运筹学 ( 第1次 )

合集下载

运筹学1

运筹学1
解:设 x1和x2分别表示产品甲和乙的产量, 这样可以建立如下的数学模型。 目标函数:Max 20x1 +30 x2 约束条件:s.t. 3 x1 + 7 x2 ≤ 240(劳动力限制) 2 x1 + 4 x2 ≤ 150(原材料限制) 4 x1 + 3 x2 ≤ 250(设备限制) x1,x2≥ 0(非负约束)
16/10
若将目标函数变为max Z = 2x1 + 4x2 ,则表示目标函数的等值线与约束 条件x1 + 2x2 ≤8的边界线x1 + 2x2 = 8平行。当Z值由小变大时,与线段Q 2Q3重合,如图1.3所示,线段Q2Q3上任意一点都使Z取得相同的最大值, 即这个线性规划问题有无穷多最优解。
17/10
运筹学第一次作业指导
储宜旭
이 문서는 나눔글꼴로 작성되었습니다. 설치하 기
运筹学
2/10
3/10
4/10
5/10
实际问题线性规划模型的基本步骤: (1) 确定决策变量。这是很关键的一步,决策变量选取 得当,不仅会使线性规划的数学模型建得容易,而且 求解比较方便。 (2) 找出所有限制条件,并用决策变量的线性等式或不 等式来表示,从而得到约束条件。一般可用表格形式 列出所有的限制数据,然后根据所列出的数据写出相 应的约束条件,以避免遗漏或重复所规定的限制要求。 (3) 把实际问题所要达到的目标用决策变量的线性函数 来表示,得到目标函数,并确定是求最大值还是最小 值。
10/10
11/10
12/10
线性规划问题的图解法
为了给后面的线性问题的基本理论提供较直观的几何说明, 先介绍线性规划问题的图解法。 我们把满足约束条件和非负条件的一组解叫做可行解,所有 可行解组成的集合称为可行域。 图解法的一般步骤如下。 (1) 建立平面直角坐标系。 (2) 根据线性规划问题的约束条件和非负条件画出可行域。 (3) 作出目标函数等值线Z = c(c 为常数),然后根据目标函 数平移等值线至可行域边界,这时目标函数与可行域的交点 即最优解。

运筹学第1次及目标规划

运筹学第1次及目标规划

第一次实验要求:建模并求解(excel规划求解)1、合理下料问题.现要做100套钢架,每套由长2.8米、2.2米和1.8米的元钢各一根组成,已知原材料长6.0米,问应如何下料,可以使原材料最省?如果每套钢架由2.8米的元钢1根、2.2米的元钢2根、1.8米的元钢3根,则如何修改数学模型?2、配料问题.某工厂要用三种原材料甲、乙、丙混合调配出三种不同规格的产品A、B、C.已知产品的规格要求、产品单价、每天能供应的原材料数量及原材料单价(分别见表1和表2),问该厂应如何安排生产,使利润收入为最大?表1表23、连续投资问题.某部门在今后五年内考虑给下列项目投资,已知:项目A,从第一年到第四年每年年初需要投资,并于次年末回收本利115%;项目B,第三年初需要投资,到第五年末能回收本利125%,但规定最大投资额不超过4万元;项目C,第二年初需要投资,到第五年末能回收本利140%,但规定最大投资额不超过3万元;项目D,五年内每年初可购买公债,于当年末归还,并加利息6%.该部门现有资金10万元,问它应如何确定给这些项目每年的投资额,使到第五年末拥有的资金的本利总额为最大?4、购买汽车问题.某汽车公司有资金600 000元,打算用来购买A、B、C三种汽车.已知汽车A每辆为10 000元,汽车B每辆为20 000元,汽车C每辆为23 000元.又汽车A每辆每班需一名司机,可完成2 100吨·千米;汽车B每辆每班需两名司机,可完成3 600吨·千米;汽车C每辆每班需两名司机,可完成3 780吨·千米.每辆汽车每天最多安排三班,每个司机每天最多安排一班.限制购买汽车不超过30辆,司机不超过145人.问:每种汽车应购买多少辆,可使每天的吨·千米总数最大?5、人员安排问题.某医院根据日常工作统计,每昼夜24小时中至少需要如下表所示数量的护士,护士们分别在各时段开始时上班,并连续工作8小时,向应如何安排各个时段开始上班工作的人数,才能使护士的总人数最少?目标规划实验要求:建模并求解(1-5选2个,6-12选3个)【案例6.1】升级调资问题.某高校领导在考虑本单位员工的升级调资方案时,依次考虑如下的目标:(1)年工资总额不超过900万元;(2)每级的人数不超过定编规定的人数;(3)副教授、讲师、助教级的升级面尽可能达到现有人数的20%;助教级不足编制的人数可直接聘用应届毕业研究生.教授级人员中有10%要退休.有关资料见表6.6,请为该领导拟定满意的方案.表6.6【案例6.2】农场生产计划问题.友谊农场有3万亩农田,欲种植玉米、大豆和小麦三种农作物.各种作物每亩需施化肥分别为0.12吨、0.20吨、0.15吨.预计秋后玉米每亩可收获500kg,售价为0.24元/千克,大豆每亩可收获200千克,售价为1.20元/千克,小麦每亩可收获300千克,售价为0.70元/千克.农场年初规划时考虑如下几个方面:P1:销售收入不低于350万元;P2:总产量不低于1.25万吨;P3:小麦产量以0.5万吨为宜;P4:大豆产量不少于0.2万吨;P5:玉米产量不超过0.6万吨;P6:农场现能提供5 000吨化肥;若不够,可在市场高价购买,但希望高价采购量愈少愈好.试就该农场生产计划建立数学模型.【案例6.3】多目标运输问题.已知有三个产地给四个销地供应某种产品,产销地之间的供需量和单位运价,见表6.7有关部门在研究调运方案时依次考虑以下七项目标,并规定其相应的优先等级:P1:B4是重点保证单位,必须全部满足其需要;P2:A3向B1提供的产量不少于120;P3:每个销地的供应量不小于其需要量的80%;P4:所订调运方案的总运费不超过最小运费调运方案的20%;P5:因路段的问题,尽量避免安排将A2的产品运往B4;P6:给B1和B3的供应率要相同;P7:力求总运费最省.试求满意的调运方案.表6.7【案例6.4】电台节目安排问题.一个小型的无线电广播台考虑如何最好地来安排音乐、新闻和商业节目时间.据有关规定,该台每天允许广播12小时,其中商业节目用以赢利,每分钟可收入250美元,新闻节目每分钟需支出40美元,音乐节目每播一分钟费用为17.50美元.根据规定,正常情况下商业节目只能占广播时间的20%,每小时至少安排5分钟新闻节目.问每天的广播节目该如何安排?优先级如下:P1:满足规定要求;P2:每天的纯收入最大.试建立该问题的目标规划模型.【案例6.5】混合配方问题.某酒厂用三种等级的原料酒I、II、III兑制成三种混合酒(A、B、C牌).这些原料酒的供应量受到严格限制,它们每日的供应量分别为1 500千克,2 000千克和1 000千克,供应价格分别为18元/千克,13.5元/千克和9元/千克.三种混合酒的配方及售价见表6.8.表6.8厂长确定:首先必须按规定比例兑制混合酒;其次是获利最大;再次是混合酒A每天至少生产2 000千克.试建立数学模型.6、公司决定使用100万元新产品开发基金开发A,B,C三种新产品.经预测估计,开发A,B,C三种新产品的投资利润率分别为5%,6%,8%.由于新产品开发有一定风险,公司研究后确定了如下优先顺序目标:第一,A产品至少投资30万元;第二,为分散投资风险,任何一种新产品的开发投资不超过开发基金总额的35%;第三,应至少留有10%的开发基金,以备急用;第四,使总的投资利润最大.试建立投资方案的目标规划模型.7、某电子制造公司生产两种立体声耳机,一种为普及型,装配一个需1小时,另一种为豪华型,每个装配时间为2小时.正常的装配作业每周限定为40小时.市场调查表明,每周生产量普及型不超过30件,豪华型不超过15件.净利润普及型为每件40元,豪华型每件60元.已知公司经理对优先级的排序如下:P1:总利润最大;P2:装配线尽可能少加班;P3:销售耳机尽可能多;试建立此问题的目标规划模型.8、某工厂生产甲、乙两种产品,单位甲产品可获利6元,单位乙产品可获得4元.生产过程中每单位甲、乙产品所需机器台时数分别为2和3个单位,需劳动工时数分别为4和2个单位.该厂在计划期内可提供100个单位的机器台时数和120个劳动工时数,如果劳动力不足尚可组织工人加班.该厂制定了如下目标:第一目标:计划期内利润达180元;第二目标:机器台时数充分利用;第三目标:尽量减少加班的工时数;第四目标:甲产品产量达22件,乙产品产量达18件.上述四个目标分别为四个不同的优先等级.请列出该目标规划问题的数学模型,并用图解法、单纯形法(表格形式)分别求解之.9、已知单位牛奶、牛肉、鸡蛋中的维生素及胆固醇含量等有关数据如下表,如果只考虑三种食物,并且设立了下列三个目标:第一,满足三种维生素的每日最小需要量;第二,使每日摄入的胆固醇最少;第三,使每日购买食品的费用最少.要求建立问题的目标规划模型.10、某工厂生产白布、花布两种产品,其生产率皆为1 000米/小时;其利润分别为1.5元/米和2.5元/米;每周正常生产时间为80小时(加班时间不算在内).第一目标:充分利用正常生产时间进行生产;第二目标:每周加班时数不超过10小时;第三目标:销售花布要求达到70 000米,白布达45 000米;第四目标:每周利润达15万元.试建立上述问题的数学模型.11、某工厂生产唱机和录音机两种产品,每种产品均需经A、B两个车间的加工才能完成.表中给出了全部已知条件,要求尽可能实现的目标有以下六个:第一目标:仓库费用每月不超过4 600元;第二目标:唱机每月售出50台;第三目标:勿使A、B车间停工(权系数由两车间的生产费用决定);第四目标:车间A加班不超过20小时;第五目标:录音机每月售出80台;第六目标:车间A、B加班时数的总和要限制(权系数由两车间的生产费用决定).试列出该问题的目标规划数学模型.12、某公司下设三个工厂,生产同一种产品,现在要把三个工厂生产的产品运送给四个订户.工厂的供应量、订户的需求量以及从三个工厂到四个订户的单位运费如表所示(表格中方格内数字为单位运费).现在要作出一个产品调运计划,依次满足下列各项要求:p1:订户4的订货量首先要保证全部予以满足;p2:其余订户的订货量满足程度应不低于80%;p3:工厂3调运给订户1的产品量应不少于15个单位;p4:因线路限制,工厂2应尽可能不分配给订户4;p5:订户1和订户3的需求满足程度应尽可能平衡;p6:力求使总运费最小.试建立上述问题的目标规划模型.。

运筹学(一)

运筹学(一)

第三节
单纯形法原理
一、线性规划问题的解
可行解:满足约束条件的解称为可行解,可行解的集合称
a m 1 x1
a
m
2
x2
amnxn (,)bm
x1, x2 , , xn 0
n : 变 量 个 数 ; m:约 束 行 数 ;
n:变量个数 m:约束个数 cj:价值系数 bi:资源拥有量 aij :工艺系数
n m :线性规划问题的规模
c j : 价 值 系 数 ; b j : 右 端 项 ; aij : 技 术 系 数
2x1 x2 x3 x3 x4 9
st.34xx11
x2 2x3 2x3 x5 2x2 3x3 3x3 6
4
x1, x2, x3, x3, x4, x5 0
第二节
图解法
一、图解法的步骤
1.画出直角平面坐标系; 2.图示约束条件,找出可行域; 3.图示目标函数; 4.最优解的确定。
x2 2x2
2x3 3x3
4 6
x1 0, x2 0, x3取值无约束
解: z令 z,x1x1,x3x3 x3 ,其x中 3 , x3 0, 同时引入x4松 和弛 剩变 余 x5,标 量 变准 量形式
m z x a 1 2 x 2 x 3 x 3 3 x 3 0 x 4 0 x 5
1940年,英国军事部门成立了第一个由一些数学家、物理学家 和工程专家等组成的OR小组,负责研究一些武器有效使用的问题。
1942年,美国也成立了由17人组成的OR小组,研究反潜艇策 略等问题。
(3)二战后:推广与发展
战时从事运筹学研究的许多专家转到了经济部门、民用企业、大 学或研究所,继续从事决策的数量方法的研究,运筹学作为一门学 科逐步形成并得以迅速发展。运筹学发展到今天,已成为分支学科 众多的一个繁荣昌盛的大家族。随着电子计算机的发展和使用,运 筹学处理复杂性问题的能力大大加强,成为解决实际问题的有力工 具,广泛地应用于企业管理、交通运输、公共服务等领域。

运筹学(1)

运筹学(1)

一、绪论§1 运筹学的简史运筹学作为科学名称出现于20世纪30年代末。

英、美对付德国空袭,采用雷达,技术上可行,实际运用不好用。

如何合理运用雷达?“运用研究”(Operational Research),我国1956年用“运用学”名词,1957年正式定名为运筹学。

运筹学小组在英、美军队中成立,研究:护航舰队保护商船队的编队问题、当船队遭受德国潜艇攻击时如何使船队损失最小问题、反潜深水炸弹的合理爆炸深度(德国潜艇被摧毁数增到400%)、船只在受敌机攻击时的逃避方法(大船急转向、小船缓转向,中弹数由47%降到29%)。

运筹学组织在英、美军队(RAND)中成立,研究:战略性问题、未来武器系统的设计和合理运用方法、美国空军各种轰炸机系统的评价、未来武器系统和未来战争战略、苏联军事能力及未来预报、苏联政治局计划的行动原则和未来战争的战略、到底发展哪种洲际导弹(50年代)、战略力量的构成和数量(60年代)。

运筹学在工业、农业、经济、社会问题等领域有应用。

运筹数学:数学规划(线性规划(丹捷格(G.B.Dantzig)1947,单纯形法;康托洛维奇1939解乘数法,1960《最佳资源利用的经济计算》,诺贝尔奖;列昂节夫1932投入产出模型;冯.诺意曼)、非线性规划、整数规划、目标规则、动态规划、随机规划等)、图论与网络、排队论(随机服务系统理论)(丹麦工程师爱尔朗(Erlang)1917提出一些著名公式)、存贮论、对策论(冯.诺意曼和摩根斯坦,1944《对策论与经济行为》)、决策论、维修更新理论、搜索论、可靠性和质量管理等。

运筹学领域的诺贝尔奖得主:阿罗、萨谬尔逊、西蒙(经济学家)、多夫曼、胡尔威茨、勃拉凯特(Blackett,美,物理学家)。

运筹学会的建立:英国(1948年)、美国(1952年)、法国(1956年)、日本(1957年)、印度(1957年)、中国(1980年),38个国家和地区。

国际运筹学联合会(IFORS)的成立:1959年,英、美、法发起成立,中国1982年加入。

运筹学-第一章-单纯形法基本原理

运筹学-第一章-单纯形法基本原理
初始基本可行解:
X ( 0) ( x1 , x2 ,, xm ,0,0,...,0)T (b1 , b2 ,......,bm ,0,0,...,0)T
0
0
0
单纯形法基本原理
2、基变换 定义:两个基可行解称为相邻的,如果它们之间变换 且仅变换一个基变量。 初始基可行解的前m个为基变量,
X
凸集
顶点
凸集
不是凸集
顶点:如果凸集C中不存在任何两个不同的点X1,X2,使X 成为这两个点连线上的一个点
单纯形法基本原理
定理1:若线性规划问题存在可行解,则该问题的可行域是 凸集。 定理2:线性规划问题的基可行解X对应可行域(凸集)的顶 点。 定理3:若问题存在最优解,一定存在一个基可行解是最优 解。(或在某个顶点取得)
的左边变成一个单位矩阵,
b (b1 a1 j ,.,bl 1 al 1 j , , bl 1 al 1 j ,.,bm am1 j , ) ( x1 , x2 ,..., xl 1 , x j , xl 1 ,..., xm )
X
(1)
T
与X
( 0)
是相邻的基可行解。
M M bm 0 L
M M
M M
L 1 am,m1 L L 00
M , M amn m
bi 其中: i a kj 0 a kj
j c j ci aij c j z j
单纯形法的计算步骤
例1.12 用单纯形法求下列线性规划的最优解
max Z 3 x1 4 x 2 2 x1 x 2 40 x1 3 x 2 30 x , x 0 1 2
xi0 aij 0, aij 0,取值无限,

运筹学第1章-线性规划

运筹学第1章-线性规划
凸集的数学定义:设K为n维欧氏空间的一个点集,若K中任意两个 点X1和X2连线上的所有点都属于K,即“X =αX1+(1-α) X2 ∈ K(0≤a ≤ 1)”,则称K为凸集。设X(x1,x2,…,xn),X1(u1, u2,...,un),X2(v1,v2,…,vn),如图1一5所示,“X =αX1+(1α) X2 ∈ K(0≤a ≤ 1)”的证明思路如下:
下一页 返回
图解法步骤:
(1)建立坐标系; (2)将约束条件在图上表示; (3)确立满足约束条件的解的范围; (4)绘制出目标函数的图形 (5)确定最优解
用图解法求解下列线性规划问题
max z 2x1 3x2
4x1 0x2 16
s.t
10xx11
4x2 2x2
12 8
x1, x2 0
1. 1.1问题举例
(1)生产计划问题。 生产计划问题是典型的已知资源求利润最大化的问题,对于此类
问题通常有三个假设:①在某一计划期内对生产做出的安排;②生产 过程的损失忽略不计;③市场需求无限制,即假设生产的产品全部 卖出。
下一页 返回
1.一般线性规划问题的数学模型
例1 用一块连长为a的正方形铁皮做一个容 器,应如何裁剪,使做成的窗口的容积为最 大?
解:设 x1, x2分别表示从A,B两处采购的原油量(单
位:吨),则所有的采购方案的最优方案为:
min z 200x1 290x2
0.15x1 0.50x2 150000
s.t
0.20x1 0.50x1
0.30x2 0.15x2
120000 120000
x1 0, x2 0
1. 1线性规划问题与模型
也可以写成模型(1-6)和模型(1-7)的形式,其中模型(1-7)较为常用。

运筹学第1章:线性规划问题及单纯型解法

运筹学第1章:线性规划问题及单纯型解法

原料甲 原料乙 最低含量 VA 0.5 0.5 2 VB1 1.0 0.3 3 VB2 0.2 0.6 1.2 VD 0.5 0.2 2 0.3 0.5 单价
分别代表每粒胶丸中甲, 设 x1, x2分别代表每粒胶丸中甲, 乙两种原料的用量
5
例3,合理下料问题 , 分别代表采用切割方案1~8的套数, 的套数, 设 xj 分别代表采用切割方案 的套数
19
( f(x
)= 3
6
1.2.2 单纯型法的基本思路
确定初试基础可行解
检查是否为 最优解? 最优解?

求最优解的目标函数值
否 确定改善方向
求新的基础可行解
20
1.2.3 单纯型表及其格式
IV CB III XB II x1 b c1 a11 a21 c1′′= cn+1 xn+1 b1 c2′′= cn+2 xn+2 b2 x2 … xn c2 … cn a12 … a1n a22 … a2n I xn+1 cn+1 1 0 0 zn+1 xn+2 cn+2 0 1 0 zn+2 … … … … … … xn+m cn+m 0 0 1 zn+m
OBJ : max f ( x) = 6x1 + 4x2 2x1 + x2 ≤ 10 铜资源约束 x1 + x2 ≤ 8 铅资源约束 s.t. x2 ≤ 7 产量约束 x1, x2 ≥ 0 产量不允许为负值 最优解: x1 = 2, x2 = 6, max f ( x) = 36.
4
例2,配料问题(min, ≥) ,配料问题(
2 max 1 O 1 2 3 4 D 5 6 7 H 8

运筹学实验报告1

运筹学实验报告1

实验报告项目名称所属课程名称运筹学项目类型实验(实训)日期3月18号班级学号姓名指导教师浙江财经学院教务处制一、实验概述(一)实验目的掌握使用Excel软件求解线性规划问题。

(二)实验要求用Excel软件完成案例求解并进行结果分析。

(三)实验工具Excel软件二、实验内容案例营养配餐问题♦有A、B两种食品,含有每天必须的营养成分C、D,每天至少需要营养成分C和D 分别为2和3个单位。

食品A、B的成分和单价如下表,试做花钱最少的食谱,并求其费用。

(一)线性规划模型♦1、确定决策变量:设A、B两种食品每天的购买量分别为x1,x2单位。

♦2、确定目标函数:min W=0.9x1+0.8x2♦3、确定约束条件:成分C约束:x1+2x2 ≥2成分D约束:3x1+x2 ≥3x1 ≥0,x2 ≥0(二)电子表格模型A购买量0.8B购买量0.6目标函数 1.2成分C约束 2成分D约束 3A购买量0.8B购买量0.6(三)结果分析Microsoft Excel 11.0 运算结果报告工作表[Book1.xls]Sheet1报告的建立: 2012/3/18 18:51:54目标单元格(最小值)单元格名字初值终值$B$5目标函数0 1.2可变单元格单元格名字初值终值$B$2A购买量00.8 $B$3B购买量00.6约束单元格名字单元格值公式状态型数值$B$7成分C约束2$B$7>=2到达限制值$B$8成分D约束3$B$8>=3到达限制值$B$10B购买量0.6$B$10>=0未到限制值0.6$B$9A购买量0.8$B$9>=0未到限制值0.8分析:由上表可知:目标函数的最小值为1.2,当产品A的购买量为0.8,产品B的购买量为0.6时取得最小值。

取得最小值时成分C的含量与成分D的含量均达到最低要求。

Microsoft Excel 11.0 极限值报告工作表 [Book1.xls]极限值报告 1报告的建立: 2012/3/18 18:54:24目标式单元格名字值$B$5 目标函数 1.2变量下限目标式上限目标式单元格名字值极限结果极限结果$B$2 A购买量0.8 0.8 1.2 #N/A #N/A$B$3 B购买量0.6 0.6 1.2 #N/A #N/A分析:有该表可知:产品A购买量下极限为0.8单位,取下极限时目标函数结果为1.2,上极限为无穷大,目标值也为无穷大;产品B购买量下极限为0.6单位,取下极限时目标函数结果为1.2,上极限为无穷大,目标值也为无穷大。

运筹学实验报告(1)

运筹学实验报告(1)

运筹学实验报告一、实验目的:通过实验熟悉单纯形法的原理,掌握matlab循环语句的应用,提高编程的能力和技巧,体会matlab在进行数学求解方面的方便快捷。

二、实验环境:Matlab2012b,计算机三、实验内容(包含参数取值情况):构造单纯形算法解决线性规划问题Min z=cxs.t. Ax=bxj>=0,j=1,…,n函数功能如下:function[S,val]=danchun(A1,C,N)其中,S为最优值,Val为最优解,A1为标准形式LP问题的约束矩阵及最后一列为资源向量(注:资源向量要大于零),A1=[A+b];C是目标函数的系数向量,C=c;N为初始基的下标(注:请按照顺序输入,若没有初始基则定义N=[])。

先输入A1,C,N三个必要参数,然后调用danchun(A1,C,N)进行求解。

在此函数中,首先判断N的长度是否为空,若为空,则flag=1,进入初始解问题的迭代求值,添加辅助问题,构建单纯形表,求g所对应的RHS值,若其>0,则返回该问题无解,若其=0,则返回A1,C,N三个参数,继续构造单纯形表求解。

A1为经过变换后的系数及资源向量,C为单纯形表的第一行,N为经过辅助问题求解之后的基的下标。

否则,直接构建单纯形表,对该问题进行求解,此时flag=2,多次迭代后找到解。

另外,若在大于零的检验数所对应的系数均小于零时,会显示“此问题无界”。

若找到最优解和最优值时,会输出“val”和“S=”以及具体数值。

四、源程序(在matlab中输入edit后回车,写在.M文件中,并保存为danchun.M)function[S,val]=danchun(A1,C,N)if(length(N)==0)gN=zeros(1,length(A1(:,1)));gC=[-C,gN,0];%原文题的检验数的矩阵G=[zeros(1,length(C)),-ones(1,length(gN)),0];val=zeros(1,length(C));%val为最优解;for i=(length(C)+1):length(C)+length(A1(:,1))%生成基变量gN(i-length(C))=i;endNn=gN;%%%%%%%ll=zeros(1,length(N));%比值最小原则%生成除了最上端两行的表的矩阵gb=A1(:,length(C)+1);A1(:,length(C)+1)=[];l=zeros(length(gN),length(gN));gA=[A1,l,gb];for i=1:length(gb)gA(i,gN(i))=1;endfor i=1:length(gN)%J为基本可行基所对应的检验数J(i)=G(gN(i));endfor i=1:length(gN)%找到基本可行基的检验数,将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);endendflag=1;elseflag=2;A=A1;Z=[-C,0];%单纯形表的第一行val=zeros(1,length(C));%val为最优解;ll=zeros(1,length(N));%比值最小原则end%%初始解问题while flag==1for i=1:length(gN)%J为基本可行基所对应的G的检验数J(i)=G(gN(i));JZ(i)=Z(gN(i));%JZ为基本可行基所对应的Z的检验数endfor i=1:length(gN)%找到基本可行基的检验数,将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);Z=Z-(JZ(i)/gA(i,gN(i)))*gA(i,:);endG1=G;%G1为检验数G1(:,length(G1))=[];D=max(G1);%找到检验数的最大值if(D<=0)%检验数都小于0if(G(length(G))>=1)disp('此情况无解');flag=0;elseif(G(length(G))>=0)for i=1:length(gN)if(max(gN)<=length(A1(1,:)));flag=2;for j=1:length(Nn)a=Nn(1);gA(:,a)=[];Z(a)=[];endA=gA;N=gN;break;endendendendelse%检验数大于0for i=1:length(G)if(G(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(gN)if(gA(j,i)>0)ll(j)=gA(j,length(G))/gA(j,i);%求比值elsell(j)=10000;endendd=min(ll);for k=1:length(ll)%找到进基和离基if(ll(k)==d)gN(k)=i;gA(k,:)=gA(k,:)/gA(k,i);for m=1:k-1gA(m,:)=-(gA(m,i)/gA(k,i))*gA(k,:)+gA(m,:);endfor n=k+1:length(ll)gA(n,:)=-(gA(n,i)/gA(k,i))*gA(k,:)+gA(n,:);endbreak;endendendendendendwhile(flag==2)for i=1:length(N)%J为基本可行基所对应的检验数J(i)=Z(N(i));endfor i=1:length(N)%找到基本可行基的检验数,将其赋值为0if(J(i)~=0)Z=Z-(J(i)/A(i,N(i)))*A(i,:);endendZ1=Z;%Z1为检验数Z1(:,length(Z1))=[];D=max(Z1);%找到检验数的最大值if(D<=0)%检验数都小于0disp('已找到最优解和最优值')for i=1:length(N)val(N(i))=A(i,length(Z));endS=Z(length(Z));disp('val');disp(val);flag=0;else%检验数大于0for i=1:length(Z)if(Z(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(N)if(A(j,i)>0)ll(j)=A(j,length(Z))/A(j,i);%求比值elsell(j)=10000;endendd=min(ll);if(d==10000)disp('此问题无界')flag=0;break;endfor k=1:length(ll)%找到进基和离基if(ll(k)==d)N(k)=i;A(k,:)=A(k,:)/A(k,i);for m=1:k-1A(m,:)=-(A(m,i)/A(k,i))*A(k,:)+A(m,:);endfor n=k+1:length(ll)A(n,:)=-(A(n,i)/A(k,i))*A(k,:)+A(n,:);endbreakendendendendendend五、运行结果与数据测试参考例题:例1:Min z=3x1+x2+x3+x4s.t. -2x1+2x2+x3=43x1+2x+x4=6Xj>=0,j=1,2,3,4在workspace中写入,形式如下:>> A=[-2 2 1 0 43 1 0 1 6]A =-2 2 1 0 43 1 0 1 6>> C=[3 1 1 1]C =3 1 1 1>> N=[3 4]N =3 4>> danchun(A,C,N)已找到最优解和最优值val0 2 0 4ans =6例2:初始解问题Min z=5x1+21x3s.t. x1-x2+6x3-x4=2x1+x2+2x3-x5=1xj>=0,j=1,…,5在workspace中写入,形式如下:>> A=[1 -1 6 -1 0 21 12 0 -1 1]A =1 -1 6 -1 0 21 12 0 -1 1 >> C=[5 0 21 0 0]C =5 0 21 0 0>> N=[]N =[]>> danchun(A,C,N)已找到最优解和最优值val0.5000 0 0.2500 0 0ans =7.7500六、求解实际问题(即解决附件中的实验题目)实验题目列出下列问题的数学模型,并用你自己的单纯形算法程序进行计算,最后给出计算结果。

运筹学第一章

运筹学第一章
OR1
30
1.1.3解的概念
概念: 1、可行解:满足所有约束条件的解。 2、可行域:即可行解的集合。所有约束条件的交 集,也就是各半平面的公共部分。满足所有约 束条件的解的集合,称为可行域。 3、凸集:集合内任意两点的连线上的点均属于这 个集合。如:实心球、三角形。线性规划的可 行域是凸集。
OR1
OR1
27
线性规划图解法例题
(无界解)
max z x 2 y x y 1 2 x 4 y 3 x 0, y 0
OR1
28
线性规划图解法例题
(无解)
min z x 2 y x y 2 2 x 4 y 3 x 0, y 0
请问该 医院至 少需要 多少名 护士?
5
例题2建模
目标函数:min Z=x1+x2+x3+x4+x5+x6 约束条件: x1+x2 ≥70
x2+x3 ≥60 x3+x4 ≥ 50 x4+x5 ≥20 x5+x6 ≥30 非负性约束:xj ≥0,j=1,2,…6
OR1
6
例题3:运输问题
三个加工棉花的加工厂,并且有三个仓库供应棉花,各 供应点到各工厂的单位运费以及各点的供应量与需求量 分别如下表所示:问如何运输才能使总的运费最小?
OR1
14


从以上 5 个例子可以看出,它们都属于优化问题,它们 的共同特征: 1 、每个问题都用一组决策变量表示某一方案;这组决 策变量的值就代表一个具体方案,一般这些变量取值是 非负的。 2 、存在一定的约束条件,这些约束条件可以用一组线 性等式或线性不等式来表示。 3 、都有一个要求达到的目标,它可用决策变量的线性 函数(称为目标函数)来表示。按问题的不同,要求目 标函数实现最大化或最小化。 满足以上三个条件的数学模型称为线性规划的数学模型。

运筹学(一)

运筹学(一)

一、运筹学的起源与发展
1.什么是运筹学 英文:Operational Research(英国)
Operations Research(美国) (直译为“作业研究”、“运用研究”)
中文:运筹学(来源于“夫运筹帷幄之中,决胜 于千里之外”)
运筹学是在实行管理的领域,运用数学方法, 对需要进行管理的问题统筹规划,作出决策的一
库存管理。存储论应用于多种物资库存量的管理,确定某些设备的合 理的能力或容量以及适当的库存方式和库存量
运输问题。用运筹学中运输问题的方法,可以确定最小成本的运输线 路、物资的调拨、运输工具的调度以及建厂地址的选择。
人事管理。可以用运筹学方法对人员的需求和获得情况进行预测;确 定合适需要的人员编制;用指派问题对人员合理分配;用层次分析法 等方法来确定一个人才评价体系等。
4
x1, x2, x3 , x3, x4, x5 0
第二节
图解法
一、图解法的步骤
1.画出直角平面坐标系; 2.图示约束条件,找出可行域; 3.图示目标函数; 4.最优解的确定。
例4:用图解法求解以下线性规划问题
max z 2x1 x2
5x2 15
st.6
x1 2 x1
x2 x2
3.线性规划问题的最优解若存在,则最优解或 最优解之一一定是可行域的凸集的某个顶点。
4 .解题思路是,先找凸集的任一顶点,计算其 目标函数值。比较其相邻顶点函数值,若更 优,则逐点转移,直到找到最优解。
第三节
单纯形法原理
一、线性规划问题的解
可行解:满足约束条件的解称为可行解,可行解的集合称
为可行域。
解:令z z, x1 x1, x3 x3 x3,其中x3,x3 0, 同时引入松弛变量x4和剩余变量x5 , 标准形式化为:

运筹学第一次作业

运筹学第一次作业

练习一1. 某厂接到生产A 、B 两种产品的合同,产品A 需200件,产品B 需300件。

这两种产品的生产都经过毛坯制造与机械加工两个工艺阶段。

在毛坯制造阶段,产品A 每件需要2小时,产品B 每件需要4小时。

机械加工阶段又分粗加工和精加工两道工序,每件产品A 需粗加工4小时,精加工10小时;每件产品B 需粗加工7小时,精加工12小时。

若毛坯生产阶段能力为1700小时,粗加工设备拥有能力为1000小时,精加工设备拥有能力为3000小时。

又加工费用在毛坯、粗加工、精加工时分别为每小时3元、3元、2元。

此外在粗加工阶段允许设备可进行500小时的加班生产,但加班生产时间内每小时增加额外成本4.5元。

试根据以上资料,为该厂制订一个成本最低的生产计划。

解:设正常生产A,B 产品数12,x x ,加班生产A,B 产品数34,x x13241324341324min 3(22444477)7.5(47)2(10101212)z x x x x x x x x x x x x x x =+++++++++++++.s t 13241212121220030024170047100010123000475000i x x x x x x x x x x x x x +≥⎧⎪+≥⎪⎪+≤⎪+≤⎨⎪+≤⎪+≤⎪⎪≥⎩且为整数,i=1,2,3,42. 对某厂I ,Ⅱ,Ⅲ三种产品下一年各季度的合同预订数如下表所示。

工时为15000小时,生产I 、Ⅱ、Ⅲ产品每件分别需时2、4、3小时。

因更换工艺装备,产品I 在2季度无法生产。

规定当产品不能按期交货时,产品I ,Ⅱ每件每迟交一个季度赔偿20元,产品Ⅲ赔偿10元;又生产出来产品不在本季度交货的,每件每季度的库存费用为5元。

问:该厂应如何安排生产,使总的赔偿加库存的费用为最小(要求建立数学模型,不需求解)。

解:设x ij 为第j 季度产品i 的产量,s ij 为第j 季度末产品i 的库存量,d ij 为第j 季度产品i 的需求量。

运筹学(01规划)1

运筹学(01规划)1
步骤:
1、将目标函数的系数按递增或递减的顺序重新排列。 2、参照目标函数的排列,列出问题所有可能取到的点,并检查是否可行,若可 行,则算出相应的目标函数值。 3、比较可行解的目标函数值,找出最优解和最优值。 以上题为例, 按系数递增重新排列) 以上题为例,1、max=15X3+20X1+30X2(按系数递增重新排列) 2、参照目标函数系数的排列,依次序列出所有可能取到的点,并检 参照目标函数系数的排列,依次序列出所有可能取到的点, 查可行性,算出相应的目标函数值,如下表: 查可行性,算出相应的目标函数值,如下表:
在可行解中比较,点(1,0,1)的目标函数值最大,所以最优解为: X=(1,0,1),相应的目标函数值为Z=35(万元)

最优解
二、指派问题
在生产管理上,管理者总希望能够将人员分配的最佳,以发挥其最大 的工作效率,这就是所谓的“指派问题”。
特点: 特点:把n项工作指派给n个人去做时,每个人仅能接受一项任务,而 项工作指派给n个人去做时,每个人仅能接受一项任务, 项任务也只能由一个人去做。(指派问题也是整数规划的一个分支) 。(指派问题也是整数规划的一个分支 且一项任务也只能由一个人去做。(指派问题也是整数规划的一个分支)
完全枚举法(显枚举法) 完全枚举法(显枚举法) Xj的取值有0和1两种情况,三种方案就有8种组合,把每种组合列出,带入约束 方程检验是否可行,再比较目标函数的大小,从而求得最优解
因此,人们设计出了一种只需要检查一部分可能的变量组合,就可以达 到最优解的方法-------------------
隐枚举法(部分枚举法) 隐枚举法(部分枚举法)


Z=C12+C24+C31+C43+C55=7+6+7+6+6=32 Min Z=C12+C24+C31+C43+C55=7+6+7+6+6=32

运筹学1

运筹学1

运筹学1正确答案:1.D;2.B;3.C;4.C;5.B; 返回A目标函数B求极大值的要求C资源约束条件D变量非负条件A0B极大的正数C绝对值极大的负数D极大的负数A最优解必能在某个基解处达到B多个最优解处的极值必然相等C若存在最优解,则最优解唯一D若可行解区有界则必有最优解A 0B 极大的正数C 绝对值极大的负数D极大的负数A 总运费B 各供应点到各需求点的运量C 总运量D各供应点到各需求点的运费正确答案:1.B;2.A;3.C;4.C;5.D; 返回A 相差一个符号B相同C没有确定关系AB极大的正数C绝对值极大的负数D极大的负数A有可行解无最优解B有最优解C无可行解A0B极大的正数C绝对值极大的负数D极大的负数A目标要求是极小化B变量和右端常数要求非负C变量可以去任意值D约束条件一定是等式形式正确答案:1.A;2.A;3.B;4.A;5.D; 返回A相差一个符号B相同C没有确定关系A非基变量的检验数必有为B非基变量的检验数不必有为A增大B不减少C减少D不增大A0B极大的正数C 绝对值极大的负数D极大的负数A 目标函数B 求极大值的要求C 资源约束条件D变量非负条件正确答案:1.D;2.A;3.C;4.D;5.D; 返回A 目标函数B 求极大值的要求C资源约束条件D变量非负条件A 非基变量的检验数必有为B非基变量的检验数不必有为A有可行解无最优解B有最优解C无可行解A maxZB maxC相关一个符号D相同A定性决策方法B定量决策方法C依靠经验和知识的决策方法D定性决策与简单定量决策相结合法正确答案:1.D;2.A;3.D;4.C;5.B; 返回A约束方程的个数多于B求极大值问题时约束条件都是小于等于号C求极小值问题时目标函数中变量系数均为正D变量的个数一般多于约束方程的个数A非基变量的检验数必有为B非基变量的检验数不必有为A目标函数B求极大值的要求C资源约束条件D变量非负条件A可行解区无界时一定没有最优解B可行解区有界时不一定有最优解C如果在两个点上达到最优解,则一定有无穷多个最优解D最优解只能在可行解区的顶点达到A 总运费B 各供应点到各需求点的运量C 总运量D各供应点到各需求点的运费正确答案:1.B;2.C;3.C;4.B;5.C; 返回A 使模型存在可行解B 确定一个初始的基可行解C该模型标准化A 最优解必能在某个基解处达到B 多个最优解处的极值必然相等C 若存在最优解,则最优解唯一D若可行解区有界则必有最优解AmaxZB max C相关一个符号D相同A 总运费B 各供应点到各需求点的运量C 总运量D各供应点到各需求点的运费A 0B 极大的正数C 绝对值极大的负数D极大的负数正确答案:1.D;2.D;3.B;4.D;5.B; 返回A 有一个待实现的目标B有若干个可供选择的方案C所用资源具有约束条件D明确求目标函数的极大值A目标要求B非负条件C约束条件D基本方程A maxZB maxC相关一个符号D相同A决策问题复杂,多个变量B多种数量关系表述。

运筹学1至6章习题参考答案

运筹学1至6章习题参考答案
5
-6
-7
0
0
0
0
* Big M
-2
-6
2
1
0
0
0
X2
-6
1/5
1
-3/5
-1/5
0
1/5
0
3
M
S2
0
31/5
0
32/5
-6/5
1
6/5
0
38
95/16
A3
M
4/5
0
[8/5]
1/5
0
-1/5
1
2
5/4
C(j)-Z(j)
31/5
0
-53/5
-6/5
0
6/5
0
* Big M
-4/5
-1/2
17/2
-7/4
0
0
0
-5/4
X5
0
32
0
15
0
1
11
-1
120
M
X2
1
5
1
5/2
0
0
2
-1/2
10
10
X4
5
8
0
7/2
1
0
3
-1/2
20
M
C(j)-Z(j)
-43
0
-23
0
0
-17
3
因为λ7=3>0并且ai7<0(i=1,2,3),故原问题具有无界解,即无最优解。
(3)
【解】
C(j)
3
2
-0.125
0
-3
1
6
0.75
C(j)-Z(j)

2012级《运筹学》第一次课内实验题目

2012级《运筹学》第一次课内实验题目

第一次课内实验题目1.生产计划问题已知某工厂计划生产I,II,III三种产品,各种产品需要在A,B,C三种设备上加工生产,具体相关数据如表,试研究下列问题:(1)如何充分发挥已有设备的能力,使生产盈利最大?(2)如果为了增加产量,可租用其它厂家设备B,每月可租用60台时,租金为1.8万元,试问租用设备B是否合算?(3)如果该厂家拟增加生产两种新产品IV和V,其中产品IV需用A设备12台时,B设备5台时,C设备10台时,单位产品盈利2100元;产品V需用A设备4台时,B设备4台时,C设备12台时,单位产品盈利1870元。

假设A,B,C三种设备台时不增加,试分别考虑这两种新产品的投产在经济上是否合算?(4)如果工厂对产品工艺进行重新设计改造,使改造后生产每件产品I需用A设备9台时,B设备12台时,C设备4台时,单位产品盈利4500元,试问这种改造方案对原计划有何影响?生产计划的相关数据2.快餐店用工问题某快餐店坐落在远离城市的风景区,平时游客较少,而每到双休日游客数量猛增,快餐店主要是为游客提供快餐服务,该快餐店雇用了两名正式员工,主要负责管理工作,每天需要工作8h,其余的工作都由临时工担任,临时工每天要工作4h。

双休日的营业时间为11:00到22:00,根据游客的就餐情况,在双休日的每天营业小时所需的职工数(包括正式工和临时工)如表所示。

营业时间与所需职工数量已知一名正式职工11:00开始上班,工作4h后休息1h,而后再工作4h;另一名正式职工13:00开始上班,工作4h后休息1h,而后再工作4h。

又临时工每小时工资为4元。

(1)在满足对职工需求的条件下,如何安排临时工的班次,使得使用临时工的成本最小?(2)如果临时工每班工作时间可以为3h,也可以为4h,如何安排临时工的班次,使得使用临时工的成本最小?这样比方案(1)能节省多少费用?此时需要安排多少临时工班次?2012级《运筹学》第一次课内实验题目3.轰炸方案问题某战略轰炸机群奉命摧毁敌人军事目标,已知该目标有四个要害部位,只要摧毁其中之一即可达到目标。

运筹学第一章

运筹学第一章

第一章、 线性规划和单纯形法1.1 线性规划的概念一、线性规划问题的导出1.(引例) 配比问题——用浓度为45%和92%的硫酸配置100t 浓度为80%的硫酸。

取45%和92%的硫酸分别为x1和x2t,则有: 求解二元一次方程组得解。

目的相同,但有5种不同浓度的硫酸可选(30%,45%,73%,85%,92%)会出现什么情况?设取这5种硫酸分别为 x1、x2、x3、x4、x5 t, 则有: ⎩⎨⎧⨯=++++=++++1008.092.085.073.045.03.01005432154321x x x x x x x x x x 请问有多少种配比方案?为什么?哪一种方案最好?假设5种硫酸价格分别为:400,700,1400,1900,2500元/t ,则有:2.生产计划问题如何制定生产计划,使三种产品总利润最大?考虑问题:⎩⎨⎧⨯=+=+1008.092.045.01002121x x x x ⎪⎩⎪⎨⎧=≥⨯=++++=++++++++=5,,2,1,01008.092.085.073.045.03.0100..250019001400700400543215432154321 j x x x x x x x x x x x t s x x x x x MinZ j(1)何为生产计划?(2)总利润如何描述?(3)还要考虑什么因素?(4)有什么需要注意的地方(技巧)?(5)最终得到的数学模型是什么?二、线性规划的定义和数学描述(模型)1.定义:对于求取一组变量xj (j =1,2,......,n),使之既满足线性约束条件,又使具有线性表达式的目标函数取得极大值或极小值的一类最优化问题称为线性规划问题,简称线性规划。

2.配比问题和生产计划问题的线性规划模型的特点:用一组未知变量表示要求的方案,这组未知变量称为决策变量;存在一定的限制条件,且为线性表达式;有一个目标要求(最大化,当然也可以是最小化),目标表示为未知变量的线性表达式,称之为目标函数; 对决策变量有非负要求。

运筹学习题及答案1

运筹学习题及答案1

一、用动态规划方法求解下列问题某公司有资金400万元,向A,B,C三个项目追加投资,三个项目可以有不同的投资额度,相应的效益值如下表所示,问如何分配资金,才使总效益值最大?二、推导确定型存贮问题中“不允许缺货,补充需要一定时间”的数学模型。

其中包括:假设条件、库存状态变化分析图、存贮费用分析、最佳经济批量、最小存贮费用三、作图题,请写明步骤1、用避圈法找出下图的最小支撑树,并绘出最小支撑数图2、求出图中从V1~V6的最短路线;四、绘制网络图,计算时间参数,找出关键线路,若资源限量为10人/天,试用资源安排方法求出“资源有限,工期最短”的网络计划。

答案一、用动态规划方法求解下列问题1、解:1、阶段划分:按项目划分为三个阶段;2、状态变量k y ;3、决策变量k x ;4、状态转移方程:k k k x y y -=+15、阶段收益k v —查表6、指标函数:)](m ax [)(11+++=k k k k k y f v y f7、边界条件:04=fK=3时K=2时K=1时回溯过程:41=y 31=x 12=y 02=x 13=y 13=x万190)(11=y f二、推导确定型存贮问题中“不允许缺货,补充需要一定时间”的数学模型。

其中包括:假设条件、库存状态变化分析图、存贮费用分析、最佳经济批量、最小存贮费用(一)、假设条件:1、补充需要一定的时间;生产(供货)时间T ;速度为P ;2、生产(订购)产量:Q=P ·T3、C 1、C 3为常数,C 2=0,若缺货C 2 ∞4、需求速度:R 是一连续而均衡的常数,R <P ;5、补充周期t :P tR T T P t R Q ⋅=⇒⋅=⋅= PRt T tR T P T R t R T R T P T t R T R P T t R S T R P S =⋅=⋅⋅-⋅=⋅-⋅-⋅=⋅-∴-=⋅-=)()()(;)( (二)、存贮状态变化图(边生产边向外输出)[0,T] P -R >0[T ,t] S —最大库存量,S <Q (以一个周期内单位库存费用最小为目标)在T 区间内,库存量以P -R 的速率在增加,在t -T 区间内,库存量以R 的速率在减少,因而在T 时间内以(P -R)的速度供应产品应等于在t -T 时间内以R 的速度的需求消耗。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1次作业
一、填空题(本大题共30分,共 10 小题,每小题 3 分)
1. 图解法的基本理论是: ______
2. 最短路是在一网络中,求给定 ______ 到 ______ 的一条路长最短的路
3. 最小树是 ______ 最小的树(无圈连通图)。

4. 匈牙利算法适用于 ______ 。

5. 若标准线性规划问题有可行解,则必有 ______ 。

6. 模型在 ______ 确定过程中须注意选择真正起作用的因素,筛去那些对模型目标无显著影响的因素。

对选定的因素;应注意它们是 ______ 还是 ______ 的,能否 ______ 等。

7. ______ 从第一段开始计算逐段向后递推,计算后一段要用到 ______ 的求优结果,而 ______ 的结果就是全过程的最优策略,即寻优的方向与多阶段决策过程实际进行的方向相同。

8. 运筹学的分析步骤一般包括: ______ ; ______ ; ______ ; ______ 。

9. 整数规划模型是在其松弛问题基础上附加了 ______ 得整数约束条件,因此,整数规划得解题是 ______ 的后续部分。

10. 模型规范要求模型的建立须在 ______ 、 ______ 、 ______ 下进行,相应的环境、范围与要求必然地要对模型起限制作用。

此外,要素本身变化有一定限度,要素的相互影响作用也只能在 ______ 内保持有效。

二、简答题(本大题共40分,共 8 小题,每小题 5 分)
1. 简述路的基本概念。

2. 图解法适用范围?
3. 运输问题的求解方法?
4. 多阶段决策过程最优化对决策者的要求
5. 整数规划与其松弛问题之间在可行域及其解方面有什么对应关系?
6. 线性规划问题可行域的概念?
7. 图解法基本思想及步骤?
8. 影子价格具有的特点。

三、综合分析题(本大题共30分,共 2 小题,每小题 15 分)
1. 按对变量的不同要求,还可将整数规划分为下述几种类型: ______ ______ ______
2. 某物流中心拟选择一条从A地到F地的运输线路,可供选择路线及各点间的距离如下图;试问:应如何选择路线使总距离最短(单位运输成本为一常数,同时也是使总成本最小)?
答案:
一、填空题(30分,共 10 题,每小题 3 分)
1.
参考答案:
凸集基本理论
解题方案:
评分标准:
1空1分
2.
参考答案:
一初始点vs 一终点vt
解题方案:
评分标准:
1空1分
3.
参考答案:
权重之和
解题方案:
评分标准:
1空1分
4.
参考答案:
指派问题
解题方案:
评分标准:
1空1分
5.
参考答案:
基可行解
解题方案:
评分标准:
1空1分
6.
参考答案:
要素确定性的不确定性进行测量
解题方案:
评分标准:
1空1分
7.
参考答案:
顺序解法
前一段
最后一段
解题方案:
评分标准:
1空1分
8.
参考答案:
发现和定义待研究的问题构造数学模型寻找经过模型优化的结果并通过应用这些结果来改善系统的运行效率。

解题方案:
评分标准:
1空1分
9.
参考答案:
一个决策变量线性规划解题
解题方案:
评分标准:
1空1分
10.
参考答案:
一定的环境一定的范围一定的要求一定的限度
解题方案:
评分标准:
1空1分
二、简答题(40分,共 8 题,每小题 5 分)
1.
参考答案:
有向图中当链(圈)上的边方向相同时,称为路(回路)。

解题方案:
评分标准:
总体接近程度2分,概念3分
2.
参考答案:
两个变量的线性规划问题
解题方案:
评分标准:
概念5分
3.
参考答案:
1)计算机方法;2)单纯形法;3)表上作业法;4)图上作业法;
解题方案:
评分标准:
一点1分
4.
参考答案:
所以决策者在每段决策时不应仅考虑本阶段最优,还应考虑对最终目标的影响,从而做出对全局来讲是最优的决策。

解题方案:
评分标准:
总体接近程度1分,概念每个2分
5.
参考答案:
整数线性规划比线性规划复杂得多,两者得关系很密切,即整数规划要靠线性规划某种解题方法为之提供其松弛问题得最优解,并在此基础上,逐步对解进行整数处理才得到原问题得最优得整数可行解;另外整数规划模型是在其松弛问题基础上附加了一个决策变量得整数约束条件,因此,整数规划得解题是线性规划解题得后续部分
解题方案:
评分标准:
一点1分
6.
参考答案:
线性规划问题全部可行解的集合构成线性规划问题的可行域。

解题方案:
概念5分
7.
参考答案:
1)根据约束条件画出可行域K。

2)在目标函数族中任选一条目标函数直线L。

3)将L沿目标函数增加(减少)的方向平行移动直到刚要离开可行域K为止。

解题方案:
评分标准:
总体接近程度2分,概念每个1分
8.
参考答案:
1)影子价格是对系统资源的一种最优估价,只有系统达到最优状态时才可能赋予该资源这种价值。

2)影子价格的取值与系统的价值取向有关,并受系统状态变化的影响。

3)对偶解——影子价格的大小客观地反映资源在系统内的稀缺程度。

4)影子价格是一种边际价值,它与经济学中边际成本的概念相同。

解题方案:
评分标准:
一点1分。

三、综合分析题(30分,共 2 题,每小题 15 分)
1.
参考答案:
1)纯整数规划或全整数规划 2)混合整数规划 3)0-1规划
解题方案:
评分标准:
每个1分
2.
参考答案:
最短总距离为:16。

解题方案:
每步3分。

相关文档
最新文档