水热溶剂热合成
合集下载
水热溶剂热合成学习材料-(2)-水热溶剂热合成基础详解

氢氧化物到金属氧化物的转变一般为脱水反应
7. 水热分解反应: 水热条件下物质分解而形成新化合物
如: FeTiO3 FeO + TiO2 8. 水热提取反应: 在水热或溶剂热条件下从化合物(一般 为矿物)中提取金属的过程
9. 氧化反应: 水热或溶剂热条件下金属单质转变成化合 物的反应
10. 烧结反应: 水热或溶剂热条件下,达到烧结目的的反 应. 如某些陶瓷材料的水热制备
群
增加而升高。但在一般情况下,温度的影响是主要的
成 合
热
剂
溶
热
水
大
科
(7) 压强与温度、填充度关系密切(自生压力)
群 成 合 热 剂 溶 热 水 大 科
水热条件下水的作用 (1)溶剂作用,提高物质的溶解度 (2)传递压力的作用 (3)促进反应的作用 (4)有时作为反应物参与反应 但某些时候会腐蚀反应容器
成核特征:
(1) 成核速率随过冷程度或过饱和程度的增加而增加,
但同时温度下降, 体系黏度下降, 反应物扩散速度减小,
成核速率降低
群
成
因此随温度变化成核速率曲线为抛物线,存在一极大值
合 热
剂
溶
热
水
大
科
(2) 存在一个诱导期, 在此期间检测不到晶核的存在
成核发生在溶液与某种组分的界面上----即形成一个结 晶中心。当条件适宜时, 成核速率随溶液过饱和程度增 加迅速加快。
目前的溶剂热反应多用于二六族化合物的合成
国内钱逸泰课题组利用溶剂热反应合成了大量的硫化
群 成
物、硒化物,徐如人课题组利用溶剂热合成了系列低
合 热
维(如一维链状、二维层状)化合物
剂 溶
第三章-水热和溶剂热法

水热、溶剂热反应的基本类型
(1)合成反应
通过数种组分在水热或溶剂热条件下直接化 合或经中间态发生化合反应。 利用此类反应可合成各种多晶或单晶材料。
Nd2O3 + H3PO4 NdP5O14 CaO· nAl2O3 + H3PO4 Ca(PO4)3OH + AlPO4 La2O3 + Fe2O3 + SrCl2 (La, Sr)FeO3 FeTiO3 + KOH K2O· nTiO2 (n = 4, 6)
例如
Cr + H2O Cr2O3 + H2 Zr + H2O ZrO2 + H2 M + n L MeLn (L = 有机配体) 使溶胶、凝胶(so1、gel)等非晶 态物质晶化的反应
(11)晶化反应 例如
CeO2· xH2O CeO2 ZrO2· H2O M-ZrO2 + T-ZrO2 硅铝酸盐凝胶 沸石
四、有机溶剂的性质标度
有机溶剂种类多,性质差异大,需进行溶剂 选择。 溶剂会使反应物溶解或部分溶解,生成溶剂 合物,这会影响化学反应速率。 在合成体系中,反应物在液相中的浓度、解 离程度,及聚合态分布等都会影响反应过程。
§3.2 水热、溶剂热体系的成核与晶体生长
(6)脱水反应
一定温度、压力下物质脱水结晶的反应 例如
(7)分解反应
分解化合物得到结晶的反应
例如 FeTiO FeO + TiO 3 2 ZrSiO4 + NaOH Na2SiO3 + ZrO2 FeTiO3 + K2O FeO + K2O· nTiO2 (n = 4, 6)
(8)提取反应
第5章 水热与溶剂热合成

阳极氧化铝-AAO模板制备
将高纯铝片线切割成30mm× 20 mm 片,于500℃ 退火4 h以消除残余内应力.经过无水乙醇除油、氢 氧化钠除氧化膜和蒸馏水清洗干净后,在无水乙醇 和HC1O4的混合液(体积比4:1)中进行电化学抛 光.然后以30 g/L H PO4为电解液,常温(23℃)下, 120 V直流电压恒压阳极氧化1 h.将一次氧化过的 铝片在1.8%H2CrO4和6.0%H PO4混合溶液(体积比 1:1)中浸泡16 h,去除表面第一次氧化形成的氧化 膜.除膜后的铝片进行第二次阳极氧化,氧化条件 与第一次的相同,只是氧化时间延长至2 h.最后在 30℃ 的5.0%H3PO4溶液中扩孔10 min,从而得到 AAO模板。
1.3 反应的基本类型
(7)分解反应 在水热与溶剂热条件下分解化合 物得到结晶的反应。例如
(8)提取反应 在水热与溶剂热条件下从化合物 (或矿物)中提取晶届的反应。例如:钾矿石中钾的水 热提取,重灰石中钨的水热提取。
1.3 反应的基本类型
(9)氧化反应 金属和高温高压的纯水、水溶液、有 机溶剂得到新氧化物、配合物、金属有机化合物的反应。 超临界有机物种的全氧化反应。例如:
(13)烧结反应 在水热与溶剂热条件下,实现烧结 的反应。例如:制备含有OH-、F-等挥发性物质的陶 瓷材料。 (14)反应烧结 在水热与溶剂热条件下同时进行 化学反应和烧结反应。例如:氧化铬、单斜氧化锆、 氧化铝—氧化锆复合体的制备。 (15)水热热压反应 在水热热压条件下,材料固 化与复合材料的生成反应。例如:放射性废料处理、 特殊材料的固化成型、特种复合材料的制备。
第五章水热与溶剂热合成
水热与溶剂热合成是无机合成化学的一个 重要分支。
水热合成研究最初从模拟地矿生成开始到 沸石分子筛和其它晶体材料的合成已经历了 一百多年的历史。
水热和溶剂热法

机化合物以及特种凝聚态材料,如超微粒、溶胶与凝胶、非晶态、无机膜、单晶等合成的越来越重要的途径。
水热合成与其它合成法的差别:
• 利用水热法合成出来的粉末一般结晶度非常高,并且通过优化 合成条件可以不含有任何结晶水。
• 它同其他的溶液法粉末合成技术相比,例如溶胶一凝胶(sol- gel)法以及化学沉淀法,具有明显的区别:从合成条件来说, 主要区别在于它们的合成温度和压力明显不同。水热法的温度 范围一般在100~374℃(水的临界温度)之间,压力从环境压 力到 21.7 Mpa(水的临界压力)。不需煅烧可直接获得粉体, 相比之下,溶胶一凝胶和化学沉淀法一般都需要600℃以上煅 烧才能得到陶瓷粉末。
• 这一类合成方法有时也被称为水热反应合成,以区别普通的仅 仅是溶质再结晶过程的水热合成。不过它们的界限经常非常模 糊。
水热法合成的主要驱动力
• 水热法合成陶瓷粉末的主要驱动力是氧化物在不同状态下溶解 度的不同。
例如普通的氧化物粉末(有较高的晶体缺陷密度)、无 定型氧化物粉末、氢氧化物粉末、溶胶-凝胶粉末等在溶剂中 的溶解度一般比高结晶度、低缺陷密度的粉末溶解度大。在水 热反应的升温升压过程中,前者的溶解度不断增加,当达到一 定的浓度时,就会沉淀出后者。
• 因此水热法粉末合成的过程实质上就是一个溶解/再结晶的过 程。
分类
研究表明这些沸石的生成是通过硅酸盐物种围绕有机阳离子聚合并生成三维结构的。
,且2反00应2,后14需(2等1按)高, 1温压53釜度7完-1划5全4冷0分. 却:后才可打开,以防压力突然释放,热液外溅造成危险。 人但工这水 并晶不、是刚说• 玉在如、中方性按解或水石酸、性热红溶与锌液矿中溶、就剂蓝无石法热棉进反等行应上水百热进种合行以成上。的晶温体的度生来长都划已分经发,展可到分工业为化亚的规临模界。 和 超 临 界 合 成 反 应 。 图水3热-1法7的所温得度同• 范心在围纳一米较般电低在缆1的的0S0温E~M3度和74T℃范E(M围照水片的( 1临0界0温~度)2之4 0间℃,压) 力属从于环亚境压临力界到 2合1. 成 高水含量的沸• 石如一般果要是求低在温高合成温,高而低压水条含件量的下沸,石一作般为要求反高应温合介成质。的 水 在超 临 界 状 态 下, 利 用 水 和 反应 物 在 高 温 高压 ( 1 00 0 ℃ , 0 .3 G Pa) 1p4H0升-1高80会ºC缩下短2成4水小核时时热间条,件加快下晶的化速特度殊,但性同质时会进降行低产的率合。成 为 超 临 界 合 成 反 应 。
水热合成与其它合成法的差别:
• 利用水热法合成出来的粉末一般结晶度非常高,并且通过优化 合成条件可以不含有任何结晶水。
• 它同其他的溶液法粉末合成技术相比,例如溶胶一凝胶(sol- gel)法以及化学沉淀法,具有明显的区别:从合成条件来说, 主要区别在于它们的合成温度和压力明显不同。水热法的温度 范围一般在100~374℃(水的临界温度)之间,压力从环境压 力到 21.7 Mpa(水的临界压力)。不需煅烧可直接获得粉体, 相比之下,溶胶一凝胶和化学沉淀法一般都需要600℃以上煅 烧才能得到陶瓷粉末。
• 这一类合成方法有时也被称为水热反应合成,以区别普通的仅 仅是溶质再结晶过程的水热合成。不过它们的界限经常非常模 糊。
水热法合成的主要驱动力
• 水热法合成陶瓷粉末的主要驱动力是氧化物在不同状态下溶解 度的不同。
例如普通的氧化物粉末(有较高的晶体缺陷密度)、无 定型氧化物粉末、氢氧化物粉末、溶胶-凝胶粉末等在溶剂中 的溶解度一般比高结晶度、低缺陷密度的粉末溶解度大。在水 热反应的升温升压过程中,前者的溶解度不断增加,当达到一 定的浓度时,就会沉淀出后者。
• 因此水热法粉末合成的过程实质上就是一个溶解/再结晶的过 程。
分类
研究表明这些沸石的生成是通过硅酸盐物种围绕有机阳离子聚合并生成三维结构的。
,且2反00应2,后14需(2等1按)高, 1温压53釜度7完-1划5全4冷0分. 却:后才可打开,以防压力突然释放,热液外溅造成危险。 人但工这水 并晶不、是刚说• 玉在如、中方性按解或水石酸、性热红溶与锌液矿中溶、就剂蓝无石法热棉进反等行应上水百热进种合行以成上。的晶温体的度生来长都划已分经发,展可到分工业为化亚的规临模界。 和 超 临 界 合 成 反 应 。 图水3热-1法7的所温得度同• 范心在围纳一米较般电低在缆1的的0S0温E~M3度和74T℃范E(M围照水片的( 1临0界0温~度)2之4 0间℃,压) 力属从于环亚境压临力界到 2合1. 成 高水含量的沸• 石如一般果要是求低在温高合成温,高而低压水条含件量的下沸,石一作般为要求反高应温合介成质。的 水 在超 临 界 状 态 下, 利 用 水 和 反应 物 在 高 温 高压 ( 1 00 0 ℃ , 0 .3 G Pa) 1p4H0升-1高80会ºC缩下短2成4水小核时时热间条,件加快下晶的化速特度殊,但性同质时会进降行低产的率合。成 为 超 临 界 合 成 反 应 。
第五章 水热和溶剂热合成

5.1 水热与溶剂热合成基础 5.2 水热与溶剂热体系的成核与晶体生长 5.3 功能材料的水热与溶剂热合成 5.4 水热条件下的海底:生命的摇篮? 5.5 超临界水—新型的反应体系 5.6 水热与溶剂热合成技术
§ 5.1 水热与溶剂热合成基础
5.1.1 基本概念
水热法 (Hydrothermal Synthesis) ➢ 在特制的密闭反应器(高压釜)中, ➢ 采用水溶液作为反应体系, ➢ 通过对反应体系加热、加压(或自生蒸气
③ 能够生成低熔点化合物、高蒸气压且不能在 融体中生成的物质、高温分解相。
④ 有利于生长极少缺陷、取向好、完美的晶体, 且合成产物结晶度高以及易于控制晶体的粒度。
⑤ 有利于低价态、中间价态与特殊价态化台物 的生成,并能均匀地进行掺杂。
5.1.3 反应的基本类型(15类)
(1) 合成反应
通过数种组分直接化合或经中间态发生化合 反应,利用此类反应可合成各种多晶或单晶材料。 例如:
D、密度随温度升高而降低,压力升高而增加
1000℃ ,15~20GPa,d=1.7~1.9g/cm3 ,若完全离解 ,相当于熔融盐。
反应压强与反应容器中原始溶剂的填充度有 关。反应混合物占密闭反应釜空间的体积分 数称为填充度。
➢ 反应温度在 500 ℃以下,
➢ 通常填充度为 50%~80% ,
提交
单选题 1分
此题未设置答案,请点击右侧设置按钮
与教室授课相比,你认为雨课堂授课效果怎么样?
A 更好 B 相同 C 差一点 D 差很多
提交
主观题 10分 写下你对本课程雨课堂授课最满意和不满意的地方。
正常使用主观题需2.0以上版本雨课堂
作答
水热与溶剂热合成是无机合成化学的一个 重要分支。
§ 5.1 水热与溶剂热合成基础
5.1.1 基本概念
水热法 (Hydrothermal Synthesis) ➢ 在特制的密闭反应器(高压釜)中, ➢ 采用水溶液作为反应体系, ➢ 通过对反应体系加热、加压(或自生蒸气
③ 能够生成低熔点化合物、高蒸气压且不能在 融体中生成的物质、高温分解相。
④ 有利于生长极少缺陷、取向好、完美的晶体, 且合成产物结晶度高以及易于控制晶体的粒度。
⑤ 有利于低价态、中间价态与特殊价态化台物 的生成,并能均匀地进行掺杂。
5.1.3 反应的基本类型(15类)
(1) 合成反应
通过数种组分直接化合或经中间态发生化合 反应,利用此类反应可合成各种多晶或单晶材料。 例如:
D、密度随温度升高而降低,压力升高而增加
1000℃ ,15~20GPa,d=1.7~1.9g/cm3 ,若完全离解 ,相当于熔融盐。
反应压强与反应容器中原始溶剂的填充度有 关。反应混合物占密闭反应釜空间的体积分 数称为填充度。
➢ 反应温度在 500 ℃以下,
➢ 通常填充度为 50%~80% ,
提交
单选题 1分
此题未设置答案,请点击右侧设置按钮
与教室授课相比,你认为雨课堂授课效果怎么样?
A 更好 B 相同 C 差一点 D 差很多
提交
主观题 10分 写下你对本课程雨课堂授课最满意和不满意的地方。
正常使用主观题需2.0以上版本雨课堂
作答
水热与溶剂热合成是无机合成化学的一个 重要分支。
第三章 水热与溶剂热合成法

控制反应釜下半部(溶解区)温度在360-380°C之
间,上半部(结晶区)在330-350°C之间
釜内压力约1500kg/cm2。 在反应釜的下半部是SiO2的饱和溶液,上升到上
半部时,因温度降低而使SiO2呈过饱和状态,而
导致α-SiO2单晶的生成。
51
四、复合氧化物的合成
降低反应温度,节省能源; 能够以单一反应步骤完成,不需要研磨和焙烧步
15
1.2 超临界流体的特点:
具有液体的溶解特性以及气体的传递特性
•
• • •
粘度约为普通液体的0.1~0.01;
扩散系数约为普通液体的10~100倍; 密度比常压气体大102~103倍。 电离常数 在不改变化学组成的情况下,SCF性质可由压
力来连续调节
16
二、超临界水(SCW)
温度高于临界温度374°C,
影响反应速度、产物结构、晶化机理
46
5. 搅拌与静止
搅拌能有效的改变扩散过程和晶化动力学。 搅拌体系合成的沸石晶体通常较小 搅拌有时可有选择性地晶化
47
二、纳米材料的水热、溶剂热合成
缺点:不能合成一些遇水分解或在水中不存在的物种
48
研究方向 (1)粉体颗粒形貌的控制;
(2)粉末颗粒度及分散度的控制;
流动性、渗透性和传递性能好,利于传质和热交换
20
三、超临界水的特点:
①完全溶解有机物
②完全溶解空气或氧气
③完全溶解气相反应的产物
④对无机物溶解度不高
⑤具有很好的传质、传热性能
总体来看,水在超临界区的行为更像一个 中等极性的有机溶剂
21
超临界水热合成无机功能材料
22
四、超临界水热合成技术的优点
间,上半部(结晶区)在330-350°C之间
釜内压力约1500kg/cm2。 在反应釜的下半部是SiO2的饱和溶液,上升到上
半部时,因温度降低而使SiO2呈过饱和状态,而
导致α-SiO2单晶的生成。
51
四、复合氧化物的合成
降低反应温度,节省能源; 能够以单一反应步骤完成,不需要研磨和焙烧步
15
1.2 超临界流体的特点:
具有液体的溶解特性以及气体的传递特性
•
• • •
粘度约为普通液体的0.1~0.01;
扩散系数约为普通液体的10~100倍; 密度比常压气体大102~103倍。 电离常数 在不改变化学组成的情况下,SCF性质可由压
力来连续调节
16
二、超临界水(SCW)
温度高于临界温度374°C,
影响反应速度、产物结构、晶化机理
46
5. 搅拌与静止
搅拌能有效的改变扩散过程和晶化动力学。 搅拌体系合成的沸石晶体通常较小 搅拌有时可有选择性地晶化
47
二、纳米材料的水热、溶剂热合成
缺点:不能合成一些遇水分解或在水中不存在的物种
48
研究方向 (1)粉体颗粒形貌的控制;
(2)粉末颗粒度及分散度的控制;
流动性、渗透性和传递性能好,利于传质和热交换
20
三、超临界水的特点:
①完全溶解有机物
②完全溶解空气或氧气
③完全溶解气相反应的产物
④对无机物溶解度不高
⑤具有很好的传质、传热性能
总体来看,水在超临界区的行为更像一个 中等极性的有机溶剂
21
超临界水热合成无机功能材料
22
四、超临界水热合成技术的优点
水热与溶剂热合成法

第三章 水热与溶剂热合成法
1
第一节 水热合成法合成原理
p19
一、水热合成的概念 (Hydrothermal Synthesis)
1.1 原理
在特制的密闭反应容器里,采用水溶液作为反应
介质,对反应容器加热,创造一个高温、高压的
反应环境,使通常难溶或不溶的物质溶解并重结
晶。
2
1.2 水热合成的温度范围 常温~1100°C;压强范围: 1~500MPa
36
前驱体 硝酸铅作为铅离子源,花状晶体为主的PbS 硫酸铅作为铅离子源,立方体状PbS晶体。
不同铅离子源时所得产物的SEM照片:
A) Pb(NO3)2,B) PbSO4
37
五、水热合成实验研究设计的基本原则 –1. 以溶液为反应物-考虑均匀性 –2. 创造非平衡条件-成胶与过饱和 –3. 尽量用新鲜沉淀 –4. 避免引入外来离子 –5. 尽量采用表面积大的固体粉末 –6. 利用晶化反应的模板剂和模板作用 –7. 选择合适的溶剂 –8. 尝试各种配料顺序
状晶体 33
反应温度
相同摩尔比(Pb2+/S2O32- = 1:4)和反应时间(5h) 不同温度下所得产物的SEM照片: (A) 80°C, (B) 120°C,150°C
34
反应时间 研究不同水热反应时间下产物的形貌,了解最终 产物的形貌演化过程。
相同摩尔比(Pb2+/S2O32- = 1:4)和反应温度(100°C),
19
2.5 SCW的扩散系数D:
D 1
高密度水:T D , p D 低密度水:T D , p D
SCW的扩散系数比普通水高10~100倍 流动性、渗透性和传递性能好,利于传质和热交换
20
1
第一节 水热合成法合成原理
p19
一、水热合成的概念 (Hydrothermal Synthesis)
1.1 原理
在特制的密闭反应容器里,采用水溶液作为反应
介质,对反应容器加热,创造一个高温、高压的
反应环境,使通常难溶或不溶的物质溶解并重结
晶。
2
1.2 水热合成的温度范围 常温~1100°C;压强范围: 1~500MPa
36
前驱体 硝酸铅作为铅离子源,花状晶体为主的PbS 硫酸铅作为铅离子源,立方体状PbS晶体。
不同铅离子源时所得产物的SEM照片:
A) Pb(NO3)2,B) PbSO4
37
五、水热合成实验研究设计的基本原则 –1. 以溶液为反应物-考虑均匀性 –2. 创造非平衡条件-成胶与过饱和 –3. 尽量用新鲜沉淀 –4. 避免引入外来离子 –5. 尽量采用表面积大的固体粉末 –6. 利用晶化反应的模板剂和模板作用 –7. 选择合适的溶剂 –8. 尝试各种配料顺序
状晶体 33
反应温度
相同摩尔比(Pb2+/S2O32- = 1:4)和反应时间(5h) 不同温度下所得产物的SEM照片: (A) 80°C, (B) 120°C,150°C
34
反应时间 研究不同水热反应时间下产物的形貌,了解最终 产物的形貌演化过程。
相同摩尔比(Pb2+/S2O32- = 1:4)和反应温度(100°C),
19
2.5 SCW的扩散系数D:
D 1
高密度水:T D , p D 低密度水:T D , p D
SCW的扩散系数比普通水高10~100倍 流动性、渗透性和传递性能好,利于传质和热交换
20
第四章水热与溶剂热合成介绍

第四章 水热与溶剂热合成
第一节 水热与溶剂热合成基础
1、合成化学与技术 水热与溶剂热合成是指在一定温度 (100~1000℃)和压强(1~100MPa) 条件下利用溶液中物质化学反应所进行 的合成。侧重于研究水热合成条件下物 质的反应性、合成规律以及产物的结构 和性质。可进行特殊化合物与材料的制 备、合成和组装。
容易控制反应的化学环境和操作 中间态、介稳态和特殊物相易于生成 例:1996年庞文琴教授用水热体系合成 JDF-L1(催化剂),目前是人工合成的 五配位钛化合物,具有良好的氧化催化 性能。美国学者合成金刚石。 钱逸泰教授在非水体系中合成了氮化镓、 金刚石、硫属化纳米晶。
4、复合氧化物与复合氟化物的合成
生长体表面活性中心的吸引,穿过生长表面的扩散层沉降 到石英体表面
影响石英晶体生长的因素
温度 dlnv/dT=c/RT2 压强:是原始填充度、温度和温差的函 数。提高压强生长速率加快。 过饱和度 v=kvS
在高温条件下,相应地提高填充度和溶液 的碱度可提高晶体的完整度
水热合成石英的装置
3、特殊结构、凝聚态与聚集态
氧化反应 沉淀反应 晶化反应 水解反应 烧结反应 水热热压反应 反应烧结
4、反应介质的性质
4.1 溶剂水的性质 高温加压下水热反应的特征: 使重要的离子间的反应加速 水解反应加剧 氧化还原电势明显变化
高温高压水热体系水性质
蒸汽压变高 密度变低 表面张力变低 粘度变低 离子积变高
2、合成特点
由于在水热与溶剂条件下反应物反应性能的改变、活性的提高,水热与溶剂热合 成方法有可能替代固相反应及难于进行的合成反应,形成一系列新的合成方法。
第一节 水热与溶剂热合成基础
1、合成化学与技术 水热与溶剂热合成是指在一定温度 (100~1000℃)和压强(1~100MPa) 条件下利用溶液中物质化学反应所进行 的合成。侧重于研究水热合成条件下物 质的反应性、合成规律以及产物的结构 和性质。可进行特殊化合物与材料的制 备、合成和组装。
容易控制反应的化学环境和操作 中间态、介稳态和特殊物相易于生成 例:1996年庞文琴教授用水热体系合成 JDF-L1(催化剂),目前是人工合成的 五配位钛化合物,具有良好的氧化催化 性能。美国学者合成金刚石。 钱逸泰教授在非水体系中合成了氮化镓、 金刚石、硫属化纳米晶。
4、复合氧化物与复合氟化物的合成
生长体表面活性中心的吸引,穿过生长表面的扩散层沉降 到石英体表面
影响石英晶体生长的因素
温度 dlnv/dT=c/RT2 压强:是原始填充度、温度和温差的函 数。提高压强生长速率加快。 过饱和度 v=kvS
在高温条件下,相应地提高填充度和溶液 的碱度可提高晶体的完整度
水热合成石英的装置
3、特殊结构、凝聚态与聚集态
氧化反应 沉淀反应 晶化反应 水解反应 烧结反应 水热热压反应 反应烧结
4、反应介质的性质
4.1 溶剂水的性质 高温加压下水热反应的特征: 使重要的离子间的反应加速 水解反应加剧 氧化还原电势明显变化
高温高压水热体系水性质
蒸汽压变高 密度变低 表面张力变低 粘度变低 离子积变高
2、合成特点
由于在水热与溶剂条件下反应物反应性能的改变、活性的提高,水热与溶剂热合 成方法有可能替代固相反应及难于进行的合成反应,形成一系列新的合成方法。
水热与溶剂热合成法

强烈对流,在生长区(低温
区)形成过饱和溶液
成核
形核
9
5.2 纳米晶粒的形成过程 (p7) (1)生长基元与晶核的形成
满足线度和几何构型要求时,生成晶核 (2)生长基元在固-液生长界面上的吸附与运动
生长基元运动到固-液生长界面并被吸附, 在界面上迁移运动 (3)生长基元在界面上的结晶或脱附
10
5.3 水热反应的成核特征 1、成核速率随着过冷程度即亚稳性的增加而增加 2、存在一个诱导期,在此期间不能检测出成核 3、组成的微小变化可引起诱导期的显著变化 4、成核反应的发生与体系的早期状态有关
单晶培育: 从籽晶培养大单晶。
7
【例】水热法制备Ag纳米粒子
5ml 0.02M AgNO3 ag和5mL 0.02M NaCl ag,加入到30mL 蒸馏水中,搅拌生成AgCl胶体,然后将0.2mmol的葡萄糖 溶在上述胶体溶液中,移入内衬Teflon的50mL合成弹中, 在加热炉中180°C下保持一段时间,空气中冷却至室温, 蒸馏水和酒精冲洗银灰色沉淀,真空60 °C干燥2小时。
第三章 水热与溶剂热合成法
1
第一节 水热合成法合成原理
p19
一、水热合成的概念 (Hydrothermal Synthesis)
1.1 原理
在特制的密闭反应容器里,采用水溶液作为反应
介质,对反应容器加热,创造一个高温、高压的
反应环境,使通常难溶或不溶的物质溶解并重结
晶。
2
1.2 水热合成的温度范围 常温~1100°C;压强范围: 1~500MPa
(1)低温水热合成:100°C以下; 沸石的合成
(2)中温水热合成:100—300°C; 经济有效的合成区域
(3)高温高压水热合成:300°C以上; 单晶生长、特种结构的化合物
第四章水热与溶剂热合成

水热合成热力学模型
热力学模型提供了一个计算每个体系的平 衡浓度的工具,该平衡浓度是温度、压 力、溶液的pH值以及投料试剂浓度的函 数。
一般而言,一个数据组的一致性可以通过 检验G、H、S、Cp、V等实验数据值之间 的关系与热动力学的一般关系的一致性 得到验证。
例:BaTiO3的水热合成
JDF-L1(催化剂),目前是人工合成的 五配位钛化合物,具有良好的氧化催化 性能。美国学者合成金刚石。
钱逸泰教授在非水体系中合成了氮化镓、 金刚石、硫属化纳米晶。
4、复合氧化物与复合氟化物的合成
明显地降低反应的温度和压力 能够以单一反应步骤完成 很好地控制产物的理想配比以及结构形
态 制备纯相陶瓷(氧化物)材料 可以批量化生产
第四章 水热与溶剂热合成
第一节 水热与溶剂热合成基础
1、合成化学与技术 水热与溶剂热合成是指在一定温度
(100~1000℃)和压强(1~100MPa) 条件下利用溶液中物质化学反应所进行 的合成。侧重于研究水热合成条件下物 质的反应性、合成规律以及产物的结构 和性质。可进行特殊化合物与材料的制 备、合成和组装。
4、2 有机溶剂的性质标度
有机溶剂为反应提供场所,使反应物溶解 或部分溶解,生成溶剂化合物,溶剂化 过程影响化学反应速率,在合成体系中 改变反应物活性物种在液相中的浓度、 解离程度、聚合态分布,从而改变反应 过程。
根据宏观和微观分子常 数以及经验溶剂参数
相对分子量 密度 沸点 分子体积 蒸发热 介电常数 偶极矩
由于晶化反应速率整体上是增加的,在各面上的不同增长速率趋 向于消失。
缺陷表面生长比无缺陷的光滑平面快。 在特定表面上无缺陷生长的最大速率随着比表面积的增加而降低,
对在适当的时间内无缺陷单晶生长大小提出限制。
材料合成与制备 第2章 水热与溶剂合成

的晶核稳定条件下,通过晶核生长、发育才能长成比较完整的晶体。 在晶体生长初期,溶液中形成许多大小不等,与结晶结构类似的基 元团,这种基元团并不稳定,成为晶胚;晶胚不断吸收溶液中的溶质 原子而长大,形成具有一定临界大小的晶核,继而发育成完整的晶 体,这就是成核过程,是系统Gibbs自由能降低的过程。
晶核的形成包含了液-固相的转变及形成新的固-液界面,晶体 形成总的自由能变化为:G Gs Gv
常用的溶剂有:乙二胺、甲醇、乙醇、二乙胺、三乙胺、吡啶、 苯、甲苯、二甲苯、二甲基乙烷、苯酚、氨水、四氯化碳、甲酸等。
与水热反应相比,溶剂热法具有以下优点: (1)在有机溶剂中进行的反应能够有效地抑制产物的氧化过程或水 中氧的污染。 (2) 溶剂热法扩大了原料的选择范围,如氟化物、氮化物及硫属化 合物等均可作为溶剂热反应的原材料,同时,非水溶剂在亚临界或超 临界状态下独特的物理化学性质极大地扩大了所能制备的目标产物的 范围。 (3)由于有机溶剂的低沸点,在同样的条件下,它们可以达到比水 热合成更高的气压,从而有利于产物的结晶。
晶核临界半径: r 2
Gv
2)晶体生长理论 晶体生长理论主要研究晶体结构内部、晶体生长条件、晶体
生长状态以及晶体性能四者之间的关系。从微观讲,晶体生长是一 个基元过程,包括以下步骤:
(1)基元的形成 (2)基元在生长界面吸附 (3)基元在界面运动 (4)基元在界面上结晶或脱附
从宏观讲,晶体生长是晶体与环 体界面向流体的推动的过程。驱 动力所做的功为:
(4)由于较低的反应温度,反应物中结构单元可以保留到产物 中,且不受破坏,同时,有机溶剂官能团和反应物或产物作用,生 成某些新型在催化和储能方面有潜在作用的材料。
(5)非水溶剂的种类繁多,其本身的一些特性,如极性与非极 性、配位络合作用、热稳定性等,为人们认识化学反应的实质和晶 体生长的特征,提供了许多值得研究和探索的线索。
晶核的形成包含了液-固相的转变及形成新的固-液界面,晶体 形成总的自由能变化为:G Gs Gv
常用的溶剂有:乙二胺、甲醇、乙醇、二乙胺、三乙胺、吡啶、 苯、甲苯、二甲苯、二甲基乙烷、苯酚、氨水、四氯化碳、甲酸等。
与水热反应相比,溶剂热法具有以下优点: (1)在有机溶剂中进行的反应能够有效地抑制产物的氧化过程或水 中氧的污染。 (2) 溶剂热法扩大了原料的选择范围,如氟化物、氮化物及硫属化 合物等均可作为溶剂热反应的原材料,同时,非水溶剂在亚临界或超 临界状态下独特的物理化学性质极大地扩大了所能制备的目标产物的 范围。 (3)由于有机溶剂的低沸点,在同样的条件下,它们可以达到比水 热合成更高的气压,从而有利于产物的结晶。
晶核临界半径: r 2
Gv
2)晶体生长理论 晶体生长理论主要研究晶体结构内部、晶体生长条件、晶体
生长状态以及晶体性能四者之间的关系。从微观讲,晶体生长是一 个基元过程,包括以下步骤:
(1)基元的形成 (2)基元在生长界面吸附 (3)基元在界面运动 (4)基元在界面上结晶或脱附
从宏观讲,晶体生长是晶体与环 体界面向流体的推动的过程。驱 动力所做的功为:
(4)由于较低的反应温度,反应物中结构单元可以保留到产物 中,且不受破坏,同时,有机溶剂官能团和反应物或产物作用,生 成某些新型在催化和储能方面有潜在作用的材料。
(5)非水溶剂的种类繁多,其本身的一些特性,如极性与非极 性、配位络合作用、热稳定性等,为人们认识化学反应的实质和晶 体生长的特征,提供了许多值得研究和探索的线索。
水热与溶剂热合成的的原理、特点与应用

追求至善凭技术开拓市场,凭管理增 创效益 ,凭服 务树立 形象。2 022年8 月9日 星期二 上午8时 12分26 秒08:1 2:2622. 8.9
严格把控质量关,让生产更加有保障 。2022 年8月上 午8时1 2分22. 8.908:1 2Augus t 9, 2022
作业标准记得牢,驾轻就熟除烦恼。2 022年8 月9日 星期二8 时12分 26秒08 :12:269 August 2022
踏实肯干,努力奋斗。2022年8月9日 上午8时 12分22 .8.922. 8.9
追求至善凭技术开拓市场,凭管理增 创效益 ,凭服 务树立 形象。2 022年8 月9日 星期二 上午8时 12分26 秒08:1 2:2622. 8.9
极强的氧 化能力
可以溶解 有机物
树立质量法制观念、提高全员质量意 识。22. 8.922.8. 9Tuesd ay , August 09, 2022
人生得意须尽欢,莫使金樽空对月。0 8:12:26 08:12:2 608:12 8/9/202 2 8:12:26 AM
安全象只弓,不拉它就松,要想保安 全,常 把弓弦 绷。22. 8.908:1 2:2608:12Aug- 229-Au g-22
④ 结晶好:水热与溶剂热的低温、等压、 溶液条件,有利于生长极少缺陷、取向好、 完美的晶体,且合成产物结晶度高以及易 于控制产物晶体的粒度。
制备单晶、 人工晶体
⑤ 可控性好:由于易于调节水热与溶剂 热条件下的环境气氛,因而有利于低价态、 中间价态与特殊价态化合物的生成,并能 均匀地进行掺杂。
特殊结构(沸石)、 特殊凝聚态的材料、 特殊价态化合物、 纳米材料、 均匀搀杂。
2、水热与溶剂热合成的特点
反应机理
水热与溶剂热合成.

页面 25 2019/1/17
超临界水分子的扩散系数比普通水高10~100倍, 使它的运动速度和分离过程的传质速率大幅度提 高,因而有较好的流动性、渗透性和传递性能, 利于传质和热交换。 总体来看,水在超临界区的行为更像一个中 等极性的有机溶剂,许多在常温常压下不溶的有 机物和气体在超临界水中都有较好的溶解度,有 的可增加几个数量级,像氧气等甚至可与超临界 水无限混溶,这就为超临界水的应用开辟了广阔 的道路。
页面 19 2019/1/17
水在超临界点时的密度只有 0.32g/cm3 ,而且 在较高的温度下,尤其是在超临界区域内,当压 强发生微小变化时水的密度就可以大幅度地改 变。例如在 400℃ 时,当压强在 0.22 ~ 2.5KPa 内变 化时,水的密度可由0.1g/cm3变到0.84g/cm3,因此 可通过调节压强来控制超临界水的密度。 SCW 的溶解能力主要取决于超临界水的密度,密 度增加,溶解能力增强密度减小,溶解能力减 弱,甚至丧失对溶质的溶解能力。
页面 7 2019/1/17
相应的,它不但使反应物(通常是固体)的溶
解、分散过程及化学反应活性大大增强,使得 反应能够在较低的温度下发生,而且由于体系 化学环境的特殊性,可能形成以前在常规条件 下无法得到的亚稳相。
该过程相对简单、易于控制,并且在密闭体系
中可以有效地防止有毒物质的挥发和制备对空 气敏感的前驱体和目标产物;
页面 10 2019/1/17
由于有机溶剂的低沸点,在同样的条件下,
它们可以达到比水热合成更高的气压,从而 有利于产物的结晶;
由于较低的反应温度,反应物中结构单元可
以保留到产物中,且不受破坏,同时,有机 溶剂官能团和反应物或产物作用,生成某些 新型在催化和储能方面有潜在应用的材料;
超临界水分子的扩散系数比普通水高10~100倍, 使它的运动速度和分离过程的传质速率大幅度提 高,因而有较好的流动性、渗透性和传递性能, 利于传质和热交换。 总体来看,水在超临界区的行为更像一个中 等极性的有机溶剂,许多在常温常压下不溶的有 机物和气体在超临界水中都有较好的溶解度,有 的可增加几个数量级,像氧气等甚至可与超临界 水无限混溶,这就为超临界水的应用开辟了广阔 的道路。
页面 19 2019/1/17
水在超临界点时的密度只有 0.32g/cm3 ,而且 在较高的温度下,尤其是在超临界区域内,当压 强发生微小变化时水的密度就可以大幅度地改 变。例如在 400℃ 时,当压强在 0.22 ~ 2.5KPa 内变 化时,水的密度可由0.1g/cm3变到0.84g/cm3,因此 可通过调节压强来控制超临界水的密度。 SCW 的溶解能力主要取决于超临界水的密度,密 度增加,溶解能力增强密度减小,溶解能力减 弱,甚至丧失对溶质的溶解能力。
页面 7 2019/1/17
相应的,它不但使反应物(通常是固体)的溶
解、分散过程及化学反应活性大大增强,使得 反应能够在较低的温度下发生,而且由于体系 化学环境的特殊性,可能形成以前在常规条件 下无法得到的亚稳相。
该过程相对简单、易于控制,并且在密闭体系
中可以有效地防止有毒物质的挥发和制备对空 气敏感的前驱体和目标产物;
页面 10 2019/1/17
由于有机溶剂的低沸点,在同样的条件下,
它们可以达到比水热合成更高的气压,从而 有利于产物的结晶;
由于较低的反应温度,反应物中结构单元可
以保留到产物中,且不受破坏,同时,有机 溶剂官能团和反应物或产物作用,生成某些 新型在催化和储能方面有潜在应用的材料;
水热溶剂热合成

成核旳一般特征
成核速率随过冷程度即亚稳性增长而增长
粘性也随温度降低而迅速增大。所以,过冷程度与 粘性在影响成核速率方面具有相反旳作用。这使速 率随温度降低有一极大值
存在一种诱导期
在过饱和旳籽晶溶液中也形成亚稳态区域,在此 区域里仍不能检测出成核。在合适条件下,成核 速率随溶液过饱和程度增长得非常快
(3)晶化反应速率整体上是增长旳,在各 面上旳不同增长速率倾向于消失;
(4)缺陷表面旳生长比无缺陷旳光滑平面 快;
(5)在特定表面上无缺陷生长旳最大速率 伴随表面积旳增长而降低。此种性质对在合 适旳时间内无缺陷单晶旳生长大小提出了限 制。
籽晶为线性生长速率旳测定提供合适旳条件。 在籽晶存在下,晶化过程没有诱导期,在籽 晶上旳沉积速率伴随有效沉积表面增长而增 长。所以,为了降低或消除诱导期进而缩短 整个反应所需旳时间,在混合液中加入籽晶 是熟知旳手段。
例如 钾矿石中钾旳水热提取 重灰石中钨旳水热提取
(9)沉淀反应
例如
生成沉淀得到新化合物旳反应
KF + MnCl2 KMnF3 KF + CoCl2 KCoF3
(10)氧化反应
金属和高温高压旳纯水、水溶液、有机溶剂等作 用得到新氧化物、配合物、金属有机化合物旳反 应,以及超临界有机物种旳全氧化反应
布
利
莫 雷 型
季 曼 型
莫雷 型水 热合 成试 验装 置
反应釜是水热、溶剂热合成装置中旳关键设备, 一般是由特种不锈钢制成,并在釜内衬有Pt、聚 四氟乙烯或其他耐热、耐压、抗侵蚀材料。
水热反应合成晶体材料旳一般程序
(1)按设汁要求选择反应物料并拟定配方; (2)探索配料顺序,混料搅拌。 (3)装釜,封釜,加压(至指定压力); (4)拟定反应温度、时间、状态(静止或动态 晶化); ⑸取釜,冷却(空气冷、水冷); (6)开釜取样; (7)洗涤、干燥; (8)样品检测(涉及进行形貌、大小、构造、 比表面积和晶形检测)及化学构成份析。
第四章 水热与溶剂热合成

4.1 水热与溶剂热合成基础 水热、溶剂热合成化学的特点 1. 水热与溶剂热条件下反应物反应性能的改变、活 性的提高,水热与溶剂热合成方法有可能代替固 相反应以及难于进行的合成反应,并产生一系列 新的合成方法。 2. 水热与溶剂热条件下中间态、介稳态及特殊物相 易于生成,因此能合成与开发一系列特种介稳结 构、特种凝聚态的新合成产物。
4.1 水热与溶剂热合成基础 3. 能够使低熔点化合物、高蒸气压且不能在融 体中生成的物质、高温分解相在水热与溶剂 热低温条件下晶化生成。 4. 水热与溶剂热的低温、等压、溶液条件,有 利于生长极少缺陷、取向好、完美的晶体, 且合成产物结晶度高以及易于控制产物晶体 的粒度。 5. 由于易于调节水热与溶剂热条件下的环境气 氛,因而有利于低价态、中间价态与特殊价 态化合物的生成,并能均匀地进行掺杂。
第四章 水热与溶剂热合成
4.1 水热与溶剂热合成基础
水热法一直主要用于地球科学研究,二战以后才逐渐用于 单晶生长等材料的制备领域,此后,随着材料科学技术的 发展,水热法在制备超细颗粒,无机薄膜,微孔材料等方 面都得到了广泛应用。
4.1 水热与溶剂热合成基础
水热与溶剂热合成方法的概念 水热法 (Hydrothermal Synthesis) ,是指在特制的密闭反 应器(高压釜)中,采用水溶液作为反应体系,通过对 反应体系加热、加压(或自生蒸气压),创造一个相对高 温、高压的反应环境,使得通常难溶或不溶的物质溶 解,并且重结晶而进行无机合成与材料处理的一种有效 方法。
4.1 水热与溶剂热合成基础 由于有机溶剂的低沸点,在同样的条件下,它们可以达到 比水热合成更高的气压,从而有利于产物的结晶;
由于较低的反应温度,反应物中结构单元可以保留到产物 中,且不受破坏,同时,有机溶剂官能团和反应物或产物 作用,生成某些新型在催化和储能方面有潜在应用的材料;
水热溶剂热合成法

水热溶剂热合成法
水热溶剂热合成法(Hydrothermal Solvothermal Synthesis)是一种在高压高温水溶液中进行化学反应合成材料的方法。
这种方法通常使用溶剂,如水、乙醇和氯化氢等,将反应物溶解于其中,并放入高压的反应釜中,在特定的温度和压力下进行反应,最终得到所需的产物。
水热溶剂热合成法的优点包括简单易行、反应速度较快、产物的纯度和晶体度较高等。
此外,水热溶剂热合成法还具有可控制性,可以通过调节反应温度、压力和溶剂等条件来控制合成产物的形貌、大小、晶体结构、晶面形貌等性质。
由于这种方法在生产能源材料、纳米材料和生物材料等领域中具有广泛的应用前景,因此在化学合成领域中得到了广泛的应用和发展。
水热溶剂热合成学习材料-(13)-水热溶剂热合成基础

科 大 水 热 溶
33
剂
热
合
成
群
成核的一般特性
①成核速率随着过冷程度即亚稳性的增加而增加。 然而,粘性也随温度降低而快速增大。因此,过 冷程度与粘性在影响成核速率方面具有相反的作 用。这些速率随温度降低有一个极大值。
②存在一个诱导期,在此期间不能检测出成核。在 适当条件下,成核速率随溶液过饱和程度增加得 非常快。
群 科 大 水 热
35
④ 吸附物质在界面上的扩散;
剂 热 溶
⑤ 结晶生长。
③、④、⑤统称为结晶阶段。
合
成
“生长基元”理论模型
科 大
水
热
溶
36
剂
不同的水(溶剂)热生长条件下可能有不同的结 晶形貌。 在上述输运阶段②,溶解进入溶液的离子/分子/离 子团之间发生反应,形成具有一定几何构型的聚 合体——生长基元。生长基元的大小和结构与水 (溶剂)热反应条件有关. 在一个水(溶剂)热反应体系里,同时存在多种 形式的生长基元,它们之间建立起动态平衡,某 种生长基元越稳定(可从能量和几何构型两方面 加以考虑),其在体系里出现的几率就越大。
高温高压水热与溶剂热条件下,从籽晶培养大单晶。 例:SiO2单晶的生长
水 热 溶 科 大
13
剂
热
合
成
群
(9) 烧结反应 在水热与溶剂热条件下,实现烧结的反应。 例如:制备含有OH-、F-、S2-等挥发性物质的 陶瓷材料。 也可同时进行化学反应和烧结反应。 如:氧化铬、单斜氧化锗、氧化铝-氧化铬 复合体的制备。 (10) 水热热压反应 在水热热压条件下,材料固化与复合材料的 生成反应。 如:放射性废料处理、特殊材料的固化成型、特种 复合材料的制备。
33
剂
热
合
成
群
成核的一般特性
①成核速率随着过冷程度即亚稳性的增加而增加。 然而,粘性也随温度降低而快速增大。因此,过 冷程度与粘性在影响成核速率方面具有相反的作 用。这些速率随温度降低有一个极大值。
②存在一个诱导期,在此期间不能检测出成核。在 适当条件下,成核速率随溶液过饱和程度增加得 非常快。
群 科 大 水 热
35
④ 吸附物质在界面上的扩散;
剂 热 溶
⑤ 结晶生长。
③、④、⑤统称为结晶阶段。
合
成
“生长基元”理论模型
科 大
水
热
溶
36
剂
不同的水(溶剂)热生长条件下可能有不同的结 晶形貌。 在上述输运阶段②,溶解进入溶液的离子/分子/离 子团之间发生反应,形成具有一定几何构型的聚 合体——生长基元。生长基元的大小和结构与水 (溶剂)热反应条件有关. 在一个水(溶剂)热反应体系里,同时存在多种 形式的生长基元,它们之间建立起动态平衡,某 种生长基元越稳定(可从能量和几何构型两方面 加以考虑),其在体系里出现的几率就越大。
高温高压水热与溶剂热条件下,从籽晶培养大单晶。 例:SiO2单晶的生长
水 热 溶 科 大
13
剂
热
合
成
群
(9) 烧结反应 在水热与溶剂热条件下,实现烧结的反应。 例如:制备含有OH-、F-、S2-等挥发性物质的 陶瓷材料。 也可同时进行化学反应和烧结反应。 如:氧化铬、单斜氧化锗、氧化铝-氧化铬 复合体的制备。 (10) 水热热压反应 在水热热压条件下,材料固化与复合材料的 生成反应。 如:放射性废料处理、特殊材料的固化成型、特种 复合材料的制备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、按反应温度分类 1. 100-240°C, 1-20MPa 中温中压 100-240° 1如: 分子筛及类分子筛化合物的合成, 一般氧化物的 合成等 2. > 240°C, >20MPa 高温高压 240° 如:石英晶体的生长, 湿法冶金等 三、按反应设备分类 1. 釜式间歇水热反应 以反应釜作为反应容器 2. 管式连续水热反应 以金属列管作为反应容器
4.1.2 反应类型 一、根据反应分类 1. 合成反应: 通过多种组分在水热条件下直接化合或经 合成反应: 中间态发生化合反应 如: La2O3 + Fe2O3 +SrCl2 → (La, Sr)FeO3 2. 热处理反应: 通过水热处理, 而使一般晶体转变成具有 热处理反应: 通过水热处理, 特定性能的晶体 3. 转晶反应: 通过水热或溶剂热处理而使晶体转变为组 转晶反应: 成相同结构不同的晶体 4. 离子交换反应: 通过水热或溶剂热处理而使反应物中 离子交换反应: 的阳离子或阴离子与溶液中的阳离子或阴离子发生交换 5. 单晶培养: 水热或溶剂热条件下, 通过籽晶培养大单晶 单晶培养: 水热或溶剂热条件下, 如: 石英晶体的培养
三、合成 首次成功合成是在二十世纪三十年代,一般是在碱金属 阳离子或有机物(主要是有机胺)的存在下合成,产物 中碱金属阳离子和有机氨占据孔道位置,因此可以把分 子筛的合成看作是一种自组装反应。 模板剂与骨架之间作用力较弱,一般可通过焙烧或离子 交换将其除去 分子筛颗粒大小一般为微米级或亚微米级 人工合成的最著名的微孔分子筛为ZSM( 人工合成的最著名的微孔分子筛为ZSM(Zeolite Socony Mobil)系列分子筛,ZSM-5已被用做石油裂解 Mobil)系列分子筛,ZSM催化剂 对于类分子筛化合物,如微孔磷酸铝等由于其中性骨架 结构及相对较差的热稳定性及水热稳定性,尚未用于工 业化
水热(溶剂热)合成
起源----模拟地矿生成 起源----模拟地矿生成 溶剂热合成-----非水体系中的合成 溶剂热合成-----非水体系中的合成 一般100--1000° 一般100--1000°C, 1-100MPa 早期模拟地矿合成、石英晶体生长、湿法冶金等 → 氧化物、离子导体等化合物的合成 目前常常与溶胶目前常常与溶胶-凝胶、高温固相反应等技术相结合,进 行具有特定结构、特定聚集态或特定功能的材料。
第一节 水热与溶剂热合成基础 4.1.1 水热合成技术 一、定义:水热与溶剂热合成是指在一定温度 ( 100--1000°C)和压强( 1-100MPa)条件下利用溶 100--1000° 100MPa)条件下利用溶
液中物质化学反应所进行的合成。 二、主要研究内容:水热条件下物质的反应活性、反应 规律、产物的结构与性能及合成条件与材料微结构及性 能的关系。 三、合成技术特点 水热条件下,水反应活性提高,水的蒸汽压和立即积升 高,密度、表面张力、黏度下降,体系的氧化还原电势 发生改变,物质在水中的物理化学性质异于常态。水在 某些情况下还作为反应物参与反应。因此水热合成有着
(7) 压强与温度、填充度关系密切(自生压力)
水热条件下水的作用 (1)溶剂作用,提高物质的溶解度 (2)传递压力的作用 (3)促进反应的作用 (4)有时作为反应物参与反应 但某些时候会腐蚀反应容器 二、有机物作介质 有机溶剂种类繁多,性质差异大,主要影响到反应的 溶剂参数包括: 溶剂极性----影响到对反应物的溶解性 与反应物的作用能力----如配位能力、氢键作用力等
(2) 存在一个诱导期, 在此期间检测不到晶核的存在 成核发生在溶液与某种组分的界面上----即形成一个结 晶中心。当条件适宜时, 成核速率随溶液过饱和程度增 加迅速加快。 (3) 组成的变化导致诱导期的变化 (4) 成核反应的发生与体系早期的状态有关 形成的晶核可能进一步长大形成晶体,也可能溶解再 结晶 有时会同时产生两种或两种以上晶核,导致共结晶产 物即混合晶相的形成 整个过程是一个成核和晶体生长相互竞争的过程,晶 体颗粒的大小受到二者相对速率的影响,同时受晶体 生长的影响,成核速率随时间呈现出先增长后下降
成 核 速 率 时间
4.2.2 自发成核体系 自发成核: 在不加入籽晶或晶种的情况下, 自发成核: 在不加入籽晶或晶种的情况下, 体系在过冷或 过饱和的状态下成核 一般情况下, 一般情况下, 经自发成核最终形成的晶体颗粒大小呈正 态分布 一般的水热或溶剂热合成均为自发成核,且由于晶体的 生长习性不同,而形成各种形貌的晶体 自发成核的晶化曲线为S 自发成核的晶化曲线为S形 4.2.3 非自发成核体系 非自发成核:有籽晶或晶种存在,体系中的反应物主要 是在籽晶或晶种上进行的晶体生长 一般单晶的培养:如石英晶体的培养 时间长、静置
6. 脱水反应: 在一定温度和压力下物质脱水结晶的反应 脱水反应: 氢氧化物到金属氧化物的转变一般为脱水反应 7. 水热分解反应: 水热条件下物质分解而形成新化合物 水热分解反应: 如: FeTiO3 → FeO + TiO2 8. 水热提取反应: 在水热或溶剂热条件下从化合物(一般 水热提取反应: 在水热或溶剂热条件下从化合物( 为矿物) 为矿物)中提取金属的过程 9. 氧化反应: 水热或溶剂热条件下金属单质转变成化合 氧化反应: 物的反应 10. 烧结反应: 水热或溶剂热条件下,达到烧结目的的反 烧结反应: 水热或溶剂热条件下, 应. 如某些陶瓷材料的水热制备 11. 水热热压反应: 水热或溶剂热条件下, 无机固态物质 水热热压反应: 水热或溶剂热条件下, 在加压模具中反应并成形 如: 放射性废料的处理
特有的特点: 1. 由于水热条件下,反应物性能的改变, 反应活性的提 由于水热条件下,反应物性能的改变, 高, 因此可代替固相反应在低温下合成某些化合物 2. 水热与溶剂热条件下易于生成中间态、介稳态及具 有特殊结构的化合物,因此可利用水热反应制备介稳 相(如分子筛)或特种聚集态的产物(如无机膜等) 3. 水热条件下可获得某些低熔点、高蒸汽压且不能在 熔体中生成的化合物。 4. 由于水热(溶剂热)合成的低温、低压等特点,因此异 由于水热(溶剂热) 于获得缺陷少、结晶完美的晶体。 5. 可通过气氛、反应溶剂等条件的控制而获得具有特 定价态的化合物。
4.1.4 反应介质性质
一、水作介质 水热条件下水的性质: (1)蒸汽压变高 (2)密度变小 (3)表面张力变小 (4)黏度变小----分子和离子的活动性增加 )黏度变小----分子和离子的活动性增加 (5)离子积变高----使离子反应速率加快,有时会使 )离子积变高----使离子反应速率加快,有时会使 容器腐蚀 (6)介电常数发生变化---随温度升高而下降,随压力 )介电常数发生变化---随温度升高而下降,随压力 增加而升高。但在一般情况下,温度的影响是主要的
特点: (1)无诱导期存在 (2)晶体生长速率随过饱和或过冷程度的增加而加快, 但过快的生长速率易使生长的晶体存在过多的缺陷,因 此反应中要对过饱和程度加以控制 (3)体系中晶体不同晶面具有不同的生长速率,生长最 快的晶面最终趋于消失,但可以通过向体系中加入添加 剂,而对其晶面生长速率加以控制 (4)缺陷表面的生长比无缺陷的光滑表面快 (5)在特定表面上无缺陷生长的最大速率随着表面积的 增加而降低,因此对于无缺陷单晶的培养,随晶体增大, 单位晶面生长速率变小,但由于晶体晶面面积增大,晶 体整体生长速率加快。
结晶度曲线
四、类分子筛化合物合成实例 具有LTA结构的磷酸镓单晶的合成 具有LTA结构的磷酸镓单晶的合成
加入乙二醇中 加入醋酸钴 GaOOH → 均一的分散系→ 均一的分散系→ 滴加氢氟酸或加入草酸 搅拌 加入4 甲基吡啶、搅拌30min. 加入4-甲基吡啶、搅拌30min. → 滴加H3PO4,搅拌30min. 滴加H3PO4,搅拌30min. → 过滤4.3.1 分子筛及类分子筛材料的合成 一类结晶的硅铝酸盐微孔晶体,具有分子尺寸、周期性 排布的孔道结构 90%以上的人工分子筛都是通过水热或溶剂热技术合成 90%以上的人工分子筛都是通过水热或溶剂热技术合成 的。 部分分子筛广泛地用于石油化工催化、吸附、离子交换 一、分类 传统的全硅和硅铝系列分子筛 微孔磷酸铝系列分子筛 微孔磷酸镓及其它磷酸盐 其它微孔材料-----金属氧化物、硫化物等 其它微孔材料-----金属氧化物、硫化物等
非水介质的作用: (1) 作为反应物参与反应(部分可作为氧化还原剂) 如:CCl 如:CCl4 + Na → NaCl + C(金刚石) C(金刚石) (2)反应促进剂 (3)压力传递介质 (4)提高反应物溶解度 (5)通过与反应物作用(如形成氢键、配位等)而使 反应向着特定方向进行 目前的溶剂热反应多用于二六族化合物的合成 国内钱逸泰课题组利用溶剂热反应合成了大量的硫化 物、硒化物,徐如人课题组利用溶剂热合成了系列低 维(如一维链状、二维层状)化合物
形成过程: 凝胶→ 凝胶→ 成核 → 晶体生长 (1)液相机理 成核和晶体生长均发生在液相 反应物溶解 →成核、晶化 → 再溶解→继续 →成核、晶化 再溶解→继续 晶化→…… 晶化→…… (2)固相机理 解聚 围绕模板剂进行重排 无定形凝胶 → 结构单元→ 结构单元→ 进一步缩聚 多面体→ 多面体→ 沸石晶体
第二节 水热与溶剂热反应机理
无机晶体:成核、晶体生长(溶解再结晶) 小颗粒定向堆积 4.2.1 成核 水热条件下, 在液相或液固界面上, 水热条件下, 在液相或液固界面上, 反应形成微小的不 稳定的晶核----成核 稳定的晶核----成核 成核特征: 成核特征: (1) 成核速率随过冷程度或过饱和程度的增加而增加, 成核速率随过冷程度或过饱和程度的增加而增加, 但同时温度下降, 体系黏度下降, 反应物扩散速度减小, 但同时温度下降, 体系黏度下降, 反应物扩散速度减小, 成核速率降低 因此随温度变化成核速率曲线为抛物线, 因此随温度变化成核速率曲线为抛物线,存在一极大值
420 220 422 440 622
II
V
V研细
样品V 222衍射峰最强,说明样品V 样品V的222衍射峰最强,说明样品V的正六边性晶面 为111面 111面 样品II的200衍射峰最强,说明其八边形晶面为100面 样品II的200衍射峰最强,说明其八边形晶面为100面 由于表面自由能的增高可以加快晶面的生长速度,所 以认为在此过程中,Co(II)的加入提高了《111》 以认为在此过程中,Co(II)的加入提高了《111》晶面 的表面自由能,使晶体形貌最终趋于立方体