浙教版八年级上第一章三角形的初步认识单元测试题(有答案)(数学)
第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)
第1章三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、已知△ABC≌△A'B'C,∠A=40°,∠CBA=60°,A'C交边AB于P(点P不与A、B重合).BO、CO分别平分∠CBA,∠BCP,若m°<∠BOC<n°,则n﹣m的值为()A.20B.40C.60D.1002、用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.SSSB.SASC.ASAD.AAS3、如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.60°B.50°C.40°D.30°4、如图,△ABC中,∠C=80°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.260°C.180°D.140°5、△ABC的一个内角的大小是40°,且∠A=∠B,那么∠C的外角的大小是 ( )A.80°或140°B.80°或100°C.100°或140°D.140°6、如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF。
②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是A.4个B.3个C.2个D.1个7、如图所示,已知AB∥CD,与的平分线交于点,于点,且,则点到,的距离之和是()A. B. C. D.8、已知一个三角形的两边长分别是2和7,第三边为偶数,则此三角形的周长是()A.15B.16C.17D.15或179、如图,△ABC的角平分线BO、CO相交于点O,∠A=120°,则∠BOC=()A.150°B.140°C.130°D.120°10、如图,△ABC中,AB=AC,EB=EC,则由“SSS”可以判定()A. △ABD≌△ACDB. △ABE≌△ACEC. △BDE≌△CDED.以上答案都不对11、如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处12、如图,∠B=∠C,则∠ADC与∠AEB的大小关系是( )A.∠ADC>∠AEBB.∠ADC<∠AEBC.∠ADC=∠AEBD.大小关系不确定13、如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSSB.SASC.ASAD.AAS14、如图,平行四边形 ABCD 中,AD∥BC,AB=BC=CD=AD=4,∠A=∠C=60°,连接 BD,将△BCD 绕点 B 旋转,当 BD(即 BD′)与 AD 交于一点 E,BC(即 BC′)同时与 CD 交于一点 F 时,下列结论正确的是()①AE=DF;②∠BEF=60°;③∠DEB=∠DFB;④△DEF 的周长的最小值是4+2A.①②B.②③C.①②④D.①②③④15、下列语句中是真命题的是()A.同旁内角互补B.三角形三条中线不会交于一点C.到线段两个端点距离相等的点在线段的垂直平分线上D.三角形按边分类可分为不等边三角形和等边三角形二、填空题(共10题,共计30分)16、如图,在中,.点在上,点在的延长线上,连接FD并延长交BC于点E,若∠BED=2∠ADC,AF=2,DF=7,则的面积为________.17、用同样粗细、同种材料的金属线,制作两个全等的△ABC和△DEF.已知∠B=∠E,若AC边的质量为20kg,则DF边的质量为________ kg.18、如图,在中,的平分线和边的垂直平分线相交于点,过点作垂直于交的延长线于点,若,则的长为________.19、在△ABC 中,BD、CD 分别平分∠ABC 和∠ACB ,若∠A = 50°,则∠BDC 的度数是________.20、如图2所示,AB∥CD,∠ABE=66°,∠D=54°,则∠E的度数是________.21、把下面的推理过程补充完整,并在括号内注明理由.如图,点B、D在线段AE上,BC ∥EF,AD=BE,BC=EF,试说明:①∠C=∠F;②AC∥DF.解:∵AD=BE(已知)∴AD+DB=DB+(________)即AB=DE∵BC∥EF(已知)∴∠ABC=∠________(________)又∵BC=EF(已知)∴△ABC≌△DEF(________)∴∠C=∠F,∠A=∠FDE(________)∴AC∥DF(________)22、如图,在△ABC 中,AB=3,AC=5,则 BC 边的中线 AD 的取值范围为________.23、如图,在平行四边形ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于点M、N.给出下列结论:①△ABM≌△CDN;②AM=AC;③DN=2NF;④S△AMB=S△ABC.其中正确的结论是________ (只填序号)24、小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第________块.25、如图,△ABC是等边三角形,D,E分别是AC,BC上的两点,且AD=CE,AE,BD相交于点N,则∠DNE的度数是________.三、解答题(共5题,共计25分)26、如图,∠MON=90°,点A,B分别在射线OM、ON上移动,BE是∠ABN的平分线,BE的反向延长线与∠OAB平分线相交于点C,试问:∠ACB的大小是否发生变化?如果保持不变,请给出证明;如果随点A、B移动发生变化,请求出变化范围.27、如图,▱ABCD中,E,F为对角线AC上的两点,且BE∥DF;求证:AE=CF.28、如图,已知:在△AFD和△CEB中,点A,E,F,C在同一直线上,AE=CF,∠B=∠D,AD∥BC.求证:AD=BC.29、如图,在△ABC中,点D是BC边的中点,DE⊥BC,∠ABC的角平分线BF交DE于点P,交AC于点M,连接PC.(Ⅰ)若∠A=60°,∠ACP=24°,求∠ABP的度数;(Ⅱ)若AB=BC,BM2+CM2=m2(m>0),△PCM的周长为m+2时,求△BCM的面积(用含m的代数式表示).30、如图,△ABC中,AB=AC,∠C=30°,DA⊥BA于A,BC=6cm,求AD的长.参考答案一、单选题(共15题,共计45分)1、B2、A3、C4、B5、A6、B7、B8、D9、A11、D12、C13、C14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、29、。
第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)
第1章三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、已知OA平分∠BOC,P是OA上任一点,如果以P为圆心的圆与OC相离,那么⊙P与OB的位置关系是( )A.相离B.相切C.相交D.不能确定2、下列长度的三条线段中,能组成三角形的是()A.3cm,5㎝,8㎝ B.8cm,8cm,18cm C.0.1cm,0.1cm,0.1cm D.3cm,40cm,8cm.3、如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为7,AB=4,DE=2,则AC的长是()A.4B.3C.6D.54、如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是()A.AD=BDB.BD=CDC.∠A=∠BEDD.∠ECD=∠EDC5、如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:①作线段AB,分别以为圆心,以AB长为半径作弧,两弧的交点为C;②以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;③连接下列说法不正确的是( )A. B. C.点是的外心 D.6、如图所示,△ABC中,AB=3,AC=7,则BC边上的中线AD的取值范围是()A.4<AD<10B.0<AD<10C.3<AD<7D.2<AD<57、在△ABC和△DEF中,已知AB=DE,∠A=∠D,若补充下列条件中的任意一条,就能判定△ABC≌△DEF的是()①AC=DF ②BC=EF ③∠B=∠E ④∠C=∠FA.①②③B.②③④C.①③④D.①②④8、如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠DAC的度数为()A.90°B.80°C.70°D.60°9、有长为2cm、3cm、4cm、6cm的四根木棒,选其中的3根作为三角形的边,可以围成的三角形的个数是A.1个B.2个C.3个D.4个10、如图所示,∠1=∠2,∠3=∠4,若证得BD=CD,则所用的判定两三角形全等的依据是( )A.角角角B.角边角C.边角边D.角角边11、如图,在中,平分.边的垂直平分线分别交于点.以下说法错误的是()A. B. C. D.12、如图,某商标是由三个半径都为R的圆弧两两外切得到的图形,则三个切点间的弧所围成的阴影部分的面积是()A.(﹣π)R 2B.(+ π)R 2C.(﹣π)R2 D.(+π)R 213、如图,在锐角△ABC中,,,的平分线交于点,且,点分别是和上的动点,则的最小值是()A.4B.5C.6D.814、现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1个B.2个C.3个D.4个15、如图,在△ABC中,∠A=105º,AC的垂直平分线MN交BC于点E,AB+BE=BC,则∠B 的度数是()A.45ºB.50ºC.55ºD.60º二、填空题(共10题,共计30分)16、如图,已知AC=BD,要使△ABC≌△DCB,在图形所给出的字母中,需添加一个条件是________ (从符合的条件中任选一个即可)17、如图,B,D,E,C在一条直线上,且,若,则________.18、某市政府计划修建一处公共服务设施,使它到三所公寓A、B、C 的距离相等。
第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)
第1章三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AC=4cm,△ADC的周长为12cm,则BC的长是()A.7cmB.8cmC.9cmD.10cm2、如图,在△ABC中,∠ABC=50°,AD,CD分别平分∠BAC,∠ACB,则∠ADC等于()A.125°B.105°C.115°D.100°3、如图,△ABC≌△ADE,∠B=70°,∠C=26°,∠DAC=30°,则∠EAC=()A.27°B.30°C.54°D.55°4、如图,在ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()。
A.1个B.2个C.3个D.4个5、根据下列条件,能确定三角形形状的是()①最小内角是20°;②最大内角是100°;③最大内角是89°;④三个内角都是60°;⑤有两个内角都是80°.A.①②③④B.①③④⑤C.②③④⑤D.①②④⑤6、已知一个三角形的两边长分别为和,则这个三角形的第三边长可能是()A. B. C. D.7、如图,已知△ABC(AB<BC<AC),用尺规在AC上确定一点P,使PB+PC=AC,则下列选项中,一定符合要求的作图痕迹是()A. B. C. D.8、如图,在平行四边形中,平分,交于点,平分,交于点,,,则长为()A.8B.9C.10D.129、如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么点A(﹣1,3)的对应点A′的坐标是()A.(3,1)B.(1,3)C.(﹣3,1)D.(﹣1,﹣3)10、如图,在平行四边形中,,,过点作边的垂线交的延长线于点,点是垂足,连接、,交于点.则下列结论:①四边形是正方形;②;③;④,正确的个数是()A. B. C. D.11、已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-∠A.上述说法正确的个数是()A.0个B.1个C.2个D.3个12、如图:AB∥DE,CD=BF,若△ABC≌△EDF,还需补充的条件可以是A.∠B=∠EB.AC='EF'C.AB=EDD.不用补充条件13、如图所示,△ABC中,AB=AC,BE、CD是△ABC的中线,下列结论不正确的有()A.S△ADC =S△BDCB.S△ABE=S△CBEC.S△BDF=S△CEFD.S△ADE=S△BDC14、如图所示,三角形ABC的底边BC=x,顶点A沿BC边上高AD向D点移动,当移动到E 点,且DE=AD时,三角形ABC的面积将变为原来的()A. B. C. D.15、如图,在△ABC中,AD是∠BAC的平分线,为AD上一点,且EF⊥BC于点F.若∠C=35°,∠DEF=15°,则∠B的度数为()A.65°B.70°C.75°D.85°二、填空题(共10题,共计30分)16、如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,且∠A+∠ABC=90°,则∠PEF=________.17、在中,AB=AC,,则 :∠B=________。
第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)
第1章三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,Rt△ABE中,∠B=90°,延长BE到C,使EC=AB,分别过点C,E作BC,AE的垂线两线相交于点D,连接AD.若AB=3,DC=4,则AD的长是()A.5B.7C.5D.无法确定2、下列选项中,不一定全等的是()A.有一个角是50°,腰长相等的两个等腰三角形B.有一个角是90°,腰长相等的两个等腰三角形C.周长相等的两个等边三角形D.斜边和一条直角边分别相等的两个直角三角形3、△ABC中,∠ACB=90°,∠A=α,以C为中心将△ABC旋转θ角到△A1B1C(旋转过程中保持△ABC的形状大小不变)B点恰落在A1B1上,如图,则旋转角θ的大小为()A.α+10°B.α+20°C.αD.2α4、如图,四边形ABCD是正方形,直线a,b,c分别通过A、D、C三点,且a∥b∥c.若a 与b之间的距离是3,b与c之间的距离是5,则正方形ABCD的面积是()A.16B.30C.34D.645、已知等腰三角形的腰和底的长分别是一元二次方程x2-7x+10=0的两个根,则该三角形的周长是()A.9B.12C.9或12D.不能确定6、如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A. AB=CDB. EC=BFC.∠A=∠DD. AB=BC7、已知三角形的两边长分别为2 cm和7 cm,周长是偶数,则这个三角形是()A.不等边三角形B.等腰三角形C.等边三角形D.直角三角形8、如图,直线AB、CD相交于点O,OE平分,若,则的度数是()A.70°B.50°C.40°D.35°9、如图,一艘货船在A处,巡逻艇C在其南偏西60°的方向上,此时一艘客船在B处,巡逻艇C在其南偏西20°的方向上,则此时从巡逻艇上看这两艘船的视角的度数是()A. B. C. D.10、如图,点D是△ABC外接圆圆弧AC上的点,AB=AC且∠CAB=50°,则∠ADC度数为( )A.130°B.125°C.105°D.115°11、下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形一定重合.其中正确的是().A.①②B.②③C.③④D.①④12、如图,中,,BC的垂直平分线l与AC相交于点D,则的周长为)A.12cmB.10cmC.8cmD.6cm13、在梯形ABCD中,AD∥BC,AB=AC,若∠D=110°,∠ACD=30°,则∠BAC等于()A.80°B.90°C.100°D.110°14、若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形一定是()A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形15、在△ABC中,AB=9,BC=2,并且AC为奇数,则AC=()A.5B.7C.9D.11二、填空题(共10题,共计30分)16、如图,AD∥BC,AC与BD相交于点O,则图中面积相等的三角形共有________对.17、如图,已知AB是线段CD的垂直平分线,E是AB上一点,如果EC=10,EF=8,那么DF=________.18、如图,在⊙O中,弦AB,CD相交于点P,∠A=30°,∠APD=65°,则∠B=________.19、如图,AB=6cm,AC=BD=4cm.∠CAB=∠DBA,点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t (s).设点Q的运动速度为xcm/s,若使得△ACP与△BPQ全等,则x的值为________.20、如图,和是分别沿着AB,AC边翻折形成的,若,则的度数是________度21、小颖已有两根长度分别为、的木棒,再给一根多长的木棒,能方便她把三根木棒首尾相接摆成一个三角形?请你提供一个合适的木棒长度,你提供的长度是________ .22、圆心角为45°的扇形的面积是它所在圆面积的.(________)23、如图,已知AB=A1B,A1B1=A1A2, A2B2=A2A3, A3B3=A3A4,…若∠A=70°,则锐角∠A n 的度数为________.24、如图,过边长为1的等边三角形ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,当AP=CQ时,PQ交AC于D,则DE的长为________.25、如图,在△ABC中,AB=AC=8,AB的垂直平分线DE分别交AB、AC于点E、D,BD=BC,△BCD的周长为13,则BC和ED的长分别为________.三、解答题(共5题,共计25分)26、如图,在△ABC中,D是BC上的一点,∠1=∠2,∠3=∠4,∠B=40°,求∠BAC的度数.27、如图,AB∥CD,E是BC的中点,DE平分∠ADC,DE的延长线交AB于点F,求证:AE 平分∠DAF28、如图所示,已知△ABC中,AB=AC,∠BAD=30°,AD=AE,求∠EDC的度数.29、如图,已知,,,求的度数.30、已知:如图,AC=BD,∠CAB=∠DBA.求证:∠C=∠D.参考答案一、单选题(共15题,共计45分)1、C2、A3、D4、C5、B6、A7、B8、D9、C10、D11、D12、D13、C14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
浙教版八上数学第一章 三角形的初步知识 单元练习卷(含答案)
浙教版八上数学第一章一、单选题1.下列生活实例中,利用了“三角形稳定性”的是( )A.B.C.D.2.如图,△ABC≌△EBD,AB=4cm,BD=7cm,则CE的长度为( )A.1cm B.2cm C.3cm D.4cm3.如图,在△ABC中,∠C=90°,AD是∠A角平分线,DE⊥AB于点E,CD=2,BC=6,则BE=( )A.2B.22C.23D.64.如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是( )作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于1DE的长为半径画弧,两弧在∠AOB内交于一点C;2③画射线OC,射线OC就是∠AOB的角平分线.A.ASA B.SAS C.SSS D.AAS5.如图,将△ABC绕点A逆时针旋转一定的角度,得到△ADE,且AD⊥BC.若∠CAE=45°,∠E=60°,则∠BAC的大小是( )A.60°B.65°C.75°D.95°6.如图,已知锐角∠AOB,根据以下要求作图.(1)在射线OA上取点C和点E,以点O为圆心,OC,OE的长为半径画弧,分别交射线OB于点D,F;(2)连接CF,DE交于点P.则下列结论错误的是( )A.CE=DFB.点P在∠AOB的平分线上C.PE=PFD.若∠AOB=60°,则∠CPD=120°7.三边长度都是整数的三角形称为整数边三角形,若一个三角形的最长边长为8,则满足条件的整数边三角形共有( )A.8个B.10个C.12个D.20个8.如图所示,在△ABC中,点O是∠BCA与∠ABC的平分线的交点,已知△ABC的面积是12,周长是8,则点O到边BC的距离OD是( )A.1B.2C.3D.49.如右图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处,若∠1=129°,则∠2的度数为( )A.49°B.50°C.51°D.52°10.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90∘;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD,四个结论中成立的是( )A.①②④B.①②③C.③④D.①③二、填空题11.已知三角形的三边长分别是2、7、x,且x为奇数,则x= .12.“两直线平行,同位角相等”是 命题(真、假).13.如图,在△ABC中,∠BDC=125°,如果∠ABC与∠ACB的平分线交于点D,那么∠A= 度.14.在△ABC中,BD平分∠ABC,如果AB=12,BC=8,△ABD的面积为24,则△CBD的面积为 15.如图,在Rt△ABC中,DE是斜边AB的垂直平分线,连接BD,若∠CBD=26°,则∠A= 度.16.如图,已知AD为△ABC的中线,AB=10cm,AC=7cm,△ACD的周长为20cm,则△ABD的周长为 cm.三、解答题17.如图,在△ABC中,∠ADB=∠ABD,∠DAC=∠DCA,∠BAD=32°,求∠BAC的度数.18.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.19.如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)∠BAC的度数为______,∠DAF的度数为______;(2)若△DAF的周长为20,求BC的长.20.如图,已知在△ABC中,AB=AC=10cm,BC=8cm,D为AB的中点.点P在线段BC上以3cm/s 的速度由点B出发向终点C运动,同时点Q在线段CA上以acm/s的速度由点C出发向终点A运动,设点P的运动时间为ts.(1)求CP的长;(用含t的式子表示)(2)若以C、P、Q为顶点的三角形和以B,D,P为顶点的三角形全等,且∠B和∠C是对应角,求t,a 的值.21.定义:在一个三角形中,如果有一个角是另一个角的1,我们称这两个角互为“和谐角”,这个2三角形叫做“和谐三角形” .例如:在△ABC中,如果∠A=70°,∠B=35°,那么∠A与∠B互为“和谐角”,△ABC为“和谐三角形”.问题1:如图1,△ABC中,∠ACB=90°,∠A=60°,点D是线段 A BB 上一点(不与A、B 重合),连接CD(1)如图1,△ABC 是“和谐三角形”吗?为什么?(2)如图1,若CD⊥AB,则△ACD、△BCD是“和谐三角形” 吗?为什么?(3)问题2:如图2,△ABC 中,∠ACB=60°,∠A=80°,点 D 是线段AB 上一点(不与A、B 重合),连接CD,若△ACD 是“和谐三角形”,求∠ACD 的度数.22.“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)23.(1)阅读理解:问题:如图1,在四边形ABCD中,对角线BD平分∠ABC,∠A+∠C=180°.求证:DA=DC.思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在BC上截取BM=BA,连接DM,得到全等三角形,进而解决问题;方法2:延长BA到点N,使得BN=BC,连接DN,得到全等三角形,进而解决问题.结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.(2)问题解决:如图2,在(1)的条件下,连接AC,当∠DAC=60°时,探究线段AB,BC,BD之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形ABCD中,∠A+∠C=180°,DA=DC,过点D作DE⊥BC,垂足为点E,请直接写出线段AB、CE、BC之间的数量关系.答案解析部分1.【答案】B2.【答案】D3.【答案】C4.【答案】C5.【答案】C6.【答案】D7.【答案】C8.【答案】C9.【答案】C10.【答案】A11.【答案】712.【答案】真13.【答案】7014.【答案】1615.【答案】3216.【答案】2317.【答案】解:在三角形ABD中,(180°﹣32°)=74°,∠ADB=∠ABD=12在三角形ADC中,∠ADB=37°,∠DAC=∠DCA=12∴∠BAC=∠DAC+∠BAD=37°+32°=69°.18.【答案】证明:∵∠1=∠2,∴∠1+∠FBE=∠2+∠FBE,即∠ABE=∠CBF在△ABE与△CBF中,{AC=CB∠ABE=∠CBFBE=BF∴△ABE≌△CBF(SAS).19.【答案】(1)100°,20°;(2)20.20.【答案】(1)CP =(8﹣3t )cm(2)t =43,a =154或t =1,a =321.【答案】(1)解:ΔABC 是“和谐三角形”,理由如下:∵∠ACB =90°,∠A =60°,∴∠B =30°,∴∠B =12∠A ,∴ΔABC 是“和谐三角形”;(2)解:ΔACD 、ΔBCD 是“和谐三角形”,理由如下:∵∠ACB =90°,∠A =60°,∴∠B =30°,∵CD ⊥AB ,∴∠ADC =∠BDC =90°,∴∠ACD =30°,∠BCD =60°.在ΔACD 中,∵∠A =60°,∠ACD =30°,∴∠ACD =12∠A ,∴ΔACD 为和谐三角形”;在ΔBCD 中,∵∠BCD =60°,∠B =30°,∴∠B =12∠BCD ,∴ΔBCD 为和谐三角形”;(3)解:若ΔACD 是“和谐三角形”,由于点D 是线段AB 上一点(不与A 、B 重合),则∠ACD =12∠A 或∠ACD =12∠ADC .当∠ACD =12∠A 时,∠ACD =12∠A =40°;当∠ACD =12∠ADC 时,∠A +3∠ACD =180°,即3∠ACD =100°,∴∠ACD =100°3.综上,∠ACD 的度数为40°或100°3.22.【答案】(1)解:如图,∵∠1=∠2+∠D=∠B+∠E+∠D ,∠1+∠A+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°(2)解:∵∠1=∠2+∠F=∠B+∠E+∠F ,∠1+∠A+∠C+∠D=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°(3)解:∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=180×5+180=1080°.23.【答案】(1)解:方法1:在 BC 上截 BM =BA ,连接 DM ,如图.∵BD 平分 ∠ABC ,∴∠ABD =∠CBD .在 ΔABD 和 ΔMBD 中, {BD =BD∠ABD =∠MBD BA =BM ,∴ΔABD≌ΔMBD ,∴∠A =∠BMD , AD =MD .∵∠BMD +∠CMD =180° , ∠C +∠A =180° .∴∠C =∠CMD .∴DM =DC ,∴DA =DC .方法2:延长 BA 到点N ,使得 BN =BC ,连接 DN ,如图.∵BD 平分 ∠ABC ,∴∠NBD =∠CBD .在 ΔNBD 和 ΔCBD 中, {BD =BD∠NBD =∠CBD BN =BC ,∴ΔNBD≌ΔCBD .∴∠BND =∠C , ND =CD .∵∠NAD +∠BAD =180° ,∠C +∠BAD =180° .∴∠BND =∠NAD ,∴DN =DA ,∴DA =DC .(2)解: AB 、 BC 、 BD 之间的数量关系为: AB +BC =BD . (或者: BD ―CB =AB , BD ―AB =CB ).延长 CB 到点P ,使 BP =BA ,连接 AP ,如图2所示.由(1)可知 AD =CD ,∵∠DAC =60° .∴ΔADC 为等边三角形.∴AC =AD , ∠ADC =60° .∵∠BCD +∠BAD =180° ,∴∠ABC =360°―180°―60°=120° .∴∠PBA =180°―∠ABC =60° .∵BP =BA ,∴ΔABP 为等边三角形.∴∠PAB =60° , AB =AP .∵∠DAC =60° ,∴∠PAB +∠BAC =∠DAC +∠BAC ,即 ∠PAC =∠BAD .在 ΔPAC 和 ΔBAD 中, {PA =BA∠PAC =∠BAD AC =AD ,∴ΔPAC≌ΔBAD .∴PC =BD ,∵PC =BP +BC =AB +BC ,∴AB +BC =BD .(3)BC ―AB =2CE。
2024年浙教版数学八上第一章 三角形的初步认识 单元测试卷(含答案)
第一章三角形的初步认识单元测试卷一、选择题1.以下列数值为长度的各组线段中,能组成三角形的是( )A.2,4,7B.3,3,6C.5,8,2D.4,5,62.下列汽车标志中,不是由多个全等图形组成的是( )A.B.C.D.3.已知△ABC的三边长为a,b,c,化简|a+b-c|-|b-a-c|的结果是( )A.2b-2c B.-2b C.2a+2b D.2a4.能说明命题“一个钝角与一个锐角的差一定是锐角”是假命题的反例是( )A.∠1=91°,∠2=50°B.∠1=89°,∠2=1°C.∠1=120°,∠2=40°D.∠1=102°,∠2=2°5.如图,点B、C、D在同一直线上,若△ABC≌△CDE,DE=4,BD=13,则AB等于( )A.7B.8C.9D.106.如图所示,△ABC≌△BAD,点A与点B,点C与点D是对应顶点,如果∠DAB=50°,∠DBA=40°,那么∠DAC的度数为( )A.50°B.40°C.10°D.5°7.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点.若PA = 2,则PQ的长不可能是( )A.4B.3.5C.2D.1.58.在下面四个命题是真命题的个数有( )(1)互相垂直的两条线段一定相交;(2)有且只有一条直线垂直于已知直线;(3)两条直线被第三条直线所截,同位角相等;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.A.3个B.2个C.1个D.0个9.如图,已知线段a,h作等腰△ABC,使AB=AC,且BC=a,BC边上的高AD=h.张红的作法如下:(1)作线段BC=a;(2)作线段BC的垂直平分线MN,MN与BC相交于点D;(3)在直线MN上截取线段h;(4)连结AB,AC,则△ABC为所求的等腰三角形.上述作法的四个步骤中,有错误的一步你认为是( )A.(1)B.(2)C.(3)D.(4)10.如图,△ABC为直角三角形,∠ACB=90°,AD为∠CAB的平分线,与∠ABC的平分线BE交于点E,BG是△ABC的外角平分线,AD与BG相交于点G,则∠ADC与∠GBF的和为( )A.120°B.135°C.150°D.160°二、填空题11.将命题“同角的补角相等”改写成“如果……那么……”的形式为 12.如图,在△ABC和△DEF中,A、F、C、D在同一直线上,AF=DC,AB=DE,当添加条件 时,就可得到△ABC≌△DEF(只需填一个你认为正确的条件即可).13.如图,△ABC≌△CDE ,若∠D =35°,∠ACB =45°,则∠DCE 的度数为 .14.已知:∠AOB .求作:∠AOB 的平分线.作法:(1)以点O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N ;(2)分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠AOB 的内部相交于点P ;(3)画射线OP ,射线OP 即为所求(如图).从上述作法中可以判断△MOP≌△NOP ,其依据是 (在“SSS ”“SAS ”“AAS ”“ASA ”中选填)15.如图,在△ABC 中,AD 是BC 边上的中线,CE 是AB 边上的高,若AB =3,S △ADC =6,则CE 的长度为 .16.如图,点 C 在线段 BD 上,AB ⊥BD 于 B ,ED ⊥BD 于 D .∠ACE =90°,且 AC =5cm ,CE =6cm ,点 P 以 2cm/s 的速度沿 A→C→E 向终点 E 运动,同时点 Q 以 3cm/s 的速度从 E 开始,在线段 EC 上往返运动(即沿 E→C→E→C→…运动),当点 P 到达终点时,P ,Q 同时停止运动.过 P ,Q 分别作 BD 的垂线,垂足为 M ,N .设运动时间为 ts ,当以 P ,C ,M 为顶点的三角形与△QCN 全等时,t 的值为 .三、作图题17.如图,按下列要求图:(要求有明显的作图痕迹,不写作法)(1)作出△ABC的角平分线CD;(2)作出△ABC的中线BE;(3)作出△ABC的高BG.四、解答题18.某同学用10块高度都是5cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板ABD(∠ABD=90°,BD=BA),点B在CE上,点A和D分别与木墙的顶端重合.(1)求证:△ACB≌△BED;(2)求两堵木墙之间的距离.19.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.20.如图,在△ABC中,E是AB上一点,AC与DE相交于点F,F是AC的中点,AB∥CD.(1)求证:△AEF≌△CDF;(2)若AB=10,CD=7,求BE的长.21.如图,在Rt△ABC中,AC=BC,∠ACB=90°,BF平分∠ABC交AC于点F,AE⊥BF于点E,AE,BC的延长线交于点M.(1)求证:AB=BM;(2)求证:BF=2AE.22.如图,△ABC是等边三角形,点D在AC上,以BD为一边作等边△BDE,连接CE.(1)说明△ABD ≌△CBE的理由;(2)若∠BEC=82°,求∠DBC的度数.23.如图,∠ACB=90°,AC=BC,AD⊥MN,BE⊥MN,垂足分别是D,E.(1)求证:△ADC≌△CEB;(2)猜想线段AD,BE,DE之间具有怎样的数量关系,并说明理由.24.如图,△ABC中,点D在BC边上,∠BAD=100°,∠ABC的平分线交AC于点E,过点E作EF⊥AB,垂足为F,且∠AEF=50°,连接DE.(2)若AB=7,AD=4,CD=8,S△ACD=15,求△ABE的面积.答案解析部分1.【答案】D 2.【答案】C 3.【答案】A 4.【答案】D 5.【答案】C 6.【答案】C 7.【答案】D 8.【答案】(1)D 9.【答案】C 10.【答案】B11.【答案】如果两个角是同一个角的补角,那么这两个角相等12.【答案】BC=EF (答案不唯一)13.【答案】100°14.【答案】SSS 15.【答案】816.【答案】1或115或23517.【答案】(1)解:如图:CD 是所求的△ABC 的角平分线;(2)解:如图:BE 是所求的△ABC 的中线;(3)解:如图BG 为所求的△ABC 的高.18.【答案】(1)证明:由题意得:AB =BD ,∠ABD =90°,AC ⊥CE ,DE ⊥CE ,∴∠BED =∠ACB =90°,∴∠BDE+∠DBE =90°,∠DBE+∠ABC =90°,∴∠BDE =∠ABC ,在△ACB 和△BED 中,{∠ABC =∠BDE ∠ACB =∠BED BD =AB,∴△ACB ≌△BED (AAS );(2)解:由题意得:AC =5×3=15(cm ),DE =7×5=35(cm ),∵△ACB ≌△BED ,∴DE =BC =35cm ,BE =AC =15cm ,∴DE =DC+CE =50(cm ),答:两堵木墙之间的距离为50cm .19.【答案】证明:∵在△ABD 和△CBD 中, {AB =CB AD =CD BD =BD ,∴△ABD ≌△CBD (SSS ),∴∠ABD=∠CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.20.【答案】(1)证明:∵AB//CD∴∠A=∠DCF∵∠AFE=∠DFC∵ F是AC的中点,∴AF=CF∴△AEF≌△CDF(2)解:∵△AEF≌△CDF∴AE=CD∵BE=AB-AE=AB-CD=10-7=321.【答案】(1)证明:∵BF平分∠ABC,∴∠ABE=∠MBE,∵AE⊥BF,∴∠AEB=∠MEB=90°,∵BE=BE∴△ABE≌△MBE(ASA)∴AB=BM(2)证明:∵△ABE≌△MBE,∴AE=EM,∴AM=2AE,∵∠ACB=90°,∠MEB=90°,∴∠BCF=∠ACM=90°,∠M+∠CBF=∠M+∠CAM=90°,∴∠CBF=∠CAM,∵BC=AC,∴△BCF≌△ACM(ASA),∴BF=AM,∴BF=2AE.22.【答案】(1)解:△ABD ≌△CBE,理由如下:∵△ABC与△BDE是等边三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=60°,∵∠DBC=∠DBC,∴∠ABD=∠CBE∴△ABD≌△CBE(SAS);(2)解:由(1)可得:△ABD ≌△CBE,∵∠BEC=82°,∴∠BEC=∠BDA=82°,∵∠ACB=60°,∠ADB=∠DBC+∠ACB,∴∠DBC=22°.23.【答案】(1)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=90°.∵∠ACD+∠ECB=∠CBE+∠ECB=90°,∴∠ACD=∠CBE.在△ADC和△CEB中{∠ADC=∠CEB∠ACD=∠CBEAC=BC∴△ADC≌△CEB;(2)解:AD=BE+DE,理由如下:∵△ADC≌△CEB,∴CD=BE,AD=CE.∴CE=CD+DE=BE+DE.∴AD=BE+DE.24.【答案】(1)证明:如图,过点E作EG⊥AD于G,EH⊥BC于H,∵EF⊥AB,∠AEF=50°,∴∠FAE=90°−50°=40°,∵∠BAD=100°,11 / 11∴∠CAD =180°−∠BAD−∠FAE =40°,∴∠FAE =∠CAD =40°,∴CA 为∠DAE 的平分线,又EF ⊥AB ,EG ⊥AD ,∴EF =EG ,∵BE 是∠ABC 的平分线,∴EF =EH ,∴EG =EH ,∴点E 在∠ADC 的平分线上,∴DE 平分∠ADC ;(2)解:设EG =x ,则EF =EH =EG =x ,∴S △ACD =S △ADE +S △CDE =12AD ⋅EG +12CD ⋅EH =15,即:12×4x +12×8x =15,解得,x =52,∴S △ABE =12AB ⋅EF =12×7×52=354,∴△ABE 的面积为354.。
浙教版 八年级数学上册 第1章 三角形的初步认识 单元测试卷 (含解析)
八年级(上)数学第1章三角形的初步认识单元测试卷一.选择题(共10小题)1.下面有四个图案,其中不是轴对称图形的是A.B.C.D.2.等腰三角形的一个内角是,则另外两个角的度数分别是A.B.C.或D.3.下列条件中不能判定两个直角三角形全等的是A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和一条斜边分别对应相等4.已知直角三角形的两边长分别为3和4,则斜边长为A.4B.5C.4或5D.5或5.用反证法证明“”时应先假设A.B.C.D.6.如图和△中,,再添两个条件不能够全等的是A.,B.,C.,D.,7.已知,如图,在中,,,是的平分线,,则图中等腰三角形一共有A.2个B.3个C.4个D.5个8.已知等腰三角形的两边长分别为、,且、满足,则此等腰三角形的周长是A.8B.11C.12D.11或139.将两个底边相等的等腰三角形按照如图所示的方式拼接在一起(隐藏互相重合的底边)的图形俗称为“筝形”.假如“筝形”下个定义,那么下面四种说法中,你认为最能够描述“筝形”特征的是A.有两组邻边相等的四边形称为“筝形”B.有两组对角分别相等的四边形称为“筝形”C.两条对角线互相垂直的四边形称为“筝形”D.以一条对角线所在直线为对称轴的四边形称为“筝形”10.如图,在等腰中,为的平分线,,,,则A.B.C.D.二.填空题(共8小题)11.已知等腰三角形的两边长分别是2和4,那么这个等腰三角形的周长是.12.已知在中,,,,那么.13.等腰,,平分交于,如果,则.14.如果在直角三角形中,一个锐角是另一个锐角的3倍,那么这个三角形中最小的一个角等于度.15.如图,直角中,,,当时,.16.如图,,,垂足分别是,,(若要用“”得到,则应添加的条件是.(写一种即可)17.如图,在中,度,如果过点画一条直线能把分割成两个等腰三角形,那么度.18.如图,是一个钢架结构,在角内部最多只能构造五根等长钢条,且满足,则的度数最大为度.三.解答题(共6小题)19.用反证法证明一个三角形中不能有两个角是直角.20.如图,中,,是中点,.求的长.21.如图,已知,平分.求证:是等腰三角形.22.如图,,是上的一点,且,,求证:.23.如图,在中,,是的平分线,,交于点.(1)求证:.(2)若,求的度数.24.如图,已知中,,,,、是边上的两个动点,其中点从点开始沿方向运动,且速度为每秒,点从点开始沿方向运动,且速度为每秒,它们同时出发,设出发的时间为秒.(1)出发2秒后,求的长;(2)当点在边上运动时,出发几秒钟后,能形成等腰三角形?(3)当点在边上运动时,求能使成为等腰三角形的运动时间.参考答案一.选择题(共10小题)1.下面有四个图案,其中不是轴对称图形的是A.B.C.D.解:、不是轴对称图形,故本选项符合题意;、是轴对称图形,故本选项不符合题意;、是轴对称图形,故本选项不符合题意;、是轴对称图形,故本选项不符合题意.故选:.2.等腰三角形的一个内角是,则另外两个角的度数分别是A.B.C.或D.解:,,①当底角时,则,;②当顶角时,,,;即其余两角的度数是,或,,故选:.3.下列条件中不能判定两个直角三角形全等的是A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和一条斜边分别对应相等解:、两个锐角对应相等,不能说明两三角形能够完全重合,符合题意;、可以利用边角边判定两三角形全等,不符合题意;、可以利用边角边或判定两三角形全等,不符合题意;、可以利用角角边判定两三角形全等,不符合题意.故选:.4.已知直角三角形的两边长分别为3和4,则斜边长为A.4B.5C.4或5D.5或解:直角三角形的两边长分别为3和4,①4是此直角三角形的斜边;②当4是此直角三角形的直角边时,斜边长为.综上所述,斜边长为4或5.故选:.5.用反证法证明“”时应先假设A.B.C.D.解:用反证法证明“”时,应先假设.故选:.6.如图和△中,,再添两个条件不能够全等的是A.,B.,C.,D.,解:选项,,,可利用判定△,同理选项,也可利用判定△,选项,,可利用判定△,选项,,,只能证明△,不能证明△.故选:.7.已知,如图,在中,,,是的平分线,,则图中等腰三角形一共有A.2个B.3个C.4个D.5个解:,是等腰三角形;,是等腰三角形;是的平分线,,,,是等腰三角形;和为等腰三角形;图中等腰三角形的个数有5个;故选:.8.已知等腰三角形的两边长分别为、,且、满足,则此等腰三角形的周长是A.8B.11C.12D.11或13解:解得:,当4为腰时,三边为3,3,5,由三角形三边关系定理可知,周长为:.当5为腰时,三边为5,5,3,符合三角形三边关系定理,周长为:.故选:.9.将两个底边相等的等腰三角形按照如图所示的方式拼接在一起(隐藏互相重合的底边)的图形俗称为“筝形”.假如“筝形”下个定义,那么下面四种说法中,你认为最能够描述“筝形”特征的是A.有两组邻边相等的四边形称为“筝形”B.有两组对角分别相等的四边形称为“筝形”C.两条对角线互相垂直的四边形称为“筝形”D.以一条对角线所在直线为对称轴的四边形称为“筝形”解:由题意:“筝形”的一条对角线是另一条对角线的垂直平分线,所以:“筝形”是轴对称图形,对称轴是对角线所在的直线.故选:.10.如图,在等腰中,为的平分线,,,,则A.B.C.D.解:在等腰中,为的平分线,,,,,,,,,,故选:.二.填空题(共8小题)11.已知等腰三角形的两边长分别是2和4,那么这个等腰三角形的周长是10.解:2是腰长时,三角形的三边分别为2、2、4,,不能组成三角形,2是底边时,三角形的三边分别为2、4、4,能组成三角形,周长.故答案为:10.12.已知在中,,,,那么.解:如图所示:可知为的一个直角边,在中,根据勾股定理有:,即,解得:.故答案为:.13.等腰,,平分交于,如果,则3.解:,平分,,故答案为:3.14.如果在直角三角形中,一个锐角是另一个锐角的3倍,那么这个三角形中最小的一个角等于22.5度.解:在直角三角形中,设最小的锐角的度数为,则另一个锐角的度数则为.则,即,解得,,即这个直角三角形中最小的一个角等于.故答案是:22.5.15.如图,直角中,,,当时,.解:设,,,,,,,,,,,故答案为:.16.如图,,,垂足分别是,,(若要用“”得到,则应添加的条件是或.(写一种即可)解:若添加,在和中,,;若添加,在和中,,.故答案为:或.17.如图,在中,度,如果过点画一条直线能把分割成两个等腰三角形,那么度.解:如图,设过点的直线与交于点,则与都是等腰三角形,度,,,,,,,故答案为.18.如图,是一个钢架结构,在角内部最多只能构造五根等长钢条,且满足,则的度数最大为150度.解:,,,,,,,,,最小为,的度数最大为,故答案为:150.三.解答题(共6小题)19.用反证法证明一个三角形中不能有两个角是直角.【解答】证明:假设三角形的三个内角、、中有两个直角,不妨设,则,这与三角形内角和为相矛盾,不成立;所以一个三角形中不能有两个直角.20.如图,中,,是中点,.求的长.解:,点是中点,,,,点是中点,.21.如图,已知,平分.求证:是等腰三角形.【解答】证明:,,平分,,,是等腰三角形.22.如图,,是上的一点,且,,求证:.【解答】证明:,.,和是直角三角形,而.23.如图,在中,,是的平分线,,交于点.(1)求证:.(2)若,求的度数.【解答】(1)证明:是的平分线,,,,,.(2)解:,,,,.24.如图,已知中,,,,、是边上的两个动点,其中点从点开始沿方向运动,且速度为每秒,点从点开始沿方向运动,且速度为每秒,它们同时出发,设出发的时间为秒.(1)出发2秒后,求的长;(2)当点在边上运动时,出发几秒钟后,能形成等腰三角形?(3)当点在边上运动时,求能使成为等腰三角形的运动时间.解:(1),,,;(2),,根据题意得:,解得:,即出发秒钟后,能形成等腰三角形;(3)①当时,如图1所示,则,,.,,,,,秒.②当时,如图2所示,则,秒.③当时,如图3所示,过点作于点,则,,,,秒.综上所述:当为11秒或12秒或13.2秒时,为等腰三角形.。
第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)
第1章三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,Rt△ABC Rt△DEF,则∠E的度数为( )A.30°B.45°C.60°D.90°2、中华人民共和国国旗上的五角星,它的五个锐角的度数和是()A.50°B.100°C.180°D.200°3、下列命题是假命题的是()A.线段垂直平分线上的点到线段两端的距离相等B.三角形的一个外角等于与它不相邻的两个内角的和C.有一个外角是120°的等腰三角形是等边三角形D.有两边和一角对应相等的两个三角形全等4、用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是()A.SSSB.ASAC.AASD.SAS5、如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是( )A. B. C. D.6、如图,在△ABC中,点D、E分别是边AC,AB的中点,BD,CE相交于点O,连接AO,在AO上取一点F,使得OF= AF若S△ABC =12,则四边形OCDF的面积为()A.2B.C.3D.7、已知等腰三角形的两边长为4cm和8cm,则三角形周长是()A.12 cmB.16cmC.20cmD.16cm或20cm8、如图所示,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.AC=BC+CEB.∠A=∠2C.△ABC≌△CEDD.∠A与∠D互余9、如图,在△ABC中,AB=AC,∠BAC=70°,∠BAC的平分线与AB的垂直平分线交于点O,点E、F分别在BC、AC上,点C沿EF折叠后与点O重合,则∠BEO的度数是()A.20°B.35°C.40°D.55°10、下列命题①方程x2=x的解是x=1②4的平方根是2③有两边和一角相等的两个三角形全等④连接任意四边形各边中点的四边形是平行四边形其中真命题有:()A.4个B.3个C.2个D.1个11、将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8 cm,水的最大深度是2 cm,则杯底有水部分的面积是( )A.( )cm 2B.( )cm 2C.( )cm2 D.( )cm 212、已知等腰三角形的两边长分别为6和1,则这个等腰三角形的周长为( )A.13B.8C.10D.8 或 1313、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.135°B.150°C.270°D.90°14、如图,≌,,则的度数是( )A. B. C. D.15、工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度与M、N重合,过角尺顶点C作射线OC.那么判定△MOC≌△NOC的依据是()A.边角边B.边边边C.角边角D.角角边二、填空题(共10题,共计30分)16、如图,△ABC中,D,E分别在边AB,AC上,DE∥BC.若∠A=60°,∠B=70°,则∠AED的度数为________.17、如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:①△APE≌△AME;②PM+PN=AC;③△POF∽△BNF;④当△PMN∽△AMP时,点P是AB的中点,其中一定正确的结论有________.(填上所有正确的序号).18、如图,在△ABC中,AB=AC,点D和E分别是边BC和AC上的点,且满足DB=DA=DE,∠CDE=50°,则∠BAC=________°.19、张丽不慎将_道数学题沾上了污渍,变为“如图,在△ABC中,∠B=60°,AB=6 ,tanC= ,求BC的长度”.张丽翻看答案后,得知BC=6+3 ,则部分为________.20、如图,在△ABC中,D是BC延长线上点,∠B=50°,∠ACD=110°,则∠A=________.21、如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=24°,∠2=36°,则∠3=________.22、如图,在△ABC中,D为BC边中点,P为AC边中点,E为BC上一点且BE=CE,连接AE,取AE中点Q并连接QD,取QD中点G,延长PG与BC边交于点H.若BC=9,则HE=________.23、如图,BF 平分∠ABD,CE 平分∠ACD,BF 与 CE 交于 G,若∠BDC=m°,∠BGC=n°,则∠A 的度数为 ________.(用 m,n 表示)24、已知锐角如图⑴在射线上取一点,以点为圆心,长为半径作弧,交射线于点,连接;⑵分别以点为圆心,长为半径作弧,两弧交于点连接;⑶作射线交于点.根据以上作图过程及所作图形,下列结论中正确的是________;;;;25、已知△ABC≌△DEF,∠A=60°,∠F=50°,点B的对应顶点是点E,则∠B的度数是________.三、解答题(共5题,共计25分)26、如图,在△ABC中,∠B=24°,∠ACB=104°,AD⊥BC于D,AE平分∠BAC,求∠DAE 的度数.27、如图12.1-4,A.B.C.D在同一直线上,且△ABF≌△DCE,那么AF∥DE、BF∥CE、AC=BD吗?为什么?28、如图,点B在射线AE上,∠CAE=∠DAE,∠CBE=∠DBE.求证:AC=AD.29、如图,点B,E,C,F在一条直线上,AC∥DE,AC=DE,∠A=∠D,试说明:AB=DF30、如图,已知在△ABC中,BD平分∠ABC,CD平分△ABC的外角∠ACE,BD、CD相交于D,试说明∠A=2∠D的理由.参考答案一、单选题(共15题,共计45分)1、C2、C3、D4、A5、C7、C8、A9、10、D11、A12、A13、C14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
浙教版八年级数学上册第一章三角形的初步认识单元测试(含答案解析)
第一章三角形的初步认识单元测试一、选择题1.下列各组线段中,能组成三角形的是()A.4,6,10 B.3,6,7 C.5,6,12 D.2,3,62.在△ABC中,∠A﹣∠C=∠B,那么△ABC是()A.等边三角形B.锐角三角形C.钝角三角形D.直角三角形3.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SASB.SSS C.AAS D.ASA(第3题) (第4题) (第5题)4.如图AB⊥AD,AB⊥BC,则以AB为一条高线的三角形共有()个.A .1 B.2 C.3 D.45.如图所示,△BDC′是将长方形纸片ABCD沿BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形()对.A.2 B.3 C.4 D.56.下列是命题的是()A.作两条相交直线B.∠α和∠β相等吗?C.全等三角形对应边相等D.若a2=4,求a的值7.下列命题中,真命题是()A.垂直于同一直线的两条直线平行B.有两边和其中一边上的高对应相等的两个三角形全等C.三角形三个内角中,至少有2个锐角D.有两条边和一个角对应相等的两个三角形全等8.如图,对任意的五角星,结论正确的是()A.∠A+∠B+∠C+∠D+∠E=90°B.∠A+∠B+∠C+∠D+∠E=180°C.∠A+∠B+∠C+∠D+∠E=270°D.∠A+∠B+∠C+∠D+∠E=360°(第8题) (第9题) (第10题)9.如图,在△ABC中,∠C=90°,AC=BC,AD是△ABC的角平分线,DE⊥AB于E.若AB=6cm,则△DEB的周长为()A.5cm B.6cm C.7cm D.8cm10.如图,BF是∠ABD的平分线,CE是∠ACD的平分线,BF与CE交于G,若∠BDC=130°,∠BGC=100°,则∠A的度数为()A.60°B.70°C.80°D.90°二、填空题11.工人师傅在做完门框后,为防止变形常常像图中所示的那样上两条斜拉的木条(即图中的AB,CD两根木条),这样做的依据是______.(第11题) (第13题) (第14题)12.把命题“对顶角相等”改写成“如果…那么…”的形式:______.13.如图,在△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠DAE=15°,∠B=35°,则∠C=______°.14.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是______(添加一个条件即可).15.命题“若x(1﹣x)=0,则x=0”是______命题(填“真”、假),证明时可举出的反例是______.16.已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|=______.17.如图,在△ABC中,AB=AC,AB的中垂线DE交AC于点D,交AB于点E,如果BC=10,△DBC 的周长为22,那么AB=______.(第17题) (第18题)18.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是______.(将你认为正确的结论的序号都填上)19.已知,∠α=50°,且∠α的两边与∠β的两边互相垂直,则∠β=______.20.若三角形的周长为13,且三边均为整数,则满足条件的三角形有______种.三、解答题21.如图,已知△ABC,请按下列要求作图:(1)用直尺和圆规作△ABC的角平分线CG.(2)作BC边上的高线(本小题作图工具不限).(3)用直尺和圆规作△DEF,使△DEF≌△AB C.(第21题) (第22题)22.阅读填空:如图,已知∠AO B.要画出∠AOB的平分线,可分别在OA,OB上截取OC=OD,OE=OF,连结CF,DE,交于P点,那么射线OP就是∠AOB的平分线.要证明这个作法是正确的,可先证明△EOD≌△______,判定依据是______,由此得到∠OED=∠______;再证明△PEC≌△______,判定依据是______,由此又得到PE=______;最后证明△EOP≌△______,判定依据是______,从而便可证明出∠AOP=∠BOP,即OP平分∠AO B.23.证明命题“全等三角形对应边上的高相等”.24.已知:如图,在△ABC中,∠BAC=90°,AB=AC,MN是经过点A的直线,BD⊥MN,CE⊥MN,垂足分别为D、E.(1)求证:①∠BAD=∠ACE;②BD=AE;(2)请写出BD,DE,CE三者间的数量关系式,并证明.参考答案与试题解析一、选择题1.下列各组线段中,能组成三角形的是()A.4,6,10 B.3,6,7 C.5,6,12 D.2,3,6【考点】三角形三边关系.【分析】三角形的任意两边之和都大于第三边,根据以上定理逐个判断即可.【解答】解:A、∵4+6=10,不符合三角形三边关系定理,∴以4、6、10为三角形的三边,不能组成三角形,故本选项错误;B、∵3+6>7,6+7<3,3+7>6,符合三角形三边关系定理,∴以3、6、7为三角形的三边,能组成三角形,故本选项正确;C、∵5+6<12,不符合三角形三边关系定理,∴以5、6、12为三角形的三边,不能组成三角形,故本选项错误;D、∵2+3<6,不符合三角形三边关系定理,∴以2、3、6为三角形的三边,不能组成三角形,故本选项错误;故选B.【点评】本题考查了对三角形三边关系定理的应用,能熟记三角形三边关系定理的内容是解此题的关键.2.在△ABC中,∠A﹣∠C=∠B,那么△ABC是()A.等边三角形B.锐角三角形C.钝角三角形D.直角三角形【考点】三角形内角和定理.【分析】根据三角形内角和定理得到∠A+∠B+∠C=180°,则∠A+∠B=180°﹣∠C,由∠A=∠B﹣∠C 变形得∠A+∠B=∠C,则180°﹣∠C=∠C,解得∠C=90°,即可判断△ABC的形状.【解答】解:∵∠A+∠B+∠C=180°,∴∠C+∠B=180°﹣∠A,而∠A﹣∠C=∠B,∴∠C+∠B=∠A,∴180°﹣∠A=∠A,解得∠A=90°,∴△ABC为直角三角形.故选D.【点评】本题考查了三角形内角和定理:三角形的内角和为180°,直角三角形的判定,熟记掌握三角形的内角和是解题的关键.3.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA【考点】作图—基本作图;全等三角形的判定.【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS可得到三角形全等.【解答】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选:B.【点评】本题主要考查了全等三角形的判定,关键是掌握全等三角形的判定定理.4.如图AB⊥AD,AB⊥BC,则以AB为一条高线的三角形共有()个.A.1 B.2 C.3 D.4【考点】三角形的角平分线、中线和高.【分析】由于AB⊥AD,AB⊥BC,根据三角形的高的定义,可确定以AB为一条高线的三角形的个数.【解答】解:∵AB⊥AD,AB⊥BC,∴以AB为一条高线的三角形有△ABD,△ABE,△ABC,△ACE,一共4个.故选D.【点评】此题主要考查了三角形的高,三角形的高可以在三角形外,也可以在三角形内,所以确定三角形的高比较灵活.5.如图所示,△BDC′是将长方形纸片ABCD沿BD折叠得到的,图中(包括实线、虚线在内)共有全等三角形()对.A.2 B.3 C.4 D.5【考点】全等三角形的判定.【分析】从最简单的开始找,因为图形对折,所以首先△CDB≌△C′DB,由于四边形是长方形所以,△ABD≌△CD B.进而可得另有2对,分别为:△ABE≌△C′DE,△ABD≌△C′DB,如此答案可得.【解答】解:∵△BDC′是将长方形纸片ABCD沿BD折叠得到的,∴C′D=CD,BC′=BC,∵BD=BD,∴△CDB≌△C′DB(SSS),同理可证明:△ABE≌△C′DE,△ABD≌△C′DB,△ABD≌△CDB三对全等.所以,共有4对全等三角形.故选C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要由易到难,循序渐进.6.下列是命题的是()A.作两条相交直线B.∠α和∠β相等吗?C.全等三角形对应边相等 D.若a2=4,求a的值【考点】命题与定理.【分析】根据命题的定义对各选项进行判断.【解答】解:A、“作两条相交直线”为描叙性语言,它不是命题,所以A选项错误;B、“∠α和∠β相等吗?”为疑问句,它不是命题,所以A选项错误;C、全等三角形对应边相等,它是命题,所以C选项正确;D、“若a2=4,求a的值”为描叙性语言,它不是命题,所以D选项错误.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.下列命题中,真命题是()A.垂直于同一直线的两条直线平行B.有两边和其中一边上的高对应相等的两个三角形全等C.三角形三个内角中,至少有2个锐角D.有两条边和一个角对应相等的两个三角形全等【考点】命题与定理.【分析】利用垂线的性质、全等三角形的判定、锐角的性质分别判断后即可确定正确的选项.【解答】解:A、同一平面内垂直于同一直线的两条直线平行,故错误,为假命题;B、有两边和其中一边上的高对应相等的两个三角形全等,故错误,为假命题;C、三角形的三个角中,至少有两个锐角,故正确,为真命题;D、有两边和其中一个角对应相等的两个三角形全等,错误,为假命题,故选C.【点评】本题考查了命题与定理的知识,解题的关键是了解垂线的性质、全等三角形的判定、锐角的性质,难度不大.8.如图,对任意的五角星,结论正确的是()A.∠A+∠B+∠C+∠D+∠E=90°B.∠A+∠B+∠C+∠D+∠E=180°C.∠A+∠B+∠C+∠D+∠E=270°D.∠A+∠B+∠C+∠D+∠E=360°【考点】三角形的外角性质;三角形内角和定理.【分析】根据三角形的一个外角等于和它不相邻的两个内角的和得到∠1=∠2+∠D,∠2=∠A+∠C,根据三角形内角和定理得到答案.【解答】解:∵∠1=∠2+∠D,∠2=∠A+∠C,∴∠1=∠A+∠C+∠D,∵∠1+∠B+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°,故选:B.【点评】本题考查的是三角形内角和定理和三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.9.如图,在△ABC中,∠C=90°,AC=BC,AD是△ABC的角平分线,DE⊥AB于E.若AB=6cm,则△DEB的周长为()A.5cm B.6cm C.7cm D.8cm【考点】角平分线的性质;等腰直角三角形.【分析】根据角平分线上的点到角的两边的距离相等可得CD=DE,然后求出△DEB的周长=AB即可得解.【解答】解:∵AD是△ABC的角平分线,DE⊥AB,∴CD=DE,∴△DEB的周长=BD+DE+BE,=BD+CD+BE,=BC+BE,=AC+BE,=AE+BE,=AB,∵AB=6cm,∴△DEB的周长=6cm.故选B.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,等腰直角三角形的性质,熟记性质是解题的关键.10.如图,BF是∠ABD的平分线,CE是∠ACD的平分线,BF与CE交于G,若∠BDC=130°,∠BGC=100°,则∠A的度数为()A.60°B.70°C.80°D.90°【考点】三角形内角和定理;三角形的角平分线、中线和高.【专题】探究型.【分析】根据三角形内角和定理可求得∠DBC+∠DCB的度数,再根据三角形内角和定理及三角形角平分线的定义可求得∠ABC+∠ACB的度数,从而不难求得∠A的度数.【解答】解:连接B C.∵∠BDC=130°,∴∠DBC+∠DCB=180°﹣130°=50°,∵∠BGC=100°,∴∠GBC+∠GCB=180°﹣100°=80°,∵BF是∠ABD的平分线,CE是∠ACD的平分线,∴∠GBD+∠GCD=∠ABD+∠ACD=30°,∴∠ABC+∠ACB=110°,∴∠A=180°﹣110°=70°.故选B.【点评】本题考查的是三角形内角和定理,根据题意作出辅助线,构造出三角形是解答此题的关键.二、填空题11.工人师傅在做完门框后,为防止变形常常像图中所示的那样上两条斜拉的木条(即图中的AB,CD两根木条),这样做的依据是三角形的稳定性.【考点】三角形的稳定性.【分析】根据三角形具有稳定性进行解答即可.【解答】解:这样做的依据是三角形的稳定性,故答案为:三角形的稳定性.【点评】此题主要考查了三角形的稳定性,关键是掌握当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.12.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么它们相等.【考点】命题与定理.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.【点评】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.13.如图,在△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠DAE=15°,∠B=35°,则∠C= 65°.【考点】三角形的角平分线、中线和高;三角形内角和定理.【分析】利用三角形内角和定理求得∠AED=75°;然后根据已知条件和三角形外角定理可以求得∠BAE的度数;最后结合三角形角平分线的定义和三角形内角和定理进行解答.【解答】解:如图,∵AD⊥BC,∴∠ADE=90°.又∵∠DAE=15°,∴∠AED=75°.∵∠B=35°,∴∠BAE=∠AED﹣∠B=40°.又∵AE为∠BAC的平分线,∴∠BAC=2∠BAE=80°,∴∠C=180°﹣∠B﹣∠BAC=65°.故答案是:65.【点评】本题主要考查三角形内角和定理,垂直的性质,角平分线的性质,关键在于熟练运用个性质定理推出相关角之间的关系.14.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是∠B=∠C或AE=AD(添加一个条件即可).【考点】全等三角形的判定.【专题】开放型.【分析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,则可以添加一个边从而利用SAS来判定其全等,或添加一个角从而利用AAS来判定其全等.【解答】解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△AC D.故答案为:∠B=∠C或AE=A D.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.15.命题“若x(1﹣x)=0,则x=0”是假命题(填“真”、假),证明时可举出的反例是x=1.【考点】命题与定理.【分析】要证明一个命题是假命题只要举一个反例即可.【解答】解:当x=1时,x(1﹣x)=0也成立,所以证明命题“若x(1﹣x)=0,则x=0”是假命题的反例是:x=1,故答案为:假,x=1.【点评】考查了命题与定理的知识,解题的关键是了解学生对反例证法的掌握情况,属于基础题,比较简单.16.已知三角形的三边长分别是3、x、9,则化简|x﹣5|+|x﹣13|=8.【考点】三角形三边关系.【分析】首先确定第三边的取值范围,从而确定x﹣5和x﹣13的值,然后去绝对值符号求解即可.【解答】解:∵三角形的三边长分别是3、x、9,∴6<x<12,∴x﹣5>0,x﹣13<0,∴|x﹣5|+|x﹣13|=x﹣5+13﹣x=8,故答案为:8.【点评】本题考查了三角形的三边关系,解题的关键是能够根据三边关系确定x的取值范围,从而确定绝对值内的代数式的符号,难度不大.17.如图,在△ABC中,AB=AC,AB的中垂线DE交AC于点D,交AB于点E,如果BC=10,△DBC 的周长为22,那么AB=12.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】由AB的中垂线DE交AC于点D,交AB于点E,可得AD=BD,又由BC=10,△DBC的周长为22,可求得AC的长,继而求得答案.【解答】解:∵AB的中垂线DE交AC于点D,交AB于点E,∴AD=BD,∵△DBC的周长为22,∴BC+CD+BD=BC+CD+AD=BC+AC=22,∵BC=10,∴AC=12.∵AB=AC,∴AB=12.故答案为:12.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.18.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是①②③.(将你认为正确的结论的序号都填上)【考点】全等三角形的判定与性质.【分析】此题考查的是全等三角形的判定和性质的应用,只要先找出图中的全等三角形就可判断题中结论是否正确.【解答】解:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF,∴AC=AB,BE=CF,即结论②正确;∵AC=AB,∠B=∠C,∠CAN=∠BAM,∴ACN≌△ABM,即结论③正确;∵∠BAE=∠CAF,∵∠1=∠BAE﹣∠BAC,∠2=∠CAF﹣∠BAC,∴∠1=∠2,即结论①正确;∴△AEM≌△AFN,∴AM=AN,∴CM=BN,∴△CDM≌△BDN,∴CD=BD,∴题中正确的结论应该是①②③.故答案为:①②③.【点评】此题考查了三角形全等的判定和性质;对图中的全等三角形作出正确判断是正确解答本题的关键.19.已知,∠α=50°,且∠α的两边与∠β的两边互相垂直,则∠β=130°或50°.【考点】垂线.【专题】分类讨论.【分析】根据题意画出图形,然后分情况进行讨论分析即可.【解答】解:①如图1,∵∠a+∠β=180°﹣90°﹣90°=180°,∠α=50°,∴∠β=130°,②如图2,若∠a的两边分别与∠β的两边在同一条直线上,∴∠a=∠β=50°,综上所述,∠β=130°或50°.故答案是:130°或50°.【点评】本题主要考查角的计算,垂线的性质,关键在于根据题意画出图形,分情况进行讨论分析.20.若三角形的周长为13,且三边均为整数,则满足条件的三角形有4种.【考点】三角形三边关系.【分析】三角形的三边中,等边三角形三边相等;除此外,必有一边是最长边;然后首先确定第三边的取值范围,从而确定答案.【解答】解:设三边长分别为a≤b≤c,则a+b=13﹣c>c≥,∴≤c<,故c=5,或6;分类讨论如下:①当c=5时,b=4,a=4或b=3,a=5;②当c=6时,b=5,a=2或b=4,a=3;∴满足条件的三角形的个数为4,故答案为:4.【点评】本题考查了三角形的三边关系,属竞赛题型,且涉及分类讨论的思想.解答的关键是找到三边的取值范围及对三角形三边的理解把握.三、解答题21.如图,已知△ABC,请按下列要求作图:(1)用直尺和圆规作△ABC的角平分线CG.(2)作BC边上的高线(本小题作图工具不限).(3)用直尺和圆规作△DEF,使△DEF≌△AB C.【考点】作图—复杂作图.【专题】作图题.【分析】(1)利用基本作图(作已知角的平分线)画∠ACB的平分线OG;(2)过点A作AH⊥BC于H,则AH为BC边上的高;(3)先作线段EF=BC,然后分别以E、F为圆心,BA和CA为半径画弧,两弧交于点D,则△DEF 与△ABC全等.【解答】解:(1)如图1,CG为所作;(2)如图1,AH为所作;(3)如图2,△DEF为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.22.阅读填空:如图,已知∠AO B.要画出∠AOB的平分线,可分别在OA,OB上截取OC=OD,OE=OF,连结CF,DE,交于P点,那么射线OP就是∠AOB的平分线.要证明这个作法是正确的,可先证明△EOD≌△FOC,判定依据是SAS,由此得到∠OED=∠OFC;再证明△PEC≌△PFD,判定依据是AAS,由此又得到PE=PF;最后证明△EOP≌△FOP,判定依据是SSS,从而便可证明出∠AOP=∠BOP,即OP平分∠AO B.【考点】作图—基本作图;全等三角形的判定与性质.【分析】求∠AOB的平分线可利用三角形全等的性质作图.【解答】解:作法:(1)分别在OA,OB上截取OC=OD,OE=OF,连接CF,DE,交于P点,(2)连接OP即可,在△EOD与△FOC中,,∴△EOD≌△FOC(SAS),∴∠OED=∠OFC,在△PEC与△PFD中,,∴△PEC≌△PFD(AAS),∴PE=PF.在△EOP与△FOP中,,∴△EOP≌△FOP(SSS),∴∠AOP=∠BOP,即OP平分∠AO B.故答案为:FOC,SAS,OFC;PFD,AAS,PF;△FOP,SSS,【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法及全等三角形的判定定理是解答此题的关键.23.证明命题“全等三角形对应边上的高相等”.【考点】全等三角形的性质.【专题】证明题.【分析】根据图形写出已知,求证,根据全等三角形的性质求出AB=EF,∠B=∠F,根据全等三角形的判定求出△ABD≌△EFH即可.【解答】解:已知:如图,△ABC≌△EFC,AD、EH分别是△ABC和△EFC的对应边BC、FG上的高.求证:AD=EH.证明:∵△ABC≌△EFC,∴AB=EF,∠B=∠F,∵AD、EH分别是△ABC和△EFC的对应边BC、FG上的高,∴∠ADB=∠EHF=90°,在△ABD和△EFH中,∴△ABD≌△EFH(AAS),∴AD=EH.【点评】此题主要考查学生对全等三角形的性质及判定的理解及运用能力.注意命题的证明的格式、步骤.24.(12分)已知:如图,在△ABC中,∠BAC=90°,AB=AC,MN是经过点A的直线,BD⊥MN,CE⊥MN,垂足分别为D、E.(1)求证:①∠BAD=∠ACE;②BD=AE;(2)请写出BD,DE,CE三者间的数量关系式,并证明.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)①根据∠BAD+∠CAE=90°,∠ACE+∠CAE=90°,即可得出∠BAD=∠ACE;②根据全等三角形的判定方法(AAS)得出△ABD≌△CAE,从而得出BD=AE;(2)根据△ABD≌△CAE,得出BD=AE,AD=CE,再根据AE=AD+DE,即可得出BD,DE,CE三者间的数量关系.【解答】解:(1)①∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵CE⊥MN,∴∠ACE+∠CAE=90°,∴∠BAD=∠ACE;②∵BD⊥MN,∴∠BDA=∠AEC=90°,在△ABD和△CAE中,,∴△ABD≌△CAE,∴BD=AE;(2)∵△ABD≌△CAE,∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=CE+DE.【点评】此题考查了全等三角形的判定与性质,用到的知识点是AAS、直角三角形的性质,关键是通过证明两个三角形全等得出相等的线段.。
第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)
第1章三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点;B.三条高线的交点;C.三条角平分线的交点;D.三条边的中垂线的交点。
2、下列命题是真命题的是()A.9是不等式2(x-1)+3<x+1的一个解B.当x=-1时,分式的值为0C.某运动员在亚运会某项比赛中,连续四次成绩为80,80,80,80,则该组数据的方差为0D.三内角之比为3︰4︰5的三角形为直角三角形3、如图,在△ABC中,AB=AC,∠A=40°,将△ABC沿CD折叠,使点B落在边AC上的点E处,则∠ADE的度数是()A.40°B.30°C.70°D.60°4、下列命题中,真命题的是A.同旁内角互补B.相等的角是对顶角C.同位角相等,两直线平行 D.直角三角形两个锐角互补5、如图,一个扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线 D.垂线段最短6、如图,在⊙O中,弦AB,CD相交于点P,若∠A=55°,∠APD=80°,则∠B等于( )A.40°B.45°C.50°D.55°7、下列图形中,能确定∠1>∠2的是()A. B. C. D.8、如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,若∠A=26°,则∠CDE度数为()A.71°B.64°C.80°D.45°9、如图,∠x的两条边被一直线所截,用含α和β的式子表示∠x为()A.α-βB.β-αC.180°-α+βD.180°-α-β10、如图,两个反比例函数y=和y=﹣的图象分别是l1和l2.设点P在l1上,PC⊥x 轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则三角形PAB的面积为()A.3B.4C.D.511、已知三角形两边的长分别是3和6,第三边的长是方程x2﹣6x+8=0的根,则这个三角形的周长等于()A.13B.11C.11 或13D.12或1512、下列说法正确的是()A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等13、如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°14、如图,在Rt△ABC中,∠B=45°,AB=AC,点D为BC的中点,直角∠MDN绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正确结论是()A.①②③B.②③④C.①②④D.①②③④15、在Rt△ABC中,∠A=40°,∠B=90°,AC的垂直平分线MN分别与AB,AC交于点D,E,则∠BCD的度数为()A.10°B.15°C.40°D.50°二、填空题(共10题,共计30分)16、如图,AB⊥BC,AB=BC=2cm,与关于点O中心对称,则AB、BC、、所围成的图形的面积是________cm2.17、如图所示,n+1个边长为1的等边三角形,其中点A,C1, C2, C3,…∁n在同一条直线上,若记△B1C1D1的面积为S1,△B2C2D2的面积为S2,△B3C3D3的面积为S3,…,△B n∁n D n的面积为S n,则S n=________.18、在矩形ABCD中,∠ABC的平分线交AD于点E,∠BED的平分线交DC于点F,若AB=6,点F恰为DC的中点,则BC=________(结果保留根号)19、如图,是由绕点O顺时针旋转后得到的图形,若点D恰好落在上,且,则的度数是________.20、如图,已知,要使≌成立,还需填加一个条件,那么这个条件可以是________.(只需写出一个即可)21、如图,在△ABC中,AC=10,BC=6,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长是________.22、在等腰直角△ABC中,∠C=90°,O为直角边上一点,以O为圆心,OC长为半径作⊙O,⊙O与斜边AB相切于点D,连结CD,则∠ACD=________。
第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)
第1章三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,在△ABC中,∠A=31°,∠ABC的平分线BD交AC于点D,如果DE垂直平分AB,那么∠C的度数为()A.93°B.87°C.91°D.90°2、如果D是△ABC中BC边上一点,并且△ADB≌△ADC,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形3、如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSSB.SASC.SSAD.ASA4、如图,已知线段AB,分别以A,B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°5、如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD,若CD=AC,∠A=50°,则∠B=()A.50°B.45°C.30°D.25°6、如图,AD 是△ABC 的中线,已知△ABD 的周长为22 cm,AB 比AC 长3 cm,则△ACD 的周长为()A.19 cmB.22 cmC.25 cmD.31 cm7、下列图形中具有稳定性的是()A.梯形B.长方形C.三角形D.四边形8、如图,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内的一点,且∠1=∠2,则∠P 的度数为( )A.110°B.120°C.130°D.140°9、如图,△ABC≌△ADE,∠B=20°,∠E=110°,则∠EAD的度数为()A.80°B.70°C.50°D.130°10、如图,若△ABC≌△DEF,BE=22,BF=5,则FC的长度是()A.10B.12C.8D.1611、如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,则AC等于( )A.3B.4C.7D.812、如图,中,,,,若恰好经过点B,交AB于D,则的度数为()A. B. C. D.13、如图,AB∥CD,那么∠A,∠P,∠C的数量关系是()A.∠A+∠P+∠C=90°B.∠A+∠P+∠C=180°C.∠A+∠P+∠C=360° D.∠P+∠C=∠A14、一个三角形的两边长分别为3和6,第三边的边长是方程(x﹣2)(x﹣4)=0的根,则这个三角形的周长是()A.11B.11或13C.13D.以上选项都不符合题意15、如图,用4根木条钉成一个四边形木架,要使这个木架不变形,至少要再钉上木条的根数是()A.0B.1C.2D.3二、填空题(共10题,共计30分)16、四条木棒长为1,4,5,8,选其中三条组成三角形的概率是________.17、如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=20cm,则△DEB的周长为________cm.18、如图,在△ABC中,AB=AC=5,BC=4 ,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接BE,则△BDE面积的最大值为________.19、三角形的三条边的长为整数,且两两不等,最长边为8,这样的三角形共有________个.20、如图,已知点A(t,1)在第一象限,将OA绕点O顺时针旋转45°得到OB,若反比例数y=(k>0)的图象经过点A、B,则k=________.21、已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ,已知PQ=5,NQ=9,则MH长为________.22、如图,三个边长均为1的正方形按如图所示的方式摆放,A1, A2分别是正方形对角线的交点,则重叠部分的面积和为________.23、如图,中,为的中点,以为圆心,长为半径画一弧交于点,若,,,则扇形的面积为________.24、如图,线段AB=4,M为AB的中点,动点P到点M的距离是1,连接PB,线段PB绕点P逆时针旋转90°得到线段PC,连接AC,则线段AC长度的最大值是________.25、如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为________.三、解答题(共5题,共计25分)26、化简÷﹣,并求值,其中a与2、3构成△ABC的三边,且a为整数.27、如图,在△ABC中,∠C=90°,AB=2AC,AD平分∠BAC,求证:点D在AB的垂直平分线上.28、如图,已知△ABC中,AB=2,BC=4(1)画出△ABC的高AD和CE;(2)若AD=,求CE的长.29、王强同学用10块高度都是的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板,点C在上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.30、如图,射线OA∥射线CB,∠C=∠OAB=100°.点D、E在线段CB上,且∠DOB=∠BOA,OE平分∠DOC.(1)试说明AB∥OC的理由;(2)试求∠BOE的度数;(3)平移线段AB;①试问∠OBC:∠ODC的值是否会发生变化?若不会,请求出这个比值;若会,请找出相应变化规律.②若在平移过程中存在某种情况使得∠OEC=∠OBA,试求此时∠OEC的度数.参考答案一、单选题(共15题,共计45分)1、B2、D3、D4、B5、D6、A7、C8、A9、C10、B11、C12、B13、C14、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。
浙教版八年级上第1章 三角形的初步知识单元测试(含答案)
单元测试(一) 三角形的初步知识一、选择题(每小题3分,共30分) 1.下列命题为假命题的是( D )A .三角形三个内角的和等于180°B .三角形两边之和大于第三边C .三角形的外角大于任何一个和它不相邻的内角D .若a >0,b <0,则a +b >0 2.下列条件:①∠A =∠B =∠C ;②∠A ∶∠B ∶∠C =1∶2∶3;③∠A =90°+∠B ;④∠A =∠B =12∠C ,能确定△ABC 是直角三角形的条件有( B )A .1个B .2个C .3个D .4个3.如图,CE 是△ABC 的外角∠ACD 的平分线,若∠B =35°,∠ACE =60°,则∠A =( C )A .35°B .95°C .85°D .75°第3题图 第5题图 第6题图4.(萧山区期中)把三角形的面积分为相等的两部分的是( A )A .三角形的中线B .三角形的角平分线C .三角形的高D .以上都不对5.如图,AC 与BD 相交于点O ,已知AB =CD ,AD =BC ,则图中全等的三角形有( D )A .1对B .2对C .3对D .4对6.如图所示,BE ⊥AC 于点D ,且AD =CD ,BD =ED ,若∠ABC =54°,则∠E =( B )A .25°B .27°C .30°D .45° 7.如图,点D ,E 分别在AC ,AB 上,已知AB =AC ,添加下列条件,不能说明△ABD ≌△ACE 的是( D )A .∠B =∠C B .AD =AE C .∠BDC =∠CEBD .BD =CE第7题图 第8题图 第9题图8.如图,在△ABC 中,AD 是角平分线,AE 是高,已知∠BAC =2∠B ,∠B =2∠DAE ,那么∠ACB 等于( B )A .80°B .72°C .48°D .36°9.如图,△ABC 的三边AB ,BC ,CA 的长分别是100,110,120,其三条角平分线将△ABC分为三个三角形,则S△ABO∶S△BCO∶S△CAO( C )A.1∶1∶1 B.9∶10∶11C.10∶11∶12 D.11∶12∶1310.如图,在△ABC中,P、Q分别是B C、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有( B )①P A平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个B.3个C.2个D.1个二、填空题(每小题4分,共24分)11.工人师傅在做完门框后,为防止变形常常像图中所示的那样订上两条斜拉的木条(即图中的AB,CD两根木条),这样做的依据是三角形具有稳定性.第11题图第13题图第14题图第15题图第16题图12.命题“任何一个角的补角都不小于这个角”是假命题(填“真”或“假”);若是假命题,举个反例:120°的角大于它的补角.13.如图,∠A=50°,∠ABO=28°,∠ACO=32°,则∠BDC=78°,∠BOC=110°.14.如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC 一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D,连结CD,若AB=5,AC=4,则△ACD的周长为9.15.(杭州青春中学期末)如图,△ABC三边的中线A D、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是4.16.如图,AD是△ABC的中线,E、F分别是AD和AD延长线上的点,且DE=DF,连结BF、CE,下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的是①②③④(填序号).三、解答题(共66分)17.(6分)如图,△ABC 中,∠ACB =90°,CD 为AB 边上的高,BE 平分∠ABC ,分别交C D 、AC 于点F 、E ,求证:∠CFE =∠CEF .证明:∵∠ACB =90°, ∴∠CBE +∠CEB =90°. ∵CD ⊥AB ,∴∠ABE +∠BFD =90°. ∵BE 平分∠ABC , ∴∠CBE =∠ABE . ∴∠CEB =∠BFD . ∵∠BFD =∠CFE , ∴∠CEB =∠CFE ,即∠CFE =∠CEF .18.(8分)(杭州六校联考)如图,在△ABC 和△BAD 中,AC 与BD 相交于点E ,已知AD =BC ,另外只能从下面给出的三个条件:①∠DAB =∠CBA ;②∠D =∠C ;③∠DBA =∠CAB 中选择其中的一个用来证明△ABC 和△BAD 全等,这个条件是①(填序号),并证明△ABC ≌△BAD .证明:在△ABC 和△BAD 中, ⎩⎨⎧BC =AD ,∠CBA =∠DAB ,BA =AB ,∴△ABC ≌△BAD (SAS ).19.(8分)证明命题“全等三角形对应边上的高相等”是真命题.解:已知:如图,△ABC ≌△EFG ,A D 、EH 分别是△ABC 和△EFG 的对应边B C 、FG 上的高.求证:AD =EH .证明:∵△ABC ≌△EFG , ∴AB =EF ,∠B =∠F .∵A D 、EH 分别是△ABC 和△EFG 的对应边B C 、FG 上的高, ∴∠ADB =∠EHF =90°. 在△ABD 和△EFH 中,⎩⎨⎧∠ADB =∠EHF ,∠B =∠F ,AB =EF ,∴△ABD ≌△EFH (AAS ). ∴AD =EH .20.(10分)如图,△ABC 的两条高AD ,BE 相交于点H ,且AD =BD ,试说明下列结论成立的理由.(1)∠DBH =∠DAC ;(2)△BDH ≌△ADC . 解:(1)∵AD ⊥BC , ∴∠ADC =∠ADB =90°. ∵BE ⊥AC ,∴∠BEA =∠BEC =90°.∴∠DBH +∠C =90°,∠DAC +∠C =90°.∴∠DBH =∠DAC .(2)∵∠DBH =∠DAC ,BD =AD ,∠BDH =∠ADC =90°,∴△BDH ≌△ADC (ASA ).21.(10分)(杭州中考)“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a ,b ,c ,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a ,b ,c )(a ≤b ≤c )表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的三角形,请列举出所有满足条件的三角形;(2)用直尺和圆规作出三边满足a <b <c 的三角形(用给定的单位长度,不写作法,保留作图痕迹).解:(1)(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4).(2)由(1)可知,只有(2,3,4),即a =2,b =3,c =4时满足a <b <c . 如图所示的△ABC 即为满足条件的三角形.22.(12分)已知:如图,在△AB C、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C、D、E三点在同一直线上,连结BD.(1)求证:△BAD≌△CAE;(2)试猜想B D、CE有何特殊位置关系,并证明.解:(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)B D、CE特殊位置关系为BD⊥CE.证明:由(1)知△BAD≌△CAE,∴∠ADB=∠E.∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°,即∠BDE=90°.∴BD⊥CE.23.(12分)(绍兴县柯岩中学月考)探究与发现:如图1所示的图形,像我们常见的学习用品——圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=40°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE 的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度数.解:(1)连结AD 并延长至点F ,由外角定理可得∠BDF =∠BAD +∠B ,∠CDF =∠CAD +∠C , ∴∠BDF +∠CDF =∠BAD +∠CAD +∠B +∠C , 即∠BDC =∠BAC +∠B +∠C .(2)②由(1)的结论得∠DBE =∠A +∠ADB +∠AEB , ∴∠ADB +∠AEB =80°.∴∠DCE =12(∠ADB +∠AEB )+∠A =40°+50°=90°.③∵∠BG 1C =110(∠ABD +∠ACD )+∠A ,∠ABD +∠ACD =∠BDC -∠A , ∴77°=110(140°-∠A )+∠A .∴∠A =70°.。
浙教版八年级数学上册第1章 三角形的初步认识 单元测试卷(含答案)
浙教版八年级数学上册第1章三角形的初步认识单元测试卷题号一二三总分得分一、选择题(本大题共10小题,共30分)1.在下列长度的四根木棒中,能与两根长度分别为4cm和9cm的木棒构成一个三角形的是()A. 4cmB. 5cmC. 9cmD. 13cm2.如图,∠ABC=∠DCB,添加下列条件,不能判定△ABC≌△DCB的是()A. ∠A=∠DB. ∠ACB=∠DBCC. AC=DBD. AB=DC3.如图,△ABC中,AB=AC,AD⊥BC,下列结论中不正确的是()A. D是BC中点B. AD平分∠BACC. AB=2BDD. ∠B=∠C4.下列判断:①三角形的三个内角中最多有一个钝角;②三角形的三个内角中至少有两个锐角;③三角形的角平分线、中线、高线均在三角形内部;④三角形的外角大于任何一个内角.正确的有几个()A. 1个B. 2个C. 3个D. 4个5.如图,将一个三角形纸片ABC沿过点B的直线折叠,使点C落在AB边上的点E处,折痕为BD,则下列结论一定正确的是()A. AD=BDB. AE=ACC. ED+EB=DBD. AE+CB=AB6.下列两个三角形全等的是()A. ①②B. ②③C. ③④D. ①④7.BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是15cm2,AB=9cm,BC=6cm,则DE=()cm.A. 1B. 2C. 3D. 48.如图,在矩形ABCD中,点O为对角线AC、BD的交点,点E为BC上一点,连接EO,并延长交AD于点F,则图中全等三角形共有()A. 5对B. 6对C. 8对D. 10对9.如图,在△ABC中,∠C=90∘,AD平分∠BAC,DE⊥AB于E,下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④BE=DE;⑤S BDE:S△ACD=BD:AC,其中正确的个数为()A. 5个B. 4个C. 3个D. 2个10.如图,的两条中线AM,BN相交于点O,已知的面积为4,的面积为2,则四边形MCNO的面积为()A. 4B. 3C. 6D. 2二、填空题(本大题共8小题,共24分)11.12.如图,∠ACD是△ABC的外角,若∠B=50°,∠ACD=120°,则∠A=_________12.如图,AD是△ABC的中线,CE是△ACD的中线,S△ACE=3cm2,则S△ABC=________cm2.13.如图,∠ACB=90°.AC=BC,AD⊥CE,BE⊥CE.垂足分别为D、E,AD=5,DE=3,则BE=________.14.如图,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=________.15.阅读下面材料:尺规作图:作一条线段等于已知线段.已知:线段AB.求作:线段CD,使CD=AB.在数学课上,老师提出如下问题:小亮的作法如下:老师说:“小亮的作法正确”请回答:小亮的作图依据是______.16.如图,已知Rt△ABC中,∠B=90°,∠A=60°,AB=3,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点O恰好落在线段BC上,当△DCM为直角三角形时,则AM的长为________.17.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AD,CB=CD,则图中共有______对全等三角形.18.如图,已知∠3=∠4,要说明△ABC≌△DCB,(1)若以“SAS”为依据,则需添加的条件是_______;(2)若以“AAS”为依据,则需添加的条件是_______;(3)若以“ASA”为依据,则需添加的条件是_______.三、解答题(本大题共7小题,共66分)19.如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC,DE相交于点F,求∠DFB的度数.20.在△ABC中,CD是AB边上高,BE为角平分线,若∠BFC=113°,求∠BCF的度数.21.如图,AC,BD相交于点O,且AB=DC,AC=DB.求证:∠ABO=∠DCO.22.如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,AD与BE交于点F,∠BAD=45°,求证:BF=2AE.23.如图,长方形ABCD中,AD=BC=4,AB=CD=2.点P从点A出发以每秒1个单位的速度沿A→B→C→D→A的方向运动,回到点A停止运动.设运动时间为t秒.(1)当△ABP的面积为3时,求t的值;(2)△ABP面积的最大值是______,此时t的取值范围是______.24.已知:AD为△ABC的中线,分别以AB和AC为一边在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,连接EF,∠EAF+∠BAC=180°.(1)若∠ABE=65°,∠ACF=75°,求∠BAC的度数.(2)求证:EF=2AD.25.26、(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF 的形状.(不需要证明)答案和解析1.【答案】C【解析】【分析】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.设选取的木棒长为Lcm,再根据三角形的三边关系求出L的取值范围,选出合适的L的值即可.【解答】解:设选取的木棒长为Lcm,∵两根木棒的长度分别为4m和9m,∴9cm−4cm<L<9cm+4cm,即5cm<L<13cm,∴9cm的木棒符合题意.故选C.2.【答案】C【解析】【分析】本题考查了全等三角形的判定的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS,HL,根据定理逐个判断即可.【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项不符合题意;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项不符合题意;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项符合题意;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项不符合题意;故选:C.3.【答案】C【解析】解:∵AB=AC,AD⊥BC,∴∠B=∠C,∠BAD=∠CAD,BD=DC.∴AD平分∠BAC,无法确定AB=2BD.故A、B、D正确,C错误.故选:C.由在△ABC中,AB=AC,AD⊥BC,根据等边对等角与三线合一的性质,即可求得答案.此题考查了等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.4.【答案】B【解析】【分析】本题主要考查三角形的内角和定理,三角形的外角性质,三角形的中线、高线、角平分线.掌握三角形的内角和定理,三角形的外角性质,三角形的中线、高线、角平分线是解题的关键.根据三角形的内角和等于180°判断①②,根据角形的中线、高线、角平分线的定义判断③,根据三角形的外角性质判断④即可.【解答】解:因为三角形的内角和为180°,所以三角形的三个内角中最多有一个钝角,三角形的三个内角中至少有两个锐角,所以①②是正确的;锐角三角形的角平分线、中线、三条高均在三角形内部,而直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部,所以③不正确;例如钝角三角形三角形中有一个角等于120°,外角小于一个钝角,所以④不正确.综上,正确的有①②共2个.故选B.5.【答案】D【解析】【分析】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.先根据图形翻折变换的性质得出BE=BC,根据线段的和差,可得AE+BE=AB,根据等量代换,可得答案.【解答】解:由折叠的性质知,BC=BE,∴AE+CB=AE+BE=AB.故选D.6.【答案】A【解析】【分析】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS,SAS,ASA,AAS,HL.根据全等三角形判定方法对各图形中的条件进行分析得出答案即可.【解答】解:在图①和图②所给的条件中,具备了两边和它们的夹角对应相等,∴根据SAS可以判断三角形①和三角形②全等,∴两个三角形全等的是①②.故选A.7.【答案】B【解析】【分析】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质得出DE=DF是解此题的关键.过D作DF⊥BC于F,根据角平分线的性质得出DE=DF,根据三角形的面积公式得出关于DE的方程,求出方程的解即可.【解答】解:过D作DF⊥BC于F,∵BD是∠ABC的角平分线,DE⊥AB于E,∴DE=DF,∵△ABC的面积是15cm2,AB=9cm,BC=6cm,∴12×AB×DE+12×BC×DF=15cm2,∴9DE+6DE=30,解得:DE=2,故选B.8.【答案】D【解析】【分析】本题考查矩形的性质、全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定方法,属于基础题,中考常考题型.根据已知及全等三角形的判定方法进行分析,从而得到答案.【解答】解:∵四边形ABCD为矩形,其矩形的对角线相等且相互平分,∴AB=CD,AD=BC,AO=CO,BO=DO,EO=FO,∠DAO=∠BCO,又∠AOB=∠COD,∠AOD=∠COB,∠AOE=∠COF,易证△ABC≌△DCB,△ABC≌△CDA,△ABC≌△BAD,△BCD≌△ADC,△BCD≌△DAB,△ADC≌△DAB,△AOF≌△COE,△DOF≌△BOE,△DOC≌△AOB,△AOD≌△BOC故图中的全等三角形共有10对.故选D.9.【答案】C【解析】【分析】此题考查了角平分线的性质以及全等三角形的判定与性质.此题比较适中,注意掌握数形结合思想的应用.根据角平分线的性质,可得CD=ED,易证得△ADC≌△ADE,可得AC+BE=AB;由等角的余角相等,可证得∠BDE=∠BAC;然后由∠B的度数不确定,可得BE不一定等于DE;又由CD=ED,△ABD和△ACD的高相等,所以S△BDE:S△ACD=BE:AC.【解答】解:①正确,∵在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,∴CD=ED;②正确,因为由HL可知△ADC≌△ADE,所以AC=AE,即AC+BE=AE+BE=AB;③正确,因为∠BDE和∠BAC都与∠B互余,根据同角的补角相等,所以∠BDE=∠BAC;④错误,因为∠B的度数不确定,故BE不一定等于DE;⑤错误,因为CD=ED,△ABD和△ACD的高相等,所以S△BDE:S△ACD=BE:AC.故选C.10.【答案】A【解析】【分析】本题主要考查了三角形的面积,解题的关键是利用中线找出三角形面积关系.只应用三角形中线平分面积的性质得结论【解答】解:∵AM和BN是中线,∴S△BNC=1S△ABC=S△ABM,即S△ABO+S△BOM=S△BOM+S四边形MCNO,S△ABO=S四边形MCNO,2∵△ABO的面积为4,∴S四边形MCNO=4.故答案为A.11.【答案】70°【解析】【分析】根据三角形的外角的性质计算.【详解】解:由三角形的外角的性质可知,∠A=∠ACD−∠B=70°,故答案为:70°.【点睛】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.12.【答案】 12【解析】【分析】本题考查了三角形的中线和三角形的面积,根据三角形的面积公式和三角形的中线的定义可知S△ABC=2S△ACD,S△ACD=2S△ACE,进而得到答案.【解答】解:∵AD是△ABC的中线,CE是△ACD的中线,∴S△ABC=2S△ACD,S△ACD=2S△ACE,∴S△ABC=4S△ACE=12cm2.故答案为12.13.【答案】2【解析】【分析】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等).可先证明△BCE≌△CAD,可求得CE=AD,CD=BE,结合条件可求得CD,则可求得BE.【解答】解:∵∠ACB=90°,∴∠BCE+∠ACD=90°,又∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠BCE+∠CBE=90°,∴∠CBE=∠ACD,在△CBE和△ACD中,{∠E=∠ADC∠CBE=∠ACD BC=AC,∴△CBE≌△ACD(AAS),∴BE=CD,CE=AD=5,∵DE=3,∴CD=CE−DE=AD−DE=5−3=2,∴BE=CD=2.故答案是2.14.【答案】55°【解析】【分析】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△CAE,求出∠BAD=∠EAC,证△BAD≌△CAE,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.【解答】解:∵∠BAC=∠DAE,∴∠BAC−∠DAC=∠DAE−∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,{AB=AC ∠BAD=∠EAC AD=AE∴△BAD≌△CAE,∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.15.【答案】圆的半径相等【解析】【分析】本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).利用圆的半径相等可判断CD=AB.【解答】解:小亮的作图依据为圆的半径相等.故答案为圆的半径相等.16.【答案】2或3√3−3【解析】【分析】本题考查了翻折变换−折叠问题,含30度角的直角三角形的性质,勾股定理,正确的作出图形是解题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.依据△DCM为直角三角形,需要分两种情况进行讨论:当∠CDM=90°时,△CDM是直角三角形;当∠CMD=90°时,△CDM是直角三角形,分别依据含30°角的直角三角形的性质以及勾股定理,即可得到AM的长.【解答】解:分两种情况:①如图,当∠CDM=90°时,△CDM是直角三角形.∵在Rt△ABC中,∠B=90°,∠A=60°,AB=3,∴∠C=30°,AC=6,由折叠可得,AM =DM ,又∵DM =12CM , ∴AM =12CM =13AC =2; ②如图,当∠CMD =90°时,△CDM 是直角三角形.∵在Rt △ABC 中,∠B =90°,∠A =60°,AB =3,∴∠C =30°,AC =6,∴CD =2MD ,在直角△CDM 中,根据勾股定理得:CM 2=CD 2−MD 2,∴CM =√3MD ,又∵根据折叠可得AM =MD ,∴CM =√3AM ,所以AM +√3AM =6,解得AM =3√3−3.故答案为2或3√3−3.17.【答案】3【解析】解:图中有3对全等三角形,是△ABC≌△ADC ,△ABO≌△ADO ,△CBO≌△CDO ,理由是:∵在△ABC 和△ADC 中{AB =AD AC =AC BC =DC∴△ABC≌△ADC(SSS),∴∠BAO =∠DAO ,∠BCO =∠DCO ,在△BAO 和△DAO 中{AB =AD ∠BAO =∠DAO AO =AO∴△ABO≌△ADO(SAS),同理△CBO≌△CDO,故答案为:3.根据SSS能推出△ABC≌△ADC,根据全等得出∠BAO=∠DAO,∠BCO=∠DCO,根据SAS推出△ABO≌△ADO、△CBO≌△CDO即可.本题考查了全等三角形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.18.【答案】(1)AC=DB;(2)∠5=∠6;(3)∠ABC=∠DCB(答案不唯一).【解析】【分析】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.本题要判定△ABC≌△DCB,已知∠3=∠4,和一个公共边,根据SAS,AAS,ASA可添加一对边,一组角.【解答】解:已知一组角相等,和一个公共边,则以SAS为依据,则需要再加一对边,即AC=DB以“AAS”为依据,则需添加一组角,即∠5=∠6以“ASA”为依据,则需添加一组角,即∠ABC=∠DCB.故分别填AC=DB,∠5=∠6,∠1=∠2.故答案为:(1)AC=DB;(2)∠5=∠6;(3)∠ABC=∠DCB.19.【答案】解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∠B=∠D,∴∠BAD=∠CAE=1×(∠BAE−∠DAC)=20°,2∵∠B=∠D,∠BGA=∠DGF,∴∠DFB=∠BAD=20°.【解析】本题考查的是全等三角形的性质,三角形内角和及对顶角,掌握全等三角形的对应角相等是解题的关键.根据全等三角形的性质得到∠BAC=∠DAE,∠B=∠D,求出∠BAD=∠CAE=20°,根据对顶角相等计算即可.20.【答案】解:∵CD是AB边上高,∴∠BDF=90°,∠ABE=∠BFC−∠BDF=113°−90°=23°,∵BE为角平分线,∴∠CBF=∠ABE=23°,∴∠BCF=180°−∠BFC−∠CBF=180°−113°−23°=44°.【解析】本题考查了三角形的高线角平分线的概念,三角形内角和定理以及三角形的外角的性质,掌握三角形内角和等于180°是解题的关键.根据三角形的外角的性质求出∠ABE,由角平分线的定义求出∠CBF的度数,运用三角形内角和定理即可求出∠BCF的度数.21.【答案】证明:连接BC.在△ABC和△DCB中,{AB=DC AC=DB BC=CB,∴△ABC≌△DCB(SSS),∴∠A=∠D,在△AOB和△DOC中,∴△AOB≌△DOC(AAS).∴∠ABO=∠DCO.【解析】本题考查了全等三角形的判定与性质,注意:全等三角形的判定有SAS,ASA,AAS,SSS,HL,全等三角形的对应边相等.连接BC,先证明△ABC≌△DCB,然后证明△AOB≌△DOC,即可证得.22.【答案】证明:∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,AD⊥BC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,∴∠CAD=∠CBE,在△ADC和△BDF中,{∠CAD=∠CBEAD=BD∠ADC=∠BDF=90°,∴△ADC≌△BDF(ASA),∴BF=AC,∵AB=BC,BE⊥AC,∴AC=2AE,∴BF=2AE.【解析】此题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形三线合一的性质.先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等,根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=2AE,从而得证.23.【答案】解:(1)当P点在BC上时,BP=t−2,则12⋅2⋅(t−2)=3,解得t=5;当P点在AD上时,AP=12−t,则12⋅2⋅(12−t)=3,解得t=9;综上所述,t的值为5或9;(2)4;6≤t≤8.【解析】解:(1)当P点在BC上时,BP=t−2,则12⋅2⋅(t−2)=3,解得t=5;当P点在AD上时,AP=12−t,则12⋅2⋅(12−t)=3,解得t=9;综上所述,t的值为5或9;(2)点P在CD上时,△ABP的边AB上的高最大,△ABP的面积有最大值:12×2×4=4,此时t的范围为6≤t≤8.故答案为4,6≤t≤8.(1)讨论:当P点在BC上时,BP=t−2,根据三角形面积公式得到12⋅2⋅(t−2)=3;当P点在AD上时,则AP=12−t,根据三角形面积公式12⋅2⋅(12−t)=3,然后分别解方程即可;(2)根据三角形面积公式,点P点在CD上时△ABP的面积有最大值,然后求出P点运动到C点和D点的时间得到t 的范围.本题考查了三角形的面积:三角形的面积等于底边长与高线乘积的一半,即S△=12×底×高.24.【答案】(1)解:∵AE=AB,∴∠AEB=∠ABE=65°,∴∠EAB=50°,∵AC=AF,∴∠ACF=∠AFC=75°,∴∠CAF=30°,∵∠EAF+∠BAC=180°,∴∠EAB+2∠ABC+∠FAC=180°,∴50°+2∠BAC+30°=180°,∴∠BAC=50°;(2)证明:延长AD至H,使DH=AD,连接BH,∵EF=2AD,∴AH=EF,在△BDH和△CDA中,{BD=CD∠BDH=∠CDA DH=AD,∴△BDH≌△CDA,∴HB=AC=AF,∠BHD=∠CAD,∴AC//BH,∴∠ABH+∠BAC=180°,∵∠EAF+∠BAC=180°,∴∠EAF=∠ABH,在△ABH和△EAF中,{AE=AB∠EAF=∠ABH AF=BH,∴△ABH≌△EAF,∴∠AEF=∠ABH,∴EF=AH=2AD.【解析】本题考查三角形综合题、全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.(1)利用三角形的内角和定理求出∠EAB,∠CAF,再根据∠EAF+∠BAC=180°构建方程即可解决问题;(2)延长AD至H,使DH=AD,连接BH,想办法证明△ABH≌△EAF即可解决问题.25.【答案】(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中{∠ABD=∠CAE ∠BDA=∠AEC AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)解:成立,理由如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD,∵在△ADB和△CEA中{∠ABD=∠CAE ∠BDA=∠AEC AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)解:△DEF是等边三角形.【解析】【分析】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等边三角形的判定与性质.(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD=CE,于是DE=AE+AD=BD+CE;(2)与(1)的证明方法一样;(3)由前面的结论得到△ADB≌△CEA,则BD=AE,∠DBA=∠CAE,根据等边三角形的性质得∠ABF=∠CAF=60°,则∠DBA+∠ABF=∠CAE+∠CAF,则∠DBF=∠FAE,利用“SAS”可判断△DBF≌△EAF,所以DF=EF,∠BFD=∠AFE,于是∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,根据等边三角形的判定方法可得到△DEF为等边三角形.【解答】(1)见答案;(2)见答案;(3)△DEF是等边三角形.由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中{FB=FA∠FBD=∠FAE BD=AE,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.。
第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)
第1章三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,平行四边形ABCD中,对角线AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,若平行四边形ABCD的周长为28,则△ABE的周长为( )A.28B.24C.21D.142、如图,△ACB≌△A'C'B',∠ACB=70°,∠ACB'=100°,则∠BCA'的度数为()A.30°B.35°C.40°D.50°3、在下列四组线段中,能组成三角形的是()A.2,2,5B.3,7,10C.3,5,9D.4,5,74、如图,已知AB∥CD,∠1=125°,∠2=55°,则∠C=()A.45°B.50°C.70°D.65°5、如图,已知AB∥CD,AD∥BC,∠ABE是平角,则下列说法中正确的是()A.∠1+∠2=∠3B.∠1=∠2>∠3C.∠1+∠2<∠3D.∠1+∠2与∠3的大小没有关系6、平行四边形一边长为10 ,则它的两条对角线可以是( )A.6 ,8B.8, 12C.8, 14D.6, 147、下列命题是假命题的是()A.三角形的中线平分三角形的面积B.三角形的角平分线交点到三角形各边距离相等C.三角形的高线至少有两条在三角形内部D.三角形外心是三边垂直平分线的交点8、如图所示.在△ABC中,AC=BC,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,若AB=6 cm,则△DEB的周长为()A.12 cmB.8 cmC.6 cmD.4 cm9、如图,已知AB//CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠1=50°,则∠2的度数为( )A.50°B.60°C.65°D.70°10、如图,在△ABC中,AC⊥BC,AE为∠BAC的平分线,DE⊥AB,AB=7cm,AC=3cm,则BD等于()A.1cmB.2cmC.3cmD.4cm11、如图,在△ABC中,AB=AC,∠A=36°,BD,CE是角平分线,则图中的等腰三角形共有()A.8个B.7个C.6个D.5个12、如图,∠A=120°,且∠1=∠2=∠3和∠4=∠5=∠6,则∠BDC=()A.120°B.60°C.140°D.无法确定13、如图,在△ABC中,∠ACB=90°,∠A=26°,BC=BD,则∠ACD的度数是()A.64°B.42°C.32°D.26°14、如图,AB=CD , BC=DA , E、F是AC上的两点,且AE=CF , DE=BF ,那么图中全等三角形共()对A.4对B.3对C.2对D.1对15、如图,正方形ABCD中,点E是AD边的中点,BD,CE交于点H,BE、AH交于点G,则下列结论:①∠ABE=∠DCE;②AG⊥BE;③S△BHE=S△CHD;④∠AHB=∠EHD。
浙教版八年级数学上册第一章三角形的初步知识单元练习(附答案)
浙教版八年级数学上册第一章三角形的初步知识单元练习(附答案)一、单选题(每题3分,共30分)(共10题;共30分)1.已知三角形的三边分别为2、a、4,那么a的取值范围是A.1<a<5B.2<a<6C.3<a<7D.4<a<62.下列命题中,真命题是()A.若AB̂=2 CD̂,则AB=2CDB.平分弦的直径垂直于弦,且平分弦所对的两条弧C.直径所对的圆周角是直角D.同一条弧所对的圆心角等于它所对圆周角的一半3.下列语句是命题的是()⑴两点之间,线段最短;(2)如果两个角的和是90度,那么这两个角互余. (3)请画出两条互相平行的直线;(4)过直线外一点作已知直线的垂线;A.(1)(2)B.(3)(4)C.(2)(3)D.(1)(4)4.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为()A.3B.4C.5D.65.已知图中的两个三角形全等,则⑴α等于()A.72°B.60°C.58°D.48°6.在RtΔABC中,∠C=90°,∠BAC的角平分线AD交BC于点D,CD=2,则点D到AB的距离是()A.1B.2C.3 D.47.如图,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F.请你添加一个适当的条件,使△AEF⑴ △CEB.下列添加的条件错误的是()A.EF=EB B.EA=EC C.AF=CB D.∠AFE=∠B8.三角形的两边长分别为3和5,则周长C的范围是()A.6<C<15B.6<C<16C.11<C<13D.10<C<169.如图,在ΔABC中,AC=4,BC边上的垂直平分线DE分别交BC、AB于点D、E,若ΔAEC的周长是11,则AB=()A.28B.18C.10D.710.如图,在⑴ABC中,⑴B=30°,BC的垂直平分线交AB于E,垂足为D,如果CE=12,则ED的长为()A.3B.4C.5D.6二、解答题(共8题;共66分)11.如图,D在AB上,E在AC上,AB=AC,⑴B=⑴C.求证:AD=AE.12.如图,点C,F在线段BE上,BF=EC,⑴1=⑴2,请你添加一个条件,使⑴ABC⑴⑴DEF,并加以证明.(不再添加辅助线和字母)13.如图,点A、C、D、B在同一条直线上,且AC=BD,⑴A=⑴B,⑴E=⑴F.求证:⑴ADE⑴⑴BCF;14.如图,在矩形ABCD中,E是BC边上的点,AE=BC,DF⑴AE,垂足为F,连结DE.(1)求证:⑴ABE⑴⑴DFA;(2)若AD=10,AB=6,求DE的长.15.如图,已知AB⑴CD,CN是⑴BCE的平分线.(1)若CM平分⑴BCD,求⑴MCN的度数;(2)若CM在⑴BCD的内部,且CM⑴CN于C,求证:CM平分⑴BCD;(3)在(2)的条件下,连结BM、BN,且BM⑴BN,⑴MBN绕着B点旋转,⑴BMC+⑴BNC是否发生变化?若不变,求其值;若变化,求其变化范围.16.如图,在等腰直角三角形ABC中,⑴BAC=90°,已知A(1,0),B(0,3),M为边BC的中点。
第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)
第1章三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、下列各组线段,能组成三角形的是()A.2cm 3cm 5cmB.5cm 6cm 10cmC.2cm 2cm 5cmD.3cm 4cm 8cm2、如下图,延长△ABC的边BA到E,D是AC上任意一点,则下列不等关系中一定成立的是( )A.∠ADB>∠BADB.AB+AD>BCC.∠EAD>∠DBCD.∠ABD>∠C3、在△ABC中,D为BC中点,DE⊥AB于E,DF⊥AC于F,已知DE=DF,则下列结论不一定成立的是()A.AD是等腰△ABC底边上的中线B.AB=BC=CAC.AD平分∠BAC D.AD是△ABC底边上的高线4、直线的图象与两坐标轴围成的三角形面积为2,且随的增大而减小,则的值为()A. B. C. D.5、如图,矩形ABCD中,AB=5,AD=6.E是BC边上一动点,F是CD边的中点.将△ABE沿AE折叠到△AB'E,则B'F的最小值为().A.1B.1.5C.2D.2.56、下列各组数据中,能构成三角形的是()A.1cm、2cm、3cmB.2cm、3cm、4cmC.4cm、9cm、4cm D.2cm、1cm、4cm7、下面是小强用三根火柴组成的图形,其中符合三角形概念的是()A. B. C. D.8、下列长度的三根小木棒能构成三角形的是()A.1cm,2 cm,3 cmB.2 cm,4 cm,6 cmC.3 cm,4 cm,8cm D.6 cm,8 cm,10 cm9、在中,,点,分别是边,的中点,点在内,连接,,.以下图形符合上述描述的是()A. B. C.D.10、下列线段,不能做成直角三角形的是()A. cm,cm,cmB.3cm,4cm,5cmC.7cm,24cm,25cm D.10cm,24cm,26cm11、如图,△ABC与△A1B1C1关于点O成中心对称,下列结论:①∠BAC=∠B1A1C1;②AC=A1C1;③OA=OA1;④△ABC与△A1B1C1的面积相等,其中正确的有( )A.1个B.2个C.3个D.4个12、如图,为了估计一池塘岸边两点之间的距离,小颖同学在池塘一侧选取了一点P,测得,那么点A与点B之间的距离不可能是()A. B. C. D.13、如图,为测量B点到河对面的目标A之间的距离,他们在B点同侧选择了一点C,测得∠ABC=70°,∠ACB=40°,然后在M处立了标杆,使∠CBM=70°,∠BCM=40°,那么需要测量________才能测得A,B之间的距离( )A.ABB.ACC.BMD.CM14、如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠NB.AM∥CNC.AC=BDD.AM=CN15、等腰三角形的两边长为3和6,则这个三角形的周长为()A.9B.12C.15D.12或15二、填空题(共10题,共计30分)16、以长为8cm、6cm、10cm、4cm的四条线段中的三条线段为边,可以画出三角形的个数是________.17、的三个内角的度数之比是,如果按角分类,那么是________三角形.18、直线l1∥l2∥l3,正方形ABCD的三个顶点A,B,C分别在l1、l2, l3上,l1、l2之间的距离是4,l2, l3之间的距离是5,则正方形ABCD的面积是________.19、如图,在中,,,的平分线与的垂直平分线交于点,将沿(在上,在上)折叠,点与点恰好重合,则为________20、如图为6个边长相等的正方形的组合图形,则∠1+∠3=________ .21、如图,AB=AC=4cm,DB=DC,若∠ABC为60度,则BE为________.22、如图,在边长为4的正方形ABCD中,点E是边CD的中点,AE的垂直平分线交边BC 于点G,交边AE于点F,连接DF,EG,以下结论:①DF= ,②DF∥EG,③△EFG≌△ECG,④BG= ,正确的有:________(填写序号)23、如图,在△ABC中,D是BC边上的中点,∠BDE=∠CDF,请你添加一个条件,使DE=DF 成立.你添加的条件是________.(不再添加辅助线和字母)24、如图,的两条中线、相交于点G,如果,那么________.25、如图,在△ABC中,AM是中线,AN是高。
第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)
第1章三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,直线a∥b,直线l与a、b分别相交于A,B两点,过点A作直线l的垂线交直线b于点C,若∠1=58°,则∠2的度数为()A.58°B.42°C.32°D.28°2、如图,已知在△ABC中,AB=AC,给出下列条件,不能使BD=CE的是( )A.BD和CE分别为AC和AB边上的中线B.BD和CE分别为∠ABC和∠ACB 的平分线C.BD和CE分别为AC和AB边上的高D.∠ABD=∠BCE3、如图,点、、、在同一条直线上,且,添加下列条件后,仍不能判定与全等的是().A. ,B. ,C., D. ,4、如图,在中,,的外角,则的度数是()A.30°B.45°C.60°D.75°5、如图所示,是由正八边形与正方形构成的组合图案,图中阴影部分为植草区域,若正八边形与其内部小正方形的边长都为a,则植草区域的面积为(图中阴影部分的面积)( )A.2 a2B.3 a2C.4 a2D.5 a26、如图,l∥m,∠1=115°,∠2=95°,则∠3=()A.120°B.130°C.140°D.150°7、如图,直线l1∥l2,且分别与△ABC的两边AB、AC相交,若∠A=45°,∠1=65°,则∠2的度数为()A.45°B.65°C.70°D.110°8、如图,为等边三角形,是边上一点,在上取一点,使,在边上取一点,使,则的度数为()A. B. C. D.9、如图,OA=OB,OC=OD,∠O=50°,∠D=30°,则∠AEC等于()A.70°B.50°C.45°D.60°10、在△ABC中,已知∠A+∠B=∠C,则△ABC是( )A.直角三角形B.锐角三角形C.钝角三角形D.无法确定11、已知三角形两边的长分别是5和11,则此三角形第三边的长可能是()A.5B.15C.3D.1612、Rt△ABC中,∠B=90°∠A=30°.以C为圆心,小于BC长为半径画弧与AC、BC边交于点F、E.分别以E、F为圆心,大于EF为半径画弧,两弧交于点N,若BC=,则点M到AC的距离是()A.1B.C.D.313、如图,点A在双曲线上,,过A作,垂足为C,OA的垂直平分线交OC于B,且,则的周长为()A.6.5B.5.5C.5D.414、等腰三角形的两边长分别为和,则它的周长为()A. B. C. D. 或15、数学中有一些命题的特征是:原命题是真命题,但它的逆命题却是假命题.例如:如果a>2,那么a2>4.下列命题中,具有以上特征的命题是()A.两直线平行,同位角相等B.如果| a|=1,那么a=1C.全等三角形的对应角相等D.如果x>y,那么mx>my二、填空题(共10题,共计30分)16、如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=________ °17、如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G=________.18、如图,中,,D在BC上,E为AB中点,AD、CE相交于F,若,则等于________19、如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为________.20、下面是“以已知线段为直径作圆”的尺规作图过程.已知:如图1,线段AB.求作:以AB为直径的⊙O.作法:如图2,(i)分别以A,B为圆心,大于AB的长为半径作弧,两弧相交于点C,D;(ii)作直线CD交AB于点O;(iii)以O为圆心,OA长为半径作圆.则⊙O即为所求作的.请回答:该作图的依据是________.21、下列命题:①直线a、b、c在同一平面内,如果a⊥b,b∥c,那么a⊥c.②如果两个角的两边分别平行,那么这两个角相等.③如果a>b,那么ac2>bc2.④如果a<b<0,那么0<ab<a2⑤0.01是0.1的算术平方根.其中真命题是________.(把你认为所有真命题的序号都填上)22、如图,已知 AB∥CD,AE 平分∠BAC,CE 平分∠ACD,则∠E=________.23、如图,在矩形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于点F,取EF的中点G,连接CG,BG,BD,DG,下列结论:①BE=CD;②∠DGF=135°;③∠ABG+∠ADG=180°;④若,则.其中正确的结论是________.(填写所有正确结论的序号)24、一个零件的形状如图所示,按规定∠A应等于90°,∠B、∠C应分别是21°和32°.当检验工人量得的∠BDC的度数不等于________度时,就可判定此零件不合格?25、如图,△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M和N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为________.三、解答题(共5题,共计25分)26、如图,已知△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠B=37°,∠C=67°,求∠DAE的度数.27、如图,在△ABC中,已知AD是△ABC的角平分线,DE是△ADC的高,∠B=60°,∠C =40°,求∠ADB和∠ADE的度数.28、某公园有海盗船、摩天轮、碰碰车三个娱乐项目,现要在公园内建一个售票中心,使得三个娱乐项目所处位置到售票中心的距离相等,请在图中确定售票中心的位置.29、如图,点O是直线AB上一点, OC⊥OE,OF平分∠AOE,∠COF=25°,求∠BOE的度数.30、如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,求∠B的度数.参考答案一、单选题(共15题,共计45分)1、C2、D3、B4、A5、A6、D7、C8、C9、A10、A11、B12、A13、B14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。
三角形的初步认识 浙教版八年级数学上册单元检测试题(含答案)
第1章三角形的初步认识单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 下列说法错误的是()A.在同一个三角形中大边所对的角为大角B.角内部一点到角两边的距离相等,那么这个点在角的平分线上C.在同一个三角形中等边所对的角为等角D.在直角三角形中,直角所对的边为直角边2. 三角形的三条高所在的直线相交于一点,这个交点的位置在()A.三角形内B.三角形外C.三角形边上D.要根据三角形的形状才能定3. 如图,用尺规作出∠AOB的角平分线OE,在作角平分线过程中,用到的三角形全等的判定方法是()A.ASAB.SSSC.SASD.AAS4. 能将一个三角形分成面积相等的两个三角形的一条线段是( )A.三角形的一条中线B.角平分线C.高线D.三角形的角平分线5. 如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为( )厘米.A.16B.18C.26D.286. 如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=10,DE=3,则△BCE的面积等于()A.9B.13C.15D.307. 长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种8. 下列作图语句正确的是()A.过点P作线段AB的中垂线B.在线段AB的延长线上取一点C,使AB=BCC.过直线a,直线b外一点P作直线MN使MN // a // bD.过点P作直线AB的垂线9. 已知:如图△ABC中,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≅△EBC;②∠BCE+∠BCD= 180∘;③AD=AE=EC;④BA+BC=2BF.其中正确的是( )A.①②③B.①③④C.①②④D.①②③④AC的长为半径作弧,两弧相交10. 如图,在△ABC中,分别以点A和点C为圆心,以大于12于M、N两点;作直线MN分别交BC、AC于点D、E.若AE=6cm,△ABD的周长为26m,则△ABC的周长为()A.32cmB.38cmC.44cmD.50cm二、填空题(本题共计7 小题,每题3 分,共计21分,)11. 命题“全等三角形的对应角相等“的逆命题是一个________命题(填“真“或“假“).>1,则a>b.”是错误的,这组值可以是a=________,12. 用一组a,b的值说明命题"若abb=________.13. 如图是3×3网格图,每个小正方形的边长为1,请在网格图上找出一点C,补全格点三角形ABC(即三角形的三个顶点A、B、C均在小正方形的顶点上),使△ABC的每边长都是无理数(只要画出一个符合条件的三角形),并直接写出各边的长度和面积.AB=________;BC=________;CA=________;S△ABC=________.14. 如图,笔直的公路旁有A、B两车站,相距15km,C、D为同旁的两个村庄,DA⊥AB 于A,CB⊥AB于B,AD=10cm,CB=5cm,要在这段公路AB旁建一个公路管理站E,使C、D两村到公路管理站的距离相等,那么公路管理站E应建在距A站________km处.15. 三角形的高、中线和角的平分线不一定在三角形内部的线段是________.16. 现有一只鸡、一条狗、一筐菜和一条小船,一个人自已划船把鸡、狗、菜送到河对岸,要求一次只能带鸡、狗、菜中的一样,但是人不在时,鸡会吃菜,狗会吃鸡,若要完好地把鸡、狗、菜都送到对岸,至少需要划船往返________趟.17. 如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,=________cm2.则S阴影三、解答题(本题共计7 小题,共计69分,)18. 把下列各图分成若干个全等图形,请在原图上用虚线标出来.19. 已知:如图,B、E、F、C四点在同一条直线上,AB=DC,BE=CF,∠B=∠C.求证:AF=DE.20. 如图,△ABC中,CD是∠ACB的角平分线,CE是AB边上的高,若∠A=30∘,∠B=70∘,求∠DCE的度数.21. 如图,在△BCD中,BC=4,CD=2,线段BC绕点C沿顺时针方向旋转60∘到AC的位置,线段CD绕点C沿顺时针方向旋转60∘到CE的位置,连结AB,DE,AE,AE与BD交于点M.(1)求证:∠AMB=60∘;(2)若∠CDB=30∘,求BD的长.22. 如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一条直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE // AF.(1)请你用其中两个关系式作为条件,另一个作为结论,写出一个你认为正确的命题;(用序号写出命题的书写形式,如:如果⊗⊗,那么⊗)(2)说明你写的一个命题的正确性.23. 如图,在△ABC中,∠C=90∘,BE是△ABC的角平分线,ED⊥AB,垂足为D.(1)已知∠A=30∘,求∠BEC的度数.(2)已知CE=2,AB=4√3,求△ABE的面积.24. 某校七年级学生到野外活动,为测量一池塘两端A,B的距离,甲、乙、丙三位同学分别设计出如下几种方案:甲:如图①,先在平地取一个可直接到达A,B的点C,再连接AC,BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的长即为A,B的距离.乙:如图②,先过点B作AB的垂线BF,再在BF上取C,D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于点E,则测出DE的长即为A,B的距离.丙:如图③,过点B作BD⊥AB,再由点D观测,在AB的延长线上取一点C,使∠BDC=∠BDA,这时只要测出BC的长即为A,B的距离.(1)以上三位同学所设计的方案,可行的有________;(2)请你选择一可行的方案,说说它可行的理由.参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】D【解答】解:在同一个三角形中,等边对等角,则大边对大角,所以A、C正确;由角平分线的判定可知到角两边距离相等的点,在角的平分线上,所以B正确;在直角三角形中,直角所对的边是斜边,所以D不正确;故选D.2.【答案】D【解答】解:A、直角三角形的高的交点即直角顶点,不在三角形内,错误;B、直角三角形的高的交点即直角顶点,不在三角形外,错误;C、锐角三角形的高的交点在三角形的内部,不在三角形边上,错误;D、锐角三角形的高的交点在三角形的内部,直角三角形的高的交点即直角顶点,钝角三角形的高所在的直线的交点在三角形的外部.即三角形的三条高所在的直线相交于一点,这个交点的位置要根据三角形的形状才能定,正确.故选D.3.【答案】B【解答】解:在△OCE和△ODE中,{CO=DO EO=EO CE=DE,∴△OCE≅△ODE(SSS).故选:B.4.【答案】A【解答】解:∵三角形的中线把三角形分成的两个三角形,底边相等,高是同一条高,∴分成的两三角形的面积相等.故选A.5.【答案】B【解答】解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=10,∴△EBC的周长=BC+BE+CE=10厘米+8厘米=18厘米.故选B.6.【答案】C【解答】解:过E作EF⊥BC于F,∵CD是AB边上的高线,BE平分∠ABC,∴EF=DE=3,∵BC=10,×BC×EF=15,∴△BCE的面积为12故选C.7.【答案】C【解答】解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选C.8.【答案】D【解答】解:A、只有过线段中点的垂线才叫中垂线,P是任意一点,错误;B、应为在线段AB的延长线上取一点C,使BC=AB,错误;C、a和b的位置不一定是平行,错误.D、正确.故选D.9.【答案】D【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,{BD=BC,∠ABD=∠EBC,BA=BE,∴△ABD≅△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA.∵△ABD≅△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180∘,②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC.∵△ABD≅△EBC,∴AD=EC,∴AD=AE=EC,③正确;④过E作EG⊥BC于G点,∵ E 是BD 上的点,∴ EF =EG .∵ 在Rt △BEG 和Rt △BEF 中,{BE =BE ,EF =EG ,∴ Rt △BEG ≅Rt △BEF(HL),∴ BG =BF .∵ 在Rt △CEG 和Rt △AEF 中,{EF =EG ,AE =CE ,∴ Rt △CEG ≅Rt △AEF(HL),∴ AF =CG ,∴ BA +BC =BF +FA +BG −CG =BF +BG =2BF ,④正确.综上,正确的是①②③④.故选D .10.【答案】B【解答】∵ DE 垂直平分线段AC ,∴ DA =DC ,AE +EC =12(cm),∵ AB +AD +BD =26(cm),∴ AB +BD +DC =26(cm ,∴ △ABC 的周长=AB +BD +BC +AC =26+12=38(cm),二、 填空题 (本题共计 7 小题 ,每题 3 分 ,共计21分 )11.【答案】假【解答】解:命题“全等三角形的对应角相等“的逆命题是对应角相等的两个三角形全等,此逆命题为假命题.故答案为:假.12.【答案】−2(答案不唯一),−1(答案不唯一)【解答】解:当a=−2,b=−1时,ab =−2−1=2>1,但此时a<b,故“若ab>1,则a>b.”是错误的.故答案为:−2;−1(答案不唯一).13.【答案】2√2,√2,√10,2【解答】解:AB=√8;BC1=√2;C1A=√10;S△ABC1=2.14.【答案】5【解答】解:设AE=xkm,由勾股定理,得102+x2=52+(15−x)2,x=5.故:E点应建在距A站5千米处.15.【答案】三角形的高【解答】解:因为在三角形中,它的中线、角平分线一定在三角形的内部,而钝角三角形的高在三角形的外部.故答案为:三角形的高16.【答案】4【解答】解:第一次带鸡过河,剩下狗和菜;第二次带白菜过河,剩下狗,但回来的时候要把鸡再带回来;第三次带狗过河,剩下鸡;最后带狗过河.一共要带四次才可以完成.故答案为:4.17.【答案】1【解答】解:∵点D时BC的中点,∴△ABD的面积是△ABC的面积的一半,△ADC的面积是△ABC的面积的一半. ∵点E是AD的中点,∴△BDE的面积是△ABD的面积的一半,△CDE的面积是△ACD的面积的一半.则△BCE的面积是△ABC的面积的一半,即为2cm2.∵点F是CE的中点,∴阴影部分的面积是△BCE的面积的一半,即为1cm2.故答案为:1.三、解答题(本题共计7 小题,每题10 分,共计70分)18.【答案】【解答】19.【答案】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中{AB=DC∠B=∠CBF=CE ∴△ABF≅△DCE(SAS),∴AF=DE.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中{AB=DC∠B=∠CBF=CE ∴△ABF≅△DCE(SAS),∴AF=DE.20.【答案】解:∵∠A=30∘,∠B=70∘,∴∠ACB=80∘∵CD平分∠ACB,∴∠DCB=12∠ACB=40∘∵CE是AB边上的高∴∠ECB=90∘−∠B=90∘−70∘=20∘∴∠DCE=40∘−20∘=20∘.【解答】解:∵∠A=30∘,∠B=70∘,∴∠ACB=80∘∵CD平分∠ACB,∠ACB=40∘∴∠DCB=12∵CE是AB边上的高∴∠ECB=90∘−∠B=90∘−70∘=20∘∴∠DCE=40∘−20∘=20∘.21.【答案】【解答】此题暂无解答22.【答案】解:(1)如果①,③,那么②;如果②,③,那么①;(2)对于命题“如果①,③,那么②”证明如下:∵BE // AF,∴∠AFD=∠BEC.∵AD=BC,∠A=∠B,∴△ADF≅△BCE,∴DF=CE.∴DF−EF=CE−EF,即DE=CF;对于命题“如果②,③,那么①”证明如下:∵BE // AF,∴∠AFD=∠BEC.∵DE=CF,∴DE+EF=CF+EF,即DF=CE.∵∠A=∠B,∴△ADF≅△BCE,∴AD=BC.【解答】解:(1)如果①,③,那么②;如果②,③,那么①;(2)对于命题“如果①,③,那么②”证明如下:∵BE // AF,∴∠AFD=∠BEC.∵AD=BC,∠A=∠B,∴△ADF≅△BCE,∴DF=CE.∴DF−EF=CE−EF,即DE=CF;对于命题“如果②,③,那么①”证明如下:∵BE // AF,∴∠AFD=∠BEC.∵DE=CF,∴DE+EF=CF+EF,即DF=CE.∵∠A=∠B,∴△ADF≅△BCE,∴AD=BC.23.【答案】解:(1)由题可得,∠CBA=90∘−∠A=60∘.∵ BE平分∠CBA,∴∠CBE=∠ABE=30∘,∴∠BEC=90∘−∠CBE=60∘.(2)∵ BE平分∠CBA,∠C=90∘,ED⊥AB,∴ DE=CE=2,∴S△ABE=12⋅AB⋅DE=12×4√3×2=4√3.【解答】解:(1)由题可得,∠CBA=90∘−∠A=60∘.∵ BE平分∠CBA,∴∠CBE=∠ABE=30∘,∴∠BEC=90∘−∠CBE=60∘.(2)∵ BE平分∠CBA,∠C=90∘,ED⊥AB,∴ DE=CE=2,∴S△ABE=12⋅AB⋅DE=12×4√3×2=4√3.24.【答案】解:(1)甲、乙、丙;(2)答案不唯一.选甲:在△ABC 和△DEC 中{AC =DC∠ACB =∠ECD EC =BC,∴ △ABC ≅△DEC(SAS), ∴ AB =ED ;选乙:∵ AB ⊥BD ,DE ⊥BD , ∴ ∠B =∠CDE =90∘,在△ABC 和△EDC 中{∠ABC =∠EDCCB =CD ∠ACB =∠ECD,∴ △ABC ≅△EDC(ASA), ∴ AB =ED ;选丙:在△ABD 和△CBD 中{∠ABD =∠CBDBD =BD ∠ADB =∠CDB,∴ △ABD ≅△CBD(ASA), ∴ AB =BC .【解答】解:(1)甲、乙、丙;(2)答案不唯一.选甲:在△ABC 和△DEC 中{AC =DC∠ACB =∠ECD EC =BC,∴ △ABC ≅△DEC(SAS), ∴ AB =ED ;选乙:∵ AB ⊥BD ,DE ⊥BD , ∴ ∠B =∠CDE =90∘,在△ABC 和△EDC 中{∠ABC =∠EDCCB =CD ∠ACB =∠ECD,∴ △ABC ≅△EDC(ASA), ∴ AB =ED ;选丙:在△ABD 和△CBD 中{∠ABD =∠CBDBD =BD ∠ADB =∠CDB,∴△ABD≅△CBD(ASA),∴AB=BC.。
【浙教版】八年级数学上:第一章-三角形的初步认识单元测试题(含答案)
第一章三角形的初步认识单元测试题一、单选题(共10题;共30分)1、下面命题正确的是()A、一组对边平行,另一组对边相等的四边形是平行四边形。
B、等腰梯形的两个角一定相等。
C、对角线互相垂直的四边形是菱形.D、三角形三条边上的中线相交于一点,并且这一点到三个顶点的距离相等.2、用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的根据是( )A、SASB、ASAC、AASD、SSS3、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A、60°B、120°C、60°或150°D、60°或120°4、如图,四边形ABCD是正方形,延长BC至点E,使CE=CA,连接AE交CD于点F,则∠AFC的度数是()A、150°B、125°C、135°D、112.5°5、如图所示,一位同学书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )。
A、SSSB、SASC、AASD、ASA6、以下列各组线段长为边能组成三角形的是()A、1cm,2cm,4cmB、8cm,6cm,4cmC、12cm,5cm,6cmD、2cm,3cm,6cm7、下列命题中,真命题的是()A、如果一个四边形两条对角线相等,那么这个四边形是矩形B、如果一个平行四边形两条对角线相互垂直,那么这个四边形是菱形C、如果一个四边形两条对角线平分所在的角,那么这个四边形是菱形D、如果一个四边形两条对角线相互垂直平分,那么这个四边形是矩形8、下列命题中,真命题的个数是( )①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等.A、4B、3C、2D、19、若△ABC≌△DEF,△ABC的周长为100cm,DE=30cm,DF=25cm,那么BC长()A、55cmB、45cmC、30cmD、25cm10、在△ABC中,∠B的平分线与∠C的平分线相交于O,且∠BOC=130°,则∠A=()A、50°B、60°C、80°D、100°二、填空题(共8题;共24分)11、用直尺和圆规作一个角等于已知角的示意图如图所示,则说明△DOC≌△D'O'C’的依据是________.12、如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,则△ABD与△ACD的周长之差为________cm.13、△ABC中,∠BAC:∠ACB:∠ABC=4:3:2,且△ABC≌△DEF,则∠DEF=________ 度.14、①三角形的三条角平分线交于一点,这点到三条边的距离相等;②三角形的三条中线交于一点;③三角形的三条高线所在的直线交于一点;④三角形的三条边的垂直平分线交于一点,这点到三个顶点的距离相等.以上说法中正确的是________.15、如图,BF、CF是△ABC的两个外角的平分线,若∠A=50°,则∠BFC=________度.16、如图,点D,B,C点在同一条直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=________度.17、如图所示,BE⊥AC于点D,且AB=CB,BD=ED,若∠ABC=64°,则∠E=________.18、如图,在△ABC中,将∠C沿DE折叠,使顶点C落在△ABC内C′处,若∠A=75°,∠B=65°,∠1=40°,则∠2的度数为________.三、解答题(共5题;共36分)19、如图,已知E是∠AOB的平分线上的一点,EC⊥OA,ED⊥OB,垂足分别是C,D.求证:OE垂直平分CD.20、如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.∠1=∠2,∠3=105°,求∠ACB 的度数.21、如图,已知DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC和∠BDC的度数.22、如图所示,已知∠ACB和∠ADB都是直角,且AC=AD,P是AB上任意一点.求证:CP=DP.23、如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA.四、综合题(共1题;共10分)24、如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.答案解析部分一、单选题1、【答案】D【考点】线段垂直平分线的性质,菱形的判定,等腰梯形的性质,命题与定理【解析】【分析】此题需要根据平行四边形的判定、等腰梯形的性质、菱形、三角形垂直平分线的性质四个知识点,分别对四个结论进行判断,然后得出正确的结果.【解答】A、一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,故本选项错误;B、等腰梯形的两个角不一定相等,还可能互补,故本选项错误;C、对角线互相垂直的平行四边形是菱形,故本选项错误;D、三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等,故本选项正确;故选D.【点评】本题考查了平行四边形的判定、等腰梯形的性质、菱形、三角形垂直平分线的性质,考查的知识点较多,但难度不大,注意细心判断各个选项.2、【答案】D【考点】全等三角形的判定与性质【解析】【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,得到三角形全等,由全等得到角相等,是用的全等的性质,全等三角形的对应角相等.【解答】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D'(SSS),则△COD≌△C’O'D',即∠A'O'B’=∠AOB(全等三角形的对应角相等).故选D.【点评】本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.3、【答案】D【考点】三角形内角和定理,等腰三角形的性质【解析】【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分另两种情况进行讨论。
第1章 三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)
第1章三角形的初步知识数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=()A.30°B.40°C.50°D.60°2、如图,是半圆,连接AB,点O为AB的中点,点C、D在上,连接AD、CO、BC、BD、OD.若∠COD=62°,且AD∥OC,则∠ABD的大小是()A.26°B.28°C.30°D.32°3、点G为△ABC的重心(△ABC三条中线的交点),以点G为圆心作⊙G与边AB,AC相切,与边BC相交于点H,K,若AB=4,BC=6,则HK的长为()A. B. C. D.4、三角形的两边长分别为3和6,第三边长是方程x2-6x+8=0的根,则这个三角形的周长是()A.11B.13C.11或13D.11和135、如图,△ABC中,点D为BC上一点,且AB=AC=CD,则图中∠1和∠2的关系是()A.∠2=2∠1B.∠1+2∠2=90°C.2∠1+3∠2=180°D.3∠1+2∠2=180°6、如图所示,在RtΔACB中,∠C=90°,AD平分∠BAC,若BC=16,BD=10,则点D到AB的距离是()A.9B.8C.7D.67、如图,∠ABD=∠ABC,补充一个条件,使得,则下列选项错误的是()A.∠D=∠CB.∠DAB=∠CABC.BD=BCD.AD=AC8、如图,直线l∥m,等边△ABC的顶点B在直线m上,∠1=20°,则∠2的度数为()A.60°B.45°C.40°D.30°9、在△ABC中,∠A=∠B-∠C,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定10、如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.8B.9C.10D.1111、如下图所示,D为BC上一点,且AB=AC=BD,则图中∠1与∠2的关系是()A.∠1=2∠2B.∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°12、如图,在矩形ABCD中,点O为对角线AC、BD的交点,点E为BC上一点,连接EO,并延长交AD于点F,则图中全等三角形共有()A.5对B.6对C.8对D.10对13、若三角形三个外角的比为3:4:5,则这个三角形是()A.锐角三角形B.直角三角形C.等腰三角形D.钝角三角形14、如图,△ABC中,∠C=70 ,若沿图中虚线截去∠C,则∠1+∠2=()A.360B.250C.180D.14015、在边长为1的小正方形组成的网格中,有如图所示的A,B两点,在格点上任意放置点C,恰好能使得△ABC的面积为1的概率为()A. B. C. D.二、填空题(共10题,共计30分)16、“同位角相等”的逆命题是________17、已知在平面直角坐标系中,点O为坐标原点,点P的坐标为(-2,2),射线PA与x轴正半轴交于点A,射线PB与y轴负半轴交于点B,且线段OA的长度大于线段OB,同时始终满足∠APB=45°,则AOB的面积为________.18、如图,在四边形ABCD中,∠B=∠C= ,AB=BC=2,CD=1,F1是BC的中点,连接AF1, DF1,得到△AF1D;点F2是CF1的中点,连接AF2, DF2,得到△AF2D;点F3是CF2的中点,连接AF3, DF3,得到△AF3D;....;按照此规律继续进行下去,则△AF n D 的面积为________.(用含正整数n的式子表示)19、在四边形ABCD中,∠C=90°,DC=3,BC=4,AD=12,AB=13,则四边形ABCD的面积是________.20、如图,D为等边△ABC中边BC的中点,在边DA的延长线上取一点E,以CE为边、在CE的左下方作等边△CEF,连结AF若AB=4, AF= ,则CF的值为________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版八年级上第一章三角形的初步认识单元测试题(有答案)(数学)第一章三角形的初步认识单元测试题一、单选题(共10题;共30分)1、下面命题正确的是()A、一组对边平行,另一组对边相等的四边形是平行四边形。
B、等腰梯形的两个角一定相等。
C、对角线互相垂直的四边形是菱形。
D、三角形三条边上的中线相交于一点,并且这一点到三个顶点的距离相等.2、用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的根据是()A、SASB、ASAC、AASD、SSS3、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A、60°B、120°C、60°或150°D、60°或120°4、如图,四边形ABCD是正方形,延长BC至点E,使CE=CA,连接AE交CD于点F,则∠AFC的度数是()A、150°B、125°C、135°D、112.5°5、如图所示,一位同学书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是().A、SSSB、SASC、AASD、ASA6、以下列各组线段长为边能组成三角形的是()A、1cm,2cm,4cmB、8cm,6cm,4cmC、12cm,5cm,6cmD、2cm,3cm,6cm7、下列命题中,真命题的是()A、如果一个四边形两条对角线相等,那么这个四边形是矩形B、如果一个平行四边形两条对角线相互垂直,那么这个四边形是菱形C、如果一个四边形两条对角线平分所在的角,那么这个四边形是菱形D、如果一个四边形两条对角线相互垂直平分,那么这个四边形是矩形8、下列命题中,真命题的个数是()①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等.A、4B、3C、2D、19、若△ABC≌△DEF,△ABC的周长为100cm,DE=30cm,DF=25cm,那么BC长()A、55cmB、45cmC、30cmD、25cm10、在△ABC中,∠B的平分线与∠C的平分线相交于O,且∠BOC=130°,则∠A=()A、50°B、60°C、80°D、100°二、填空题(共8题;共24分)11、用直尺和圆规作一个角等于已知角的示意图如图所示,则说明△DOC≌△D'O'C'的依据是________.12、如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,则△ABD与△ACD的周长之差为________cm.13、△ABC中,∠BAC:∠ACB:∠ABC=4:3:2,且△ABC≌△DEF,则∠DEF=________ 度.14、①三角形的三条角平分线交于一点,这点到三条边的距离相等;②三角形的三条中线交于一点;③三角形的三条高线所在的直线交于一点;④三角形的三条边的垂直平分线交于一点,这点到三个顶点的距离相等.以上说法中正确的是________.15、如图,BF、CF是△ABC的两个外角的平分线,若∠A=50°,则∠BFC=________度.16、如图,点D,B,C点在同一条直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=________度.17、如图所示,BE⊥AC于点D,且AB=CB,BD=ED,若∠ABC=64°,则∠E=________.18、如图,在△ABC中,将∠C沿DE折叠,使顶点C落在△ABC内C′处,若∠A=75°,∠B=65°,∠1=40°,则∠2的度数为________.三、解答题(共5题;共36分)19、如图,已知E是∠AOB的平分线上的一点,EC⊥OA,ED⊥OB,垂足分别是C,D.求证:OE垂直平分CD.20、如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.∠1=∠2,∠3=105°,求∠ACB的度数.21、如图,已知DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC和∠BDC的度数.22、如图所示,已知∠ACB和∠ADB都是直角,且AC=AD,P是AB上任意一点.求证:CP=DP.23、如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA.四、综合题(共1题;共10分)24、如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.答案解析部分一、单选题1、【答案】D【考点】线段垂直平分线的性质,菱形的判定,等腰梯形的性质,命题与定理【解析】【分析】此题需要根据平行四边形的判定、等腰梯形的性质、菱形、三角形垂直平分线的性质四个知识点,分别对四个结论进行判断,然后得出正确的结果.【解答】A、一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,故本选项错误;B、等腰梯形的两个角不一定相等,还可能互补,故本选项错误;C、对角线互相垂直的平行四边形是菱形,故本选项错误;D、三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等,故本选项正确;故选D.【点评】本题考查了平行四边形的判定、等腰梯形的性质、菱形、三角形垂直平分线的性质,考查的知识点较多,但难度不大,注意细心判断各个选项.2、【答案】D【考点】全等三角形的判定与性质【解析】【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,得到三角形全等,由全等得到角相等,是用的全等的性质,全等三角形的对应角相等.【解答】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D'(SSS),则△COD≌△C'O'D',即∠A'O'B'=∠AOB(全等三角形的对应角相等).故选D.【点评】本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.3、【答案】D【考点】三角形内角和定理,等腰三角形的性质【解析】【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分另两种情况进行讨论。
当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故选D.【点评】熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出60°一种情况,把三角形简单的认为是锐角三角形。
4、【答案】D【考点】三角形的外角性质,等腰三角形的性质,正方形的性质【解析】【分析】由三角形及正方形对角线相互垂直平分相等的性质进行计算求解,把各角之间关系找到即可求解。
∵四边形ABCD是正方形,CE=CA∴∠ACE=45°+90°=135°,∠E=22.5°∴∠AFC=90°+22.5°=112.5°.故选D.【点评】解题关键是熟练掌握三角形的外角的性质:三角形的一个外角等于与它不相邻的两个内角的和。
5、【答案】D【考点】全等三角形的判定【解析】【分析】根据三角形全等的判定方法可知:除去被墨迹污染的部分仍然有两个角及夹边确定,可以根据ASA确定所画三角形与原三角形全等。
故选D.6、【答案】 B【考点】三角形三边关系【解析】【分析】三角形的三边关系:三角形的任两边之和大于第三边,任两边之差小于第三边。
A、1+2<4,,C、5+6<12,D、2+3<6,均无法构成三角形;B、6+4>8,能组成三角形。
7、【答案】B【考点】命题与定理【解析】【解答】解:A、如果一个四边形两条对角线相等,那么这个四边形不一定是矩形,还有可能是等腰梯形,故错误;B、如果一个平行四边形两条对角线相互垂直,那么这个平行四边形是菱形,故正确;C、如果一个四边形两条对角线平分所在的角,那么这个四边形可能是正方形,故错误;D、如果一个四边形两条对角线相互垂直平分,这个四边形有可能是菱形,故错误;故选B.【分析】利于矩形、菱形的判定定理分别判断后即可确定正确的选项.8、【答案】B【考点】命题与定理【解析】【解答】解:全等三角形的周长相等,所以①正确;全等三角形的对应角相等,所以②正确;全等三角形的面积相等,所以③正确;面积相等的两个三角形不一定全等,所以④错误.故选B.【分析】根据全等三角形的性质对①②③进行判断;根据全等三角形的判定方法对④进行判断.9、【答案】B【考点】全等三角形的性质【解析】【解答】解:∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∵DE=30cm,DF=25cm,∴AB=30cm,AC=25cm,∵△ABC的周长为100cm,∴CB=100﹣30﹣25=45(cm),故选:B.【分析】根据全等三角形的性质可得AB=DE,AC=DF,BC=EF,再根据△ABC的周长为100cm可得答案.10、【答案】 C【考点】三角形内角和定理【解析】【解答】解:∵∠BOC=130°,∴∠OBC+∠OCB=180°﹣∠BOC=180°﹣130°=50°,∵BO和CO分别平分∠ABC和∠ACB,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=100°,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣100°=80°,故选C.【分析】在△BOC中由三角形的内角和可求得∠OBC+∠OCB=50°,再由角平分线的定义可得∠ABC+∠ACB=2(∠OBC+∠OCB)=100°,在△ABC中再利用三角形内角和定理可求得∠A.二、填空题11、【答案】SSS【考点】作图—尺规作图的定义【解析】【解答】OC=O′C′,OD=O′D′,CD=C′D′,从而可以利用SSS判定其全等【分析】①以O为圆心,任意长为半径用圆规画弧,分别交OA、OB于点C、D;②任意画一点O′,画射线O'A',以O'为圆心,OC长为半径画弧C'E ,交O'A'于点C';③以C'为圆心,CD长为半径画弧,交弧C'E 于点D';④过点D'画射线O'B',∠A'O'B'就是与∠AOB相等的角.则通过作图我们可以得到OC=O′C′,OD=O′D′,CD=C′D′,从而可以利用SSS判定其全等12、【答案】 2【考点】三角形的角平分线、中线和高【解析】【解答】解:∵AD是△ABC中BC边上的中线,∴BD=DC=BC,∴△ABD和△ADC的周长的差=(AB+BC+AD)﹣(AC+BC+AD)=AB﹣AC=5﹣3=2(cm).故答案为:2.【分析】根据三角形的周长的计算方法得到,△ABD的周长和△ADC的周长的差就是AB与AC的差.13、【答案】40【考点】全等三角形的性质【解析】【解答】解:设∠BAC为4x,则∠ACB为3x,∠ABC为2x∵∠BAC+∠ACB+∠ABC=180°∴4x+3x+2x=180,解得x=20∴∠ABC=2x=40°∵△ABC≌△DEF∴∠DEF=∠ABC=40°.故填40.【分析】先运用三角形内角和求出∠ABC=40°再运用全等三角形的性质即可得.14、【答案】①②③④【考点】三角形的角平分线、中线和高,角平分线的性质,线段垂直平分线的性质【解析】【解答】解:①三角形的三条角平分线交于一点,这点到三条边的距离相等,正确;②三角形的三条中线交于一点,正确;③三角形的三条高线所在的直线交于一点,正确;④三角形的三条边的垂直平分线交于一点,这点到三个顶点的距离相等,正确.综上所述,说法正确的是①②③④.故答案为:①②③④.【分析】根据角平分线上的点到角的两边距离相等,三角形中线、高线的性质以及线段垂直平分线上的点到线段两端点的距离相等对各小题分析判断即可得解.15、【答案】65【考点】三角形内角和定理,三角形的外角性质【解析】【解答】解:∵∠A=50°,∴△ABC中,∠ABC+∠ACB=130°,∴∠BCE+∠CBD=360°﹣130°=230°,∵BF、CF是△ABC的两个外角的平分线,∴∠CBF+∠BCF= (∠BCE+∠CBD)= ×230°=115°,∴△BCF中,∠F=180°﹣115°=65°.故答案为:65【分析】先根据三角形内角和定理,求得∠ABC+∠ACB=130°,得到∠BCE+∠CBD=360°﹣130°=230°,再根据BF、CF是△ABC的两个外角的平分线,求得∠CBF+∠BCF,最后根据三角形内角和定理,求得∠F的度数.16、【答案】45【考点】三角形内角和定理,三角形的外角性质【解析】【解答】解:∵∠ABD是△ABC的外角,∴∠ABD=∠A+∠C=60°+50°=110°,∴∠1=180°﹣∠ABD﹣∠D=180°﹣110°﹣25°=45°.【分析】根据三角形的外角的性质及三角形的内角和定理可求得.17、【答案】32°【考点】全等三角形的判定与性质【解析】【解答】解:∵AB=CB,BE⊥AC,∴AD=DC,∠ABD=∠CBD= ∠ABC= ×64°=32°,在△ABD和△CED中,,∴△ABD≌△CED(SAS),∴∠E=∠ABD=32°,故答案为:32°.【分析】根据三线合一得出AD=DC,∠ABD=27°,证△ABD≌△CED,推出∠E=∠ABD即可.18、【答案】40°【考点】三角形内角和定理,翻折变换(折叠问题)【解析】【解答】解:如图,∵∠CEF+∠CFE+∠C=∠A+∠B+∠C,∴∠CEF+∠CFE=∠A+∠B=75°+65°=140°,又将纸片的一角折叠,使点C落在△ABC内,∴∠C′EF+∠C′F=∠CEF+∠CFE=140°,∴∠CEC′+∠CEC′=140°+140°=280°,∵∠1=40°,∴∠2=180°×2﹣∠CEC′+∠CEC′﹣∠1=360°﹣280°﹣40°=40°.故答案为:40°.【分析】先根据三角形的内角和定理求出∠CEF+∠CFE=∠A+∠B,再根据折叠变换的性质,即可求出∠CEC′+∠CEC′的度数,然后利用两个平角的度数求解即可.三、解答题19、【答案】证明:∵E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴DE=CE,OE=OE,在Rt△ODE与Rt△OCE中,,∴Rt△ODE≌Rt△OCE(HL),∴OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线【考点】全等三角形的判定与性质,角平分线的性质,线段垂直平分线的性质【解析】【分析】先根据E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA得出△ODE≌△OCE,可得出OD=OC,DE=CE,OE=OE,可得出△DOC是等腰三角形,由等腰三角形的性质即可得出OE是CD的垂直平分线.20、【答案】解:∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠2=∠BCD,又∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB=∠3=105°【考点】平行线的判定与性质,三角形内角和定理【解析】【分析】证明CD∥EF,得到∠2=∠BCD,证明DG∥BC,根据平行线的性质证明即可.21、【答案】解:∵CD是∠ACB的平分线,∠ACB=50°,∴∠BCD= ∠ACB=25°,∵DE∥BC,∴∠EDC=∠DCB=25°,∠BDE+∠B=180°,∵∠B=70°,∴∠BDE=110°,∴∠BDC=∠BDE﹣∠EDC=110°﹣25°=85°.∴∠EDC=25°,∠BDC=85°【考点】平行线的性质,三角形内角和定理【解析】【分析】由CD是∠ACB的平分线,∠ACB=50°,根据角平分线的性质,即可求得∠DCB的度数,又由DE∥BC,根据两直线平行,内错角相等,即可求得∠EDC的度数,根据两直线平行,同旁内角互补,即可求得∠BDE的度数,即可求得∠BDC的度数.22、【答案】证明:在Rt△ACB和Rt△ADB中,,∴Rt△ACB≌Rt△ADB(HL).∴BC=BD,∠CBA=∠DBA.∵BP=BP,∴△CBP≌△DBP(SAS).∴CP=DP.【考点】全等三角形的判定与性质【解析】【分析】先根据HL判定Rt△ACB≌Rt△ADB得出BC=BD,∠CBA=∠DBA,再利用SAS判定△CBP≌△DBP从而得出CP=DP.23、【答案】证明:∵OM平分∠POQ,MA⊥OP,MB⊥OQ,∴AM=BM,在Rt△AOM和Rt△BOM中,,∴Rt△AOM≌Rt△BOM(HL),∴OA=OB,∴∠OAB=∠OBA【考点】全等三角形的判定与性质,角平分线的性质【解析】【分析】根据角平分线上的点到角的两边的距离相等可得AM=BM,然后利用“HL”证明Rt△AOM和Rt△BOM全等,根据全等三角形对应边相等可得OA=OB,再根据等边对等角的性质即可得证.四、综合题24、【答案】(1)证明:连结CE.∵点E为Rt△ACB的斜边AB的中点,∴CE= AB=AE.∵△ACD是等边三角形,∴AD=CD.在△ADE与△CDE中,,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE=30°.∵∠DCB=150°,∴∠EDC+∠DCB=180°.∴DE∥CB(2)解:当AC= 或AB=2AC时,四边形DCBE是平行四边形,理由:∵AC= ,∠ACB=90°,∴∠B=30°,∵∠DCB=150°,∴∠DCB+∠B=180°,∴DC∥BE,又∵DE∥BC,∴四边形DCBE是平行四边形.【考点】全等三角形的判定与性质,等边三角形的性质,平行四边形的判定【解析】【分析】(1)首先连接CE,根据直角三角形的性质可得CE= AB=AE,再根据等边三角形的性质可得AD=CD,然后证明△ADE≌△CDE,进而得到∠ADE=∠CDE=30°,再有∠DCB=150°可证明DE∥CB;(2)当AC= 或AB=2AC时,四边形DCBE是平行四边形.根据(1)中所求得出DC∥BE,进而得到四边形DCBE是平行四边形.。