人教版八年级数学下册 20.1.1平均数(第1课时)公开课 教学设计 (1)

合集下载

人教版数学八年级下册20.1.1用样本平均数估计总体平均数教案

人教版数学八年级下册20.1.1用样本平均数估计总体平均数教案
本节课旨在帮助学生掌握利用样本平均数估计总体平均数的方法,培养学生的数据分析能力。
二、核心素养目标
本节课的核心素养目标包括:
1.数据分析:培养学生通过对样本数据的处理,掌握用样本平均数估计总体平均数的方法,提高数据分析能力。
2.逻辑推理:在估计总体平均数的过程中,引导学生运用逻辑推理,理解样本与总体之间的关系,增强推理能力。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“如何提高估计的准确性?”
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了用样本平均数估计总体平均数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这一概念的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.教学难点
-难点内容:
-样本选择对估计结果准确性的影响。
-样本平均数与总体平均数之间关系的理解。
-误差产生的原因及其对估计结果的影响。
-在实际问题中建立数学模型的能力会难以理解为什么随机抽取的样本更能代表总体,教师需要通过实例展示不同样本选择方法对估计结果的影响,强调随机性的重要性。
-在理解样本平均数与总体平均数的关系时,学生可能会混淆两者之间的联系,教师需要通过直观的图表或模拟实验,帮助学生形象地理解这种关系。
-对于误差的分析,学生可能难以理解误差的来源及如何减少误差,教师需要详细解释样本大小、样本选择等因素对误差的影响,并提供实际操作的机会来体验这些概念。
-在数学建模方面,学生可能不知道如何从实际问题中提取关键信息来建立模型,教师需要指导学生通过问题分析、数据整理到模型建立的整个过程,并鼓励学生进行实际操作。

人教版八年级数学下20.1.1《平均数》公开课教学设计-精选文档

人教版八年级数学下20.1.1《平均数》公开课教学设计-精选文档

《平均数》教学设计学校:昌江县民族中学 姓名:曾礼波 日期:2019年05月30日教学目标在实际问题情境中认识加权平均数,初步理解权的含义,能正确运用加权平均数解决问题,在解决问题的过程中体会权的作用。

教学重难点重点:加权平均数的概念与运用。

难点:“权”的意义的理解。

教学过程一、情境引入我们知道,平均数可以作为一组数据的代表。

今天,我们将继续学习平均数的一些知识,请看以下问题:【问题1】一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(百分制)如下表(教材表20-1):(1)如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩(百分制),从他们的成绩看,应录取谁?学生小组交流讨论后,教师评析:对于问题(1),根据平均数公式,甲的平均成绩为 乙的平均成绩为因为甲的平均成绩比乙高,所以应该录取甲。

本节课我们将一起探究平均数在数据分析中广泛应用及现实意义。

二、互动新授【问题2】(2)如果这家公司想招一名笔试能力较强的翻译,听、说、读、写成绩按2:1:3:4的比确定,计算两名应试者的平均成绩(百分制),从他们的成绩看,应录取谁? 学生独自思考后,小组交流,师生共同分析:对于问题(2),听、说、读、写的成绩按照2:1:3:4的比确定,这说明各项成绩的“重要程度”有所不同,读、写的成绩比听、说的成绩更加“重要”。

因此,甲的平均成绩为乙的平均成绩为因为乙的平均成绩比甲高,所以应该录取乙。

上述问题(1)是利用平均数公式计算平均成绩,其中的每个数据被认为同等重要,而问题(2)是根据实际需要对不同类型的数据赋予与其重要程度相应的比重,其中2,1,3,4分别称为听、说、读、写四项成绩的权,相应的平均数79.5,80.4分别称为甲和乙的听、说、读、写四项成绩的加权平均数。

一般地,若n 个数x 1, x 2, …, x n 的权分别是w 1,w 2,…,w n ,则 叫做这n 个数的加权平均数。

教学人教版数学八年级下册20.1.1平均数教学设计

教学人教版数学八年级下册20.1.1平均数教学设计
2.教学内容:平均数的性质和作用。
过程:教师讲解平均数的性质,如数据的总和等于平均数乘以数据的个数,平均数大于最小的数,小于最大的数等。并通过实例说明平均数在实际问题中的作用。
(三)学生小组讨论
1.教学内容:设计具有挑战性的实际问题,让学生分组讨论、合作解决。
过程:教师给出几个实际问题,如“计算某商店近一周的销售总额,并求出平均每天的销售总额。”学生分组讨论,共同解决问题,培养合作能力。
5.能够运用平均数分析生活中的问题,提高解决问题的能力。
(二)过程与方法
在本节课的教学过程中,学生将通过以下过程与方法来达成教学目标:
1.通过观察、思考、讨论,发现平均数的概念,培养观察、分析、归纳的能力;
2.通过小组合作、交流分享,学会计算平均数的方法,提高合作解决问题的能力;
3.通过实际案例的分析,学会运用平均数进行数据分析和问题解决,培养学以致用的能力;
5.拓展延伸,提高能力
结合实际案例,引导学生运用平均数进行拓展延伸,如探究平均数与其他统计量(如中位数、众数)之间的关系,提高学生的数据分析能力。
6.总结反思,内化知识
在课堂结束时,让学生总结本节课所学内容,反思自己在解决问题过程中的收获和不足,以便更好地内化知识。
7.个性化指导,关注差异
针对不同学生的学习需求,给予个性化指导,帮助他们在原有基础上提高。对于学习困难的学生,加强基础知识辅导;对于优秀学生,适当提高难度,拓展思维。
2.自主探究,理解概念
让学生自主探究平均数的定义,引导他们发现平均数在数据中的作用,从而加深对平均数的理解。
3.精讲精练,巩固知识
对平均数的计算方法进行详细讲解,并通过典型例题、练习题进行巩固。注重引导学生总结规律,提高计算准确性。

新人教版八年级数学下册《20.1.1平均数(1)》教案

新人教版八年级数学下册《20.1.1平均数(1)》教案

新人教版八年级数学下册《20.1.1平均数(1)》
教案
第一步:引入新课:
在某次数学测试后,你想了解自己与班级平均成绩的比较,你先想了解该次数学成绩什么量呢?(引入课题)
第二步:讲授新课:
1、引例:下面是某班30位同学一次数学测试的成绩,各小组讨论如何求出它们的平均分:
95、99、87、90、90、86、99、100、95、87、88、86、94、92、90、95、87、86、88、86、90、90、99、80、87、86、99、95、92、92
甲小组:X==91(分)
甲小组做得对吗?有不同求法吗?
乙小组:
乙小组的做法可以吗?还有不同求法吗?
丙小组:先取一个数90做为基准a,则每个数分别与90的差为:
5、9、-3、0、0、-4、……、2、2
求出以上新的一组数的平均数X’=1
所以原数组的平均数为X=X’+90=91
想一想,丙小组的计算对吗?
2、议一议:问:求平均数有哪几种方法?
①平均数:一般地,如果有n个数x1,x2,……,xn,那么,叫做这n个数的平均数,读作“x拔”。

②加权平均数:如果n个数中,x1出现f1次,x2出现f2次,……,xk出现fk次,(这里f1+f2+……+fk=n),那么,根据平均数的定义,这n个数的平均数可以表示为这样求得的平均数叫做加权平均数,其中f1,f2,……,fk叫做权。

③利用基准求平均数X=X’+a
问:以上几种求法各有什么特点呢?
公式(1)适用于数据较小,且较分散。

公式(2)适用于出现较多重复数据。

公式(3)适用于数据较为接近于某一数据。

人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案

人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案

人教版数学八年级下册20.1.1《平均数和加权平均数》(第1课时)教案一. 教材分析平均数和加权平均数是初中数学八年级下册的教学内容,主要让学生了解平均数的定义和性质,掌握加权平均数的计算方法。

本节课通过引入实际问题,引导学生探讨平均数的求法,进而引出加权平均数的概念,并通过例题讲解和练习,使学生熟练掌握加权平均数的计算方法。

二. 学情分析学生在七年级已经学习了算术平均数的概念,对本节课的内容有一定的认知基础。

但部分学生对概念的理解不够深入,对实际问题的分析能力有待提高。

此外,学生在运算能力方面也存在差异,部分学生对复杂运算的计算过程不够熟练。

三. 教学目标1.理解平均数的定义和性质,掌握加权平均数的计算方法。

2.能运用加权平均数解决实际问题,提高分析问题和解决问题的能力。

3.培养学生的运算能力和合作精神,提高学生的数学素养。

四. 教学重难点1.重点:加权平均数的计算方法。

2.难点:对实际问题中权重的理解和运用。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究平均数的定义和性质。

2.通过实例分析,让学生了解加权平均数的应用,培养学生的实际问题解决能力。

3.利用小组合作学习,让学生在讨论中巩固知识,提高合作意识。

4.采用讲练结合的方法,对学生进行有针对性的辅导,提高学生的运算能力。

六. 教学准备1.准备相关的实际问题,用于引导学生探讨平均数的概念。

2.准备PPT课件,展示平均数和加权平均数的定义和性质。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用PPT课件展示一些实际问题,如成绩统计、商品销售等,引导学生思考如何求解这些问题的平均值。

通过讨论,让学生回顾算术平均数的概念,为新课的学习做好铺垫。

2.呈现(15分钟)讲解平均数的定义和性质,引导学生理解平均数的概念。

通过PPT课件展示加权平均数的定义,让学生了解加权平均数与算术平均数的关系。

同时,讲解加权平均数的计算方法,让学生掌握计算加权平均数的基本步骤。

人教版八年级数学下册20.1.1平均数(第1课时)公开课优秀教学案例

人教版八年级数学下册20.1.1平均数(第1课时)公开课优秀教学案例
3.教师巡回指导,关注每个小组的学习情况,及时给予反馈和鼓励,提高他们的自信心。
(四)反思与评价
1.教师引导学生回顾本节课所学内容,帮助他们巩固知识点,提高他们的自主学习能力。
2.让学生进行自我评价,发现自己的不足,明确今后的学习方向。
3.教师对学生的学习情况进行总结评价,强调平均数在实际生活中的应用,激发他们的学习兴趣。
1.情境创设贴近生活:本节课通过展示运动员比赛成绩的统计数据和生活实例,让学生感受到平均数的概念和应用,增强了学生的学习兴趣和积极性。
2.问题导向引导思考:本节课设计了丰富的问题,引导学生思考和探讨平均数的定义、性质和计算方法,提高了学生的思维能力和解决问题的能力。
作为一名特级教师,我深知教学内容与过程的重要性。在教学过程中,我将根据学生的实际情况,灵活运用各种教学方法和策略,确保每个学生都能在导入新课、讲授新知、学生小组讨论、总结归纳和作业小结等方面取得良好的学习效果。同时,我会关注学生的个体差异,给予他们个性化的指导和支持,帮助他们充分发挥自己的潜能。
五、案例亮点
作为一名特级教师,我深知教学策略的重要性。在教学过程中,我将根据学生的实际情况,灵活运用各种教学策略,确保每个学生都能在情境创设、问题导向、小组合作和反思与评价等方面取得良好的学习效果。同时,我会关注学生的个体差异,给予他们个性化的指导和支持,帮助他们充分发挥自己的潜能。
四、教学内容与过程
(一)导入新课
2.新课导入:通过具体案例,让学生探究并总结平均数的定义和性质。
3.实践环节:设计一些实际问题,让学生分组讨论,运用平均数解决生活中的问题。
4.总结提升:引导学生总结本节课所学内容,并展望平均数在实际生活中的广泛应用。
5.作业布置:选取一些有关平均数的练习题,巩固所学知识,提高学生的应用能力。

人教版八年级数学下册20.1.1平均数(第一课时)优秀教学案例

人教版八年级数学下册20.1.1平均数(第一课时)优秀教学案例
3.小组合作:教师将学生分成小组,让他们在小组内讨论问题,培养合作意识和团队协作能力。此外,小组竞赛和分享环节进一步激发学生的学习积极性,提高他们的表达能力和交流能力。这种教学方式有助于培养学生的团队合作能力和社交技能。
4.反思与评价:教师引导学生对自己的学习过程进行反思,总结经验教训,提高自我认知。同时,同伴评价和教师评价环节给予学生肯定和鼓励,培养良好的评价习惯。这种教学方式有助于培养学生的自我反思能力和评价能力。
5.寓教于乐:教师运用图形演示、故事引导等多种教学手段,使抽象的数学概念变得形象生动,提高学生的学习兴趣。此外,实践操作环节让学生在动手操作中感受平均数的含义,增强学生的动手能力。这种教学方式有助于培养学生的创新思维和实践能力。
1.贴近生活:本节课以学生熟悉的生活场景为例,如运动会、家庭聚会等,创设实际问题情境,让学生感受到平均数与生活的紧密联系。这种教学方式有助于激发学生的学习兴趣,培养学生的应用能力。
2.问题导向:教师设计具有启发性的问题,引导学生主动思考,探究平均数的性质和求法。同时,鼓励学生提出问题,培养他们的问题意识和解决问题的能力。这种教学方式有助于提高学生的思维能力和批判性思维。
二、教学目标
(一)知识与技能
1.理解平均数的定义和性质,掌握求平均数的方法。
2.能够运用平均数解决实际问题,提高数据分析能力。
3.了解平均数在生活中的应用,培养运用数学知识解决生活问题的能力。
(二)过程与方法
1.通过案例分析、小组讨论等形式,培养学生的合作意识和团队协作能力。
2.利用实践操作,让学生在实际操作中感受平均数的含义,提高动手操作能力。
3.分享讨论成果:鼓励小组成员分享自己的思考和心得,培养学生的表达能力和交流能力。
(四)总结归纳

【人教版八年级下册】《20.1.1平均数(第1课时)》教案教学设计

【人教版八年级下册】《20.1.1平均数(第1课时)》教案教学设计

20. 1.1平均数第1课时一、教学目标【知识与技能】1.使学生理解数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.【过程与方法】1.通过加权平均数的学习,经历运用数据描述信息,做出推断的过程,形成和发展统计观念.2.通过加权平均数的学习,进一步认识数据的作用,体会统计的思想方法.【情感态度与价值观】渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显、寓纷繁于严谨的辩证统一的数学美.二、课型新授课三、课时第1课时共2课时四、教学重难点【教学重点】会求加权平均数.【教学难点】对“权”的正确理解∙五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)教师出示问题:如图ABCD四个杯子中装了不同数量的小球,你能让四个杯子中的小球数目相同吗?观察小球演示过程,回顾平均数的有关知识。

(二)探索新知1.出示课件4-7,探究平均数与加权平均数教师出示问题:重庆7月中旬一周的最高气温如下:教师问:你能快速计算这一周的平均最高气温吗?学生答:(38+36+38÷36+38÷36+36)÷7=-7教师问:你还能回忆、归纳出算术平均数的概念吗?学生答:日常生活中,我们常用平均数表示一组数据的“平均水平,,.一般地,对于n个数X1,x2,…,x n,我们把*…+…+”叫n做这n个数的算术平均数,简称平均数.教师问:计算某篮球队10个队员的平均年龄:学生_27×l+28×3+29×l+30×4+31×lCC1X------------------------------------------ =29.1IO教师问:还有其他算法吗?学生2答:平均年龄_27+28+28+28+29+30+30+30+30+31CC1X---------------------------- 二29.110教师问:请问,在年龄确定的时候,影响平均数的因素是什么?学生答:在年龄确定的情况下,队员人数1、3、1、4、1是影响平均数的因素.教师依次出示问题:一家公司打算招聘一名英文翻译.对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(百分制)如下表所示:教师问:(1)如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?学生答:(1)甲的平均成绩85+78+85+73:80.4乙的平均成绩73+80+82+83=79.54因为80.25>79.5,所以应该录取甲.教师问:(2)如果公司要招聘一名笔译能力较强的翻译,那听、 说、读、写成绩按2:1:3:4的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?学生答:因为79.5<80.4,所以应该录取乙.教师问:如果公司想招一名口语能力较强的翻译,则应该录取谁?(听、说、读、写的成绩按照3:3:2:2的比确定.)学生答:通过计算比较,应该录取甲.教师问:将问题(1)、(2)、(3)比较,你能体会到权的作用吗? 师生一起解答:同样一张应试者的应聘成绩单,由于各个数据所赋的权数不同,造成的录取结果截然不同.教师强调:数据的权能够反映数据的相对重要程度! 总结点拨:(出示课件10)定义:一般地,若n 个数X1,X 2,—,Xn 的权分别是叫,W2,…,Wn5则,W-毛心+…+XnWn ,叫做这n 个数的加权平均数.Wl+W2+∙∙∙+W n如上题解(2)中平均数79.5称为甲选手的加权平均数;其中2、1、3、4就是甲选手听、说、读、写各项得分的权!(1)甲的平均成绩85×2+78×l+85×3+73×4 L----------------- 二79.2+1+3+4 乙的平均成绩73×2+80×l+82×3+83×42+1+3+4=80.4教师问:权有何意义呢? 师生总结:权的意义:(1)数据的重要程度;(2)权衡轻重或份量大小 考点1:利用加权平均数解答实际问题一次演讲比赛中,评委将从演讲内容,演讲能力,演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容占50%,演讲能力占40%,演讲效果占10%的比例,计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示:由上边的结果可知选手B 获得第一名,选手A 获得第二名.师生共同分析:师生共同讨论解答如下:85×50%+95×40%+95×10%解:选手A 的最后得分是 50%+40%+10% =42.5+38+9. 5=90 选手B 的最后得分是95×50%+85×40%+95×10%50%+40%+10%=47. 5+34+9. 5=91.教师问:你能说说算术平均数与加权平均数的区别和联系吗?师生总结:1.算术平均数是加权平均数的一种特殊情况(它特殊在各项的权相等>2.在实际问题中,各项权不相等时,计算平均数时就要采用加权平均数,当各项权相等时,计算平均数就要采用算术平均数.出示课件14,学生自主练习后口答,教师订正.3.出示课件15-16,探究加权平均数的其它形式教师问:加权平均数有其它表示形式吗?在求n个数的算术平均数时,如果X1出现。

人教版数学八年级下册20.1.1《平均数》教学设计1

人教版数学八年级下册20.1.1《平均数》教学设计1

人教版数学八年级下册20.1.1《平均数》教学设计1一. 教材分析人教版数学八年级下册20.1.1《平均数》是学生在学习了统计学基础知识后进一步研究平均数这一概念。

平均数是描述一组数据集中趋势的重要指标,它在日常生活和各种科学研究中有着广泛的应用。

本节内容通过对平均数的定义、性质和求法的学习,使学生能理解平均数在统计学中的意义,掌握求平均数的方法,并能够运用平均数解决一些实际问题。

二. 学情分析学生在学习本节内容前,已经掌握了统计学的一些基础知识,如数据、统计表、统计图等。

他们具备了一定的数据分析能力,但对于平均数的概念和求法还比较陌生。

因此,在教学过程中,教师需要从学生的实际出发,通过生动具体的实例,引导学生理解平均数的含义,掌握求平均数的方法。

三. 教学目标1.知识与技能目标:使学生理解平均数的含义,掌握求平均数的方法,能够运用平均数解决一些实际问题。

2.过程与方法目标:通过实例分析,培养学生的数据分析能力,提高他们运用数学解决实际问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的良好学习习惯。

四. 教学重难点1.重点:平均数的定义及其求法。

2.难点:理解平均数在统计学中的意义,以及如何运用平均数解决实际问题。

五. 教学方法1.情境教学法:通过生动具体的实例,引导学生理解平均数的含义,掌握求平均数的方法。

2.启发式教学法:在教学过程中,教师要善于提问,引导学生积极思考,提高他们的问题解决能力。

3.小组合作学习法:通过小组讨论、合作交流,培养学生的团队协作能力,提高他们的数据分析能力。

六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习情况,设计好教学过程和教学活动。

2.学生准备:预习教材内容,了解平均数的概念和求法。

3.教学资源:多媒体教学设备、教学课件、练习题等。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题——平均数。

例如:某班有30名学生,他们的身高分别是160cm、165cm、170cm……200cm,请问该班学生的平均身高是多少?2.呈现(10分钟)教师通过PPT展示平均数的定义和性质,让学生初步了解平均数的概念。

人教版数学八年级下册20.1.1第1课时《 平均数》教学设计

人教版数学八年级下册20.1.1第1课时《 平均数》教学设计

人教版数学八年级下册20.1.1第1课时《平均数》教学设计一. 教材分析《平均数》是人教版数学八年级下册20.1.1第1课时的教学内容。

本节课主要介绍了平均数的定义、性质和求法,以及平均数在实际生活中的应用。

通过本节课的学习,学生能够理解平均数的意义,掌握求平均数的方法,并能运用平均数解决实际问题。

二. 学情分析学生在七年级已经学习了统计学的基本知识,对数据有一定的了解。

但是,对于平均数的定义和求法还不够明确,需要在课堂上进行进一步的讲解和操练。

此外,学生对于平均数在实际生活中的应用还比较陌生,需要通过实例来引导他们理解和掌握。

三. 教学目标1.知识与技能:理解平均数的定义,掌握求平均数的方法,能够运用平均数解决实际问题。

2.过程与方法:通过实例和练习,培养学生的数据分析能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养他们积极思考和合作探究的学习态度。

四. 教学重难点1.重点:平均数的定义和求法。

2.难点:理解平均数在实际生活中的应用。

五. 教学方法1.情境教学法:通过生活实例引入平均数的概念,让学生在具体的情境中理解和掌握。

2.启发式教学法:引导学生通过思考和讨论,自主探索求平均数的方法。

3.实践性教学法:通过大量的练习和实际问题,让学生动手操作,巩固所学知识。

六. 教学准备1.教学PPT:制作相关的教学PPT,展示平均数的定义、性质和求法。

2.练习题:准备一些练习题,用于学生在课堂上进行操练和巩固。

3.实际问题:收集一些实际问题,用于引导学生运用平均数解决实际问题。

七. 教学过程1.导入(5分钟)通过一个生活实例引入平均数的概念,例如:“小明的数学、语文、英语三科成绩分别为90分、80分、85分,那么他的平均成绩是多少?”让学生思考并回答。

2.呈现(10分钟)讲解平均数的定义和性质,以及求平均数的方法。

通过PPT展示相关的知识和实例,让学生理解和掌握。

3.操练(10分钟)让学生分组进行练习,运用平均数的方法求解一些给定的数据。

人教版数学八年级下册20.1.1《平均数》说课稿1

人教版数学八年级下册20.1.1《平均数》说课稿1

人教版数学八年级下册20.1.1《平均数》说课稿1一. 教材分析《人教版数学八年级下册20.1.1》这一节的内容,是在学生已经掌握了整数、分数和小数的运算基础上,引入平均数的概念。

平均数是数学中的一个基本概念,它在生活中有着广泛的应用,如统计、测量、判别等方面。

本节课的内容,旨在让学生理解平均数的含义,掌握求平均数的方法,并能灵活运用平均数解决实际问题。

二. 学情分析八年级的学生已经具备了一定的数学基础,对运算有一定的了解,但是对平均数的理解可能仅停留在表面,不能深入理解其内涵。

因此,在教学过程中,需要引导学生从实际问题中抽象出平均数的概念,通过操作、思考、交流等活动,深入理解平均数的含义。

三. 说教学目标1.知识与技能目标:让学生理解平均数的含义,掌握求平均数的方法,能灵活运用平均数解决实际问题。

2.过程与方法目标:通过学生的自主探究、合作交流,培养学生的抽象思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的探究精神和合作意识。

四. 说教学重难点1.重点:理解平均数的含义,掌握求平均数的方法。

2.难点:对平均数的深刻理解,能灵活运用平均数解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作交流法等。

2.教学手段:利用多媒体课件、实物模型、教学卡片等辅助教学。

六. 说教学过程1.导入新课:通过生活中的实例,引出平均数的概念,激发学生的学习兴趣。

2.自主探究:让学生通过小组合作,探讨求平均数的方法,培养学生自主学习的能力。

3.课堂讲解:讲解平均数的含义和求法,引导学生深入理解平均数。

4.案例分析:分析实际问题,运用平均数解决实际问题,巩固所学知识。

5.课堂练习:设计有针对性的练习题,让学生巩固所学知识,提高解决问题的能力。

6.总结提升:对本节课的内容进行总结,强化学生对平均数的理解。

七. 说板书设计板书设计要简洁明了,突出重点。

可以设计如下板书:1.含义:……2.求法:……3.应用:……八. 说教学评价教学评价主要从学生的学习效果、解决问题的能力、合作交流等方面进行。

人教版八年级数学 下册:20.1.1平均数(1)教案

人教版八年级数学 下册:20.1.1平均数(1)教案
1.制订切实可行的学习目标,使学生的学习具有明确的方向。
2.学生已经会求算术平均数,在此处老师可逐步进入权的概念,让学生体会。
活动二:感知权的形式与意义
问题1如果公司想招一名综合能力较强的翻译,请
应试者





85
78
85
73

73
80
82
83
1.计算两名应试者的平均成绩,应该录用谁?
2.听、说、读、写的成绩按照2:1:3:4的比确定.
利家超市新进了三种糖果,应顾客要求,BOSS打算把糖果混合成杂拌糖出售,具体进价和用量如下表:
种类
售价
质量

24元/千克
2千克

19元/千克
2千克

28元/千克
6千克
你能帮超市计算出杂拌糖的售价吗?
试着解决该问题,触发学生思考。引导学生在头脑中形成概念。
通过问题的设置引发学生思考,激发学生的学习积极性和热情。为问题的解决埋下伏笔。
课堂小结
1.算术平均数与加权平均数的区别与联系:
(1)算术平均数是加权平均数的一种特殊情况.(它特殊在各项的权_____)
(2)在实际问题中:
当各项权_______时,计算平均数就要采用算术平均数;
当各项权_______时,计算平均数就要采用加权平均数;
2.加权平均数中“权”的几种表现形式:
整数、比例、百分比。
课时重难点
教学重点:
掌握加权平均数的概念;会求一组数据的加权平均数,理解加权平均数的意义。
教学难点:
理解加权平均数的意义,会求一组数据的加权平均数。
教学过程
教学环节一
教师活动

人教版八年级数学下册第二十章数据的分析20.1.1平均数教学设计

人教版八年级数学下册第二十章数据的分析20.1.1平均数教学设计
(1)求以下数列的平均数:3,6,9,12,15。
(2)已知某班级学生的平均身高为1.6米,若增加一名身高为1.8米的学生,求新的平均身高。
(3)已知一组数据的平均数为20,求这组数据总和的2倍。
2.提高拓展题
为了提高学生的数据分析能力和解决实际问题的能力,布置以下提高拓展题:
(4)某商店进行促销活动,活动期间,顾客平均每人消费金额为100元。若一名顾客消费了150元,求此时顾客的平均消费金额。
三、教学重难点和教学设想
(一)教学重难点
1.重点:平均数的定义及其求解方法,平均数在实际问题中的应用。
2.难点:理解平均数的含义,掌握平均数与其他统计量的关系,以及如何根据数据特点选择合适的平均数作为数据代表值。
(二)教学设想
1.创设情境,导入新课
结合生活实际,设计一个与学生生活密切相关的问题,如班级同学身高、体重等数据的分析,引导学生通过求解平均数来描述数据集中趋势,激发学生学习的兴趣。
让学生分组讨论,尝试用自己的语言描述平均数的含义,并举例说明。在此过程中,教师巡回指导,了解学生的思考情况。
3.教师引导
在学生讨论的基础上,教师进行引导总结,给出平均数的定义,并强调平均数在描述数据集中趋势方面的重要作用。
(二)讲授新知
1.平均数的定义与性质
教师详细讲解平均数的定义,即总数除以个数,强调平均数反映了数据集的总体特征。同时,介绍平均数的性质,如受极端值影响较大等。
本章节教学设计以人教版八年级数学下册第二十章数据的分析20.1.1平均数为依据,结合学科特点和课程内容,注重培养学生的知识技能、过程与方法以及情感态度与价值观。在教学过程中,教师应关注学生的个体差异,因材施教,使他们在原有基础上得到提高。同时,注重理论与实践相结合,让学生在实际问题中感受数学的魅力,提高他们运用数学知识解决实际问题的能力。

八年级数学下册 20.1.1 平均数教案1 (新版)新人教版

八年级数学下册 20.1.1 平均数教案1 (新版)新人教版

第二十章数据的分析20.1 数据的集中趋势20.1.1 平均数【教学目标】知识与技能1. 理解数据的“权”和加权平均数的意义。

2. 会计算加权平均数。

过程与方法通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:情感、态度与价值观会用加权平均数分析一组数据的集中趋势,发展数据分析能力,逐步形成数据分析观念.【教学重难点】重点:会求加权平均数.难点:对“权”的理解.【导学过程】【知识回顾】一组数据88,72,86,90,75的平均数是;一组数据12,12,12,12, 4,4,4,4,4,13,的平均数是;一组数据有5个20,4个30,3个40,8个50,则这20个数的平均数为 .【新知探究】探究一、问题1:(先独立完成,然后小组分工合作交流,选代表展示。

)一家公司打算招聘一名英文翻译. 对甲、乙两名应试者进行了听、说、读、写的英语水应试者听说读写甲8578 85 73乙73 80 82 831.如果这家公司想找一名综合能力较强的翻译,那听、说、读、写成绩按多少比确定?计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?说明方法.2.如果公司要招聘一名笔译能力较强的翻译,那听、说、读、写成绩按2 :1 :3 :4的比确定,计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?说明方法.归纳: 一般地,若 n 个数 x1 , x2, …, x n 的权分别是 w1 , w2 … , w n,则叫做这 n 个数的加权平均数. 权的意义:——————————————————————————————.思考:如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按3 : 3 : 2 : 2的比确定,那么甲乙两人谁会被录取?探究二、例1(小组合作完成)一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分.各项成选手 演讲内容 演讲能力 演讲效果 A 85 95 95 B9585951、你能确定他俩的名次吗?2、假如你是A 选手,你能设计一种合理方案,使自己获得第一名吗?【知识梳理】(1)加权平均数在数据分析中的作用是什么?(2)权的作用是什么?【随堂练习】1、有m 个数的平均数是x ,n 个数的平均数是y ,则这(m+n )个数的平均数为( ) A ....22x y x y mx ny mx nyB C D m nm n++++++ 2、某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如下表所示: 候选人 测试成绩(百分制) 面试 笔试 甲 86 90 乙9283如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权,计算甲、乙两人各自的平均成绩,看看谁将被录取?。

最新人教版数学初中八年级下册20.1.1《平均数》公开课教学设计

最新人教版数学初中八年级下册20.1.1《平均数》公开课教学设计

《平均数(1)》当我们收集到数据后,通常是用统计图表整理和描述数据.为了进一步获取信息,还需要对数据进行分析.本课是在学习过的平均数的基础上,进一步探讨平均数的统计意义,并学习加权平均数,体会在计算平均数中对某些数据的侧重.1.理解加权平均数的意义;2.会用加权平均数分析一组数据的集中趋势,发展数据分析能力,逐步形成数据分析观念理解加权平均数的意义,体会权的意义.多媒体:PPT课件、电子白板一、提出问题探索新知:问题1 如果公司想招一名综合能力较强的翻译,请计算两名应试者的平均成绩,应该录用谁?解:甲的平均成绩为=80.25,乙的平均成绩为=79.5.显然甲的成绩比乙高,所以从成绩看,应该录取甲.【归纳】我们常用平均数表示一组数据的“平均水平”.问题 2 如果公司想招一名笔译能力较强的翻译,听、说、读、写的成绩按照2:1:3:4的比确定,请计算两名应试者的平均成绩,应该录用谁?解:甲的平均成绩为=79.5,乙的平均成绩为=80.4.显然乙的成绩比甲高,所以从成绩看,应该录取乙.问题3如果公司想招一名口语能力较强的翻译,听、说、读、写的成绩按照3:3:2:2的比确定,请计算两名应试者的平均成绩,应该录用谁?解:甲的平均成绩为=80.5,乙的平均成绩为=78.9.显然甲的成绩比乙高,所以从成绩看,应该录取甲.【归纳】一般地,若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则叫做这n个数的加权平均数.二、应用新知:例1 一次演讲比赛中,评委按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分制).试比较谁的成绩更好.三、巩固练习:练习某公司欲招聘一名公关人员,对甲、乙两位应试者进行了面试与笔试,他们的成绩(百分制)如下表所示.(1)如果公司认为面试和笔试成绩同等重要,从他们的成绩看,谁将被录取?(2)如果公司认为,作为公关人员面试成绩应该比笔试成绩更重要,并分别赋予它们6 和4 的权,计算甲、乙两人各自的平均成绩,谁将被录取?三、拓展应用:某广告公司欲招聘职员一名,A,B,C三名候选人的测试成绩(百分制)如下表所示:(1)如果公司招聘的职员分别是网络维护员、客户经理或创作总监,给三项成绩赋予相同的权合理吗?(2)请你设计合理的权重,为公司招聘一名职员:①网络维护员;②客户经理;③创作总监.四、课堂小结:(1)加权平均数在数据分析中的作用是什么?当一组数据中各个数据重要程度不同时,加权平均数能更好地反映这组数据的平均水平.(2)权的作用是什么?权反映数据的重要程度,数据权的改变一般会影响这组数据的平均水平.略。

初中数学人教版八年级下册20.1.1 平均数第1课时 平均数(1)教案

初中数学人教版八年级下册20.1.1 平均数第1课时 平均数(1)教案

初中数学人教版八年级下册实用资料第二十章 数据的分析20.1 数据的集中趋势20.1.1 平均数第1课时 平均数(1)1.使学生理解并掌握数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.重点会求加权平均数.难点对“权”的理解.一、复习导入某校八年级共有班级 1班 2班 3班 4班参考人数 40 42 45 32平均成绩 80 81 82 79x =14×(79+80+81+82)=80.5 平均数的概念及计算公式:一般地,如果有n 个数x 1,x 2,x 3,…,x n ,则有x =x 1+x 2+x 3+…+x n n,其中x 叫做这n 个数的平均数,读作“x 拔”.二、讲授新课问题: 一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(应试者 听 说 读 写甲 85 78 85 73乙 73 80 82 83(1)(百分制).从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?对于问题(1),根据平均数公式,甲的平均成绩为:85+78+85+734=80.25, 乙的平均成绩为73+80+82+834=79.5. 因为甲的平均成绩比乙高,所以应该录取甲.对于问题(2),听、说、读、写成绩按照2∶1∶3∶4的比确定,这说明各项成绩的“重要程度”有所不同,读、写的成绩比听、说的成绩更加“重要”.因此,甲的平均成绩为85×2+78×1+85×3+73×42+1+3+4=79.5, 乙的平均成绩为73×2+80×1+82×3+83×42+1+3+4=80.4. 因为乙的平均成绩比甲高,所以应该录取乙.上述问题(1)是利用平均数的公式计算平均成绩,其中的每个数据被认为同等重要.而问题(2)是根据实际需要对不同类型的数据赋予与其重要程度相应的比重,其中的2,1,3,4分别称为听、说、读、写四项成绩的权,相应的平均数79.5,80.4分别称为甲和乙的听、说、读、写四项成绩的加权平均数.一般地,若n 个数x 1,x 2,…,x n 的权分别是w 1,w 2,…,w n ,则x 1w 1+x 2w 2+…+x n w n w 1+w 2+…+w n叫做这n 个数的加权平均数.三、例题讲解【例1】教材第112页例1【例2】为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行了测量,结果如下表:(单位:小时寿命 450 550 600 650 700只数 20 10 30 15 25解:这些灯泡的平均使用寿命为:x =450×20+550×10+600×30+650×15+700×2520+10+30+15+25=597.5(小时) 四、巩固练习1.在一个样本中,2出现了x 1次,3出现了x 2次,4出现了x 3次,5出现了x 4次,则这个样本的平均数为________.【答案】2x 1+3x 2+4x 3+5x 4x 1+x 2+x 3+x 42.某人打靶,有a 次打中x 环,b 次打中y 环,则这个人平均每次中靶________环.【答案】ax +by a +b五、课堂小结师:这节课你学到了什么新知识?生1:数据的权和加权平均数的概念.生2:掌握加权平均数的计算方法.……平均数是统计中的一个重要概念,新教材注重学生在经历统计活动的过程中体会平均数的本质内涵,理解平均数的意义,发展学生的统计观念,基于以上认识,我在设计中突出了让学生在具体情境中体会为什么要学习平均数,注重引导学生在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决实际问题,了解它的价值.第2课时 平均数(2)1.加深对加权平均数的理解.2.会根据频数分布表求加权平均数,解决一些实际问题.3.会用计算器求加权平均数的值.重点根据频数分布表求加权平均数.难点根据频数分布表求加权平均数.一、复习导入采用教材原有的引入问题,设计的几个问题如下:(1)请同学们阅读教材中的探究问题,依据统计表可以读出哪些信息?(2)这里的组中值指什么,它是怎样确定的?(3)第二组数据的频数5指什么呢?(4)如果每组数据在本组中分布较为均匀,每组数据的平均值和组中值有什么关系? 设计意图(1)主要是想引出根据频数分布表求加权平均数近似值的计算方法;(2)加深了对“权”的意义的理解:当利用组中值近似取代一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权;二、例题精讲【例2】某跳水队为了解运动员的年龄情况,作了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人.求这个跳水队运动员的平均年龄(结果取整数).解:这个跳水队运动员的平均年龄为x =13×8+14×16+15×24+16×28+16+24+2≈14(岁). 【例3】某灯泡厂为测量一批灯泡的使用寿命,从中随机抽查了50只灯泡.它们的使用使用寿命/x/h 600≤x<1000 1000≤x<1400 1400≤x<1800 1800≤x<2200 2200≤x<2600灯泡只数 5 10 12 17 6分析:估计这批灯泡的平均使用寿命.解:根据表格,可以得出各小组的组中值,于是x =800×5+1200×10+1600×12+2000×17+2400×650=1672, 即样本平均数为1672.因此,可以估计这批灯泡的平均使用寿命大约是1672 h .三、巩固练习某校为了了解学生做课外作业所用时间的情况,对学生做课外作业所用时间进行调查,下表是该校八年级某班.所用时间t(分钟) 人 数0<t≤10 410<t≤20 620<t≤30 1430<t≤40 1340<t≤50 950<t≤60 4求:(1)(2)该班学生平均每天做数学作业所用的时间.【答案】解:(1)15(2)该班学生平均每天做数学作业所用时间为x =5×4+15×6+25×14+35×13+45×9+55×44+6+14+13+9+4=30.8(分钟) 四、课堂小结1.加权平均数的应用.2.根据频数分布表求加权平均数.3.学会用计算器求加权平均数的值.在统计中算术平均数常用于表示对象的一般水平,它是描述数据集中程度的一个统计量,它可以反映一组数据的一般情况,也可以用它进行不同组数据的比较,以看出组与组之间的差别,可见平均数是统计中的一个重要概念.基于这一认识,这节课注重了以下几个方面:一、在现实生活情境中引入,注重数学与生活的联系.二、创造有效的数学学习方式,理解平均数的意义,学会平均数的算法.20.1.2 中位数和众数第1课时 中位数和众数(1)认识中位数和众数,并会求出一组数据的众数和中位数.重点认识中位数、众数这两种数据代表.难点利用中位数、众数分析数据信息,做出决策.一、复习导入前面已经和同学们研究了平均数这个数据代表.它在分析数据的过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据的过程中又起到怎样的作用.二、讲授新课 月收 入/元 45000 18000 10000 5500 5000 3400 3000 1000 人数 1 1 1 3 6 1 11 1(2)若用(1)算得的平均数反映公司全体员工月收入水平,你认为合适吗?师:同学们知道如何计算这个公司员工月收入的平均数吗?生:根据加权平均数,可以求出这个公司员工月收入的平均数为:45000+18000+10000+5500×3+5000×6+3400+3000×11+10001+1+1+3+6+1+11+1=6276.师:很好!那么用第(1)问中算得的平均数来反映该公司全体员工的月收入水平,你认为合理吗?生:不合理.因为在这25名员工中,仅有3名员工的收入在6276元以上,而另外22名员工的收入都在6276元以下.因此,用月收入的平均数反映所有员工的月收入水平不合理.师:这位同学分析得很好!那么应该选择什么数据来反映该公司员工月收入的水平呢?这就要用到本节课要学习的中位数,利用中位数可以更好地反映这组数据的集中趋势.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称位于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数.利用中位数分析数据可以获得一些信息.例如,上述问题中将公司25名员工月收入数据由小到大排列,得到的中位数为3400,这说明除去月收入为3400元的员工,一半员工收入高于3400元,另一半员工收入低于3400元.【例1】教材第117页例4师:刚才我们学习中位数,下面我们再来学习一个反映数据集中趋势的另一众数,一组数据中出现次数最多的数据称为这组数据的众数.当一组数据有较多的重复数据时,众数往往能更好地反映该组数据的集中趋势.【例2】一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如表所示.你尺码/cm22 22.5 23 23.5 24 24.5 25销售量/双 1 2 5 11 7 3 1码组成的一组数据的众数.一段时间内卖出的300双女鞋的尺码组成一个样本数据,通过分析样本数据可以找出样本数据的众数,进而估计这家鞋店销售哪种尺码的鞋最多.解:由表可以看出,在鞋的尺码组成的数据中,23.5是这组数据的众数,即23.5 cm的鞋销售量最大,因此可以建议鞋店多进23.5 cm的鞋.三、巩固练习1.数据8,9,9,8,10,8,9,9,8,10,7,9,9,8的中位数是________,众数是________.【答案】9 92.一组各不相同的数据23,27,20,18,x,12,它的中位数是21,则x的值是________.【答案】223.数据92,96,98,100,x的众数是96,则其中位数和平均数分别是( )A.97,96 B.96,96.4C.96,97 D.98,97【答案】B4.如果在一组数据中,23,25,28,22出现的次数依次为3,5,3,1,并且没有其他的数据,则这组数据的众数和中位数分别是( )A.24,25 B.23,24C.25,25 D.23,25【答案】C四、课堂小结1.认识了中位数和众数.2.理解了中位数和众数的意义和作用,并能利用它们分析数据信息,做出决策.本次教学中,我通过引导学生在了解中位数和众数的意义之后,让学生利用中位数和众数的知识解决实际问题,沟通了知识与实际生活的联系,让学生体会到中位数与众数知识的实用性.第2课时中位数和众数(2)1.进一步认识到平均数、众数、中位数都是数据的代表.2.了解平均数、中位数、众数在描述数据时的差异.重点了解平均数、中位数、众数之间的差异.难点灵活运用这三个数据代表解决问题.一、复习导入平均数、中位数和众数都可以作为一组数据的代表,是描述一组数据集中趋势的量.它们各有自己的特点,能够从不同的角度提供信息,在实际应用中,需要分析具体问题的情况,选择适当的量反映数据的集中趋势.另外要注意:(1)平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大;(2)众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算也不受极端值的影响;(3)平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应地引起平均数的变动;(4)中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中,也可能不在所给的数据中.当一组数据中的个别数据变动较大时,可用中位数描述其趋势;(5)实际问题中求得的平均数、众数、中位数应带上单位.二、例题讲解【例1得分50 60 70 80 90 100 110 120人数 2 3 6 14 15 5 4 1解:众数90分中位数85分平均数84.6分【例2】公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁) 甲群:13,13,14,15,15,15,16,17,17.乙群:3,4,5,5,6,6,36,55.(1)甲群游客的平均年龄是________岁,中位数是________岁,众数是________岁,其中能较好地反映甲群游客年龄特征的是________;(2)乙群游客的平均年龄是________岁,中位数是________岁,众数是________岁,其中能较好地反映乙群游客年龄特征的是________.解:(1)15 15 15 众数(2)15 5.5 5,6 中位数【例3】教材第119页例6三、巩固练习职员董事长副董事长董事总经理经理管理员职员人数 1 1 2 1 5 3 20工资5500 5000 3500 3000 2500 2000 1500(2)假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是多少?(精确到元)(3)你认为应该使用平均数和中位数中的哪一个来描述该公司职工的工资水平?【答案】(1)2091 1500 1500 (2)3288 1500 1500 (3)中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.四、课堂小结1.了解平均数、中位数、众数之间的差异.2.灵活运用这三个数据代表解决问题.本节课首先从复习平均数、中位数和众数的定义开始,接着列出这三种统计量各自的特点和适用条件,为避免太过抽象,在后面设计的例题中都有这些统计量的应用,培养学生应用数学的意识.20.2 数据的波动程度1.了解方差的定义和计算公式.2.理解方差概念的产生和形成过程.3.会用方差比较两组数据的波动大小.重点方差产生的必要性和应用方差公式解决实际问题.难点理解方差的概念并会运用方差的公式解决实际问题.一、情境导入1.请同学们看下面的问题:(幻灯片出示)农科院计划为某地选择合适的甜玉米种子.选择种子时,甜玉米的产量和产量的稳定性是农科院所关心的问题.为了解甲、乙两种甜玉米种子的相关情况,农科院各用10块自然条甲 7.65 7.50 7.62 7.59 7.65 7.64 7.50 7.40 7.41 7.41 乙 7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49 上面两组数据的平均数分别是x 甲≈7.54,x 乙≈7.52,说明在试验田中,甲、乙两种甜玉米的平均产量相差不大.由此可以估计出这个地区种植这两种甜玉米,它们的平均产量相差不大.为了直观地看出甲、乙两种甜玉米产量的分布情况,我们把这两组数据画成下面的图1和图2.师:比较上面的两幅图可以看出,甲种甜玉米在各试验田的产量波动较大,乙种甜玉米在各试验田的产量较集中地分布在平均量附近,从图中看出的结果能否用一个量来刻画呢?这就是我们本节课所要学习的内容——方差.教师说明:从上面看到,对于一组数据,除需要了解它们的平均水平外,还常常需要了解它们的波动大小(即偏离平均数的大小).2.方差的概念教师讲解:为了描述一组数据的波动大小,可以采用不止一种办法,例如,可以先求得各个数据与这组数据的平均数的差的绝对值,再取其平均数,用这个平均数来衡量这组数据的波动大小,通常,采用的是下面的做法:设在一组数据中,各数据与它们的平均数的差的平方的和的平均数是s 2,那么我们用s 2=1n[(x 1-x)2+(x 2-x)2+…+(x n -x)2] 来衡量这组数据的波动大小,并把它叫做这组数据的方差.一组数据的方差越大,说明这组数据的波动越大;数据的方差越小,说明这组数据的波动越小,教师要剖析公式中每一个元素的意义,以便学生理解和掌握.在学生理解了方差的概念之后,再回到了引例中,通过计算甲、乙两种甜玉米的方差,根据理论说明哪种甜玉米的产量更好.教师示范:两组数据的方差分别是s 甲2=(7.65-7.54)2+(7.50-7.54)2+…+(7.41-7.54)210≈0.01, s 乙2=(7.55-7.52)2+(7.56-7.52)2+…+(7.49-7.52)210≈0.002. 显然s 甲2>s 乙2,即甲种甜玉米的波动较大,这与我们从图1和图2看到的结果一致.由此可知,在试验田中,乙种甜玉米的产量比较稳定.正如用样本的平均数估计总体的平均数一样,也可以用样本的方差来估计总体的方差.因此可以推测,在这个地区种植乙种甜玉米的产量比甲种的稳定.综合考虑甲、乙两个品种的平均产量和产量的稳定性,可以推测这个地区比较适合种植乙种甜玉米.这样做使学生深刻地体会到数学来源于实践,又反过来作用于实践,不仅使学生对学习数学产生浓厚的兴趣,而且培养了学生应用数学的意识.二、例题讲解【例1】教材第125页例1【例2】教材第127页例2【例3】(幻灯片出示)已知两组数据:甲:9.9 10.3 9.8 10.1 10.4 10 9.8 9.7乙:10.2 10 9.5 10.3 10.5 9.6 9.8 10.1分别计算这两组数据的方差.让学生自己动手计算,求平均数时激发学生用简化公式计算,找一名学生到黑板计算. 解:根据公式可得x 甲=10+18(-0.1+0.3-0.2+0.1+0.4+0-0.2-0.3) =10+18×0=10 x 乙=10+18(0.2+0-0.5+0.3+0.5-0.4-0.2+0.1) =10+18×0=10 s 甲2=18[(9.9-10)2+(10.3-10)2+…+(9.7-10)2] =18(0.01+0.09+…+0.09) =18×0.44=0.055 s 乙2=18[(10.2-10)2+(10-10)2+…+(10.1-10)2] =18(0.04+0+…+0.01) =18×0.84=0.105 从s 甲2<s 乙2知道,乙组数据比甲组数据波动大.三、巩固练习1.已知一组数据为2,0,-1,3,-4,则这组数据的方差为________.【答案】62.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:甲:7,8,6,8,6,5,9,10,7,4乙:9,5,7,8,7,6,8,6,7,7经过计算,两人射击环数的平均数相同,但s甲2________s乙2,所以确定________去参加比赛.【答案】>乙四、课堂小结1.知识小结:通过这节课的学习,我们知道了对于一组数据,有时只知道它的平均数还不够,还需要知道它的波动大小,而描述一组数据的波动大小的量不止一种,最常用的是方差.2.方法小结:求一组数据方差的方法:先求平均数,再利用平均数求方差.本次教学在解决引例问题时,通过对数据的分析,发现以前学过的统计知识不能解决新问题,引出矛盾,这里设计了小组讨论的环节,让学生在交流中得到启发,进而使学生的思维发生碰撞,产生创新的火花,真正体现“不同的人,在数学上得到不同的发展”.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20.1.1平均数(第一课时)公开课教学设计
一、教材分析
《平均数》是人教版义务教育课程标准实验教材八年级数学下册第二十章数据的分析第一节教学内容,加权平均数是算术平均数的延伸,本课概念性较强,也是学生学会分析数据,作出决策的基础。

本节内容与学生生活密切相关,能直接指导学生的生活实践。

二、学情分析
在学习本课之前学生已学过算术平均数学,有一定合作交流的经验,八年级学生的认知水平又有限可能难以理解“加权平均数”意义,容易使产生畏难情绪。

同时“求加权平均数”作为一类应用题,而现行教材中往往脱离学生生活实际,让学生感到枯燥乏味。

在教学过程中如能让学生理解“权”的含义,对求加权平均数的问题自然会迎刃而解。

为了促进学生发展本节课我根据学生由感知——表象——抽象的认识规律和教学的启发性、直观性和面向全体因材施教等教学原则,通过积极创设真实的、源于生活的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、设疑激趣法、讨论法,让学生经历数学活动,激发学生的学习积极性,促进学生发展。

三、教学目标
知识与技能:结合实例理解“权”及“加权平均数”的意义,掌握加权平均数的计算公式,并能利用其解决不同情境下的实际问题。

过程与方法:经历情境探求过程,感悟提出“加权平均数”的概念的必要性及“加权平均数”与“算术平均数”的联系与区别;经历解决问题的过程,深化对“权”的各种形式的认识及对“加权平均数”的本质认识。

情感态度价值观:认识“各个数据的重要程度有所不同”的客观事实,体会“根据不同数据的权来计算其平均数”的合理性。

四、教学重难点
教学重点:权及加权平均数的概念的理解,计算公式及应用。

难点:加权平均数概念的形成。

五、教学过程
(一)、情境创设、
1、复习:数据
2、
3、
4、1、2的平均数是________,这个平均数叫做_________平均数.
小结:日常生活中,我们常用平均数表示一组数据的“平均水平”平均数一般是指算术平均数,也就是一组数据的和除以这组数据的个数所得的商。

一般地,对于n个数x1,x2,…,x n,我们把叫做这n个数的算术平均数,简称平均数.
(在讨论过程中教师应注意提问学生平均数计算公式中分子是什么、分母又是什么?学生由前面复习平均数定义可答出分子是数据的总和、分母是数据的个数)
情境导入:如下表所示,这是海南师范大学毕业生王小明参加的一次考试成绩表,此次考试内容包括:理论、基本功、说课、微格四个部分,最后总分是83.16,同学们猜想一下总分是怎样计算出来的?动手计算验证下自己的猜想?
你们计算的结果是83.16分吗?难道评委们给王小明算错分了吗?学完本节课,你就会从中找出答案。

(二)、自主探究、
问题1:东方市三个郊镇的人均耕地面积如下表:东方市三个郊镇的人均耕地面积如下表示正确吗?
0.15+0.21+0.18
3
思考1:东方市三个郊镇的人均耕地面积与哪些因素有关?它们之间有何关系?
思考2:总耕地面积
思考3:人口总数
(提问学生平均数计算公式中分子是什么、分母又是什么?学生由前面复习平均数定义可答出分子是数据的总和、分母是数据的个数)
议一议
[师](1)(2)的结果不一样说明了什么?请大家互相交流.
[师]由于每一项的重要性不同,所以所占的比份不同,计算出的平均数就不同.可见重要性的差异对结果(平均数)的影响是很大的.
教师总结:加权平均数的概念
在实际问题中,一组数据的各个数据的“重要程度”未必相同.因而,在计算这组数据的平均数时,往往给每个数据一个“权”. 我们就把上面求得的平均数0.17称为三个数0.15、0.21、0.18的加权平均数,由于各郊镇的人数不同,
各郊镇的人均耕地面积对东方市三个郊镇的人均耕地面积的影响就不同.因此我们把东方市三个郊镇的人数(单位:万)15、7、10分别称为三个数据的权.由此可见,由于工作不同,对各方面的要求就不同,哪一方面比较重要,权就比较大.
思考:你能用上面的字母表示出东方市三个郊镇的人均耕地面积吗?你能用字母表示出加权平均数的公式吗?
议一议:算术平平均数与加权平均数的区别
三、应用举例
例1 一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:1)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照3∶3∶2∶2的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?
思考(1)这家公司在招聘英文翻译时,对甲乙两名应试者进行了哪几方面的英语水平测试?成绩分别是多少?
思考(2)招口语能力较强的翻译,“听、说、读、写成绩按照3∶3∶2∶2的比确定”,说明公司侧重于哪几个方面的成绩?
思考(3)计算两名候选人的平均成绩实际上就是求两人听、说、读、写四项成绩的加权平均数,那么它们的权分别是什么?
解:(1)听、说、读、写的成绩按照3∶3∶2∶2的比确定,则
甲的平均成绩为
85×3+83×3+78×2+75×2
3+3+2+2
=81
乙的平均成绩为
73×3+80×3+85×2+82×2
3+3+2+2
=79.3
显然甲的成绩比乙的高,所以从成绩看,应该录取甲.
(2)如果现在要招一名笔译能力较强的翻译,你能给各数据制定一个合适的权吗?制定的依据是什么?试一试。

学生交流制定一个合适的权:如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶2∶3∶3的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?
思考(1)招笔译能力较强的翻译,“听、说、读、写成绩按照2∶2∶3∶3的比确定”,说明公司侧重于哪几个方面的成绩?
思考(2)计算两名候选人的平均成绩实际上就是求两人听、说、读、写四项成绩的加权平均数,那么它们的权分别是什么?
解:(2)听、说、读、写的成绩按照2∶2∶3∶3的比确定,则
甲的平均成绩为
85×2+83×2+78×3+75×3
2+2+3+3
=79.5
乙的平均成绩为
(四)、解决问题(选)
例2 一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示:
请决出两人的名次.
思考(1)如果计算不加权的平均数,你有什么发现?
思考(2)你认为在计算选手的综合成绩时侧重于哪个方面的成绩?三项成绩的权分别是多少?
思考(3)你能先猜出两人的名次吗,依据是什么?
思考(4)利用加权平均数公式你能求出A、B的综合成绩,决出两人的名次,验证你的猜想。

思考(5):两名选手的单项成绩都是两个95分与一个85分,为什么他们的最后得分不同?从中你能体会到权的作用吗?
(五)、巩固新知、
1、这回王小明的考试成绩知道是怎样计算的了吗?哪一项考试成绩最重要?为什么?
2、某公司欲招聘一名公关人员,对甲、乙两位候选人进行了面试和笔试,他们的成绩如下表所示:
3、晨光中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95分、90分、85分,小桐这学期的体育成绩是多少?
(六)、感悟新知
收获:
(1)对数据的权和加权平均数准确理解和正确的表述;
(2)能够利用加权平均数的公式进行相应的计算,解决一些实际问题.。

相关文档
最新文档