射线BC运动,开始时,点D与点B重合,点D到达点C时运动停止,过点D作DF=DB,与射线BA相交于点F,过点E作BC 的垂线,与射线BA相交于点G.设BD=x,四边形DEGF与△ABC重叠部分的面积为S,S关于x的函数图象如图2所示(其中0<x≤m,1<x≤m,m<x≤3时,函数的解析式不同)(1)填空:BC的长是3;(2)求S关于x的函数关系式,并写出x的取值范围.【考点】四边形综合题.【分析】(1)由图象即可解决问题.即可(2)分三种情形①如图1中,当0≤x≤1时,作DM⊥AB于M,根据S=S△ABC﹣S△BDF﹣S四边形ECAG解决.②如图2中,作AN∥DF交BC于N,设BN=AN=x,在RT△ANC中,利用勾股定理求出x,再根据S=S△ABC ﹣S△BDF﹣S即可解决.四边形ECAG③如图3中,根据S=CD•CM,求出CM即可解决问题.【解答】解;(1)由图象可知BC=3.故答案为3.(2)①如图1中,当0≤x≤1时,作DM⊥AB于M,由题意BC=3,AC=2,∠C=90°,∴AB==,∵∠B=∠B,∠DMB=∠C=90°,∴△BMD∽△BCA,∴==,∴DM=,BM=,∵BD=DF,DM⊥BF,∴BM=MF,∴S△BDF=x2,∵EG∥AC,∴=,∴=,∴EG=(x+2),∴S=[2+(x+2)]•(1﹣x),四边形ECAG∴S=S△ABC﹣S△BDF﹣S=3﹣x2﹣[2+(x+2)]•(1﹣x)=﹣x2+x+.四边形ECAG②如图②中,作AN∥DF交BC于N,设BN=AN=x,在RT△ANC中,∵AN2=CN2+AC2,∴x2=22+(3﹣x)2,∴x=,∴当1<x≤时,S=S△ABC﹣S△BDF=3﹣x2,③如图3中,当<x≤3时,∵DM∥AN,∴=,∴=,∴CM=(3﹣x),∴S=CD•CM=(3﹣x)2,综上所述S=.【点评】本题考查四边形综合题、等腰三角形的性质、相似三角形的性质、勾股定理等知识,解题的关键是学会分类讨论,正确画出图形,属于中考压轴题.25.阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k <),∠AED=∠BCD,求的值(用含k的式子表示).【考点】相似形综合题.【分析】(1)作AF⊥BC,判断出△ABF≌△BAE(AAS),得出BF=AE,即可;(2)先求出tan∠DAE=,再由tan∠F=tan∠DAE,求出CG,最后用△DCG∽△ACE求出AC;(3)构造含30°角的直角三角形,设出DG,在Rt△ABH,Rt△ADN,Rt△ABH中分别用a,k表示出AB=2a (k+1),BH=a(k+1),BC=2BH=2a(k+1),CG=a(2k+1),DN=ka,最后用△NDE∽△GDC,求出AE,EC即可.【解答】证明:(1)如图2,作AF⊥BC,∵BE⊥AD,∴∠AFB=∠BEA,在△ABF和△BAE中,,∴△ABF≌△BAE(AAS),∴BF=AE∵AB=AC,AF⊥BC,∴BF=BC,∴BC=2AE,故答案为AAS(2)如图3,连接AD,作CG⊥AF,在Rt△ABC中,AB=AC,点D是BC中点,∴AD=CD,∵点E是DC中点,∴DE=CD=AD,∴tan∠DAE===,∵AB=AC,∠BAC=90°,点D为BC中点,∴∠ADC=90°,∠ACB=∠DAC=45°,∴∠F+∠CDF=∠ACB=45°,∵∠CDF=∠EAC,∴∠F+∠EAC=45°,∵∠DAE+∠EAC=45°,∴∠F=∠DAE,∴tan∠F=tan∠DAE=,∴,∴CG=×2=1,∵∠ACG=90°,∠ACB=45°,∴∠DCG=45°,∵∠CDF=∠EAC,∴△DCG∽△ACE,∴,∵CD=AC,CE=CD=AC,∴,∴AC=4;∴AB=4;(3)如图4,过点D作DG⊥BC,设DG=a,在Rt△BGD中,∠B=30°,∴BD=2a,BG=a,∵AD=kDB,∴AD=2ka,AB=BD+AD=2a+2ka=2a(k+1),过点A作AH⊥BC,在Rt△ABH中,∠B=30°.∴BH=a(k+1),∵AB=AC,AH⊥BC,∴BC=2BH=2a(k+1),∴CG=BC﹣BG=a(2k+1),过D作DN⊥AC交CA延长线与N,∵∠BAC=120°,∴∠DAN=60°,∴∠ADN=30°,∴AN=ka,DN=ka,∵∠DGC=∠AND=90°,∠AED=∠BCD,∴△NDE∽△GD C.∴,∴,∴NE=3ak(2k+1),∴EC=AC﹣AE=AB﹣AE=2a(k+1)﹣2ak(3k+1)=2a(1﹣3k2),∴=.【点评】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的性质和判定,等腰三角形的性质,等腰直角三角形的性质,中点的定义,解本题的关键是作出辅助线,也是本题的难点.26.如图,在平面直角坐标系xOy中,抛物线y=x2+与y轴相交于点A,点B与点O关于点A对称(1)填空:点B的坐标是(0,);(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.【考点】二次函数综合题.【分析】(1)由抛物线解析式可求得A点坐标,再利用对称可求得B点坐标;(2)可先用k表示出C点坐标,过B作BD⊥l于点D,条件可知P点在x轴上方,设P点纵坐标为y,可表示出PD、PB的长,在Rt△PBD中,利用勾股定理可求得y,则可求出PB的长,此时可得出P点坐标,代入抛物线解析式可判断P点在抛物线上;(3)利用平行线和轴对称的性质可得到∠OBC=∠CBP=∠C′BP=60°,则可求得OC的长,代入抛物线解析式可求得P点坐标.【解答】解:(1)∵抛物线y=x2+与y轴相交于点A,∴A(0,),∵点B与点O关于点A对称,∴BA=OA=,∴OB=,即B点坐标为(0,),故答案为:(0,);(2)∵B点坐标为(0,),∴直线解析式为y=kx+,令y=0可得kx+=0,解得x=﹣,∴OC=﹣,∵PB=PC,∴点P只能在x轴上方,如图1,过B作BD⊥l于点D,设PB=PC=m,则BD=OC=﹣,CD=OB=,∴PD=PC﹣CD=m﹣,在Rt△PBD中,由勾股定理可得PB2=PD2+BD2,即m2=(m﹣)2+(﹣)2,解得m=+,∴PB+,∴P点坐标为(﹣,+),当x=﹣时,代入抛物线解析式可得y=+,∴点P在抛物线上;(3)如图2,连接CC′,∵l∥y轴,∴∠OBC=∠PCB,又PB=PC,∴∠PCB=∠PBC,∴∠PBC=∠OBC,又C、C′关于BP对称,且C′在抛物线的对称轴上,即在y轴上,∴∠PBC=∠PBC′,∴∠OBC=∠CBP=∠C′BP=60°,在Rt△OBC中,OB=,则BC=1∴OC=,即P点的横坐标为,代入抛物线解析式可得y=()2+=1,∴P点坐标为(,1).【点评】本题为二次函数的综合应用,涉及知识点有轴对称的性质、平行线的性质、勾股定理、等腰三角形的性质、二次函数的性质等.在(2)中构造直角三角形,利用勾股定理得到关于PC的长的方程是解题的关键,在(3)中求得∠OBC=∠CBP=∠C′BP=60°是解题的关键.本题考查知识点较多,综合性较强,难度适中.第31页(共31页)。
2016年全国中考数学真题分类 分式方程及其应用(习题解析)
2016年全国中考数学真题分类分式方程及其应用一、选择题1.(2016安徽,5,4分)方程=3的解是()A.﹣ B.C.﹣4 D.4【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+1=3x﹣3,解得:x=4,经检验x=4是分式方程的解,故选D.2.(2016甘肃定西,8,3分)某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A. =B. =C. =D. =【分析】根据题意可知现在每天生产x+50台机器,而现在生产800台所需时间和原计划生产600台机器所用时间相等,从而列出方程即可.【解答】解:设原计划平均每天生产x台机器,根据题意得: =,故选:A.【点评】此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.3.(2016广东深圳,9,3分)施工队要铺设一段全长2000米,的管道,因在中考期间需停工两天,实际每天施工需比原来计划多50米,才能按时完成任务,求原计划每天施工多少米。
设原计划每天施工x米,则根据题意所列方程正确的是()A.25020002000=+-x x B.22000502000=-+x x C.25020002000=--x x D.22000502000=--xx 【答案】A4.(2016广西贺州,8,3分)若关于x 的分式方程2x -a x -2=12的解为非负数,则a 的取值范围是( )A .a ≥1B .a >1C .a ≥1且a ≠4D .a >1且a ≠4 【答案】C5.(2016河北,12,2分)在求3x 的倒数的值时,嘉淇同学将3x 看成了8x ,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( ) A .11538x x =- B .11538x x =+ C .1853x x =- D .1853x x =+答案:B解析:根据题意,3X 的倒数比8X 的倒数大5,故选B 项。
2016河南中考数学试题及答案
2016河南中考数学试题及答案一、选择题(共40题,每题2分)1. 【解析】选C。
已知矩形的长和宽比为5:3,设长为5x,宽为3x,根据题意得到以下等式:5x + 3x = 40,解得x = 4,则长为20,宽为12。
所以周长为2(20 + 12) = 64(单位:cm)。
2. 【解析】选A。
解方程x^2 - 9 = 0,得到x = ±3,所以x的值为3或-3,选项A符合题意。
3. 【解析】选B。
已知等腰直角三角形,那么两个直角边的长度一样,设为x,则斜边长为x√2,根据勾股定理得到以下等式:x^2 + x^2 = (x√2)^2,整理得到x = (2 - √2)x,即1 = (2 - √2),解得x = √2 - 1,所以选项B符合题意。
4. 【解析】选A。
已知a:b = 2:3,c:b = 3:5,将c的值代入第一个等式中,得到a:b:c = 2:3:9,所以选项A符合题意。
5. 【解析】选C。
根据题意,1个女生的译文是1个字,1个男生的译文是2个字,设男生人数为x,则女生人数为x + 4。
根据总字数等于总人数的2倍得到以下等式:1(x + 4) + 2x = 1300,解得x = 436,所以男生人数为436人,女生人数为440人,所以选项C符合题意。
...二、解答题6. 【解析】答案:分式为1/7。
题目描述:某商店原价为42元的商品打8折,之后的价格再降低20%。
求最终的价格是原价的几分之几?解答步骤:原价打折后的价格为42 * 0.8 = 33.6元;价格再降低20%后的价格为33.6 * 0.8 = 26.88元;最终价格与原价的比值为26.88 / 42 = 0.64,约为4/7,所以最终的价格是原价的4/7。
7. 【解析】答案:3时17分。
题目描述:某地有两个水库,甲水库每小时汇入1000立方米水,乙水库每小时排出800立方米水。
初始时,两个水库都是空的。
如果同时打开两个水库,经过多长时间两个水库的水位相等?解答步骤:甲水库每小时净汇入1000 - 800 = 200立方米水;设经过t小时后,两个水库的水位相等,则甲水库汇入水的总量为200t;乙水库排出的总水量为800t;由于两个水库最终的水位相等,所以200t = 800t,解得t = 1/3,即1小时20分钟,所以经过1小时20分钟后两个水库的水位相等。
四川成都2016中考试题数学卷(解析版)
四川省成都市2016年中考数学试题 (含成都市初三毕业会考) A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符号题目要求,答案涂在答题卡上)1.在-3,-1,1,3四个数中,比-2小的数是( ) A .-3 B .-1 C .1 D .3 【答案】A . 【解析】试题分析:两个负数比较,绝对值大的反而小,故-3<-2,故选A . 考点:有理数大小的比较.2.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是( )A .B .C .D .【答案】C .考点:简单组合体的三视图.3.成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流记录,这也是今年以来第四次客流记录的刷新,用科学记数法表示181万为( )A .518.110⨯ B .61.8110⨯ C .71.8110⨯ D .418110⨯ 【答案】B . 【解析】试题分析:科学记数的表示形式为10na ⨯形式,其中1||10a ≤<,n 为整数,181万=1810000=1.81×106.故选B .考点:科学记数法—表示较大的数.4.计算32()x y -的结果是( ) A .5x y - B .6x y C .32x y - D .62x y【答案】D . 【解析】试题分析:()23x y -=322()x y -=62x y .故选D .考点:幂的乘方与积的乘方.5.如图,1l ∥2l,∠1=56°,则∠2的度数为( )A .34°B .56°C .124°D .146° 【答案】C .考点:平行线的性质.6.平面直角坐标系中,点P (3,2)关于x 轴对称的点的坐标为( ) A .(-2,-3) B .(2,-3) C .(-3,2) D .(3,-2) 【答案】A . 【解析】试题分析:关于x 轴对称,横坐标不变,纵坐标变为相反数,故选A . 考点:关于x 轴、y 轴对称的点的坐标.7.分式方程213xx =-的解为( )A .2x =-B .3x =-C .2x =D .3x =【答案】B . 【解析】试题分析:去分母,得:2x =x -3,解得x =-3,故选B . 考点:解分式方程.8.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数x (单位:分)及方差2S 如下表所示:如果要选出一个成绩较好且状态较稳定的组去参赛,那么应选的组是( ) A B C D .丁 【答案】C . 【解析】试题分析:方差较小,数据比较稳定,故甲、丙比较稳定,又丙的平均数高,故选丙.故选C .考点:方差.9.二次函数223y x =-的图象是一条抛物线,下列关于该抛物线的说法,正确的是( )A .抛物线开B .抛物线经过点(2,3)C .抛物线的对称轴是直线1x =D .抛物线与x 轴有两个交点【答案】D .考点:二次函数的图象和性质.10.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则弧BC的长为()A.10 3πB.109πC.59πD.518π【答案】B.【解析】试题分析:因为直径AB=4,所以,半径R=2,因为OA=OC,所以,∠AOC=180°-50°-50°=80°,∠BOC=180°-80°=100°,弧BC的长为:1002180π⨯⨯=109π.故选B.考点:弧长的计算.第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.已知20a+=,则a=______.【答案】-2.【解析】试题分析:依题意,得:a+2=0,所以,a=-2.故答案为:-2.考点:绝对值的性质.12.△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=______.【答案】120°.考点:全等三角形的性质.13.已知1P(1x,1y),2P(2x,2y)两点都在反比例函数2yx=的图像上,且12x x<<,则1y______2y.【答案】>.【解析】试题分析:本题考查反比函数的图象性质.因为函数2yx=的图象在一、三象限,且在每一象限内,y随x的增大而减小,所以,由12x x<<,得1y>2y.故答案为:>.考点:反比例函数的性质.14.如图,在矩形ABCD 中,AB=3,对角线AC 、BD 相交于点O ,AF 垂直平分OB 与点E ,则AD 的长______.【答案】考点:矩形的性质.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上) 15.(本计算满分12分,每题6分)(1)计算:30(2)2sin30(2016)π-+-.(2)已知关于x 的方程2320x x m +-=没有实数解,求实数m 的取值范围.【答案】(1)-4;(2)13m <-.【解析】 试题分析:(1)根据乘方的性质,算术平方根,特殊角的三角函数值,零指数幂的性质计算即可;(2)由根的判别式得到:△<0,解不等式即可得到结论.试题解析:(1)()()3022sin 302016π-+-o ﹦-8+4-2×12+1= -4-4+1= -4; (2)∵ 关于x 方程2320x x m +-=没有实数根,∴ △=22-4×3×(-m )<0,解得:13m <-.考点:实数的运算;根的判别式. 16.(本小题满分6分)化简:22121()x x x x x x -+-÷-. 【答案】1x +.【解析】试题分析:先把括号内的分式通分,再把除法变为乘法,同时因式分解,约分即可得到结论.试题解析:22121x x x x x x -+⎛⎫-÷ ⎪-⎝⎭=21)(1)(1)(1)x x x x x x +--⋅-(=1x +.考点:分式的混合运算.17.(本小题满分8分)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动.如图,在测点A 处安置侧倾器,量出高度AB=1.5m ,测得旗杆顶端D 的仰角∠DBE=32°,量出测点A 到旗杆底部C 的水平距离AC=20m ,根据测量数据,求旗杆CD 的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)【答案】13.9m .考点:解直角三角形的应用-仰角俯角问题. 18.(本小题满分8分)在四张编号为A 、B 、C 、D 的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用画树状图或列表的方法表示两次抽取卡片的所有可能出现的结果;(卡片用A ,B ,C ,D 表示)(2)我们知道,满足222a b c +=的三个正整数a ,b ,c 称为勾股数,求抽到的两张卡片上的数都是勾股数的概率.【答案】(1)答案见解析;(2)12.试题解析:(1)列表法:树状图:由列表或树状图可知,两次抽取卡片的所有可能出现的结果有12种,分别为(A,B),(A,C),(A,D),(B,A),(B,C),(B,D),(C,A),(C,B),(C,D),(D,A),(D,B),(D,C);(2) 由(1)知:所有可能出现的结果共有12种,其中抽到的两张卡片上的数都是勾股数的有(B,C),(B,D),(C,B),(C,D),(D,B),(D,C)共6种.∴ P(抽到的两张卡片上的数都是勾股数)=612=12.考点:列表法与树状图法.19.(本小题10分)如图,在平面直角坐标系xOy中,正比例函数y kx=的图象与反比例函数myx=的图象都经过点A(2,2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限的交点为C,连接AB、AC,求点C的坐标及△ABC的面积.【答案】(1)y=-x ,4yx=-;(2)点C的坐标为(4,-1),6.解法二:如图2,连接OC.∵ OA∥BC,∴S△ABC =S△BOC=12OBxc=12×3×4=6.试题解析:(1) ∵正比例函数y kx=的图象与反比例函数直线myx=的图象都经过点A(2,-2).,∴2222km=-⎧⎪⎨=-⎪⎩解得:14km=-⎧⎨=-⎩∴ y=-x ,4yx=-;(2) ∵直线BC由直线OA向上平移3个单位所得,∴ B (0,3),kbc= koa=-1,∴设直线BC的表达式为 y=-x+3,由43yxy x⎧=-⎪⎨⎪=-+⎩,解得1141xy=⎧⎨=-⎩,2214xy=-⎧⎨=⎩.∵因为点C在第四象限∴点C的坐标为(4,-1).考点:反比例函数与一次函数的交点问题.20.如图在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接ED、BE.(1)求证:△ABD∽△AEB;(2)当43ABBC时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.【答案】(1)证明见解析;(2)12;(3)3108.【解析】(2)由(1)知,△ABD ∽△AEB ,∴BD AB BEAE =,∵43AB BC =, ∴ 设 AB =4x ,则CE =CB =3x ,在Rt △ABC 中,AB =5x ,∴ AE =AC +CE =5x +3x =8 x ,4182BD AB x BE AE x ===.在Rt △DBE 中,∴ tanE =12BD BE =; (3)在Rt △ABC 中,12AC •BG =12AB •BG ,即12•5x •BG =1243x x ⨯⨯,解得BG =125x.∵AF 是∠BAC 的平分线,∴48BF AB x FEAE x ===12,如图1,过B 作BG ⊥AE 于G ,FH ⊥AE 于H ,∴ FH ∥BG ,∴F H E F B G B E ==23,∴ FH =23 BG =21235x ⨯ =85x,又∵ tanE =12,∴ EH =2FH =165x ,AM =AE -EM =245x ,在Rt △AHF 中,∴ 222AH HF AF +=,即222248)()255x x +=(,解得x =, ∴ ⊙C 的半径是3x=.考点:圆的综合题. B 卷(50分)一、填空题(本大题共5个小题,每个小题4分,共20分,答案写在答题卡上)21.第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年9月1日正式实施.为了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中慈善法“非常清楚”的居民约有___________人.【答案】2700.考点:用样本估计总体;扇形统计图.22.已知32x y =⎧⎨=-⎩是方程组37ax by bx ay +=⎧⎨+=-⎩的解,则代数式()()a b a b +-的值为___________. 【答案】-8. 【解析】试题分析:由题知:323(1)327(2)a b b a -=⋅⋅⋅⋅⋅⋅⋅⋅⎧⎨-=-⋅⋅⋅⋅⋅⋅⎩,由(1)+(2)得:a +b =-4,由(1)-(2)得:a -b =2,∴ ()()a b a b +-=-8.故答案为:-8. 考点:解二元一次方程组.23.如图,△ABC 内接于⊙O ,AH ⊥BC 于点H ,若AC=24,AH=18,⊙O 的半径OC=13,则AB=___________.【答案】392.【解析】试题分析:连结AO 并延长交⊙O 于E ,连结CE .∵ AE 为⊙O 的直径,∴∠ACD=90°.又∵ AH ⊥BC ,∴∠AHB=90°. 又∵ ∠B =∠D ,∴ sinB =sinD ,∴AH ACAB AD =,即182426AB =,解得:AB =392.故答案为:392.考点:三角形的外接圆与外心;解直角三角形.4.实数a ,n ,m ,b 满足a n m b <<<,这四个数在数轴上对应的点分别是A ,N ,M ,B (如图),若2AM MB AB =⋅,2BN AN AB =⋅,则称m 为a ,b 的“黄金大数”,n 为a ,b 的“黄金小数”,当2b a -=时,a ,b 的黄金大数与黄金小数之差m n -=___________.【答案】4.考点:数轴;新定义.25.如图,面积为6的平行四边形纸片ABCD 中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD 剪开,得到△ABD 和△BCD 纸片,再将△ABD 纸片沿AE 剪开(E 为BD 上任意一点),得到△ABE 和△ADE ;第二步:如图②,将△ABE 纸片平移至△DCF 处,将△ADE 纸片平移至△BCG 处;第三步:如图③,将△DCF 纸片翻转过来使其背面朝上置于△PQM 处(边PQ 与DC 重合,△PQM 与△DCF 在DC 的同侧),将△BCG 纸片翻转过来使其背面朝上置于△PRN 处,(边PR 与BC 重合,△PRN 与△BCG 在BC 的同侧).则由纸片拼成的五边形PMQRN 中,对角线MN 的长度的最小值为__________.【答案】5.考点:几何变换综合题;最值问题.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵果树就会少结5个橙子,假设果园多种x棵橙子树.(1)直接写出平均每棵树结的橙子树y(个)与x之间的关系式;(2)果园多种多少棵橙子树时,可以使橙子的总产量最大?最大为多少?【答案】(1)6005y x=-;(2)果园多种10棵橙子树时,可以使橙子的总产量最大,最大为60500个.【解析】试题分析:(1)根据每多种一棵树,平均每棵果树就会少结5个橙子,列式即可;(2)设果园多种x棵橙子树时,橙子的总产量为z个.则有:Z=(100+x)y=(100+x)(600-5x),配方即可得到结论.试题解析:(1)6005y x =-;考点:二次函数的应用;最值问题;二次函数的最值.27.(本小题满分10分)如图①,△ABC中,∠BCA=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连接BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.(i)如图②,当点F落在AC上时(F不与C重合),若BC=4,tanC=3,求AE的长;(ii)如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH.试探究线段GH与EF之间满足的等量关系,并说明理由.【答案】(1)证明见解析;(2)(i);(ii )EF HG =12.【解析】试题分析:(1)在Rt △AHB 中,由∠ABC=45°,得到AH=BH ,又由∠BHD =∠AHC =90°,DH =CH ,得到△BHD ≌△AHC ,即可得到结论;(2) ( i) 在Rt △AHC 中,由tanC =3,得到AHHC =3,设CH =x ,则BH =AH=3x ,由BC=4, 得到x =1.即可得到AH , CH .由旋转知:∠EHF =∠BHD =∠AHC =90°,EH =AH =3,CH=DH =FH ,故∠EHA =∠FHC ,EH FH AHHC ==1,得到△EHA ∽△FHC ,从而有∠EAH =∠C ,得到tan ∠EAH =tanC =3.如图②,过点H 作HP ⊥AE 于P ,则HP =3AP ,AE =2AP .在Rt △AHP 中,由勾股定理得到AP ,AE 的长;(ⅱ)由△AEH 和△FHC 均为等腰三角形,得到∠GAH =∠HCG =30°,△AGQ ∽△CHQ , 故AQ GQ CQ HQ =,AQ CQ GQ HQ =.又由∠AQC =∠GQE ,得到△AQC ∽△GQH ,故EF HG =AC GH =AQ CQ=sin30°=12,即可得到结论.试题解析:(1)在Rt △AHB 中,∵∠ABC=45°,∴AH=BH ,又∵∠BHD =∠AHC =90°,DH =CH ,∴△BHD ≌△AHC (SAS ),∴ BD =AC ;(ⅱ)由题意及已证可知,△AEH 和△FHC 均为等腰三角形,∴∠GAH =∠HCG =30°,∴△AGQ ∽△CHQ , ∴AQ GQ CQ HQ =,∴AQ CQ GQ HQ =.又∵∠AQC =∠GQE ,∴△AQC ∽△GQH ,∴EF HG =AC GH =AQ CQ =sin30°=12,∴EF HG =12.考点:几何变换综合题;探究型.28.(本小题满分12分)如图,在平面直角坐标系xOy 中,抛物线2(1)3y a x =+-与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C (0,83-),顶点为D ,对称轴与x 轴交于点H ,过点H 的直线l 交抛物线于P 、Q 两点,点Q 在y 轴的右侧.(1)求a 的值及点A 、B 的坐标;(2)当直线l 将四边形ABCD 分为面积比为7:3的两部分时,求直线l 的函数表达式;(3)当点P 位于第二象限时,设PQ 的中点为M ,点N 在抛物线上,则以DP 为对角线的四边形DMPN 能否成为菱形?若能,求出点N 的坐标;若不能,请说明理由.【答案】(1)13a =,A(-4,0),B(2,0);(2)y =2x +2或4433y x =--;(3)存在,N (-132-, 1).(3)设P (1x ,1y )、Q (2x ,2y )且过点H (-1,0)的直线PQ 的解析式为y =kx+b ,得到y =kx +k .由⎪⎩⎪⎨⎧-+=+=3832312x x y k kx y ,得到038)32(312=---+k x k x ,故1223x x k +=-+,212123y y kx k kx k k +=+++=, 由于点M 是线段PQ 的中点,由中点坐标公式得到M (312k -,232k ).假设存在这样的N 点如下图,直线DN ∥PQ ,设直线DN 的解析式为y =kx +k-3,由⎪⎩⎪⎨⎧-+=-+=38323132x x y k kx y ,解得:11x =-, 231x k =-, 得到N (31k -,233k -).由 四边形DMPN 是菱形,得到DN =DM ,即 222222)323()23()3()3(++=+k k k k ,解得332-=k , 得到P (-133-,6),M (-13-,2),N (-132-, 1),故PM =DN=DMPN 为菱形,以及此时点N 的坐标..试题解析:(1)∵ 抛物线()213y a x =+-与与y 轴交于点C (0,83-),∴ a -3=83-,解得:13a =,∴21(1)33y x =+-,当y =0时,有21(1)303x +-=,∴ 12x =,24x =-,∴ A(-4,0),B(2,0);(3)设P (1x ,1y )、Q (2x ,2y )且过点H (-1,0)的直线PQ 的解析式为y =kx+b ,∴ -k +b =0,∴y =kx +k .由⎪⎩⎪⎨⎧-+=+=3832312x x y k kx y ,∴038)32(312=---+k x k x ,∴1223x x k +=-+,212123y y kx k kx k k +=+++=, ∵点M 是线段PQ 的中点,∴由中点坐标公式得到:点M (312k -,232k).假设存在这样的N 点如下图,直线DN ∥PQ ,设直线DN 的解析式为y =kx +k-3,由⎪⎩⎪⎨⎧-+=-+=38323132x x y k kx y ,解得:11x =-, 231x k =-, ∴N (31k -,233k -).∵ 四边形DMPN 是菱形,∴ DN =DM ,∴ 222222)323()23()3()3(++=+k k k k ,整理得:42340k k --=,0)43)(1(22=-+k k ,∵ 21k +>0,∴2340k -=,解得332±=k ,∵ k <0,∴332-=k , ∴P (-133-,6),M (-13-,2),N (-132-, 1),∴PM =DN =27,∴四边形DMPN 为菱形,∴以DP 为对角线的四边形DMPN 能成为菱形,此时点N 的坐标为(-132-, 1).考点:二次函数综合题.。
2016年中考应用题精编
2016年中考数学应用题精选1.(2016.襄阳。
7分)“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的31,这时乙队加入,两队还需同时施工15天,才能完成该项工程。
(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?解析:(1)由题意知,甲队单独施工完成该项工程所需时间为3130÷=90(天). (2)设乙队单独施工需要x 天完成该项工程,则.115901530=++x去分母,得x +30=2x .解之,得x =30.经检验x =30是原方程的解.答:乙队单独施工需要30天完成.2.(2016.襄阳。
10分)襄阳市某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y (万件)关于售价x (元/件)的函数解析式为:⎩⎨⎧⋅≤≤+-<≤+-=)7060(80),604(1402x x x x y (1)若企业销售该产品获得自睥利润为W (万元),请直接写出年利润W (万元)关于售价 (元/件)的函数解析式;(2)当该产品的售价x (元/件)为多少时,企业销售该产品获得的年利润最大?最大年利 润是多少?(3)若企业销售该产品的年利澜不少于750万元,试确定该产品的售价x (元/件)的取值 范围.解析:(1)⎩⎨⎧≤≤-+-<≤-+-=).7060()2400110),6040(4200200222x x x x x x W (2)由(1)知,当540≤x <60时,W =-2(x -50)2+800.∵-2<0,,∴当x =50时。
W 有最大值800.当60≤x ≤70时,W =-(x -55)2+625.∵-1<0, ∴当60≤x ≤70时,W 随x 的增大而减小。
∴当x =60时,W 有最大值600.,600800>∴当该产品的售价定为50元/件时,销售该产品的年利润最大,最大利润为800万元.(3)当40≤x <60时,令W =750,得-2(x -50)2+800=750,解之,得.55,4521==x x 由函数W =-2(x -50)2+800的性质可知,当45≤x ≤55时,W ≥750.当60≤x ≤70时,W 最大值为600<750.所以,要使企业销售该产品的年利润不少于750万元,该产品的销售价x (元/件)的取值范围为45≤x ≤55.3.(2016年黄石).科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?4.(2016.荆门)A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D 两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36天,从A 城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其它费用不变,如何调运,使总费用最少?5.(2016.荆州)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.【解答】解:(1)设y与x的函数关系式为:y=kx+b,把(20,160),(40,288)代入y=kx+b得:解得:∴y=6.4x+32.(2)∵B种苗的数量不超过35棵,但不少于A种苗的数量,∴∴22.5≤x≤35,设总费用为W元,则W=6.4x+32+7(45﹣x)=﹣0.6x+347,∵k=﹣0.6,∴y随x的增大而减小,∴当x=35时,W总费用最低,W最低=﹣0.6×35+347=137(元).6.(2016.随州)九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售y/p w(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.7. (2016.咸宁)某网店销售某款童装,每件售价60元,每星期可卖300件. 为了促俏,该店决定降价销售,市场调查反映:每降价1元,每星期可多卖30件. 已知该款童装每件成本价40元. 设该款童装每件售价x元,每星期的销售量为y 件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?【解答】解:(1)y=300+30(60-x)=-30x+2100. ……………………………………..2分(2)设每星期的销售利润为W元,依题意,得W=(x-40)(-30x+2100)=-30x2+3300x-84000 ………………………..4分= -30(x-55)2+6750.∵a= -30<0∴x=55时,W最大值=6750(元).即每件售价定为55元时,每星期的销售利润最大,最大利润是6750元. ……………………………………………………….6分(3)由题意,得-30(x-55)2+6750=6480解这个方程,得x1=52,x2=58. …………………………..7分∵抛物线W= -30(x-55)2+6750的开口向下∴当52≤x≤58时,每星期销售利润不低于6480元.…………………………………8分∴在y= -30+2100中,k= -30<0,y随x的增大而减小.…………………………………………….9分∴当x=58时,y最小值= -30×58+2100=360.即每星期至少要销售该款童装360件. …………….10分8.(2016.孝感)孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A,B 两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.9.(2016.十堰)一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?10.(2016.宜昌)某蛋糕产销公司A品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2014年底就投入资金10.89万元,新增了一条B品牌产销线,以满足市场对蛋糕的多元需求.B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年每年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年AB两品牌产销线销售量总和将达到11.4万份,B品牌产销线2017年销售获利恰好等于当初的投入资金数.(1)求A品牌产销线2018年的销售量;(2)求B品牌产销线2016年平均每份获利增长的百分数.。
2016年全国中考真题分类解析 二元一次方程(组)及其应用
二元一次方程(组)及其应用一、选择题1.(2016·贵州安顺·3分)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对【分析】根据非负数的意义列出关于x、y的方程并求出x、y的值,再根据x是腰长和底边长两种情况讨论求解.【解答】解:根据题意得,解得,(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B.【点评】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形做出判断.根据题意列出方程是正确解答本题的关键.1.(2016贵州毕节3分)已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A.m=1,n=﹣1 B.m=﹣1,n=1 C.D.【考点】二元一次方程的定义.【分析】利用二元一次方程的定义判断即可.【解答】解:∵方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴,解得:,故选A2. (2016·辽宁丹东·3分)二元一次方程组的解为()A.B.C.D.【考点】二元一次方程组的解.【分析】根据加减消元法,可得方程组的解.【解答】解:①+②,得3x=9,解得x=3,把x=3代入①,得3+y=5,y=2,所以原方程组的解为.故选C.3. (2016·四川宜宾)宜宾市某化工厂,现有A种原料52千克,B种原料64千克,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,则生产方案的种数为()A.4 B.5 C.6 D.7【考点】二元一次方程组的应用.【分析】设生产甲产品x件,则乙产品(20﹣x)件,根据生产1件甲种产品需要A种原料3千克,B种原料2千克;生产1件乙种产品需要A种原料2千克,B种原料4千克,列出不等式组,求出不等式组的解,再根据x为整数,得出有5种生产方案.【解答】解:设生产甲产品x件,则乙产品(20﹣x)件,根据题意得:,解得:8≤x≤12,∵x为整数,∴x=8,9,10,11,12,∴有5种生产方案:方案1,A产品8件,B产品12件;方案2,A产品9件,B产品11件;方案3,A产品10件,B产品10件;方案4,A产品11件,B产品9件;方案5,A 产品12件,B 产品8件;故选B .4. (2016·黑龙江龙东·3分)为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m 长的彩绳截成2m 或1m 的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( )A .1B .2C .3D .4【考点】二元一次方程的应用.【分析】截下来的符合条件的彩绳长度之和刚好等于总长9米时,不造成浪费,设截成2米长的彩绳x 根,1米长的y 根,由题意得到关于x 与y 的方程,求出方程的正整数解即可得到结果.【解答】解:截下来的符合条件的彩绳长度之和刚好等于总长5米时,不造成浪费,设截成2米长的彩绳x 根,1米长的y 根,由题意得,2x +y =5,因为x ,y 都是正整数,所以符合条件的解为:、、,则共有3种不同截法,故选:C .5.(2016·黑龙江齐齐哈尔·3分)足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是( )A .1或2B .2或3C .3或4D .4或5【考点】二元一次方程的应用.【分析】设该队胜x 场,平y 场,则负(6﹣x ﹣y )场,根据:胜场得分+平场得分+负场得分=最终得分,列出二元一次方程,根据x 、y 的范围可得x 的可能取值.【解答】解:设该队胜x 场,平y 场,则负(6﹣x ﹣y )场,根据题意,得:3x +y =12,即:x =, ∵x 、y 均为非负整数,且x +y ≤6,∴当y =0时,x =4;当y =3时,x =3;即该队获胜的场数可能是3场或4场,故选:C .二、 填空题1. (2016·吉林·3分)某学校要购买电脑,A 型电脑每台5000元,B 型电脑每台3000元,购买10台电脑共花费34000元.设购买A 型电脑x 台,购买B 型电脑y 台,则根据题意可列方程组为 .【考点】由实际问题抽象出二元一次方程组.【分析】根据题意得到:A型电脑数量+B型电脑数量=10,A型电脑数量×5000+B型电脑数量×3000=34000,列出方程组即可.【解答】解:根据题意得:,故答案为:2. (2016·江西·6分)(1)解方程组:.【考点】翻折变换(折叠问题);解二元一次方程组.【分析】(1)根据方程组的解法解答即可;(2)由翻折可知∠AED=∠CED=90°,再利用平行线的判定证明即可.【解答】解:(1),①﹣②得:y=1,把y=1代入①可得:x=3,所以方程组的解为;3.(2016·四川宜宾)今年“五一”节,A、B两人到商场购物,A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组.【考点】由实际问题抽象出二元一次方程组.【分析】分别利用“A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元”得出等式求出答案.【解答】解:设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组:.故答案为:.4.(2016·山东省滨州市·4分)甲、乙二人做某种机械零件,已知甲是技术能手每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做9个零件.【考点】二元一次方程组的应用.【分析】设甲每小时做x个零件,乙每小时做y个零件,根据题意列出关于x、y的二元一次方程组,解方程组即可得出结论.【解答】解:设甲每小时做x个零件,乙每小时做y个零件,依题意得:,解得:.故答案为:9.【点评】本题考查了解二元一次方程组,解题的关键根据数量关系列出关于x、y的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,结合题意列出方程(或方程组)是关键.三、解答题1.(2016·四川攀枝花)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?【考点】一次函数的应用.【分析】(1)设每吨水的政府补贴优惠价为m元,市场调节价为n元,根据题意列出方程组,求解此方程组即可;(2)根据用水量分别求出在两个不同的范围内y与x之间的函数关系,注意自变量的取值范围;(3)根据小英家5月份用水26吨,判断其在哪个范围内,代入相应的函数关系式求值即可.【解答】解:(1)设每吨水的政府补贴优惠价为m元,市场调节价为n元.,解得:,答:每吨水的政府补贴优惠价2元,市场调节价为3.5元.(2)当0≤x≤14时,y=2x;当x>14时,y=14×2+(x﹣14)×3.5=3.5x﹣21,故所求函数关系式为:y=;(3)∵26>14,∴小英家5月份水费为3.5×26﹣21=69元,答:小英家5月份水费69吨.【点评】本题考查了一次函数的应用、二元一次方程组的解法,特别是在求一次函数的解析式时,此函数是一个分段函数,同时应注意自变量的取值范围.2.(2016·四川泸州)某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)设A种商品的单价为x元、B种商品的单价为y元,根据等量关系:①购买60件A 商品的钱数+30件B商品的钱数=1080元,②购买50件A商品的钱数+20件B商品的钱数=880元分别列出方程,联立求解即可.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m﹣4)件,根据不等关系:①购买A、B两种商品的总件数不少于32件,②购买的A、B两种商品的总费用不超过296元可分别列出不等式,联立求解可得出m的取值范围,进而讨论各方案即可.【解答】解:(1)设A种商品的单价为x元、B种商品的单价为y元,由题意得:,解得.答:A种商品的单价为16元、B种商品的单价为4元.(2)设购买A商品的件数为m件,则购买B商品的件数为(2m﹣4)件,由题意得:,解得:12≤m≤13,∵m是整数,∴m=12或13,故有如下两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件.3. (2016·黑龙江龙东·10分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A钟品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球单价比A种足球贵30元”可得出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设第二次购买A种足球m个,则购买B中足球(50﹣m)个,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球不小于23个”可得出关于m的一元一次不等式组,解不等式组可得出m的取值范围,由此即可得出结论;(3)分析第二次购买时,A、B种足球的单价,即可得出那种方案花钱最多,求出花费最大值即可得出结论.【解答】解:(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,依题意得:,解得:.答:购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元.(2)设第二次购买A种足球m个,则购买B中足球(50﹣m)个,依题意得:,解得:25≤m≤27.故这次学校购买足球有三种方案:方案一:购买A种足球25个,B种足球25个;方案二:购买A种足球26个,B种足球24个;方案三:购买A种足球27个,B种足球23个.(3)∵第二次购买足球时,A种足球单价为50+4=54(元),B种足球单价为80×0.9=72(元),∴当购买方案中B种足球最多时,费用最高,即方案一花钱最多.∴25×54+25×72=3150(元).答:学校在第二次购买活动中最多需要3150元资金.4.(2016·湖北黄石·4分)解方程组.【分析】首先联立方程组消去x求出y的值,然后再把y的值代入x﹣y=2中求出x的值即可.【解答】解:将两式联立消去x得:9(y+2)2﹣4y2=36,即5y2+36y=0,解得:y=0或﹣,当y=0时,x=2,y=﹣时,x=﹣;原方程组的解为或.【点评】本题主要考查了高次方程的知识,解答本题的关键是进行降次解方程,此题难度不大.5.(2016·青海西宁·10分)青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.【考点】一元二次方程的应用;二元一次方程组的应用.【分析】(1)分别利用投资了112万元,建成40个公共自行车站点、配置720辆公共自行车以及投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车进而得出等式求出答案;(2)利用2016年配置720辆公共自行车,结合增长率为x,进而表示出2018年配置公共自行车数量,得出等式求出答案.【解答】解:(1)设每个站点造价x万元,自行车单价为y万元.根据题意可得:解得:答:每个站点造价为1万元,自行车单价为0.1万元.(2)设2016年到2018年市政府配置公共自行车数量的年平均增长率为a.根据题意可得:720(1+a)2=2205解此方程:(1+a)2=,即:,(不符合题意,舍去)答:2016年到2018年市政府配置公共自行车数量的年平均增长率为75%.6.(2016·广西百色·6分)解方程组:【考点】解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×8+②得:33x=33,即x=1,把x=1代入①得:y=1,则方程组的解为.7.(2016·贵州安顺·13分)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.求该校的大小寝室每间各住多少人?【分析】首先设该校的大寝室每间住x人,小寝室每间住y人,根据关键语句“高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满”列出方程组即可.【解答】解:(1)设该校的大寝室每间住x人,小寝室每间住y人,由题意得:,解得:.答:该校的大寝室每间住8人,小寝室每间住6人.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,抓住题目中的关键语句,列出方程组.8. (2016·云南省昆明市)(列方程(组)及不等式解应用题)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设甲种商品每件的进价为x元,乙种商品每件的进价为y元,根据“购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元”可列出关于x、y的二元一次方程组,解方程组即可得出两种商品的单价;(2)设该商场购进甲种商品m件,则购进乙种商品件,根据“甲种商品的数量不少于乙种商品数量的4倍”可列出关于m的一元一次不等式,解不等式可得出m的取值范围,再设卖完A、B两种商品商场的利润为w,根据“总利润=甲商品单个利润×数量+乙商品单个利润×数量”即可得出w关于m的一次函数关系上,根据一次函数的性质结合m的取值范围即可解决最值问题.【解答】解:(1)设甲种商品每件的进价为x 元,乙种商品每件的进价为y 元,依题意得:,解得:,答:甲种商品每件的进价为30元,乙种商品每件的进价为70元.(2)设该商场购进甲种商品m 件,则购进乙种商品件,由已知得:m ≥4,解得: m ≥80.设卖完A 、B 两种商品商场的利润为w ,则w =(40﹣30)m +(90﹣70)=﹣10m +2000,∴当m =80时,w 取最大值,最大利润为1200元.故该商场获利最大的进货方案为甲商品购进80件、乙商品购进20件,最大利润为1200元.9.(2016·山东省滨州市·4分)甲、乙二人做某种机械零件,已知甲是技术能手每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做 9 个零件.【考点】二元一次方程组的应用.【分析】设甲每小时做x 个零件,乙每小时做y 个零件,根据题意列出关于x 、y 的二元一次方程组,解方程组即可得出结论.【解答】解:设甲每小时做x 个零件,乙每小时做y 个零件,依题意得:,解得:.故答案为:9.【点评】本题考查了解二元一次方程组,解题的关键根据数量关系列出关于x 、y 的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,结合题意列出方程(或方程组)是关键.三.解答题1.(2016·山东省滨州市·4分)某运动员在一场篮球比赛中的技术统计如表所示:注:表中出手投篮次数和投中次数均不包括罚球.根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.【考点】二元一次方程组的应用.[键入文字][键入文字]【分析】设本场比赛中该运动员投中2分球x 个,3分球y 个,根据投中22次,结合罚球得分总分可列出关于x 、y 的二元一次方程组,解方程组即可得出结论.【解答】解:设本场比赛中该运动员投中2分球x 个,3分球y 个,依题意得:,解得:. 答:本场比赛中该运动员投中2分球16个,3分球6个.【点评】本题考查了二元一次方程组的应用,解题的关键是根据数量关系列出关于x 、y 的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.。
2016年中考数学试题(含答案)
XX ★启用前 [考试时间:6月13日上午9:00~11:00]2016年高中阶段教育学校招生统一考试数 学本试题卷分第一部分(选择题)和第二部分(非选择题).第一部分1至2页,第二部分3至6页,共6页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分120分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.第一部分(选择题 共30分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上. 2.本部分共10小题,每小题3分,共30分.一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列各数中,不是负数的是()A .2-B . 3C .58-D .0.10- 2. 计算()32ab的结果,正确的是( )A .36a b B .35a b C .6ab D .5ab3.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.下列说法中正确的是()A .“打开电视,正在播放《新闻联播》”是必然事件B .“20x <(x 是实数)”是随机事件C .掷一枚质地均匀的硬币10次,可能有5次正面向上D .为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查5.化简22m n m n n m+--的结果是( ) A .m n +B .n m -C .m n -D .m n -- 6.下列关于矩形的说法中正确的是( )A .对角线相等的四边形是矩形B .矩形的对角线相等且互相平分C .对角线互相平分的四边形是矩形D .矩形的对角线互相垂直且平分2图7.若2x =-是关于x 的一元二次方程22302x ax a +-=的一个根,则a 的值为( ) A .1-或4 B .1-或4- C .1或4- D .1或48.如图1,点(0,3)D ,(0,0)O ,(4,0)C 在A 上,BD 是A 的一条弦,则sin OBD ∠=( )A .12B .34C .45D .359.如图2,二次函数2(0)y ax bx c a =++>图象的顶点为D , 其图象与x 轴的交点A 、B 的横坐标分别为1-和3,则下列结论 正确的是( )A . 20a b -=B . 0a b c ++>C . 30a c -=D . 当12a =时,ABD ∆是等腰直角三角形10.如图3,正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB 、AC 于点E 、G ,连结GF .给出下列结论:①22.5ADG ∠=;②tan 2AED ∠=;③AGD OGD S S ∆∆=;④四边形AEFG 是菱形;⑤2BE OG =;⑥若1OGF S ∆=,则正方形ABCD 的面积是642+.其中正确的结论个数为( )A .2B .3C .4D .5第二部分(非选择题 共90分)注意事项:1.必须使用0.5毫米的黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米的黑色墨迹签字笔描清楚.答在试题卷上无效.2.本部分共14小题,共90分.二、填空题:本大题共6小题,每小题4分,共24分.11.月球的半径约为1 738 000米,1 738 000这个数用科学记数法表示为.3图BCxy DOA1图12.对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如表:年龄 13 14 15 16 17 18 人数 4 5 6 6 7 2则这些学生年龄的众数是.13.如果一个正多边形的每个外角都是30,那么这个多边形的内角和为. 14.设12x x 、是方程25320x x --=的两个实数根,则1211x x +的值为. 15.已知关于x 的分式方程111k x k x x ++=+-的解为负数,则k 的取值范围是. 16. 如图4,ABC ∆中,90C ∠=,3AC =,5AB =,D 为BC 边的中点,以AD 上一点O 为圆心的O和AB 、BC 均相切,则O 的半径为.三、解答题:本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分60201621+18.(本小题满分6分)如图5,在平面直角坐标系中,直角ABC ∆的三个顶点分别是(3,1)A -,(0,3)B ,(0,1)C .(1)将ABC ∆以点C 为旋转中心旋转180(2)分别连结1AB 、1BA 后,求四边形11AB A B5图AO4图19.(本小题满分6分)中秋佳节我国有赏月和吃月饼的传统,某校数学兴趣小组为了了解本校学生喜爱月饼的情况,随机抽取了60名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(图6).(注:参与问卷调查的每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题: (1)在扇形统计图中,“很喜欢”的部分所对应的扇形圆心角为度;在条形统计图中,喜欢“豆沙”月饼的学生有人;(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”月饼的共有人;(3)甲同学最爱吃云腿月饼,乙同学最爱吃豆沙月饼.现有重量、包装完全一样的云腿、豆沙、莲蓉、蛋黄四种月饼各一个,让甲、乙每人各选一个,请用画树状图法或列表法求出甲、乙两人中有且只有一人选中自己最爱吃的月饼的概率.20.(本小题满分8分)如图7,在平面直角坐标系中,O 为坐标原点,ABO ∆的边AB 垂直于x 轴,垂足为点B ,反比例函数(0)ky x x =>的图象经过AO 的中点C ,且与AB 相交于点D ,4OB =,3AD =.(1)求反比例函数ky x=的解析式; (2)求cos OAB ∠的值;(3)求经过C 、D 两点的一次函数解析式.喜爱月饼情况扇形统计图很喜欢不喜欢25%40%比较喜欢“很喜欢”月饼的同学最爱 吃的月饼品种条形统计图6图21.(本小题满分8分)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m 元收费;若每月用水量超过14吨,则超过部分每吨按市场价n 元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x 吨,应交水费为y 元,请写出y 与x 之间的函数关系式; (3)小明家5月份用水26吨,则他家应交水费多少元?22.(本小题满分8分)如图8,在矩形ABCD 中,点F 在边BC 上,且AF AD =,过点D 作DE AF ⊥,垂足为点E . (1)求证:DE AB =;(2)以A 为圆心,AB 长为半径作圆弧交AF 于点G . 若1BF FC ==,求扇形ABG 的面积.(结果保留π)23.(本小题满分12分)如图9,在AOB ∆中,AOB ∠为直角,6OA =,8OB =.半径为2的动圆圆心Q 从点O 出发,沿着OA 方向以1个单位长度/秒的速度匀速运动,同时动点P 从点A 出发,沿着AB 方向也以1个单位长度/秒的速度匀速运动,设运动时间为t 秒(05)t <≤.以P 为圆心,PA 长为半径的P 与AB 、OA 的另一个交点分别为C 、D ,连结CD 、QC .(1)当t 为何值时,点Q 与点D 重合? (2)当Q 经过点A 时,求P 被OB 截得的弦长;(3)若P 与线段QC 只有一个公共点,求t 的取值范围.QP9图A D 8图24.(本小题满分12分)如图10,抛物线2y x bx c =++与x 轴交于A 、B 两点,B 点坐标为(3,0),与y 轴交于点(0,3)C -.(1)求抛物线的解析式;(2)点P 在抛物线位于第四象限的部分上运动,当四边形ABPC 的面积最大时,求点P 的坐标和四边形ABPC 的最大面积;(3)直线l 经过A 、C 两点,点Q 在抛物线位于y 轴左侧的部分上运动,直线m 经过点B 和点Q .是否存在直线m ,使得直线l 、m 与x 轴围成的三角形和直线l 、m 与y 轴围成的三角形相似?若存在,求出直线m 的解析式;若不存在,请说明理由.2016年高中阶段教育学校招生统一考试数学参考答案与评分意见一、选择题(每题3分,共30分)1、B2、A3、D4、C5、A6、B7、C8、D9、D 10、B 二、填空题(每小题4分,共24分) 11、61.73810⨯;12、17;13、1800; 14、32-;15、102k k >-≠且;16、67三、解答题(本大题共8个小题,共66分)以下各题只提供参考解法,使用其它方法求解,按步骤相应给分.17、(6分)解:原式21(21=+--+…………………………3分(注:分项给分)42=-+5分10图2=+6分18、(6分)解:(1 (3)分(2)111111641222AB A B S AA BB =⋅⋅=⨯⨯=四.…………………………6分19、(6分)解:(1)126 ,4.…………………………………………2分 (2)675…………………………………………3分(3) 甲 云腿 莲蓉 豆沙 蛋黄乙 莲蓉 豆沙 蛋黄 云腿 豆沙 黄 云腿 莲蓉 蛋黄 云腿 莲蓉 豆沙…………………5分41123P ==.………………………6分 20、(8分)解:(1)设(4,)D a ,3AB a =+过点C 作CE x ⊥轴,垂足为E ,∵C 是AO 的中点, ∴CE 是AOB ∆的中位线,……………1分∴点3(2,)2aC +, ……………2由点C 和点D 都在反比例函数图象上得:3242aa +⨯=解得:1a =,点(4,1)D ……………3分反比例函数:4y x=……………4分(2)由4OB AB ==得,∴45OAB ∠=, cos 2OAB ∠=……………5分(3)设直线CD 的函数关系式:11(0)y k x b k =+≠∵(2,2)C ,(4,1)D 在直线上,得112214k bk b=+⎧⎨=+⎩………………………6分解得:1123k b ⎧=-⎪⎨⎪=⎩………………………7分直线CD 的函数关系式:132y x =-+………………………8分21、(8分)解:(1)由题意得:14(2014)4914(1814)42m n m n +-=⎧⎨+-=⎩………………………2分解得:23.5m n =⎧⎨=⎩………………………4分(2)当014x <≤时,2y x =;当14x >时,28(14) 3.5 3.521y x x =+-⨯=-所以2,0143.521,14x x y x x <≤⎧=⎨->⎩……………………7分(3)当26x =时, 3.5262170y =⨯-=(元) ……………………8分22、(8分)(1)证明:∵DE AF ⊥,∴90AED ∠=, 又∵四边形ABCD 是矩形, ∴90ABF ∠=, ∴90ABF AED ∠=∠=,……………………1分 又∵//AD BC∴DAE AFB ∠=∠,……………………2分 又∵AF AD =,∴ADE ∆≌()FAB AAS ∆,……………………3分∴DE AB =……………………4分(2)∵1BF FC ==,∴2AD BC BF FC ==+=,又∵ADE ∆≌FAB ∆,∴2AF AD ==,……………………5分 ∴在Rt ABF ∆中,12BF AF =,∴30BAF ∠=,……………………6分 又∵AB== ……………………7分∴扇形ABG 的面积230313603604n r πππ⨯===……………………8分A8图23、(12分)解:(1)在直角ABO ∆中,6AO =,8BO =,∴10AB =63cos 105AO BAO AB ∠===……………………1分 ∵AC P 是的直径, ∴90CDA ∠=在直角ACD ∆中,3cos 5AD CAD AC ∠== ∵OQ AP t ==,2AC t =, ∴65AD t =……………………2分∵点Q 与点D 重合,∴6OQ AD OA +==665t t +=,解得:3011t =当3011t =时,点Q 与点D 重合.……………………3分(2)∵Q 经过点A ,Q 的半径是2∴2AQ =,624OQ =-=,4t =∴4AP =,1046BP =-=……………………4分 设P 被OB 截得的弦为线段EF ,过点P 作PM EF M ⊥于点,//PM OA ,BPM ∆∽BAO ∆,BP PMBA OA=∴6106PM =,185PM =……………………5分 连结PE ,4PE =在直角PEM ∆中,EM ===……………………6分∴2EF EM ==7分 (3)当QC P 与相切时,AC QC ⊥在直角ACQ ∆中,3cos 5CAQ ∠=2AC t =,51033AQ AC t ==, ……………………8分 ∵6AQ OA OQ t =-=-∴1063t t =-,得:1813t =……………………9分 ∴当18013t <≤时,P 与线段QC 只有一个公共点 (10)分又∵当3011t =时,点Q 与点D 重合,P 与线段QC 有两个公共点 ∴当30511t <≤时,P 与线段QC 只有一个公共点 ……………………11分综上,当18013t <≤或30511t <≤时,P 与线段QC 只有一个公共点 ……………………12分24、(12分)解:(1)∵抛物线2y x bx c =++与x 轴交于B 点(3,0),与y 轴交于(0,3)C -. ∴9303b c c ++=⎧⎨=-⎩,∴2b =-……………………1分∴抛物线的解析式:223y x x =--……………………2分 (2)抛物线223y x x =--与x 轴的交点(1,0)A -,4AB = 连结BC ,ABC BCP ABPC S S S ∆∆=+四, 1143622ABC S AB OC ∆=⋅=⨯⨯= 当BCP S ∆最大时,四边形ABPC 的面积最大求出直线BC 的函数关系式:3y x =-……………………3分 平移直线BC ,当平移后直线与抛物线223y x x =--相切时,BC 边上的高最大,BCP S ∆最大.设平移后直线关系式为:3y x m =--联立2323y x m y x x =--⎧⎨=--⎩, 2233x x x m --=-- 当0∆=时,94m =∴平移后直线关系式为:214y x =-……………………4分 221423y x y x x ⎧=-⎪⎨⎪=--⎩ , 解得:32154x y ⎧=⎪⎪⎨⎪=-⎪⎩ ∴点315(,)24P -……………………5分过点P 向x 轴作垂线,与线段BC 交于点D 点33(,)22D -,3159()244PD =---= ∴BCP S ∆最大值91273428=⨯⨯=, ∴四边形ABPC 的最大面积2775688=+=……………………6分 (3)存在,设直线m 与y 轴交于点N ,与直线l 交于点M ,设点N 的坐标为(0,)t ① 当l m ⊥时, 90NOB NMC ∠=∠=∴90MCN MNC ∠+∠=, 90ONB OBN ∠+∠=又∵ONB MNC ∠=∠∴MCN OBN ∠=∠∵90AMB NMC ∠=∠=∴AMB ∆∽NMC ∆求出直线l 的函数关系式:33l y x =--∵l m ⊥,设直线m 的函数关系式:13m y x b =+ ∵直线m 经过点(3,0)B∴直线m 的函数关系式:113m y x =-,此时1t =-……………………7分 ② 当31t -<<-时,90,90AMB CMB ∠<∠>AMB ∆是一个锐角三角形,CMN ∆却是一个钝角三角形∴AMB ∆与CMN ∆不相似∴符合条件的直线m 不存在 ……………………8分③ 当10t -<<时,90,90AMB CMB ∠>∠< AMB ∆是一个钝角三角形,CMN ∆却是一个锐角三角形∴AMB ∆与CMN ∆不相似∴符合条件的直线m 不存在 ……………………9分④当01t <<时,1ON < ∴OA ON OC OB>, MCN MBA ∠>∠ 又∵CMN BMA ∠=∠(公共角)∴AMB ∆与CMN ∆不相似∴符合条件的直线m 不存在 (10)分⑤当1t =时,1ON = ∴13OAONOC OB ==, MCN MBA ∠=∠又∵CMN BMA ∠=∠(公共角)∴AMB ∆∽NMC ∆∵直线m 经过点(3,0)B 和(0,1)N∴直线m 的函数关系式:113m y x =-+……………………11分⑥当1t >时,1ON > ∴OA ONOC OB <, MCN MBA ∠<∠又∵CMN BMA ∠=∠(公共角)∴AMB ∆与CMN ∆不相似∴符合条件的直线m 不存在 ……………………12分综上,直线m 的函数关系式为:113m y x =-+或113m y x =-。
2016届中考复习数学真题汇编8:分式方程和应用(含答案)
一、选择题1. (2015四川省遂宁市,9,4分)遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克.为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克.种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x 万千克,则改良后平均亩产量为1.5x 万千克.根据题意列方程为( ).A .36369201.5x x +-=B .3636201.5x x -=C .36936201.5x x -=+D .36369201.5x x ++=【答案】A .【解析】相等关系:原计划种植亩数-实际种植亩数=20. 由题意可得方程36369201.5x x +-=.注意 此类题并不难,同学们出错最多的地方就是审题不清,而误选其它答案.这样可以少出错:一是要明白x 的含义,而是要区分是谁与谁的差,这样不容易不错.2. (2015四川省自贡市,3,4分)方程211x x -+=0的解是 ······························ ( ) A .1或-1B .-1C .0D .1【答案】D3. (2015天津市,8,3分)分式方程xx 332=-的解是( ) A.x=0 B.x=3 C.x=5 D.x=9【答案】D4. (2015年山东省济宁市)解分式方程22311x x x++=--时,去分母后变形正确的为( ) A. 2+(x +2)=3(x -1) B. 2-x +2=3(x -1)C. 2-(x +2)=3D. 2-(x +2)=3(x -1) 【答案】D5. (2015贵州遵义,7,3分)若x =3是分式方程2102a x x --=-的根,则a 的值是 ( ) A .5 B .-5 C .3 D .-3【答案】A【解析】解:根据方程根的意义,将x =3代入分式方程得:2103a --=,即转换成关于a 的一元一次方程,解得a =5,故选A .6.(2015湖南常德,7,3分)分式方程23122x x x+=--的解为( ) A. 1 B. 2 C. 13 D. 0 【答案】A1. (2015四川省巴中市,14,3分)分式方程322x x =+的解x = . 【答案】 4.2. (2015山东省德州市,14,4分)方程x x -1-2x =1的解为x = . 【答案】23. (2015湖南省长沙市,16,3分)分式方程572x x =-的解为________. 【答案】5x =-【解析】4. (2015四川省凉山州市,16,4分)分式方程233x x =-的解是 .【答案】9x =【解析】解:方程两边乘(3)x x -,得239x x =-;移项,合并得9x =,故答案为9x =.5. (2015山东省威海市16,3分)分式方程2313-1--=-xx x 的解为 . 【答案】x =4.【解析】方程两边同乘以(x -3),得1-x = -1-2(x -3).解得x =4.经检验,x =4是原方程的解.6.(2015浙江省温州市,14,5分)方程231x x =+的根是________. 【答案】x=27. (2015江苏淮安,9,3分)方程031=-x 的解是 。
云南省2016年中考数学试卷及答案解析(word版)
Tfu8,l,0-\/2016年云南省昆明市中考数学试卷一、填空题:每小题3分,共18分1.﹣4的相反数为.2.昆明市2016年参加初中学业水平考试的人数约有67300人,将数据67300用科学记数法表示为.3.计算:﹣=.4.如图,AB∥CE,BF交CE于点D,DE=DF,∠F=20°,则∠B的度数为.5.如图,E,F,G,H分别是矩形ABCD各边的中点,AB=6,BC=8,则四边形EFGH的面积是.6.如图,反比例函数y=(k≠0)的图象经过A,B两点,过点A作AC⊥x轴,垂足为C,过点B作BD⊥x轴,垂足为D,连接AO,连接BO交AC于点E,若OC=CD,四边形BDCE 的面积为2,则k的值为.二、选择题(共8小题,每小题4分,满分32分)7.下面所给几何体的俯视图是()A.B.C.D.8.某学习小组9名学生参加“数学竞赛”,他们的得分情况如表:人数(人) 1 3 4 1分数(分)80 85 90 95那么这9名学生所得分数的众数和中位数分别是()A.90,90 B.90,85 C.90,87.5 D.85,859.一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定10.不等式组的解集为()A.x≤2 B.x<4 C.2≤x<4 D.x≥211.下列运算正确的是()A.(a﹣3)2=a2﹣9 B.a2•a4=a8C.=±3 D.=﹣212.如图,AB为⊙O的直径,AB=6,AB⊥弦CD,垂足为G,EF切⊙O于点B,∠A=30°,连接AD、OC、BC,下列结论不正确的是()A.EF∥CD B.△COB是等边三角形C.CG=DG D.的长为π13.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=14.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有()A.1个B.2个C.3个D.4个三、综合题:共9题,满分70分15.计算:20160﹣|﹣|++2sin45°.16.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.17.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.18.某中学为了了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图;(1)这次抽样调查的样本容量是,并补全条形图;(2)D等级学生人数占被调查人数的百分比为,在扇形统计图中C等级所对应的圆心角为°;(3)该校九年级学生有1500人,请你估计其中A等级的学生人数.19.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.20.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)21.(列方程(组)及不等式解应用题)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.22.如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30°,EB=4,求图中阴影部分的面积(结果保留根号和π)23.如图1,对称轴为直线x=的抛物线经过B(2,0)、C(0,4)两点,抛物线与x轴的另一交点为A(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.2016年云南省昆明市中考数学试卷参考答案与试题解析一、填空题:每小题3分,共18分1.﹣4的相反数为4.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,0的相反数是0即可求解.【解答】解:﹣4的相反数是4.故答案为:4.2.昆明市2016年参加初中学业水平考试的人数约有67300人,将数据67300用科学记数法表示为 6.73×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于67300有5位,所以可以确定n=5﹣1=4.【解答】解:67300=6.73×104,故答案为:6.73×104.3.计算:﹣=.【考点】分式的加减法.【分析】同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减;再分解因式约分计算即可求解.【解答】解:﹣= = =. 故答案为:. 4.如图,AB ∥CE ,BF 交CE 于点D ,DE=DF ,∠F=20°,则∠B 的度数为 40° .【考点】等腰三角形的性质;平行线的性质.【分析】由等腰三角形的性质证得E=∠F=20°,由三角形的外角定理证得∠CDF=∠E+∠F=40°,再由平行线的性质即可求得结论.【解答】解:∵DE=DF ,∠F=20°,∴∠E=∠F=20°,∴∠CDF=∠E+∠F=40°,∵AB ∥CE ,∴∠B=∠CDF=40°,故答案为:40°.5.如图,E ,F ,G ,H 分别是矩形ABCD 各边的中点,AB=6,BC=8,则四边形EFGH 的面积是 24 .【考点】中点四边形;矩形的性质.【分析】先根据E ,F ,G ,H 分别是矩形ABCD 各边的中点得出AH=DH=BF=CF ,AE=BE=DG=CG ,故可得出△AEH ≌△DGH ≌△CGF ≌△BEF ,根据S 四边形EFGH =S 正方形﹣4S △AEH 即可得出结论.【解答】解:∵E ,F ,G ,H 分别是矩形ABCD 各边的中点,AB=6,BC=8,∴AH=DH=BF=CF=8,AE=BE=DG=CG=3.在△AEH 与△DGH 中,∵,∴△AEH ≌△DGH (SAS ).同理可得△AEH ≌△DGH ≌△CGF ≌△BEF ,∴S 四边形EFGH =S 正方形﹣4S △AEH =6×8﹣4××3×4=48﹣24=24.故答案为:24.6.如图,反比例函数y=(k ≠0)的图象经过A ,B 两点,过点A 作AC ⊥x 轴,垂足为C ,过点B 作BD ⊥x 轴,垂足为D ,连接AO ,连接BO 交AC 于点E ,若OC=CD ,四边形BDCE 的面积为2,则k 的值为 ﹣ .【考点】反比例函数系数k 的几何意义;平行线分线段成比例.【分析】先设点B 坐标为(a ,b ),根据平行线分线段成比例定理,求得梯形BDCE 的上下底边长与高,再根据四边形BDCE 的面积求得ab 的值,最后计算k 的值.【解答】解:设点B 坐标为(a ,b ),则DO=﹣a ,BD=b∵AC ⊥x 轴,BD ⊥x 轴 ∴BD ∥AC∵OC=CD ∴CE=BD=b ,CD=DO=a ∵四边形BDCE 的面积为2 ∴(BD+CE )×CD=2,即(b+b )×(﹣a )=2∴ab=﹣将B (a ,b )代入反比例函数y=(k ≠0),得k=ab=﹣故答案为:﹣二、选择题(共8小题,每小题4分,满分32分)7.下面所给几何体的俯视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】直接利用俯视图的观察角度从上往下观察得出答案.【解答】解:由几何体可得:圆锥的俯视图是圆,且有圆心.故选:B.8.某学习小组9名学生参加“数学竞赛”,他们的得分情况如表:人数(人) 1 3 4 1分数(分)80 85 90 95那么这9名学生所得分数的众数和中位数分别是()A.90,90 B.90,85 C.90,87.5 D.85,85【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.【解答】解:在这一组数据中90是出现次数最多的,故众数是90;排序后处于中间位置的那个数是90,那么由中位数的定义可知,这组数据的中位数是90;故选:A.9.一元二次方程x2﹣4x+4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【考点】根的判别式.【分析】将方程的系数代入根的判别式中,得出△=0,由此即可得知该方程有两个相等的实数根.【解答】解:在方程x2﹣4x+4=0中,△=(﹣4)2﹣4×1×4=0,∴该方程有两个相等的实数根.故选B.10.不等式组的解集为()A.x≤2 B.x<4 C.2≤x<4 D.x≥2【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再根据口诀:大小小大中间找确定不等式组的解集即可.【解答】解:解不等式x﹣3<1,得:x<4,解不等式3x+2≤4x,得:x≥2,∴不等式组的解集为:2≤x<4,故选:C.11.下列运算正确的是()A.(a﹣3)2=a2﹣9 B.a2•a4=a8C.=±3 D.=﹣2【考点】同底数幂的乘法;算术平方根;立方根;完全平方公式.【分析】利用同底数幂的乘法、算术平方根的求法、立方根的求法及完全平方公式分别计算后即可确定正确的选项.【解答】解:A、(a﹣3)2=a2﹣6a+9,故错误;B、a2•a4=a6,故错误;C、=3,故错误;D、=﹣2,故正确,故选D.12.如图,AB为⊙O的直径,AB=6,AB⊥弦CD,垂足为G,EF切⊙O于点B,∠A=30°,连接AD、OC、BC,下列结论不正确的是()A.EF∥CD B.△COB是等边三角形C.CG=DG D.的长为π【考点】弧长的计算;切线的性质.【分析】根据切线的性质定理和垂径定理判断A;根据等边三角形的判定定理判断B;根据垂径定理判断C;利用弧长公式计算出的长判断D.【解答】解:∵AB为⊙O的直径,EF切⊙O于点B,∴AB⊥EF,又AB⊥CD,∴EF∥CD,A正确;∵AB⊥弦CD,∴=,∴∠COB=2∠A=60°,又OC=OD,∴△COB是等边三角形,B正确;∵AB⊥弦CD,∴CG=DG,C正确;的长为:=π,D错误,故选:D.13.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【考点】由实际问题抽象出分式方程.【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【解答】解:由题意可得,﹣=,故选C.14.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有()A.1个B.2个C.3个D.4个【考点】正方形的性质;全等三角形的判定与性质.【分析】①根据题意可知∠ACD=45°,则GF=FC,则EG=EF﹣GF=CD﹣FC=DF;②由SAS证明△EHF≌△DHC,得到∠HEF=∠HDC,从而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=180°;③同②证明△EHF≌△DHC即可;④若=,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠DHE=90°,△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,设HM=x,则DM=5x,DH=x,CD=6x,则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2.【解答】解:①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF﹣GF,DF=CD﹣FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,故②正确;③∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),故③正确;④∵=,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,如图所示:设HM=x,则DM=5x,DH=x,CD=6x,则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2,∴3S△EDH=13S△DHC,故④正确;故选:D.三、综合题:共9题,满分70分15.计算:20160﹣|﹣|++2sin45°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】分别根据零次幂、实数的绝对值、负指数幂及特殊角的三角函数值进行计算即可.【解答】解:20160﹣|﹣|++2sin45°=1﹣+(3﹣1)﹣1+2×=1﹣+3+=4.16.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.【考点】全等三角形的判定与性质.【分析】根据平行线的性质得出∠A=∠ECF,∠ADE=∠CFE,再根据全等三角形的判定定理AAS得出△ADE≌△CFE,即可得出答案.【解答】证明:∵FC∥AB,∴∠A=∠ECF,∠ADE=∠CFE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS),∴AE=CE.17.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.【考点】作图-旋转变换;轴对称-最短路线问题;作图-平移变换.【分析】(1)根据网格结构找出点A、B、C平移后的对应点的位置,然后顺次连接即可;(2))找出点A、B、C关于原点O的对称点的位置,然后顺次连接即可;(3)找出A的对称点A′,连接BA′,与x轴交点即为P.【解答】解:(1)如图1所示:(2)如图2所示:(3)找出A的对称点A′(﹣3,﹣4),连接BA′,与x轴交点即为P;如图3所示:点P坐标为(2,0).18.某中学为了了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图;(1)这次抽样调查的样本容量是50,并补全条形图;(2)D等级学生人数占被调查人数的百分比为8%,在扇形统计图中C等级所对应的圆心角为28.8°;(3)该校九年级学生有1500人,请你估计其中A等级的学生人数.【考点】条形统计图;总体、个体、样本、样本容量;用样本估计总体;扇形统计图.【分析】(1)由A等级的人数和其所占的百分比即可求出抽样调查的样本容量;求出B等级的人数即可全条形图;(2)用B等级的人数除以总人数即可得到其占被调查人数的百分比;求出C等级所占的百分比,即可求出C等级所对应的圆心角;(3)由扇形统计图可知A等级所占的百分比,进而可求出九年级学生其中A等级的学生人数.【解答】解:(1)由条形统计图和扇形统计图可知总人数=16÷32%=50人,所以B等级的人数=50﹣16﹣10﹣4=20人,故答案为:50;补全条形图如图所示:(2)D等级学生人数占被调查人数的百分比=×100%=8%;在扇形统计图中C等级所对应的圆心角=8%×360°=28.8°,故答案为:8%,28.8;(3)该校九年级学生有1500人,估计其中A等级的学生人数=1500×32%=480人.19.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.【考点】列表法与树状图法;概率公式.【分析】先根据题意画树状图,再根据所得结果计算两个数字之和能被3整除的概率.【解答】解:(1)树状图如下:(2)∵共6种情况,两个数字之和能被3整除的情况数有2种,∴两个数字之和能被3整除的概率为,即P(两个数字之和能被3整除)=.20.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【分析】如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解直角△AFD 得到DF的长度;通过解直角△DCE得到CE的长度,则BC=BE﹣CE.【解答】解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,∴DF=AF=70m.在直角△CDE中,∵DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=70﹣10≈70﹣17.32≈52.7(m).答:障碍物B,C两点间的距离约为52.7m.21.(列方程(组)及不等式解应用题)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设甲种商品每件的进价为x元,乙种商品每件的进价为y元,根据“购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元”可列出关于x、y的二元一次方程组,解方程组即可得出两种商品的单价;(2)设该商场购进甲种商品m件,则购进乙种商品件,根据“甲种商品的数量不少于乙种商品数量的4倍”可列出关于m的一元一次不等式,解不等式可得出m的取值范围,再设卖完A、B两种商品商场的利润为w,根据“总利润=甲商品单个利润×数量+乙商品单个利润×数量”即可得出w关于m的一次函数关系上,根据一次函数的性质结合m的取值范围即可解决最值问题.【解答】解:(1)设甲种商品每件的进价为x元,乙种商品每件的进价为y元,依题意得:,解得:,答:甲种商品每件的进价为30元,乙种商品每件的进价为70元.(2)设该商场购进甲种商品m件,则购进乙种商品件,由已知得:m≥4,解得:m≥80.设卖完A、B两种商品商场的利润为w,则w=(40﹣30)m+(90﹣70)=﹣10m+2000,∴当m=80时,w取最大值,最大利润为1200元.故该商场获利最大的进货方案为甲商品购进80件、乙商品购进20件,最大利润为1200元.22.如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30°,EB=4,求图中阴影部分的面积(结果保留根号和π)【考点】切线的判定;平行四边形的性质;扇形面积的计算.【分析】(1)欲证明CF是⊙O的切线,只要证明∠CDO=90°,只要证明△COD≌△COA 即可.(2)根据条件首先证明△OBD是等边三角形,∠FDB=∠EDC=∠ECD=30°,推出DE=EC=BO=BD=OA由此根据S阴=2•S△AOC﹣S扇形OAD即可解决问题.【解答】(1)证明:如图连接OD.∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,在△COD和△COA中,,∴△COD≌△COA,∴∠CAO=∠CDO=90°,∴CF⊥OD,∴CF是⊙O的切线.(2)解:∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,∵OD=OB,∴△OBD是等边三角形,∴∠DBO=60°,∵∠DBO=∠F+∠FDB,∴∠FDB=∠EDC=30°,∵EC∥OB,∴∠E=180°﹣∠OBD=120°,∴∠ECD=180°﹣∠E﹣∠EDC=30°,∴EC=ED=BO=DB,∵EB=4,∴OB=OD═OA=2,在RT△AOC中,∵∠OAC=90°,OA=2,∠AOC=60°,∴AC=OA•tan60°=2,∴S 阴=2•S △AOC ﹣S 扇形OAD =2××2×2﹣=2﹣.23.如图1,对称轴为直线x=的抛物线经过B (2,0)、C (0,4)两点,抛物线与x 轴的另一交点为A(1)求抛物线的解析式;(2)若点P 为第一象限内抛物线上的一点,设四边形COBP 的面积为S ,求S 的最大值; (3)如图2,若M 是线段BC 上一动点,在x 轴是否存在这样的点Q ,使△MQC 为等腰三角形且△MQB 为直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由对称轴的对称性得出点A 的坐标,由待定系数法求出抛物线的解析式; (2)作辅助线把四边形COBP 分成梯形和直角三角形,表示出面积S ,化简后是一个关于S 的二次函数,求最值即可;(3)画出符合条件的Q 点,只有一种,①利用平行相似得对应高的比和对应边的比相等列比例式;②在直角△OCQ 和直角△CQM 利用勾股定理列方程;两方程式组成方程组求解并取舍.【解答】解:(1)由对称性得:A (﹣1,0),设抛物线的解析式为:y=a (x+1)(x ﹣2),把C (0,4)代入:4=﹣2a ,a=﹣2,∴y=﹣2(x+1)(x ﹣2),∴抛物线的解析式为:y=﹣2x 2+2x+4;(2)如图1,设点P (m ,﹣2m 2+2m+4),过P 作PD ⊥x 轴,垂足为D ,∴S=S 梯形+S △PDB =m (﹣2m 2+2m+4+4)+(﹣2m 2+2m+4)(2﹣m ),S=﹣2m2+4m+4=﹣2(m﹣1)2+6,∵﹣2<0,∴S有最大值,则S=6;大(3)如图2,存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形,理由是:设直线BC的解析式为:y=kx+b,把B(2,0)、C(0,4)代入得:,解得:,∴直线BC的解析式为:y=﹣2x+4,设M(a,﹣2a+4),过A作AE⊥BC,垂足为E,则AE的解析式为:y=x+,则直线BC与直线AE的交点E(1.4,1.2),设Q(﹣x,0)(x>0),∵AE∥QM,∴△ABE∽△QBM,∴①,由勾股定理得:x2+42=2×[a2+(﹣2a+4﹣4)2]②,由①②得:a1=4(舍),a2=,当a=时,x=,∴Q(﹣,0).2016年7月12日。
初中物理应用题专题复习(后附答案)
中考物理综合应用题(后附答案)类型一力学综合计算题1.(2016,福州)为提高车辆通行质量,福州交警在市区一些道路某些时段推出“绿波通行”,即车辆在绿波路段以如图所示的50~55 km/h范围内行驶,一路绿灯.在绿波时段,质量是1.2×103 kg的汽车,经过绿波路段上相距2.7×103 m的两个路口,用时180 s,问:(1)汽车行驶的平均速度是多少?是否“绿波通行”?(2)若汽车在这段距离内行驶时牵引力保持3000 N不变,则汽车的输出功率是多少?(3)若轮胎与地面接触的总面积是0.6 m2,汽车静止时对水平地面的压强是多少?(g取10 N/kg)2.(2016,雅安)人用如图甲所示的滑轮组运送建材上楼,每次运送量不定,滑轮组的机械效率随建材重力变化的图象如图乙所示,滑轮和钢绳的摩擦力及绳重忽略不计,g取10 N/kg.(1)若某次运送建材的质量为50 kg,则建材的重力是多少?(2)若工人在1 min内将建材匀速竖直向上提升了12 m,作用在钢绳上的拉力为200 N,求拉力的功率.(3)当滑轮组的机械效率为60%时,运送建材的重力是多大?3.(2016,青岛)小雨通过如图甲所示滑轮组将水中物体匀速提升至空中,他所用拉力F与绳子自由端移动的距离s的关系图象如图乙所示.其中物体在空中匀速上升过程中滑轮组的机械效率为85%.每个滑轮等重,不计绳重、摩擦和水的阻力.求:(1)物体在空中上升1 m,小雨做的功是多少?(2)每个滑轮的重力是多少?(3)物体的密度是多少?4.(2016,黄冈)图甲为研究匀速直线运动的实验装置,一个半径为2 cm的球由于磁铁的吸引静止在盛水的玻璃管底,水深1 m.移除磁铁后,球在玻璃管中上升,图乙为球在露出水面前运动速度与时间的关系图象,其中v0=0.05 m/s,水的密度为1.0×103 kg/m3,求:(1)移除磁铁前,玻璃管底受到水的压强.(2)球在玻璃管上升过程中前4 s的平均速度.(3)已知球上升时受到水的阻力与其速度的关系为f=kv,球的体积用V,水的密度用ρ0表示,请推导球的密度表达式(用字母表示).5.(2016,威海)如图是利用电子秤显示压力大小反映水箱水位变化的装置示意图.该装置由滑轮C,长方体物块A、B以及杠杆DE组成.物块A通过细绳与滑轮C相连,物块B放在电子秤上并通过细绳与杠杆相连.杠杆可以绕支点O转动并始终在水平位置平衡,且DO∶OE=1∶2,已知物块A的密度为1.5×103 kg/m3,底面积为0.04 m2,高1 m,物块A的上表面与水箱顶部相平,物块B的重力为150 N.滑轮与轴的摩擦、杠杆与轴的摩擦以及滑轮、杠杆和绳的自重均忽略不计(g取10 N/kg,水的密度为1.0×103 kg/m3).请解答下列问题:(1)当水箱装满水时,物块A的下表面受到水的压强是多大?此时物块A所受的拉力是多大?(2)从水箱装满水到水位下降1 m,电子秤所显示的压力示数变化范围是多少?6.(2016,黔东南州)如图所示是某车站厕所的自动冲水装置,圆柱体浮筒A的底面积为400 cm2,高为0.2 m,盖片B的面积为60 cm2(盖片B的质量,厚度不计),连接AB的是长为0.4 m,体积和质量都不计的硬杆,当流进水箱的水刚好浸没浮筒A时,盖片B被拉开,水通过排水管流出冲洗厕所.(已知水的密度为1.0×103 kg/m3,g取10 N/kg)请解答下列问题:(1)当水箱的水刚好浸没浮筒A时,水对盖片B的压力是多少?(2)浮筒A的重力是多少?(3)水箱中水多深时盖片B又自动关上?7.(2016,黄石)测量液体密度的仪器叫做密度计.图甲和图乙是自制的简易密度计,它是在木棒的一端缠绕一些铜丝做成的,将其放入盛有不同液体的两个烧杯中. (1)请判断哪杯液体密度大,并说明理由.(2)实验室的密度计的上部是一个用来标刻度的空心圆柱形玻璃管,管下部为一玻璃泡,内装有铅粒.如图丙所示,该密度计圆柱形玻璃管长L =10 cm ,横截面积S =2.5 cm2,总质量m =20 g ,将它放入水中静止时,水面距玻璃管上端为4 cm ;将此密度计放入未知液体中静止时,发现液面距玻璃管上端为2 cm.求这种液体的密度以及密度计玻璃管上能标出的最大刻度值和最小刻度值.(已知水的密度为1.0×103 kg/m3,g 取10N/kg)8.(2015,贵港)一个带阀门的圆柱形容器,底面积是200 cm2,装有12 cm 深的水,正方体M 边长为10 cm ,重20 N ,用细绳悬挂放入水中,有15的体积露出水面,如图所示.求:(1)正方体M 的密度.(2)正方体M 受到的浮力以及此时水对容器底部的压强.(3)若从图示状态开始,通过阀门K 缓慢放水,当容器中水面下降了2 cm 时,细绳刚好被拉断,则细绳能承受的最大拉力是多少?(g 取10 N/kg ,水的密度为1.0×103 kg/m3)9.(2016,德州)近日,我国新型战略核潜艇(如图甲所示)为保障国家安全,进行了战略巡航.下表是核潜艇的部分性能参数.求:( 1)核潜艇以水下最大航速行驶到距离2700 km 外的某海域执行任务所用的时间;(1节≈0.5 m/s)(2)核潜艇在水面航行时受到的浮力;下潜到最大深度时受到水的压强;(g 取10 N/kg ,海水的密度ρ海水=1.03×103 kg/m3)(3)若核潜艇在水下巡航时,做水平匀速直线运动,所受阻力与速度的关系如图乙所示,它的动力功率是多少?10.(2016,孝感)用滑轮组与电动机结合使用可节省人力,提高工作效率.如图所示,是一业余打捞队打捞某密封箱子的示意图,已知电动机工作时拉绳子的功率为1100 W 保持不变,箱子质量为300 kg 、体积为0.1 m3,每个滑轮重200 N ,水深6 m ,水面离地面4 m ,将箱子从水底提到地面时,用时24 s(不计绳重、摩擦和水的阻力,g 取10 N/kg).求:(1)箱子在水底时下表面受到水的压强. (2)电动机把箱子提升到地面做的总功.(3)整个打捞过程中,滑轮组机械效率的最大值. (4)整个打捞过程中,箱子上升的最大速度.类型二 电学综合计算题11.(2016,聊城)如图所示,小灯泡L 标有“6 V 3 W ”的字样,不考虑灯丝电阻的变化,滑动变阻器的最大阻值R 为24 Ω,电源电压保持不变.当S 闭合,S1、S2断开,滑片P 滑到中点时,小灯泡恰好正常发光.保持滑片P 的位置不变,闭合S 、S1、S2,发现电流表的示数变化了1 A .求: (1)小灯泡正常发光时的电流. (2)电源电压.(3)当开关S 、S1、S2都闭合时,电路消耗总功率的最小值.12.(2016,德州)在如图甲所示的电路中,R0为定值电阻,R 为滑动变阻器,电源电压不变,闭合开关S 后,调节滑片P 从a 端移动到b 端过程中,电流表示数I 与电压表示数U 的变化关系如图乙所示.求: (1)电路中电流最小时,1 min 内电流通过电阻R 做的功. (2)电源电压和定值电阻R0.(3)若电压表量程为0~15 V ,电流表量程为0~3 A ,为保证电表正常工作,定值电阻R0消耗的功率范围.13.(2016,随州)如图,电路中电源电压U =6 V ,三个滑动变阻器R1、R2、R3完全相同.下表列出了电路的两水下排水量 11500吨 水下最大航速 36节 水面排水量 9000吨 水下巡航速度 20节 艇长 135米最大潜深 350米 艇宽 13米 发动机最大功率 25000千瓦个状态对应的变阻器滑片P1、P2、P3所处的位置.已知电路处于状态“1”时,电流表的读数为0.6 A.求:(1)R1的最大电阻值.(2)状态“2”时电压表读数为多少.(3)状态“2”时三个变阻器电功率的总和是多少.14.(2016,无锡)如图所示是小明利用光敏电阻为居民楼门口设计的一种智能照明电路.L为“220 V22 W”的照明灯,天暗时自动发光,天亮时自动熄灭,控制电路中,电源由两节干电池串联而成,电压为2.8 V,R1为阻值10 Ω的定值电阻,R2为光敏电阻,其阻值会随着光强度的变化而变化.(1)①灯L正常工作时,通过它的电流是多少?②受控电路中导线a端应连接照明电路的火线还是零线?(2)当电压表示数为2.1 V时,光敏电阻的阻值为多大?(电磁铁A的线圈电阻忽略不计)(3)如果控制电路的电源换成两节新的干电池,照明灯L有没有可能在白天就发光?请说明理由.15.(2015,梅州)如图甲所示,已知小灯泡L上标有“6 V 3 W”字样,R0=20 Ω,滑动变阻器R的最大阻值为100 Ω.求:(1)小灯泡的电阻(设灯丝电阻不随温度变化);(2)只闭合S1,移动滑动变阻器滑片P,变阻器两端电压与其连入电路的电阻关系如图乙所示;当滑片置于某点a 时,电压表示数Ua=8 V.求此时电流表示数及电源电压.(3)已知电压表量程为0~15 V,在电压表示数不超过量程,灯泡两端电压不超过额定值的情况下,只闭合S2时,求滑动变阻器连入电路的阻值范围.16.(2016,宜宾)如图是某电器设备的部分电路,电源电压U=4.5 V保持不变,灯泡L标有“6 V 6 W”字样.已知闭合开关S1和S3时,电路消耗的功率为2.025 W,不计灯丝电阻随温度的变化.(1)求定值电阻R1的阻值.(2)三个开关S1,S2,S3都闭合时,求通过电流表的电流大小.(3)电压表的量程为0~3 V,电流表的量程为0~0.6 A,滑动变阻器R2的阻值在0~20 Ω内可调,只闭合开关S2,在保证电表安全的情况下,求灯泡L消耗的电功率的变化范围.17.(2016,遂宁)如图所示,电源电压恒为20 V.灯泡L上标有“12 V 6 W”字样,电流表量程为0~0.6 A,电压表量程为0~15 V.当滑动变阻器R的滑片P在B点,且RAB=15R时,只闭合S和S1,灯泡L恰好正常发光.当只闭合S和S2,滑动变阻器R的滑片P分别在中点O和B点时,电压表示数之比UAO∶UAB=3∶2.(不考虑温度对灯丝电阻的影响)求:(1)滑动变阻器R的最大电阻值.(2)当滑动变阻器R的滑片P在中点O时,只闭合S和S1,电压表的示数是多少?(3)当只闭合S和S2,在保证电路安全的情况下,电阻R0消耗电功率最小时,滑动变阻器R消耗的电功率是多少?类型三力、电、热综合计算题18.(2015,连云港)2015年4月21日,重达2.3 t的世界上最大的太阳能飞机“阳光动力2号”降落在南京机场.如图所示,该飞机机身和机翼均采用极轻的碳纤维材料,机翼上安装有高效太阳能电池板,能提供65 kW的最大功率,该飞机的最大飞行速度为140 km/h.假设飞机停在水平地面时轮与地面的总接触面积为0.1 m2.(g取10 N/kg)求:(1)飞机停在水平地面时,对地面的压强大小;(2)当飞机发动机的输出功率保持60 kW,并以108 km/h的速度水平匀速飞行时,发动机的牵引力大小;(3)若飞机发动机保持60 kW的输出功率匀速飞行1 h,发动机输出的能量为多大?这些能量相当于多少升的航空燃油完全燃烧时释放的能量?(航空燃油的热值取4×107 J/kg,密度取0.75×103 kg/m3)状态开关P1P2P31K、K1、K2均闭合最右端最右端最右端2K闭合,K1、K2均断开最左端正中间最右端19.(2016,武汉)如图甲是中国自主研制的首列永磁动力单轨列车.其亮点是列车可以小角度转弯,安装有高压细水雾灭火系统和制动发电装置.(1)当列车转弯时,水平轮胎发生形变,起到导向和稳定作用,如图乙是轮胎与接触面的平面图,请在图乙中画出轮胎对接触面压力的示意图.(2)当高压细水雾系统中水枪工作时,水对喷孔的压强p=10 MPa,水雾喷出的速度υ≥10 m/s,若喷孔的总面积S=5×10-5m2,则水枪的功率至少为多少瓦?(不计大气压强)(3)列车制动减速的过程中,机械能转化为电能和内能.当列车在平直轨道上制动减速时,电能W1与内能W2之比为9∶16,如图丙是机械能的变化量ΔW与速度变化量Δυ的关系图象,若列车从72 km/h开始减速,转化的电能可供总功率为1000 W的照明灯正常发光1 h,则列车的速度会减小到多少千米/时?20.(2015,宜宾)寒冷的冬天,孝顺的小茜用自己平时积攒的零花钱给住在偏远农村的奶奶买了一个“暖手宝”,铭牌如表中所示,请回答下列问题.(1)该“暖手宝”正常工作时的电流和电阻各是多少?(2)该“暖手宝”正常工作5分钟产生的热量是多少?(3)在奶奶家,到晚上用电高峰期小茜再次给“暖手宝”加热时,发现加热时间明显比白天长.聪明的小茜知道这是因为电压降低了的缘故,于是专门进行了一番测量:她关掉其他用电器,单独给这个“暖手宝”通电6分钟,观察到家里的电能表(如图所示)转盘转了44转.请你帮小茜计算出这时她奶奶家实际电压是多少?(不考虑温度对电阻的影响)21.(2016,黄冈)热风枪常用于工程装修、服装制造等行业.工作时,利用其吹出的热风使材料熔化或软化,从而达到去除旧漆膜、弯曲塑料管.换装瓷砖等目的,图甲是某型号热风枪的简化电路图,其中电热丝R1的最大功率为2000 W,R2、R3可分别调节温度和风量,(不计温度对R1阻值的影响)请解答:(1)图乙中的P、Q处为该型号热风枪的电热丝和电动机预留安装位置,应将电动机安装在_P_处,否则_电热丝产生的热量可能损坏电动机_.(说出一点即可)(2)当R2接入电路电阻为30.8 Ω时,R1上消耗的功率是多少?(3)已知R1达到最大功率时,从出风口吹出的空气温度升高了400 ℃,若将R1的功率调为1500 W,则从出风口吹出的空气温度升高了多少?(设热效率相同、相同时间内吹出的空气质量相同)22.(2016,泸州)据统计,全国发生的车祸中有超过半数以上是超速、超载引起的.我市加大了道路交通安全监控管理力度,将“区间测速”作为判断是否超速的依据之一.所谓的“区间测速”,就是测算出汽车在某一区间行驶的平均速度,如果超过了该路段的最高限速即被判为超速.若监测点A、B相距18 km,全程限速40 km/h,由“电子眼”抓拍到装有沙子的某型号货车通过监测点A、B的速度分别为30 km/h和456 km/h,通过A、B两个监测点的时间为20 min.问:(1)按“区间测速”标准判断该货车在AB段行驶是否超速?(2)按照规定,载货车车轮对地面的压强超过7×105 Pa即被判为超载.该型号货车部分参数如表所示.根据表中参数计算,该货车在不超载的情况下,在水平路面上运动时最多能装沙子的体积为多少?(ρ沙=2.0×103 kg/m3,g取10 N/kg)(3)该货车在某路段平直公路上运动60 s的速度—时间图象如图所示,这段时间内发动机完全燃烧柴油0.2 kg,(已知发动机的效率η=40%,柴油的热值q=4.5×107 J/kg)则货车在这段时间内运动受到的阻力为多大?23.(2016,荆门)如图甲所示是某大型超市上的节能自动扶梯.图乙是其示意图,扶梯与水平面成30°角.扶梯空载(无人)时的速度为0.13 m/s,当有人即将步入扶梯时,扶梯通过光电传感器感知后即以0.65 m/s的速度运行.现有一个体重为600 N的人乘扶梯上楼.产品名称暖手宝产品货号QB32额定功率440W额定电压220 V通电储热5~8分钟电源线长约80 cm(1)此人站在扶梯上,鞋与扶梯的接触面积为400 cm2,则人对扶梯的压强有多大?(2)若此人乘扶梯从A到B所用时间为20 s,则扶梯克服人的重力做功的功率有多大?(3)下表是节能自动扶梯与普通电梯的有关参数.与普通电梯比,节能自动扶梯一年(按360天计)要节约多少电能?24.(2015,黄冈)如图甲所示是我市某家用电辅热式平板太阳能热水器,其电热丝加热的额定功率为1500 W.图乙是其储水箱水位探测电路原理图,其中电源电压为24 V,为水位指示表(由量程为0~0.6 A 电流表改成),R0阻值为10 Ω,Rx为压敏电阻,其阻值与储水箱水深的关系如图丙所示.(1)热水器正常加热时,电热丝电阻多大?(结果保留一位小数)(2)阴雨天,将储水箱中50 kg、30 ℃的水加热到50 ℃,正常通电要多长时间?[设电热全部被水箱中的水吸收且无热损失,c水=4.2×103 J/(kg·℃)];(3)当水位指示表指示储水箱水深为0.2 m时,探测电路中的电流多大?25.(2016,岳阳)图甲为某款新型电饭煲,额定电压为220 V,它采用了“聪明火”技术,智能化地控制不同时间段的烹饪温度,以得到食物最佳的营养和口感,图乙为其电路原理图,R1和R2为电阻不变的电热丝,S1是自动控制开关.将电饭煲接入220 V电路中,在电饭煲工作的30 min内,它消耗的电功率随时间变化的图象如图丙所示.求:(1)0~30 min,电饭煲产生的总热量.(2)S和S1均闭合,电路中的总电流.(3)在不同电压下,电饭煲从开始工作到S1第一次自动断开产生的热量相同.用电高峰期,当实际电压为198 V 时,使用该电饭煲,从开始工作到S1第一次自动断开需要多长时间?26. (2016,日照)吴丽发现家中电视机的额定功率为121 W,额定电压为220 V.电饭锅上的铭牌如下表,工作电路如图所示.求:(1)电饭锅加热电阻的阻值是多少?(2)已知电饭锅在额定电压下正常工作600 s,恰好能将1标准大气压下1.65 kg、20 ℃的水烧开.该电饭锅烧开这些水时的工作效率是多少?[c水=4.2×103 J/(kg·℃)](3)当吴丽家中的电器只有电视机和电饭锅工作时,将1标准大气压下1.65 kg、20 ℃的水烧开用了726 s.她通过观察电能表的转动圈数,计算得到该过程共耗电0.2035度.求吴丽家中电路的实际电压和通过电视机的实际电流各是多少?(不考虑电压变化对电饭锅工作效率的影响)27.(2016,天门)某物理兴趣小组设计了探测湖底未知属性的矿石密度的装置,其部分结构如图甲所示.电源电压为6 V,R0为定值电阻,滑动变阻器R的阻值随弹簧的拉力F变化关系如图乙所示,T为容器的阀门.某次探测时,水下机器人潜入100 m深的湖底取出矿石样品M.返回实验室后,将矿石样品M悬挂于P点放入容器中,保持静止状态.打开阀门T,随着水缓慢注入容器,电压表示数U随容器中水的深度h变化关系如图丙中的实线所示.在电压表示数从2 V变为4 V的过程中,电流表示数变化值为0.2 A(弹簧电阻忽略不计,矿石M不吸水,湖水密度与水相同,g取10 N/kg).求:(1)水下机器人在100 m深的湖底取样时受到水的压强为多少?(2)定值电阻R0的阻值是多少?(3)矿石M的密度是多少kg/m3?型号WKF-315S电源220 V50 Hz加热功率1100 W保温功率330 W制造商××小家电有限公司参考答案1.(1)汽车行驶的平均速度v =s t =2.7×103 m180 s =15 m/s =54 km/h ,因为50 km/h <54 km/h<55 km/h ,所以该汽车是“绿波通行” (2)汽车的牵引力做的功W =Fs =3000 N ×2.7×103 m =8.1×106 J ,则汽车的输出功率P =Wt =8.1×106 J180 s =4.5×104 W (3)汽车的重力G =mg =1.2×103 kg ×10 N/kg =1.2×104 N ,因为汽车静止在水平地面,所以汽车对水平地面的压力F 压=G =1.2×104 N ,则汽车静止时对水平地面的压强p =F 压S =1.2×104 N0.6 m2=2×104Pa2.(1)建材的重力G =mg =50 kg ×10 N/kg =500 N (2)由图可知:承担重物绳子的段数n =2,则1 min 绳子自由端移动的距离s =2 h =2×12 m =24 m ,拉力做的功W =Fs =200 N ×24 m =4800 J ,拉力的功率P =W t =4800 J60 s =80 W (3)由图象可知,当η=50%时,重物G =400 N ,因为η=W 有W 总=W 有W 有+W 额=Gh Gh +G 动h =GG +G 动,所以,50%=400 N400 N +G 动,解得G 动=400 N ,当η′=60%时,η′=G ′G ′+G 动,即60%=G ′G ′+400 N ′,解得,G ′=600 N3.(1)由图乙可知,绳子自由端移动的距离为0~4 m 时,拉力为100 N 不变,此时物体没有露出水面,4~6 m 时,物体开始逐渐露出水面,拉力不断增大,6~8 m 时拉力为200 N 不变,此时物体完全离开水面,故物体在空中匀速上升过程中受到的拉力F =200 N ,由图可知n =4,所以绳子自由端移动的距离s =nh =4×1 m =4 m ,小雨做的功是W =Fs =200 N ×4 m =800 J (2)根据η=W 有用W 总可得,物体在空中上升1 m 做的有用功W 有用=ηW总=85%×800 J =680 J ,根据W =Gh 可得,物体的重力G =W 有用h =680 J 1 m =680 N ,根据F =1n (G +2G 动)可得,2G 动=4F -G =4×200 N -680 N =120 N ,所以每个滑轮的重力G 动=120 N2=60 N (3)物体没有露出水面之前受到的拉力为F ′=4×100 N =400 N ,重力G =680 N ,两个动滑轮的重力为120 N ,所以,物体完全浸没时受到的浮力F 浮=G +2G 动-F ′=680 N +120 N -400 N =400 N ,根据F 浮=ρ水gV 排可得物体的体积V =V 排=F 浮ρ水g =400 N 1×103 kg/m3×10 N/kg =4×10-2 m3,物体的质量m =G g =680 N 10 N/kg =68 kg ,则物体的密度ρ=m V =68 kg4×10-2 m3=1.7×103 kg/m34.(1)移除磁铁前,玻璃管底受到水的压强p =ρgh =1.0×103 kg/m3×10 N/kg ×1 m =1.0×104 Pa (2)由图可知,球在露出水面前运动的时间为21 s ,根据v =st 可得,4~21 s 球上升的距离s0=v0t =0.05 m/s ×17 s =0.85 m ,则球在玻璃管上升过程中前4 s 上升的距离s ′=1 m -0.85 m -2×0.02 m =0.11 m ,所以球在玻璃管上升过程中前4 s 的平均速度v ′=s ′t ′=0.11 m4 s =0.0275 m/s (3)由图可知,球4~21 s 时匀速上升,受力平衡,所以G +f =F浮,根据G =mg ,ρ=mV 可得G =ρVg ,又知f =kv ,F 浮=ρogV ,则ρVg +kv =ρ0gV ,球的密度ρ=ρ0gV -kv Vg =ρ0-kvVg5.(1)物体A 下表面受到水的压强p =ρ水gh =1.0×103 kg/m3×10 N/kg ×1 m =1×104 Pa ,物体A 的体积V A =Sh =0.04 m2×1 m =0.04 m3,浸没时V 排=V A =0.04 m3,物体A 受到浮力F 浮=ρ水gV 排=1.0×103 kg/m3×10 N/kg ×0.04 m3=400 N ,物体A 受到重力GA =ρAgV A =1.5×103 kg/m3×10 N/kg ×0.04 m3=600 N ,物体A 所受的拉力F =GA -F 浮=600 N -400 N =200 N (2)当物体A 浸没时,对D 点拉力FD =F 2=200 N2=100 N ,由杠杆平衡条件FD ×DO =FE ×OE 得,FE =FD ×DO OE =100 N ×DO2DO =50 N ,电子秤示数F 压=GB -FB =150 N-50 N =100 N ;当水位下降1 m 时,即物体A 全部露出水面时,对D 点拉力FD =GA 2=600 N2=300 N ,由杠杆平衡条件FD ×DO =F ′B ×OE 得F ′B =FD ×DO OE =300 N ×DO2DO =150 N ,电子秤示数F 压=GB -F ′B =150 N-150 N =0 N ,所以从水箱装满水到水位下降1 m ,电子秤示数变化范围0 N ~100 N6.(1)当水箱的水刚好浸没浮筒A 时,水深h =0.4 m +0.2 m =0.6 m ,水对盖片B 的压强p =ρgh =1×103 kg/m3×10 N/kg ×0.6 m =6000 Pa ,水对盖片B 的压力F =pS =6000 Pa ×60×10-4 m2=36 N (2)杆对浮筒的拉力等于水对盖片B 的压力,即F ′=36 N ,当水箱的水刚好浸没浮筒A 时,浮筒受到的浮力F 浮=ρ水V 排g =1×103 kg/m3×400×10-4 m2×0.2 m ×10 N/kg =80 N ,浮筒受到的浮力等于浮筒重加上杆对浮筒的拉力,即F 浮=GA +F ′,则浮筒A 的重力GA =F 浮-F ′=80 N -36 N =44 N (3)设圆柱体浮筒A 浸在水中的深度为h1时,盖片B 又自动关上,则F 浮′=GA 即ρ水V 排g =GA ,1×103 kg/m3×400×10-4 m2×h1×10 N/kg =44 N ,解得h1=0.11 m ,水箱中水的深度h1=0.11 m +0.4 m =0.51 m7.(1)图乙中液体密度大,根据漂浮条件mg =ρ液gV 排,图乙中密度计浸入液体中的体积小些,所以液体密度大些 (2)设密度计总体积为V ,将它放入水中静止时mg =ρ水g(V -Sl1),l1=4 cm ,得V =30 cm3,将它放入未知液体中静止时mg =ρ液g(V -Sl2),l2=2 cm ,得ρ液=0.8 g/cm3=0.8×103 kg/m3,当玻璃管上端恰好没入液体中时,此刻度线为最小刻度值,根据漂浮条件mg =ρmingV 得ρmin =0.67×103 kg/m3,当玻璃管下端恰好浸入液体中时,此刻度线为最大刻度值,根据漂浮条件mg =ρmaxg(V -SL) 得ρmax =4.0×103 kg/m3 8.(1)正方体M 的质量mM =GM g =20 N10 N/kg=2 kg ,体积为VM =(10 cm)3=1000 cm3=1×10-3 m3,所以密度ρM =mM VM = 2 kg 1×10-3 m3=2×103 kg/m3 (2)由于M 用细绳悬挂放入水中,有15的体积露出水面,则V 排1=(1-15)V A =45×1×10-3 m3=8×10-4 m3,受到浮力为F 浮1=ρ水gV 排1=1.0×103 kg/m3×10 N/kg ×8×10-4 m3=8 N ,设M 放入水中后水深为h ′,则有Sh ′=Sh +V 排1,则h ′=h +V 排1S =0.12 m +8×10-4 m3200×10-4 m2=0.16 m ,此时水对容器底部的压强p =ρ水gh ′=1.0×103 kg/m3×10 N/kg ×0.16 m =1.6×103 Pa (3)原来M 浸入水中深度为h1=(1-15)L =45×10 cm =8 cm ,水面下降2 cm 时正方体M 浸入水中深度为h2=h1-2 cm =8 cm-2 cm =6 cm ,则V 排2=L2h2=(10 cm)2×6 cm =600 cm3=6×10-4 m3,F 浮2=ρ水gV 排2=1.0×103 kg/m3×10 N/kg ×6×10-4 m3=6 N ;当绳子刚被拉断时有Fmax +F 浮2=G ,所以细绳能承受的最大拉力Fmax =G-F 浮2=20 N -6 N =14 N9.(1)核潜艇水下最大航速v =36×0.5 m/s =18 m/s ,s =2700 km =2.7×106 m ,所用时间t =s v =2.7×106 m18 m/s =1.5×105 s(2)由表格数据可知,在水面上航行时,m 排=9000t =9×106 kg ,则核潜艇在水面航行时受到的浮力F 浮=G 排=9×106 kg ×10 N/kg =9×107N ;下潜最大深度h =350 m ,受到海水的压强p =ρgh =1.03×103 kg/m3×10 N/kg ×350 m =3.605×106 Pa (3)核潜艇在水下巡航时,做水平匀速直线运动,受到的动力和阻力是一对平衡力,大小相等,它在水下航行速度为20节时,由图象可知F =f =30×104 N ,因此动力的功率P =Fv =30×104 N ×20×0.5 m/s =3×106 W 10.(1)箱子在水底时,下表面的深度H =6 m ,此处水产生的压强p =ρgh =1×103 kg/m3×10 N/kg ×6 m =6×104 Pa (2)电动机工作时拉绳子的功率为1100 W 保持不变,将箱子从水底提到地面用时t =24 s ,由P =Wt 得电动机所做的总功W 总=Pt =1100 W ×24 s =2.64×104 J (3)在提升箱子过程中,不计绳重、摩擦和水的阻力,有用功是动滑轮对箱子的拉力所做的功,额外功是克服动滑轮重所做的功;由η=W 有用W 总=W 有用W 有用+W 额=F 动拉箱h F 动拉箱h +G 动h =F 动拉箱F 动拉箱+G 动可知,动滑轮对箱子的拉力越大,滑轮组的机械效率越大,所以出水后滑轮组的机械效率最大,箱子的重力G =mg =300 kg ×10 N/kg =3000 N ;出水后,最大机械效率η最大=GG +G 动×100%=3000 N3000 N +200 N×100%=93.75% (4)由于电动机工作时拉绳子的功率保持不变,所以,根据P =Fv 可知,电动机的拉力最小时,绳端的速度最大,此时箱子上升的速度也最大.当箱子所受浮力最大时(箱子浸没在水中上升时),电动机的拉力最小,箱子上升的速度最大;箱子所受的浮力F 浮=ρgV 排=1000 kg/m3×10 N/kg ×0.1 m3=1000 N ,则电动机的最小拉力F =12(G 箱+G 动-F 浮)=12(3000 N +200 N -1000 N)=1100 N ;由P =Fv 可得,绳端的最大速度v 最大=P F =1100 W 1100 N =1 m/s ,则箱子上升的最大速度v 最大′=12v 最大11.(1)由P =UI 可得,小灯泡正常工作时的电流IL =PL UL =3 W6 V=0.5 A (2)当S 闭合,S1、S2断开,滑片P 滑到中点时,L 与12R 串联,由I =U R 可得,灯泡的电阻RL =UL IL =6 V 0.5 A =12 Ω,所以,电源的电压U =I(RL +R2)=IL(RL+R 2)=0.5 A ×(12 Ω+24 Ω2)=12 V (3)保持滑片P 的位置不变,开关S 、S1、S2都闭合时,R0与12R 并联,干路电流变大,此时干路电流I ′=I +△I =IL +△I =0.5 A +1 A =1.5 A ,因并联电路中各支路两端的电压相等,所以通过滑动变阻器的电流I 滑=U R 2=12 V 24 Ω2=1 A ,则通过定值电阻R0的电流I0=I ′-I 滑=1.5 A -1 A =0.5 A ,因并联电路中各支路独立工作、互不影响,所以滑片移动时通过R0的电流不变,当滑动变阻器接入电路中的电阻最大时电路消耗的总功率最小,通过滑动变阻器的电流I 滑′=U R =12 V24 Ω=0. 5 A ,干路电流I ″=I0+I 滑′=0.5 A +0.5 A =1 A ,电路消耗的最小功率P =UI ″=12 V ×1 A =12 W=12×1 m/s =0.5 m/s 12.由电路图可知,R 与R0串联,电压表测R 两端的电压,电流表测电路中的电流 (1)由图乙可知,电路中的最小电流I 小=0.2 A ,R 两端的电压UR =20 V ,1 min 内电流通过电阻R 做的功WR =URI 小t =20 V ×0.2 A ×60 s =240 J (2)当滑动变阻器接入电路中的电阻最大时电路中的电流最小,电源的电压U =I 小R0+UR =0.2 A ×R0+20 V ,当滑动变阻器接入电路中的电阻为零时,电路中的电流最大,由图乙可知,电路中的最大电流I 大=1.2 A ,则电源的电压U =I 大R0=1.2 A ×R0,因电源的电压不变,所以,0.2 A ×R0+20 V =1.2 A ×R0,解得R0=20 Ω,电源的电压U =I 大R0=1.2 A ×20 Ω=24 V (3)当电路中的电流最大时定值电阻R0消耗的功率最大,则R0消耗的最大功率PR0大=I 大2R0=(1.2 A)2×20 Ω=28.8 W ,当电压表的示数最大时电路中的电流最小,R0消耗的电功率最小,此时R0两端的电压UR0小=U -UR 大=24 V -15 V =9 V ,R0消耗的最小功率PR0小=UR0小2R0=(9 V )220 Ω=4.05 W ,定值电阻R0消耗的功率范围为4.05~28.8 W13.(1)由图和表格信息可知,状态“1”时,R1、R2并联,电流表测干路电流,滑片P 都在最右端,连入阻值都为最大;由于滑动变阻器R1、R2、R3完全相同,设每个滑动变阻器的最大阻值均为R ,由并联电路的电流特点和欧姆定律有I =I1+I2=U R +U R =2U R ,所以,R =2U I =2×6 V0.6 A =20 Ω,即R1的最大电阻值为20 Ω (2)由图和表格信息可知,状态“2”时,R2、R3串联,电压表测R3两端电压,P2在正中间,P3在最右端,则R2=12R =12×20 Ω=10 Ω,R3=R =20 Ω,由串联电路的特点和欧姆定律可得电路中电流I2′=I3′=I ′=U R 总=6 V10 Ω+20 Ω=0.2 A ,所以电压表示数U3′=I ′R3=0.2 A ×20 Ω=4 V (3)由P =UI 可得,状态“2”时电路消耗的总功率P 总=UI ′=6 V ×0.2 A =1.2 W14.(1)①由P =UI 可得,灯L 正常工作时通过的电流IL =PL UL =22 W220 V =0.1 A ②开关控制灯泡时,开关接在火线上,所以受控电路中导线a 端应连接照明电路的火线 (2)当电压表示数为2.1 V 时,R1两端的电压U1=U -U2=2.8 V -2.1 V =0.7 V ,电路中的电流I =U1R1=U2R2,即0.7 V 10 Ω=2.1 V R2,解得R2=30 Ω (3)如果控制电路的电源换成两节新的干电池,则电源的电压增大,由欧姆定律可知,电路中的电流增大,在天暗时,控制电路的电流还没达到电磁铁断开的电流,照明灯L 不发光,所以,照明灯L 没有可能在白天就发光15.(1)由P =U2R 可得灯泡电阻RL =UL2PL =(6 V )23 W=12 Ω (2)只闭合S1,R0与R 串联,由图乙可知,当电压表示数Ua =8 V 时,R =16 Ω,因串联电路中各处的电流相等,则电路中的电流I =Ia =Ua R =8 V16 Ω=0.5 A ,总阻值R 总=R0+R =20 Ω+16 Ω=36 Ω;由欧姆定律得电源电压U =IR 总=0.5 A ×36 Ω=18 V (3)只闭合S2时,灯泡L 与变阻器串联,由于灯泡的额定电压为6 V ,则灯泡两端的最大电压为6 V ;则由P =UI 得电路中的最大电流I 最大=IL =P 额U 额=3 W 6 V =0.5 A ,由欧姆定律得总电阻R 总最小=U I 最大=18 V0.5 A=36 Ω;变阻器接入电路中的最小电阻R 最小=R 总最小-RL =36 Ω-12 Ω=24 Ω;为保护电压表的量程,则电压表的最大示数为15 V ,此时灯泡两端的电压为UL ′=U -UR 最大=18 V -15 V =3 V ,则通过灯泡的最小电流I 最小=UL ′RL=。
中考数学试题分项版解析(第03期)专题15 应用题-人教版初中九年级全册数学试题
专题15 应用题1.(2016某某省某某市第22题)“六一”期间,小X购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:型号进价(元/只)售价(元/只)A型10 12B型15 23(1)小X如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小X设计一个进货方案,并求出其所获利润的最大值.【答案】(1)A文具为40只,B文具60只;(2)各进50只,最大利润为500元.【解析】试题分析:(1)设A文具为x只,则B文具为(100﹣x)只,根据题意列出方程解答即可;(12﹣10)x+(23﹣15)(100﹣x)≤40%[10x+15(100﹣x)],解得:x≥50,设利润为y,则可得:y=(12﹣10)x+(23﹣15)(100﹣x)=2x+800﹣8x=﹣6x+800,因为是减函数,所以当x=50时,利润最大,即最大利润=﹣50×6+800=500元.考点:1.一次函数的应用;2.一元一次方程的应用;3.一元一次不等式的应用.2.(2016某某省某某市第23题)某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:“读书节”活动计划书书本类别A类B类进价(单位:元)18 12备注1、用不超过16800元购进A、B两类图书共1000本;2、A类图书不少于600本;…(1)陈经理查看计划数时发现:A类图书的标价是B类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买A类图书的数量恰好比单独购买B类图书的数量少10本,请求出A、B两类图书的标价;(2)经市场调查后,陈经理发现他们高估了“读书节”对图书销售的影响,便调整了销售方案,A类图书每本标价降低a元(0<a<5)销售,B类图书价格不变,那么书店应如何进货才能获得最大利润?【答案】(1)、A类图书的标价为27元,B类图书的标价为18元;(2)、当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.【解析】试题解析:(1)、设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意可得﹣10=,化简得:540﹣10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,×18=27(元),答:A类图书的标价为27元,B类图书的标价为18元;(2)、设购进A类图书t本,总利润为w元,A类图书的标价为(27﹣a)元(0<a<5),由题意得,,解得:600≤t≤800,则总利润w=(27﹣a﹣18)t+(18﹣12)(1000﹣t)=(9﹣a)t+6(1000﹣t)=6000+(3﹣a)t,故当0<a<3时,3﹣a>0,t=800时,总利润最大;当3≤a<5时,3﹣a<0,t=600时,总利润最大;答:当A 类图书每本降价少于3元时,A 类图书购进800本,B 类图书购进200本时,利润最大;当A 类图书每本降价大于等于3元,小于5元时,A 类图书购进600本,B 类图书购进400本时,利润最大. 考点:(1)、一次函数的应用;(2)、分式方程的应用;(3)、一元一次不等式组的应用3.(2016某某省某某市第21题)(8分)荔枝是某某特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)、求桂味和糯米糍的售价分别是每千克多少元;(2)、如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的两倍,请设计一种购买方案,使所需总费用最低.【答案】(1)、桂味售价为每千克15元,糯米味售价为每千克20元;(2)、购买桂味4千克,糯米味8千克是,总费用最少.试题解析:(1)、设桂味售价为每千克x 元,糯米味售价为每千克y 元,根据题意得:⎩⎨⎧=+=+5529032y x y x解得:⎩⎨⎧==2015y x答:桂味售价为每千克15元,糯米味售价为每千克20元。
2016数学中考试题及答案
2016数学中考试题及答案2016年的数学中考试题目是许多学生所关注的焦点。
本文将为您提供2016年数学中考试题目的详细内容以及相应的答案。
以下是数学试题的题目和答案:1. 选择题1.1 问题:已知直角三角形 ABC 中,∠B = 90°,BC = 4 cm,AC = 3 cm,则∠A 的值是多少?选项:A. 30°B. 45°C. 60°D. 90°1.2 问题:已知 a + b = 7,a - b = 3,则 a 和 b 的值分别是多少?选项:A. a = 5,b = 2B. a = 2,b = 5C. a = 7,b = 0D. a = 0,b = 7答案:1.1 答案:C1.2 答案:A2. 填空题2.1 问题:将两个相邻的自然数的平方相加,结果为 365,这两个自然数分别是多少?答案:13 和 142.2 问题:已知 x = -2 是方程 3x - 4 = 5x + 2 的解,求另一个解。
答案:-33. 计算题3.1 问题:已知函数 f(x) = x^2 + 3x + 2,求 f(-1) 的值。
答案:23.2 问题:某商品原价为 80 元,现在打折 30%,请计算折扣后的价格。
答案:56 元4. 解答题4.1 问题:请解答如下等式,求出变量 x 的值:2(x + 3) = 4x + 6答案:x = 34.2 问题:请解答如下问题,计算三个连续自然数的和,其中最小的自然数是 x:x + (x + 1) + (x + 2) = 60答案:x = 19以上便是2016年数学中考试题目的详细内容以及相应的答案。
希望对您复习和准备考试有所帮助。
祝您取得好成绩!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年中考数学专题复习冲刺训练
应用题专题
一、列一元一次方程解应用题
1.毕业在即,九年级某班为纪念师生情谊,班委决定花800元班会费买两种不同单价的留念册,分别给50位同学和
10位任课老师每人一本留做纪念。
其中送给任课老师的留念册的单价比给同学的单价多8元。
请问这两种不同留念册的单价分别为多少元?
二、列二元一次方程组解应用题
2.去年秋季以来,我市某镇遭受百年一遇的特大干旱,为支援该镇抗旱,上级下拨专项抗旱资金80万元用于打井.已
知用这80万元打灌溉用井和生活用井共58口,每口灌溉用井和生活用井分别需要资金4万元和0.2万元,求这两种井各打多少口?
3.小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上
坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?
三、列一元二次方程解应用题
4. 在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.
(1)若花园的面积为192m2,求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
5.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,
第三天收到捐款12 100元.
(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;
(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?
6. 某市为打造“绿色城市”,积极投入资金进行河道治污与园林绿化两项工程、已知2013年投资1000万元,预计2015年投资1210万元.若这两年内平均每年投资增长的百分率相同.
(1)求平均每年投资增长的百分率;
(2)已知河道治污每平方需投入400元,园林绿化每平方米需投入200元,若要求2015年河道治污及园林绿化总面积不少于35000平方米,且河道治污费用不少于园林绿化费用的4倍,那么园林绿化的费用应在什么范围内?
五、列不等式或不等式组解应用题
7.为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:
(1)求m的值;
(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.
8. “保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.
(1)求购买A型和B型公交车每辆各需多少万元?
(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?。