高考专题函数与方程思想练习

合集下载

基本初等函数、函数与方程 专项练习-2023届高三数学二轮专题复习(含解析)

基本初等函数、函数与方程 专项练习-2023届高三数学二轮专题复习(含解析)

冲刺2023年高考二轮 基本初等函数、函数与方程(原卷+答案)1.函数y =log 2(4+3x -x 2)的一个单调增区间是( ) A .⎝ ⎛⎭⎪⎫-∞,32 B .⎣⎢⎡⎭⎪⎫32,+∞ C .⎝ ⎛⎭⎪⎫-1,32 D .⎣⎢⎡⎭⎪⎫32,4 2.已知函数f (x )=⎩⎨⎧ax 2-x -14,x ≤1log a x -1,x >1,是R 上的单调函数,则实数a 的取值范围为( )A .⎣⎢⎡⎭⎪⎫14,12B .⎣⎢⎡⎦⎥⎤14,12 C .⎝ ⎛⎦⎥⎤0,12 D .⎝ ⎛⎭⎪⎫12,1 3.若不等式x 2-log a x <0在⎝⎛⎭⎪⎫0,12 内恒成立,则a 的取值范围是( )A .116 ≤a <1B .116 <a <1 C .0<a ≤116 D .0<a <1164.若函数f (x )=x +ax -1在(0,2)上有两个不同的零点,则a 的取值范围是( )A .⎣⎢⎡⎦⎥⎤-2,14B .⎝ ⎛⎭⎪⎫-2,14C .⎣⎢⎡⎦⎥⎤0,14D .⎝ ⎛⎭⎪⎫0,145.中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:C =W log 2⎝ ⎛⎭⎪⎫1+S N .它表示,在受噪音干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中SN 叫作信噪比.当信噪比比较大时,公式中真数里面的1可以忽略不计.按照香农公式,增加带宽,提高信号功率和降低噪声功率都可以提升信息传递速度,若在信噪比为1 000的基础上,将带宽W 增大到原来的2倍,信号功率S 增大到原来的10倍,噪声功率N 减小到原来的15 ,则信息传递速度C 大约增加了( )(参考数据:lg 2≈0.3) A .87% B .123% C .156% D .213%6.已知函数f (x )=⎩⎪⎨⎪⎧||log 2x ,x >0,-x 2-4x +4,x <0. 若函数g (x )=f (x )-m 有四个不同的零点x 1,x 2,x 3,x 4,则x 1x 2x 3x 4的取值范围是( )A .(0,4)B .(4,8)C .(0,8)D .(0,+∞)7.已知函数f (x )是定义在R 上的奇函数,满足f (x +2)=f (-x ),且当x ∈[0,1]时,f (x )=log 2(x +1),则函数y =f (x )-x 3的零点个数是( )A .2B .3C .4D .5 8.为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量y (mg/m 3)与时间t (h )的函数关系为y =⎩⎪⎨⎪⎧kt ,0<t <12,1kt ,t ≥12, (如图所示)实验表明,当药物释放量y <0.75(mg/m 3)时对人体无害.(1)k =________;(2)为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过________分钟人方可进入房间.9.函数f (x )=⎩⎪⎨⎪⎧x 3+2,x ≤0x -3+e x,x >0 的零点个数为________. 10.已知函数f (x )=⎩⎪⎨⎪⎧4x -1,x ≤1log 2x ,x >1 ,若1<f (a )≤2,则实数a 的取值范围为________.11.已知函数f (x )=⎩⎪⎨⎪⎧10x -2-102-x ,x ≤2||x -3-1,x >2,则不等式f (x )+f (x -1)<0的解集为________.12.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -1),x ∈R .若函数y =f (x )-c 恰有两个零点,则实数c 的取值范围是________.13.已知f (x )是定义在R 上的偶函数,f ′(x )是f (x )的导函数,当x ≥0时,f ′(x )-2x >0,且f (1)=3,则f (x )>x 2+2的解集是( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(0,1)D .(-∞,-1)∪(0,1)14.定义在R 上的偶函数f (x )满足f (2-x )=f (2+x ),且当x ∈[0,2]时,f (x )=⎩⎨⎧2x-1,0≤x ≤12sin π2x -1,1<x ≤2,若关于x 的方程m ln ||x =f (x )至少有8个实数解,则实数m 的取值范围是( )A .⎣⎢⎡⎭⎪⎫-1ln 6,0 ∪⎝ ⎛⎦⎥⎤0,1ln 5B .⎣⎢⎡⎦⎥⎤-1ln 6,1ln 5 C .⎝ ⎛⎭⎪⎫-1ln 6,0 ∪⎝ ⎛⎭⎪⎫0,1ln 5 D .⎝ ⎛⎭⎪⎫-1ln 6,1ln 5参考答案1.解析:函数y =log 2(4+3x -x 2)的定义域为(-1,4). 要求函数y =log 2(4+3x -x 2)的一个单调增区间, 只需求y =4+3x -x 2的增区间,只需x <32 . 所以-1<x <32 .所以函数y =log 2(4+3x -x 2)的一个单调增区间是⎝ ⎛⎭⎪⎫-1,32 .故选C.答案:C2.解析:当函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调递减函数,所以⎩⎪⎨⎪⎧0<a <112a ≥1a -54≥-1,解得14 ≤a ≤12 ,因为a >0且a ≠1,所以当x ≤1时,f (x )不可能是增函数, 所以函数f (x )在R 上不可能是增函数, 综上:实数a 的取值范围为⎣⎢⎡⎦⎥⎤14,12 ,故选B.答案:B3.解析:当a >1时,由x ∈⎝ ⎛⎭⎪⎫0,12 ,可得log a x <0,则-log a x >0,又由x 2>0,此时不等式x 2-log a x <0不成立,不合题意; 当0<a <1时,函数y =log a x 在⎝ ⎛⎭⎪⎫0,12 上单调递减,此时函数y =-log a x 在⎝ ⎛⎭⎪⎫0,12 上单调递增,又由y =x 2在⎝ ⎛⎭⎪⎫0,12 上单调递增,要使得不等式x 2-log a x <0在⎝ ⎛⎭⎪⎫0,12 内恒成立,可得⎝ ⎛⎭⎪⎫12 2-log a 12 ≤0,解得116 ≤a <1.故选A.答案:A4.解析:函数f (x )=x +ax -1在(0,2)上有两个不同的零点等价于方程x +ax -1=0在(0,2)上有两个不同的解,即a =-x 2+x 在(0,2)上有两个不同的解.此问题等价于y =a 与y =-x 2+x (0<x <2)有两个不同的交点.由下图可得0<a <14 .故选D. 答案:D5.解析:提升前的信息传递速度C =W log 2S N =W log 21 000=3W log 210=3Wlg 2≈10W ,提升后的信息传递速度C ′=2W log 210S 15N =2W log 250SN =2W log 250 000=2W ·4+lg 5lg 2 =2W ·5-lg 2lg 2 ≈94W 3 ,所以信息传递速度C 大约增加了C ′-CC =943W -10W 10W ≈2.13=213%.故选D.答案:D6.解析:函数g (x )有四个不同的零点等价于函数f (x )的图象与直线y =m 有四个不同的交点.画出f (x )的大致图象,如图所示.由图可知m ∈(4,8).不妨设x 1<x 2<x 3<x 4,则-4<x 1<-2<x 2<0,且x 1+x 2=-4.所以x 2=-x 1-4,所以x 1x 2=x 1(-x 1-4)=-(x 1+2)2+4∈(0,4),则0<x 3<1<x 4,因为||log 2x 3 =||log 2x 4 ,所以-log 2x 3=log 2x 4,所以log 2x -13 =log 2x 4,所以x 3·x 4=1,所以x 1·x 2·x 3·x 4=x 1·x 2∈(0,4).故选A. 答案:A7.解析:由f (x +2)=f (-x )可得f (x )关于x =1对称, 由函数f (x )是定义在R 上的奇函数,所以f (x +2)=f (-x )=-f (x )=-[-f (x -2)]=f (x -2), 所以f (x )的周期为4,求函数y =f (x )-x 3的零点问题即y =f (x )-x 3=0的解, 即函数y =f (x )和y =x 3的图象交点问题,根据f (x )的性质可得如图所示图形,结合y =x 3的图象,由图象可得共有3个交点,故共有3个零点,故选B. 答案:B8.解析:(1)由题图可知,当t =12 时,y =1,所以2k =1,所以k =2. (2)由(1)可知,y =⎩⎪⎨⎪⎧2t ,0<t <12,12t ,t ≥12,当t ≥12 时,y =12t ,令y <0.75,得t >23 ,所以在消毒后至少经过23 小时,即40分钟人方可进入房间.答案:(1)2 (2)409.解析:当x ≤0时,令x 3+2=0,解得x =3-2 ,3-2 <0,此时有1个零点;当x >0时, f (x )=x -3+e x ,显然f (x )单调递增,又f ⎝ ⎛⎭⎪⎫12 =-52 +e 12 <0,f (1)=-2+e>0,由零点存在定理知此时有1个零点;综上共有2个零点.答案:210.解析:若a ≤1,则f (a )=4a -1,故1<4a -1≤2,解得12 <a ≤log 43,故12 <a ≤log 43;若a >1,则f (a )=log 2a ,故1<log 2a ≤2,解得2<a ≤4; 综上:12 <a ≤log 43或2<a ≤4. 答案:⎝ ⎛⎦⎥⎤12,log 43 ∪(2,4]11.解析:①当x ≤2时,x -1≤1,∵f (x )=10x -2-102-x 在(-∞,2]上单调递增,∴f (x )≤f (2)=0,又f (x -1)≤f (1)<f (2)=0, ∴f (x )+f (x -1)<0恒成立;②当2<x ≤3时,1<x -1≤2,f (x )=||x -3 -1=2-x <0, 又f (x -1)≤f (2)=0,∴f (x )+f (x -1)<0恒成立;③当3<x ≤4时,2<x -1≤3,f (x )=||x -3 -1=x -4,f (x -1)=||x -4 -1=3-x ;∴f (x )+f (x -1)=-1<0恒成立;④当x >4时,x -1>3,f (x )=||x -3 -1=x -4,f (x -1)=||x -4 -1=x -5,∴f (x )+f (x -1)=2x -9<0,解得x <92 ,∴4<x <92 ; 综上所述:不等式f (x )+f (x -1)<0的解集为⎝ ⎛⎭⎪⎫-∞,92 .答案:⎝ ⎛⎭⎪⎫-∞,92 12.解析:因为a ⊗b =⎩⎨⎧a ,a -b ≤1,b ,a -b >1.,所以f (x )=(x 2-2)⊗(x -1)=⎩⎨⎧x 2-2,-1≤x ≤2x -1,x <-1或x >2 ,由图可知,当-2<c ≤-1或1<c ≤2时,函数f (x )与y =c 的图象有两个公共点,∴c 的取值范围是(-2,-1]∪(1,2]. 答案:(-2,-1]∪(1,2] 13.解析:令g (x )=f (x )-x 2, 因为f (x )是定义在R 上的偶函数, 所以f (-x )=f (x ),则g (-x )=f (-x )-(-x )2=g (x ), 所以函数g (x )也是偶函数, g ′(x )=f ′(x )-2x ,因为当x ≥0时,f ′(x )-2x >0,所以当x ≥0时,g ′(x )=f ′(x )-2x ≥0, 所以函数g (x )在(0,+∞)上递增, 不等式f (x )>x 2+2即为不等式g (x )>2, 由f (1)=3,得g (1)=2, 所以g (x )>g (1),所以||x >1,解得x >1或x <-1,所以f (x )>x 2+2的解集是(-∞,-1)∪(1,+∞). 故选B. 答案:B14.解析:因为f (2-x )=f (2+x ),且f (x )为偶函数, 所以f (x -2)=f (x +2),即f (x )=f (x +4), 所以函数f (x )是以4为周期的周期函数,作出y=f(x),y=m ln x在同一坐标系的图象,如图,因为方程m ln ||x=f(x)至少有8个实数解,所以y=f(x),y=m ln |x|图象至少有8个交点,根据y=f(x),y=m ln |x|的图象都为偶函数可知,图象在y轴右侧至少有4个交点,由图可知,当m>0时,只需m ln 5≤1,即0<m≤1ln 5,当m<0时,只需m ln 6≥-1,即-1ln 6≤m<0,当m=0时,由图可知显然成立,综上可知,-1ln 6≤m≤1ln 5.故选B.答案:B。

高考数学专题练习 1函数与方程思想 理 试题

高考数学专题练习 1函数与方程思想 理 试题

高考小题专项练 训练1 函数与方程思想(推荐时间:45分钟)一、选择题1.已知向量a =(3,2),b =(-6,1),而(λa +b )⊥(a -λb ),则实数λ等于( )A .1或2B .2或-12C .2D .02.若2x+5y≤2-y+5-x,则有( ) A .x +y ≥0 B .x +y ≤0 C .x -y ≤0 D .x -y ≥03.若函数f (x )、g (x )分别为R 上的奇函数、偶函数,且满足f (x )-g (x )=e x,则有( ) A .f (2)<f (3)<g (0) B .g (0)<f (3)<f (2) C .f (2)<g (0)<f (3) D .g (0)<f (2)<f (3)4.设a >1,若对于任意的x ∈[a,2a ],都有y ∈[a ,a 2]满足方程log a x +log a y =3,这时a 的取值的集合为( ) A .{a | 1<a ≤2} B .{a | a ≥2} C .{a | 2≤a ≤3} D .{2,3}5.对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于零,则x 的取值范围是 ( ) A .1<x <3 B .x <1或x >3 C .1<x <2 D .x <1或x >26.f (x )是定义在R 上的以3为周期的奇函数,f (2)=0,则函数y =f (x )在区间(-1,4)内的零点个数为( )A .2B .3C .4D .57.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-b2a对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集都不可能是( )A .{1,2}B .{1,4}C .{1,2,3,4}D .{1,4,16,64}8.设函数f (x )=x 3+sin x ,若0≤θ≤π2时,f (m cos θ)+f (1-m )>0恒成立,则实数m 的取值范围是( )A .(0,1)B .(-∞,0)C .(-∞,1)D.⎝⎛⎭⎪⎫-∞,12 9.若不等式ax -1x +b >0的解集为{x |-1<x <2},则不等式bx +1ax +1<0的解集是( )A .{x |12<x <1}B .{x |x <12,或x >2}C .{x |-12<x <1}D .{x |x <-1,或x >2}10.(2011·宜昌模拟)方程x 2-32x -m =0在x ∈[-1,1]上有实根,则m 的取值范围是( )A .m ≤-916B .-916<m <52C .m ≥52D .-916≤m ≤52二、填空题11.已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )f (x ),则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫52的值是________. 12.若关于x 的方程(2-2-|x -2|)2=2+a 有实根,则实数a 的取值范围是________.13.当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围为__________.14.若y =1-sin 2x -m cos x 的最小值为-4,则m 的值为________.15.已知等差数列{a n }共有10项,其奇数项的和为15,偶数项的和为30,则它的公差d =________. 16.已知圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0(a ,b ∈R )对称,则ab 的取值范围是____________.17.对于满足0≤p ≤4的实数p ,使x 2+px >4x +p -3恒成立的x 的取值范围是__________. 答案1.B 2.B 3.D 4.B 5.B 6.D 7.D 8.C 9.A 10.D 11.0 12.[-1,2) 13.(-∞,-5] 14.±5 15.3 16.(-∞,14]17.(-∞,-1)∪(3,+∞)。

专题12 函数与方程(解析版)

专题12 函数与方程(解析版)

2023高考一轮复习讲与练12 函数与方程练高考 明方向1.(2022·新高考Ⅰ卷T10)(多选题)已知函数3()1f x x x =-+,则( ) A. ()f x 有两个极值点B. ()f x 有三个零点C. 点(0,1)是曲线()y f x =的对称中心D. 直线2y x =是曲线()y f x =的切线 【答案】AC 【解析】【分析】利用极值点的定义可判断A ,结合()f x 的单调性、极值可判断B ,利用平移可判断C ;利用导数的几何意义判断D.【详解】由题,()231f x x '=-,令()0f x '>得3x >或3x <-,令()0f x '<得x <<,所以()f x 在(上单调递减,在(,-∞,)+∞上单调递增,所以x =是极值点,故A 正确;因(10f =+>,10f =>,()250f -=-<,所以,函数()f x 在,⎛-∞ ⎝⎭上有一个零点,当x ≥时,()03f x f ⎛≥> ⎝⎭,即函数()f x 在3⎛⎫∞ ⎪ ⎪⎝⎭上无零点,综上所述,函数()f x 有一个零点,故B 错误;令3()h x x x =-,该函数的定义域为R ,()()()()33h x x x x x h x -=---=-+=-,则()h x 是奇函数,(0,0)是()h x 的对称中心, 将()h x 的图象向上移动一个单位得到()f x 的图象,所以点(0,1)是曲线()y f x =的对称中心,故C 正确;令()2312f x x '=-=,可得1x =±,又()(1)11f f =-=,当切点为(1,1)时,切线方程为21y x =-,当切点为(1,1)-时,切线方程为23y x =+,故D 错误. 2.(2022·全国乙(文)T20) 已知函数1()(1)ln f x ax a x x=--+. (1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围. 【答案】(1)1- (2)()0,+∞ 【解析】【分析】(1)由导数确定函数的单调性,即可得解; (2)求导得()()()211ax x f x x --'=,按照0a ≤、01a <<及1a >结合导数讨论函数的单调性,求得函数的极值,即可得解. 【小问1详解】 当0a =时,()1ln ,0f x x x x =-->,则()22111x f x x x x-'=-=, 当()0,1∈x 时,0f x,()f x 单调递增;当()1,x ∈+∞时,0fx,()f x 单调递减;所以()()max 11f x f ==-; 【小问2详解】()()11ln ,0f x ax a x x x =--+>,则()()()221111ax x a f x a x x x--+'=+-=, 当0a ≤时,10-≤ax ,所以当()0,1∈x 时,0f x,()f x 单调递增;当()1,x ∈+∞时,0fx,()f x 单调递减;所以()()max 110f x f a ==-<,此时函数无零点,不合题意; 当01a <<时,11a >,在()10,1,,a ⎛⎫+∞ ⎪⎝⎭上,0f x,()f x 单调递增;在11,a ⎛⎫⎪⎝⎭上,0f x,()f x 单调递减;又()110f a =-<,当x 趋近正无穷大时,()f x 趋近于正无穷大,所以()f x 仅在1,a ⎛⎫+∞ ⎪⎝⎭有唯一零点,符合题意;当1a =时,()()2210x f x x -'=≥,所以()f x 单调递增,又()110f a =-=, 所以()f x 有唯一零点,符合题意;当1a >时,11a <,在()10,,1,a ⎛⎫+∞ ⎪⎝⎭上,0f x ,()f x 单调递增;在1,1a ⎛⎫⎪⎝⎭上,0fx,()f x 单调递减;此时()110f a =->,又()1111ln n n n f a n a a aa -⎛⎫=-++ ⎪⎝⎭,当n 趋近正无穷大时,1n f a⎛⎫⎪⎝⎭趋近负无穷,所以()f x在10,a ⎛⎫ ⎪⎝⎭有一个零点,在1,a ⎛⎫+∞ ⎪⎝⎭无零点,所以()f x 有唯一零点,符合题意;综上,a 的取值范围为()0,+∞.【点睛】关键点点睛:解决本题的关键是利用导数研究函数的极值与单调性,把函数零点问题转化为函数的单调性与极值的问题.3.(2022·全国乙(理)T21)已知函数()()ln 1e xf x x ax -=++(1(当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程; (2(若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围. 【答案】(1)2y x = (2)(,1)-∞- 【解析】【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a 分类讨论,对x 分(1,0),(0,)-+∞两部分研究【小问1详解】()f x 的定义域为(1,)-+∞当1a =时,()ln(1),(0)0ex xf x x f =++=,所以切点为(0,0),11(),(0)21ex xf x f x ''-=+=+,所以切线斜率为2,所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x =。

2024年新高考版数学专题1_3.5 函数与方程及函数的综合应用(分层集训)

2024年新高考版数学专题1_3.5 函数与方程及函数的综合应用(分层集训)
A.2
B.3
答案 B
C.4
D.5
)
3.(2022南京师范大学附中期中,7)用二分法研究函数f(x)=x3+2x-1的零点
时,第一次计算,得f(0)<0,f(0.5)>0,第二次应计算f(x1),则x1等于 (
A.1
B.-1
答案 C
C.0.25
D.0.75
)
4.(多选)(2022湖南师大附中三模,11)已知函数f(x)的定义域为R,且f(x)=f(x
1.(2023届长春六中月考,7)若函数f(x)=ln x+x2+a-1在区间(1,e)内有零点,则
实数a的取值范围是 (
A.(-e2,0)
C.(1,e)
答案 A
B.(-e2,1)
D.(1,e2)
)
2.(2017课标Ⅲ,文12,理11,5分)已知函数f(x)=x2-2x+a(ex-1+e-x+1)有唯一零点,
A型
0.4
3
B型
0.3
4
C型
0.5
3
D型
0.4
4
则保温效果最好的双层玻璃的型号是 (
A.A型
答案 D
B.B型
C.C型
D.D型
)
3.(2020课标Ⅲ理,4,5分)Logistic模型是常用数学模型之一,可应用于流行
病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数
I(t)(t的单位:天)的Logistic模型:I(t)=
1 e
K
0.23( t 53)
,其中K为最大确诊病例数.
当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为(ln 19≈3) (

2014年高考三轮复习数学思想方法专题一 函数与方程思想学生版

2014年高考三轮复习数学思想方法专题一 函数与方程思想学生版

数学思想方法专题一 函数与方程思想1. (2013·陕西)在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x (单位:m)的取值范 围是( )A .[15,20]B .[12,25]C .[10,30]D .[20,30] 2. (2012·浙江)设a >0,b >0,e 是自然对数的底数( )A .若e a +2a =e b +3b ,则a >bB .若e a +2a =e b +3b ,则a <bC .若e a -2a =e b -3b ,则a >bD .若e a -2a =e b -3b ,则a <b 3. (2013·安徽)已知直线y =a 交抛物线y =x 2于A ,B 两点.若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.题型一 利用函数与方程思想求解最值、范围问题例1 设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M 、N ,则当|MN |达到最小时t 的值为( )A .1 B.12 C.52 D.22变式训练1 若点O 和点F (-2,0)分别是双曲线x2a2-y 2=1 (a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为 ( )A .[3-23,+∞)B .[3+23,+∞) C.⎣⎡⎭⎫-74,+∞ D .⎣⎡⎭⎫74,+∞ 题型二 利用函数与方程思想研究方程根的问题例2 如果方程cos 2x -sin x +a =0在(0,π2]上有解,求a 的取值范围.变式训练2 已知方程9x -2·3x +(3k -1)=0有两个实根,求实数k 的取值范围. 题型三 利用函数与方程思想求解不等式问题例3 已知f (t )=log 2t ,t ∈[2,8],对于f (t )值域内的所有实数m ,不等式x 2+mx +4>2m +4x 恒成立,求x 的取值范围.变式训练3 设不等式2x -1>m (x -1)对满足|m |≤2的一切实数m 的取值都成立,则x 的取值范围是( )A.⎝⎛⎭⎫0,34B .(2,+∞) C.⎝⎛⎭⎫34,+∞ D .(-∞,2)题型四 利用函数与方程思想解决数列问题例4 设数列{a n }的前n 项和为S n ,且S n =n 2-4n +4.(1)求数列{a n }的通项公式;(2)设b n =a n 2n ,数列{b n }的前n 项和为T n ,求证:14≤T n<1.典例 (14分)(2012·北京)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y =k (x -1)与椭圆C 交于不同的两点M ,N . (1)求椭圆C 的方程. (2)当△AMN 的面积为103时,求k 的值. 规范解答解 (1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,解得b = 2.所以椭圆C 的方程为x 24+y 22=1.[4分](2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 22=1得(1+2k 2)x 2-4k 2x +2k 2-4=0.[5分]设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2.[8分]所以|MN |=(x 2-x 1)2+(y 2-y 1)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2(1+k 2)(4+6k 2)1+2k 2.[10分]又因为点A (2,0)到直线y =k (x -1)的距离d =|k |1+k 2, 所以△AMN 的面积为S =12|MN |·d =|k |4+6k 21+2k 2.[12分]由|k |4+6k 21+2k2=103,解得k =±1.∴k 的值为1或-1.[14分] 评分细则 (1)不列方程没有a 2=b 2+c 2,扣1分;(2)求|MN |时直接使用弦长公式没有中间变形,扣1分;(3)最后结论不写不扣分.阅卷老师提醒(1)本题易错点:不会整合题目条件,没有列出方程求b 、c ;运算能力较差,用弦长表示面积出现计算错误;(2)阅卷中发现考生的快捷解法:直线y =k (x -1)过定点T (1,0),则S △AMN=12·|AT |·|y 1-y 2|, 大大简化运算过程.1. 在正实数集上定义一种运算“*”:当a ≥b 时,a *b =b 3;当a <b 时,a *b =b 2,则满足3*x =27的x 的值为( )A .3B .1或9C .1或 2D .3或3 32. (2012·课标全国)设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为 ( )A.12B.23C.34D.453. 方程x 2-32x -m =0在x ∈[-1,1]上有实根,则m 的取值范围是 ( )A .m ≤-916B .-916<m <52C .m ≥52D .-916≤m ≤524. 已知函数f (x )=⎝⎛⎭⎫13x,等比数列{a n }的前n 项和为f (n )-c ,则a n 的最小值为 ( )A .-1B .1 C.23 D .-235. 对于满足0≤p ≤4的实数p ,使x 2+px >4x +p -3恒成立的x 的取值范围是__________.专题限时规范训练一、选择题1. 函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)2. 若函数f (x )、g (x )分别为R 上的奇函数、偶函数,且满足f (x )-g (x )=e x ,则有 ( )A .f (2)<f (3)<g (0)B .g (0)<f (3)<f (2)C .f (2)<g (0)<f (3)D .g (0)<f (2)<f (3)3. 设函数D (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则下列结论错误的是( )A .D (x )的值域为{0,1}B .D (x )是偶函数C .D (x )不是周期函数D .D (x )不是单调函数4. 等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列,若a 1=1,则S 4等于( )A .7B .8C .15D .165. (2012·陕西)在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为( )A.32B.22C.12 D .-126. 若a >1,则双曲线x 2a 2-y2(a +1)2=1的离心率e 的取值范围是( )A .(1,2)B .(2,5)C .[2,5]D .(3,5)7. 设函数f (x )=x 3+sin x ,若0≤θ≤π2时,f (m cos θ)+f (1-m )>0恒成立,则实数m 的取值范围是( ) A .(0,1) B .(-∞,0) C .(-∞,1) D.⎝⎛⎭⎫-∞,12 8. 若不等式ax -1x +b >0的解集为{x |-1<x <2},则不等式bx +1ax +1<0的解集是 ( )A .{x |12<x <1}B .{x |x <12或x >2}C .{x |-12<x <1}D .{x |x <-1或x >2}.二、填空题9. 若关于x 的方程(2-2-|x -2|)2=2+a 有实根,则实数a 的取值范围是________.10.已知圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0(a ,b ∈R )对称,则ab 的取值范围是____________.11.已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC 的面积为________. 12.已知数列{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是________. 三、解答题13.椭圆C 的中心为坐标原点O ,焦点在y 轴上,短轴长为2,离心率为22,直线l 与y 轴交于点P (0,m ),与椭圆C 交于相异两点A ,B ,且AP →=3PB →.(1)求椭圆C 的方程; (2)求m 的取值范围.。

高考数学必考点专项第6练 函数与方程(练习及答案)(全国通用)(新高考专用)

高考数学必考点专项第6练 函数与方程(练习及答案)(全国通用)(新高考专用)

高考数学必考点专项第6练函数与方程习题精选一、单选题1. 函数2()=2+log ||x f x x 的零点个数为( ) A. 0 B. 1 C. 2 D. 32. 已知函数若()g x 存在2个零点,则a的取值范围是( )A. [1,)-+∞B. [0,)+∞C. [1,0)-D. [1,)+∞3. 若过点(,)a b 可以作曲线x y e =的两条切线,则( ) A. b e a <B. a e b <C. 0b a e <<D. 0a b e <<4. 已知()f x 是定义在R 上的奇函数,且满足,当时,,则函数在区间上所有零点个数为( )A. 0B. 2C. 4D. 65. 已知函数2()()x f x e ax x R =-∈有三个不同的零点,则实数a 的取值范围是( )A.B.C.D.6. 设a ,b R ∈,函数若函数()y f x ax b =--恰有3个零点,则( )[6,6]-A. 1a <-,0b <B. 1a <-,0b >C. 1a >-,0b <D. 1a >-,0b > 7. 已知函数的零点为,函数()f x 的最小值为0y ,且则函数的零点个数是( )A. 3B. 4C. 3或4D. 2或38. 已知函数,若函数()()g x x f x a =⋅-的零点个数恰为2个,则( )A.2837a <<或1a =- B. 7382a <<C.7382a <<或1a =- D. 7382a <<或54a =-9. 已知函数2,0()ln ,0kx x f x x x +⎧=⎨->⎩,则下列关于[()]2y f f x =-的零点个数判别正确的是( )A. 当0k =时,有无数个零点B. 当0k <时,有3个零点C. 当0k >时,有3个零点D. 无论k 取何值,都有4个零点二、多选题10. 若关于x 的方程23--=02x x k 在(1,1)-上有实根,则( )A. k 的最大值为52B. k 的最小值为916-C. 95[-,)162k ∈D. 95(,]162k ∈-11. 已知函数,().g x kx =若方程()()f x g x =有实根,则实数k的取值可以是( )012[,),y x x ∈A.12B. 1-C. 1D. (2,+)∞上的任意一个数12. 已知定义域为R 的奇函数()f x ,当0x >时,21,01()1,121x x x f x x x ⎧-+<⎪=⎨>⎪-⎩,下列说法中正确的是( )A. 当121122x x -<<<时,恒有12()()f x f x >B. 若当(0,]x m ∈时,()f x 的最小值为34,则m 的取值范围为17[,]26C. 不存在实数k ,使函数()()F x f x kx =-有5个不相等的零点D. 若关于x 的方程3[()][()]04f x f x a --=所有实数根之和为0,则34a =-13. 已知函数,若方程()0f x a -=有两个不相等的实根,则实数a 的取值范围可以是( )A.B.C.D.14. 已知函数,则方程22()2()10f x f x a -+-=的根的个数可能为( )A. 2B. 6C. 5D. 4三、填空题15. 用二分法求函数()=34x f x x --的一个零点,其参考数据如下:(2,)+∞根据此数据,可得方程34=0x --的一个近似解(精确度0.01)为__________.16. 方程103x e x =-的解(,1),x k k k Z ∈+∈,则k =__________. 17. 已知()|lg |2f x x kx =--,给出下列四个结论:(1)若0k =,则()f x 有两个零点; (2)0k ∃<,使得()f x 有一个零点;(3)0k ∃<,使得()f x 有三个零点;(4)0k ∃>,使得()f x 有三个零点;以上正确结论的序号是__________. 四、解答题18. 已知二次函数2()2(,).f x x bx c b c R =++∈(1)若函数()y f x =的零点为1-和1,求实数b ,c 的值;(2)若()f x 满足(1)0f =,且关于x 的方程()0f x x b ++=的两个实数根分别在区间(3,2)--,(0,1)内,求实数b 的取值范围.19. 已知函数2()22(0)f x ax ax b a=-++>在区间[2,0]-上有最小值1,最大值9.(1)求a b+的值;(2)设()()f xg xx=,若不等式在区间[2,4]上恒成立,求实数k的取值范围;(3)设,若函数()F x有三个零点,求实数λ的取值范围.答案和解析1.【答案】C .【解答】解:函数2()2log ||xf x x =+的零点个数,即为函数2xy =-的图象和函数2log ||y x =的图象的交点个数,作出函数的图象如下:数形结合可得,函数2xy =-的图象和函数2log ||y x =的图象的交点个数为2. 故选.C2.【答案】A解:函数()()g x f x x a =++存在2个零点, 即关于x 的方程()f x x a =--有2个不同的实根, 即函数()f x 的图象与直线y x a =--有2个交点. 作出直线y x a =--与函数()f x 的图象,如图所示,由图可知,1a -,解得1a -, 故选.A3.【答案】D解:函数xy e =是增函数,0xy e '=>恒成立, 函数的图象如图,0y >,即取得坐标在x 轴上方,如果(,)a b 在x 轴下方,连线的斜率小于0,不成立.点(,)a b 在x 轴或下方时,只有一条切线. 如果(,)a b 在曲线上,只有一条切线;(,)a b 在曲线上侧,没有切线;由图象可知(,)a b 在图象的下方,并且在x 轴上方时,有两条切线,可知0.a b e <<故选:.D4.【答案】D解:由,得,故,故函数是周期为4的周期函数.又因为()f x 是定义在R 上的奇函数,所以,所以,故1x =是函数()f x 的对称轴.当时,,由此画出()f x 的大致图象如下图所示,令()()10g x xf x =-=,注意到(0)0g ≠,故上述方程可化为,画出1y x=的图象, 由图可知与1y x=图象都关于点(0,0)对称,它们两个函数图象的6个交点A 与F ,B 与E ,C 与D , 所以函数在区间[6,6]-上所有零点个数为6.故选.D5.【答案】C解:0x =时,(0)10f =≠,令2()0xf x e ax =-=,得2xe a x=,令2()x e g x x =,则问题转化为y a =与2()xe g x x=有三个交点,3(2)()xx e g x x -'=,令()0g x '=,解得2x =,()f x∴当0x <或2x >时,()0g x '>,()g x 在(,0)-∞,(2,)+∞单调递增,当02x <<时,()0g x '<,()g x 在(0,2)单调递减,()g x 在2x =处取极小值,2(2)4e g =,作出()g x 的图象如下:要使直线y a =与曲线2()x e g x x =有三个交点,则24e a >,故实数a 的取值范围是2e (,).4+∞故选.C6.【答案】C解:当0x <时,()(1)0y f x ax b x ax b a x b =--=--=--=,()y f x ax b =--最多一个零点;当0x 时,3211()(1)32y f x ax b x a x ax ax b =--=-++-- 3211(1)32x a x b =-+-, 2(1)y x a x '=-+,当10a +,即1a -时,0y ',()y f x ax b =--在[0,)+∞上递增,()y f x ax b=--最多一个零点,不合题意; 当10a +>,即1a >-时,令0y '>得[1,),x a ∈++∞函数递增,令0y '<得[0,1),x a ∈+函数递减,函数最多有2个零点; 根据题意函数()y f x ax b =--恰有3个零点,所以函数()y f x ax b =--在(,0)-∞上有一个零点,在[0,)+∞上有2个零点, 如右图:01ba∴<-且,解得0b <,10a ->,31(1)6b a >-+,31(1)06a b ∴-+<<,11a -<<,故选:.C7.【答案】D解:如图所示,函数2()(0)f x ax bx c a =++>的零点为1x ,212()x x x <,令2()0f x ax bx c =++=, 240.b ac ∴∆=->由2(())()()0f f x af x bf x c =++=,0∆>,1()f x x ∴=或2().f x x =函数()f x 的最小值为0y ,且012[,),y x x ∈画出直线2y x =,1.y x =则直线2.y x =与()y f x =必有两个交点,此时2().f x x =有2个实数根,即函数(())y f f x =有两个零点.直线1y x =与()y f x =可能有一个交点或无交点,此时1()f x x =有一个实数根2b x a=-或无实数根. 综上可知:函数(())y f f x =的零点有2个或3个.故选.D8.【答案】D解:如图,可得()f x 的图象.令()0g x =,当0x =时,不符合题意;当0x ≠时,令()0g x =,得()a f x x =, ()g x 零点个数为2个,则函数()f x 与a y x =有两个交点. 易知0a =不符合题意.若0a >,则满足,可得73;82a << 若0a <,因左支已交于一点,则右支必然只能交于一点,故,此时无解;或,解得54a =- 综上,a 的取值范围内为7382a <<或5.4a =- 故选.D9.【答案】A解:设()f x t =,对于A ,当0k =时,函数()f x 对应的图象如下图:当0t 时,由()2f t =得22=此时方程恒成立了,即[()]2y f f x =-有无数个零点,故A 正确,D 错误.对于B ,当0k <时,对应的图象如下图:当0t >时,由()2f t =,此时ln 2t -=,得2(0,1)t e -=∈,当0t 时,由()2f t =得0t =,由2()(0,1)t f x e -==∈,此时x 有一个解,由()0t f x ==,此时x 有一个解,综上[()]2y f f x =-的零点个数为2个,故B 错误, C .当0k >时,对应的图象如下图:当0t >时,由()2f t =,此时ln 2t -=,得2(0,1)t e -=∈,当0t 时,由()2f t =得0t =,由2()(0,1)t f x e -==∈,此时x 有2个解,由()0t f x ==,此时x 有2个解,综上[()]2y f f x =-的零点个数为4个,故C 错误,故选.A10.【答案】BC 解:22339()2416k x x x =-=--,(1,1)x ∈-, 函数239()416y x =--的图象开口向上,对称轴为34x =, 当34x =时,min 916y =-,当1x =-时,max 52y =, (1,1)x ∈-,95[,).162k ∴∈- 故选.BC11.【答案】ACD解:由题意,可得函数()f x 的图象和函数()g x 的图象有交点,如图所示:(2,1)A ,12OA k =, ∴函数()f x 的图象和函数()g x 的图象有交点,数形结合可得12k或1k <-, 故选.ACD12.【答案】BC解:根据定义域为R 的奇函数()f x ,当0x >时,21,01()1,121x x x f x x x ⎧-+<⎪=⎨>⎪-⎩, 如图所示:对于A :当121122x x -<<<时,根据函数的图象12()()f x f x >不一定成立,故A 错误; 对于B :当(0,]x m ∈时,要使()f x 的最小值为34,令13214x =-,解得76x =,故m 的取值范围为17[,]26,故B 正确;对于C :令()f x kx =,故21x x kx -+=,整理得2(1)10x k x -++=,由于2(1)40k =+->,解得1k >,或3(k <-舍)若0k <,则当(0,1]x ∈时,0()()0y kx f x F x =<<⇒>,故3k <-舍去.又当1k >时,设1x 是方程()0F x =的较大根11x =>= 故1k >也不合题意.考虑y kx =与21y x x =-+有一个交点与121y x =-也有一个交点的情况, 因为y kx =与21y x x =-+有一个交点,故22(1)4230k k k ∆=+-=+-=,解得1k =或3(k =-舍)又当(0,)x ∈+∞时,y x =与121y x =-只有一个交点(1,1),与y x =和21y x x =-+的交点重合综上所述不存在实数k ,使得()F x 有5个不相等的零点, C 正确;对于D :3()04f x -=,解得112x =,276x =,所以1253x x +=, 令53x =-,则553()()337f f -=-=- 由于当23133[1,0),()()4247x f x x ∈-=---<-<-故37a =-也满足题意,D 不正确。

专题练 第5练 基本初等函数、函数与方程

专题练 第5练 基本初等函数、函数与方程

6.(2018·全国Ⅰ)已知函数f(x)=elnx,x,x≤x>00,,g(x)=f(x)+x+a.若g(x)存在2个 零点,则a的取值范围是
A.[-1,0)
B.[0,+∞)
√C.[-1,+∞)
D.[1,+∞)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
令h(x)=-x-a,则g(x)=f(x)-h(x). 在同一坐标系中画出y=f(x),y=h(x)图象的示意图, 如图所示. 若g(x)存在2个零点,则y=f(x)的图象与y=h(x)的图象有2个交点,平 移y=h(x)的图象可知,当直线y=-x-a过点(0,1)时,有2个交点, 此时1=-0-a,a=-1. 当y=-x-a在y=-x+1上方,即a<-1时,仅有1个交点,不符合 题意; 当y=-x-a在y=-x+1下方,即a>-1时,有2个交点,符合题意. 综上,a的取值范围为[-1,+∞).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
14.(2022·临汾模拟)2019年在阿塞拜疆举行的联合国教科文组织第43届世界遗
产大会上,随着木槌落定,良渚古城遗址成功列入《世界遗产名录》,这座见 证了中华五千多年文明史的古城迎来了在世界文明舞台上的“高光时刻”,标
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10.(2022·淮安模拟)已知函数f(x)=(3m-2)·xm+2(m∈R)是幂函数,则函数
g(x)=loga(x-m)+1(a>0,且a≠1)的图象所过定点P的坐标是
√A.(2,1)
B.(0,2)
C.(1,2)
D.(-1,2)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

高考数学《函数与方程综合问题》专题复习

高考数学《函数与方程综合问题》专题复习

第五讲函数与方程综合A 组一、选择题1.(2018全国卷Ⅰ)已知函数⎩⎨⎧>≤=,0,ln ,0,)(x x x e x f x ()()=++g x f x x a .若()g x 存在2个零点,则a 的取值范围是( ) A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞【答案】C【解析】函数()()=++g x f x x a 存在 2个零点,即关于x 的方程()=--f x x a 有2 个不同的实根, 函数()f x 的图象与直线=--y x a 有2个交点,作出直线=--y x a 与函数()f x 的图象, 如图所示,xy–1–2123–1–2123O由图可知,1≤-a ,解得1-≥a ,故选C .2.已知实数a ,b 满足23a=,32b=,则函数()xf x a x b =+-的零点所在的区间是( )A. ()21--,B.()1,0-C.()0,1D.()1,2 【解析】23a =,32b =,∴1a >,01b <<,又()x f x a x b =+-,∴()1110f b a-=--<,()010f b =->,从而由零点存在定理可知()f x 在区间()1,0-上存在零点.故选B.3.已知函数()12+-=x x f ,()kx x g =.若方程()()f x g x =有两个不相等的实根,则实数k 的取值范围是A .),(210B .),(121C .),(21D .),(∞+2【答案】B【解析】如图所示,方程()()f x g x =有两个不相等的实根等价于两个函数的图象有两个不同的交点,结合图象可知,当直线y kx =的斜率大于坐标原点与点(2,1)的连续的斜率,且小于直线1y x =-的斜率时符合题意,故选112k <<.4.设函数1()ln 3f x x x =-,则函数()f x ( ) A .在区间1(,1)e ,(1,)e 内均有零点 B .在区间1(,1)e ,(1,)e 内均无零点C .在区间1(,1)e内有零点,在(1,)e 内无零点 D .在区间1(,1)e内无零点,在((1,)e 内有零点 【解析】1()ln 3f x x x =-的定义域为(0,)+∞,'11()3f x x=-,故()f x 在(0,3)上递减,又 1()0,(1)0,()0f f f e e>><,故选D. 5. 已知函数()f x 满足:()()1fx f x +=-,且()f x 是偶函数,当[]0,1x ∈时,()2f x x =,若在区间[]1,3-内,函数()()k kx x f x g --=有4个零点,则实数k 的取值范围是( ) A .()+∞,0 B .⎥⎦⎤ ⎝⎛21,0 C .⎥⎦⎤ ⎝⎛41,0 D .11,43⎡⎤⎢⎥⎣⎦【解析】由(1)()()f x f x f x +=-⇒的周期为2,又()f x 是偶函数,且[]0,1x ∈时,()2f x x =,故可示意()f x 在[1,3]-上图象,()()k kx x f xg --=有4个零点转化为函数()f x 与(1)y k x =+在x ∈[1,3]-上有4个交点,由图象知1(0,]4k ∈,故选C.6.已知方程923310x xk -⋅+-=有两个实根,则实数k 的取值范围为( ) A.2[,1]3 B. 12(,]33 C.2[,)3+∞ D.[1, +∞)【解析】设3xt =,原题转化为函数2()231g t t t k =-+-在(0,)t ∈+∞上有两个零点(可以相同),则44(31)020310k k --≥⎧⎪>⎨⎪->⎩解得12(,]33k ∈,故选B.7.(2016高考新课标2卷理)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()miii x y =+=∑( )A. 0B. mC. 2mD. 4m 【解析】由于()()2f x f x -+=,不妨设()1f x x =+,与函数111x y x x+==+的交点为()()1,2,1,0-,故12122x x y y +++=,故选B.(客观上函数()y f x =与1x y x+=有共同的对称中心(0,1),所以它们的所有交点 关于(0,1)对称 二、填空题8.(2018年全国卷Ⅲ)函数()cos(3)6f x x π=+在[0,]π的零点个数为________.【答案】3【解析】由题意知,cos(3)06x π+=,所以362x k πππ+=+,k ∈Z ,所以93k x ππ=+,k ∈Z ,当0k =时,9x π=;当1k =时,49x π=;当2k =时,79x π=,均满足题意,所以函数()f x 在[0,]π的零点个数为3.10.若函数f (x )=21x --x-m 无零点,则实数m 的取值范围是 .【解析】原题转化为函数y =1的平行线系y x m =+没有公共点的问题,画图,可得1m <-或2m >.11.设常数a 使方程sin 3cos x x a +=在闭区间[0,2]π上恰有三个解123,,x x x ,则123x x x ++= . 【解析】原方程可变为2sin()3a x π=+,作出函数2sin()3y x π=+的图象,再作直线y a =,从图象可知 函数2sin(x )3y π=+在[0,]6π上递增,在7[,]66ππ上递减,在7[,2]6ππ上递增,只有当3a =时,才有三个交点,1230,,23x x x ππ===,所以123x x x ++=73π.12.(2016高考山东卷理)已知函数2||,()24,x x m f x x mx m x m≤⎧=⎨-+>⎩ 其中0m >,若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是________________.【解析】画出函数图象如下图所示:由图所示,要()f x b =有三个不同的根,需要红色部分图像在深蓝色图像的下方,即2224,30m m m m m m m >-⋅+->,解得3m >.13.(2018年高考上海卷)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时,某地上班族S 中的成员仅以自驾或公交方式通勤,分析显示:当S 中%(0100)x x <<的成员自驾时,自驾群体的人均通勤时间为30,030,()1800290,30100x f x x x x <⎧⎪=⎨+-<<⎪⎩≤(单位:分钟), 而公交群体的人均通勤时间不受x 影响,恒为40分钟,试根据上述分析结果回答下列问题: (1)当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S 的人均通勤时间()g x 的表达式;讨论()g x 的单调性,并说明其实际意义.(2)设该地上班族总人数为n ,则自驾人数为%n x ⋅,乘公交人数为(1%)n x ⋅-.因此人均通勤时间30%40(1%),030()1800(290)%40(1%),30100n x n x x ng x x n x n x x x n ⋅⋅+⋅⋅-⎧<⎪⎪=⎨+-⋅⋅+⋅⋅-⎪<<⎪⎩≤,整理得:240,0010()1(32.5)36.875,3010050x x g x x x ⎧-<⎪⎪=⎨⎪-+<<⎪⎩≤3,则当(0,30](30,32.5]x ∈,即(0,32.5]x ∈时,()g x 单调递减;当(32.5,100)x ∈时,()g x 单调递增.实际意义:当有32.5%的上班族采用自驾方式时,上班族整体的人均通勤时间最短.适当的增加自驾比例,可以充分的利用道路交通,实现整体效率提升;但自驾人数过多,则容易导致交通拥堵,使得整体效率下降.B 组一、选择题 1.设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点11(,)A x y ,22(,)B x y ,则下列判断正确的是( )A .120x x +>,120y y +>B .120x x +>,120y y +<C .120x x +<,120y y +>D .120x x +<,120y y +< 【解析】依题意,示意图象,可知120x x +>,且12,x x 异号,而1212120x x y y x x ++=<,故选B.2.已知函数()1xf x xe ax =--,则关于()f x 的零点叙述正确的是( ) A.当0a =时,函数()f x 有两个零点 B.函数()f x 必有一个零点是正数 C.当0a <时,函数()f x 有两个零点 D.当0a >时,函数()f x 只有一个零点 【解析】函数()1xf x xe ax =--的零点可转化为函数xy e =与1y a x=+图象的交点情况研究,选B. 3.已知函数2()22(4)1f x mx m x =--+,()g x mx =,若对于任意实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是( )A. (0,2)B. (0,8)C. (2,8)D.(,0)-∞【解析】依题意,0m =不符;0m <时,则对于[0,)x ∀∈+∞,当x →+∞时,显然()0f x <,不符;0m >时,则对于(,0]x ∀∈-∞,()0f x >,由(0)10f =>,需对称轴:024>-=m m x 或⎪⎩⎪⎨⎧<--≤-08)4(40242m m mm, 解得(0,8)x ∈,故选B.4.函数()lg(1)sin 2f x x x =+-的零点个数为 ( )A. 9B. 10C. 11D. 12 【解析】示意函数lg(||1)y x =+与y sin 2x =的图象可确定选D.5.已知函数sin()1,0()2log (0,1),0a x x f x x a a x π⎧-<⎪=⎨⎪>≠>⎩的图象上关于y 轴对称的点至少有3对,则实数a 的取值范围是( ) A.5(0,)5 B.5(,1)5C.3(,1)3D.3(0,)3 【解析】依题意,需要()f x 在y 轴左侧图象对称到y 轴右侧,即sin()1(0)2xy x π=-->,需要其图象与()f x 原y 轴右侧图象至少有3个公共点,1a >不能满足条件,只有01a <<,如图,此时,只需在5x =时,log a y x =的纵坐标大于2-,即log 52a >-,得505a <<. 6.已知实数,0,()lg(),0,x e x f x x x ⎧≥=⎨-<⎩若关于x 的方程2()()0f x f x t ++=有三个不同的实根,则t 的取值范围为( )A .]2,(--∞ B .),1[+∞ C .]1,2[- D .),1[]2,(+∞--∞【解析】做出函数)(x f 的图象,如图所示,由图可知,当1≥m 时直线m y =与)(x f 的图象有两个交点,当1<m 时直线m y =与)(x f 的图象有一个交点,题意要求方程0)()(2=++t x f x f 有三个不同的实根,则方程20m m t ++=必有两不等实根,且一根小于1,一根不小于1,当011=++t ,即2-=t 时,方程022=-+m m 的两根为1和2-,符合题意;当011<++t ,即2-<t 时,方程20m m t ++=有两个不等实根,且一根小于1,一根大于1,符合题意.综上由2-≤t .7.(2018年江苏卷)若函数)(12)(23R a ax x x f ∈+-=在()+∞,0内有且只有一个零点,则)(x f 在[]1,1-上的最大值与最小值的和为________. 【答案】–3【解析】由得,因为函数在上有且仅有一个零点且,所以,因此从而函数在上单调递增,在上单调递减,所以,8. 设函数2,1()4()(2),1x a x f x x a x a x ⎧-<=⎨--≥⎩.(1)若1a =,则()f x 的最小值为______;(2)若()f x 恰有2个零点,则实数a 的取值范围是 . 【解析】(1)当1a =时,若1x <,()(1,1)f x ∈-;当时1x ≥,223()4(32)4()12f x x x x =-+=--,则32x =时,min () 1.f x =- (2)0a ≤时,()f x 无零点;不符;102a <<时,()f x 有一个零点;112a ≤<,符合;12a ≤<,()f x 有3个零点;2a ≥,符合. 综上得112a ≤<或 2.a ≥ 9.已知32,(),x x af x x x a⎧≤=⎨>⎩,若存在实数b ,使函数()()g x f x b =-有两个零点,则a 的取值范围是 .【解析】由题意,问题等价于方程)(3a xb x ≤=与方程)(2a xb x >=的根的个数和为2,若两个方程各有一个根:则可知关于b 的不等式组13b a b a b a ⎧≤⎪⎪>⎨⎪-≤⎪⎩有解,∴23a b a <<,从而1>a ;若方程)(3a x b x ≤=无解,方程)(2a xb x >=有2个根:则可知关于b 的不等式组⎪⎩⎪⎨⎧>->a b a b 31有解,从而0<a ,综上,实数a 的取值范围是),1()0,(+∞-∞ .10.已知函数23f xx x ,R x ∈.若方程10f x a x 恰有4个互异的实数根,则实数a 的取值范围为__________ . 【解析】在同一坐标系中画23f xx x 和1g x a x 的图象(如图),问题转化为xy13O tyO 91f x 与g x 图象恰有四个交点.当1ya x 与23yx x (或1ya x 与23yx x )相切时,f x 与g x 图象恰有三个交点.把1y a x 代入23yx x ,得231x xa x ,即230x a xa,由0=∆,得2340aa,解得1a或9a .又当0a 时,f x 与g x 仅两个交点,01a ∴<<或9a >. 三、解答题11.设函数22()(ln )x e f x k x x x=-+(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底数).(Ⅰ)当0k ≤时,求函数()f x 的单调区间;(Ⅱ)若函数()f x 在(0,2)内存在两个极值点,求k 的取值范围. 【解析】(I )函数()y f x =的定义域为(0,)+∞,2'42221()()x x x e xe f x k x x x -=--+322(2)x x xe e k x x x --=-3(2)()x x e kx x--= 由0k ≤可得0xe kx ->, 所以当(0,2)x ∈时,'()0f x <,函数()y f x =单调递减,当(2,)x ∈+∞时,'()0f x >,函数()y f x =单调递增. 所以()f x 的单调递减区间为(0,2),单调递增区间为(2,)+∞. (II )由(I )知,0k ≤时,函数()f x 在(0,2)内单调递减,故()f x 在(0,2)内不存在极值点; 当0k >时,设函数(),[0,)xg x e kx x =-∈+∞, 因为'ln ()xxkg x e k e e=-=-,当01k <≤时,当(0,2)x ∈时,'()0xg x e k =->,()y g x =单调递增,故()f x 在(0,2)内不存在两个极值点; 当1k >时,得(0,ln )x k ∈时,'()0g x <,函数()y g x =单调递减,(ln ,)x k ∈+∞时,'()0g x >,函数()y g x =单调递增, 所以函数()y g x =的最小值为(ln )(1ln )g k k k =-, 函数()f x 在(0,2)内存在两个极值点;当且仅当(0)0(ln )0(2)00ln 2g g k g k >⎧⎪<⎪⎨>⎪⎪<<⎩, 解得22e e k <<,综上所述,函数在(0,2)内存在两个极值点时,k 的取值范围为2(,)2e e .C 组一、选择题1.记方程①:2110x a x ++=,方程②:2220x a x ++=,方程③:2340x a x ++=,其中123,,a a a 是正实数.当123,,a a a 成等比数列时,下列选项中,能推出方程③无实根的是( )A.方程①有实根,且②有实根B.方程①有实根,且②无实根C.方程①无实根,且②有实根D.方程①无实根,且②无实根【解析】按D 考虑,则由2142222223321132123408064161604,,0a a a a a a aa a a aa ⎧-<⎪⎪-<⎪⇒=<=⇒-<⎨⎪=⎪>⎪⎩,故选D. 2.若,a b 是函数2()(0,0)f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于( )A .6B .7C .8D .9【解析】依题,0a b pab q p q +=⎧⎪=⎨⎪>⎩得0,0a b >>,则,,2a b -这三个数适当排序排成等比数列必有4ab =,,,2a b -这三个数适当排序后成等差数列应有2222a b b a -=-=或,解得4114a ab b ==⎧⎧⎨⎨==⎩⎩或 则5,4p q ==,故9p q +=,选D.3.已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是( ) A. 7,4⎛⎫+∞⎪⎝⎭ B. 7,4⎛⎫-∞ ⎪⎝⎭ C.70,4⎛⎫⎪⎝⎭ D. 7,24⎛⎫ ⎪⎝⎭【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩,即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩ ()()()(2)y f x g x f x f x b =-=+--,所以()()y f x g x =-恰有4个零点等价于方程()(2)0f x f x b +--=有4个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知724b <<. 故选D. 8642246815105510154.定义在),1(+∞上的函数)(x f 满足下列两个条件:(1)对任意的),1(+∞∈x 恒有)(2)2(x f x f =成立;(2)当(]2,1∈x 时,x x f -=2)(.记函数()g x =()(1)f x k x --,若函数)(x g 恰有两个零点,则实数k 的取值范围是( ) .A [)1,2 .B ⎥⎦⎤⎢⎣⎡2,34 .C ⎪⎭⎫ ⎝⎛2,34 .D ⎪⎭⎫⎢⎣⎡2,34【解析】∵对任意的),1(+∞∈x 恒有)(2)2(x f x f =成立,且当(]2,1∈x 时,x x f -=2)(, ∴()2,(,2]f x x b x b b =-+∈.由题意得()(1)f x k x =-的函数图象是过定点(1,0)的直线,如图所示红色的直线与线段AB 相交即可(可以与B 点重合但不能与A 点重合),∴可得k 的范围为423k ≤<.5.设函数()f x 在R 上存在导数'()f x ,x R ∀∈,有2()()f x f x x -+=,在(0,)+∞上'()f x x <,若(4)()84f m f m m --≥-,则实数m 的取值范围为( )A .[2,2]-B .[2,)+∞C . [0,)+∞D .(,2][2,)-∞-+∞ 【解析】设21()()2g x f x x =-,依题()()0g x g x -+=,则()g x 是奇函数,又在(0,)+∞上'()f x x <,可判断()g x在R 上递减,不等式(4)()84f m f m m --≥-可转化为(4)()g m g m -≥,则4m m -≤,得2m ≥, 故选B.6.定义在R 上的奇函数()f x ,当0x ≥时,13log (1),[0,2)()14,[2,)x x f x x x +∈⎧⎪=⎨⎪--∈+∞⎩,则关于x 的函数()()(01)F x f x a a =-<<的所有零点之和为( )A .31a- B .13a- C .31a-- D .13a --【解析】由题意得:133log (1)(1,0],[0,2)1|4|(,1],[2,)()log (1)(0,1),(2,0)|4|1[1,),(,2)x x x x f x x x x x +∈-∈⎧⎪⎪--∈-∞∈+∞=⎨⎪-∈∈-⎪+-∈-+∞∈-∞-⎩,所以当01a <<时()y f x =与y a =有五个交点,其中1|4|,[2,)y x x =--∈+∞与y a =的两个交点关于4x =对称,和为8;|4|1,(,2)y x x =+-∈-∞-与y a =的 两个交点关于4x =-对称,和为-8;3log (1),(2,0)y x x =-∈-与y a =的一个交点,值为13a -;因此 所有零点之和为13a -,故选B. 二、填空题7.(2018年高考浙江卷)已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎪⎨-+<⎪⎩,当λ=2时,不等式f (x )<0的解集是 ___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.【答案】(1,4) (1,3](4,)⋃+∞8.已知函数)(x f 是定义在),0()0,(+∞-∞ 上的偶函数,当0>x 时,⎪⎩⎪⎨⎧>-≤<-=-,2),2(21,20,12)(1x x f x x f x ,则函数1)(2)(-=x f x g 的零点个数为 个.【解析】函数1)(2)(-=x f x g 的零点个数等价于函数)(x f y =的图象与直线21=y 的图象的交点的个数.由已知条件作出函数)(x f y =的图象与直线21=y 的图象,如下图.由图可知,函数()y f x =的图象与直线21=y 的图象有6个交点.9.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是 .【解析】令32310ax x -+=,得313()a xx =-+,设1t x=,即33a t t =-+,原问题转化为直线y a =与函数 3()3f t t t =-+只有一个交点且此交点的横坐标为正,由'2()330f t t =-+=,得1t =±,且()f t 在(,1)-∞-递增,在(1,1)-上递减,在(1,)+∞上递增,可知(2)(1)2f f =-=-,由图象得2a <-.10. 函数ln ,0()2ln ,x x ef x x x e⎧<≤⎪=⎨->⎪⎩若,,a b c 互不相等,且()()()f a f b f c ==,则a b c ++的取值范围为 .【解析】示意()f x 图象,由,,a b c 互不相等,且()()()f a f b f c ==,不妨令a b c <<,应有211a b e c e e<<<<<<得 ln ln 2ln a b c -==-得1ab =,2c ae =,则 21(1)a b c e a a ++=++,可判断函数21()(1)g a e a a =++在1(,1)a e ∈上递增,故 21(2,2)a b c e e e ++∈++三、解答题11. 已知a R ∈,函数21()log ()f x a x=+. (1)当5a =时,解不等式()0f x >;(2)若关于x 的方程2()log [(4)25]0f x a x a --+-=的解集中恰好有一个元素,求a 的取值范围;(3)设0a >,若对任意1[,1]2t ∈,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围.【解析】(1)由21log 50x ⎛⎫+> ⎪⎝⎭,得151x +>,解得()1,0,4x ⎛⎫∈-∞-+∞ ⎪⎝⎭.(2)()1425a a x a x+=-+-,()()24510a x a x -+--=, 当4a =时,1x =-,经检验,满足题意.当3a =时,121x x ==-,经检验,满足题意. 当3a ≠且4a ≠时,114x a =-,21x =-,12x x ≠. 1x 是原方程的解当且仅当110a x +>,即2a >;2x 是原方程的解当且仅当210a x +>,即1a >. 于是满足题意的(]1,2a ∈. 综上,a 的取值范围为(]{}1,23,4.(3)当120x x <<时,1211a a x x +>+,221211log log a a x x ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭, 所以()f x 在()0,+∞上单调递减.函数()f x 在区间[],1t t +上的最大值与最小值分别为()f t ,()1f t +. ()()22111log log 11f t f t a a t t ⎛⎫⎛⎫-+=+-+≤ ⎪⎪+⎝⎭⎝⎭即()2110at a t ++-≥,对任意1,12t ⎡⎤∈⎢⎥⎣⎦成立. 因为0a >,所以函数()211y at a t =++-在区间1,12⎡⎤⎢⎥⎣⎦上单调递增,12t =时, y 有最小值3142a -,由31042a -≥,得23a ≥. 故a 的取值范围为2,3⎡⎫+∞⎪⎢⎣⎭.。

高考数学(理)二轮专题练习【专题8】(1)函数与方程思想(含答案)

高考数学(理)二轮专题练习【专题8】(1)函数与方程思想(含答案)

第1讲函数与方程思想1.函数与方程思想的含义(1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题.方程思想是动中求静,研究运动中的等量关系.2.和函数与方程思想密切关联的知识点(1)函数与不等式的相互转化,对函数y=f(x),当y>0时,就化为不等式f(x)>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.(2)数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.(3)在三角函数求值中,把所求的量看作未知量,其余的量通过三角函数关系化为未知量的表达式,那么问题就能化为未知量的方程来解.(4)解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数的有关理论.(5)立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决,建立空间直角坐标系后,立体几何与函数的关系更加密切.热点一 函数与方程思想在不等式中的应用例1 (1)f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则a =________.(2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是__________. 答案 (1)4 (2)(-∞,-3)∪(0,3)解析 (1)若x =0,则不论a 取何值,f (x )≥0显然成立; 当x >0即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x3.设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4,所以g (x )在区间⎝⎛⎦⎤0,12上单调递增,在区间⎣⎡⎦⎤12,1上单调递减,因此g (x )max =g ⎝⎛⎭⎫12=4,从而a ≥4; 当x <0即x ∈[-1,0)时,f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x3,设g (x )=3x 2-1x 3,且g (x )在区间[-1,0)上单调递增,因此g (x )min =g (-1)=4,从而a ≤4,综上a =4.(2)设F (x )=f (x )g (x ),由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,得F (-x )=f (-x )g (-x )=-f (x )g (x )=-F (x ),即F (x )在R 上为奇函数.又当x <0时,F ′(x )=f ′(x )g (x )+f (x )g ′(x )>0, 所以x <0时,F (x )为增函数.因为奇函数在对称区间上的单调性相同, 所以x >0时,F (x )也是增函数. 因为F (-3)=f (-3)g (-3)=0=-F (3).所以,由图可知F (x )<0的解集是(-∞,-3)∪(0,3).思维升华 (1)在解决不等式问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题;(2)函数f (x )>0或f (x )<0恒成立,一般可转化为f (x )min >0或f (x )max <0;已知恒成立求参数范围可先分离参数,然后利用函数值域求解.(1)若2x +5y ≤2-y +5-x ,则有( )A .x +y ≥0B .x +y ≤0C .x -y ≤0D .x -y ≥0(2)已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( )A .m ≥32B .m >32C .m ≤32D .m <32答案 (1)B (2)A解析 (1)把不等式变形为2x -5-x ≤2-y -5y ,构造函数y =2x -5-x ,其为R 上的增函数,所以有x ≤-y .(2)因为函数f (x )=12x 4-2x 3+3m .所以f ′(x )=2x 3-6x 2,令f ′(x )=0得x =0或x =3,经检验知x =3是函数的一个最小值点,所以函数的最小值为f (3)=3m -272,不等式f (x )+9≥0恒成立,即f (x )≥-9恒成立,所以3m -272≥-9,解得m ≥32,故选A.热点二 函数与方程思想在数列中的应用 例2 已知数列{a n }是各项均为正数的等差数列.(1)若a 1=2,且a 2,a 3,a 4+1成等比数列,求数列{a n }的通项公式a n ;(2)在(1)的条件下,数列{a n }的前n 项和为S n ,设b n =1S n +1+1S n +2+…+1S 2n ,若对任意的n ∈N *,不等式b n ≤k 恒成立,求实数k 的最小值. 解 (1)因为a 1=2,a 23=a 2·(a 4+1), 又因为{a n }是正项等差数列,故d ≥0, 所以(2+2d )2=(2+d )(3+3d ), 得d =2或d =-1(舍去), 所以数列{a n }的通项公式a n =2n . (2)因为S n =n (n +1), b n =1S n +1+1S n +2+…+1S 2n=1(n +1)(n +2)+1(n +2)(n +3)+…+12n (2n +1)=1n +1-1n +2+1n +2-1n +3+…+12n -12n +1=1n +1-12n +1=n2n 2+3n +1=12n +1n+3, 令f (x )=2x +1x(x ≥1),则f ′(x )=2-1x 2,当x ≥1时,f ′(x )>0恒成立,所以f (x )在[1,+∞)上是增函数, 故当x =1时,[f (x )]min =f (1)=3, 即当n =1时,(b n )max =16,要使对任意的正整数n ,不等式b n ≤k 恒成立, 则须使k ≥(b n )max =16,所以实数k 的最小值为16.思维升华 (1)等差(比)数列中各有5个基本量,建立方程组可“知三求二”;(2)数列的本质是定义域为正整数集或其有限子集的函数,数列的通项公式即为相应的解析式,因此在解决数列问题时,应注意利用函数的思想求解.(1)(2014·江苏)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.(2)已知函数f (x )=(13)x ,等比数列{a n }的前n 项和为f (n )-c ,则a n 的最小值为( )A .-1B .1 C.23D .-23答案 (1)4 (2)D解析 (1)因为a 8=a 2q 6,a 6=a 2q 4,a 4=a 2q 2,所以由a 8=a 6+2a 4得a 2q 6=a 2q 4+2a 2q 2,消去a 2q 2,得到关于q 2的一元二次方程(q 2)2-q 2-2=0,解得q 2=2,a 6=a 2q 4=1×22=4. (2)由题设,得a 1=f (1)-c =13-c ;a 2=[f (2)-c ]-[f (1)-c ]=-29;a 3=[f (3)-c ]-[f (2)-c ]=-227. 又数列{a n }是等比数列,∴(-29)2=(13-c )×(-227),∴c =1.又∵公比q =a 3a 2=13,∴a n =-23(13)n -1=-2(13)n ,n ∈N *.且数列 {a n }是递增数列, ∴n =1时,a n 有最小值a 1=-23.热点三 函数与方程思想在几何中的应用例3 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y =k (x -1)与椭圆C 交于不同的两点M ,N . (1)求椭圆C 的方程; (2)当△AMN 的面积为103时,求k 的值. 解 (1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,解得b = 2.所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 22=1得(1+2k 2)x 2-4k 2x +2k 2-4=0.设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2), 则x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2.所以|MN |=(x 2-x 1)2+(y 2-y 1)2 =(1+k 2)[(x 1+x 2)2-4x 1x 2] =2(1+k 2)(4+6k 2)1+2k 2.又因为点A (2,0)到直线y =k (x -1)的距离 d =|k |1+k 2, 所以△AMN 的面积为 S =12|MN |·d =|k |4+6k 21+2k 2. 由|k |4+6k 21+2k 2=103,解得k =±1.所以,k 的值为1或-1.思维升华 几何最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.(1)(2014·安徽)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左,右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为__________. (2)若a >1,则双曲线x 2a 2-y 2(a +1)2=1的离心率e 的取值范围是( )A .(1,2)B .(2,5)C .[2,5]D .(3,5)答案 (1)x 2+32y 2=1 (2)B解析 (1)设点B 的坐标为(x 0,y 0), ∵x 2+y 2b2=1,且0<b <1,∴F 1(-1-b 2,0),F 2(1-b 2,0). ∵AF 2⊥x 轴,∴A (1-b 2,b 2). ∵|AF 1|=3|F 1B |,∴AF 1→=3F 1B →,∴(-21-b 2,-b 2)=3(x 0+1-b 2,y 0). ∴x 0=-531-b 2,y 0=-b 23.∴点B 的坐标为⎝⎛⎭⎫-531-b 2,-b23. 将点B ⎝⎛⎭⎫-531-b 2,-b 23代入x 2+y2b 2=1, 得b 2=23.∴椭圆E 的方程为x 2+32y 2=1.(2)e 2=(c a )2=a 2+(a +1)2a 2=1+(1+1a)2, 因为当a >1时,0<1a <1,所以2<e 2<5,即2<e < 5.1.在高中数学的各个部分,都有一些公式和定理,这些公式和定理本身就是一个方程,如等差数列的通项公式、余弦定理、解析几何的弦长公式等,当题目与这些问题有关时,就需要根据这些公式或者定理列方程或方程组求解需要的量.2.当问题中涉及一些变化的量时,就需要建立这些变化的量之间的关系,通过变量之间的关系探究问题的答案,这就需要使用函数思想.3.借助有关函数的性质,一是用来解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题,二是在问题的研究中,可以通过建立函数关系式或构造中间函数来求解.4.许多数学问题中,一般都含有常量、变量或参数,这些参变量中必有一个处于突出的主导地位,把这个参变量称为主元,构造出关于主元的方程,主元思想有利于回避多元的困扰,解方程的实质就是分离参变量.真题感悟1.(2014·辽宁)已知a =2-13,b =log 213,c =121log 3,则( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a答案 C 解析 0<a =132<20=1,b =log 213<log 21=0,c =121log 3>121log 2=1, 即0<a <1,b <0,c >1,所以c >a >b .2.(2014·福建)设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( ) A .5 2 B.46+ 2 C .7+ 2 D .6 2答案 D解析 如图所示,设以(0,6)为圆心,以r 为半径的圆的方程为x 2+(y -6)2=r 2(r >0),与椭圆方程x 210+y 2=1联立得方程组,消掉x 2得9y 2+12y +r 2-46=0. 令Δ=122-4×9(r 2-46)=0, 解得r 2=50, 即r =5 2.由题意易知P ,Q 两点间的最大距离为r +2=62, 故选D.3.(2014·江苏)在平面直角坐标系xOy 中,若曲线y =ax 2+bx (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是______.答案 -3解析 y =ax 2+b x 的导数为y ′=2ax -bx 2,直线7x +2y +3=0的斜率为-72.由题意得⎩⎨⎧4a +b2=-5,4a -b 4=-72,解得⎩⎪⎨⎪⎧a =-1,b =-2,则a +b =-3.4.(2014·福建)要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________.(单位:元) 答案 160解析 设该长方体容器的长为x m ,则宽为4x m .又设该容器的造价为y 元,则y =20×4+2(x+4x )×10,即y =80+20(x +4x )(x >0).因为x +4x ≥2x ·4x =4(当且仅当x =4x,即x =2时取“=”),所以y min =80+20×4=160(元). 押题精练1.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) A .(-1,1) B .(-1,+∞) C .(-∞,-1) D .(-∞,+∞)答案 B解析 f ′(x )>2转化为f ′(x )-2>0,构造函数F (x )=f (x )-2x , 得F (x )在R 上是增函数.又F (-1)=f (-1)-2×(-1)=4,f (x )>2x +4, 即F (x )>4=F (-1),所以x >-1.2.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M 、N ,则当|MN |达到最小时t 的值为( )A .1 B.12 C.52 D.22答案 D解析 可知|MN |=f (x )-g (x )=x 2-ln x .令F (x )=x 2-ln x ,F ′(x )=2x -1x =2x 2-1x,所以当0<x <22时,F ′(x )<0,F (x )单调递减; 当x >22时,F ′(x )>0,F (x )单调递增, 故当x =t =22时,F (x )有最小值,即|MN |达到最小. 3.(2014·辽宁)当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( ) A .[-5,-3] B .[-6,-98]C .[-6,-2]D .[-4,-3]答案 C解析 当x =0时,ax 3-x 2+4x +3≥0变为3≥0恒成立,即a ∈R . 当x ∈(0,1]时,ax 3≥x 2-4x -3,a ≥x 2-4x -3x 3,所以a ≥⎣⎡⎦⎤x 2-4x -3x 3max .设φ(x )=x 2-4x -3x 3,所以φ′(x )=(2x -4)x 3-(x 2-4x -3)3x 2x 6=-x 2-8x -9x 4=-(x -9)(x +1)x 4>0, 所以φ(x )在(0,1]上递增,φ(x )max =φ(1)=-6.所以a ≥-6. 当x ∈[-2,0)时,a ≤x 2-4x -3x 3,所以a ≤⎣⎡⎦⎤x 2-4x -3x 3min . 仍设φ(x )=x 2-4x -3x 3,φ′(x )=-(x -9)(x +1)x 4. 当x ∈[-2,-1)时,φ′(x )<0,φ(x )在[-2,-1)上单调递减, 当x ∈(-1,0)时,φ′(x )>0,φ(x )在(-1,0)上单调递增. 所以当x =-1时,φ(x )有极小值,即为最小值.而φ(x )min =φ(-1)=1+4-3-1=-2,所以a ≤-2.综上知-6≤a ≤-2.4.若关于x 的方程(2-2-|x -2|)2=2+a 有实根,则实数a 的取值范围是________.答案 [-1,2) 解析 令f (x )=(2-2-|x -2|)2.要使f (x )=2+a 有实根,只需2+a 是f (x )的值域内的值.∵f (x )的值域为[1,4),∴1≤a +2<4,∴-1≤a <2.5.已知函数f (x )=ax 2+ax 和g (x )=x -a ,其中a ∈R ,且a ≠0.若函数f (x )与g (x )的图象相交于不同的两点A 、B ,O 为坐标原点,试求△OAB 的面积S 的最大值. 解 依题意,f (x )=g (x ),即ax 2+ax =x -a , 整理得ax 2+(a -1)x +a =0,① ∵a ≠0,函数f (x )与g (x )的图象相交于不同的两点A 、B ,∴Δ>0,即Δ=(a -1)2-4a 2=-3a 2-2a +1=(3a -1)·(-a -1)>0, ∴-1<a <13且a ≠0.设A (x 1,y 1),B (x 2,y 2),且x 1<x 2,由①得x 1x 2=1>0,x 1+x 2=-a -1a.设点O 到直线g (x )=x -a 的距离为d ,则d =|-a |2,∴S =121+12|x 1-x 2|·|-a |2=12-3a 2-2a +1=12-3⎝⎛⎭⎫a +132+43.∵-1<a <13且a ≠0,∴当a =-13时,S 取得最大值33. 即△OAB 的面积S 的最大值为33.6.如图,已知椭圆G :x 2a 2+y 2a 2-1=1(a >1),⊙M :(x +1)2+y 2=1,P 为椭圆G 上一点,过P 作⊙M 的两条切线PE 、PF ,E 、F 分别为切点. (1)求t =|PM →|的取值范围;(2)把PE →·PF →表示成t 的函数f (t ),并求出f (t )的最大值、最小值.解 (1)设P (x 0,y 0),则x 20a 2+y 20a 2-1=1(a >1),∴y 20=(a 2-1)⎝⎛⎭⎫1-x 20a 2, ∴t 2=|PM →|2=(x 0+1)2+y 20=(x 0+1)2+(a 2-1)⎝⎛⎭⎫1-x 20a 2=⎝⎛⎭⎫1a x 0+a 2, ∴t =⎪⎪⎪⎪1a x 0+a . ∵-a ≤x 0≤a ,∴a -1≤t ≤a +1(a >1).(2)∵PE →·PF →=|PE →||PF →|cos ∠EPF =|PE →|2(2cos 2∠EPM -1) =(|PM →|2-1)⎣⎢⎡⎦⎥⎤2(|PM →|2-1)|PM |2-1=(t 2-1)⎣⎡⎦⎤2(t 2-1)t 2-1=t 2+2t 2-3,∴f (t )=t 2+2t2-3(a -1≤t ≤a +1).对于函数f (t )=t 2+2t2-3(t >0),显然在t ∈(0,42]时,f (t )单调递减,在t ∈[42,+∞)时,f (t )单调递增.∴对于函数f (t )=t 2+2t2-3(a -1≤t ≤a +1),当a>42+1,即a-1>42时,[f(t)]max=f(a+1)=a2+2a-2+2(a+1)2,[f(t)]min=f(a-1)=a2-2a-2+2(a-1)2;当1+2≤a≤42+1时,[f(t)]max=f(a+1)=a2+2a-2+2(a+1)2,[f(t)]min=f(42)=22-3;当1<a< 1+2时,[f(t)]max=f(a-1)=a2-2a-2+2(a-1)2,[f(t)]min=f(42)=22-3.。

2020届高考数学(理)二轮复习专题强化训练:(一)函数与方程思想理+Word版含答案

2020届高考数学(理)二轮复习专题强化训练:(一)函数与方程思想理+Word版含答案

专题强化训练(一)函数与方程思想一、选择题1.[2019·河南名校联考]在平面直角坐标系中,已知三点A (a,2),B (3,b ),C (2,3),O 为坐标原点,若向量OB →⊥AC →,则a 2+b 2的最小值为( )A.125B.185C .12D .18解析:由题意得OB →=(3,b ),AC →=(2-a,1), ∵OB →⊥AC →,∴OB → ·AC →=3(2-a )+b =0,∴b =3a -6,∴a 2+b 2=a 2+9(a -2)2=10a 2-36a +36=10⎝ ⎛⎭⎪⎫a -952+185,所以当a =95时,a 2+b 2取得的最小值,且最小值为185,故选B.答案:B2.[2019·安徽马鞍山一模]已知正项等比数列{a n }的前n 项和为S n ,若a 4=18,S 3-a 1=34,则S 5=( ) A.3132 B.3116 C.318D.314解析:易知q >0且q ≠1,且⎩⎪⎨⎪⎧a 1q 3=18,a 1(1-q 3)1-q -a 1=34,解得⎩⎪⎨⎪⎧a 1=1,q =12,所以S 5=a 1(1-q 5)1-q =1-1321-12=3116,故选B.答案:B3.[2019·山东滨州期中]若对于任意的x >0,不等式mx ≤x 2+2x +4恒成立,则实数m 的取值范围为( )A .(-∞,4]B .(-∞,6]C .[-2,6]D .[6,+∞)解析:∵x >0,∴mx ≤x 2+2x +4⇔m ≤x +4x +2对任意实数x >0恒成立.令f (x )=x +4x+2,则m ≤f (x )min ,因为f (x )=x +4x+2≥2x ·4x+2=6,当且仅当x =2时取等号,所以m ≤6,故选B.答案:B4.[2019·河北唐山一模]椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点为F 1,F 2,过F 2垂直于x 轴的直线交C 于A ,B 两点,若△AF 1B 为等边三角形,则椭圆C 的离心率为( )A.12B.32C.13D.33解析:由题意可得2c =32×2b 2a ,所以2ac =3(a 2-c 2),即3e 2+2e -3=0,由e∈(0,1),解得e =33,故选D. 答案:D5.[2019·宁夏银川一中二模]已知不等式xy ≤ax 2+2y 2对于x ∈[1,2],y ∈[2,3]恒成立,则a 的取值范围是( )A .[1,+∞)B .[-1,4)C .[-1,+∞)D .[-1,6]解析:不等式xy ≤ax 2+2y 2对于x ∈[1,2],y ∈[2,3]恒成立,等价于a ≥y x-2⎝ ⎛⎭⎪⎫y x2对于x ∈[1,2],y ∈[2,3]恒成立.令t =yx∈[1,3],所以a ≥t -2t 2在[1,3]上恒成立,又y =-2t 2+t =-2⎝ ⎛⎭⎪⎫t -142+18,则当t =1时,y max =-1,所以a ≥-1,故选C.答案:C6.[2019·河南十所名校联考]已知S n 为等差数列{a n }的前n 项和,若a 3+a 6=25,S 5=40,则数列{a n }的公差d =( )A .4B .3C .2D .1解析:由a 3+a 6=25,S 5=40得⎩⎪⎨⎪⎧a 1+2d +a 1+5d =25,5a 1+5×42d =40,解得d =3,故选B.答案:B7.[2019·安徽合肥质检一]设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1的直线分别交双曲线左、右两支于点M ,N ,连接MF 2,NF 2,若MF 2→·NF 2→=0,|MF 2→|=|NF 2→|,则双曲线C 的离心率为( )A. 2B. 3C. 5D. 6解析:由MF 2→·NF 2→=0,知MF 2→⊥NF 2→.又|MF 2→|=|NF 2→|,则|MF 2→|=|NF 2→|=22|MN →|,且∠F 1NF 2=45°.由双曲线的定义得⎩⎪⎨⎪⎧|MF 2→|-|MF 1→|=2a|NF 1→|-|NF 2→|=2a,两式相加,得|MF 2→|-|NF 2→|+|MN →|=4a ,即|MN →|=4a ,则|NF 2→|=22a ,所以|NF 1→|=2a +|NF 2→|=(2+22)a .在△NF 1F 2中,由余弦定理,得|F 1F 2→|2=|NF 1→|2+|NF 2→|2-2|NF 1→|·|NF 2→|cos ∠F 1NF 2,即4c 2=(22a )2+(2+22)2a 2-2×22a ×(2+22)a ×22,整理,得c 2=3a 2,所以e 2=3,即e =3,故选B. 答案:B8.[2019·河南期末联考]已知-π2<α-β<π2,sin α+2cos β=1,cos α-2sin β=2,则sin ⎝⎛⎭⎪⎫β+π3=( ) A.33 B.63 C.36D.66解析:由sin α+2cos β=1,cos α-2sin β=2,将两个等式两边平方相加,得5+4sin(α-β)=3,即sin(α-β)=-12,因为-π2<α-β<π2,所以α-β=-π6,即α=β-π6,代入sin α+2cos β=1,得3sin ⎝ ⎛⎭⎪⎫β+π3=1,即sin ⎝ ⎛⎭⎪⎫β+π3=33,故选A.答案:A9.[2019·新疆昌吉月考]若关于x 的不等式1+a cos x ≥23sin ⎝ ⎛⎭⎪⎫π2+2x ,在R 上恒成立,则实数a 的最大值为( )A .-13B.13C.23D .1解析:1+a cos x ≥23sin ⎝ ⎛⎭⎪⎫π2+2x =23cos 2x =23(2cos 2x -1),令t =cos x ∈[-1,1],则问题转化为不等式4t 2-3at -5≤0在t ∈[-1,1]上恒成立,令f (t )=4t 2-3at -5,t ∈[-1,1],则应满足条件为⎩⎪⎨⎪⎧f (-1)=4+3a -5≤0,f (1)=4-3a -5≤0,解得-13≤a ≤13,故选B.答案:B10.[2019·河南郑州质检二]函数f (x )是定义在[0,+∞)上的函数,f (0)=0,且在(0,+∞)上可导,f ′(x )为其导函数,若xf ′(x )+f (x )=e x(x -2)且f (3)=0,则不等式f (x )<0的解集为( )A .(0,2)B .(0,3)C .(2,3)D .(3,+∞)解析:令g (x )=xf (x ),则g ′(x )=xf ′(x )+f (x )=e x(x -2),可知当x ∈(0,2)时,g ′(x )<0,g (x )单调递减;当x ∈(2,+∞)时,g ′(x )>0,g (x )单调递增,又f (3)=0,f (0)=0,则g (3)=3f (3)=0,且g (0)=0,则不等式f (x )<0的解集就是xf (x )<0的解集,所以不等式的解集为{x |0<x <3},故选B.答案:B11.[2019·山东荷泽一模]已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1,F 2,O为坐标原点,A 为椭圆上一点,且AF 1→·AF 2→=0,直线AF 2交y 轴于点M ,若|F 1F 2|=6|OM |,则该椭圆的离心率为( )A.13B.33C.58D.104解析:由题意,可知|F 1F 2|=2c ,则|OM |=c 3,则tan ∠MF 2C =13,又AF 1→·AF 2→=0,则∠F 1AF 2=90°,所以|AF 1||AF 2|=13,设|AF 1|=x ,则|AF 2|=3x ,所以2a =3x +x =4x,4c 2=(3x )2+x 2=10x 2,所以e =c a =104,故选D.答案:D12.[2019·山东泰安期末]定义在(0,+∞)上的函数f (x )满足x 2f ′(x )>1,f (2)=52,则关于x 的不等式f (x )<3-1x的解集为( ) A .(-∞,1) B .(-∞,2) C .(0,1)D .(0,2)解析:令g (x )=f (x )+1x (x >0),则g ′(x )=f ′(x )-1x 2=x 2f ′(x )-1x2>0,所以g (x )在(0,+∞)上单调递增.又f (2)=52,则g (2)=f (2)+12=3,所以f (x )<3-1x ⇔f (x )+1x<3⇔g (x )<g (2).又因为g (x )在(0,+∞)上单调递增,所以0<x <2,故选D.答案:D13.[2019·甘肃、青海、宁夏联考]设S n 为等差数列{a n }的前n 项和,若a 7=5,S 5=-55,则nS n 的最小值为( )A .-343B .-324C .-320D .-243解析:由题意,得⎩⎪⎨⎪⎧a 1+6d =5,5(a 1+2d )=-55,解得⎩⎪⎨⎪⎧a 1=-19,d =4,所以S n =-19n +n (n -1)2×4=2n 2-21n ,nS n =2n 3-21n 2,设f (x )=2x 3-21x 2(x >0),则f ′(x )=6x (x -7),当0<x <7时,f ′(x )<0,f (x )单调递减;当x >7时,f ′(x )>0,f (x )单调递增,所以nS n 的最小值为f (7)=-343,故选A.答案:A14.[2019·陕西咸阳二模]已知定义在R 上的函数f (x )的导函数为f ′(x ),对任意x∈(0,π),有f ′(x )sin x >f (x )cos x ,且f (x )+f (-x )=0,设a =2f ⎝ ⎛⎭⎪⎫π6,b =2f ⎝ ⎛⎭⎪⎫π4,c =-f ⎝ ⎛⎭⎪⎫-π2,则( ) A .a <b <c B .b <c <a C .a <c <bD .c <b <a解析:构造函数g (x )=f (x )sin x ,则g ′(x )=f ′(x )sin x -f (x )cos xsin 2x>0,x ∈(0,π),所以g (x )在(0,π)上单调递增.又f (x )+f (-x )=0,则f (x )为奇函数,从而g (x )为偶函数,所以g ⎝ ⎛⎭⎪⎫-π2=g ⎝ ⎛⎭⎪⎫π2.又因为0<π6<π4<π2<π,所以g ⎝ ⎛⎭⎪⎫π6<g ⎝ ⎛⎭⎪⎫π4<g ⎝ ⎛⎭⎪⎫π2,即f ⎝ ⎛⎭⎪⎫π6sinπ6<f ⎝ ⎛⎭⎪⎫π4sin π4<f ⎝ ⎛⎭⎪⎫π2sinπ2,即2f ⎝ ⎛⎭⎪⎫π6<2f ⎝ ⎛⎭⎪⎫π4<f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫-π2,故选A.答案:A15.[2019·河南十所名校联考]设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,O 为坐标原点,若双曲线及其渐近线上各存在一点Q ,P 使得四边形OPFQ 为矩形,则其离心率为( )A. 3 B .2 C. 5D. 6解析:依据题意作出如下图象,其中四边形OPFQ 为矩形,如图所示.双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±bax ,所以直线OQ 的方程为y =ab x ,直线QF 的方程为y =-b a(x -c ), 联立直线OQ 与直线QF 的方程⎩⎪⎨⎪⎧y =a bx ,y =-b a (x -c ),解得⎩⎪⎨⎪⎧x =b 2c,y =abc ,所以点Q 的坐标为⎝ ⎛⎭⎪⎫b 2c ,ab c ,又点Q 在双曲线C : x 2a 2-y 2b 2=1(a >0,b >0)上, 所以⎝ ⎛⎭⎪⎫b 2c 2a2-⎝ ⎛⎭⎪⎫ab c 2b2=1,整理得c 2=3a 2,所以e =ca=c 2a 2=3,故选A. 答案:A 二、填空题16.[2019·湖南怀化一模]已知正方形ABCD 的边长为2,P 为平面ABCD 内一点,则(PA →+PB →)·(PC →+PD →)的最小值为________.解析:以A 为原点,AB ,AD 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系因为正方形ABCD 的边长为2,所以A (0,0),B (2,0),C (2,2),D (0,2). 设P (x ,y ),则PA →=(-x ,-y ), PB →=(2-x ,-y ),PC →=(2-x,2-y ),PD →=(-x ,2-y ),所以PA →+PB →=(2-2x ,-2y ),PC →+PD →=(2-2x,4-2y ),所以(PA →+PB →)·(PC →+PD →)=(2-2x )2-2y (4-2y )=4(x -1)2+4y (y -2)=4(x -1)2+4(y -1)2-4≥-4,当且仅当x =y =1时,取等号,故(PA →+PB →)·(PC →+PD →)的最小值为-4.答案:-417.[2019·甘肃、青海、宁夏联考]过点M (-1,0)引曲线C :y =2x 3+ax +a 的两条切线,这两条切线与y 轴交于A ,B 两点,若|MA |=|MB |,则a =________.解析:设切点坐标为(t,2t 3+at +a ),y ′=6x 2+a ,则由题意得6t 2+a =2t 3+at +a t +1,整理得2t 3+3t 2=0,解得t =0或t =-32.因为|MA |=|MB |,所以两条切线的斜率互为相反数,故2a +6×⎝ ⎛⎭⎪⎫-322=0,解得a =-274.答案:-27418.[2019·湖北黄冈八模]已知F 1,F 2为双曲线C :x 22-y 2b2=1(b >0)的左、右焦点,点A为双曲线C 右支上一点,AF 1交左支于点B ,△AF 2B 是等腰直角三角形,∠AF 2B =π2,则双曲线C 的离心率为________.解析:设|AF 2|=x ,∵△AF 2B 为等腰直角三角形,∠AF 2B =π2,∴|BF 2|=x ,|AB |=2x ,∠F 2AB =π4,由双曲线的定义知|AF 1|-|AF 2|=22,|BF 2|-|BF 1|=22,∴|AF 1|=22+x ,|BF 1|=x -2 2.又|AF 1|=|AB |+|BF 1|,∴22+x =2x +x -22,解得x =4,∴|AF 1|=22+4,|AF 2|=4.在△AF 2F 1中,由余弦定理得4c 2=42+(4+22)2-2×(4+22)×4×22,解得c =6, ∴e =c a= 3. 答案: 319.[2019·安徽六校联考改编]已知抛物线y 2=2px (p >0)上一点(5,t )到焦点的距离为6,P 、Q 分别为抛物线与圆(x -6)2+y 2=1上的动点,则|PQ |的最小值为________.解析:由抛物线C :y 2=2px (p >0)焦点在x 轴上,准线方程x =-p2,则点(5,t )到焦点的距离为d =5+p2=6,则p =2,所以抛物线方程为y 2=4x .设P (x ,y ),由圆M :(x -6)2+y 2=1,知圆心为(6,1),半径为1,则|PM |=(x -6)2+y 2=(x -6)2+4x =(x -4)2+20,当x =4时,|PQ |取得最小值,最小值为20-1=25-1. 答案:25-120.[2019·广东深圳调研改编]若关于x 的不等式⎝ ⎛⎭⎪⎫1x λx ≤19有正整数解,则实数λ的最小值为________.解析:由⎝ ⎛⎭⎪⎫1x λx ≤19,得x λx ≥9,两边取对数得λ·ln x x ≥ln 9.因为x ∈N *,所以λ>0,所以ln xx≥ln 9λ.令f (x )=ln xx(x >0),则f ′(x )=1-ln xx 2,当x ∈(0,e)时,f ′(x )>0,f (x )单调递增;当x ∈(e ,+∞)时,f ′(x )<0,f (x )单调递减.因为2<e<3,所以只考虑f (2)和f (3)的大小关系.因为f (2)=ln 22=ln 86,f (3)=ln 33=ln 96,所以f (2)<f (3),所以只需f (3)=ln 96≥ln 9λ,即λ≥6,所以实数λ的最小值为6. 答案:6。

2022届高考数学一轮专题复习_函数与方程思想(含解析)

2022届高考数学一轮专题复习_函数与方程思想(含解析)
3.已知点A是椭圆 + =1上的一个动点,点P在线段OA的延长线上,且 · =48,则点P的横坐标的最大值为( )
A.18 B.15 C.10D.
答案:C 当点P的横坐标最大时,射线OA的斜率k>0,设OA:y=kx,k>0,与椭圆 + =1联立解得xA= .又 · =xAxP+k2xAxP=48,解得xP= = = ,令9+25k2=t>9,即k2= ,则xP= = ×25 =80 ≤80× =10,当且仅当t=16,即k2= 时取等号,所以点P的横坐标的最大值为10,故选C.
10.已知函数f(x)= ,x∈[0,1].
(1)求f(x)的单调区间和值域;
(2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1],若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范围.
解:(1)f′(x)= =- .
令f′(x)=0,解得x= 或x= (舍去).
从而当x∈[0,1]时,有g(x)∈[g(1),g(0)].又g(1)=1-2a-3a2,g(0)=-2a,
即当x∈[0,1]时,有g(x)∈[1-2a-3a2,-2a].对于任意x1∈[0,1],f(x1)∈[-4,-3],
存在x0∈[0,1]使得g(x0)=f(x1)成立,则[1-2a-3a2,-2a]⊇[-4,-3].即
当x变化时,f′(x),f(x)的变化情况如下表:
x
0
1
f′(x)
不存在

0

不存在
f(x)

-4
-3
∴函数f(x)的单调增区间是 ,单调减区间是 .
当x∈[0,1]时,f(x)的值域为[-4,-3].
(2)g′(x)=3(x2-a2).∵a≥1,当x∈(0,1)时,g′(x)<3(1-a2)≤0,因此当x∈(0,1)时,g(x)为减函数,

第8节 函数与方程--2025年高考数学复习讲义及练习解析

第8节 函数与方程--2025年高考数学复习讲义及练习解析

第八节函数与方程课标解读考向预测1.理解函数的零点与方程解的联系,掌握函数的零点、方程的根、图象交点(横坐标)三者之间的灵活转化.2.理解函数零点存在定理,并能简单应用.3.会用二分法求方程的近似解.从近三年高考情况来看,函数零点(方程的根)个数的判断、由零点存在定理判断零点(方程的根)是否存在、利用函数零点(方程的根)确定参数的取值范围等是考查的热点.本节内容也可与导数结合考查,难度较大.预计2025年高考函数与方程仍会出题,可能以选择题或填空题考查三种形式的灵活转化,也可能与导数结合考查,难度较大.必备知识——强基础1.函数的零点对于函数y =f (x ),我们把使f (x )=0的实数x 叫做函数y =f (x )的零点.2.方程的根与函数零点的关系方程f (x )=0有实数解⇔函数y =f (x )有零点⇔函数y =f (x )的图象与x 轴有公共点.3.函数零点存在定理如果函数y =f (x )在区间[a ,b ]上的图象是一条连续不断的曲线,且有01f (a )f (b )<0,那么,函数y =f (x )在区间(a ,b )内至少有一个零点,即存在c ∈(a ,b ),使得f (c )=0,c 也就是方程f (x )=0的解.4.二分法对于在区间[a ,b ]上连续不断且02f (a )f (b )<0的函数y =f (x ),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法.求方程f (x )=0的近似解就是求函数y =f (x )零点的近似值.函数零点的相关技巧:(1)若连续函数f (x )在定义域上是单调函数,则f (x )至多有一个零点.(2)连续不断的函数f (x ),其相邻的两个零点之间的所有函数值同号.(3)连续不断的函数f (x )通过零点时,函数值不一定变号.(4)连续不断的函数f (x )在闭区间[a ,b ]上有零点,不一定能推出f (a )f (b )<0.1.概念辨析(正确的打“√”,错误的打“×”)(1)函数的零点就是函数的图象与x轴的交点.()(2)连续函数y=f(x)在区间(a,b)内有零点,则f(a)f(b)<0.()(3)函数y=f(x)为R上的单调函数,则f(x)有且仅有一个零点.()(4)二次函数y=ax2+bx+c(a≠0),若b2-4ac<0,则f(x)无零点.()答案(1)×(2)×(3)×(4)√2.小题热身(1)(人教A必修第一册4.5.1例1改编)已知函数f(x)=23x+1+a的零点为1,则实数a的值为()A.-2B.-12D.2C.12答案B(2)下列函数图象与x轴都有公共点,其中不能用二分法求图中函数零点近似值的是()答案A解析根据题意,利用二分法求函数零点的条件是函数在零点的左、右两侧的函数值符号相反,即图象穿过x轴,据此分析,知选项A中的函数不能用二分法求零点.故选A. (3)(人教A必修第一册习题4.5T2改编)已知函数y=f(x)的图象是一条连续不断的曲线,部分对应关系如表所示,则该函数的零点个数至少为()x123456y126.115.15-3.9216.78-45.6-232.64A.2B.3C.4D.5解析由表可知,f (2)f (3)<0,f (3)f (4)<0,f (4)f (5)<0,所以函数f (x )在区间[1,6]上至少有3个零点.故选B.(4)若函数f (x )=kx +1在[1,2]上有零点,则实数k 的取值范围是________.答案-1,-12考点探究——提素养考点一函数零点所在区间的判断例1(1)(2024·湖南长沙长郡中学高三月考)函数f (x )=5-2x -lg (2x +1)的零点所在的区间是()A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案C解析因为函数f (x )=5-2x -lg (2x +1)-12,+,所以函数f (x )最多只有一个零点,因为f (0)f (1)=5(3-lg 3)>0,f (1)f (2)=(3-lg 3)(1-lg 5)>0,f (2)f (3)=(1-lg 5)(-1-lg 7)<0,f (3)f (4)=(-1-lg 7)×(-3-lg 9)>0,所以函数f (x )=5-2x -lg (2x +1)的零点所在的区间是(2,3).故选C.(2)用二分法求函数f (x )=3x -x -4的一个零点,其参考数据如下:f (1.6000)≈0.200f (1.5875)≈0.133f (1.5750)≈0.067f (1.5625)≈0.003f (1.5562)≈-0.029f (1.5500)≈-0.060据此数据,可得方程3x -x -4=0的一个近似解为________(精确度为0.01).答案 1.56(答案不唯一,在[1.5562,1.5625]上即可)解析注意到f (1.5562)≈-0.029和f (1.5625)≈0.003,显然f (1.5562)f (1.5625)<0,又|1.5562-1.5625|=0.0063<0.01,所以近似解可取1.56.【通性通法】确定函数零点所在区间的常用方法(1)利用函数零点存在定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.【巩固迁移】1.(2023·广东梅州高三二模)用二分法求方程log 4x -12x=0的近似解时,所取的第一个区间可A.(0,1)B.(1,2) C.(2,3)D.(3,4)答案B解析令f(x)=log4x-12x,因为函数y=log4x,y=-12x在(0,+∞)上都是增函数,所以函数f(x)=log4x-12x在(0,+∞)上是增函数,f(1)=-12<0,f(2)=log42-14=12-14=14>0,所以函数f(x)=log4x-12x在区间(1,2)上有唯一零点,所以用二分法求方程log4x-12x=0的近似解时,所取的第一个区间可以是(1,2).故选B.2.已知2<a<3<b<4,函数y=log a x与y=-x+b的交点为(x0,y0),且x0∈(n,n+1),n∈N*,则n=________.答案2解析依题意,x0为方程log a x=-x+b的解,即为函数f(x)=log a x+x-b的零点,∵2<a<3<b<4,∴f(x)在(0,+∞)上单调递增,又f(2)=log a2+2-b<0,f(3)=log a3+3-b>0,∴x0∈(2,3),即n=2.考点二函数零点个数的判断例2(1)已知函数f(x)2-4,x≤1,2(x-1),x>1,则函数y=f(x)零点的个数为________.答案2解析当x≤1时,由f(x)=x2-4=0,可得x=2(舍去)或x=-2;当x>1时,由f(x)=log2(x -1)=0,可得x=2.综上所述,函数y=f(x)零点的个数为2.(2)方程ln x+cos x=13在(0,1)上的实数根的个数为________.答案1解析解法一:ln x+cos x=13,即cos x-13=-ln x,在同一平面直角坐标系中,分别作出函数y=cos x-13和y=-ln x的大致图象,如图所示,在(0,1)上两函数的图象只有一个交点,即方程ln x+cos x=13在(0,1)上的实数根的个数为1.解法二:令f(x)=ln x+cos x-13,则f′(x)=1x-sin x,显然在(0,1)上f′(x)>0,所以函数f(x)在(0,1)上单调递增,又ln 1e +cos 1e -13=-1-13+cos 1e <0,f (1)=ln 1+cos1-13=0+cos1-13>cos π3-13=12-13>0,所以在(0,1)上函数f (x )的图象和x 轴有且只有一个交点,即方程ln x +cos x =13在(0,1)上的实数根的个数为1.【通性通法】求解函数零点个数的基本方法(1)直接法:令f (x )=0,方程有多少个解,则f (x )有多少个零点.(2)构造函数法:判断函数的性质,并结合零点存在定理判断.(3)图象法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解,此时需要根据零点个数合理寻找“临界”情况,特别注意边界值的取舍.【巩固迁移】3.(2024·江苏无锡模拟)函数f (x )2-2,x ≤0,x -6+lg x ,x >0的零点的个数为________.答案2解析当x ≤0时,f (x )=x 2-2,根据二次函数的性质可知,此时f (x )单调递减,零点为x =-2;当x >0时,f (x )=2x -6+lg x ,∵y =2x -6单调递增,y =lg x 单调递增,∴f (x )=2x -6+lg x 单调递增.f (1)=-4<0,f (3)=lg 3>0,由零点存在定理知,在区间(1,3)必有唯一零点.综上所述,函数f (x )的零点的个数为2.4.函数f (x )|-|log 2x |的零点有________个.答案2解析f (x )|-|log 2x ||=|log 2x |的根的个数,即为y |与y =|log 2x |图象交点的个数,画出大致图象如图所示,则由图象可知交点有2个,即函数f (x )的零点有2个.考点三函数零点的应用(多考向探究)考向1利用零点比较大小例3已知函数f (x )=3x +x ,g (x )=log 2x +x ,h (x )=x 3+x 的零点分别为a ,b ,c ,则a ,b ,c 的大小顺序为()A .a <c <bB .a <b <cC.b<a<c D.b<c<a答案A解析解法一:因为函数y=3x,y=x均为R上的增函数,故函数f(x)=3x+x为R上的增函数,因为f(-1)=13-1<0,f(0)=1>0,所以-1<a<0.因为函数y=log2x,y=x在(0,+∞)上均为增函数,故函数g(x)=log2x+x在(0,+∞)上为增函数,因为1+12<0,g(1)=1>0,所以12<b<1.由h(c)=c(c2+1)=0可得c=0,因此a<c<b.故选A.解法二:由题设,3a=-a,log2b=-b,c3=-c,所以问题可转化为直线y=-x与y=3x,y=log2x,y=x3的图象的交点问题,函数图象如图所示,由图可知a<c=0<b.故选A.【通性通法】(1)直接利用方程研究零点.(2)利用图象交点研究零点.(3)利用零点存在定理研究零点.【巩固迁移】5.(2023·江西南昌模拟预测)已知函数f(x)=2x+x-4,g(x)=e x+x-4,h(x)=ln x+x-4的零点分别是a,b,c,则a,b,c的大小顺序是()A.a<b<c B.c<b<aC.b<a<c D.c<a<b答案C解析由已知条件得f(x)的零点可以看成y=2x的图象与直线y=4-x的交点的横坐标,g(x)的零点可以看成y=e x的图象与直线y=4-x的交点的横坐标,h(x)的零点可以看成y=ln x 的图象与直线y=4-x的交点的横坐标,在同一坐标系内分别画出函数y=2x,y=e x,y=ln x,y=4-x的图象,如图所示,由图可知b<a<c.故选C.考向2根据零点个数求参数例4(2023·山东济南高三三模)已知函数f (x )x +1)2,x ≤0,x |,x >0,若函数g (x )=f (x )-b 有四个不同的零点,则实数b 的取值范围为()A .(0,1]B .[0,1]C .(0,1)D .(1,+∞)答案A解析依题意,函数g (x )=f (x )-b 有四个不同的零点,即f (x )=b 有四个解,转化为函数y =f (x )与y =b 的图象有四个交点,由函数y =f (x )可知,当x ∈(-∞,-1]时,函数单调递减,y ∈[0,+∞);当x ∈(-1,0]时,函数单调递增,y ∈(0,1];当x ∈(0,1)时,函数单调递减,y ∈(0,+∞);当x ∈[1,+∞)时,函数单调递增,y ∈[0,+∞).结合图象,可知实数b 的取值范围为(0,1].故选A.【通性通法】根据零点个数求参数的方法(1)直接法:直接根据题设条件构建关于参数的不等式(组),再通过解不等式(组)确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数y =g (x ),y =h (x )的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为y =a ,y =g (x )的图象的交点个数问题.【巩固迁移】6.(2024·安徽蚌埠高三摸底)已知函数f (x )=2|x |+x 2+a 有唯一的零点,则实数a 的值为()A .1B .-1C .0D .-2答案B解析函数f (x )=2|x |+x 2+a 的定义域为R ,f (-x )=2|-x |+(-x )2+a =f (x ),即函数f (x )为偶函数,当x ≥0时,f (x )=2x +x 2+a ,则f (x )在[0,+∞)上单调递增,在(-∞,0)上单调递减,则当x =0时,f (x )min =a +1,由函数f (x )=2|x |+x 2+a 有唯一的零点,得a +1=0,解得a =-1,所以实数a 的值为-1.故选B.7.设a ∈R ,对任意实数x ,记f (x )=min{|x |-2,x 2-ax +3a -5}.若f (x )至少有3个零点,则实数a 的取值范围为________.答案[10,+∞)解析设g (x )=x 2-ax +3a -5,h (x )=|x |-2,由|x |-2=0可得x =±2.要使得函数f (x )至少有3个零点,则函数g (x )至少有一个零点,则Δ=a 2-12a +20≥0,解得a ≤2或a ≥10.①当a =2时,g (x )=x 2-2x +1,作出函数g (x ),h (x )的图象如图所示,此时函数f (x )只有2个零点,不符合题意;②当a <2时,设函数g (x )的2个零点分别为x 1,x 2(x 1<x 2),要使得函数f (x )至少有3个零点,则x 2≤-2,-2,-2)=4+5a -5≥0,无解;③当a =10时,g (x )=x 2-10x +25,作出函数g (x ),h (x )的图象如图所示,由图可知,函数f (x )的零点个数为3,符合题意;④当a >10时,设函数g (x )的2个零点分别为x 3,x 4(x 3<x 4),要使得函数f (x )至少有3个零点,则x 3≥2,,=4+a -5≥0,解得a >4,所以a >10.综上所述,实数a 的取值范围是[10,+∞).考向3根据零点范围求参数例5已知函数f (x )=log 2(x +1)-1x +m 在区间(1,3]上有零点,则实数m 的取值范围为________.答案-53,解析由于函数y =log 2(x +1),y =m -1x在区间(1,3]上单调递增,所以函数f (x )在(1,3]上单调递增,由于函数f (x )=log 2(x +1)-1x +m 在区间(1,3]上有零点,,≥0,<0,+53≥0,解得-53≤m <0.因此实数m 的取值范围是-53,【通性通法】根据零点范围求参数的方法(1)利用零点存在定理构建不等式(组)求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两个熟悉的函数图象的上下关系问题,从而构建不等式(组)求解.【巩固迁移】8.(2024·湖北荆州中学高三月考)已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=|x 2-2x +12|,若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.答案解析作出函数f (x )=|x 2-2x +12|,x ∈[0,3)的图象,可见f (0)=12,当x =1时,f (x )极大值=12,方程f (x )-a =0在[-3,4]上有10个零点,即函数y =f (x )的图象与直线y =a 在[-3,4]上有10个交点,由于函数f (x )的周期为3,因此直线y =a 与函数f (x )=|x 2-2x +12|,x ∈[0,3)的图象有4个交点,则有a课时作业一、单项选择题1.(2024·江苏扬中第二高级中学高三期初检测)函数f (x )=2x +3x 的零点所在的一个区间是()A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)答案B解析因为函数f (x )=2x +3x 在定义域内单调递增,f (-1)=12-3=-52<0,f (0)=1+0=1>0,所以由函数零点存在定理可知,函数f (x )的零点所在的区间为(-1,0).故选B.2.已知函数f (x )x -1,x ≤1,+log 2x ,x >1,则函数f (x )的零点为()A .2B .-2,0C.12D .0答案D解析当x ≤1时,令f (x )=2x -1=0,解得x =0;当x >1时,令f (x )=1+log 2x =0,解得x=12(舍去).综上所述,函数f (x )的零点为0.故选D.3.函数f (x )=e x |ln x |-1的零点个数是()A .1B .2C .3D .4答案B解析令f (x )=e x |ln x |-1=0,即|ln x |=e -x ,则函数f (x )=e x |ln x |-1的零点个数等价于两个函数y =e -x 与y =|ln x |图象的交点个数,y =e -x 与y =|ln x |的图象如图所示,由图可知,两个函数的图象有2个交点,故函数f (x )=e x |ln x |-1的零点个数是2.故选B.4.(2023·河南扶沟期末)若关于x 的方程log 12x =m1-m在区间m 的取值范围是()(1,+∞)答案B解析y =log 12x,则1<y <2,即1<m 1-m<2,解得12<m <23.故选B.5.已知三个函数f (x )=2x -1+x -1,g (x )=e x -1-1,h (x )=log 2(x -1)+x -1的零点依次为a ,b ,c ,则a ,b ,c 的大小关系是()A .a >b >c B .a >c >b C .c >a >b D .c >b >a答案D解析∵函数f (x )=2x -1+x -1为增函数,又f (0)=2-1-1=-12<0,f (1)=1>0,∴a ∈(0,1),由g (x )=e x -1-1=0,得x =1,即b =1,∵h (x )=log 2(x -1)+x -1在(1,+∞)上单调递增,又log +32-1=-12<0,h (2)=log 2(2-1)+2-1=1>0,∴32<c <2,∴c >b >a .故选D.6.若方程m x -x -m =0(m >0,且m ≠1)有两个不同的实数根,则实数m 的取值范围是()A .(0,1)B .(2,+∞)C .(0,1)∪(2,+∞)D .(1,+∞)答案D解析方程m x -x -m =0有两个不同的实数根等价于函数y =m x 与y =x +m 的图象有两个不同的交点,当m >1时,如图1所示,由图可知,当m >1时,函数y =m x 与y =x +m 的图象有两个不同的交点,满足题意;当0<m <1时,如图2所示,由图可知,当0<m <1时,函数y =m x 与y =x +m 的图象有且仅有一个交点,不满足题意.综上所述,实数m的取值范围为(1,+∞).故选D.7.已知函数f (x )x ,x ≤0,x ,x >0,若函数g (x )=f (x )+x -m 恰有两个不同的零点,则实数m 的取值范围是()A .[0,1]B .(-1,1)C .[0,1)D .(-∞,1]答案D解析由题意,函数f (x )x ,x ≤0,x ,x >0,当x ≤0时,函数f (x )=e x 为增函数,其中f (0)=1,当x >0时,函数f (x )=ln x 为增函数,且f (1)=0,又由函数g (x )=f (x )+x -m 恰有两个不同的零点,即为g (x )=0有两个不等的实数根,即y =f (x )与y =-x +m 的图象有两个不同的交点,如图所示,当y =-x +m 恰好过点(1,0),(0,1)时,两函数的图象有两个不同的交点,结合图象,要使得函数g (x )=f (x )+x -m 恰有两个不同的零点,实数m 的取值范围是(-∞,1].故选D.8.已知函数f (x )x |,0<x ≤10,-12x +6,x >10,若a ,b ,c 均不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是()A .(1,10)B .(5,6)C .(10,12)D .(20,24)答案C解析函数f (x )的图象如图所示,不妨设a <b <c ,则-lg a =lg b =-12c +6∈(0,1),所以ab=1,0<-12c +6<1,所以ab =1,10<c <12,所以10<abc <12.故选C.二、多项选择题9.下列说法正确的是()A .函数y =x 2-3x -4的零点是(4,0),(-1,0)B .方程e x =3+x 有两个解C .函数y =3x ,y =log 3x 的图象关于直线y =x 对称D .用二分法求方程3x +3x -8=0在x ∈(1,2)内的近似解的过程中得到f (1)<0,f (1.5)>0,f (1.25)<0,则方程的根落在区间(1.25,1.5)上答案BCD解析对于A ,令y =x 2-3x -4=0,解得x =-1或x =4,所以函数y =x 2-3x -4的零点是-1和4,故A错误;对于B,分别作出y=e x,y=3+x的图象,y=e x与y=3+x的图象有两个交点,即方程e x=3+x有两个解,故B正确;对于C,因为同底数的指数函数和对数函数的图象关于直线y=x对称,所以函数y=3x,y=log3x的图象关于直线y=x对称,故C正确;对于D,因为y=3x+3x-8单调递增,由零点存在定理知,因为f(1)<0,f(1.5)>0,f(1.25)<0,所以方程的根落在区间(1.25,1.5)上,故D正确.故选BCD.10.若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1<x2,则下列结论正确的是()A.当m=0时,x1=2,x2=3B.m>-14C.当m>0时,2<x1<x2<3D.二次函数y=(x-x1)(x-x2)+m的零点为2和3答案ABD解析对于A,易知当m=0时,(x-2)(x-3)=0的根为2,3,故A正确;对于B,设y=(x-2)(x-3)=x2-5x+6-14≥-14,因为y=(x-2)(x-3)的图象与直线y=m有两个交点,所以m>-14,故B正确;对于C,当m>0时,y=(x-2)(x-3)-m的图象由y=(x-2)(x-3)的图象向下平移m个单位长度得到,x1<2<3<x2,故C错误;对于D,由(x-2)(x-3)=m 展开得,x2-5x+6-m=0,利用根与系数的关系求出x1+x2=5,x1x2=6-m,代入y=(x-x1)(x-x2)+m可得y=(x-x1)(x-x2)+m=(x-2)(x-3)-m+m=(x-2)(x-3),所以二次函数y=(x-x1)(x-x2)+m的零点为2和3,故D正确.故选ABD.11.已知函数f(x)x-1|,x<1,4x2+16x-13,x≥1,函数g(x)=f(x)-a,则下列结论正确的是()A.若g(x)有3个不同的零点,则a的取值范围是[1,2)B.若g(x)有4个不同的零点,则a的取值范围是(0,1)C.若g(x)有4个不同的零点x1,x2,x3,x4(x1<x2<x3<x4),则x3+x4=4D.若g(x)有4个不同的零点x1,x2,x3,x4(x1<x2<x3<x4),则x3x4答案BCD解析令g(x)=f(x)-a=0,得f(x)=a,所以g(x)的零点个数即为函数y=f(x)与y=a图象的交点个数,故作出函数y =f (x )的图象如图,由图可知,若g (x )有3个不同的零点,则a 的取值范围是[1,2)∪{0},故A 错误;若g (x )有4个不同的零点,则a 的取值范围是(0,1),故B 正确;若g (x )有4个不同的零点x 1,x 2,x 3,x 4(x 1<x 2<x 3<x 4),此时x 3,x 4关于直线x =2对称,所以x 3+x 4=4,故C 正确;由C 项可知x 3=4-x 4,所以x 3x 4=(4-x 4)x 4=-x 24+4x 4,由于g (x )有4个不同的零点,a 的取值范围是(0,1),故0<-4x 24+16x 4-13<1,所以134<-x 24+4x 4<72,故D 正确.故选BCD.三、填空题12.已知函数f (x )=log 2(x -1)+a 在区间(2,3)上有且仅有一个零点,则实数a 的取值范围为________.答案(-1,0)解析由对数函数的性质,可得f (x )为增函数,又函数f (x )在(2,3)上有且仅有一个零点,所以f (2)f (3)<0,即a (a +1)<0,解得-1<a <0,所以实数a 的取值范围是(-1,0).13.已知函数f (x )x -1|+1,x >0,x 2-2x ,x ≤0,若函数y =f (x )-kx -1有m 个零点,函数y =f (x )-1k x-1有n 个零点,且m +n =7,则非零实数k 的取值范围是________.答案,13∪[3,+∞)解析f (x )的图象与直线y =kx +1和y =1kx +1共7个交点,f (x )的图象如图所示,所以①k <3,3,解得0<k ≤13;0<1k <3,≥3,解得k ≥3.综上,非零实数k ,13∪[3,+∞).14.(2024·河北衡水中学高三月考)已知函数f (x )=x -1x -2与g (x )=1-sinπx ,则函数F (x )=f (x )-g (x )在区间[-2,6]内所有零点的和为________.答案16解析令F (x )=f (x )-g (x )=0,得f (x )=g (x ),在同一平面直角坐标系中分别画出函数f (x )=1+1x -2与g (x )=1-sinπx 的图象,如图所示,又f (x ),g (x )的图象都关于点(2,1)对称,结合图象可知f (x )与g (x )的图象在[-2,6]上共有8个交点,交点的横坐标即F (x )=f (x )-g (x )的零点,由对称性可得,所有零点的和为4×2×2=16.15.已知函数f (x )+1x ,x <0,x ,x >0,则方程f (f (x ))+3=0的解的个数为()A .3B .4C .5D .6答案C解析已知函数f (x )+1x ,x <0,x ,x >0,∴令f (x )=-3,则当x >0时,ln x =-3,解得x =1e 3;当x <0时,x +1x =-3,解得x =-3±52.∵f (f (x ))+3=0,即f (f (x ))=-3,则f (x )=1e 3或f (x )=-3±52.由f (x )=1e 3,得ln x =1e 3,此方程只有一个根,∵当x <0时,f (x )=x +1x ≤-2,当且仅当x =-1时,等号成立,∴f (x )=-3+52仅在x >0时有一个根,f (x )=-3-52在x <0时有两个根,在x >0时有一个根.综上,方程f (f (x ))+3=0的解的个数为5.故选C.16.(多选)(2024·湖北荆州模拟)已知函数f (x )|log 12x |,0<x<4,4≤x ≤14,若方程f (x )=m 有四个不等的实根x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则下列结论正确的是()A .0<m <2B .x 1x 2=12C .x 3x 4∈(48,55)D .x 1x 3∈(1,5)答案ACD解析对于A ,当0<x <1时,log 12x >0,则f (x )=log 12x ,易得f (x )在(0,1)上单调递减,且f (x )>f (1)=0,当1≤x <4时,log 12x ≤0,则f (x )=-log 1x ,易得f (x )在[1,4)上单调递增,且f (1)≤f (x )<f (4),即0≤f (x )<2,当4≤x ≤14时,f (x )=则由f (x )=x ∈[4,14]的图象,可知f (x )在[4,8)上单调递减,在[8,14]上单调递增,且f (4)=2,f (5)=0,f (8)=4,f (11)=0,f (14)==4,从而利用对数函数与正弦函数的性质,画出f (x )的图象,如图所示,因为方程f (x )=m 有四个不等实根,所以f (x )与y =m 的图象有四个交点,所以0<m <2,故A 正确;对于B ,结合A 项分析可得log 12x 1=-log 12x 2,所以log 12(x 1x 2)=0,则x 1x 2=1,故B 错误;对于C ,D ,由正弦函数的性质及结合图象可知(x 3,m )与(x 4,m )关于直线x =8对称,所以x 3+x 4=16,又当0<x <1时,f (x )=log 12x ,令f (x )=2,得x =14,所以14<x 1<1,4<x 3<5,所以x 1x 3∈(1,5),x3x 4=x 3(16-x 3)=-x 23+16x 3=-(x 3-8)2+64,因为x 3∈(4,5),所以x 3x 4∈(48,55),故C ,D 正确.故选ACD.17.已知定义在R 上的奇函数y =f (x )满足f (1+x )=f (1-x ),当-1≤x <0时,f (x )=x 2,则方程f (x )+12=0在[-2,6]内的所有根之和为________.答案12解析因为f (1+x )=f (1-x ),所以y =f (x )的图象关于直线x =1对称,又函数y =f (x )在R 上为奇函数,且当-1≤x <0时,f (x )=x 2,由此画出f (x )在区间[-2,6]上的图象如图所示.f (x )+12=0⇒f (x )=-12,由图可知,y =-12与f (x )的图象有4个交点,其中两个关于直线x =1对称,两个关于直线x =5对称,所以方程f (x )+12=0在[-2,6]内的所有根之和为2×1+2×5=12.18.(2024·山东泰安高三期末)已知函数f (x )2(x +1),x >3,x +3|,-9≤x ≤3,若x 1<x 2,x 1<x 3,且f (x 1)=f (x 2),f (x 1)+f (x 3)=4,则x 3x 1+x 2的取值范围是________.答案-52,-12解析对于f (x )2(x +1),x >3,+3|,-9≤x ≤3,当x >3时,f (x )>2,当-9≤x ≤3时,0≤f (x )≤2,并且图象关于直线x =-3对称,函数f (x )的图象如下图所示,如果x 1>3,则f (x 1)=f (x 2)不成立,∴x 1∈[-9,3],x 2∈[-9,3],并且有x 1+x 2=-6,0<f (x 1)≤2.由f (x 1)+f (x 3)=4可知,2≤f (x 3)<4,∴2≤log 2(x 3+1)<4,3≤x 3<15.∴x 3x 1+x 2=-16x 3-52,-12.。

高考数学(理科)-函数与方程-专题练习(含答案与解析)

高考数学(理科)-函数与方程-专题练习(含答案与解析)

)()2,+∞)()2,+∞(名师押题)已知函数,x0<() g x)4,3⎛⎫+∞ ⎪⎝⎭)4,23⎛⎫ ⎪⎝⎭17-1(1)17-1(2)B.12D.8()=有两个不同的零点y f x0,1,).}(∞+ )()g x x =+等号成立的条件是因而只需2,m e g ≥()21,f x e =--+其最大值为m -即m e >-()故函数f(x)有两个零点.]=-2(正根舍去),B.y=b的图象,如图所示从而函数f(x)=|2x-2|-b的图象,如图所示,当直线g 有两个不相等的实根时,k 的范围为所以函数f (x )的图象关于直线⎭⎫12|x |在[-3,3]上的图象,由图可知上的奇函数,所以当-1≤x <0时,的图象的对称轴为x =2k 与函数f (x )的图象在(0,6)内的零点之和为2×1+2×5==1或a >2,即0<a <x =0不是y =f (x )-g (x )的零点.内的零点个数即方程f (x )=g (x )(-+2x ;即k =4cos πx .⎧2上有且仅有三个零点, ∞)上只有三个交点, ⎩⎪⎨⎪⎧-x 2+-x -1-x-1,1-x >0⎩⎪⎨⎪⎧x 2-4x +2,x ≥1,-x -x ≥1时,函数g (.D [当>0时x -x 2,x )的图象,结合函数图象可知⎪⎪x -2-由题意知方程a =f (x )在[-3,4]上有由图可知a ∈⎝⎛⎭⎫0,12.]7.10 [问题可转化为y =⎝⎛⎭⎫12|x -⎦⎤n n -2×9和(n ,+∞)内都恰有一个零点=1f x +-1⎩⎪⎨⎪⎧1x +1--1<,xx ,由图象可知0<m ≤k AB =13.] 是周期等于3的周期函数f (x )与函数y =1|x |的交点的个数⎩⎪⎨-x ,f x +x <的图象如图所示,l ,观察可得函数y =f (x )的图象与直线l :有且只有两个不相等的实数根时,a <1,故选C .] ))=0,个交点,从小到大依次设为x1,x2,x3,x4,x5,=f(-x),所以log4(4-1+e2,其最大值为m-1 ,。

2024年领军高考数学二轮复习专题11函数与方程考点必练理

2024年领军高考数学二轮复习专题11函数与方程考点必练理

考点11 函数与方程1.已知是定义在上的偶函数,对于,都有,当时,,若在[-1,5]上有五个根,则此五个根的和是()A. 7 B. 8 C. 10 D. 122.已知函数是定义在上的偶函数,且,若函数有 6 个零点,则实数的取值范围是()A. B.C. D.【答案】D3.函数的零点所在的区间是( )A . (,1)B . (1,2)C . (e,3)D . (2,e) 【答案】B 【解析】令,当时,;当时,;当时,.在其定义域上单调递增,则函数只有一个零点,又由上式可知,故函数零点在区间内.选.4.函数f (x )=⎩⎪⎨⎪⎧ln x ,x >0,-x x +2,x ≤0的零点个数是( )A .0B .1C .2D .3【答案】D【解析】当x >0时,令f (x )=0可得x =1;当x ≤0时,令f (x )=0可得x =-2或x =0.因此函数的零点个数为3.故选D.5.关于x 的方程|x 2-2x |=a 2+1(a >0)的解的个数是( ) A .1 B .2 C .3D .4【解析】选B ∵a >0,∴a 2+1>1.而y =|x 2-2x |的图象如图所示,∴y =|x 2-2x |的图象与y =a 2+1的图象总有2个交点,即方程|x 2-2x |=a 2+1(a >0)的解的个数是2.10.对于满意0<b ≤3a 的随意实数a ,b ,函数f (x )=ax 2+bx +c 总有两个不同的零点,则a +b -ca的取值范围是( ) A .(1,74]B .(1,2]C .[1,+∞)D .(2,+∞)【答案】D11.已知函数f (x )=log 3x +2x-a 在区间(1,2)内有零点,则实数a 的取值范围是( ) A .(-1,-log 32) B .(0,log 52) C .(log 32,1) D .(1,log 34)【答案】C【解析】∵单调函数f (x )=log 3x +2x-a 在区间(1,2)内有零点,∴f (1)·f (2)<0,即(1-a )·(log 32-a )<0,解得log 32<a <1,故选C.12.(2024·甘肃天水一中月考)已知函数f (x )=ln x -ax 2+ax 恰有两个零点,则实数a 的取值范围为( ) A .(-∞,0) B .(0,+∞) C .(0,1)∪(1,+∞) D .(-∞,0)∪{1}【答案】C【解析】由题意,明显x =1是函数f (x )的一个零点,取a =-1,则f (x )=ln x +x 2-x ,f ′(x )=2x 2-x +1x=2⎝ ⎛⎭⎪⎫x -142+78x>0恒成立.则f (x )仅有一个零点,不符合题意,解除A 、D ;取a =1,则f (x )=ln x -x 2+x ,f ′(x )=1-2x 2+x x =1+2x1-xx,f ′(x )=0得x =1,则f (x )在(0,1)上递增,在(1,+∞)上递减,f (x )max =f (1)=0,即f (x )仅有一个零点,不符合题意,解除B ,故选C.13.已知函数f (x )=⎩⎪⎨⎪⎧sin πx ,0≤x ≤1,log 2 017x ,x >1,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c 的取值范围是( ) A .(1,2 017) B .(1,2 018) C .[2,2 018] D .(2,2 018)【答案】D14.设函数f (x )是定义在R 上的周期为2的函数,且对随意的实数x ,恒有f (x )-f (-x )=0,当x ∈[-1,0]时,f (x )=x 2,若g (x )=f (x )-log a x 在x ∈(0,+∞)上有三个零点,则a 的取值范围为( ) A .[3,5] B .[4,6] C .(3,5) D .(4,6)【答案】C【解析】∵f (x )-f (-x )=0,∴f (x )=f (-x ),∴f (x )是偶函数,依据函数的周期性和奇偶性作出函数f (x )的图像如图所示:15.(2024·湖北七校联考)已知f (x )是奇函数且是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( ) A.14 B.18 C .-78D .-38【答案】C【解析】令y =f (2x 2+1)+f (λ-x )=0,则f (2x 2+1)=-f (λ-x )=f (x -λ),因为f (x )是R 上的单调函数,所以2x 2+1=x -λ只有一个根,即2x 2-x +1+λ=0只有一个根,则Δ=1-8(1+λ)=0,解得λ=-78.故选C.16.已知定义在R 上的奇函数y =f (x )的图像关于直线x =1对称,当-1≤x <0时,则方程f (x )-12=0在(0,6)内的全部根之和为( )A .8B .10C .12D .16【答案】C【解析】∵奇函数f (x )的图像关于直线x =1对称,∴f (x )=f (2-x )=-f (-x ),即f (x )=-f (x +2)=f (x +4),∴f (x )是周期函数,其周期T =4.又当x ∈[-1,0)时,f (x )=-log 12(-x ),故f (x )在(0,6)上的函数图像如图所示.由图可知方程f (x )-12=0在(0,6)内的根共有4个,其和为x 1+x 2+x 3+x 4=2+10=12,故选C.17.已知a 是正实数,函数f(x)=2ax 2+2x -3-a.假如函数y =f(x)在区间[-1,1]上有零点,求a 的取值范围.【答案】[1,+∞)【解析】f(x)=2ax 2+2x -3-a 的对称轴为x =-12a.①当-12a ≤-1,即0<a≤12时,须使⎩⎪⎨⎪⎧f -1≤0,f 1≥0,即⎩⎪⎨⎪⎧a≤5,a≥1,∴无解.②当-1<-12a <0,即a>12时,须使⎩⎪⎨⎪⎧f ⎝⎛⎭⎪⎫-12a ≤0,f 1≥0,即⎩⎪⎨⎪⎧-12a -3-a≤0,a≥1,解得a≥1,∴a 的取值范围是[1,+∞).24.已知函数f (x )=|x -a |-2x+a ,a ∈R ,若方程f (x )=1有且只有三个不同的实数根,则实数a 的取值范围是 .【答案】(-∞,1-222)∪(1+222,2)。

高考冲刺-函数与方程的思想习题及答案

高考冲刺-函数与方程的思想习题及答案

高考 函数与方程的思想类型一、函数思想在方程中应用 1.已知155=-acb (a 、b 、c ∈R ),则有( ) (A) ac b 42> (B) ac b 42≥ (C) ac b 42< (D) ac b 42≤2.若关于x 的方程cos2x -2cos x +m =0有实数根,则实数m 的取值范围是________3.已知函数 32()f x ax bx cx d =+++的图象如下,则( ) (A )(),0b ∈-∞ (B)()0,1b ∈ (C) (1,2)b ∈ (D)(2,)b ∈+∞4.若关于x 的方程9x +(4+a )·3x +4=0有大于1的解,则实数a 的取值范围是( )A .a <253-B .a ≤-8C .a <133- D .a ≤-45.设函数3y x =与212x y -⎛⎫= ⎪⎝⎭的图象的交点为00()x y ,,则0x 所在的区间是( )A .(01),B .(12),C .(23),D .(34),类型二、函数思想在不等式中的应用6.当(12)x ∈,时,不等式240x mx ++<恒成立,则m 的取值范围是 ;7.已知f (t )=log 2t ,t ∈[2,8],对于f (t )值域内所有实数m ,不等式x 2+mx +4>2m +4x 恒成立,求x 的取值范围.8.对于满足0≤p ≤4的实数p ,使x 2+px >4x +p -3恒成立的x 的取值范围是________类型三、函数思想在数列中的应用9.设等差数列{a n }的前n 项和为S n ,已知123=a ,12S >0,13S <0,(1)求公差d 的取值范围;(2)指出1S 、2S 、3S …,12S 中哪一个最大,并说明理由。

10.已知等差数列的公差,对任意都有,函数.(1)求证:对任意,函数的图象过一定点.(2)若,函数f(x)与x 轴的一个交点为(),且,求数列的通项公式.(3)在(2)的条件下,求.类型四、函数思想在立体几何中的应用 11.如图,已知面,于D ,.(1)令,,试把表示为x 的函数,并求其最大值;(2)在直线PA 上是否存在一点Q ,使成立?类型五、利用方程思想处理解析几何问题 12.直线与圆相切,则a 的值为( )A .B .C .1D .13.(2016 全国I 卷高考)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (I )求OH ON;(II )除H 以外,直线MH 与C 是否有其它公共点?说明理由. 14.直线和双曲线的左支交于A 、B 两点,直线l 过点P(-2,0)和线段AB 的中点M ,求l 在y 轴上的截距b 的取值范围.类型六、函数思想在三角中的应用 15.求的取值范围。

高中数学高考总复习----函数与方程的思想巩固练习题(含答案解析)

高中数学高考总复习----函数与方程的思想巩固练习题(含答案解析)
高中数学高考总复习----函数与方程的思想巩固
练习题(含答案解析)
【巩固练习】
1.已知 f (x) 是定义在 R 上的偶函数,且以 2 为周期,则“ f (x) 为[0,1] 上的增函数”是“ f (x) 为[3,4] 上
的减函数”的( ) (A)既不充分也不必要的条件 (C)必要而不充分的条件
(B)充分而不必要的条件 (D)充要条件
2
3.【答案】B 【命题意图】本试题主要考查了函数与方程思想,函数的零点的概念,零点存在定理以及作图与用图的数 学能力.
【 解 析 】 解 法 1 : 因 为 函 数 f (x) 2x x3 2 的 导 数 为 f '(x) 2x ln 2 3x2 0 , 所 以 函 数
f (x) 2x x3 2 单调递增,又 f (0)=1+0 2= 1, f (1)=2+23 2=8,即 f (0) f (1)<0 且函数 f (x)
1 a0
x2 是原方程的解当且仅当 x2
,即 a 1.
于是满足题意的 a 1, 2 . 综上, a 的取值范围为 1, 2 3, 4 .
(3)当 0
x1
x2
时,
1 x1
a
1 x2
a
log2

1 x1
a
log2
1 x2
a

所以 f x 在 0, 上单调递减.
函数 f x 在区间t,t 1 上的最大值与最小值分别为 f t , f t 1 .
(A)x<y<z (B)z<x<y (C)z<y<x
(D)y<z<x
5. (2016
上海高考)已知无穷等比数列{an}的公比为
q,前
n

2024届高考数学复习:精选历年真题、好题专项(函数与方程、函数的实际应用)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(函数与方程、函数的实际应用)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(函数与方程、函数的实际应用)练习一、 基础小题练透篇1.[2023ꞏ北京市清华附中高三模拟]函数f (x )=ln x +x -6的零点一定位于区间( ) A .(2,3) B .(3,4) C .(4,5) D .(5,6)2.[2023ꞏ辽宁省名校联考]函数f (x )=x 3+x 2+x +c 的零点个数为( ) A .1 B .1或2C .2或3D .1或2或33.[2023ꞏ陕西省汉中高三模拟]关于函数f (x )=(ln x )2-2ln x ,下列说法正确的是( ) A .函数f (x )有2个零点 B .函数f (x )有4个零点 C .e 是函数f (x )的一个零点 D .2e 是函数f (x )的一个零点4.[2023ꞏ河南省新乡市三模]已知函数f (x )=|x 2+3x +1|.若关于x 的方程f (x )-a |x |=0恰有两个不同的实根,则a 的取值范围是( )A .(1,5)B .[1,5]C .(1,5)∪{0}D .[1,5]∪{0}5.[2023ꞏ内蒙古自治区赤峰市试题]核酸检测分析是用荧光定量PCR 法,通过化学物质的荧光信号,对在PCR 扩增进程中成指数级增加的靶标DNA 实时监测,在PCR 扩增的指数时期,荧光信号强度达到阀值时,DNA 的数量X 与扩增次数n 满足lg X n =n lg (1+p )+lg X 0,其中X 0为DNA 的初始数量,p 为扩增效率.已知某被测标本DNA 扩增12次后,数量变为原来的1 000倍,则扩增效率p 约为( )(参考数据:100.25≈1.778,10-0.25≈0.562)A .22.2%B .43.8%C .56.2%D .77.8%6.[2023ꞏ湖北省黄冈中学考试]若函数f (x )=x 2+ax -a2 在区间(-1,1)上有两个不同的零点,则实数a 的取值范围是( )A .⎝⎛⎭⎫-2,23B .⎝⎛⎭⎫0,23C .(2,+∞)D .(0,2)7.[2023ꞏ河南豫南九校联考]食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康造成了一定的危害.为了给消费者带来放心的蔬菜,某农村合作社搭建了甲、乙两个无公害蔬菜大棚,每年共投入200万元,每个大棚至少投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收益P (单位:万元)、种黄瓜的年收益Q (单位:万元)与投入金额a (单位:万元)满足P =80+42a ,Q =14 a +120.设甲大棚的投入金额为x (单位:万元),每年两个大棚的总收益为f (x )(单位:万元),合理安排甲、乙两个大棚的投入金额,则两个大棚的总收益f (x )的最大值为________万元.8.[2023ꞏ陕西咸阳二模]为了抗击新冠肺炎,某医药公司研制出一种消毒剂,据实验表明,该药物释放量y (mg/m 3)与时间t (h)的函数关系为y =⎩⎨⎧kt ,0<t <12,1kt ,t ≥12,其图象如图所示,实验表明,当药物释放量y <0.75 mg/m 3时对人体无害.(1)k =________;(2)为了不使人受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过________分钟人方可进入房间.二、 能力小题提升篇1.[2023ꞏ广东深圳第二次质检]函数f (x )=x -4-(x +2)ꞏ⎝⎛⎭⎫23 x 的零点个数为( )A .0B .1C .2D .32.[2023ꞏ陕西省西安市模拟]已知函数f (x ),g (x )的定义域为R ,f (x +1)是奇函数,g (x +1)是偶函数,若y =f (x )ꞏg (x )的图象与x 轴有5个交点,则y =f (x )ꞏg (x )的零点之和为( )A .-5B .5C .-10D .103.[2023ꞏ北京理工大学模拟]每年红嘴鸥都从西伯利亚飞越千山万水来到美丽的昆明过冬,科学家经过测量发现候鸟的飞行速度可以表示为函数v =12 log 3x100 -lg x 0(单位:km/min),其中x 表示候鸟每分钟耗氧量的单位数,常数x 0表示测量过程中候鸟每分钟的耗氧偏差.若雄鸟的飞行速度为1.3 km/min ,雌鸟的飞行速度为0.8 km/min ,则此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的( )A .2倍B .3倍C .4倍D .5倍4.[2023ꞏ四川省南充市试题]设函数y =f (x )是定义在R 上的奇函数,满足f (x -2)+f (x )=0.当x ∈[-1,1]时,f (x )=x 3,则下列结论中正确的是( )A .函数y =f (x )的图象关于直线x =2对称B .函数y =f (x )在区间[7,9]单调递减C .当x ∈[-1,2 023]时,f (x )有1 012个零点D .函数y =f (x )的图象关于点(1,0)对称5.[2023ꞏ广西柳州二模]若函数f (x )=⎩⎪⎨⎪⎧e x -a ,x <1,(x -2a )(x -a 2),x ≥1 恰有2个零点,则实数a 的取值范围是________.6.[2023ꞏ清华大学附属中学期中]函数y =f (x )的定义域为[-2.1,2],其图象如图所示,且f (-2.1)=-0.96.(1)若函数y =f (x )-k 恰有2个不同的零点,则k =________;(2)已知函数g (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,x 3+2x -16,x >0, 则y =g (f (x ))有________个不同的零点.三、高考小题重现篇1.[2019ꞏ全国卷Ⅲ]函数f (x )=2sin x -sin 2x 在[0,2π]上的零点个数为( ) A .2 B .3 C .4 D .52.[2020ꞏ全国卷Ⅲ]Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I (t )=K1+e-0.23(t -53) ,其中K 为最大确诊病例数.当I (t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( )A .60B .63C .66D .693.[2020ꞏ山东卷]基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I (t )=e rt描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)( )A .1.2天B .1.8天C .2.5天D .3.5天 4.[2019ꞏ全国卷Ⅱ]2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:M 1(R +r )2 +M 2r 2 =(R +r )M 1R3 .设α=rR .由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2 ≈3α3,则r 的近似值为( ) A .M 2M 1 R B .M 22M 1RC .33M 2M 1 RD .3M 23M 1 R5.[2020ꞏ天津卷]已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≥0,-x ,x <0. 若函数g (x )=f (x )-|kx 2-2x |(k ∈R )恰有4个零点,则k 的取值范围是( )A .⎝⎛⎭⎫-∞,-12 ∪(22 ,+∞) B .⎝⎛⎭⎫-∞,-12 ∪(0,22 ) C .(-∞,0)∪(0,22 ) D .(-∞,0)∪(22 ,+∞)四、经典大题强化篇1.设函数f (x )=⎪⎪⎪⎪1-1x (x >0). (1)作出函数f (x )的图象;(2)当0<a <b 且f (a )=f (b )时,求1a +1b 的值;(3)若方程f (x )=m 有两个不相等的正根,求m 的取值范围.2.[2023ꞏ福建省龙岩市试题]为进一步奏响“绿水青山就是金山银山”的主旋律,某旅游风景区以“绿水青山”为主题,特别制作了旅游纪念章,并决定近期投放市场.根据市场调研情况,预计每枚该纪念章的市场价y (单位:元)与上市时间x (单位:天)的数据如下表上市时间x /天 2 6 32 市场价y /元 148 60 73(1)根据上表数据,从①y =ax +b ()a ≠0 ,②y =ax +b ()a ≠0 ,③y =a log b x (a ≠0,b >0,b ≠1),④y =ax +bx (a >0,b >0)中选取一个恰当的函数描述每枚该纪念章的市场价y 与上市时间x 的变化关系(无需说明理由),并利用你选取的函数,求该纪念章市场价最低时的上市天数及最低市场价;(2)记你所选取的函数y =f (x ),若对任意x ∈[k ,+∞)(k >0) ,不等式kf (x )-32k -210≥0恒成立,求实数k 的取值范围.参考答案一 基础小题练透篇1.答案:C答案解析:由题意得f (x )=ln x +x -6为连续函数,且在(0,+∞)单调递增, f (2)=ln 2-4<0,f (3)=ln 3-3<0,f (4)=ln 4-2<ln e 2-2=0,f (5)=ln 5-1>ln e -1=0,根据零点存在性定理,f (4)·f (5)<0,所以零点一定位于区间(4,5). 2.答案:A答案解析:因为函数f (x )=x 3+x 2+x +c ,所以f ′(x )=3x 2+2x +1,因为Δ=4-12=-8<0,所以f ′(x )>0,从而f (x )=x 3+x 2+x +c 在R 上单调递增,又当x →-∞时,f (x )→-∞,当x →+∞时,f (x )→+∞,由零点存在定理得:函数f (x )=x 3+x 2+x +c 有且只有一个零点.3.答案:A答案解析:令(ln x )2-2ln x =ln x ·(ln x -2)=0,解得:x =1或x =e 2,所以函数f (x )有2个零点.4.答案:C 答案解析:当x =0时,f (0)=1≠0,故x =0不是方程f (x )-a |x |=0的根,当x ≠0时,由f (x )-a |x |=0得,a =⎪⎪⎪⎪⎪⎪x +1x+3 ,方程f (x )-a |x |=0恰有两个不同的实根等价于直线y =a 与函数y =⎪⎪⎪⎪⎪⎪x +1x+3 的图象有两个不同的交点,作出函数y =f (x )的大致图象如图所示,由图可知,a =0或1<a <5. 5.答案:D答案解析:由题意知,lg (1 000X 0)=12lg (1+p )+lg X 0,即lg 103+lg X 0=12lg (1+p )+lg X 0, 即3+lg X 0=12lg (1+p )+lg X 0,所以1+p =100.25≈1.778,解得p ≈0.778=77.8%. 故选D. 6.答案:B答案解析:因为f (x )为开口向上的抛物线,且对称轴为x =-a2,在区间(-1,1)上有两个不同的零点,所以⎩⎪⎨⎪⎧f (-1)>0f (1)>0f ⎝ ⎛⎭⎪⎫-a 2<0-1<-a 2<1,即⎩⎪⎨⎪⎧1-a -a2>01+a -a 2>0⎝ ⎛⎭-a 22-a 22-a 2<0-2<a <2, 解得0<a <23 ,所以实数a 的取值范围是⎝ ⎛⎭⎪⎫0,23 . 7.答案:282答案解析:f (x )=80+42x +14 ×(200-x )+120=-14x +42x +250,依题意得⎩⎪⎨⎪⎧x ≥20,200-x ≥20, 得20≤x ≤180,故f (x )=-14 x +42x +250(20≤x ≤180).令t =x ,t ∈[25 ,65 ],则g (t )=-14 t 2+42 t +250=-14 (t -82 )2+282,当t =82 时,即x =128时,f (x )max =282,∴甲大棚投入128万元,乙大棚投入72万元时,总收益最大,且最大收益为282万元.8.答案:(1)2 (2)40答案解析:(1)由图象可知,当t =12时,y =1,则2k =1,所以k =2.(2)由(1)可知,y =⎩⎪⎨⎪⎧2t ,0<t <12,12t,t ≥12,当0<t <12 时,y =2t 单调递增;当t ≥12 时,y =12t 单调递减.令12t <0.75,解得t >23.所以在消毒后至少经过23小时,即40分钟后人方可进入房间.二 能力小题提升篇1.答案:C答案解析:令f (x )=0,得x -4=(x +2)·⎝ ⎛⎭⎪⎫23 x,显然x =-2不是该方程的根,故等价变形得到x -4x +2 =⎝ ⎛⎭⎪⎫23 x ,在同一直角坐标系中分别作出y =x -4x +2 ,y =⎝ ⎛⎭⎪⎫23 x 的图象如图所示,观察可知,它们有2个交点,故函数f (x )=x -4-(x +2)·⎝ ⎛⎭⎪⎫23 x 有2个零点.2.答案:B答案解析:由题意,f (-x +1)=-f (x +1)⇔f (2-x )=-f (x ),又g (2-x)=g (x ),所以f (2-x )·g (2-x )=-f (x )g (x ),所以函数y =f (x )·g (x )的图象关于点(1,0)对称.设y =f (x )·g (x )的零点为x 1,x 2,x 3,x 4,x 5,易知x 3=1,设x 1<x 2<1<x 4<x 5,则x 1+x 5=x 2+x 4=2,所以x 1+x 2+x 3+x 4+x 5=5.故选B. 3.答案:B答案解析:设雄鸟每分钟的耗氧量为x 1,雌鸟每分钟的耗氧量为x 2,由题意可得⎩⎪⎨⎪⎧1.3=12log 3x 1100-lg x 00.8=12log 3x 2100-lg x 0,两式相减可得12 =12 log 3x 1x 2 ,所以log 3x 1x 2 =1,即x 1x 2 =3,故此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的3倍.故选B. 4.答案:C答案解析:对于f (x -2)+f (x )=0,有f (x )+f (x +2)=0⇒f (x +2)=-f (x )⇒f ()x +4 =-f (x +2)=f (x ),即f (x )周期为4.又对于f (x -2)+f (x )=0, 有f (x +1)+f (x -1)=0⇒f (x +1)=-f (x -1),因f (x )是定义在R 上的奇函数.则f ()1+x =f ()1-x ,故f (x )关于x =1对称.又当x ∈[]-1,1 时,f (x )=x 3,据此可做出f (x )部分图象如下.对于A 选项,结合图象可知:f (x )图象关于x =1+2k ,k ∈Z 对称,故A 错误. 对于B 选项,因f (x )周期为4,故f (x )在[]7,9 上单调性与f (x )在[]-1,1 上保持一致.又当x ∈[]-1,1 时,f (x )=x 3,f (x )在[]-1,1 上单调递增,故B 错误. 对于C 选项,结合图象可知:f (x )零点为2k ,k ∈Z ,则令-1≤2k ≤2 023,解得:0≤k ≤1011,故当x ∈[]-1,2 023 时,f (x )有1 012个零点,故C 正确. 对于D 选项,结合图象可知:f (x )图象关于()2k ,0 对称,其中k ∈Z ,故D 错误. 故选C.5.答案:⎣⎢⎡⎭⎪⎫12,1 ∪{2}∪[e,+∞) 答案解析:易知当a ≤0时,不满足题意;当0<a <2时,e -a >0,要使函数f (x )恰有2个零点,则a 2<1≤2a ,得12≤a <1;当a =2时,由e x-2=0,得x =ln 2,满足x <1,由(x -2a )(x -a 2)=0,得x =4,此时f (x )共有2个零点,满足题意;当a >2时,a 2>2a >4,要使函数f (x )恰有2个零点,则e -a ≤0,即a ≥e.综上,实数a 的取值范围是⎣⎢⎡⎭⎪⎫12,1 ∪{2}∪[)e ,+∞ .6.答案:(1)4或0 (2)4 答案解析:(1)∵y =f (x )-k 恰有2个不同的零点,∴y =f (x )和y =k 的图象有2个不同的交点.由图可得当y =f (x )和y =k 的图象有2个不同的交点时,k =4或k =0.(2)∵g (x )=⎩⎪⎨⎪⎧2x +1,x ≤0,x 3+2x -16,x >0, ∴当x ≤0时,由2x +1=0,得x =-12 .当f (x )=-12时,由图可知g (f (x ))=0有一个解.当x >0时,易知g (x )=x 3+2x -16单调递增,∵g (2)=-4,g (3)=17,∴g (x )在(2,3)上有一个零点x 0,当f (x )=x 0,x 0∈(2,3)时,由f (x )的图象可知g (f (x ))=0有3个解,∴y =g (f (x ))共有4个零点.三 高考小题重现篇1.答案:B答案解析:由f (x )=2sin x -sin 2x =2sin x -2sin x cos x =2sin x ·(1-cos x )=0得sin x =0或cos x =1,∴x =k π,k ∈Z ,又∵x ∈[0,2π],∴x =0,π,2π,即零点有3个. 2.答案:C 答案解析:I (t *)=K1+e -0.23(t *-53) =0.95K ,整理可得e0.23(t *-53)=19,两边取自然对数得0.23(t *-53)=ln 19≈3,解得t *≈66.3.答案:B答案解析:∵R 0=1+rT ,∴3.28=1+6r ,∴r =0.38. 若⎩⎪⎨⎪⎧I (t 1)=e0.38t 1,I (t 2)=e0.38t 2,I (t 2)=2I (t 1),则e0.38(t 2-t 1)=2,0.38(t 2-t 1)=ln 2≈0.69,t 2-t 1≈1.8.4.答案:D答案解析:由M 1(R +r )2 +M 2r 2 =(R +r )M 1R 3 ,得M 1⎝ ⎛⎭⎪⎫1+r R 2 +M 2⎝ ⎛⎭⎪⎫r R 2=⎝ ⎛⎭⎪⎫1+r R M 1.因为α=r R,所以M 1(1+α)2 +M 2α2 =(1+α)M 1,得3α3+3α4+α5(1+α)2 =M 2M 1 .由3α3+3α4+α5(1+α)2≈3α3,得3α3≈M 2M 1,即3⎝ ⎛⎭⎪⎫r R 3 ≈M 2M 1 ,所以r ≈ 3M 23M 1 ·R .5.答案:D答案解析:由题意知函数g (x )=f (x )-|kx 2-2x |恰有4个零点等价于方程f (x )-|kx 2-2x |=0,即f (x )=|kx 2-2x |有4个不同的根,即函数y =f (x )与y =|kx 2-2x |的图象有4个不同的公共点.当k =0时,在同一平面直角坐标系中,分别作出y =f (x )与y =|2x |的图象如图1所示,由图1知两图象只有2个不同的公共点,不满足题意.图1当k <0时,y =|kx 2-2x |=⎪⎪⎪⎪⎪⎪k ⎝ ⎛⎭⎪⎫x -1k 2-1k ,其图象的对称轴为直线x =1k <0,直线x =1k 与y =|kx 2-2x |的图象的交点为⎝ ⎛⎭⎪⎫1k ,-1k ,点⎝ ⎛⎭⎪⎫1k,-1k 在直线y =-x 上,在同一平面直角坐标系中,分别作出y =f (x )与y =|kx 2-2x |的图象如图2所示,由图2易知函数y =f (x )与y =|kx 2-2x |的图象有4个不同的公共点,满足题意.图2当k >0时,函数y =|kx 2-2x |的图象与x 轴的2个交点分别为原点(0,0)与⎝ ⎛⎭⎪⎫2k,0 ,则当x >2k时,由kx 2-2x =x 3,得x 2-kx +2=0,令Δ=k 2-8=0,得k =22 ,此时在同一平面直角坐标系中,分别作出函数y =f (x )与y =|kx 2-2x |的图象如图3所示,由图3知两图象有3个不同的公共点,不满足题意.令Δ=k 2-8>0,得k >22 ,此时在同一平面直角坐标系中,分别作出函数y =f (x )与y =|kx 2-2x |的图象如图4所示,由图4知两图象有4个不同的公共点,满足题意.令Δ=k 2-8<0,得0<k <22 ,易知此时不满足题意.图3 图4综上可知,实数k 的取值范围是(-∞,0)∪(22 ,+∞).四 经典大题强化篇1.答案解析:(1)如图所示.(2)∵f (x )=⎪⎪⎪⎪⎪⎪1-1x=⎩⎪⎨⎪⎧1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1]上是减函数,而在(1,+∞)上是增函数. 由0<a <b 且f (a )=f (b ),得0<a <1<b 且1a -1=1-1b,∴1a +1b=2.(3)由函数f (x )的图象可知,当0<m <1时,方程f (x )=m 有两个不相等的正根. 2.答案解析:(1)由题表知,随着时间x 的增大,y 的值随x 的增大,先减小后增大,而所给的函数y =ax +b (a ≠0),y =a log b x ()a ≠0,b >0,b ≠1 和y =ax+b (a ≠0)在(0,+∞)上显然都是单调函数,不满足题意,故选择y =ax +b x()a >0,b >0 .把()2,148 ,()6,60 ,分别代入y =ax +bx()a >0,b >0 ,得⎩⎪⎨⎪⎧2a +b2=1486a +b 6=60,解得a =2,b =288,∴y =2x +288x,x ∈(0,+∞).又y =2x +288x≥22x ·288x=48,∴当且仅当2x =288x时,即当x =12时,y 有最小值,且y min =48.故当该纪念章上市12天时,市场价最低,最低市场价为每枚48元.(2)原不等式可以整理为:f (x )≥32+210k,x ∈[)k ,+∞ ,因为对∀x ∈[)k ,+∞ ()k >0 ,都有不等式kf (x )-32k -210≥0恒成立,则f (x )min ≥32+210k.(ⅰ)当0<k ≤12时,f (x )=2x +288x≥22x ·288x=48,当且仅当2x =288x时,即当x =12时, f (x )min =48.∴48≥32+210k,解得k ≥13.125,不符合假设条件,舍去.(ⅱ)当k >12时,f (x )在[k ,+∞)(k >0)单调递增,故f (x )min ≥32+210k,只需2k +288k≥210k+32.整理得:k 2-16k +39≥0, ∴k ≥13(k ≤3舍去),综上,实数k 的取值范围是[13,+∞).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考调研
高考总复习· 二轮专题· 数学· 理
第一部分 论


第 1页
第一部分

论方法
高考调研
高考总复习· 二轮专题· 数学· 理
研究一些数学思想和方法吧!它将会使你站在一个崭新的 高度去审视问题.只有熟练地掌握数学的思想和方法,才能使 你在解答高考综合题时左右逢源、游刃有余! “数学思想方法”是数学的灵魂,要熟练掌握通性通法, 才是穿越高考的关键.所有的高考试题都可以用基本思想方法 求解,可以采用常用技巧,但对于有些比较难以掌握的技巧与 方法则应淡化甚至放弃.
第17页
第一部分
专题1
高考调研
高考总复习· 二轮专题· 数学· 理
x2 2 将 y=kx-2 代入 4 +y =1,得(1+4k2)x2-16kx+12=0.
2 8 k ± 2 4 k -3 3 2 2 当 Δ=16(4k -3)>0,即 k >4时,x1,2= . 4k2+1 2 2 4 k + 1· 4 k -3 2 从而|PQ|= k +1|x1-x2|= . 4k2+1
2
实数 a 的取值范围为________. 【答题模板】 将a表示成x 求三角函 ―→ 的三角函数 数的最值
第11页
第一部分
专题1
高考调研
高考总复习· 二轮专题· 数学· 理
【解析】
由 cos2x-sinx+a=0,得 a=sin2x+sinx-1.
2
π 问题变成求函数 a=sin x+sinx-1 在 x∈(0,2]时的值域问 题. 12 5 ∵a=(sinx+2) -4, 而 0<sinx≤1,∴-1<a≤1,即 a 的取值范围为(-1,1].
第 4页
第一部分
专题1
高考调研
高考总复习· 二轮专题· 数学· 理
二、方程思想 就是分析数学中的变量间的等量关系,构建方程或方程组, 转化为对方程的解的讨论,从而使问题获解.
第 5页
第一部分
专题1
高考调研
三、函数思想与方程思想的联系
高考总复习· 二轮专题· 数学· 理
函数思想与方程思想是密切相关的,如函数问题可以转化为 方程问题来解决,方程问题也可以转化为函数问题加以解决,如 解方程 f(x)=0,就是求函数 y=f(x)的零点,解不等式 f(x)>0(或 f(x)<0),就是求函数 y=f(x)的正(或负)区间,再如方程 f(x)=g(x) 的解的问题可以转化为函数 y=f(x)与 y=g(x)的交点问题, 也可以 转化为函数 y=f(x)-g(x)与 x 轴的交点问题,方程 f(x)=a 有解, 当且仅当 a 属于函数 f(x)的值域,函数与方程的这种相互转化关 系十分重要.
第 8页
第一部分
专题1
高考调研
高考总复习· 二轮专题· 数学· 理
1 5 当 x<-2 时,y=-3x-1>5;当-2≤x< 时,y=-x+3> ; 2 2 1 5 5 当 x≥2时,y=3x+1≥2.故函数 y=|2x-1|+|x+2|的最小值为2. 1 因为不等式|2x-1|+|x+2|≥a +2a+2 对任意实数 x 恒成立,所
第24页
第一部分
专题1
高考调研
高考总复习· 二轮专题· 数学· 理
BC= 7,问 AA1 为何值时,三棱柱 ABC-A1B1C1 体积最大, 并求此最大值. 【答题模板】 (1)利用直线与平面垂直的判定与性质证明线 线垂直; (2)设 AA1=x,建立目标函数 V(x); (3)利用配方法求最大值.
第25页
第一部分
专题1
高考调研
高考总复习· 二轮专题· 数学· 理
【解析】
(1)由 AA1⊥BC,知 BB1⊥BC.
又 BB1⊥A1B,且 A1B∩BC=B, 故 BB1⊥平面 BCA1,即 BB1⊥A1C. 又 BB1∥CC1,所以 A1C⊥CC1. (2)方法一 设 AA1=x,
2 2 在 Rt△A1BB1 中,A1B= A1B1 -BB2 = 4 - x . 1
2
4 7 因为 t+ t ≥4,当且仅当 t=2,即 k=± 2 时等号成立,且满 足 Δ>0, 7 所以当△OPQ 的面积最大时 l 的方程为 y= 2 x-2 或 y=- 7 x-2. 2
第19页
第一部分
专题1
高考调研
高考总复习· 二轮专题· 数学· 理
【对点练 3】
(2014· 北京)已知椭圆 C:x2+2y2=4.
【典例 3】 (2014· 新课标全国Ⅰ)已知点 A(0, -2), 椭圆 E: x2 y2 3 + =1(a>b>0)的离心率为 ,F 是椭圆 E 的右焦点,直线 AF a2 b2 2 2 3 的斜率为 ,O 为坐标原点. 3 (1)求 E 的方程; (2)设过点 A 的动直线 l 与 E 相交于 P, Q 两点, 当△OPQ 的 面积最大时,求 l 的方程.
由原式得 m=x- 1-x,设 1-x=t(t≥0),
2
5 12 则 m=1-t -t=4-(t+2) . 5 12 ∴m= -(t+ ) 在[0,+∞)上是减函数. 4 2 ∴t=0 时,m 的最大值为 1.
【答案】 A
第14页
第一部分
专题1
高考调研
类型二
高考总复习· 二轮专题· 数学· 理
利用函数思想求最值
【解析】 由题意知 x2-2ax+a 能够取遍所有正数.即函数 g(x)=x2-2ax+a 有零点, 所以 Δ=4a2-4a≥0 解得 a≤0 或 a≥1. 即 a 的取值范围是(-∞,0]∪[1,+∞).
第10页
第一部分
专题1
高考调研
高考总复习· 二轮专题· 数学· 理
【典例 2】
π 若方程 cos x-sinx+a=0 在(0, ]上有解,则 2
≤4). x2 8 0 2 2 因为 2 +x2≥4(0<x0 ≤4),且当 x0 =4 时等号成立. 0 所以|AB|2≥8. 故线段 AB 长度的最小值为 2 2.
第23页
第一部分
专题1
高考调研
高考总复习· 二轮专题· 数学· 理
【典例 4】
(2014· 江西)
如图,在三棱柱 ABC-A1B1C1 中,AA1⊥BC,A1B⊥BB1. (1)求证:A1C⊥CC1; (2)若 AB=2,AC= 3,
第 2页
第一部分
论方法
高考调研
高考总复习· 二轮专题· 数学· 理
专题1
函数与方程思想
第 3页
第一部分
专题1
高考调研
高考总复习· 二轮专题· 数学· 理
c
一、函数思想 就是用运动和变化的观点,分析和研究具体问题中的数量关 系,并用函数的解析式将其表示出来,从而通过研究函数的图像 和性质,使问题获解.
2
2
4
62 36 2 -7x -7 + , 7
6 42 42 3 7 = , 即 AA1= 时, 体积 V 取到最大值 . 7 7 7 7
第28页
第一部分
专题1
高考调研
高考总复习· 二轮专题· 数学· 理
方法二
过 A1 作 BC 的垂线,垂足为 D,连接 AD.
由 AA1⊥BC,A1D⊥BC,故 BC⊥平面 AA1D,BC⊥AD. 又∠BAC=90° , 1 1 所以 S△ABC= AD· BC= AB· AC. 2 2 2 21 所以 AD= 7 . 设 AA1=x,在 Rt△AA1D 中,
第 6页
第一部分
专题1
高考调研
类型一
高考总复习· 二轮专题· 数学· 理
利用函数思想确定参数范围
2
1 【典例 1】 (2014· 重庆)若不等式|2x-1|+|x+2|≥a + a+2 2 对任意实数 x 恒成立,则实数 a 的取值范围是________. 【答题模板】 (1)审题知本题为恒成立问题;
12-7x2 1 所以 S△A1BC= A1B· A1C· sin∠BA1C= . 2 2 从而三棱柱 ABC-A1B1C1 的体积 V=S 直· l=S△A1BC· AA1= x 12-7x2 . 2
第27页
第一部分
专题1
高考调研
高考总复习· 二轮专题· 数学· 理
因为 x 12-7x = 12x -7x = 故当 x=
(2)联想恒成立问题常用方法:分离参数法(本题已分离); (3)求|2x-1|+|x+2|的最小值; (4)解关于 a 的不等式得 a 的范围.
第 7页
第一部分
专题1
高考调研
高考总复习· 二轮专题· 数学· 理
【解析】
-3x-1,x<-2, -x+3,-2≤x<1, 2 设 y=|2x-1|+|x+2|= 1 3x+1,x≥ . 2
(2)设点 A,B 的坐标分别为(t,2),(x0,y0),由 OA⊥OB,把 t 用 x0,y0 表示出来.利用两点间距离公式表示|AB|,并由点 B 在 椭圆上,把|AB|化为只含有 x0 一个变量的函数式,根据 x0 的取值 范围确定最值.
第21页
第一部分
专题1
高考调研
高考总复习· 二轮专题· 数学· 理
【解析】
x2 y2 (1)由题意,得椭圆 C 的标准方程为 + =1. 4 2
∴a2=4,b2=2,从而 c2=a2-b2=2. 因此 a=2,c= 2. c 2 故椭圆 C 的离心率 e=a= 2 . (2)设点 A,B 的坐标分别为(t,2),(x0,y0),其中 x0≠0. 2y0 → → 因为 OA⊥OB, 所以OA· OB=0, 即 tx0+2y0=0, 解得 t=- x .
(1)求椭圆 C 的离心率; (2)设 O 为原点,若点 A 在直线 y=2 上,点 B 在椭圆 C 上, 且 OA⊥OB,求线段 AB 长度的最小值. 【答题模板】 (1)把椭圆方程化为标准形式,确定 a,b,c
相关文档
最新文档