真核细胞表达系统的类型与常用真核细胞表达载体
真核细胞常见表达载体
![真核细胞常见表达载体](https://img.taocdn.com/s3/m/0f33072331b765ce05081479.png)
真核细胞常见表达载体真核细胞, 表达载体1、pCMVp-NEO-BAN载体特点:该真核细胞表达载体分子量为6600碱基对,主要由CMVp启动子、兔β-球蛋白基因内含子、聚腺嘌呤、氨青霉素抗性基因和抗neo基因以及pBR322骨架构成,在大多数真核细胞内都能高水平稳定地表达外源目的基因。
更重要的是,由于该真核细胞表达载体中抗neo 基因存在,转染细胞后,用G418筛选,可建立稳定的、高表达目的基因的细胞株。
插入外源基因的克隆位点包括Sal1、BamH1和EcoR1位点。
注意在此载体中有二个EcoR1位点存在。
2、pEGFP, 增强型绦色荧光蛋白表达载体(Enhanced Fluorecent Protein Vector)特点: pEGFP表达载体中含有绿色荧光蛋白,在PCMV启动子驱动下,在真核细胞中高水平表达。
载体骨架中的SV40origin使该载体在任何表达SV40 T抗原的真核细胞内进行复制。
Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。
此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。
用途: 该表达载体EGFP上游有Nde1、Eco47111和Age1克隆位点,将外源基因扦入这些位点,将合成外源基因和EGFP的融合基因。
借此可确定外源基因在细胞内的表达和/或组织中的定位。
亦可用于检测克隆的启动子活性(取代CMV启动子,Acet1-Nhe1)。
3、pEGFT-Actin, 增强型绿色荧光蛋白/人肌动蛋白表达载体特点:pEGFP-Actin表达载体中含有绿色荧光蛋白和人胞浆β-肌动蛋白基因,在PCMV启动子驱动下,在真核细胞中高水平表达。
载体骨架中的SV40origin使该载体在任何表达SV40 T 抗原的真核细胞内进行复制。
真核细胞常见的表达载体及真核细胞表达外源基因的调控(精)
![真核细胞常见的表达载体及真核细胞表达外源基因的调控(精)](https://img.taocdn.com/s3/m/fb5082a6bb4cf7ec4afed0c0.png)
真核细胞常见表达载体1. pCMVp-NEO-BAN载体特点: 该真核细胞表达载体分子量为6600碱基对,主要由CMVp启动子、兔β-球蛋白基因内含子、聚腺嘌呤、氨青霉素抗性基因和抗neo基因以及pBR322骨架构成,在大多数真核细胞内都能高水平稳定地表达外源目的基因。
更重要的是,由于该真核细胞表达载体中抗neo基因存在,转染细胞后,用G418筛选,可建立稳定的、高表达目的基因的细胞株。
插入外源基因的克隆位点包括Sal1、BamH1和EcoR1位点。
注意在此载体中有二个EcoR1位点存在。
2. pEGFP, 增强型绦色荧光蛋白表达载体(Enhanced Fluorecent Protein Vector特点: pEGFP表达载体中含有绿色荧光蛋白,在PCMV启动子驱动下,在真核细胞中高水平表达。
载体骨架中的SV40 origin使该载体在任何表达SV40 T 抗原的真核细胞内进行复制。
Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。
此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。
用途: 该表达载体EGFP上游有Nde1、Eco47111和Age1克隆位点,将外源基因扦入这些位点,将合成外源基因和EGFP的融合基因。
借此可确定外源基因在细胞内的表达和/或组织中的定位。
亦可用于检测克隆的启动子活性(取代CMV启动子,Acet1-Nhe1。
Excitation maximum = 488 nm; Emission maximum = 507图示为启动子分泌信号肽和多克隆位点区域:Ase1.pCMV…ccg cta gcg cta ccg gtc gcc acc atg- .EGFP…BamH1…SV40 poly A+Nhe1 Age13. pEGFT-Actin, 增强型绿色荧光蛋白/人肌动蛋白表达载体特点: pEGFP-Actin表达载体中含有绿色荧光蛋白和人胞浆β-肌动蛋白基因,在PCMV启动子驱动下,在真核细胞中高水平表达。
真核细胞表达系统的类型与常用真核细胞表达载体
![真核细胞表达系统的类型与常用真核细胞表达载体](https://img.taocdn.com/s3/m/6ff12dca8bd63186bcebbc46.png)
真核细胞表达系统的类型与常用真核细胞表达载体标签:真核细胞酵母表达系统细胞表达载体真核表达系统昆虫表达系统动物表达系统摘要: 原核表达系统是常被用来研究基因功能的成熟系统,由于原核表达系统具有包涵体蛋白不易纯化、蛋白修饰不完整等缺陷,人们也开始利用真核细胞表达系统来研究基因。
原核表达系统是常被用来研究基因功能的成熟系统,由于原核表达系统具有包涵体蛋白不易纯化、蛋白修饰不完整等缺陷,人们也开始利用真核细胞表达系统来研究基因。
自上世纪70年代基因工程技术诞生以来,基因表达技术已渗透到生命科学研究的各个领域。
并随着人类基因组计划实施的进行,在技术方法上得到了很大发展,时至今日已取得令人瞩目的成就。
随着人类基因组计划的完成,越来越多的基因被发现,其中多数基因功能不明。
利用表达系统在哺乳动物细胞内表达目的基因是研究基因功能及其相互作用的重要手段。
在各种表达系统中,最早被采用进行研究的是原核表达系统,这也是目前掌握最为成熟的表达系统。
该项技术的主要方法是将已克隆入目的基因DNA段的载体(一般为质粒)转化细菌(通常选用的是大肠杆菌),通过iptg诱导并最终纯化获得所需的目的蛋白。
其优点在于能够在较短时间内获得基因表达产物,而且所需的成本相对比较低廉。
但与此同时原核表达系统还存在许多难以克服的缺点:如通常使用的表达系统无法对表达时间及表达水平进行调控,有些基因的持续表达可能会对宿主细胞产生毒害作用,过量表达可能导致非生理反应,目的蛋白常以包涵体形式表达,导致产物纯化困难;而且原核表达系统翻译后加工修饰体系不完善,表达产物的生物活性较低。
为克服上述不足,许多学者将原核基因调控系统引入真核基因调控领域,其优点是:①根据原核生物蛋白与靶DNA间作用的高度特异性设计,而靶DNA与真核基因调控序列基本无同源性,故不存在基因的非特异性激活或抑制;②能诱导基因高效表达,可达105倍,为其他系统所不及;③能严格调控基因表达,即不仅可控制基因表达的“开关”,还可人为地调控基因表达量。
昆虫表达系统
![昆虫表达系统](https://img.taocdn.com/s3/m/271a787402768e9951e7381b.png)
昆虫杆状病毒表达系统的分子基础
• 目前已知基因组全序列的杆状病毒有苜蓿丫纹夜蛾核型多角体病毒 (Ac MNPV)、 家蚕核多角体病毒(BmNPV)、 黄杉毒蛾多核衣壳核多角体病毒 (OpMNPV)、 舞毒蛾多核衣壳核多角体病毒( Ld MNPV)、 甜菜夜蛾多核衣壳 核多角体病毒( Se MNPV)、 棉铃虫核型多角体病毒(HaNPV)以及斜纹夜蛾核 型多角体病毒( SplM t NPV) 杆状病毒在其生活史中共有两种形式的表型存在,在感染的初期( 0~ 24h), 主 要以细胞释放型病毒粒子( cell-released virus , CRV)为主, 也称为胞外型病毒 ( extracel lular vir us , ECV)或出芽型病毒 ( Budded vir us , BV); 在感染的晚 期主要以包埋型病毒( occlude d vir us , OV)的形式存在。杆状病毒的这两种 表型的形态、 蛋白组成、 病毒囊膜的来源、 感染组织特异性以及病毒入侵 宿主细胞的方式都不相同。 由于两种表型的病毒在结构组成上的差异, 所以杆状病毒在不同的时期需要表 达不同类型的蛋白来满足病毒颗粒不同形式的组装。昆虫杆状病毒的基因表 达共分为 4个时期: 极早期、 早期、 晚期、 迟晚期。4个时期的基因一环扣 一环,按时间先后, 以级联方式严格制约。早期表达的基因有 ie- 1、 me53、 pe38、 ie- 2等, 晚期表达的基因有 vp39 、vp80、 polh、 p10等, 这些不同的 基因所表达的蛋白各自具有不同的功能, 有些表达产物具有调控的功能, 而有 些仅仅只具有结构蛋白的作用。 在杆状病毒所表达的一系列蛋白中,有一类蛋白具有较高的表达量,并且均为病 毒基因组复制所非必需, 其中最具代表性的有多角体蛋白与 P10蛋白, 均属于 晚期表达的蛋白,受晚期启动子的调控。昆虫的杆状病毒表达系统正是利用了 这类蛋白的优点, 从而提供了外源 DNA插入座位。
各种表达载体介绍
![各种表达载体介绍](https://img.taocdn.com/s3/m/27de11a2f524ccbff12184cf.png)
pET 载体中,目标基因克隆到 T7 噬菌体强转录和翻译信号控制之下,并通过在宿主细胞提供 T7 RNA 聚合酶来诱导表达。
Novagen 的 pET 系统不断扩大,提供了用于表达的新技术和选择,目前共包括 36 种载体类型、 15 种不同宿主菌和设计用于有效检测和纯化目标蛋白的许多其它相关产品。
优点· 是原核蛋白表达引用最多的系统· 在任何大肠杆菌表达系统中,基础表达水平最低· 真正的调节表达水平的“变阻器”控制· 提供各种不同融合标签和表达系统配置· 可溶性蛋白生产、二硫键形成、蛋白外运和多肽生产等专用载体和宿主菌· 许多载体以 LIC 载体试剂盒提供,用于迅速定向克隆 PCR 产物· 许多宿主菌株以感受态细胞形式提供,可立即用于转化阳性 pFORCE TM 克隆系统具有高效克隆 PCR 产物、阳性选择重组体和高水平表达目标蛋白等特点。
pET 系统概述pET 系统是在大肠杆菌中克隆和表达重组蛋白的最强大系统。
根据最初由 Studier 等开发的 T7 启动子驱动系统, Novagen 的 pET 系统已用于表达成千上万种不同蛋白。
控制基础表达水平pET 系统提供 6 种载体 - 宿主菌组合,能够调节基础表达水平以优化目标基因的表达。
没有单一策略或条件适用于所有目标蛋白,所以进行优化选择是必要的。
宿主菌株质粒在非表达宿主菌中构建完成后,通常转化到一个带有 T7 RNA 聚合酶基因的宿主菌(λ DE3 溶原菌)中表达目标蛋白。
在λ DE3 溶原菌中, T7 RNA 聚合酶基因由 lacUV5 启动子控制。
未诱导时便有一定程度转录,因此适合于表达其产物对宿主细胞生长无毒害作用的一些基因。
而宿主菌带有 pLysS 和 pLyE 时调控会更严紧。
pLys 质粒编码 T7 溶菌酶,它是 T7 RNA 聚合酶的天然抑制物,因此可降低其在未诱导细胞中转录目标基因的能力。
真核表达载体
![真核表达载体](https://img.taocdn.com/s3/m/3c47d161011ca300a6c3907a.png)
真核细胞常见表达载体1、pCMVp-NEO-BAN载体特点: 该真核细胞表达载体分子量为6600碱基对,主要由CMVp启动子、兔β-球蛋白基因内含子、聚腺嘌呤、氨青霉素抗性基因和抗neo基因以及pBR322骨架构成,在大多数真核细胞内都能高水平稳定地表达外源目的基因。
更重要的是,由于该真核细胞表达载体中抗neo基因存在,转染细胞后,用G418筛选,可建立稳定的、高表达目的基因的细胞株。
插入外源基因的克隆位点包括Sal1、BamH1和EcoR1位点。
注意在此载体中有二个EcoR1位点存在。
2、pEGFP, 增强型绦色荧光蛋白表达载体(Enhanced Fluorecent Protein Vector)特点: pEGFP表达载体中含有绿色荧光蛋白,在PCMV启动子驱动下,在真核细胞中高水平表达。
载体骨架中的SV40 origin使该载体在任何表达SV40 T 抗原的真核细胞内进行复制。
Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。
此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。
用途: 该表达载体EGFP上游有Nde1、Eco47111和Age1克隆位点,将外源基因扦入这些位点,将合成外源基因和EGFP的融合基因。
借此可确定外源基因在细胞内的表达和/或组织中的定位。
亦可用于检测克隆的启动子活性(取代CMV启动子,Acet1-Nhe1)。
3、pEGFT-Actin, 增强型绿色荧光蛋白/人肌动蛋白表达载体特点: pEGFP-Actin表达载体中含有绿色荧光蛋白和人胞浆β-肌动蛋白基因,在PCMV启动子驱动下,在真核细胞中高水平表达。
载体骨架中的SV40 origin使该载体在任何表达SV40 T 抗原的真核细胞内进行复制。
载体选择
![载体选择](https://img.taocdn.com/s3/m/3ed4bd669b6648d7c1c74602.png)
1、pCMVp-NEO-BAN载体特点: 该真核细胞表达载体分子量为6600碱基对,主要由CMVp启动子、兔β-球蛋白基因内含子、聚腺嘌呤、氨青霉素抗性基因和抗neo基因以及pBR322骨架构成,在大多数真核细胞内都能高水平稳定地表达外源目的基因。
更重要的是,由于该真核细胞表达载体中抗neo基因存在,转染细胞后,用G418筛选,可建立稳定的、高表达目的基因的细胞株。
插入外源基因的克隆位点包括Sal1、BamH1和EcoR1位点。
注意在此载体中有二个EcoR1位点存在。
2、pEGFP, 增强型绦色荧光蛋白表达载体(Enhanced Fluorecent Protein Vector)特点: pEGFP表达载体中含有绿色荧光蛋白,在PCMV启动子驱动下,在真核细胞中高水平表达。
载体骨架中的SV40 origin使该载体在任何表达SV40 T 抗原的真核细胞内进行复制。
Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。
此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。
用途: 该表达载体EGFP上游有Nde1、Eco47111和Age1克隆位点,将外源基因扦入这些位点,将合成外源基因和EGFP的融合基因。
借此可确定外源基因在细胞内的表达和/或组织中的定位。
亦可用于检测克隆的启动子活性(取代CMV启动子,Acet1-Nhe1)。
3、pEGFT-Actin, 增强型绿色荧光蛋白/人肌动蛋白表达载体特点: pEGFP-Actin表达载体中含有绿色荧光蛋白和人胞浆β-肌动蛋白基因,在PCMV启动子驱动下,在真核细胞中高水平表达。
载体骨架中的SV40 origin使该载体在任何表达SV40 T 抗原的真核细胞内进行复制。
真核表达载体
![真核表达载体](https://img.taocdn.com/s3/m/7d203b0ceff9aef8941e0624.png)
常用的哺乳动物细胞表达载体和组成成分有SV40病毒表达载体、痘病毒表达载体、逆转录病毒表达载体,常见的哺乳动物表达载体的组成成分有:原核DNA序列、启动子、增强子、拼接信号、终止信号和多聚腺苷酸化信号、筛选标记及真核病毒序列等。
(1)原核DNA序列:为了能在大肠杆菌中增殖,得到大量能转染哺乳动物细胞的重组DNA,哺乳动物表达载体中通常有一段原核序列,包括一个能在大肠杆菌中自身复制的复制子,便于挑选含重组DNA细菌的抗生素抗性基因,以及便于把真核序列插入载体的少数单一限制性酶切位点。
当具备这些序列以后,外源的真核基因序列可由单一酶切位点插入载体中,形成的重组DNA可在大肠杆菌中增殖,经抗生素筛选后进行DNA提取,即可得到大量的所需的哺乳动物细胞表达载体。
(2)启动子:真核生物的启动子区域位于TATA区上游100bp到230bp之间,TAT区位于转录起始点上游25-30bp处。
启动子的转录效率因细胞而异。
因此需根据宿主细胞类型选择不同的启动子。
(3)增强子:增强子是使启动子的基因转录效率显著提高的一类顺式作用元件,有多个独立核苷酸序列组成。
它们的作用通常不具有方向性,在位于转录起始点的下游或离启动子很远时仍有活性。
许多增强子只能在特定的组织或细胞中起作用,即具有组织细胞的特异性,因此在构建真核表达载体的时候,应根据宿主细胞来选择增强子。
(4)剪接信号:真核基因由许多内含子和外显子组成。
被转录成mRNA前体以后,需通过剪除内含子、连接外显子才能成为成熟的mRNA。
一般mRNA拼接需要的基本序列位于内含子的5’和3’末端,因此,改变拼接位点5’和3’末端两侧的外显子序列可能会影响邻近拼接位点的使用效率,在替换外显子时应注意。
(5)终止信号和多聚腺苷化的信号:转录的终止信号常常位于多聚腺苷化位点下游的一端长度为几百个核苷酸碱基的DNA区域内。
多聚腺苷化需要两种序列:位于腺苷化位点下游的GU丰富区或U丰富区和位于腺苷化位点上游11-30个核苷酸处的一个有6个核苷酸碱基组成并高度保守的AAUAAA序列。
真核生物表达系统汇总
![真核生物表达系统汇总](https://img.taocdn.com/s3/m/aaf64f86453610661fd9f478.png)
2020年8月10日星期一
16
哺乳动物细胞表达载体中常用的多腺苷酸化区
Poly A区
BGH SV40 late
TK SV40 early Hep B
来
源
牛生长激素 猿猴病毒40晚期基因 单纯疱疹病毒腺激酶 猿猴病毒40早期基因
乙肝表面抗原
效率
3 2 1.5 1 1
2020年8月10日星期一
17
(3)选择标记
18
b、ADA基因:ADA基因编码腺苷酸 脱氨酶,Xyl-A经磷酸化转化为XylATP并结合到核酸分子中而导致细胞 死亡。ADA可以使之转变为肌苷衍生 物而解毒。
c、博来霉素抗性基因:
d、HPH基因:该基因编码潮霉素B磷 酸转移酶
1、瞬时表达:转染的DNA未与宿主 染色体整合,不能随宿主基因组的复 制而扩增,只能在细胞内维持2~3天 2、稳定表达:转染的DNA与宿主染 色体整合,能随宿主基因组的复制转 录和翻译,并被稳定遗传。
2020年8月10日星期一
7
五、外源基因在真核细胞中表达产物 的鉴定和纯化
mRNA的鉴定
蛋白产物鉴定
1)药物选择标记基因
a、APH或neor基因:新霉素、庆大霉
素及卡那霉素的结构类似物氨基糖苷G418可以干扰真核细胞核糖体的功能而 阻止蛋白质的合成。APH或neor基因编 码氨基糖苷磷酸转移酶,使G-418灭活。
转染细胞由于表达氨基糖苷磷酸转移酶, 因此可以在含G-418的培养基中生长。
2020年8月10日星期一
2020年8月10日星期一
1
第一节 概述
在进行人的特定基因表达时,真核 细胞表达系统是首要的选择,尤其 是对于功能性膜蛋白、需要翻译后 修饰蛋白、分泌型蛋白和多蛋白复 合体中的蛋白组分等,这些蛋白质
真核表达系统
![真核表达系统](https://img.taocdn.com/s3/m/3e9a7316f11dc281e53a580216fc700abb6852db.png)
可编辑课件PPT
25
真核表达载体
➢质粒:真核表达元件、真核抗性 ➢病毒载体:改建后
➢ SV40病毒 ➢ 腺病毒 ➢ 反转录病毒 ➢ 痘苗病毒
可编辑课件PPT
26
病毒基因组的结构特点
➢ 病毒基因组大小相差较大,与细菌或真核细胞相比,病毒 的基因组很小
➢ 病毒基因组可以由DNA组成,也可以由RNA组成
TATA box TATAAAA
TBP 30,000 ~ 10bp
GC box GGGCGG
SP-1 105,000 ~ 20bp
CAAT box GGCCAATCT CTF/NF1 60,000 ~ 22bp
Octamer ATTTGCAT
Oct-1 76,000 ~ 20bp
Oct-2 53,000 ~ 23bp
11
启动子
➢ 真核启动子:RNA聚合酶(Ⅱ)结合并起动转录的 DNA序列
➢ 一般包括转录起始点及其上游约100-200bp序列,包 含有若干具有独立功能的DNA序列元件,每个元件 约长7-30bp
➢ 核心启动子元件:RNA聚合酶起始转录所必需的最 小DNA序列,包括转录起始点及其上游-25/-30bp处 的TATA盒。单独起作用时只能确定转录起始位点和 产生基础水平的转录
➢ 与其序列的正反方向无关
➢ 要有启动子才能发挥作用。但增强子对启动子没 有严格的专一性,同一增强子可以影响不同类型 启动子的转录
➢ 增强子的作用机理虽然还不明确,但与其他顺式 调控元件一样,必须与特定的蛋白质因子结合后 才能发挥增强转录的作用
➢ 增强子一般具有组织或细胞特异性,许多增强子 只在某些细胞或组织中表现活性,是由这些细胞 或组织中具有特异性蛋白质因子所决定的
真核细胞表达系统
![真核细胞表达系统](https://img.taocdn.com/s3/m/37e06c3a0066f5335a812148.png)
真核细胞表达系统常用的真核表达系统有酵母、杆状病毒/昆虫细胞和哺乳动物细胞表达系统。
简而言之,酵母和昆虫细胞表达系统蛋白表达水平高,生产成本低,但加工修饰体系与哺乳动物细胞不完全相同;哺乳动物细胞产生的蛋白质更接近于天然蛋白质,但其表达量低、操作烦琐。
1.酵母表达系统最早应用于蛋白表达的酵母是酿酒酵母,后来相继出现其他种类酵母,其中甲醇酵母表达系统应用最广泛。
甲醇酵母的表达载体含有大肠杆菌复制起点和筛选标志,可在大肠杆菌大量扩增。
甲醇酵母表达载体中含有与酵母染色体中同源的序列,容易整合入酵母染色体中。
大部分甲醇酵母的表达载体中都含有醇氧化酶基因-1(AOX1),在强启动子作用下,以甲醇为唯一碳源的条件下诱导外源基因表达。
甲醇酵母表达蛋白一般需很长时问才能达到峰值水平,实验操作过程中有甲醇毒性和一定安全风险。
2.昆虫细胞表达系统杆状病毒载体广泛应用于培养的昆虫细胞中指导外源基因的表达,其中大多含有苜蓿银纹夜蛾核多角体病毒(AcNPV)中的多角体启动子。
杆状病毒系统蛋白表达量很高,而且大部分蛋白质能保持可溶性。
杆状病毒基因组较大(130kb),可容纳大的外源DNA片段;杆状病毒启动子在哺乳动物细胞中没有活性,安全性较高。
目前常用的是以位点特异性转位至大肠杆菌中增殖的杆状病毒穿梭载体,能快速有效地产生重组杆状病毒。
与通过外源基因重组在昆虫细胞中产生杆状病毒重组体相比,大大简化了操作步骤,缩短了鉴定重组病毒的时间,适于表达蛋白突变体以进行结构或功能的研究。
3.哺乳动物细胞表达系统哺乳动物细胞能够指导蛋白质的正确折叠,它所表达的真核蛋白通常能被正确修饰,在分子结构、理化特性和生物学功能方面最接近于天然的高等生物蛋白质,几乎都能在细胞内准确定位,在医学研究中得到广泛应用。
虽然哺乳动物细胞表达比大肠杆菌表达难度大,更耗时,成本更高,但是对于熟悉细胞培养的研究人员表达小到中等量的蛋白非常实用。
哺乳动物细胞表达载体包含原核序列、启动子、增强子、选择标记基因、终止子和多聚核苷酸信号等。
不同蛋白质表达系统的比较
![不同蛋白质表达系统的比较](https://img.taocdn.com/s3/m/2b5d523930b765ce0508763231126edb6f1a76dd.png)
不同蛋白质表达系统的比较蛋白质是细胞内重要的生物大分子,可以发挥许多生命活动的关键作用。
不同的蛋白质表达系统可以用于生产不同类型的蛋白质,比较蛋白质表达系统的优缺点对于选择合适的表达系统具有重要的意义。
本文将介绍现有的几种主要的蛋白质表达系统,并对它们的特点进行比较。
第一种蛋白质表达系统是基于真核细胞的表达系统。
真核细胞是具有细胞核的细胞,其中包括了动物细胞、植物细胞和真菌细胞等。
这种表达系统利用真核细胞的转录和翻译机制来制造目标蛋白质。
在这种系统中,目标基因被插入到真核细胞的基因组中,然后通过RNA剪切和mRNA成熟等机制生成成熟mRNA,从而进行翻译,最终目标蛋白质被产生出来。
真核细胞表达系统的优点包括:能够产生生物活性和功能齐全的蛋白质。
这种系统还适用于产生大量的蛋白质,因此被广泛应用于产生多肽、抗体等药物。
但是,真核细胞表达系统的劣势在于工艺更加复杂,容易出现蛋白质不稳定、失去生物活性的问题。
此外,该工艺需要一定的时间来建立并优化系统。
第二个系统是基于细菌的表达系统。
细菌是单细胞生物,具有非常简单的结构和进化历史,是蛋白质表达方面的主要模型。
在这种表达系统中,表达载体中的目标基因被转化为蛋白质,并通过重组不同的DNA序列来实现该过程。
这种系统的优点在于简单、实时、具有可伸缩性和高效性。
制备蛋白质的成本也相对较低。
然而,这种表达系统的制约因素也很明显。
细菌系统不能表达合成二硫键、表达动力多肽等蛋白质的功能,使其应用领域相对狭窄。
此外,细胞酸碱值和产生蛋白质的环境等因素,都是影响蛋白质表达的关键因素。
第三种蛋白质表达方式是基于哺乳动物细胞的表达系统。
哺乳动物细胞表达系统主要用于大规模制备人用蛋白质。
这种表达系统利用哺乳动物细胞的转录和翻译机制来制造目标蛋白质。
在这种系统中,目标基因经过一系列的转染和筛选过程,被转移到哺乳动物细胞中,利用细胞所提供的设备进行蛋白质合成和修饰。
哺乳动物表达系统具有高表达量、具备更完整的蛋白质修饰等诸多优点。
昆虫表达系统
![昆虫表达系统](https://img.taocdn.com/s3/m/9f349f1bfe00bed5b9f3f90f76c66137ee064fa0.png)
第19页,共19页。
• 《SV40》(Simian vacuolating virus 40 or Simian virus 40)是猴空泡病毒40,猿猴病毒40或猴病毒40的缩 写,多瘤病毒科,这是在人类和猴子都发现的致瘤 病毒。SV40病毒的基因组是一种环形双链的DNA,基 因组5.2kb,病毒的直径45nm,病毒成熟部位细胞核, 无被膜,62个核壳粒亚单位,这种大小很适于基因 操作。同时它也是第一个完成基因组DNA全序列分 析的动物病毒。
• 1.无法进行连续性(高)表达 • 2.糖基化方式与哺乳动物存在一定差异 • 3.糖侧链甘露糖的成分较高,而复合寡糖缺
乏 • 4.功能基因组学的研究仍然比较薄弱 • 5.有关病毒晚期的高表达和调控机制等仍不
够明了 • 6.酵母筛选系统比昆虫细胞重组介质相对更
有优势,重组病毒与原病毒的混合增加筛选 难度
• (小鼠中枢神经系统)Sarkis C. , Serguera C. , Petres S. , Buchet D. ,Ridet J.L. et al.
J.Proc. Natl. Acad. A,2000,97(26):14638~14643.
第17页,共19页。
杆状病毒表达系统的局限性
• 4.基因治疗 • 最近几年来,杆状病毒在小鼠和大鼠肝骨骼肌和中枢神经系统的基因转移中取得成功
• 基因治疗参考文献:
• (小鼠和大鼠肝)Hofmann C. ,Strauss M. Gene. Therapy, 1998,5(4): 531~536.
蛋白表达形式
![蛋白表达形式](https://img.taocdn.com/s3/m/56381b08e55c3b3567ec102de2bd960590c6d9cb.png)
蛋白表达形式
蛋白表达形式主要有以下几种:
1. 原核表达系统:原核表达系统是最早被开发的蛋白表达途径之一,主要利用大肠杆菌(E.coli)作为宿主细胞。
该系统具有操作简单、表达量高等优点,适用于小分子量蛋白的表达。
在原核表达系统中,常用的表达载体包括质粒和噬菌体。
质粒表达途径通过将目标蛋白编码基因插入质粒中,然后将质粒导入宿主细胞,利用宿主细胞的代谢机制表达目标蛋白。
噬菌体表达途径则利用噬菌体感染宿主细胞,将目标蛋白编码基因插入噬菌体基因组中,然后利用宿主细胞的机制表达目标蛋白。
原核表达系统的主要限制是无法表达复杂的蛋白质结构和糖基化蛋白。
2. 真核表达系统:真核表达系统利用真核细胞作为宿主细胞,可以表达复杂的蛋白质结构和糖基化蛋白。
常用的真核表达系统包括酵母表达系统和哺乳动物细胞表达系统。
酵母表达系统主要利用酿酒酵母(Saccharomyces cerevisiae)或毕赤酵母(Pichia pastoris)等作为宿主细胞。
除此之外,还有分泌型表达载体、带纯化标签的表达载体、表面呈现表达载体、带伴侣的表达载体等多种表达形式,并且每种表达形式都有其独特的特点和应用场景。
常规真核表达与鉴定
![常规真核表达与鉴定](https://img.taocdn.com/s3/m/e51b3211302b3169a45177232f60ddccdb38e64a.png)
4、再以1mL PBS洗涤离心细胞沉淀,在管口沿壁加入,吹起 沉淀;离心:4℃、12000r/m、2min;弃上清。
5、每个离心管加入100uL细胞裂解液(RIPA),吹打混匀,冰 上作用30min裂解细胞。
6、离心4℃ 12000r/m、5min;吸取上清约30uL;煮样,加 上样loading buffer,蛋白电泳。
2
二、常用真核表达系统
1、毕赤酵母表达体系:酵母细胞表达系统蛋白表达水平高, 生产成本低,但纯化难度大。
2、慢病毒表达系统:商品化的慢病毒表达系统(如Lenti-X) 在病毒包装时获得VSV-G泛嗜性重组慢病毒,通过膜质偶联 和膜质融合的方式感染靶细胞,可感染几乎所有类型的哺 乳动物细胞。
3、哺乳动物细胞表达体系:对蛋白的加工与修饰与酵母及昆 虫表达系统完全不同,可通过脂质体等直接将外源表达质 粒导入哺乳动物细胞,进行表达。哺乳动物细胞产生的蛋 白质更接近于天然蛋白,但其表达量低。
3、某些特殊的表达载体:如反向遗传表达载体,昆虫表达 系统载体等。
5
四、哺乳动物细胞转染
1、引物设计:构建重组真核表达质粒,一般在引物设计时 首先会在引物中引物一些能够促进蛋白表达(如Kozak序 列)或者便于后期检测的序列或标签(如flag、HA、His 等),注意这些序列在引物中的位置。
2、实验材料:真核表达细胞系、DMEM、FBS、OPTI-MEM、 PBS、trypsin、携带有外源基因的重组质粒(去细胞内毒 素法抽提)、转染试剂(或仪器)、细胞计数器、盖玻片、 六孔板等。
3、转染细胞密度约2~5×106/mL,一般在细胞铺板后12~18h 内进行转染,转染的质粒要测定浓度,按2ug/孔进行。
6
细胞转染步骤
真核表达系统
![真核表达系统](https://img.taocdn.com/s3/m/447500c52f60ddccdb38a00e.png)
真核表达系统原核表达系统因其工艺简单、速度快而为人类带来许多便利,eg制药业由原先的脏器提取→发酵制备(IFN),降低了本钱,扩大了来源,也缩短了生产周期。
可是由于原核细胞中没有转录后加工系统,不能识别、剪除内含子,因此很多真核基因就无法在原核细胞中表达;另外,原核细胞缺乏翻译后加工系统,不能对翻译的蛋白质进一步修饰加工。
因此许多糖蛋白在原核细胞中表达后,尽管一样形成蛋白质具有抗原性,却因为不能糖基化,而不产生功能。
例如,C1INH是一种高度糖基化的单链蛋白(49%分子量为糖基),因其不可逆结合C1q而阻断补体活化途径,是一种极好的补体抑制剂,若是C1INH缺点可致使遗传性血管神经性水肿(HANE),表现为全身水肿,尤其是喉头水肿,能够输血,以正常人血中的C1INH来补充医治,但长期输血价钱高,易引发副反映,故可用基因工程产品来医治HANE,但因C1INH为高度糖基化蛋白,在中表达没有活性,现已有人利用CHO表达C1INH,拟用于医治。
一、优势1.具转录后加工系统;2.具翻译后修饰系统;3.可实现真正的分泌表达,分泌至细胞外简化了纯化工艺。
二、真核基因结构及表达调控特点:(一)、基因结构特点:1.DNA极为丰硕,具全能性——mRNA丰度(选材)克隆真核基因的经常使用方式是提取细胞mRNA,反转录合成为cDNA。
尽管真核生物各类细胞中基因含量、种类相同,但却不是选择任一细胞提取其mRNA就可反转录合成出目的基因cDNA,因不同细胞间存在mRNA的丰度问题,基因在不同细胞中转录情形不一样,产生不同的功能蛋白,才表现出各类细胞的丰硕多样性。
故应选择mRNA丰度高的细胞为材料,eg. TNFα基因的克隆是以前髓细胞或早幼粒细胞为材料来源(Alice,1985)。
2.结构复杂,DNA与组蛋白结合,并在其外有核膜——真核生物转录、翻译不可能持续进行。
3.不持续性:内含子、外显子。
内含子可能参与基因调控,不同剪切方式产生不同蛋白质。
分子生物学:真核生物表达系统
![分子生物学:真核生物表达系统](https://img.taocdn.com/s3/m/b9d118d0b9f3f90f76c61bd3.png)
1
第一节 概述 在进行人的特定基因表达时,真核 细胞表达系统是首要的选择,尤其 是对于功能性膜蛋白、需要翻译后 修饰蛋白、分泌型蛋白和多蛋白复 合体中的蛋白组分等,这些蛋白质 往往只能在真核细胞表达系统中才 能获得有活性的表达产物。其原因 有:
2013年7月27日星期六 2
2013年7月27日星期六
9
但该表达系统的 表达水平较低 、 培养基 昂贵、生长缓慢、含有过敏物质 等缺点在 实际应用过程中较难避免。哺乳动物细胞 表达系统通常用来生产用 常规方法无法获 得 的 真核细胞蛋白 。如EPO,TNF受体, 基因工程单抗等。 CHO(中国仓鼠卵巢)是目前重组糖蛋 白生产的首选体系。
2013年7月27日星期六 13
分泌蛋白新生肽链N端的一段20~ 30氨基酸残基组成的肽段。将分泌 蛋白引导进入内质网,同时这个肽 段被切除。现这一概念已扩大到决 定新生肽链在细胞中的定位或决定 某些氨基酸残基修饰的一些肽段。
2013年7月27日星期六
14
2013年7月27日星期六
15
第二节外源基因在哺乳动物细胞中表达 一、哺乳动物细胞表达载体
1、真核蛋白在原核宿主中不稳定
2、表达出来的蛋白质不能有效、正 确的折叠及二硫键配对错误 3、缺乏信号肽切除、糖基化、磷酸 化和羧化等翻译后修饰以及对原核 细胞有毒性。
2013年7月27日星期六 3
一、真核细胞表达宿主的种类及优势
不同表达系统蛋白质表达及翻译后修饰情况的比较 大肠杆菌 产率 蛋白酶消化
人延长因子1基因 人巨细胞病毒立早基因 劳斯肉瘤病毒LTR 猿猴病毒40晚期基因 猿猴病毒40早期基因 腺病毒主要晚期启动子 小鼠β-珠蛋白基因
40~160 4 2 1.1 1 0.4 0.2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
真核细胞表达系统的类型与常用真核细胞表达载体标签:真核细胞酵母表达系统细胞表达载体真核表达系统昆虫表达系统动物表达系统摘要 : 原核表达系统是常被用来研究基因功能的成熟系统,由于原核表达系统具有包涵体蛋白不易纯化、蛋白修饰不完整等缺陷,人们也开始利用真核细胞表达系统来研究基因。
原核表达系统是常被用来研究基因功能的成熟系统,由于原核表达系统具有包涵体蛋白不易纯化、蛋白修饰不完整等缺陷,人们也开始利用真核细胞表达系统来研究基因。
自上世纪70年代基因工程技术诞生以来,基因表达技术已渗透到生命科学研究的各个领域。
并随着人类基因组计划实施的进行,在技术方法上得到了很大发展,时至今日已取得令人瞩目的成就。
随着人类基因组计划的完成,越来越多的基因被发现,其中多数基因功能不明。
利用表达系统在哺乳动物细胞内表达目的基因是研究基因功能及其相互作用的重要手段。
在各种表达系统中,最早被采用进行研究的是原核表达系统,这也是目前掌握最为成熟的表达系统。
该项技术的主要方法是将已克隆入目的基因DNA段的载体(一般为质粒)转化细菌(通常选用的是大肠杆菌),通过iptg诱导并最终纯化获得所需的目的蛋白。
其优点在于能够在较短时间内获得基因表达产物,而且所需的成本相对比较低廉。
但与此同时原核表达系统还存在许多难以克服的缺点:如通常使用的表达系统无法对表达时间及表达水平进行调控,有些基因的持续表达可能会对宿主细胞产生毒害作用,过量表达可能导致非生理反应,目的蛋白常以包涵体形式表达,导致产物纯化困难;而且原核表达系统翻译后加工修饰体系不完善,表达产物的生物活性较低。
为克服上述不足,许多学者将原核基因调控系统引入真核基因调控领域,其优点是:①根据原核生物蛋白与靶DNA间作用的高度特异性设计,而靶DNA与真核基因调控序列基本无同源性,故不存在基因的非特异性激活或抑制;②能诱导基因高效表达,可达105倍,为其他系统所不及;③能严格调控基因表达,即不仅可控制基因表达的“开关”,还可人为地调控基因表达量。
因此,利用真核表达系统来表达目的蛋白越来越受到重视。
目前,基因工程研究中常用的真核表达系统有酵母表达系统、昆虫细胞表达系统和哺乳动物细胞表达系统。
1.酵母表达系统最早应用于基因工程的酵母是酿酒酵母,后来人们又相继开发了裂殖酵母、克鲁维酸酵母、甲醇酵母等,其中,甲醇酵母表达系统是目前应用最广泛的酵母表达系统。
目前甲醇酵母主要有H Polymorpha,Candida Bodini,Pichia Pastris3种。
以Pichia Pastoris应用最多。
甲醇酵母的表达载体为整合型质粒,载体中含有与酵母染色体中同源的序列,因而比较容易整合入酵母染色体中。
大部分甲醇酵母的表达载体中都含有甲醇酵母醇氧化酶基因一1(A0x1),在该基因的启动子(PAXOI)作用下,外源基因得以表达。
PAXOI是一个强启动子,在以葡萄糖或甘油为碳源时。
甲醇酵母中AOx1基因的表达受到抑制,而在以甲醇为唯一碳源时PAXOI可被诱导激活,因而外源基因可在其控制下表达,将目的基因多拷贝整合入酵母染色体后可以提高外源蛋白的表达水平及产量。
此外甲醇酵母的表达载体都为E.coli/Pichia Pastoris的穿梭载体,其中含有E.coli复制起点和筛选标志,可在获得克隆后采用E.coli细胞大量扩增.目前,将质粒载体转入酵母菌的方法主要有原生质体转化法、电击法及氯化锂法等。
甲醇酵母一般先在含甘油的培养基中生长。
培养至高浓度。
再以甲醇为碳源。
诱导表达外源蛋白。
这样可以大大提高表达产量。
利用甲醇酵母表达外源性蛋白质其产量往往可达克级。
与酿酒酵母相比其翻译后的加工更接近哺乳动物细胞,不会发生超糖基化。
利用PAXOI表达外源蛋白时,一般需很长时间才能达到峰值水平,而甲醇是高毒性、高危险性化工产品。
使得实验操作过程中存在不小的危害性。
且不宜于食品等蛋白生产。
因此那些不需要甲醇诱导的启动子受到青睐包括GAP、FLD1、PEX8、YPTI等多种。
利用三磷酸甘油醛脱氢酶(GAP)启动子代替PAXOI,不需要甲醇诱导。
培养过程中无需更换碳源,操作更为简便,可缩短外源蛋白到达峰值水平的时间。
酵母表达系统作为一种后起的外源蛋白表达系统,由于兼具原核以及真核表达系统的优点,正在基因工程领域中得到日益广泛的应用。
2.昆虫细胞表达系统杆状病毒表达系统是目前应用最广的昆虫细胞表达系统,该系统通常采用目宿银纹夜蛾杆状病毒(AcNPV)作为表达载体。
在AcNPV感染昆虫细胞的后期,核多角体基因可编码产生多角体蛋白,该蛋白包裹病毒颗粒可形成包涵体。
核多角体基因启动子具有极强的启动蛋白表达能力,故常被用来构建杆状病毒传递质粒。
克隆入外源基因的传递质粒与野生型AcNPV共转染昆虫细胞后可发生同源重组,重组后多角体基因被破坏,因而在感染细胞中不能形成包涵体,利用这一特点可挑选出含重组杆状病毒的昆虫细胞但效率比较低,且载体构建时间长,一般需要4~6周。
此外,昆虫细胞不能表达带有完整N联聚糖的真核糖蛋白。
在病毒感染晚期,由于大量外源蛋白的表达引起昆虫细胞的裂解,胞质内的物质释放出来,与目的蛋白混在一起,从而使蛋白的纯化工作变得很困难,另外水解酶的释放会降解重组蛋白。
为了克服以上这些困难,科学工整理先后尝试用丝蛾肌动蛋白基因启动子或杆状病毒ie-1基因启动子表达外源蛋白,但效果都不明显。
Farrel等介绍了一种新型的鳞翅目昆虫细胞表达系统,该系统主要包括3个调节外源蛋白表达序列:(1)Bombyx mori的肌动蛋白基因启动子;(2)Bombyx mori的核型多角体病毒(BmNPV)的立早基因ie-1(编码俄IE-1蛋白,该蛋白是种转录激活因子,可在体外激活肌动蛋白基因启动子);(3) BmNPV的同源重复序列3(HR3)可作为肌动蛋白基因启动子的增强子。
三者协同作用,可使转录活性提高 1000倍以上,从而大大地提高外源蛋白的表达水平。
另外目前还有一种新型的宿主范围广的杂合核多角体病毒(HyNPV)被应用于昆虫细胞表达系统的构建,该病毒由AcNPV及 Bni'qP发展而来。
一般情况下杆状病毒表达系统所能表达的外源蛋白只有少部分是分泌性的,大部分为非分泌性。
为了解决这个问题将Hsp70(热休克蛋白70)与外源蛋白共表达可明显提高重组蛋白的分泌水平,这是因为分泌性多肽被翻译后必须到达内质网进行加工才能被分泌至胞外。
如果到达内质网前,前体多肽就伸展开来,暴露出疏水残基,残基间的相互作用可引起多肽的凝聚,这对最终的表达水平有很大影响。
而Hsp70是一种分子伴侣,能够与新翻译的多肽结合,抑制前体肽的凝聚使前体肽顺利到达内质网进行加工,从而提高蛋白的分泌水平。
最近,人们又构建了杆状病毒-S2表达系统,该系统能将重组杆状病毒转染果蝇S2细胞,以前人们认为杆状病毒仅能在鳞翅目昆虫细胞(如 sf9、sf21)中复制,不能在其他昆虫细胞(如果蝇细胞)中复制,然而目前研究表明在一定条件下,杆状病毒也能感染果蝇细胞。
在果蝇细胞中,杆状病毒的多角体基因启动子几乎不发生作用。
杆状病毒-S2表达系统的表达载体利用的是果蝇启动子如Hsp70启动子、肌动蛋白5C启动子、金属硫蛋白基因启动子等,其中,Hsp70启动子的作用最强。
重组杆状病毒感染S2细胞后不会引起宿主细胞的裂解,且蛋白表达水平与鳞翅目细胞相似,因此,杆状病毒-S2系统是一个很有应用前景的昆虫细胞表达系统。
昆虫细胞表达系统,特别是杆状病毒表达系统由于其操作安全,表达量高,目前与酵母表达系统一样被广泛应用于基因工程的各个领域中。
3.哺乳动物细胞表达系统由哺乳动物细胞翻译后再加工修饰产生的外源蛋白质,在活性方面远胜于原核表达系统及酵母、昆虫细胞等真核表达系统,更接近于天然蛋白质。
哺乳动物细胞表达载体包含原核序列、启动子、增强子、选择标记基因、终止子和多聚核苷酸信号等。
将外源基因导入哺乳动物细胞主要通过2类方法:一是感染性病毒颗粒感染宿主细胞,二是通过脂质体法、显微注射法、磷酸钙共沉淀法及DEAE一葡聚糖法等非病毒载体的方式将基因导入到细胞中。
外源基因的体外表达一般采用质粒表达载体,如将重组质粒导入CHO 细胞可建立高效稳定的表达系统,而利用COS细胞可建立瞬时表达系统。
目前,病毒载体已成为动物体内表达外源基因的有力工具,在临床基因治疗的探索中也发挥了重要作用。
痘苗病毒由于其基因的分子量相当大(约187kb),利用它作为载体可同时插入几种外源基因,从而构建多价疫苗。
另外,逆转录病毒感染效率高,某些难转染的细胞系也可通过其导入外源基因,但要注意的是逆转录病毒可整合入宿主细胞染色体,具有潜在的危险性。
由于腺病毒易于培养、纯化,宿主范围广,故采用该类病毒构建的载体被广泛应用腺病毒载体的构建依赖于腺病毒穿梭质粒和包装载体之间的同源重组。
但是哺乳动物细胞内的这种同源重组效率很低,利用细菌内同源重组法构建重组体效率会大大提高,即将外源基因插入到腺病毒穿梭质粒中,形成转移质粒,将其线性化后与腺病毒包装质粒共转化大肠埃希菌。
另一种方法是通过CrelaxP系统构建重组腺病毒载体,在转移质粒和包装质粒中都插入laxP位点,然后将两个质粒共转染表达Cre重组酶的哺乳动物细胞,通过Cre介导两个laxP 位点之间的DNA发生重组,可获得重组腺病毒,这种重组效率比一般的细胞内同源效率高30倍。
最近,人们在杆状病毒中插入巨细胞病毒的启动子建立了高效的基因转移载体。
由于杆状病毒是昆虫病毒,在哺乳动物细胞中不会引起病毒基因的表达,而且载体的构建容易,因而利用杆状病毒进行基因转移为我们提供了很好的途径。
利用哺乳动物细胞表达外源基因时,大多数情况下不需要诱导,但当表达产物对细胞有毒性时应采取诱导,这样可避免表达产物产生早期就对细胞产生影响。
哺乳动物细胞中用到的诱导型载体主要与启动子有关如热休克蛋白启动子可在高温下被诱导,还有重金属、糖皮质激素诱导的启动子。
但这些系统存在一些共同的缺陷,如诱导表达特异性差;当系统处于关闭状态时表达有泄漏诱导剂本身有毒性,常对细胞造成损伤等。
为此,Gossen等构建了受四环素负调节的Tet-on基因表达系统,该系统由调节质粒和反应质粒组成。
调节质粒中具有编码转录激活因子(fIA)的序列,在没有四环素或强力毒素存在的情况下 tTA可引起下游目的基因表达。
随后Gossen等又对tTA的氨基酸序列进行了改造,构建了受四环素正调节的Tet-on基因表达系统,该系统在没有四环素的情况下启动子不被激活,而在加入四环素或强力毒素后目的基因高效表达。
四环素诱导的基因表达系统是目前应用最广泛的哺乳动物细胞诱导表达系统,该系统具有严密、高效可控制性强的优点。
外源蛋白的表达会对哺乳动物细胞产生不利影响,因此利用哺乳动物细胞表达外源基因时,一个主要问题便是外源基因不能持久稳定地表达。