工程力学10组合变形
第十二章工程力学之组合变形方案

将T分解为沿AC杆轴线的分量Tx和垂直于轴线的分量Ty
Tx T cos 30 40
3 34.6KN 2
Ty
T
sin 30
40
1 2
20KN
可见, Tx和Fcx使AC产生轴向压缩,而Ty、P和Fcy产生弯曲变 形,所以AC杆实际发生的是轴向压缩与弯曲的组合变形。
32 M
d 3
4 15 103
d 2
32 6 103
d 3
根据强度条件 t max [ ]
有
4 15 103
d 2
32
6 103
d 3
35 106
由上式可求得立柱的直径 d≥122mm
例12-3:如图12-6(a)所示,电动机的功率为9kW,转速为 715r/m,皮带轮直径D=250mm,电动机主轴外伸部分长度为 l=120mm,直径d=40mm。求外伸部分根部截面A、B两点的应力。
二、叠加原理
杆在组合变形下的应力和变形分析,一般可利用叠加原理。
叠加原理: 实践证明,在小变形和材料服从虎克定律的前提下, 杆在几个载荷共同作用下所产生的应力和变形,等于每个载荷 单独作用下所产生的应力和变形的总和。
当杆在外力作用下发生几种基本变形时,只要将载荷简化为一 系列发生基本变形的相当载荷,分别计算杆在各个基本变形下 所产生的应力和变形,然后进行叠加,就得到杆在组合变形下 的应力和变形。
M
M max Wy
35 103 2 152 106
115106
115MPa
截面上的弯曲正应力分布如图12-4(c)所示。 (4) 组合变形下的最大正应力
工程力学第十一章 组合变形

土建工程中的混凝土或砖、石偏心受压柱,往往不 允许横截面上出现拉应力。这就是要求偏心压力只能作 用在横截面形心附近的截面核心内。
要使偏心压力作用下杆件横截面上不出现拉应力, 那么中性轴就不能与横截面相交,一般情况下充其量只能 与横截面的周边相切,而在截面的凹入部分则是与周边外 接。截面核心的边界正是利用中性轴与周边相切和外接时 偏心压力作用点的位置来确定的。
解:拉扭组合:
7kNm T
50kN FN
安全
例11-8 直径为d的实心圆轴,
·B
P 若m=Pd,指出危险点的位置, 并写出相当应力 。
x
m
解:偏拉与扭转组合
z
C P P 例11-9 图示折角CAB,ABC段直径
d=60mm,L=90mm,P=6kN,[σ]=
BA
60MPa,试用第三强度理论校核轴 x AB的强度。
例11-6 图示圆轴.已知,F=8kN,Me=3kNm,[σ]=100MPa, 试用第三强度理论求轴的最小直径.
解:(1) 内力分析
4kNm M
3kNm T
(2)应力分析
例11-7 直径为d=0.1m的圆杆受力如图,T=7kNm,P=50kN, []=100MPa,试按第三强度理论校核此杆的强度。
至于发生弯曲与压缩组合变形的杆件,轴向压力 引起的附加弯矩与横向力产生的弯矩为同向,故只有 杆的弯曲刚度相当大(大刚度杆)且在线弹性范围内 工作时才可应用叠加原理。
A M
F FN
+ ql2/8
+
B
+
=
C 10kN
A 1.6m
1.6m
10kN
1.2m
例11-3 两根无缝钢管焊接 而成的折杆。钢管外径 D=140mm,壁厚t=10mm。求 危险截面上的最大拉应力和 B 最大压应力。
工程力学之组 合 变 形

工程力学第10章组合变形学习目标(1)了解组合变形的概念及其强度问题的分析方法;(2)掌握斜弯曲、拉伸(压缩)与弯曲和偏心压缩的应力及强度计算。
10.1 组合变形的概念例如,烟囱的变形,除自重W引起的轴向压缩外,还有水平风力引起的弯曲变形,同时产生两种基本变形,如图10-1(a)所示。
又如图10-1(b)所示,设有吊车的厂房柱子,作用在柱子牛腿上的荷载F,它们合力的作用线偏离柱子轴线,平移到轴线后同时附加力偶。
此时,柱子既产生压缩变形又产生弯曲变形。
再如图10-1(c)所示的曲拐轴,在力F作用下,AB 段同时产生弯曲变形和扭转变形。
10.1 组合变形的概念图10-110.1 组合变形的概念上述这些构件的变形,都是两种或两种以上的基本变形的组合,称为组合变形。
研究组合变形问题依据的是叠加原理,进行强度计算的步骤如下:(1)将所作用的荷载分解或简化为几个只引起一种基本变形的荷载分量。
(2)分别计算各个荷载分量所引起的应力。
(3)根据叠加原理,将所求得的应力相应叠加,即得到原来荷载共同作用下构件所产生的应力。
(4)判断危险点的位置,建立强度条件。
10.2例如图10-2(a)所示的横截面为矩形的悬臂梁,外力F作用在梁的对称平面内,此类弯曲称为平面弯曲。
斜弯曲与平面弯曲不同,如图10-2(b)所示同样的矩形截面梁,外力F的作用线通过横截面的形心而不与截面的对称轴重合,此梁弯曲后的挠曲线不再位于梁的纵向对称面内,这类弯曲称为斜弯曲。
斜弯曲是两个平面弯曲的组合,本节将讨论斜弯曲时的正应力及其强度计算。
10.2图10-210.210.2.1 正应力计算斜弯曲时,梁的横截面上同时存在正应力和切应力,但因切应力值很小,一般不予考虑。
下面结合图10-3(a)所示的矩形截面梁说明斜弯曲时正应力的计算方法。
图10-310.2.1 正应力计算10.2.1.1 外力的分解由图10-3(a)可知:10.2.1.2 内力的计算如图10-3(b)所示,距右端为a 的横截面上由F y 、F z 引起的弯曲矩分别是:10.2 10.2.1 正应力计算10.2.1.3 应力的计算由M z 和M y (即F y 和F z )在该截面引起K 点的正应力分别为:F y 和F z 共同作用下K 点的正应力为:10.210-110.210.2.1 正应力计算10.2.1.3 应力的计算通过以上分析过程,我们可以将组合变形问题计算的思路归纳为“先分后合”,具体如下:10.210.2.2 正应力强度条件同平面弯曲一样,斜弯曲梁的正应力强度条件仍为:10-2即危险截面上危险点的最大正应力不能超过材料的许用应力[σ]。
工程力学-10应力状态分析和强度计算

边的长度变化,所以广义胡克定律为:
y yx
z
x zy yz xz x
zx xy
z
y
x
1 E
[ x
( y
z)
]
y
1 E
[
y
( x
z) ]
14z
1 E
[
z
( x
y) ]
—— 广义胡克定律
在平面应力状态下,胡克定律变为:
x
1 E
( x
y )
y
y
1 E
( y
x )
z
E
( x
●
90 x y 10
90
——平面应力状态分析
过一点总存在三对相互垂直的主平面,对应三 个主应力
主应力排列规定:按代数值由大到 小。
剪应力为零的面为主平面; 主平面上的正应力为主应力; 全部由主平面构成的单元体 为主单元体。
1 2 3
10
50 单位:MPa
1 50; 30 2 10;
主 讲:谭宁 副教授 办公室:教1楼北305
——概 述
(1)、铸铁与低碳钢的拉、压、扭试验现象是怎样产生的?
P 铸铁拉伸
铸铁压缩
M
P
低碳钢
铸铁
P
P
(2)、组合变形杆将怎样破坏?
2
M
过一点有无数的截面
——概 述
应力
哪一个面上? 哪一点?
指明
哪一点? 哪个方向面?
过一点不同方位截面上应力的集合,称为一点的应力状态(State of the Stresses of a Given Point)。
(1)各个面上的应力均匀分布; (2)相互平行的平面上,应力大小和性质完全相同。 (3) 相邻垂直面上的切应力根据切应力互等定理确定.
工程力学组合变形

内力图如图所示,危险截面为D截面, 其内力为:FN=-5kN,M=2.5kN.m
3) 应力分析:
FC
C
FAy FAx 30
A
L
D
L
B
F=10kN
FN
-
8.66kN
2.5kN.m
M
+
D截面旳上边沿点为危险点,为最大压应力。
矩形截面梁 宽b=40mm 高h=60mm
[]=120MPa
FC
P
R
M
二、组合变形工程实例
P
q
h
水坝
H
压弯组合变形:同步发生轴向压缩与弯曲
G1 D 烟囱
h
拉弯组合变形:同步发生轴向拉伸与弯曲
弯扭组合变形:同步发生弯曲与扭转 辘轳从深井中提水
P
P
三、组合变形旳研究措施 —— 叠加原理
对于组合变形下旳构件,在线弹性范围内、小变形 条件下,可先将荷载简化为符合基本变形外力作用条件 旳外力系,分别计算构件在每一种基本变形下旳内力、 应力或变形。然后利用叠加原理,综合考虑各基本变形 旳组合情况,以拟定构件旳危险截面、危险点旳位置及 危险点旳应力状态,并据此进行强度计算。
max
FN A
M ≤ [ ]
W
max
FN M ≤ [ ]
AW
式中FN和M是指危险截 面旳轴力和弯矩,轴力拉为 正,压为负,弯矩则用绝对 值代入。
提议:进行危险点旳应力分 析时,绘出应力分布图!
对拉压(弯)组合变形杆件进行应力分析时,一般忽视了弯曲剪应 力,所以横截面上只有正应力,各点处于单向应力状态。
1. External force analysis and determine basic deformation 外力分析,拟定基本变形
工程力学-组合变形

s
强度条件为 nb
n
塑性材料 脆性材料
(2) 概述复杂应力状态下的强度计算:
组合变形的构件内危险点多为二向或三向应力状态。
难以用实验测定各种应力状态而建立强度条件,常常依 据部分实验结果提出假设,推测材料失效的原因,从而 建立强度理论。
5
§14.2 强度理论概论
强度理论 (theory of strength)
(1) 两种失效现象:屈服和断裂
各种材料的强度不足引起的失效现象不同,表现为屈服 和断裂两类。
(2) 衡量变形的程度:
衡量构件受力变形程度的量有应力、应变、能量等。
(3) 强度理论:
根据材料破坏现象和大量的实验资料,人们对强度的失 效提出了各种假说,称为强度理论。
不同的强度理论认为,材料按某种方式(屈服或断裂)
在二向应力状态下, 为两个非零主应力,
则在 为坐标的平面坐标系中, 当 同号时,失效准则为
当 异号时,失效准则为
28
故任意情况下失效准则在 所示。
平面中为六角形,如图
若某一平面应力状态其两个非零主应力
所在的点 M ,落在六来自形区域之内,则该应力状态不会引起屈服。
若点 M 落在六角形边界上,则该应力状态会引起材料 屈服。
本章主要内容:
(1) 介绍几种常见的强度理论; (2) 讨论工程中常见的斜弯曲、拉(压)弯、偏心拉
(压)、弯扭等组合变形形式的强度计算。
2
第14章 组合变形 (combined deformation)
§14.1 组合变形的概念与分析方法
四种基本变形
拉伸(压缩)、剪切、扭转、弯曲。
组合变形 (combined deformation)
工程力学组合变形

取=0 ,以y0、z0代
表中性轴上任一点的坐
标,则可得中性轴方程
2024/1/28
1
zF iy2
z0
yF iz2
y0
0
23
可见,在偏心拉伸(压缩)情况下,中性轴是一条不 通过截面形心的直线。
求出中性轴在y、z两轴上的截距
ay
iz2 yF
,
az
iy2 zF
z
对于周边无棱角的截面,可作两条
D1(y1,z1)
2024/1/28
10
0.642 qa 2
0.444qa 2 0.321 qa 2
A
DC
0.617 a
A
DC
My 图 (N m) B
B Mz 图 (N m)
0.456 qa 2 0.383 qa 2
在xoz主轴平面内的 弯矩图(y轴为中性轴)
在xoy主轴平面内的 弯矩图 (z轴为中性轴)
0.266 qa 2
4.强度分析 根据危险点的应力状态和杆件的材料按强度 理论进行强度计算。
2024/1/28
3
§8-2 斜弯曲
一、概念
平面弯曲:外力施加在梁的对称面(或主平面) 内时,梁将产生平面弯曲。
即梁变形后,轴线位于外力所在的平面之内。 对称弯曲:平面弯曲的一种。
斜弯曲梁变形后,轴线位于外力所在的平面之外。
2024/1/28
F A
FzF Wy
FyF Wz
危险点处仍为单轴应力状态,其强度条件为
t,max [ t ] c,max [ c ]
2024/1/28
26
补充例题 图示矩形截面钢杆,用应变片测得杆件上、下
表面的轴向正应变分别为εa=1×10-3、 εb =0.4×10-3, 材料的弹性模量E=210GPa 。(1).试绘出横截面上的正
工程力学 第二版 (范钦珊 唐静静 著) 高等教育出版社 课后答案 第10章 组合受力与变形杆件的强度计算

网
FP a2
ww w
5
.k hd
b
m
上表面
∴
σa 4 = σb 3
习题 10-7 图
和 ε 2 。证明偏心距 e与 ε1 、 ε 2 之间满足下列关系:
FP
网
ww w
e=
ε1 − ε 2 h × ε1 + ε 2 6
课
后 答
案
FP
M = FP e
习题 10-8 图
解:1,2 两处均为单向应力状态,其正应力分别为: 1 处:
第10章
组合变形与变形杆件的强度计算
10-1 根据杆件横截面正应力分析过程, 中性轴在什么情形下才会通过截面形心?试分析 下列答案中哪一个是正确的。 (A)My = 0 或 Mz = 0, FN ≠ 0 ; (B)My = Mz = 0, FN ≠ 0 ; (C)My = 0,Mz = 0, FN ≠ 0 ; (D) M y ≠ 0 或 M z ≠ 0 , FN = 0 。 正确答案是 D 。 解:只要轴力 FN x ≠ 0 , 则截面形心处其拉压正应力一定不为零, 而其弯曲正应力一定为零, 这样使其合正应力一定不为零,所以其中性轴一定不通过截面形心,所以答案选(D) 。 关于中性轴位置,有以下几种论述,试判断哪一种是正确的。 (A)中性轴不一定在截面内,但如果在截面内它一定通过形心; (B)中性轴只能在截面内并且必须通过截面形心; (C)中性轴只能在截面内,但不一定通过截面形心; (D)中性轴不一定在截面内,而且也不一定通过截面形心。 正确答案是 D 。 解:中性轴上正应力必须为零。由上题结论中性轴不一定过截面形心;另外当轴力引起的 拉(压)应力的绝对值大于弯矩引起的最大压(拉)应力的绝对值时,中性轴均不在截面内, 所以答案选(D) 。 并且垂 10-3 图示悬臂梁中, 集中力 FP1 和 FP2 分别作用在铅垂对称面和水平对称面内, 直于梁的轴线,如图所示。已知 FP1=1.6 kN,FP2=800 N,l=1 m,许用应力 σ =160 MPa。 试确定以下两种情形下梁的横截面尺寸: 1.截面为矩形,h=2b; 2.截面为圆形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•1.外力分解:
•2.内力计算 :
•
•应力计算:
• 最大应力 :
•强度条件:
•
二、挠度计算:
梁在斜弯曲情况下的挠度,也用叠加原理求得。如上例
•总挠度为: •设挠度f与轴的夹角为α,则可用下式求得:
•
例10-1 悬臂梁如图示。全梁纵向对称平面内承受均布荷载 q=5KN/m,在自
由端的水平对称平面内受集中力P=2KN的作用。已知截面为25a工字钢,材
•强度条件:
•
四、截面核心:
• 即将矩形截面对称轴等分三段,外力作用在三分段中间段 内时截面上无拉应力。此时,中性轴由截面边缘移出。类似可 确定其它截面的截面核心。
•
•例10-3 图示为一厂房的牛腿柱,设由房顶传来的压力P1=100KN,由吊 车梁传来压力P2=30KN,已知e=0.2m,b=0.18m,问截面边h为多少时,截 面不出现拉应力。并求出这时的最大压应力。
•
工程力学10组合变形
2020年5月23日星期六
•
•变形 轴向拉压 •外力 轴向力
四种基本变形计算:
剪切 扭转 横向力 外力偶
平面弯曲A 横向力或外力偶
•内力 轴力(N)
(M)
•应力 正应力
剪力(Q) 剪应力
扭矩(Mz)
剪力(Q) 弯矩
剪应力 剪应力 正应力
•分 布规
律
•计算 公式
•
第一节 概述
•一、概念:
•解:1.求内力: •M=P2 e=6KN.m •N=P1+P2=100+30=130KN
•2.求应力:
•
小结
一、组合变形的计算方法:
1. 分别计算各基本变形时内力、应力和变形的结 果,然后叠加。
• 2. 将荷载沿杆轴的相应方向分解,将组合变形 分解为几种基本变形。
• 综合各种基本变形截面的内力,判断危险截面 ,并建立相应的强度条件来进行强度计算。
• 1. 叠加原理 :弹性范围小变形情况下,各荷载分 别单独作用所产生的应力、变形等可叠加计算。
• 2. 计算方法: “先分解,后叠加。” • 先分解----应先分解为各种基本变形,分别计算 各基本变形。 • 后叠加----将基本变形计算某量的结果叠加即得 组合变形的结果。
•
第二节 斜弯曲
•受力特点:外力垂直杆轴且通过形心但未作用在纵向对称面内。 变形特点:杆轴弯曲平面与外力作用平面不重合。
• 1. 组合变形:受力构件产生的变形是由两种或两种以
•
上的基本变形组合而成的。
• 2. 组合变形实例 :
• 传动轴
• 檩条
•屋 架
•
• 雨篷 •
•牛 腿 柱
•烟 囱
•3. 常见组合变形的类型 : • (1) 斜弯曲 • (2) 拉伸(压缩)与弯曲组合 • (3) 偏心拉伸(压缩)
•二、计算方法 :
•解:(1)内力算:
•
•(3)应力计算: • (4)强度计算 :
•因此,可选16号工字钢。
•
第四节 偏心拉伸(压缩) 截面核心
•一、概念 : • 受力特点:外力与杆轴线平行但不重合 • 变形特点:轴向拉压与纯弯曲组合的变形 •二、偏心压缩的应力计算:
•内力:N=P, M=Pe
•
•三、双向偏心拉伸(压缩)的应力计算
• 如斜梁,将力P分解为Px 、Py 。则垂直于梁轴的横向力 PY 使梁产生弯曲变形,轴向力 Px使AB梁段产生轴向压缩变形 。
•
• 二、计算:
•以挡土墙为例 •x截面任意点应力:
• 挡土墙底部截面轴力和弯矩最大 ,为危险截面,其最大和最小应力 为: •强度条件:
•
•例10-2 简易起重机如图。最大吊重P=8KN,若AB 杆为工字钢, A3钢的[σ]=100Mpa,试选择工字钢的型 号。
料的E=
MPa,试求:梁的最大拉、压应力。
•解:(1)固定端截面为危险截面。
•(2)由于截面对称,最大拉压应力相等。
•
•第三节 拉伸(压缩)与弯曲的组合作用
•一、概念: • 在实际工程中,杆件受横向力和轴向力的作用,则杆 件将产生拉(压)弯组合变形。
• 如重力坝,自重使坝底受 压力,水压力使坝体产生弯曲 变形。
• 外力作用线与杆轴线平行,且作用点不在截面的任何一个 形心主轴上,而且位于Z、Y轴的距离分别为 和 的某一 点K处。这类偏心称为双向偏心拉(压)。下图为双向偏心 拉伸:
•
• 在双向偏心拉(压)时,杆件横截面上任一点正应力计算 方法与单向偏心拉(压)类似。 •1、轴向力P的作用: •2、 的作用: •3、 的作用: