各种四边形各边中点形成什么图形
中点四边形的规律探索
中 点 四 边 形 的 规 律 探 索
罗 国 强
( 疆 兵 团 农 二 师 2 3 中学 , 新 2团 新疆 和 静 8 10 ) 4 3 8
何 谓 中 点 四边 形 ?依 次 连 接 四边 形 各 边 中点 所 得 的 四边
形 称 为 中 点 四边 形 。 例 题 解 析
一
、
例 1在 北 师 大 版 教 材 《 学 》 年 级 上 册 第 三 章 中有 这 样 : 数 九 道题 目 : 意 作一 个 四边 形 , 将 其 四边 的 中点 依 次 连 接 起 任 并 来 , 到 一 个 新 的 四边 形 , 个 新 四边 形 的 形 状 有 什 么 特 征 ? 得 这 请 证 明你 的结 论 , 与 同伴 进 行 交 流 。 并 在 做 这 道 题 时 , 请 学 生 画一 画 、 一 推 、 一 量 、 一 猜 我 推 量 猜
中点 四边 形 是 什 么 四 边形 ? 思 路 点 拨 :正 方 形 的对 角 线 既 相 等 又 六 、 学 要 关 注 学科 , 要 关 注 学 生 教 更
C
评注 : 该题 也可连 接B 通 过证E / G F / H, D, F/ H,G/ E 或证
E= F GH, G= H,均 可获 得 结 论 。 这 是 对 平 行 四边 形 的 定 义 F E
1
图1
图2
B
解 : 图 1 图2 四边 形E G 是 平 行 四边 形 。证 明如 下 : 如 、 , F H 连 接 AC. 点E F , 分别 是 边 A B 的 中点 , B, C
‘ ‘ . ‘ . .
◇
。:
E /A ,F  ̄ A F/ C E = C。
2
多边形平行四边形矩形菱形正方形的知识点总结
多边形(基础)知识讲解知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形. 2.相关概念:边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n 边形有n 个内角. 外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角. 对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:知识点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可; (2)过n 边形的一个顶点可以引(n-3)条对角线,n 边形对角线的条数为()23-n n ;(3)过n 边形的一个顶点的对角线可以把n 边形分成(n-2)个三角形.凸多边形凹多边形知识点二、多边形内角和n边形的内角和为(n-2)·180°(n≥3).知识点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于()nn︒⋅-1802;知识点三、多边形的外角和多边形的外角和为360°.知识点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n边形的外角和恒等于360°,它与边数的多少无关;(2)正n边形的每个内角都相等,所以它的每个外角都相等,都等于n ︒360;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.平行四边形(基础)知识点一、平行四边形的定义平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“□ABCD”,读作“平行四边形ABCD”.知识点诠释:平行四边形的基本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条.知识点二、平行四边形的性质1.边的性质:平行四边形两组对边平行且相等;2.角的性质:平行四边形邻角互补,对角相等;3.对角线性质:平行四边形的对角线互相平分;4.平行四边形是中心对称图形,对角线的交点为对称中心.知识点诠释:(1)平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系或倍半关系.(2)由于平行四边形的性质内容较多,在使用时根据需要进行选择.(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.知识点三、平行四边形的判定1.两组对边分别平行的四边形是平行四边形;2.两组对边分别相等的四边形是平行四边形;3.一组对边平行且相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.知识点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个平行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据.知识点四、三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半. 知识点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系. (2)三角形的三条中位线把原三角形分成可重合的4个小三角形.因而每个小三角形的周长为原三角形周长的21,每个小三角形的面积为原三角形面积的41. (3)三角形的中位线不同于三角形的中线. 知识点五、平行线间的距离 1.两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值. (2)平行线间的距离处处相等任何两平行线间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度. 两条平行线间的任何两条平行线段都是相等的. 2.平行四边形的面积:平行四边形的面积=底×高;等底等高的平行四边形面积相等.知识点一、矩形的定义有一个角是直角的平行四边形叫做矩形.知识点诠释:矩形定义的两个要素:①是平行四边形;②有一个角是直角.即矩形首先是一个平行四边形,然后增加一个角是直角这个特殊条件.知识点二、矩形的性质1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.知识点诠释:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线可将矩形分成完全全等的两部分.(2)矩形也是轴对称图形,有两条对称轴(分别通过对边中点的直线).对称轴的交点就是对角线的交点(即对称中心).(3)矩形是特殊的平行四边形,矩形具有平行四边形的所有性质,从而矩形的性质可以归结为从三个方面看:从边看,矩形对边平行且相等;从角看,矩形四个角都是直角;从对角线看,矩形的对角线互相平分且相等.知识点三、矩形的判定1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.知识点诠释:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形.知识点四、直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半.知识点诠释:(1)直角三角形斜边上的中线的性质是矩形性质的推论.性质的前提是直角三角形,对一般三角形不可使用.(2)学过的直角三角形主要性质有:①直角三角形两锐角互余;②直角三角形两直角边的平方和等于斜边的平方;③直角三角形中30°所对的直角边等于斜边的一半.(3)性质可以用来解决有关线段倍分的问题.知识点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.知识点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.知识点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心. 知识点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积有两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.知识点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.知识点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.正方形(基础)知识点一、正方形的定义四条边都相等,四个角都是直角的四边形叫做正方形.知识点诠释:既是矩形又是菱形的四边形是正方形,它是特殊的菱形,又是特殊的矩形,更为特殊的平行四边形,正方形是有一组邻边相等的矩形,还是有一个角是直角的菱形.知识点二、正方形的性质正方形具有四边形、平行四边形、矩形、菱形的一切性质.1.边——四边相等、邻边垂直、对边平行;2.角——四个角都是直角;3.对角线——①相等,②互相垂直平分,③每条对角线平分一组对角;4.是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心.知识点诠释:正方形具有平行四边形、矩形、菱形的一切性质,其对角线将正方形分为四个等腰直角三角形.知识点三、正方形的判定正方形的判定除定义外,判定思路有两条:或先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形);或先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形).知识点四、特殊平行四边形之间的关系或者可表示为:知识点五、顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.知识点诠释:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形.(2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.梯形(基础)知识点一、梯形的概念一组对边平行,另一组对边不平行的四边形叫梯形. 在梯形中,平行的两边叫做梯形的底,较短的底叫做上底,较长的底叫做下底,不平行的两边叫做梯形的腰,夹在两底之间的垂线段叫做梯形的高,一腰和底的夹角叫做底角.要点诠释:(1)定义需要满足三个条件:①四边形;②一组对边平行;③另一组对边不平行.(2)有一组对边平行的四边形有可能是平行四边形或梯形,关键在于另一组对边的位置或者数量关系的不同.梯形只有一组对边平行,而平行四边形两组对边都平行;平行四边形中平行的边必相等,梯形中平行的一组对边必不相等.(3)在识别梯形的两底时,不能仅由两底所处的位置决定,而是由两底的长度来决定梯形的上、下底.知识点二、等腰梯形的定义及性质1.定义:两腰相等的梯形叫等腰梯形.2.性质:(1)等腰梯形同一个底上的两个内角相等.(2)等腰梯形的两条对角线相等.要点诠释:(1)等腰梯形是特殊的梯形,它具有梯形的所有性质.(2)由等腰梯形的定义可知:等腰相等,两底平行.(3)等腰梯形同一底上的两个角相等,这是等腰梯形的重要性质,不仅是“下底角”相等,两个“上底角”也是相等的.知识点三、等腰梯形的判定1.用定义判定:两腰相等的梯形是等腰梯形.2.判定定理:(1)同一底边上两个内角相等的梯形是等腰梯形.(2)对角线相等的梯形是等腰梯形.知识点四、辅助线梯形问题常常是通过作辅助线转化为特殊的平行四边形及三角形问题加以研究,一些常用的辅助线做法是:方法作法图形目的平移平移一腰过一顶点作一腰的平行线分解成一个平行四边形和一个三角形过一腰中点作另一腰的平行线构造出一个平行四边形和一对全等的三角形平移对角线过一顶点作一条对角线的平行线构造出平行四边形和一个面积与梯形相等的三角形作高过一底边的端点作另一底边的垂线构造出一个矩形和两个直角三角形;特别对于等腰梯形,两个直角三角形全等延长延长两腰延长梯形的两腰使其交于一点构成两个形状相同的三角形延长顶点和一腰中点的连线连接一顶点和一腰的中点并延长与底边相交构造一对全等的三角形,将梯形作等积变换知识点五、三角形、梯形的中位线联结三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.联结梯形两腰中点的线段叫梯形的中位线.梯形的中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.。
102条作几何辅助线的规律,以后再也不怕了!
102条作几何辅助线的规律,以后再也不怕了!几何中,同学们最头疼的就是做辅助线了,所以,今天数姐整理了做辅助线的102条规律,从此,再也不怕了!规律1.如果平面上有n(n≥2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出n(n-1)条.规律2.平面上的n条直线最多可把平面分成〔n(n+1)+1〕个部分.规律3.如果一条直线上有n个点,那么在这个图形中共有线段的条数为n(n-1)条.规律4.线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半.规律5.有公共端点的n条射线所构成的交点的个数一共有n(n-1)个.规律6.如果平面内有n条直线都经过同一点,则可构成小于平角的角共有2n(n-1)个.规律7.如果平面内有n条直线都经过同一点,则可构成n(n-1)对对顶角.规律8.平面上若有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出n(n-1)(n-2)个.规律9.互为邻补角的两个角平分线所成的角的度数为90°.规律10.平面上有n条直线相交,最多交点的个数为n(n-1)个.规律11.互为补角中较小角的余角等于这两个互为补角的角的差的一半.规律12.当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行,同旁内角的角平分线互相垂直.规律13.已知AB∥DE,如图⑴~⑹,规律如下:规律14.成“8”字形的两个三角形的一对内角平分线相交所成的角等于另两个内角和的一半.规律15.在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题.注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证有关的量)移到同一个或几个三角形中去然后再证题.规律16.三角形的一个内角平分线与一个外角平分线相交所成的锐角,等于第三个内角的一半.规律17.三角形的两个内角平分线相交所成的钝角等于90o加上第三个内角的一半.规律18.三角形的两个外角平分线相交所成的锐角等于90o减去第三个内角的一半.规律19.从三角形的一个顶点作高线和角平分线,它们所夹的角等于三角形另外两个角差(的绝对值)的一半.注意:同学们在学习几何时,可以把自己证完的题进行适当变换,从而使自己通过解一道题掌握一类题,提高自己举一反三、灵活应变的能力.规律20.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.规律21.有角平分线时常在角两边截取相等的线段,构造全等三角形.规律22.有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.规律23.在三角形中有中线时,常加倍延长中线构造全等三角形.规律24.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段;补短法:延长较短线段和较长线段相等.这两种方法统称截长补短法.当已知或求证中涉及到线段a、b、c、d有下列情况之一时用此种方法:①a>b②a±b = c③a±b = c±d规律25.证明两条线段相等的步骤:①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。
顺次连接任意一个四边形各边的中点所得的四边形有什么特征
顺次连接任意一个四边形各边的中点所得的四边形有什么特征?
关于这个问题在各种平台上讲解的很多,但是不够具体全面,这实际上是数学课本课后的一个问题,下面杜老师详细的解答这个问题。
首先定义中点四边形:任意一个四边形中点顺次连接起来构成的四边形叫中点四边形
证明:如图,连接BD,
∵H,E分别是AD,AB的中点
∴HE是△ABD的中位线
∴HE平行且等于BD的一半(HE∥BD,HE=1/2BD)
同理GF平行且等于BD的一半(GF∥BD,GF=1/2BD)
∴HE∥GF,HE=GF
∴四边形EFGH是平行四边形
特殊图形的中点四边形
①若原四边形是平行四边形,则中点四边形是平行四边形
②若原四边形是矩形,则中点四边形是菱形
③若原四边形是菱形,则中点四边形是矩形
④若四边形是正方形,则中点四边形是正方形
写到最后:
①任意四边形,中点四边形是平行四边形
②对角线相等的四边形,中点四边形是菱形
③对角线垂直的四边形,中点四边形是矩形
④对角线垂直且相等的四边形,中点四边形是正方形。
特殊四边形的知识点、定义、性质、判定
特殊四边形知识点总结一.正确理解定义(1)定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.(2)表示方法:用“□”表示平行四边形,例如:平行四边形ABCD 记作“□ABCD ”,读作“平行四边形ABCD ”. 2.熟练掌握性质:平行四边形的有关性质和判定都是从 边、角、对角线 三个方面的特征进行简述的. (1)角:对角相等,邻角互补; (2)边:对边分别平行且相等; (3)对角线:对角线互相平分;(4)面积:①S ==⨯底高ah ;②平行四边形的对角线将四边形分成4个面积相等的三角形.(5)平行四边形不是轴对称图形。
3.平行四边形的判别方法①定义判定:两组对边分别平行的四边形是平行四边形。
②方法2:两组对角分别相等的四边形是平行四边形。
③方法3:两组对边分别相等的四边形是平行四边形。
④方法4:对角线互相平分的四边形是平行四边形。
⑤方法5:一组平行且相等的四边形是平行四边形。
二、几种特殊平行四边形的有关概念(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:① 平行四边形; ② 一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:① 平行四边形;② 一组邻边相等,两者缺一不可.(3)正方形:有一组邻边相等且有一个直角的平行四边形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.三、几种特殊四边形的有关性质(1)矩形: ①边:对边平行且相等;②角:四个角都是直角; ③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条). ⑤面积S =长×宽;A BD OC AD B CO【注意:矩形具有平行四边形的一切性质】(2)菱形:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角; ④对称性:轴对称图形(对角线所在直线,2条). ⑤面积S =底×高=对角线乘积的一半;【注意:菱形具有平行四边形的一切性质】(3)正方形:①边:四条边都相等;②角:四角相是直角;③对角线:对角线互相垂直平分且相等,对角线与边的夹角为450; ④对称性:轴对称图形(4条).⑤面积S =边长×边长=对角线乘积的一半;【注意:正方形具有平行四边形、矩形、菱形的一切性质】四、几种特殊四边形的判定方法(1)矩形的判定: ①有一个角是直角的平行四边形;②对角线相等的平行四边形; ③有三个角是直角的四边形。
中考专题复习中点四边形(实用资料)ppt
3、依次连接菱形ABCD各边中点得四边形EFGH,再依次连接四边形EFGH各边中点得四边形MNPQ,则四边形EFGH,四边形MNPQ
的形状是(
)
3、如图,在正方形ABCD中,点E,F分别是BC,CD的中点,AF,DE相交于点G,则可得结论:
依次连接矩形四边中点得到的四边形是什么四边形?
H A
E
D G C
F B
问题6:
依次连接怎样一个四边形四边中点的图形是矩形?
连接对角线互相垂直的四边形四条边中点得到 的四边形是矩形
问题7:
依次连接怎样一个四边形四边中点的图形是正方形?
问题8:
依次连接普通平行四边形四边中点得到的四边形是什么四边形?
求证:四边形EFGH是菱形。
连接对角线相等的四边形四条边中点得到的四边形是菱形
平行四边形
问题2:
依次连接矩形四边中点得到的四边形是什么四边形?
已知:如图,E、F、G 、H分别是矩形ABCD四条边AB、 BC、CD、DA的中点, 求证:四边形EFGH是菱形。
A
H
D
E
G
B
F
C
问题3:
依次连接等腰梯形四边中点的四边形是什么四边形?
已知:如图,E、F、G 、H分别是等腰梯形ABCD四 条边AB、BC、CD、DA的中点, 求证:四边形EFGH是菱形。
连接对角线互相垂直的四边形四条边中点得到的四边形是矩形
连接对角线互相垂直的四边形四条边中点得到的四边形是矩形
H 依次连接矩形四边中点得到的四边形是什么四边形? A D 3、如图,在正方形ABCD中,点E,F分别是BC,CD的中点,AF,DE相交于点G,则可得结论:
平行四边形的中点连线性质
平行四边形的中点连线性质平行四边形是初中数学中的一个重要概念,由于其特殊的性质和在几何问题中的广泛应用,成为学生必须掌握的内容之一。
在平行四边形中,中点连线是一个重要的概念,它具有一些独特的性质和应用。
本文将探讨平行四边形的中点连线的性质及其相关应用。
一、中点连线的定义在平行四边形中,我们将相邻两条边的中点相连,形成一条连接线段。
这条连接线段就称为平行四边形的中点连线。
根据定义,平行四边形的中点连线可以分为两种类型:对角线和边中点连线。
二、对角线对角线是指连接平行四边形的相对顶点的线段。
具体来说,平行四边形的对角线共有两条,分别连接相对顶点。
在平行四边形中,对角线具有以下性质:1. 对角线互相平分:即平行四边形的对角线相交于各自的中点。
证明此性质可以利用向量、平移等方法。
2. 对角线相等:即平行四边形的两条对角线长度相等。
证明此性质可以利用向量、向量夹角等方法。
三、边中点连线边中点连线是指连接平行四边形相邻边的中点的线段。
具体来说,平行四边形的边中点连线有两对,分别连接相邻的边的中点。
在平行四边形中,边中点连线具有以下性质:1. 边中点连线平行且等于对角线:对于平行四边形ABCD,连接AB的中点M与连接CD的中点N的线段MN平行于对角线AC且长度等于对角线AC。
2. 边中点连线互相平分:即平行四边形的边中点连线相交于各自的中点。
证明此性质可以利用向量、平移等方法。
四、应用举例平行四边形的中点连线性质在解决几何问题中有着广泛的应用。
以下是几个应用举例:1. 求解平行四边形的面积:通过连接对角线,将平行四边形分割为两个三角形,再利用三角形的面积公式求解。
2. 判定平行四边形:如果一个四边形的对角线互相平分并且长度相等,则该四边形是平行四边形。
3. 利用边中点连线平行且等于对角线的性质,可以求解一些有关长度的几何问题。
五、小结通过研究平行四边形的中点连线性质,我们发现在平行四边形中,中点连线具有一些独特的性质和应用。
人教版初中数学中考总复习:特殊的四边形--知识讲解(基础)
第十九讲特殊的四边形【考纲要求】1. 会识别矩形、菱形、正方形以及梯形;2.掌握矩形、菱形、正方形的概念、判定和性质,会用矩形、菱形、正方形的性质和判定解决问题.3.掌握梯形的概念以及了解等腰梯形、直角梯形的性质和判定,会用性质和判定解决实际问题.【知识网络】【考点梳理】考点一、几种特殊四边形性质、判定四边形性质判定边角对角线矩形对边平行且相等四个角是直角相等且互相平分1、有一个角是直角的平行四边形是矩形;2、有三个角是直角的四边形是矩形;3、对角线相等的平行四边形是矩形中心、轴对称图形菱形四条边相等对角相等,邻角互补垂直且互相平分,每一条对角线平分一组对角1、有一组邻边相等的平行四边形是菱形;2、四条边都相等的四边形是菱形;3、对角线互相垂直的平行四边形是菱中心、轴对称图形.形正方形四条边相等四个角是直角相等、垂直、平分,并且每一条对角线平分一组对角1、邻边相等的矩形是正方形2、对角线垂直的矩形是正方形3、有一个角是直角的菱形是正方形4、对角线相等的菱形是正方形中心、轴对称图形等腰梯形两底平行,两腰相等同一底上的两个角相等相等1、两腰相等的梯形是等腰梯形;2、在同一底上的两个角相等的梯形是等腰梯形;3、对角线相等的梯形是等腰梯形.轴对称图形【要点诠释】矩形、菱形、正方形都是特殊的平行四边形,它们具有平行四边形的一切性质.考点二、梯形1.解决梯形问题常用的方法:(1)“平移腰”:把梯形分成一个平行四边形和一个三角形(图1);(2)“作高”:使两腰在两个直角三角形中(图2);(3)“平移对角线”:使两条对角线在同一个三角形中(图3);(4)“延腰”:构造具有公共角的两个三角形(图4);(5)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形(图5).图1 图2 图3 图4 图5【要点诠释】解决梯形问题的基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决.在学习时注意它们的作用,掌握这些辅助线的使用对于学好梯形内容很有帮助.2.特殊的梯形1)等腰梯形:两腰相等的梯形叫做等腰梯形.性质:(1)等腰梯形的同一底边上的两个角相等;等腰梯形的两条对角线相等.(2)同一底边上的两个角相等的梯形是等腰梯形.(3)等腰梯形是轴对称图形,它的对称轴是经过两底中点的一条直线.2)直角梯形:有一个角是直角的梯形叫做直角梯形.考点三、中点四边形相关问题1.中点四边形的概念:把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.2.若中点四边形为矩形,则原四边形满足条件对角线互相垂直;若中点四边形为菱形,则原四边形满足条件对角线相等;若中点四边形为正方形,则原四边形满足条件对角线互相垂直且相等.【要点诠释】中点四边形的形状由原四边形的对角线的位置和数量关系决定.【典型例题】类型一、特殊的平行四边形的应用1. 在平行四边形ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连结EG、GF、FH、HE.(1)如图①,试判断四边形EGFH的形状,并说明理由;(2)如图②,当EF⊥GH时,四边形EGFH的形状是;(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是;(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.【思路点拨】中点四边形的形状由原四边形的对角线的位置和数量关系决定.【答案与解析】(1)四边形EGFH是平行四边形;证明:∵平行四边形ABCD的对角线AC、BD交于点O,∴点O是平行四边形ABCD的对称中心;∴EO=FO,GO=HO;∴四边形EGFH是平行四边形;(2)菱形;(提示:菱形的对角线垂直平分)(3)菱形;(提示:当AC=BD时,对四边形EGFH的形状不会产生影响,故结论同(2))(4)四边形EGFH是正方形;证明:∵AC=BD,∴平行四边形ABCD是矩形;又∵AC⊥BD,∴平行四边形ABCD是正方形,∴∠BOC=90°,∠GBO=∠FCO=45°,OB=OC;∵EF⊥GH,∴∠GOF=90°;∴∠BOG=∠COF;∴△BOG≌△COF(ASA);∴OG=OF,∴GH=EF;由(3)知四边形EGFH是菱形,又EF=GH,∴四边形EGFH是正方形.【总结升华】主要考查了平行四边形、菱形、矩形、正方形的判定和性质以及全等三角形的判定和性质;熟练掌握各特殊四边形的联系和区别是解答此类题目的关键.2.动手操作:在一张长12cm、宽5cm的矩形纸片内,要折出一个菱形.小颖同学按照取两组对边中点的方法折出菱形EFGH(见方案一),小明同学沿矩形的对角线AC折出∠CAE=∠CAD,∠ACF=∠ACB 的方法得到菱形AECF(见方案二).(1)你能说出小颖、小明所折出的菱形的理由吗?(2)请你通过计算,比较小颖和小明同学的折法中,哪种菱形面积较大?【思路点拨】(1)、要证所折图形是菱形,只需证四边相等即可.(2)、按照图形用面积公式计算S=30和S=35.21,可知方案二小明同学所折的菱形面积较大. 【答案与解析】(1)小颖的理由:依次连接矩形各边的中点所得到的四边形是菱形, 小明的理由:∵ABCD 是矩形, ∴AD ∥BC ,则∠DAC=∠ACB , 又∵∠CAE=∠CAD ,∠ACF=∠ACB , ∴∠CAE=∠CAD=∠ACF=∠ACB , ∴AE=EC=CF=FA , ∴四边形AECF 是菱形. (2)方案一:S 菱形=S 矩形-4S △AEH =12×5-4×12×6×52=30(cm )2, 方案二:设BE=x ,则CE=12-x , ∴AE=22BE AB +=225x +由AECF 是菱形,则AE 2=CE 2∴x 2+25=(12-x )2, ∴x=11924, S 菱形=S 矩形-2S △ABE =12×5-2×12×5×11924≈35.21(cm )2, 比较可知,方案二小明同学所折的菱形面积较大.【总结升华】本题考查了矩形的性质和菱形的判定,以及图形面积的计算与比较. 举一反三:【变式】如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则折痕CE 的长为 ( ).A.B.C.4 D.5【答案】A.类型二、梯形的应用3.(•黄州区校级模拟)如图,△ABC中,∠BAC=90°,延长BA至D,使AD=AB,点E、F分别是边BC、AC的中点.(1)判断四边形DBEF的形状并证明;(2)过点A作AG∥BC交DF于G,求证:AG=DG.【思路点拨】(1)利用梯形的判定首先得出四边形DBEF为梯形,进而得出四边形HFEB是平行四边形,得出BE=FD进而得出答案;(2)利用四边形DBEF为等腰梯形,得出∠B=∠D,利用AG∥BG,∠B=∠DAG,得出答案.【答案与解析】(1)解:四边形DBEF为等腰梯形,理由如下:如图,过点F作FH∥BC,交AB于点H,∵FH∥BC,点F是AC的中点,点E是BC的中点,∴AH=BH=AB,EF∥AB,显然EF<AB<AD,∴EF≠AD,∴四边形DBEF为梯形,∵AD=AB,∴AD=AH,∴CA是DH的中垂线,∴DF=FH,∵FH∥BC,EF∥AB,∴四边形HFEB是平行四边形,∴FH=BE,∴BE=FD,故四边形DBEF为等腰梯形;(2)证明:∵四边形DBEF为等腰梯形,∴∠B=∠D,∵AG∥BG,∠B=∠DAG,∴∠D=∠DAG,∴AG=D G.【总结升华】此题主要考查了等腰梯形的判定以及其性质和平行四边形的判定与性质等知识,得出BE=FD 是解题关键.举一反三:【变式】如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为().C. 2.5D.2.3A.22B. 231类型三、特殊四边形与其他知识结合的综合运用4. (•北京)在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【思路点拨】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE 是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.【答案与解析】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【总结升华】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.5.已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.【思路点拨】(1)根据菱形的对边平行可得AB∥CD,再根据两直线平行,内错角相等可得∠1=∠ACD,所以∠ACD=∠2,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长度;(2)先利用“边角边”证明△CEM和△CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF于点G,然后证明∠1=∠G,根据等角对等边的性质可得AM=GM,再利用“角角边”证明△CDF和△BGF 全等,根据全等三角形对应边相等可得GF=DF,最后结合图形GM=GF+MF即可得证.【答案与解析】(1)解:∵四边形ABCD是菱形,∴AB∥CD,∴∠1=∠ACD,∵∠1=∠2,∴∠ACD=∠2,∴MC=MD,∵ME⊥CD,∴CD=2CE,∵CE=1,∴CD=2,∴BC=CD=2;(2)证明:如图,∵F为边BC的中点,∴BF=CF=12BC,∴CF=CE,在菱形ABCD中,AC平分∠BCD,∴∠ACB=∠ACD,在△CEM和△CFM中,∵CE CFACB ACDCM CM=⎧⎪∠=∠⎨⎪=⎩,∴△CEM≌△CFM(SAS),∴ME=MF,延长AB交DF于点G,∵AB∥CD,∴∠G=∠2,∵∠1=∠2,∴∠1=∠G,∴AM=MG,在△CDF和△BGF中,∵2GBFG CFDBF CF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDF≌△BGF(AAS),∴GF=DF,由图形可知,GM=GF+MF,∴AM=DF+ME.【总结升华】本题考查了菱形的性质,全等三角形的判定与性质,等角对等边的性质,作出辅助线构造出全等三角形是解题的关键.6 . 如图,己知ABC的顶点B、C为定点,A为动点(不在直线BC上).是点B关于直线AC的对称点,是点C关于直线AB的对称点.连结、、、.(1)猜想线段与'的数量关系,并证明你的结论;(2)当点A运动到怎样的位置时,四边形为菱形?这样的位置有几个?请用语言对这样的位置进行描述;(不用证明)(3)当点A在线段BC的垂直平分线l(BC的中点及到BC的距离为的点除外)上运动时,判断以点B、C、、为顶点的四边形的形状,画出相应的示意图.(不用证明)【思路点拨】本题考查轴对称的基本性质,综合考查菱形、正方形、等腰梯形的判定.在运动变化过程中,认识图形之间的内在联系.【答案与解析】(1)猜想:BC′=CB′∵B′是点B关于直线AC的对称点∴AC垂直平分B B′∴BC= CB′同理BC= BC′∴B C′=C B′(2)要使BCB′C′是菱形,根据菱形的性质,对角线互相垂直平分∵B′是点B关于直线AC的对称点,C′是点C关于直线AB的对称点∴AC垂直平分B B′,AB垂直平分C C′,∴B B′、C C′应该同时过A点∴∠BAC=90°∴只要AB⊥AC即可满足要求,这样的位置有无数个.(3)如图,当A是BC的中点时,没有形成四边形;当A到BC时,∵l是BC的垂直平分线,∴∠ACB=∠ABC=30°,∴∠BAC=120°,∴∠BOC=60°,∴BC=C B′= B′C′=B C′.∴BC B′C′为菱形,当BC的中点及到BC BC的点除外时,∵∠BOC= B′O C′,OB=OC O B′=O C′,∴∠OBC=∠OCB=∠O B′C′=∠O C′B′,∴BC∥B′C′.∵B C′不平行C B′,B C′=C B′,四边形BC B′ C′为等腰梯形.【总结升华】本题可以很好的培养观察推理能力,按照要求画出图形可以更清楚的解题.举一反三:【变式】(2012•襄阳)如图,在梯形ABCD中,AD∥BC,E为BC的中点,BC=2AD,EA=ED=2,AC与ED相交于点F.(1)求证:梯形ABCD是等腰梯形;(2)当AB与AC具有什么位置关系时,四边形AECD是菱形?请说明理由,并求出此时菱形AECD的面积.【答案】(1)证明:∵AD∥BC,∴∠DEC=∠EDA,∠BEA=∠EAD,又∵EA=ED,∴∠EAD=∠EDA,∴∠DEC=∠AEB,又∵EB=EC,∴△DEC≌△AEB,∴AB=CD,∴梯形ABCD是等腰梯形.(2)当AB⊥AC时,四边形AECD是菱形.证明:∵AD∥BC,BE=EC=AD,∴四边形ABED和四边形AECD均为平行四边形.∴AB=ED,∵AB⊥AC,∴AE=BE=EC,∴四边形AECD是菱形.过A作AG⊥BE于点G,∵AE=BE=AB=2,∴△ABE是等边三角形,∴∠AEB=60°,∴AG=3,∴S菱形AECD=EC•AG=2×3=23.第十九讲特殊的四边形一、选择题1.(•天水)如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1,BC=2,则△ABE和BC′F的周长之和为()A.3 B.4 C.6 D.82.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,则△CEF面积为( ).A.4 B.6 C.8 D.103.如图所示,在矩形ABCD中,AB=3,AD=4,P是AD上的一点,PE⊥AC,垂足为E,PF⊥BD,垂足为F,则PE+PF的值为( ).A.B.C.2 D.第3题第4题4.如图,E、F、G、H分别是四边形ABCD四条边的中点,要使EFGH为矩形,四边形应该具备的条件是().A.一组对边平行而另一组对边不平行B.对角线相等C.对角线相互垂直 D.对角线互相平分5.如图,正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF分别交AB、BC于E、F,若AE=4,CF=3,则EF等于().A.7B.5C.4D.3第5题第6题6.如图,在矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为().A.15° B.18° C.36° D.54°二、填空题7.(春•西城区期末)直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE= .8. 如图,菱形ABCD中,于E,于F,,则等于___________.9. 正方形ABCD中,E为BC上一点,BE=,CE=,P在BD上,则PE+PC的最小值可能为__________.10.如图,M为正方形ABCD中BC边的中点,将正方形折起,使点A与M重合,设折痕为EF,若正方形的面积为64,则△AEM的面积为____________.11.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为AB上一动点,且PE⊥AC于E,PF⊥BC 于F,则线段EF长度的最小值是_______________.第10题第11题第12题12.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,BC=2AD=23,点E是BC边的中点,△DEF是等边三角形,DF交AB于点G,则△BFG的周长为________.三、解答题13.如图1,图2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.(1)如图1,当点E在AB边的中点位置时:①猜想DE与EF满足的数量关系是__________;②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是__________;③请证明你的上述两个猜想.(2)如图2,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时 DE 与EF有怎样的数量关系.14. 如图,在梯形ABCD中,AD//BC,AB=CD=3cm,∠A=120°,BD⊥CD,(1)求BC、AD的长度;(2)若点P从点B开始沿BC边向点C以2cm/秒的速度运动,点Q从点C开始沿CD边向点D以1cm/秒的速度运动,当P、Q分别从B、C同时出发时,写出五边形ABPQD的面积S与运动时间t之间的关系式,并写出t的取值范围(不包含点P在B、C两点的情况);(3)在(2)的前提下,是否存在某一时刻t,使线段PQ把梯形ABCD分成两部分的面积比为1:5?若存在,求出t的值;若不存在,请说明理由.15. (•青岛模拟)已知正方形ABCD的边长为a,两条对角线AC、BD相交于点O,P是射线AB上任意一点,过P点分别作直线AC、BD的垂线PE、PF,垂足为E、F.(1)如图1,当P点在线段AB上时,PE+PF的值是否为定值?如果是,请求出它的值;如果不是,请加以说明.(2)如图2,当P点在线段AB的延长线上时,求PE﹣PF的值.16.如图,十三个边长为正整数的正方形纸片恰好拼成一个大矩形(其中有三个小正方形的边长已标出字母x,y,z).试求满足上述条件的矩形的面积最小值.【答案与解析】一.选择题1.【答案】C.【解析】将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,由折叠特性可得,CD=BC′=AB,∠FC′B=∠EAB=90°,∠EBC′=∠ABC=90°,∵∠ABE+∠EBF=∠C′BF+∠EBF=90°∴∠ABE=∠C′BF在△BAE和△BC′F中,∴△BAE≌△BC′F(ASA),∵△ABE的周长=AB+AE+EB=AB+AE+ED=AB+AD=1+2=3,△ABE和△BC′F的周长=2△ABE的周长=2×3=6.故选:C.2.【答案】C.3.【答案】A.4.【答案】C.5.【答案】B.【解析】可证△OEB≌△OFC,则EB=FC=3,AE=BF=4,32346.【答案】B.【解析】由题意∠ADE=54°,∠CDE=36°,∠DCE=54°,∠BDE=54°-36°=18°.二.填空题7.【答案】3.【解析】如图,∵在直角△ABC中,∠BAC=90°,D、F分别为AB、AC的中点,∴DF是△ABC的中位线,∴DF=BC.又∵点E是直角△ABC斜边BC的中点,∴AE=BC,∵DF=3,∴DF=AE.故填:3.8.【答案】60°.9.【答案】.10.【答案】10.【解析】提示:设AE=x=EM ,BE=8-x,MB=4,在Rt△BEM中由勾股定理解得x=5,从而算出面积.11.【答案】125.【解析】连接PC.∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°;又∵∠ACB=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=4,BC=3,∴AB=5,∴12AC•BC=12AB•PC,∴PC=125.∴线段EF长的最小值为125;故答案是:125.12.【答案】3+3.【解析】首先由已知AD∥BC,∠ABC=90°点E是BC边的中点,推出四边形ABED是矩形,所以得到直角三角形CED,所以能求出CD和DE,又由△DEF是等边三角形,得出DF,由直角三角形AGD可求出AG、DG,进而求得FG,再证△AGD≌△BGF,得到BF=AD,从而求出△BFG的周长.三.综合题13.【解析】(1)①DE=EF;②NE=BF;③∵四边形ABCD为正方形,∴AD=AB,∠DAB=∠ABC=90°,∵N,E分别为AD,AB中点,∴AN=DN=12AD,AE=EB=12AB,∴DN=BE,AN=AE,∵∠DEF=90°,∴∠AED+∠FEB=90°,又∵∠ADE+∠AED=90°,∴∠FEB=∠ADE,又∵AN=AE,∴∠ANE=∠AEN,又∵∠A=90°,∴∠ANE=45°,∴∠DNE=180°-∠ANE=135°,又∵∠CBM=90°,BF平分∠CBM,∴∠CBF=45°,∠EBF=135°,∴△DNE≌△EBF(ASA),∴DE=EF,NE=BF.(2)在DA上截取DN=EB(或截取AN=AE),连接NE,则点N可使得NE=BF.此时DE=EF.证明方法同(1),证△DNE≌△EBF.14.【解析】(1)在Rt△BCD中,CD=3cm,∠C=60°, ∴∠DBC=30°,∴BC=2CD=6cm.由已知得:梯形ABCD是等腰梯形,∴∠ABC=∠C=60°,∴∠ABD=∠ABC-∠DBC=30°.∵AD∥BC,∴∠ADB=∠DBC=30°,∴∠ABD=∠ADB,∴AD=AB=3cm.(2)当P、Q分别从B、C同时出发运动t秒时,BP=2t,CQ=t, ∴PC=6-2t,过Q作QE⊥BC于E,则QE=CQsin60°=32t,∴S梯形ABCD-S△PCQ=2734-34(6-2t)t=34(2t2-6t+27)(0<t<3).(3)存在时刻t,使线段PQ把梯形ABCD分成两部分的面积比为1:5.∵S梯形ABCD=2734,S△ABD=12×3×32×3,∴S△ABD=13×S梯形ABCD,∴五边形ABPQD的面积不可能是梯形ABCD面积的16.∴S△PCQ:S五边形ABPQD=1:5,即S五边形ABPQD=56S梯形ABCD∴34(2t2-6t+27)=56×2734,整理得:4t2-12t+9=0,∴t=32,即当t=32秒时,PQ把梯形ABCD分成两部分的面积比为1:5.15.【解析】解:(1)是定值,∵四边形ABCD为正方形,∴AC⊥BD.∵PF⊥BD,∴PF∥AC,同理PE∥BD.∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=45°,∴PF=BF.∴PE+PF=OF+FB=OB=acos45°=a.(2)∵四边形ABCD为正方形,∴AC⊥BD.∵PF⊥BD,∴PF∥AC,同理PE∥BD.∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=45°,∴PF=BF.∴PE﹣PF=OF﹣BF=OB=acos45°=a.16.【解析】已有三个小正方形的边长为x,y,z,我们通过x,y,z表示其余正方形的边长依次填在每个正方形中,它们是x+y,x+2y,x+3y,4y,x+7y,2x+y,2x+y+z,4x+4y-z,4x+4y-2x及5x-2y+z.因矩形对边相等,所以得11x+3y=7x+16y-z及8x+8y-3z=6x+5y+z.化简上述的两个方程得到z=13y-4x,4z=2x+3y,消去z得18x=49y.因为18与49互质,所以x、y的最小自然数解是x=49,y=18,此时z=38.以x=49,y=18,z=38代入矩形长、宽的表达式11x+3y及8x+8y-3z,得长、宽分别为593和422.此时得最小面积值是593×422=250246.。
四边形各边中点连线得到的四边形
四边形各边中点连线得到的四边形1. 引言在几何学中,四边形是研究的重要内容之一。
而四边形各边中点连线得到的四边形,是一个深受关注的话题。
在本文中,我们将从简单的概念开始,逐步深入探讨这一主题,并共享个人的观点和理解。
2. 简单概念让我们先来了解一下四边形各边中点连线得到的四边形的基本概念。
对于任意一个四边形,我们将相邻边的中点用线段连接起来,就会得到一个新的四边形。
这个新的四边形称为原四边形的中位四边形。
通过观察和实践,我们可以发现,无论原四边形是什么形状,中位四边形都是平行四边形。
这是一个非常有趣的现象,也是我们进一步探讨的出发点。
3. 深入探讨接下来,让我们进一步深入探讨四边形各边中点连线得到的四边形。
我们可以利用坐标轴来进行具体的分析和计算。
通过设定各边的坐标,并计算出相邻边的中点坐标,可以更直观地观察中位四边形的性质。
通过这样的方法,我们可以得到更多关于中位四边形的性质和规律。
中位四边形的面积是原四边形面积的一半,对角线相等并且互相平分,对角线互相垂直等。
这些性质不仅可以帮助我们更好地理解中位四边形,也可以应用到解题和证明中。
4. 个人观点和理解在我看来,四边形各边中点连线得到的四边形是几何学中非常有趣的一个话题。
通过观察、探究和计算,我们可以发现许多有趣的性质和规律。
这不仅培养了我们的观察力和思维能力,也拓展了我们的数学视野。
这也让我深刻地感受到数学的美妙之处,让我愈发喜爱数学和几何学。
5. 总结与回顾通过本文的探讨,我们了解了四边形各边中点连线得到的四边形的基本概念和性质。
我们通过从简到繁地探讨,深入理解了中位四边形的性质和规律。
个人观点和理解也让我们对这一话题有了更深刻的认识。
希望本文能够对读者有所帮助,也能够引发更多对几何学的兴趣和热爱。
通过以上方式,我们依次展开了对指定主题的探讨,并在文章中多次提及了指定的主题文字,以确保文章质量。
围绕主题展开讨论,并结合个人观点和理解,使得文章深入且有启发性。
初中数学知识点:顺次连接特殊的平行四边形各边中点得到的四边形的形状
初中数学知识点:顺次连接特殊的平行四边形各边中点得到
的四边形的形状
(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.
(2)顺次连接矩形各边中点得到的四边形是菱形.
(3)顺次连接菱形各边中点得到的四边形是矩形.
(4)顺次连接正方形各边中点得到的四边形是正方形.
要点诠释:新四边形由原四边形各边中点顺次连接而成.
(1)若原四边形的对角线互相垂直,则新四边形是矩形.
(2)若原四边形的对角线相等,则新四边形是菱形.
(3)若原四边形的对角线垂直且相等,则新四边形是正方形.
第1 页共1 页。
数学人教版八年级下册平行四边形课题活动——中点四边形
第十七章平行四边形复习教学设计五大连池市第一中学孙洪臣教材分析:本课是《平行四边形》活动课,在平行四边形判定和性质学习的基础上利用类比的方法提出了四边形各边中点所成图形的形状、周长、面积问题,让学生经历猜想、证明的过程,并形成一般性结论,以发展学生的创新精神和实践能力。
教学中应让学生充分思考和体验,使学生思维能力、情感态度、价值观等协同发展。
教学方法:尝试发现、自主探究,小组合作教具媒体:三角尺、课程ppt一、教学目标1. 知识技能:掌握中点四边形的性质,能快速判断形状,会计算周长和面积。
2. 数学思考: 经历观察、实验、猜想、证明等活动过程,引导学生发展合情推理能力、初步的演绎推理能力和语言表达能力。
体会证明过程中所运用的归纳概括以及转化等思想方法。
3. 问题解决:通过问题解决,使学生初步了解把“未知”化为“已知”,把复杂问题化为简单问题的转化思想,形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。
4. 情感态度:在合作中体验探索,收获快乐,在学习活动中获得成功的体验,在推理中感悟数学内在美,巩固逻辑思维。
发展学生的类比转化等思维,培养学生的探索精神和合作意识。
二、学情分析:初二学生已具备了一定的逻辑思维能力,但是思维依赖于具体形象直观,综合运用知识的能力较弱,特别是及时归纳总结,新旧知识联系起来的能力较弱,为此在教学中采取小组合作、探索发现等教学方法,引导,总结,训练。
对于复杂几何语言的应用,以及逻辑程度较高的几何问题的论证,教学中应予以简单明白,层层深入的分析。
三、教学重点难点重点是掌握中点四边形的性质,能快速判断形状,会计算周长和面积。
难点是中点四边形性质在具体问题中的应用与拓展。
四、教学过程:【活动一】、创设情景上几节课我们研究了平行四边形、矩形、菱形、正方形等几类特殊的四边形,这节课我们来探讨一类更为特殊的四边形-----中点四边形。
【学生活动】学生思考,带着问题进入学习。
平行四边形知识点总结
平行四边形知识点总结平行四边形:定义:有两组对边分别平行的四边形是平行四边形。
表示:平行四边形用符号“▱”来表示。
平行四边形性质:平行四边形对边相等;平行四边形对角相等;平行四边形对角线互相平分。
平行四边结论:⑴连接平行四边形各边的中点所得图形是平行四边形。
⑵如果一个四边形的对角线互相平分,那么连接这个四边形的中点所得图形是平行四边形。
⑶平行四边形的对角相等,两邻角互补。
⑷过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
⑸平行四边形是中心对称图形,对称中心是两对角线的交点。
平行四边形的面积等于底和高的积,即S=ah,其中a可以是平行四边形的任何一边,h必须是a边到其对边的距▱ABCD离,即对应的高。
平行四边形的判定:两组对边分别平行的四边形是平行四边形。
两组对角分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
从对角线看:对角钱互相平分的四边形是平行四边形。
从角看:两组对角分别相等的四边形是平行四边形。
若一条直线过平行四边形对角线的交点,则直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分平行四边形的面积。
三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线。
三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。
特殊的平行四边形矩形:有一个角是直角的平行四边形叫做矩形,也说是长方形。
矩形的性质:矩形的四个角都是直角;矩形的对角线相等。
矩形的对角线相等且互相平分。
特别提示:直角三角形斜边上的中线等于斜边的一半。
矩形具有平行四边形的一切性质。
矩形的判定方法有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形;菱形:有一组邻边相等的平行四边形叫做菱形(菱形是平行四边形;一组邻边相等)性质:菱形的四条边都相等。
菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角。
菱形的判定方法:一组邻边相等的平行四边形是菱形;对角线互相垂直平分的平行四边形是菱形;对角线互相垂直平分的四边形是菱形;四条边都相等的四边形是菱形。
八年级数学下册专题05平行四边形六大模型(原卷版)
专题05 平行四边形六大模型模型一:中点四边形模型二:梯子模型模型三:十字架模型四:对角互补模型五:半角模型模型六:与正方形有关三垂线模型一:中点四边形中点四边形:依次连接四边形四边中点连线的四边形得到中点四边形O。
结论1: 点M、N、P、Q 是任意四边形的中点,则四边形MNPQ 是平行四边形结论2: 对角线垂直的四边形的中点四边形是矩形结论3:对角线相等的四边形的中点四边形是菱形结论4: 对角线垂直且相等的四边形的中点四边形是正方形【典例1】(2024•长沙模拟)如图,E、F、G、H分别是四边形ABCD四条边的中点,则四边形EFGH一定是()A.平行四边形B.矩形C.菱形D.正方形(2023•阳春市二模)若顺次连接四边形ABCD各边的中点所得的四边形是菱形,【变式1-1】则四边形ABCD的两条对角线AC,BD一定是()A.互相平分B.互相平分且相等C.互相垂直D.相等【变式1-2】(2023•铜川一模)如图,AC、BD是四边形ABCD的两条对角线,顺次连接四边形ABCD各边中点得到四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A.AC⊥BD B.AB=CD C.AB∥CD D.AC=BD【变式1-3】(2023春•宿豫区期中)顺次连接对角线相等且垂直的四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形模型二:梯子模型如下图,一根长度一定的梯子斜靠在竖直墙面上,当梯子底端滑动时,探究梯子上某点(如中点)或梯子构成图形上的点的轨迹模型(图2),就是所谓的梯子模型。
[考查方向]已知一条线段的两个端点在坐标轴上滑动,求线段最值问题。
模型一:如图所示,线段AC的两个端点在坐标轴上滑动,LACB= ZAOC= 90°AC的中点为P,连接OP、BP、OB,则当O、P、B三点共线时,此时线段OB最大值。
即已知RtAACB中AC、BC的长,就可求出梯子模型中OB的最值模型二: 如图所示,矩形ABCD 的顶点A、B分别在边OM、ON上,当点A在边OM上运动时,点B随之在ON上运动,且运动的过程中矩形ABCD形状保持不变,AB的中点为P,连接OP、PD、OD,则当O、P、D三点共线时,此时线段OD 取最大值【典例2】如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM、ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=6,BC =2.运动过程中点D到点O的最大距离是.【变式2-1】如图,在Rt△ABC中,∠BAC=90°,AB=1,AC=4,点A在y轴上,点C在x轴上,则点A在移动过程中,BO的最大值是.【变式2-2】如图,∠MEN=90°,矩形ABCD的顶点B,C分别是∠MEN两边上的动点,已知BC=10,CD=5,点D,E之间距离的最大值是.模型三:十字架第一种情况:过顶点在正方形ABCD中,AE⊥BF,可得AE=BF,借助于同角的余角相等,证明△BAF≌△ADE(ASA)所以AE=BF第二种情况:不过顶点在正方形ABCD中,E,F,G,H分别为AB,BC,CD,DA边上的点,其中:EG⊥FH,可得EG=FH也可以如下证明在正方形ABCD中,E,F,G,H分别AB、BC、CD、DA边上的点,其中:EG⊥FH,可得EG=FH【典例3】(2023春•商南县校级期末)如图,在正方形ABCD中,E,F分别是AB,BC的中点,CE,DF相交于点G,连接AG,求证:(1)CE⊥DF.(2)∠AGE=∠CDF.【变式3-1】(2023•黄石)如图,正方形ABCD中,点M,N分别在AB,BC上,且BM=CN,AN与DM相交于点P.(1)求证:△ABN≌△DAM;(2)求∠APM的大小.【变式3-2】(2023秋•惠阳区校级月考)如图1,已知正方形ABCD和正方形AEFG有公共顶点A,连接BE,DG.(1)请判断BE与DG的数量关系与位置关系,并证明你的结论.(2)如图2,已知AB=4,,当点F在边AD上时,求BE的长.【变式3-3】(2023春•滨州期末)已知ABCD是一个正方形花园.(1)如图1,E、F是它的两个门,且DE=CF,要修建两条路BE和AF,问这两条路等长吗?为什么?(2)如图2,在正方形四边各开一个门E、F、G、H,并修建两条路EG和FH,使得EG⊥FH,问这两条路等长吗?为什么?模型四:对角互补对角互补模型:即四边形或多边形构成的几何图形中,相对的角互补。
探究中点四边形
探究中点四边形在人教版八年级数学课本的复习题18中,有一道关于中点四边形的习题。
现在,我们将来探究一下中点四边形的问题。
【探索】依次连接任意四边形各边中点所得的四边形称为中点四边形。
(1)任意四边形的中点四边形是什么形状?为什么?(2)任意平行四边形的中点四边形是什么形状?为什么?(3)任意矩形菱形和正方形的中点四边形分别是什么形状?为什么?(4)这些中点四边形的周长和面积是什么?1.不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形设有一任意四边形ABCD,AB中点为E,BC中点F,CD中点为G,AD中点H,连接四边形EFGH,则四边形EFGH为中点四边形,连接BD∵△ABD中,E,H是AB和AD中点∴EH是△ABD的中位线∴EH∥BD,EH=1/2BD同理FG∥BD,FG=1/2BD∴EH∥FG,EH=FG∴平行四边形EHGF∴任意四边形的中点四边形的形状都是平行四边形【结论】(1)如果该四边形对角线互相垂直,则中点四边形为矩形。
(2)如果该四边形对角线相等,则中点四边形为菱形。
(3)如果该四边形对角线互相垂直且相等,则中点四边形为正方形。
2. 中点四边形的每个边都是原四边形对角线的一半,所以周长是原四边形对角线的一半。
3.中点四边形的面积为原四边形面积的一半。
设四边形ABCD,AB,BC,CD,DA的中点分别是E,F,G,H连接四边形的两条对角线AC,BD交与点O连接EO,FO,GO,HO在三角形ABD中EH是中位线,与AC交与点P所以 EH//BD所以 AP/PO=AE/EB=1,即AP=PO在三角形AEO中 S三角形EPO=1/2S三角形AEO同理:S三角形HPO=1/2S三角形AHO……四边形EFGH的八个小三角形都是对应三角形面积的二分之一所以四边形EFGH的面积是四边形ABCD面积的二分之一即顺次连接任意四边形各边中点所成的四边形面积是原四边形面积的二分之一在这道题中,有中点,可考虑利用中位线定理,构造中点四边形。
空间四边形连接四个中点得到的四边形
空间四边形连接四个中点得到的四边形空间四边形连接四个中点得到的四边形在几何学中,空间四边形连接四个中点得到的四边形是一个非常有趣的概念。
通过连接四个中点,我们可以得到一个新的四边形,这个四边形有着独特的性质和特征。
在本文中,我将分享关于这个概念的深度和广度的探讨,并从多个角度对这个主题进行全面评估。
1. 空间四边形连接四个中点得到的四边形的定义让我们来定义一下这个概念。
当我们在空间中有一个四边形,然后连接这个四边形的四个中点,我们可以得到一个新的四边形。
这个新的四边形有着特殊的形状和性质,我们将在接下来的内容中进行详细的分析和讨论。
2. 连接四个中点得到的四边形的性质接下来,让我们来探讨一下连接四个中点得到的四边形的性质。
这个四边形是一个平行四边形,这意味着它的对边是平行的。
这个四边形的对角线相互平分,也就是说,对角线的交点是这个四边形的中点。
这个四边形还有着许多其他的特征,如内角和为180度等,这些特性使得这个四边形在几何学中具有重要的意义。
3. 从简到繁,由浅入深的探讨在这里,我将从简到繁,由浅入深地对这个主题进行探讨。
我将介绍这个概念的基本定义和性质,然后逐步深入到更加复杂和深刻的内容。
通过这种方式,我希望读者能够更加全面地理解这个主题,并且能够更加深入地掌握其中的知识点和技巧。
4. 个人观点和理解对于我个人来说,空间四边形连接四个中点得到的四边形是一个非常有意思的概念。
这个概念不仅仅在几何学中有着重要的应用,而且还在我日常生活中有着一定的启发意义。
通过对这个概念的深入研究和理解,我不仅对几何学有了更深刻的认识,而且还培养了我在解决问题时的逻辑思维能力。
5. 总结与回顾在这篇文章的结尾,我将对这个主题进行总结和回顾。
通过全面的分析和深入的探讨,我们对空间四边形连接四个中点得到的四边形这个概念有了更加清晰和深刻的理解。
这个四边形的性质和特征使得它在几何学中具有着重要的地位,而对于我们个人而言,对这个概念的理解也将会在我们的日常生活和学习中发挥重要的作用。
四边形中点连线构成的四边形面积
四边形中点连线构成的四边形面积示例文章篇一:《神奇的四边形中点连线》嘿,同学们!你们有没有想过四边形中点连线构成的四边形会有什么神奇的特点?反正我是被这个问题深深吸引啦!有一次上数学课,老师突然就提到了这个话题。
我当时就懵了,这是啥呀?可看着老师在黑板上画来画去,我也跟着好奇起来。
老师先画了一个普通的四边形,然后找出它四条边的中点,再把这些中点连起来。
哇塞!新的四边形就出现啦!那这个新四边形的面积和原来的四边形面积有啥关系呢?老师让我们小组讨论,我赶紧和同桌还有前后桌的小伙伴们七嘴八舌地说起来。
“哎呀,这可怎么算呀?”同桌皱着眉头说。
“别急别急,咱们好好想想。
”我安慰他。
“我觉得新四边形的面积肯定比原来的小。
”前桌的同学大胆猜测。
“那小多少呢?”后桌的同学追问。
我们都陷入了沉思。
这时候,我突然想到,如果把原来的四边形分成几个三角形,会不会有新发现呢?我把这个想法一说,大家都觉得可以试试。
于是,我们又开始在本子上画图、计算。
经过一番努力,我们好像有点眉目啦!你们猜怎么着?原来连接四边形中点得到的新四边形,它的面积是原来四边形面积的一半呀!这也太神奇了吧!就好像一个大蛋糕被平均分成了两份,新四边形就占了其中一份。
那为什么会这样呢?老师给我们讲了其中的道理,可我还是有点似懂非懂。
不过没关系,我知道只要我继续努力学习,总有一天能完全明白的。
通过这次探索,我明白了数学可真是个神奇又有趣的世界,里面藏着好多好多的秘密等着我们去发现呢!难道你们不想一起去探索吗?我的观点是:虽然这次对四边形中点连线构成的四边形面积的研究让我还有些迷糊的地方,但它激发了我对数学的更大兴趣,我一定要把它搞清楚!示例文章篇二:哎呀,这题目可真把我难住啦!四边形中点连线构成的四边形面积,这到底是个啥呀?让我好好想想啊。
就好像我们玩拼图,一个大四边形被分成了四个小块,然后把每个小块的中点连起来,又组成了一个新的四边形。
那这个新四边形的面积和原来的大四边形又有啥关系呢?我跑去问我的小伙伴小明:“小明,你说四边形中点连线构成的四边形面积咋算呀?”小明挠挠头说:“我也不太清楚呢,感觉好复杂呀!”我又去问了学习特别好的小红,小红眨眨眼睛说:“这得用一些数学知识来推导呢。
由四条线段围成的图形叫四边形对吗
由四条线段围成的图形叫四边形对吗是的,根据四边形的定义知,四条线段依次首尾相接围成的封闭的平面图形叫四边形。
依次连接任意四边形上的中点所得四边形叫中点四边形,中点四边形都是平行四边形。
1、凸四边形
四个顶点在同一平面内,对边不相交且做出一边所在直线,其余各边均在其同侧。
平行四边形(包括:普通平行四边形,矩形,菱形,正方形)。
梯形(包括:普通梯形,直角梯形,等腰梯形)。
凸四边形的内角和外角和均为XXX度。
2、凹四边形
凹四边形四个顶点在同一平面内,对边不相交且做出一边所在直线,其余各边有些在其异侧。
依次连接四边形各边中点所得的四边形称为中点四边形。
不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。
中点四边形的形状取决于原四边形的对角线。
若原四边形的对角线垂直,则中点四边形为矩形;若原四边形的对角线相等,则中点四边形为菱形:若原四边形的对角线既垂直又相等,则中点四边形为正方形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《各种四边形各边中点形成什么图形》专项练习
中点四边形定义:顺次连接四边形各边中点所得的四边形
解决办法:连接对角线,利用三角形中位线定理证明
一、顺次连接四边形各边中点所得的四边形是平行四边形
已知:四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点
求证:四边形EFGH是平行四边形(提示:连接AC)
利用三角形中位线证明,两组对边分别平行的四边形是平行四边形
二、顺次连接平行四边形各边中点所得的四边形是平行四边形
已知:平行四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点求证:四边形EFGH是平行四边形(提示:连接AC)
利用三角形中位线证明,一组对边培训且相等的四边形是平行四边形
三、顺次连接矩形各边中点所得的四边形是菱形
已知:矩形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点
求证:四边形EFGH是菱形(提示:连接AC、BD)
利用矩形对角线相等、中位线性质可得四边相等的四边形是菱形
四、顺次连接菱形各边中点所得的四边形是矩形
已知:菱形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点
求证:四边形EFGH是矩形(提示:连接AC、BD)
利用菱形对角线垂直、中位线性质可得四个角是直角的四边形是矩形
五、顺次连接正方形各边中点所得的四边形是正方形
已知:正方形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点
求证:四边形EFGH是正方形
利用正方形对角线垂直相等、中位线性质可得四边相等又有一直角的四边形是正方形六、顺次连接等腰梯形各边中点所得的四边形是菱形
已知:梯形ABCD中,AD//BC AB=DC, 点E,F,G,H分别是边AB,BC,CD,DA的中点求证:四边形EFGH是菱形(提示:连接AC,BD)
利用梯形对角线相等、中位线性质可得四边相等的四边形是菱形。