第2课时 一元一次不等式的应用(导学案)
一元一次不等式导学案2
课题:不等式的基本性质(2)
快乐高效实用
永州陶铸中学初中部八年级数学导学案
总课时:第 60 课时第四章:第 3 课时 主备人:罗林林审核人:八年级数学备课组 班级:姓名:类别: 学习目标:理解并能灵活应用不等式的性质 2 与 3,正确区分等式的性质与不等 式的性质的区别 学习重点:不等式的性质 2 与 3 学习难点:不等式性质 2 与 3 的灵活应用 一、情节导入 复习不等式的性质 1 二、自主学习 阅读书本 P135-136 完成下列问题: 1、 完成书本 P135 中探究的问题; 2、 不等式基本性质 2: 不等式基本性质 3: ������ ������ 3、若a > ������,则 5a 5b ; 33 ������ ������ 若x < ������,则−2x − 2y; −7 −7 三、合作探究 ab b 1、若 a<0,则- ____- 2 2 2、根据不等式的性质,把下列不等式表示为 x>a 或 x<a 的形式:
(1)10x-1>9x (3)5-6x≥2 (2)2x+2<3 (4)8 − 3y ≤ 2y − 7
四、当堂检测 书本 P137 中练习第 1、2 题 五、拓展提升
1、 某商店先在广州以每件 15 元的价格购进某种商品 10 件, 后来又到深圳以每件 12.5 元的 价格购进同一种商品 40 件。如果商店销售这些商品时,每件定价为 x 元,可获得大于 12% 的利润,用不等式表示问题中的不等关系,并检验 x=14(元)是否使不等式成立?
一个工程队原定在 10 天内至少要挖掘 600m 的土方,在前两天共完成了 120m 后,又要求提 前 2 天完成掘土任务,问以后每天至少要挖多少土方?(只列关系式)
3 3
六、课堂小结 这节课你学到了什么?还有什么疑惑吗? 七、课后作业 八、课后反思Leabharlann 课题:不等式的基本性质(1)
【学练优】八年级数学下册2.4一元一次不等式的应用(第2课时)教案(新版)北师大版
【学练优】⼋年级数学下册2.4⼀元⼀次不等式的应⽤(第2课时)教案(新版)北师⼤版⼀元⼀次不等式的应⽤1.会在实际问题中寻找数量关系列⼀元⼀次不等式并求解;2.能够列⼀元⼀次不等式解决实际问题.(重点,难点)⼀、情境导⼊如果你要分别购买40元、80元、140元、160元的商品,应该去哪家商店更优惠?⼆、合作探究探究点:⼀元⼀次不等式的应⽤【类型⼀】商品销售问题某商品的进价是120元,标价为180元,但销量较⼩.为了促销,商场决定打折销售,为了保证利润率不低于20%,那么最多可以打⼏折出售此商品?解析:由题意可知,利润率为20%时,获得的利润为120×20%=24元;若打x折该商品获得的利润=该商品的标价×x10-进价,即该商品获得的利润=180×x10-120,列出不等式,解得x的值即可.解:设可以打x折出售此商品,由题意得:180×x10-120≥120×20%,解得x≥8.答:最多可以打8折出售此商品.⽅法总结:商品销售问题的基本关系是:售价-进价=利润.读懂题意列出不等式求解是解题关键.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型⼆】竞赛积分问题某次知识竞赛共有25道题,答对⼀道得4分,答错或不答都扣2分.⼩明得分要超过80分,他⾄少要答对多少道题?解析:设⼩明答对x道题,则答错或不答的题⽬为(25-x)道,根据得分要超过80分,列出不等关系求解即可.解:设⼩明答对x道题,则他答错或不答的题⽬为(25-x)道.根据他的得分要超过80分,得:4x-2(25-x)>80,解得x>2123.因为x应是整数⽽且不能超过25,所以⼩明⾄少要答对22道题.答:⼩明⾄少要答对22道题.⽅法总结:竞赛积分问题的基本关系是:得分-扣分=最后得分.本题涉及到不等式的整数解,取整数解时要注意关键词如“⾄多”“⾄少”等.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型三】安全问题采⽯场爆破时,点燃导⽕线后⼯⼈要在爆破前转移到400⽶外的安全区域.导⽕线燃烧速度是每秒1厘⽶,⼯⼈转移的速度是每秒5⽶,导⽕线⾄少要多少⽶?解析:根据时间列不等式,导⽕线燃烧时间>⼯⼈要在爆破前转移到400⽶外的安全区域时间.解:设导⽕线的长度需要x⽶,1厘⽶/秒=0.01⽶/秒,由题意得x0.01>4005,解得x>0.8.答:导⽕线⾄少要0.8⽶.变式训练:见《学练优》本课时练习“课后巩固提升”第5题【类型四】分段计费问题⼩明家每⽉⽔费都不少于15元,⾃来⽔公司的收费标准如下:若每户每⽉⽤⽔不超过5⽴⽅⽶,则每⽴⽅⽶收费1.8元;若每户每⽉⽤⽔超过5⽴⽅⽶,则超出部分每⽴⽅⽶收费2元,⼩明家每⽉⽤⽔量⾄少是多少?解析:当每⽉⽤⽔5⽴⽅⽶时,花费5×1.8=9元,则可知⼩明家每⽉⽤⽔超过5⽴⽅⽶.设每⽉⽤⽔x⽴⽅⽶,则超出(x-5)⽴⽅⽶,根据题意超出部分每⽴⽅⽶收费2元,列⼀元⼀次不等式求解即可.解:设⼩明家每⽉⽤⽔x⽴⽅⽶.∵5×1.8=9<15,∴⼩明家每⽉⽤⽔超过5⽴⽅⽶.则超出(x-5)⽴⽅⽶,按每⽴⽅⽶2元收费,列出不等式为5×1.8+(x-5)×2≥15,解不等式得x≥8.答:⼩明家每⽉⽤⽔量⾄少是8⽴⽅⽶.⽅法总结:分段计费问题中的费⽤⼀般包括两个部分:基本部分的费⽤和超出部分的费⽤.根据费⽤之间的关系建⽴不等式求解即可.变式训练:见《学练优》本课时练习“课后巩固提升”第3题【类型五】调配问题有10名菜农,每⼈可种甲种蔬菜3亩或⼄种蔬菜2亩,已知甲种蔬菜每亩可收⼊0.5万元,⼄种蔬菜每亩可收⼊0.8万元,要使总收⼊不低于15.6万元,则最多只能安排多少⼈种甲种蔬菜?解析:设安排x⼈种甲种蔬菜,则种⼄种蔬菜为(10-x)⼈.甲种蔬菜有3x亩,⼄种蔬菜有2(10-x)亩.再列出不等式求解即可.解:设安排x⼈种甲种蔬菜,则种⼄种蔬菜为(10-x)⼈.根据题意得0.5×3x+0.8×2(10-x)≥15.6,解得x≤4.答:最多只能安排4⼈种甲种蔬菜.⽅法总结:调配问题中,各项⼯作的⼈数之和等于总⼈数.变式训练:见《学练优》本课时练习“课后巩固提升”第4题【类型六】⽅案决策问题为了保护环境,某企业决定购买10台污⽔处理设备.现有A、B两种型号的设备,其中每台的价格、⽉处理污⽔量及年消耗费如下表.经预算,该企业购买设备的资⾦不⾼于105万元.(1)请你设计该企业有⼏种购买⽅案;(2)若企业每⽉产⽣的污⽔量为2040吨,为了节约资⾦,应选择哪种购买⽅案.解析:(1)设购买污⽔处理设备A型x台,则B型为(10-x)台,列出不等式求解即可,x的值取整数;(2)如图表列出不等式求解,再根据x的值选出最佳⽅案.解:(1)设购买污⽔处理设备A型x台,则B型为(10-x)台.12x+10(10-x)≤105,解得x≤2.5,∵x 取⾮负整数,∴x可取0,1,2,有三种购买⽅案:购A型0台,B型10台;A型1台,B型9台;A型2台,B型8台;(2)240x+200(10-x)≥2040,解得x≥1,∴x为1或2.当x=1时,购买资⾦为12×1+10×9=102(万元);当x=2时,购买资⾦为12×2+10×8=104(万元).答:为了节约资⾦,应选购A型1台,B型9台.⽅法总结:此题将现实⽣活中的事件与数学思想联系起来,属于最优化问题,在确定最优⽅案时,应把⼏种情况进⾏⽐较.变式训练:见《学练优》本课时练习“课后列不等式―→解不等式―→结合实际问题确定答案本节课通过实例引⼊,激发学⽣的学习兴趣,让学⽣积极参与,讲练结合,引导学⽣找不等关系列不等式.在教学过程中,可通过类⽐列⼀元⼀次⽅程解决实际问题的⽅法来学习,让学⽣认识到列⽅程与列不等式的区别与联系.。
9.2.3实际问题与一元一次不等式(第二课时)
铁冲中学七年级数学导学案制定人: 审核:课题 9.2.2实际问题与一元一次不等式(第二课时)学习目标 1、会根据实际问题中的数量关系建立数学模型 2、学会用去分母的方法解一元一次不等式。
学习重点 学习难点课堂流程学法指导教师点拨情境导入 目标点睛练习:用合适的方法解下列不等式,并把解集表示在数轴上 (1)3x+2>2x-2 (2)23722+-≥-x x例:2002年北京空气质量良好(二级以上)的天数与全年天数之比达到55%,如果到2008年这样的比值要超过70%,那么2008年空气质量良好的天数要比2002年至少增加多少?解:设2008年空气质量良好的天数要比2002年至少增加了x 。
分析:2002年北京空气质量良好的天数是__________,则2008年空气质量良好的天数为____________,那么2008年空气质量良好的天数与全年的天数之比为_______________,这个值要_____________,即可列不等式:______________________________ 去分母,得_______________________________移项,合并同类项得_______________________________ 由于x 应为正整数,得_______________________________答:2008年空气质量良好的天数要比2002年至少增加____,才能使这一年的空气质量良好的天数超过全年天数的70%。
合作探究 激情展示一区列不等式解应用题的一般步骤 1、审(_______________) 2、找(_______________) 3、列(_______________) 4、解(_______________) 5、写(_______________)二区1、若代数式3131-x 的值为不小于2的数,则x 的取值范围为____________2、代数式3x 2-2的最小值是_________。
9.2一元一次不等式一元一次不等式的应用(教案)
1.理论介绍:首先,我们要了解一元一次不等式的基本概念。一元一次不等式是指含有一个未知数,并且未知数的最高次数为一次的不等式。它是解决实际问题中,我们来看一个具体的案例。这个案例展示了如何使用一元一次不等式来解决实际问题,比如确定一个长方形的长和宽的关系。
反思今天的整个教学过程,我觉得有几个地方可以改进:
1.在讲解符号变换规律时,我应该更加细致地解释背后的逻辑,而不是仅仅通过例题展示。
2.在实践活动和小组讨论中,我应该更加明确地给出讨论的主题和目标,以避免学生们的讨论过于宽泛。
3.对于接受能力较弱的学生,我需要提供更多的个别辅导,确保他们能够跟上进度。
3.重点难点解析:在讲授过程中,我会特别强调不等式的符号变换规律和解不等式的步骤。对于难点部分,我会通过具体例题和步骤分解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元一次不等式相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如使用不等式来确定制作某种物品的成本范围。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一元一次不等式的基本概念、解法和应用。同时,我们也通过实践活动和小组讨论加深了对一元一次不等式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的一元一次不等式的教学中,我尝试了多种方法来帮助学生理解和掌握这一概念。首先,通过日常生活中的例子引入,我发现学生们对于不等式的实际应用产生了浓厚的兴趣。他们能够很快地联想到自己的经历,这为后续的学习打下了良好的基础。
一元一次不等式的应用 教学设计
.一元一次不等式(二)本节课是义务教育课程标准实验教科书(北师大版)八年级下册第二章《一元一次不等式与一元一次不等式组》的第4节第2课时的内容.一方面,在本节课之前,学生已经学习了一元一次不等式的概念和不等式的基本性质,知道解一元一次不等式的依据是不等式的三个基本性质,并且会解简单的一元一次不等式,而且能在数轴上表示其解集.另一方面,利用一元一次不等式解决实际问题也是继利用一元一次方程和一元一次方程组解决实际问题的进一步学习,为以后把实际问题转化成数学问题的思维的培养打下一定的基础,因此本节课在教材中具有承上启下的作用.二、学情分析在方程与方程组的知识学习过程中,学生已经经历了将生活中的数学现象抽象为数学问题或数学模型的形式,获得并积累了解决实际问题的数学经验的基础.另外,在本章的前面几节课,学生已经学会了解一元一次不等式,为今天的问题解决打下了一个基础.三、教学任务分析本节课的目标为:【知识与技能】(1)进一步熟练掌握一元一次不等式的解法.(2)利用一元一次不等式解决简单的实际问题.【过程与方法】通过分析实际问题中的不等关系,建立不等式模型,通过对不等式的求解来对实际问题的解决,训练学生的分析问题和建立数学模型的能力.【情感态度价值观】(1)通过利用一元一次不等式解决实际问题,使学生认识数学与实际生活的密切联系,以激发学生学习数学的兴趣和信心.(2)通过小组间的合作与交流,培养学生自主参与的学习态度,合作交流的学习方法.【教学重点】一元一次不等式的实际应用问题.【教学难点】将实际问题抽象成数学问题的思维过程.四、教法与学法分析【教法分析】当前,教师不再是古人所推崇的“传道”、“授业”的师长,而是课堂教学活动的组织者、指导者、参与者.其作用在于营造师与生、生与生交往互动的氛围,为学生提供参与、创造、表现和成功的机会,有效地组织、指导、调控学生学习的兴趣.因此本节课我们将采用启发式、讨论式结合的教学方式,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我构建.在学生的展示交流中,对同一个问题去发现不同的解决方法,并对不同的方法进行比较.【学法分析】现代课堂教学的重点由如何“教会”转向如何“学会”,本节课学生通过观察、分析、归纳等过程,得到解决问题的方法.再通过小组合作、交流展示等环节,让学生在这个过程中成为课堂的主导者.让整个课堂洋溢在轻松和谐、探索进取的气氛中,而我则在其中当好课堂教学的组织者和参与者.五、教学过程分析根据本节课的教学目标以及教学重难点,本节课一共设置了以下七个教学环节:环节一:引用名言,引入新课著名数学家华罗庚先生曾经说过:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。
北师大版八年级数学下册《一元一次不等式(第2课时)》精品教案
《一元一次不等式》精品教案被评为优秀(85分或85分以上),小明至少答对了几道题?想一想:本题中涉及的不等关系是什么?答:小明得的分数≥85即:小明答对题的分数-答错题扣的分数≥85追问:你能利用不等式解决这个问题吗?解:设小明答对了x道题,则他答错和不答的共有(25-x)道题,根据题意,得4x-1×(25-x)≥85解得x≥22答:小明至少答对了22道题.想一想:小明可能答对了几道题呢?解:∵x≥22且x≤25,又∵x取正整数,∴x=22或23或24或25答:小明可能答对22道、23道、24道或25道题.例:小丽准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了2本笔记本.请你帮她算一算,她可能买了几支笔?解:设她买x枝笔,根据题意,得3x+2×2≤21解这个不等式,得x≤25 3∵x只能取正整数,∴x可以是5或4或3或2或1.答:小丽可能买1支、2支、3支、4支或5支笔.归纳:利用一元一次不等式解决实际问题的一般步骤:(1)审题,找不等关系;(2)设未知数;(3)列不等式;(4)解不等式;(5)根据实际情况,写出答案.老师的指导下求解.学生独立完成例1,班内交流后,认真听老师的讲评.学生与老师共同归纳一元一次不等式解决实际问题的步骤,并认真完成练习.实际问题的方法,体会符合题意答案的求法.进一步体会不等式解决实际问题的方法.归纳一元一次不等式解实际问题的一般步骤,并通过练习形成技练习1:小刚准备用26元钱买火腿肠和方便面,已知一根火腿肠2元钱,一盒方便面3元钱,他买了5盒方便面,他最多还能买多少根火腿肠?解:设小刚买x 根火腿肠.根据题意,得:2x +3×5≤26解这个不等式,得:x ≤5.5答:小刚最多还能买5根火腿肠.练习2:某学校学生会组织七年级和八年级共60名同学参加环保活动,七年级学生平均每人收集15个废弃塑料瓶,八年级学生平均每人收集20个废弃塑料瓶.为了保证所收集的塑料瓶总数不少于1000个,至少需要多少名八年级学生参加活动?解:设参加的八年级学生为x 人,得15×(60-x )+20x ≥1000解不等式,得x ≥20答:至少需要20名八年级学生参加活动.能.课堂练习1.太原某座桥桥头的限重标志如图,其中的“55”表示该桥梁限制载重后总质量超过55t 的车辆通过桥梁.设一辆自重10t 的卡车,其载重的质量为x t ,若它要通过此座桥,则x 应满足的关系为___________(用含x 的不等式表示).答案:10+x ≤552.亮亮准备用自己节省的零花钱买一台英语复读机.他现在已存有55元,计划从现在起以后每个月节省20元,直到他至少有350元.设x 个月后他至少有350元,则可以用于计算所需要的月数x 的不等式是()A .20x -55≥350B .20x +55≥350C .20x -55≤350D .20x +55≤350学生自主完成课堂练习,做完之后班级内交流.借助练习,检测学生的知识掌握程度,同时便于学生巩固知识.答案:B3.篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场扣一分.某队预计在2018-2019赛季全部32场比赛中最少得到48分,才有希望进入季后赛,假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是()A.3x+(32-x)⩾48B.3x-(32-x)⩾48C.3x-(32-x)⩽48D.3x⩾48答案:B拓展提高“绿水青山,就是金山银山”,某旅游景区为了保护环境,需购买A,B两种型号的垃圾处理设备共10台(每种型号至少买1台),已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨;购回的设备日处理能力不低于140吨.请你为该景区设计购买A,B两种设备的方案.解:设购买A型设备x台,则购买B型设备(10-x)台.根据题意,得12x+15(10-x)≥140,解得x≤313∵x为正整数,∴x=1,2,3.∴该景区有三种购买方案:方案一:购买A型设备1台、B型设备9台;方案二:购买A型设备2台、B型设备8台;方案三:购买A型设备3台、B型设备7台.在师的引导下完成问题.提高学生对知识的应用能力中考链接下面让我们一起赏析中考题:(2018·永州)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()在师的引导下完成中考题.体会所学知识在中考试题考查中的运用.A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关答案:A课堂总结在课堂的最后,我们一起来回忆总结我们这节课所学的知识点:问题、利用一元一次不等式解决实际问题的一般步骤?(1)审题,找不等关系;(2)设未知数;(3)列不等式;(4)解不等式;(5)根据实际情况,写出答案.跟着老师回忆知识,并记忆本节课的知识.帮助学生加强记忆知识.作业布置基础作业教材第49页习题2.5第1、2题能力作业教材第49页习题2.5第4题学生课下独立完成.检测课上学习效果.。
导学案 9.3.1一元一次不等式组(2)
姓名________________ 组别_________________ 评价__________________学习目标: 1.巩固解一元一次不等式组的过程。
2.总结解一元一次不等式组的步骤及情形。
3.理解与掌握一元一次不等式组的解集及其应用。
一、复习巩固解下列不等式并在数轴上表示它们的解集:1、⎩⎨⎧-<+->14212x x x x2、⎪⎪⎩⎪⎪⎨⎧-≤-->+814311532x x x x二、自主先学请同学们通过自学课本129页的例2,完成下列习题1、 34125x +-<≤的整数解为 2、若m<n ,则不等式组12x m x n >-⎧⎨<+⎩的解集是 3、已知不等式组2113x x m-⎧>⎪⎨⎪>⎩的解集为2x >,则( ).2.2.2.2Am B m C m D m ><=≤4、关于不等式组x m x m ≥⎧⎨≤⎩的解集是( ) A.任意的有理数 B.无解 C.x=m D.x= -m三、自学总结(1)⎩⎨⎧>>a x x 1的解集是1>x ,则a 的取值范围是______________. (2)⎩⎨⎧<<ax x 1的解集是1<x ,则a 的取值范围是______________.(3)⎩⎨⎧>>a x x 1的解集是1<<x a ,则a 的取值范围是______________. (4)⎩⎨⎧<>a x x 1无解,则a 的取值范围是______________.四、总结分享1、 对于今天的知识你总结出了一些什么结论?2、你还需要老师为你解决哪些问题?3、请你编写一道利用一元一次不等式组的解集的相关性质解决的问题,当然也可以是你在其它参考书上见到过的题目,并请你将这个题目的解答过程写出来。
五、牛刀小试内容见PPT 。
六、自学检测1、求同时满足不等式2116234132x x x x +--≥--<和的整数2、求出不等式组⎩⎨⎧≤-≥-873273x x 的解集中的正整数3、若不等式组⎩⎨⎧-<+<423a x a x 的解集是23+<a x ,求a 的取值范围六、总结提升1、已知不等式组⎩⎨⎧<->a x x 3, (1)若此不等式组无解,求a 的取值范围,并利用数轴说明。
9.2 一元一次不等式 第2课时
解得 x≥0.5 答:导火索的长度至少取0.5 m.
3.(广州·中考)某商店5月1日举行促销优惠活动,当天 到该商店购买商品有两种方案,方案一:用168元购买会 员卡成为会员后,凭会员卡购买商店内任何商品,一律按 商品价格的8折优惠;方案二:若不购买会员卡,则购买 商店内任何商品,一律按商品价格的9.5折优惠.已知小敏 5月1日前不是该商店的会员. (1)若小敏不购买会员卡,所购买商品的价格为120元时, 实际应支付多少元? (2)请帮小敏算一算,所购买商品的价格在什么范围时, 采用方案一更合算?
解决较复杂问题时,常需要分不同情况进行讨论.
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/72021/9/7Tuesday, September 07, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/72021/9/72021/9/79/7/2021 1:32:23 PM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/72021/9/72021/9/7Sep-217-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/72021/9/72021/9/7Tuesday, September 07, 2021
想一想:小玲有几种答题可能? 小玲有3种答题可能,分别是 答对7道题,答错2道题,有1道题未答; 答对8道题,答错1道题,有1道题未答; 答对9道题,有1道题未答.
【跟踪训练】
1.我班几个同学合影留念,每人交0.70元.已 知一张彩色底片0.68元,扩印一张相片0.50元, 每人分一张,在将收来的钱尽量用掉的前提下, 这张相片上的同学最少有几人?
一元一次不等式导学案
生为主、重合作、有效 参与提素质 教师个性 促提升教学设计 本节课设计了四个教 学环节: 第一环节: 课前热身复 习回顾。
第二环节:课堂展示、 合作学习。
第三环节:课堂反馈、 巩固提升。
第四环节:布置作业北师大-数学-八年级下册-第二章-《一元一次不等式》主备人:田里丰教师合作来导学(配套课件电子白板实施授课)课堂展风采学习目标: 1.进一步掌握一元一次不等式的解法; 2.会运用一元一次不等式解决实际问题。
教学重点: 一元一次不等式的解法。
教学难点 会从实际问题中找出不等量关系 课前热身、 自主预习 一、复习回顾 1.解方程: (1)2x-1=4x+13;还课堂给学生,让学习 更快乐 自主学习 真快乐我是 年级 班 学生 学习本 课 (节) , 我有如下收获:(2)2(5x +3)=-3(1-X).2.运用不等式基本性质把下列不等式化成 x>a 或 x<a 的形式。
①x-4<6 ②2x>x-5 预习等级:组长签字:课堂展示、 合作学习 1.观察下列不等式: (1)40+15x>130 (2)2x-2.5≥1.5 (3)x≤8.75 (4)x<4(5)5+3x>240这些不等式有哪些共同点? 2、总结:一元一次不等式:不等式的左右两边都是 , 只含有 未知数.并且未知数的最高次数是 ,像 这样的不等式,叫做一元一次不等式. 学习一元一次不等式要注意三个要点: (1)只含有 个未知数: (2)含有未知数的式子是 ; (3)未知数的最高次数是 3、根据不等式的基本性质解不等式 3-x<2x+6,并把它的解集表 示在数轴上. 解:两边都加上-2x,得: 合并同类项,得 两边都加上 ,得 合并同类项,得 两边都除以-3.得 即 x>一 1.北师大-数学-八年级下册-第二章-《一元一次不等式》还课堂给学生,让学习 更快乐生为主、重合作、有效 参与提素质北师大-数学-八年级下册-第二章-《一元一次不等式》主备人:田里丰还课堂给学生,让学习 更快乐完成等级:组长签字:课堂反馈、巩固提升 解下列不等式,并把它们的解集分别表示在数轴上;(1)5x<200(2) x 1 <3 2(3) x-4≥2(x+2)(4)x 1 4x 5 < 2 3完成等级: 组长签字:一课一练 求不等式 4(4x+1)≤24 的正整数解。
七年级数学下册一元一次不等式组学案导学案2
一元一次不等式组(学案2)〔学习目标〕进一步熟练一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题。
〔重点难点〕重点用一元一次不等式组解决有关的实际问题;难点正确分析实际问题中的不等关系。
〔教学过程〕一、复习旧知,铺垫新知1.解不等式3215x ≤-≤,并在数轴上表示出来。
2. 解不等式组293(1)3x x +>⎧⎨-->⎩,并在数轴上表示出来。
二.自学例1 3 个小组计划在10天内生产500件产品(每天产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产1件产品,就能提前完成任务。
每个小组原先每天生产多少件产品?分析:“不能完成任务”的数量含义是什么?“提前完成任务”的数量含义是什么? 解:设每个小组原先每天生产件x 产品。
依题意,得这个不等式的解集为思考:到此你能知道每个小组原先每天生产多少件产品吗?为什么?三.课堂练一练1. 使两个代数式23x +与21x -+的值都是正数的范围是( )A .12x >-B .32x >-C .3122x -<< D .以上均不对 2.下列不等式组,并把解集在数轴上表示出来:3(1)152(1)5(21)6x x x x x x -+--⎧⎨---⎩ 3(2)4564x x x x--≥⎧⎨+-⎩3.数式2131--x 的值不大于321x -的值,求x 的范围四、当堂检测1.不等式253(1)2x x <⎧⎨+>⎩的整数解的个数是( )A .1B .2C .3D .4 2、方程组⎩⎨⎧-=+=-323a y x y x 的解为负数,求a 的范围3 .解下列不等式组 ①⎪⎩⎪⎨⎧--≤--x x x x 14214)23( ②⎪⎩⎪⎨⎧-≥--+356634)1(513x x x x4一个两位数,它的个位数比十位数字大2,若这个两位数大于30且小于50,求这个两位数。
5某商品的售价是150元,商家售出一件这种商品可获利润是进价的10%-------20%,利润的范围是多少?进价的范围是多少?仔细读一读1、列一元一次不等式组解应用题与列一元一次不等式解应用题的思想和步骤是一样的,不同的是前者列出的是两个不等式,而后者列出的是一个不等式。
一元一次不等式(组)导学案
课题:9.3一元一次不等式(组)的应用(一)【学习目标】1. 知道列一元一次不等式(组)解应用题的一般步骤,会列一元一次不等式组解较简单的应用题.2.培养从数学的角度理解问题、解决问题的能力,发展应用意识. 【学习重点与难点】1.重点:列一元一次不等式组解较简单的应用题.2.难点:从数学的角度理解实际问题.【预习感知】:1. 格桑家办了一个小宾馆,开业那天来了48名旅客.如果每间住5人,房间不够;如果每间住6人,又住不满.问格桑家的小宾馆有几间客房? 解:设格桑家的小宾馆有x 间客房. 根据题意列不等式组,得______________ ,______________.⎧⎨⎩ 解不等式组,得_______________. x 是正整数,所以x =________. 答:格桑家的小宾馆有____间客房.2.王波今天70岁,比张明年龄的5倍还要大,不过到后年张明年龄的5倍就比王波的年龄大了.求张明今年的年龄.解:设张明今年的年龄为x 岁. 根据题意列不等式组,得______________ ,______________.⎧⎨⎩ 解不等式组,得_______________. x 是正整数,所以x =________. 答:张明今年的年龄为______岁.【共研释疑】(课内完成) 例题讲解:例1. 一次智力测验,有20道选择题.评分标准为:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答.至少答对几道题,总分才不会低于60分?师生互动例2. 七年级三班学生到阅览室读书,班长问老师要分成几个小组,老师风趣地说:请你帮助班长分组,你知道该分几个组吗?(注意写出解题过程,不能仅有分组的结果哟!)例3.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?【评测拓展】1.1、某校在一次参观活动中,把学生编为8个组,若每组比预定人数多1人,则参观人数超过200人,若每组比预定人数少2人,则参观人数不大于184人,试求预定每组学生的人数.2. 某车间生产机器零件,若每天比预定计划多做几件,8天所做零件的总数超过100件,如果每天比预定计划少做一件,那么8天可做零件的总数不到90件,问预定计划每天做多少件?3.某汽车厂改进生产工艺后,每天生产的汽车比原来每天的产量多6辆,那么15天的产量就超过了原来20天的产量,求原来每天最多能生产多少辆汽车?4.某工人加工300个零件,若每小时加工50个就可按时完成;但他加工2小时后,因事停工40分钟.那么这个工人为了按时或提前完成任务,后面的时间每小时他至少要加工多少个零件?5.一个工程队原定在10天内至少要挖掘600m3的土方.在前两天共完成了120m3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方?14题课后作业 9.3一元一次不等式(组)的应用(一) 班级________ 姓名________1.如图,天平右边托盘里的每个砝码的质量都是1千克,则图中显示物体质量的范围是( ) A .大于2千克 B .小于3千克C .大于2千克且.小于3千克D .大于2千克或.小于3千克 2.九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ). (A)2人 (B)3人 (C)4人 (D)5人3.某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km 按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( ). (A)11 (B)8 (C)7 (D)54.乐天借到一本72页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天要读x 页,列出的不等式为______.5.一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题得-1分,在这次竞赛中,小明获得优秀(90分或90分以上),则小明至少答对了______道题.6.三个连续自然数的和不大于 15,这样的自然数组有 组。
一元一次不等式组导学案2
(a)
(b)
1 和-4 中取大数 1,不等号取大于号. 由(2)得,两个不等式的解集中不等号的方向都是小于号,在不等
2、做一做:在什么条件下,长度为 3cm,7cm,xcm 的三条线段可以围成 三角形? .
式组的解集中不等号的方向取小于,而数字取比较小的数字
4 3
.
由(3)得,两个不等式的解集中不等号的方向有大于也有小于,数 字
布置 作业 况.
活动目的: 让学生利用大家探讨出来的结论, 将不等式组的解集直接表示出来. 活动效果: 部分学生对解不等式组中的每一个不等式存在问题,还有些是对刚 才总结的结论运用上有难度.但是通过教师对本题的订正,我相信会有不 错的效果.
1、如果不等式组
2 x m 8 3 x 2 9 m 1
3 x 1 11 2 x 6
(1 ) (2)
5 x 2 3 ( x 1) (1 ) ⑶1 3 (2) x 1 7 x 2 2
x>4,x<3,因为 4>3,即 x 应取大于 4 而小于 3 的数,而这样的数根本
不存在,所以原不等式组的解集为无解. 两个一元一次不等式所组成的不等式组的解集有以下四种情形.
无解,求 m 的取值范围。
1.练习了解一元一次不等式组. 2.总结了由两个一元一次不等式所组成的不等式组的解集的四种情
习题 1.9
1.解下列不等式组 (1)
x 3 5 3 x 1 8
达标 检测
x 1 2 ( x 1) (2) 2 x x 2 3 5
5 2
<4,并且是5Βιβλιοθήκη 5学 习 提 纲⑴
x 1 2
1
(1 ) (2)
⑵ 3 x 2
八年级数学下册(新版北师大版)精品导学案【第二章_一元一次不等式和一元一次不等式组】
⼋年级数学下册(新版北师⼤版)精品导学案【第⼆章_⼀元⼀次不等式和⼀元⼀次不等式组】第⼆章⼀元⼀次不等式和⼀元⼀次不等式组第⼀节不等关系【学习⽬标】1.理解不等式的概念,感受⽣活中存在的不等关系。
2.能根据条件列出不等式,增强学⽣的符号感,发展其数学化的能⼒。
3.通过观察、分析、猜想、独⽴思考的过程感受不等式这个重要的过程,发展学⽣归纳、猜想能⼒。
【学习⽅法】⾃主探究与⼩组合作交流相结合.【学习重难点】重点:对不等式概念的理解。
难点:怎样建⽴量与量之间的不等关系。
【学习过程】模块⼀预习反馈⼀.学习准备1.⼀般地,⽤符号“<”(或“≤”),“>”(或“≥”)连成的式⼦叫做。
注意:⽤符号“≠”连接的式⼦也叫不等式。
2.列不等式:列不等式类似于列⽅程,列⽅程依据的是等量关系,列不等式依据的是不等关系,列不等式的关键是找不等关系。
⼤于⽤符号表⽰,⼩于⽤符号表⽰;不⼤于⽤符号表⽰,不⼩于⽤符号表⽰。
3.阅读教材:第⼀节不等关系⼆.教材精读4.例题:如图,⽤两根长度均为l cm的绳⼦,分别围成⼀个正⽅形和圆,(1)如果要使正⽅形的⾯积不⼤于25cm2,那么绳长l应满⾜怎样的关系式?(2)如果要使圆的⾯积不⼩于100 cm2,那么绳长l应满⾜怎样的关系式?(3)当l=8时,正⽅形和圆的⾯积哪个⼤?l=12呢?(4)你能得到什么猜想?改变l的取值再试⼀试?分析:正⽅形的⾯积等于边长的平⽅.圆的⾯积是πR2,其中R是圆的半径.两数⽐较有⼤于、等于、⼩于三种情况,“不⼤于”就是等于或⼩于. “不⼩于”就是⼤于或等于。
做⼀做:通过测量⼀棵树的树围(树⼲的周长),可以计算出它的树龄,通常规定以树⼲离地⾯1.5m的地⽅作为测量部位。
某树栽种时的树围为5㎝,以后树围每年增加约3㎝,这棵树⾄少⽣长多少年其树围才能超过2.4m?(只列关系式)归纳⼩结:⼀般地,⽤符号“〈”(或“≤”),“〉”(或“≥”)连接的式⼦叫做不等式。
实践练习:判断下列各式哪些是不等式,哪些既不是等式也不是不等式。
七年级下册《9.2 一元一次不等式》教案、导学案、同步练习
《9.2 一元一次不等式》教案一第1课时 一元一次不等式的解法【教学目标】1、使学生熟练掌握一元一次不等式的解法,初步认识一元一次不等式的应用价值;2、对比一元一次不等式的解法与一元一次方程的解法,让学生感知不等式和方程的不同作用与内在联系,体会其中渗透的类比思想;3、让学生在分组活动和班级交流的过程中,积累数学活动的经验并感受成功的喜悦,从而增强学习数学的自信心。
【教学重点】:熟练并准确地解一元一次不等式。
【教学难点】:熟练并准确地解一元一次不等式。
【教学过程】(师生活动)提出问题:某地庆典活动需燃放某种礼花弹.为确保人身安全,要求燃放者在点燃导火索后于燃放前转移到10米以外的地方.已知导火索的燃烧速度为0.02m/s,人离开的速度是4m/s ,导火索的长x(m)应满足怎样的关系式?你会运用已学知识解这个不等式吗?请你说说解这个不等式的过程.探究新知1、在学生充分发表意见的基础上,师生共同归纳出这个不等式的解法.教师规范地板书解的过程.2、例题.解下列不等式,并在数轴上表示解集:(1)32x ≤50 (2)-4x<3 (3)7-3x ≤10(4)2x-3<3x +1分组活动.先独立思考,然后请4名学生上来板演,其余同学组内相互交流,作出记录,最后各组选派代表发言,点评板演情况.教师作总结讲评并示范解题格式.3、教师提问:从以上的求解过程中,你比较出它与解方程有什么异同? 让学生展开充分讨论,体会不等式和方程的内在联系与不同之处。
巩固新知1、解下列不等式,并在数轴上表示解集:(1)7671 x (2)-8x<102、用不等式表示下列语句并写出解集:(1)x 的3倍大于或等于1;(2)y 的41的差不大于-2.解决问题测量一棵树的树围(树干的周长)可以计算它的树龄一般规定以树干离地面1.5m 的地方作为测量部位.某树栽种时的树围为5cm,以后树围每年增加约3cm.这棵树至少生一长多少年,其树围才能超过2.4m?总结归纳:围绕以下几个问题:1、这节课的主要内容是什么?2、通过学习,我取得了哪些收获?3、还有哪些问题需要注意?让学生自己归纳,教师仅做必要的补充和点拨.布置作业:教科书第120页 习题9.1第6题9.2实际问题与一元一次不等式(一)【教学目标】1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。
9.2一元一次不等式第2课时一元一次不等式的应用课件人教版七年级下册
D.60
B
)
体会解不等式过程中的化归思想与类比思想,体会分类讨论思想在用不等式解决实际问题中的应用。
A.18 B.19 C.20 D.21 依题意,得10×3+6m≥62.
为了不迟到,小李后来的速度至少是多少?
解:设安排x人种甲种蔬菜,则种乙蔬菜的人数为(10-x)人,
5A万.元16,个则8最B.多.只17有能个安1排多0少名人种菜甲种农蔬菜,? 每人可种甲种蔬菜3亩或乙种蔬菜2亩.已知甲种蔬菜每亩
15.(2020·长沙)今年6月以来,我国多地遭遇强降雨,引发洪涝灾害, 人民的生活受到了极大的影响.“一方有难,八方支援”, 某市筹集了大量的生活物资,用A,B两种型号的货车, 分两批运往受灾严重的地区.具体运输情况如下:
A型货车的辆数(单位:辆) B型货车的辆数(单位:辆) 累计运输物资的吨数(单位:吨)
4.某车工计划在15天内至少加工零件408个,前3天每天加工零件24个.该 车工若在规定的时间内完成任务,此后平均每天需要加工零件( A )
A.最少28个 B.最少29个 C.最多28个 D.最多29个
5.一种导火线的燃烧速度是0.7 cm/s, 一名爆破员点燃导火线后以5 m/s的速度跑到距爆破点130 m以外的安全 地带,则导火线的长度至少应超过__1_8_.2_c_m__.
备注:第一批、第二批每辆货车均满载
第一批 1 3 28
第二批 2 5 50
(1)求A,B两种型号货车每辆满载分别能运多少吨生活物资?
(2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A种型号货车. 2 km 后,计划发生变化,准备至少提前 2 天完成修路任务,以后几天内平均每天至少要修路多少?
7.在一次“新冠肺炎疫情防护”知识竞赛中,竞赛题共25道,
2.4一元一次不等式(第二课时)导学案
※2.4 一元一次不等式(第二课时)班级:姓名:学习目标:(1)根据具体问题中的数量关系列出一元一次不等式。
(2)能利用一元一次不等式解决实际问题。
(1)什么是一元一次不等式?(2)列一元一次方程解应用题的步骤是怎样的?(3)解下列不等式,并把解集分别表示在数轴上。
123x x -<2322x x-<+预习等级:小组长签字:签字时间:一次环保知识竞赛共有25道题,规定答对一道题得4分,答错了或不答一道题扣1分.在这次竞赛中小明被评为优秀(85分或85分以上),小明至少答对了几道题?思考:用一元一次不等式解决实际问题的一般步骤是什么?小颖准备用21元钱去买笔和笔记本。
已知每支笔3元,每个笔记本2.2元。
现在她已经买了2个笔记本,剩下的钱用来买笔,她还可以买几只笔?课前热身、自主预习课堂展示、合作学习课堂反馈、巩固提升归纳总结利用不等式解应用题时,出现较多的是至少(≥),至多(≤),不足(<),超过(>)等关键词。
要善于抓住这些表示不等关系的词语,列出不等式。
列一元一次不等式解应用题的步骤和列一元一次不方程解应用题的步骤是一样的。
另外还要考虑是否符合实际问题。
1、用不等式表示下列各题:(1)x 的2倍与它的一半的差是非负数 ; (2)x 与3差的平方不足9;(3)x 的31与5的差介于3和8之间 ; (4)x 的3倍不超过y 的212、列不等式解应用题某容器装了一些水,先用去了4升,然后又用了剩下的一半。
最后剩下的水不少于5升, 问容器最初所装的水至少是多少升?3、一组同学在校门口拍照合影,已知冲洗一张底片需要0.6元,洗一张照片需要0.4元,若每人都得到一张照片且每人平均分摊不超过0.5元,那么参加合影的人至少有多少人?4、小明骑自行车去姥姥家,每小时走12千米。
一小时后,小明的爸爸发现小明忘记带钥匙了,立即骑摩托车去送,问要在20分钟内追上,爸爸至少以多少的速度追赶?完成等级: 组长签字:一课一练。
2.4一元一次不等式 第二课时 导学案
2.4一元一次不等式(二)一、学习准备:1、小明有1元和5角的硬币共13枚,这些硬币的总币值大于8.5元,问小明至少有多少1元的硬币?(1)设小明有一元的硬币x枚,则可列不等式(2)根据在不等式两边都乘2得去括号得移项得合并同类项得。
(3)所以小明至少有1元的硬币。
2、解一元一次不等式的步骤、、、、二、学习目标:进一步利用一元一次不等式的基本性质解决实际问题三、学习提示:1、认真完成P48“做一做”并请快的同学到黑板展示你的解题过程。
2、认真自学P48例3并模仿完成下题:某次数学知识竞赛中,共有16道问答题,评分标准是:答对一道题得6分,答错一道题倒扣2分,不答不扣分.小明同学有一道题未答,那么他至少答对多少道题,才能得到60分以上的成绩?3、认真阅读P17同学.他们去了商场,看到圆珠笔每支5元,钢笔每支6元.在所需费用不超过100元的前提下,请你写出一种选购方案.4、练习:P49随堂练习1、2四、学习小结:你有哪些收获五、夯实基础:1、三个连续自然数的和小于11,这样的自然数组共有……………………()A.1组 B.2组 C.3组 D.4组2、小华在3月初栽种了一棵小树,小树高75cm,小树成活后每周长高2.5cm,估计几周后这棵小树超过100cm?3、当m 时,不等式mx <5m 的解集是x >5;4、与不等式2533x-≥-的解集相同的一个不等式是 ( ) A .259x -≤ B .259x -≤- C .529x -≤ D .529x -≤-5、若使代数式55-x 的值不大于32-x的值,则x 的取值范围为 ;六、能力提升:1.a 取什么值时,解方程32x a -=得到的x 的值.(1)是正数;(2)是负数. 2、如果x x 2121-=-,则x 的取值范围是 ( )A 21>x B 21≥x C 21≤x D 21<x 3、(1)当x 取何值时,代数式x+43 与3x-12 的差值大于4?(2)代数式x+43 与3x-12的差大于4时,求x 的最大整数解4、已知y =1-2x ,求(1)当x 为何值时,1-2y3>1;(2) 当y 为何值时,x ≤-15、已知方程3(x -2a )+2=x -a +1的解适合不等式2(x -5)≥8a ,求a 的取值范围。
《一元一次不等式》精品导学案 人教版七年级数学下册导学案
9.2 一元一次不等式【总结解题方法 提升解题能力】 【知识点梳理】一、一元一次不等式的概念只含有一个未知数, 未知数的次数是一次的不等式, 叫做一元一次不等式, 例如,2503x >是一个一元一次不等式. 二、一元一次不等式的解法1、解不等式:求不等式解的过程叫做解不等式.2、一元一次不等式的解法:与一元一次方程的解法类似, 其根据是不等式的根本性质, 将不等式逐步化为:a x <〔或a x >〕的形式, 解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)化为ax b >〔或ax b <〕的形式〔其中0a ≠〕;(5)两边同除以未知数的系数, 得到不等式的解集.3、不等式的解集在数轴上表示:在数轴上可以直观地把不等式的解集表示出来, 能形象地说明不等式有无限多个解, 它对以后正确确定一元一次不等式组的解集有很大帮助.三、常见的一些等量关系1、行程问题:路程=速度×时间2、工程问题:工作量=工作效率×工作时间, 各局部劳动量之和=总量3、利润问题:商品利润=商品售价-商品进价,4、和差倍分问题:增长量=原有量×增长率5、银行存贷款问题:本息和=本金+利息, 利息=本金×利率6、数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.四、列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似, 通常也需要经过以下几个步骤:(1)审:认真审题, 分清量、未知量及其关系, 找出题中不等关系要抓住题中的关键字眼, 如“大于〞、“小于〞、“不大于〞、“至少〞、“不超过〞、“超过〞等;(2)设:设出适当的未知数;(3)列:根据题中的不等关系, 列出不等式;(4)解:解所列的不等式;(5)答:写出答案, 并检验是否符合题意.一、一元一次不等式的概念 1、以下式子中, 是一元一次不等式的是〔 〕.A 、x 2<1B 、y –3>0C 、a +b =1D 、3x =22、以下式子中, 是一元一次不等式的有哪些?〔1〕3x+5=0 〔2〕2x+3>5 〔3〕384x < 〔4〕1x≥2 〔5〕2x+y ≤8 3、以下式子哪些是一元一次不等式?哪些不是一元一次不等式?为什么?〔1〕0x > 〔2〕1x1-> 〔3〕2x 2> 〔4〕3y x ->+ 〔5〕1x -= 二、一元一次不等式的解法1、不等式2(x+1)<3x+1的解集在数轴上表示出来应为( ).2、关于x 的不等式2x-a ≤-1的解集为x ≤-1, 那么a 的值是_________.3、如果关于x 的不等式(a+1)x <a+1的解集是x >l, 那么a 的取值范围是________.4、解不等式2〔x+1〕﹣1≥3x+2, 并把它的解集在数轴上表示出来.5、解不等式:≤﹣1, 并把解集表示在数轴上. 6、假设3511+-=x y ,14522--=x y ,问x 取何值时, 21y y >. 7、关于x 的方程2233x m x x ---=的解是非负数, m 是正整数, 求m 的值. 8、关于y ,x 的方程组⎩⎨⎧-=++=+1p y 3x 41p y 2x 3的解满足y x >, 求p 的取值范围. 三、列不等式解决实际问题1、爆破施工时, 导火索燃烧的速度是0.8cm/s, 人跑开的速度是5m/s, 为了使点火的战士在施工时能跑到100m 以外〔包括100m 〕的平安地区, 导火索至少需要多长?2、某人方案20天内至少加工400个零件, 前5天平均每天加工了33个零件, 此后, 该工人平均每天至少需加工多少个零件, 才能在规定的时间内完成任务?3、水果店进了某种水果1t, 进价是7元/kg .售价定为10元/kg, 销售一半以后, 为了尽快售完, 准备打折出售.如果要使总利润不低于2000元, 那么余下的水果至少可以按原定价的几折出售?4、某体育用品专卖店销售7个篮球和9个排球的总利润为355元, 销售10个篮球和20个排球的总利润为650元. 〔1〕求每个篮球和每个排球的销售利润;〔2〕每个篮球的进价为200元, 每个排球的进价为160元, 假设该专卖店方案用不超过17400元购进篮球和排球共100个, 且要求篮球数量不少于排球数量的一半, 请你为专卖店设计符合要求的进货方案.5、响应“家电下乡〞的惠农政策, 某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台, 其中甲种电冰箱的台数是乙种电冰箱台数的2倍, 购置三种电冰箱的总金额不超过132000元.甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.〔1〕至少购进乙种电冰箱多少台?〔2〕假设要求甲种电冰箱的台数不超过丙种电冰箱的台数, 那么有哪些购置方案?【稳固练习】一、选择题.1、以下各式中, 是一元一次不等式的是〔 〕.A 、5+4>8B 、2x -1C 、2x ≤5D 、1x-3x ≥0 2、不等式3x ≤2〔x ﹣1〕的解集为〔 〕.A 、x ≤﹣1B 、x ≥﹣1C 、x ≤﹣2D 、x ≥﹣2 3、不等式6x 2x 34-≥-的非负整数解有〔 〕.A 、 1个B 、2个C 、3个D 、4个4、不等式475x a x ->+的解集是1x <-, 那么a 为〔 〕.A 、-2B 、2C 、8D 、55、关于x 的不等式2a x 2≥+-的解集如下图, 那么a 的值是〔 〕.A 、0B 、2C 、 -2D 、-46、小明用100元钱去购置三角板和圆规共30件, 三角板每副2元, 每个圆规5元, 那么小明最多能买圆规〔 〕.A 、12个B 、13个C 、14个D 、15个7、某商品进价为800元, 售价为1200元, 由于受市场供求关系的影响, 现准备打折销售, 但要求利润率100%-⎛⎫=⨯ ⎪⎝⎭售价进价利润率进价不低于5%, 那么至少可打( ). A 、六折 B 、七折 C 、八折 D 、九折8、某风景区招待所有一两层客房, 底层比二层少5间, 一旅行团共有48人, 假设全部安排住底层, 每间住4人, 房间不够;而每间住5人, 有的房间未住满;假设全部安排住二层, 每间住3人, 房间也不够;每间住4人, 有的房间未住满.这家招待所的底层共有房间 ( ) .A 、9间B 、10间C 、11间D 、12间9、一个两位数, 某个位数字比十位数字大2, 这个两位数不小于20, 不大于40, 那么这个两位数是多少?为了解决这个问题, 我们可设个位数字为x, 那么可列不等式〔 〕.A 、20≤10〔x-2〕+x ≤40B 、20<10〔x-2〕+x <40C 、20≤x-2+x ≤40D 、20≤10x+x-2≤4010、张红家离学校1600米, 一天早晨由于有事耽误, 结果吃完饭时只差15分钟就上课, 忙中出错, 出门时又忘了带书包, 结果回到家又取书包共用3分钟, 只好坐小汽车去上学, 小汽车的速度是36千米/时, 小汽车行驶了1分30秒时又发生堵车, 她等了半分钟后, 路还没有畅通, 于是下车又开始步行, 问:张红步行速度至少是( )时, 才不至于迟到.A 、60米/分B 、70米/分C 、80米/分D 、90米/分二、填空题.1、不等式>x ﹣1的解集是. 2、12(x –m )>3–32m 的解集为x >3, 那么m 的值为________. 3、假设关于x 的不等式30x a -≤只有六个正整数解, 那么a 应满足________.4、某种肥皂零售价每块2元, 对于购置两块以上(含两块), 商场推出两种优惠销售方法:第一种为一块按原价, 其余按原价的七折优惠;第二种为全部按原价的八折优惠.在购置相同数量的情况下, 要使第一种方法比第二种方法得到的优惠多, 最少需要购置肥皂______块.5、一艘轮船上午6:00从长江上游的A 地出发, 匀速驶往下游的B 地, 于11:00到达B 地, 方案下午13:00从B 地匀速返回, 如果这段江水流速为3km/h, 且轮船在静水中的往返速度不变, 那么该船至少以 km/h 的速度返回, 才能不晚于19:00到达A 地.三、解答题.1、解不等式:3x >1–36x -. 2、解以下不等式:2x –5≤232x ⎛⎫-⎪⎝⎭. 3、解不等式2x –3<13x +, 并把解集在数轴上表示出来. 四、应用题.1、某工人方案在15天里加工408个零件, 前三天每天加工24个, 问以后每天至少加工多少个零件才能在规定时间内超额完成任务?2、某商店在一次促销活动中规定:消费者消费满200元或超过200元就可享受打折优惠.一名同学为班级买奖品, 准备买6本影集和假设干支钢笔.影集每本15元, 钢笔每支8元, 问他至少买多少支钢笔才能打折?3、某村为解决村民出行难的问题, 村委会决定将一条长为1200m 的村级公路硬化, 并将该项工程承包给甲、乙两工程队来施工.并将该项工程承包给甲、乙两工程队来施工, 假设甲、乙两队做需12天完成此项工程;假设甲队先做了8天后, 剩下的由乙队单独做还需18天才能完工.〔1〕问甲、乙两队单独完成此项工程各需多少天?〔2〕又甲队每施工一天需要费用2万元, 乙队每施工一天需要费用1万元, 要使完成该工程所需费用不超过35万元, 那么乙工程队至少要施工多少天?4、今年3月12日植树节期间, 学校预购进A , B 两种树苗.假设购进A 种树苗3棵, B 种树苗5棵, 需2100元;假设购进A种树苗4棵, B种树苗10棵, 需3800元.〔1〕求购进A, B两种树苗的单价;〔2〕假设该学校准备用不多于8000元的钱购进这两种树苗共30棵, 求A种树苗至少需购进多少棵.5、某冷饮店用200元购进A, B两种水果共20kg, 进价分别为7元/kg和12元/kg.〔1〕这两种水果各购进多少千克?〔2〕该冷饮店将所购进的水果全部混合制成50杯果汁, 要使售完后所获利润不低于进货款的50%, 那么每杯果汁的售价至少为多少元?6、青年志愿者爱心小分队赴山村送温暖, 准备为困难村民购置一些米面.购置1袋大米、4袋面粉, 共需240元;购置2袋大米、1袋面粉, 共需165元.〔1〕求每袋大米和面粉各多少元;〔2〕如果爱心小分队方案购置这些米面共40袋, 总费用不超过2140元, 那么至少购置多少袋面粉?7、某公司为了扩大经营, 决定购进6台机器用于生产某种活塞, 现有甲、乙两种机器供选择, 其中每种机器的价格和每台机器日生产活塞的数量如下表所示, 经过预算, 本次购置机器耗资不能超过34万元.(1)按该公司要求可以有几种购置方案?(2)假设该公司购进的6台机器的日生产能力不低于380个, 那么为了节约资金应选择哪种方案?8、沃尔玛超市销售每台进价为320元和250元的A、B两种型号的电器, 下表是两天的销售情况:〔进价、售价均保持不变, 利润=销售收入﹣进货本钱〕〔1〕求A、B两种型号的电器的销售单价;〔2〕假设超市准备用不多于8200元的金额再采购这两种型号的电器共30台, 求A种型号的电器最多能采购多少台?〔3〕在〔2〕的条件下, 超市销售完这30台电器能否实现利润至少为2100元的目标?请给出相应的采购方案;假设不能, 请说明理由.参考答案一、一元一次不等式的概念1、以下式子中, 是一元一次不等式的是〔〕.A、x2<1B、y–3>0C、a+b=1D、3x=2【答案】B【解析】A 、未知数次数是2, 属于一元二次不等式, 故本选项错误;B 、符合一元一次不等式的定义, 故本选项正确;C 、含有2个未知数, 属于二元一次方程, 故本选项错误;D 、含有1个未知数, 是一元一次方程, 故本选项错误; 应选B .2、以下式子中, 是一元一次不等式的有哪些?〔1〕3x+5=0 〔2〕2x+3>5 〔3〕384x < 〔4〕1x ≥2 〔5〕2x+y ≤8【解析】解:(2)、(3)是一元一次不等式.3、以下式子哪些是一元一次不等式?哪些不是一元一次不等式?为什么?〔1〕0x > 〔2〕1x 1-> 〔3〕2x 2> 〔4〕3y x ->+ 〔5〕1x -=【解析】解:(1)是一元一次不等式.〔2〕〔3〕(4)(5)不是一元一次不等式, 因为:〔2〕中分母中含有字母, 〔3〕未知量的最高次项不是1次, 〔4〕不等式左边含有两个未知量, 〔5〕不是不等式, 是一元一次方程.二、一元一次不等式的解法1、不等式2(x+1)<3x+1的解集在数轴上表示出来应为( ).【答案】C2、关于x 的不等式2x-a ≤-1的解集为x ≤-1, 那么a 的值是_________.【答案】-1【解析】由得:12a x -≤, 由112a -=-, 得1a =-.3、如果关于x 的不等式(a+1)x <a+1的解集是x >l, 那么a 的取值范围是________.【答案】1a -<4、解不等式2〔x+1〕﹣1≥3x+2, 并把它的解集在数轴上表示出来.【解析】解:去括号, 得2x+2﹣1≥3x+2,移项, 得2x ﹣3x ≥2﹣2+1,合并同类项, 得﹣x ≥1,系数化为1, 得x ≤﹣1,这个不等式的解集在数轴上表示为:5、解不等式:≤﹣1, 并把解集表示在数轴上.【解析】解:去分母得, 4〔2x ﹣1〕≤3〔3x+2〕﹣12,去括号得, 8x ﹣4≤9x+6﹣12,移项得, 8x ﹣9x ≤6﹣12+4,合并同类项得, ﹣x ≤﹣2,把x 的系数化为1得, x ≥2.在数轴上表示为:.6、假设3511+-=x y ,14522--=x y ,问x 取何值时, 21y y >. 【解析】解:∵3511+-=x y ,14522--=x y , 假设21y y >,那么有1452351-->+-x x 即 6101<x ∴当6101<x 时, 21y y >. 7、关于x 的方程2233x m x x ---=的解是非负数, m 是正整数, 求m 的值. 【解析】解:由2233x m x x ---=, 得x =22m -, 因为x 为非负数, 所以22m -≥0, 即m ≤2, 又m 是正整数, 所以m 的值为1或2.8、关于y ,x 的方程组⎩⎨⎧-=++=+1p y 3x 41p y 2x 3的解满足y x >, 求p 的取值范围. 【解析】解:由⎩⎨⎧-=++=+1p y 3x 41p y 2x 3, 解得:⎩⎨⎧--=+=7p y 5p x ∵y x >∴7p 5p -->+解得6p ->; ∴p 的取值范围为6p ->.三、列不等式解决实际问题1、爆破施工时, 导火索燃烧的速度是0.8cm/s, 人跑开的速度是5m/s, 为了使点火的战士在施工时能跑到100m 以外〔包括100m 〕的平安地区, 导火索至少需要多长?【解析】解:设导火索要xcm 长, 根据题意得:解得:16x ≥答:导火索至少要16cm 长.2、某人方案20天内至少加工400个零件, 前5天平均每天加工了33个零件, 此后, 该工人平均每天至少需加工多少个零件, 才能在规定的时间内完成任务?【解析】解:设以后平均每天加工x个零件,由题意的:5×33+〔20﹣5〕x≥400,解得:x≥2 153.∵x为正整数,∴x取16.答:该工人以后平均每天至少加工16个零件.3、水果店进了某种水果1t, 进价是7元/kg.售价定为10元/kg, 销售一半以后, 为了尽快售完, 准备打折出售.如果要使总利润不低于2000元, 那么余下的水果至少可以按原定价的几折出售?【解析】解:设余下的水果可以按原定价的x折出售,根据题意得:1t=1000kg解得:8x≥答:余下的水果至少可以按原定价的8折出售.4、某体育用品专卖店销售7个篮球和9个排球的总利润为355元, 销售10个篮球和20个排球的总利润为650元.〔1〕求每个篮球和每个排球的销售利润;〔2〕每个篮球的进价为200元, 每个排球的进价为160元, 假设该专卖店方案用不超过17400元购进篮球和排球共100个, 且要求篮球数量不少于排球数量的一半, 请你为专卖店设计符合要求的进货方案.【解析】解:〔1〕设每个篮球和每个排球的销售利润分别为x元, y元,根据题意得:,解得:,答:每个篮球和每个排球的销售利润分别为25元, 20元;〔2〕设购进篮球m个, 排球〔100﹣m〕个,根据题意得:,解得:≤m≤35,∴m=34或m=35,∴购进篮球34个排球66个, 或购进篮球35个排球65个两种购置方案.5、响应“家电下乡〞的惠农政策, 某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台, 其中甲种电冰箱的台数是乙种电冰箱台数的2倍, 购置三种电冰箱的总金额不超过132000元.甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.〔1〕至少购进乙种电冰箱多少台?〔2〕假设要求甲种电冰箱的台数不超过丙种电冰箱的台数, 那么有哪些购置方案?【解析】解:〔1〕设购置乙种电冰箱x台, 那么购置甲种电冰箱2x台, 丙种电冰箱〔80-3x〕台, 根据题意得1200×2x+1600x+〔80-3x〕×2000≤132000解这个不等式得x≥14∴至少购进乙种电冰箱14台;〔2〕根据题意得2x≤80-3x解这个不等式得 x≤16由〔1〕知 x≥14∴14≤x≤16又∵x为正整数∴x=14, 15, 16.所以, 有三种购置方案方案一:甲种电冰箱为28台, 乙种电冰箱为14台, 丙种电冰箱为38台.方案二:甲种电冰箱为30台, 乙种电冰箱为15台, 丙种电冰箱为35台.方案三:甲种电冰箱为32台, 乙种电冰箱为16台, 丙种电冰箱为32台.【稳固练习】一、选择题.1、以下各式中, 是一元一次不等式的是〔〕.A、5+4>8B、2x-1C、2x≤5D、1x-3x≥0【答案】C;2、不等式3x≤2〔x﹣1〕的解集为〔〕.A、x≤﹣1B、x≥﹣1C、x≤﹣2D、x≥﹣2【答案】C ;【解析】去括号得, 3x ≤2x ﹣2, 移项、合并同类项得, x ≤﹣2, 应选:C .3、不等式6x 2x 34-≥-的非负整数解有〔 〕.A 、 1个B 、2个C 、3个D 、4个【答案】C ;【解析】先求得解集为2x ≤, 所以非负整数解为:0,1,2;4、不等式475x a x ->+的解集是1x <-, 那么a 为〔 〕.A 、-2B 、2C 、8D 、5【答案】A ;【解析】由475x a x ->+, 可得53a x +<-, 它与1x <-表示同一解集, 所以513a +-=-, 解得2a =-; 5、关于x 的不等式2a x 2≥+-的解集如下图, 那么a 的值是〔 〕. A 、0 B 、2 C 、 -2 D 、-4【答案】A ;【解析】因为不等式2a x 2≥+-的解集为22a x -≤, 再观察数轴上表示的解集为1x -≤, 因此122a -=-, 解得0a =6、小明用100元钱去购置三角板和圆规共30件, 三角板每副2元, 每个圆规5元, 那么小明最多能买圆规〔 〕.A 、12个B 、13个C 、14个D 、15个【答案】B ;【解析】设买圆规x 件, 由题意得:52(30)x x +-≤100, 得x ≤1133, 且x 为正整数, 所以x 最大取13.7、某商品进价为800元, 售价为1200元, 由于受市场供求关系的影响, 现准备打折销售, 但要求利润率100%-⎛⎫=⨯ ⎪⎝⎭售价进价利润率进价不低于5%, 那么至少可打( ). A 、六折 B 、七折 C 、八折 D 、九折【答案】B ;【解析】解:设打x 折, 由题意得:1200800105%800x ⨯-≥, 解得x ≥7, 所以至少应打7折. 8、某风景区招待所有一两层客房, 底层比二层少5间, 一旅行团共有48人, 假设全部安排住底层, 每间住4人, 房间不够;而每间住5人, 有的房间未住满;假设全部安排住二层, 每间住3人, 房间也不够;每间住4人, 有的房间未住满.这家招待所的底层共有房间 ( ) .A 、9间B 、10间C 、11间D 、12间【答案】B ;【解析】设底层有房间x 间, 由题意得:4485483(5)484(5)48x x x x <⎧⎪>⎪⎨+<⎪⎪+>⎩得:39115x <<, 又x 为正整数, 所以10x =.9、一个两位数, 某个位数字比十位数字大2, 这个两位数不小于20, 不大于40, 那么这个两位数是多少?为了解决这个问题, 我们可设个位数字为x, 那么可列不等式〔 〕.A 、20≤10〔x-2〕+x ≤40B 、20<10〔x-2〕+x <40C 、20≤x-2+x ≤40D 、20≤10x+x-2≤40 【答案】A ;10、张红家离学校1600米, 一天早晨由于有事耽误, 结果吃完饭时只差15分钟就上课, 忙中出错, 出门时又忘了带书包, 结果回到家又取书包共用3分钟, 只好坐小汽车去上学, 小汽车的速度是36千米/时, 小汽车行驶了1分30秒时又发生堵车, 她等了半分钟后, 路还没有畅通, 于是下车又开始步行, 问:张红步行速度至少是( )时, 才不至于迟到.A 、60米/分B 、70米/分C 、80米/分D 、90米/分 【答案】B ;【解析】设张红步行速度x 米/分才不至于迟到, 由题意可列不等式引11[153(1)]22x --+≥1160060012-⨯,化简得10x ≥700, x ≥70, 应选B .二、填空题.1、不等式>x ﹣1的解集是.【答案】 x <4 ;【解析】去分母得1+2x >3x ﹣3, 移项得2x ﹣3x >﹣3﹣1, 合并得﹣x >﹣4, 系数化为1得x <4.2、12(x –m )>3–32m 的解集为x >3, 那么m 的值为________. 【答案】32【解析】去括号得:12x −12m >3−32m , 移项得:12x >3−32m +12m , 合并同类项得12x >3−m ,系数化为1得x >6–2m , ∵不等式的解集为x >3, ∴6–2m =3, 解得:m =32,故答案为:32.3、假设关于x 的不等式30x a -≤只有六个正整数解, 那么a 应满足________. 【答案】1821a ≤<; 【解析】由得:3a x ≤, 673a≤<, 即1821a ≤<. 4、某种肥皂零售价每块2元, 对于购置两块以上(含两块), 商场推出两种优惠销售方法:第一种为一块按原价, 其余按原价的七折优惠;第二种为全部按原价的八折优惠.在购置相同数量的情况下, 要使第一种方法比第二种方法得到的优惠多, 最少需要购置肥皂______块. 【答案】4;••2x, 得:x >3.最少需要购置肥皂4块时, 第一种方法比第二种方法得到的优惠多.5、一艘轮船上午6:00从长江上游的A 地出发, 匀速驶往下游的B 地, 于11:00到达B 地, 方案下午13:00从B 地匀速返回, 如果这段江水流速为3km/h, 且轮船在静水中的往返速度不变, 那么该船至少以 km/h 的速度返回, 才能不晚于19:00到达A 地. 【答案】33;【解析】解:设船xkm/h 的速度返回, 根据题意得出:6〔x ﹣3〕≥5〔x+3〕 解得:x ≥33,∴该船至少以33km/h 的速度返回, 才能不晚于19:00到达A 地. 故答案为:33.三、解答题.1、解不等式:3x >1–36x -. 解:3136x x ->-,去分母, 得()263x x >--, 去括号, 得263x x >-+, 移项, 合并同类项, 得39x >, 系数化为1, 得3x >.2、解以下不等式:2x –5≤232x ⎛⎫-⎪⎝⎭. 解:去括号得2x –5≤x –6,移项得, 2x –x ≤–6+5,合并同类项, 系数化为1得x ≤–1.3、解不等式2x –3<13x +, 并把解集在数轴上表示出来. 解:3〔2x –3〕<x +1, 在数轴上表示为: 6x –9<x +1, 5x <10,x<2,∴原不等式的解集为x<2,四、应用题.1、某工人方案在15天里加工408个零件, 前三天每天加工24个, 问以后每天至少加工多少个零件才能在规定时间内超额完成任务?【解析】解:设三天后每天加工x个零件, 根据题意得:24×3+(15-3)x>408,解得 x>28.因为x为正整数,所以以后每天加工的零件数至少为29个.2、某商店在一次促销活动中规定:消费者消费满200元或超过200元就可享受打折优惠.一名同学为班级买奖品,准备买6本影集和假设干支钢笔.影集每本15元, 钢笔每支8元, 问他至少买多少支钢笔才能打折?【解析】解:设该同学买x支钢笔, 根据题题意, 得:15×6+8x≥200,解得x≥3 134.故该同学至少要买14支钢笔才能打折.3、某村为解决村民出行难的问题, 村委会决定将一条长为1200m的村级公路硬化, 并将该项工程承包给甲、乙两工程队来施工.并将该项工程承包给甲、乙两工程队来施工, 假设甲、乙两队做需12天完成此项工程;假设甲队先做了8天后, 剩下的由乙队单独做还需18天才能完工.〔1〕问甲、乙两队单独完成此项工程各需多少天?〔2〕又甲队每施工一天需要费用2万元, 乙队每施工一天需要费用1万元, 要使完成该工程所需费用不超过35万元, 那么乙工程队至少要施工多少天?【解析】解:〔1〕设甲单独做需要用x天, 乙单独做需要y天, 根据题意可得:,解得:.答:甲单独做需要用20天, 乙单独做需要30天;〔2〕甲的工效:1200÷20=60, 乙的工效:1200÷30=40,∵2×20=40>35,∴设乙需要做a天, 由题意可得:2×+a≤35,解得:a≥15.答:乙工程队至少要施工15天.4、今年3月12日植树节期间, 学校预购进A, B两种树苗.假设购进A种树苗3棵, B种树苗5棵, 需2100元;假设购进A种树苗4棵, B种树苗10棵, 需3800元.〔1〕求购进A, B两种树苗的单价;〔2〕假设该学校准备用不多于8000元的钱购进这两种树苗共30棵, 求A种树苗至少需购进多少棵.【解析】〔1〕设A种树苗的单价为x元, 那么B种树苗的单价为y元,可得:3521004103800x yx y+=⎧⎨+=⎩, 解得:200300xy=⎧⎨=⎩.答:A种树苗的单价为200元, B种树苗的单价为300元.〔2〕设购置A种树苗a棵, 那么B种树苗为〔30–a〕棵,可得:200a+300〔30–a〕≤8000,解得:a≥10.答:A种树苗至少需购进10棵.5、某冷饮店用200元购进A, B两种水果共20kg, 进价分别为7元/kg和12元/kg.〔1〕这两种水果各购进多少千克?〔2〕该冷饮店将所购进的水果全部混合制成50杯果汁, 要使售完后所获利润不低于进货款的50%, 那么每杯果汁的售价至少为多少元?【解析】〔1〕设A种水果购进了x千克, 那么B种水果购进了〔20–x〕千克,根据题意得:7x+12〔20–x〕=200,解得:x=8,那么20–x=12.答:购进A种水果8千克, B种水果12千克;〔2〕设每杯果汁的售价至少为y元,根据题意得, 50y–200≥200×50%,解得y≥6.答:每杯果汁的售价至少为6元.6、青年志愿者爱心小分队赴山村送温暖, 准备为困难村民购置一些米面.购置1袋大米、4袋面粉, 共需240元;购置2袋大米、1袋面粉, 共需165元.〔1〕求每袋大米和面粉各多少元;〔2〕如果爱心小分队方案购置这些米面共40袋, 总费用不超过2140元, 那么至少购置多少袋面粉?【解析】〔1〕设每袋大米x元, 每袋面粉y元,7、某公司为了扩大经营, 决定购进6台机器用于生产某种活塞, 现有甲、乙两种机器供选择, 其中每种机器的价格和每台机器日生产活塞的数量如下表所示, 经过预算, 本次购置机器耗资不能超过34万元.(1)按该公司要求可以有几种购置方案?(2)假设该公司购进的6台机器的日生产能力不低于380个, 那么为了节约资金应选择哪种方案?【解析】解:(1)设购置甲种机器x台, 乙种机器〔6-x〕台.由题意, 得7x+5(6-x)≤34.解不等式, 得x≤2, 故x可以取0, l, 2三个值,所以, 该公司按要求可以有以下三种购置方案:方案一:不购置甲种机器, 购置乙种机器6台;方案二:购置甲种机器1台, 购置乙种机器5台;方案三:购置甲种机器2台, 购置乙种机器4台;(2)按方案一购置机器, 所耗资金为30万元, 日生产量6×60=360(个);按方案二购置, 所耗资金为1×7+5×5=32〔万元〕, 日生产量为1×100+5×60=400〔个〕, 按方案三购置, 所耗资金为2×7+4×5=34(万元);日生产量为2×100+4×60=440〔个〕.因此, 选择方案二既能到达生产能力不低于380〔个〕, 又比方案三节约2万元资金, 故应选择方案二.8、沃尔玛超市销售每台进价为320元和250元的A、B两种型号的电器, 下表是两天的销售情况:〔进价、售价均保持不变, 利润=销售收入﹣进货本钱〕〔1〕求A、B两种型号的电器的销售单价;〔2〕假设超市准备用不多于8200元的金额再采购这两种型号的电器共30台, 求A种型号的电器最多能采购多少台?〔3〕在〔2〕的条件下, 超市销售完这30台电器能否实现利润至少为2100元的目标?请给出相应的采购方案;假设不能, 请说明理由.【解析】解:〔1〕设A、B两种型号电器的销售单价分别为x元和y元,由题意, 得:2x+3y=1700,3x+y=1500,解得x=400元, y=300元,∴A、B两种型号电器的销售单价分别为400元和300元;〔2〕设采购A种型号电器a台, 那么采购B种型号电器〔30﹣a〕台,依题意, 得320a+250〔30﹣a〕≤8200,解得a≤10, a取最大值为10,∴超市最多采购A种型号电器10台时, 采购金额不多于8200元;〔3〕依题意, 得〔400﹣320〕a+〔300﹣250〕〔30﹣a〕≥2100,解得 a≥20,∵a的最大值为10,∴在〔2〕的条件下超市不能实现利润至少为2100元的目标.第四单元第1课函数一、根底稳固1.一般地, 如果在一个变化过程中有两个变量x和y, 并且对于变量x的每一个值, 变量y都有________的值与它对应, 那么我们称y是x的________, 其中________是自变量.2.下面选项中给出了某个变化过程中的两个变量x和y, 其中y不是..x的函数的是()A .y :正方形的面积, x :这个正方形的周长B .y :等边三角形的周长, x :这个等边三角形的边长C .y :圆的面积, x :这个圆的直径D .y :一个正数的平方根, x :这个正数 3.以下关系式中, y 不是..x 的函数的是( )A .y =xB .y =x 2+1C .y =|x |D .|y |=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是( ) 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是( ) A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是( ) A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是( )9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是( ) A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是( )A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是( )A .7B .-3C .-3或7D .±3或7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.2 一元一次不等式 第2课时 一元一次不等式的应用
一、新课导入 1.导入课题:
上节课我们学习了如何解一元一次不等式,这节课我们学习如何列一元一次不等式解决简单的实际问题.(板书课题)
2.学习目标:
(1)能根据实际问题中的数量关系,列一元一次不等式求解,体会数学建模思想.
(2)进一步巩固解一元一次不等式的方法和步骤. 3.学习重、难点:
重点:分析实际问题中的不等关系,列出一元一次不等式. 难点:如何从实际问题中抽象出不等式,建立等式模型求解. 二、分层学习
1.自学指导:
(1)自学内容:课本P124例2. (2)自学时间:6分钟.
(3)自学要求:仔细读题,找出题中蕴含的不等关系语句,然后根据该不等关系设未知数列出不等式.
(4)自学参考提纲:
①若题目中含有“多于、少于、高于、低于、超过、不多于、不少于、不高于、不低于、不超过、至多、至少”等字眼时,指明问题中蕴含着不等关系,根据这个关系,可以设未知数列出不等式.
②例2的不等式关系是
3656070365
x %
%+⨯>.
③例2中未知数的设法与列方程解应用问题中未知数的设法有无区别?题目中的“至少”是如何体现的?
④分析例2的解答过程,类比设未知数列方程解应用题,归纳设未知数列一元一次不等式解应用题的一般步骤.
2.自学:同学们可结合自学指导进行学习.
3.助学:
(1)师助生:
①明了学情:教师巡视课堂,了解学生的自学情况.
②差异指导:根据学情进行相应指导(宏观指导或微观指导).
(2)生助生:小组内同学间互相交流研讨、互助解疑难.
4.强化:
(1)学生代表交流、汇报学习的成果,并总结归纳出设未知数,列一元一次不等式解应用题的一般步骤.
(2)练习:做课本P125“练习”的第1、2题
.
1.自学指导:
(1)自学内容:课本P125例3.
(2)自学时间:8分钟.
(3)自学要求:认真阅读课文,弄清解题思路,体会其中的分类和建模思想.
(4)自学参考提纲:
①设购物款积累达到x元,试用含x的代数式填写下表:
②你能从表格中看出在哪家商场花费少吗?
(a)当0<x≤50时,在两家商场花费一样,因为都不享受优惠.
(b)当50<x≤100时,在乙商场花费少,因为乙商场有优惠,甲商场没有.
(c)当x>100时,若在甲商场花费少,则有不等式:50+0.95(x-50)>100+0.9(x-100),解得x>150.若在乙商场花费少,则有不等式:50+0.95(x-150)<100+0.9(x-100),解得x<150.若在两商场花费一样,则有方程:50+0.95(x-150)=100+0.9(x-100),解得x=150.
③你能综合②中的分析,给出一个合理化的消费方案吗?
3.助学:
(1)师助生:
①明了学情:教师巡视课堂,了解学生的自学情况(自学的进度、遇到的困难和存在的问题等).
②差导指导:根据学情进行相应指导.
(2)生助生:小组内同学进行相互交流研讨,互助解疑难.
4.强化:
(1)各组代表交流展示学习成果,教师在黑板上完善表格.
即购物不超过50元和刚好是150元时,在两家商场购物,花费没有区别;超过50元而不到150元时,在乙商场购物花费少;超过150元后,在甲商场购物花费少.
(2)列不等式解决实际问题与列方程解实际问题的相同和不同点.
三、评价
1.学生的自我评价:学生代表交流学习目标的达成情况和学习感受等.
2.教师对学生的评价:
(1)表现性评价:教师对学生在本节课学习中的整体表现(态度、方法、效率、效果等方面)进行总结和点评.
(2)纸笔评价:课堂评价检测. 3.教师的自我评价(教学反思):
能根据具体问题的数量关系寻找不等关系,列出不等式,解决生活中的实际问题是本节课的重点.在教学过程中,教师引导学生对不等式问题进行探索、研究,提高了学生应用数学思维方法和解决实际问题的能力.
(时间:12分钟 满分:100分)
一、基础巩固(60分)
1.(30分)某商店以每辆250元的进价购入200辆自行车,并
以每辆275元的价格销售,两个月后自行车的销售款已超过这批自行车的进货款,这时至少已售出多少辆自行车?
解:设这时已售出x 辆自行车. 由题意得:275x>250×200,解得x>9
18111
. 又∵x 为正整数.∴x ≥182. 答:这时至少已售出182辆自行车.
2.(30分)长跑比赛中,张华跑在前面,在离终点100m 时他以4m/s 的速度向终点冲刺,在他身后10m 的李明需以多快的速度同时开始冲刺,才能够在张华之前到达终点?
解:设李明以xm/s 的速度冲刺. 由题意得:
10010010
4x
+>. 解得x>4.4.
答:李明需以超过4.4m/s 的速度冲刺,才能在张华之前到达终点.
二、综合运用(20分)
3.某工厂前年有员工280人,去年经过结构改革减员40人,全厂年利润增加100万元,人均创利至少增加6000元,前年全厂利润至少是多少?
解:设前年全厂利润为x 万元. 由题意得:
1000628040280
x x
.+-≥-,解得x ≥308.
答:前年全厂利润至少是308万元.
三、拓展延伸(20分)
4.某通信公司升级了两种通信业务:“A业务”使用者先缴15元月租费,然后每通话1分钟付话费0.2元;“B业务”不缴月租费,每通话1分钟付费0.3元,你觉得选哪种业务更优惠?
解:设通话时间为x分钟.
则“A业务”应缴纳话费为(15+0.2x)元,“B业务”应缴纳话费为0.3x元.
①若“A业务”更优惠,则
15+0.2x<0.3x,
解得x>150;
②若“B业务”更优惠,则
15+0.2x>0.3x,
解得x<150;
③若x=150时,两种业务优惠一样.
所以,当通话时间超过150分钟时,选“A业务”更优惠;当通话时间不足150分钟时,选“B业务”更优惠;当通话时间为150分钟时,两种业务优惠一样.。