用方程解决问题(7)
第7课时 列方程解决含有两个未知数的问题五年级上册数学冀教版
用x表示面包车的数量,画出线段图。
解:设销售面包车x辆,则销售小汽车3x 辆。
x+3x =68 4 x=68 x=17
小汽车:3x=3×17=51(辆) 或68-17=51(辆)
答:销售面包车17辆,小汽车51辆。
1 四、五年级学生共植树108棵,五年级学生比四年级学生多植树22 棵。 四、五年级学生各植树多少棵? 解:设四年级学生植树x棵,那么五年级学生植树(22+x)棵。 x+(22+x)=108 2x+22=108 2x=86 x=43 五年级植树:22+x =22+43=65(棵)
1 填空。
(1)小明的身高为x米,哥哥的身高是小明的1.2倍,那么1.2x表 示( 哥哥的身高 ),1.2x-x表示( 哥哥与小明的身高之差 )。 (2)五(1)班共有42人,女生人数是男生人数的1.1倍,设 ( 男生 )有x人,则( 女生 )有1.1x人,列方程为 ( 1.1x+x=42 )。
1 填空。
3 甲、乙两个修路队合铺一条95千米长的铁路,甲队铺铁路的长度是 乙队的1.5倍。甲、乙两队各铺了多少千米? 解:设乙队铺了x千米,那么甲队铺了1.5x千米。 1.5x+x=95 2.5x=95 x=38
甲队:1.5x=1.5×38=57(千米) 答:甲、乙两队分别铺了57千米、38千米。
1.解两边都有未知数的方程时,先根据等式的性质转化为 a x ±b x =c的形式,然后借助学过的方程求解。 2.列方程解应用题时,一定要先找出题中的等量关系式, 再根据等量关系式列方程。
花鸡比黑鸡多16只……
奶奶养花鸡和黑鸡各多少只?
花鸡和黑鸡一共有78只。
花鸡比黑鸡多16只……
解:设黑鸡有x只,那么花鸡有(x+16) 只。 x + x +16=78 2 x+16=78 2 x=62 x =31
用方程解决问题(7)
(2)上衣件数=裤子条数 上衣布料+裤子布料=600米
练习:某车间有52名工人,生产一种 螺栓与螺母,平均每人能生产螺栓 15个或螺母18个.问应分配多少人 生产螺栓,多少人生产螺母才能使生 产出来的螺栓与螺母配套?(一个 螺栓配四个螺母)
例5.某人要在规定的时间从甲到乙, 如果甲每小时行18千米,可提前1小时 到达;如果每小时行9千米,则要迟到1 小时.如果他打算提前半小时到达,那 么他的速度应为多少?
1.A,B两地相距60千米,甲从A地步行 到B地,2小时后,乙骑车也从A地到B地, 已知甲每小时4千米,乙每小时行12千 米,乙到达B地立即返回,问乙出发经几 小时在返回的路上与甲相遇?
练习: 1.某商品因换季准备打折销售,若按标 价七五折销售将亏25元,而按标价的九五 折出售将赚20元,问这种商品的标价是多少 元?
分析:设标价为 x 元 利润 售价 进价 25 75%x 75% x 25 95%x 95% x 20 20
x 225
75% x 25 95% x 20
初中数学七年Biblioteka 上册 (苏科版)应用题复习课
知识回顾:
列方程解应用题的一般步骤是什么? 1.用字母表示适当的未知数;(设) 2.根据题中的相等关系列出方程;(列) 3.解方程,求出未知数的值;(解) 4.问题的答案.(答)
例1.某学校体操队和篮球队人数的 比是5:6,排球队的人数比体操队
的人数的2倍少5人,篮球队的人数
利息=本金×利率
本息和=本金+利息 商品利润=商品售价-商品进价
商品利润 商品利润率= 商品进价
用方程解决问题应用题50道
用方程解决问题应用题用方程解决问题是数学的一种重要应用。
方程是描述数学关系的一种方式,它可以帮助我们理解和解决各种实际问题。
在本文中,我们将探讨一些常见的用方程解决问题的案例,并详细解释如何建立和求解这些方程。
第一部分:代数方程的应用问题1:购买水果假设你去市场购买了苹果和橙子,其中每个苹果的价格为x元,每个橙子的价格为y元。
你购买了5个苹果和3个橙子,总花费为20元。
现在,我们需要建立一个方程来计算每个水果的价格。
解答:令方程为5x + 3y = 20,其中x表示苹果的价格,y表示橙子的价格。
通过观察这个方程,我们可以发现,当x = 2和y = 4时,方程成立。
因此,每个苹果的价格为2元,每个橙子的价格为4元。
问题2:年龄之谜现在我们来考虑一个更复杂的问题。
假设有一个父子年龄之和为36岁的问题,父亲的年龄是儿子年龄的三倍。
我们需要建立一个方程,找到父亲和儿子的实际年龄。
解答:设父亲的年龄为x岁,儿子的年龄为y岁。
根据问题的描述,我们可以得到两个方程:x + y = 36 (年龄之和为36岁)x = 3y (父亲的年龄是儿子年龄的三倍)将第二个方程代入第一个方程,得到:3y + y = 364y = 36y = 9将y = 9代入第二个方程,可以求得:x = 3 * 9x = 27因此,父亲的年龄是27岁,儿子的年龄是9岁。
第二部分:几何方程的应用问题3:等腰三角形的高度假设我们有一个等腰三角形,其中底边的长度为x,斜边的长度为y。
我们需要建立一个方程,计算这个等腰三角形的高度。
解答:根据等腰三角形的性质,高度将从中点垂直于底边画出,并且它将把底边划分为两个相等的部分。
因此,我们可以将等腰三角形的高度表示为x / 2。
根据勾股定理,我们可以得到另一个方程:y = √((x / 2)^2 + h^2),其中h表示等腰三角形的高度。
解方程组:将x / 2代入y的方程,得到:y = √((x / 2)^2 + (x / 2)^2)y = √(x^2 / 4 + x^2 / 4)y = √(x^2 / 2)y = x / √2因此,等腰三角形的高度可以表示为x / 2或x / √2,具体取决于问题的要求和条件。
五年级数学下册典型例题系列之第七单元用方程解决问题部分(原卷版)北师大版
五年级数学下册典型例题系列之第七单元用方程解决问题部分(原卷版)编者的话:《五年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。
典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。
专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。
本专题是第七单元用方程解决问题部分。
本部分内容主要考察方程的应用,考点和题型以应用为主,题目综合性强,难度较大,建议作为本章核心内容进行讲解,一共划分为九个考点,欢迎使用。
【考点一】和倍问题。
【方法点拨】以和作为等量关系来列方程,设小不设大。
【典型例题】食堂买来大米和面粉共594千克,其中大米是面粉的2倍,买来大米、面粉各多少千克?【对应练习1】学校举行书画竞赛,四、五年级共有75人获奖,其中五年级获奖人山数是四年级的2倍,四、五年级各有多少同学获奖?【对应练习2】实验小学五年级有学生540人,男生人数是女生人数的2倍,男、女生各有多少人?【对应练习3】星期天同学们去听科学家作报告。
五、六年级一共去了276人,六年级去的人数是五年级的2倍。
两个年级各去多少人?【考点二】稍复杂的和倍问题。
【方法点拨】以和作为等量关系来列方程,设小不设大。
【典型例题】学校图书馆有故事书和科技书共800本,故事书的本数比科技数的4倍多20本。
问两种书各有几本?【对应练习1】李明、王刚两人共加工105个零件,李明加工的个数比王刚的3倍还多5个,李明和王刚各加工零件多少个?【对应练习2】新华书店去年和今年共售书340万册,今年售书量比去年售书量的3倍还多20万册,问去年和今年各售书多少万册?【对应练习3】一次春季运动会中学生共有1002人,其中男生比女生的3倍多2人,求男生、女生各有多少人?【考点三】差倍问题。
【方法点拨】以差作为等量关系来列方程,设小不设大。
列方程解应用题7(盈亏问题)
练习一 练习二
本课小结
今天,你学到了什么新的本领? 从题意中找等量关系式的方法;
ቤተ መጻሕፍቲ ባይዱ
看两个量之间数量的多少,
6x+14=6×7+14=56(或8x=8×7=56)
答:一共有7个小朋友,这盒糖果有56颗。
探究一 探究二
练习一 练习二
练习一:
盒子里的红球和白球一样多,每次取出5个红球和3个白球,取
了几次后,红球正好取完,白球还剩6个,一共取了几次?白 球和红球原来各有多少个?
练习一 练习二
练习二:
1、一个袋子里有相同的红、绿两种玻璃球,每次取出7个
1、在理解题意的基础上寻找等量关系。 2、初步掌握用列方程的方法来解决简单的
实际问题。
3、体会利用等量关系分析问题的优越性。
复习引入
复习引入:
填空: (1)盒中有一些巧克力糖,小丁丁每天吃5粒,x天后, (5x+1) 盒中只剩下1粒,原来盒中有 粒巧克力糖 (2)五(1)班有一些学生排队练习团体操,每行排6人, (6x-1) 排了x行后,发现最后一行少1人,有 名学生练 习团体操。 (3)箱子里装有一些网球和羽毛球。每次取出7个网球和4 个羽毛球,取了x次后,网球没有了,羽毛球还剩9个,网 球原来有 7x 个,羽毛球原来有(4x+9)个。
7X = 网球原来的个数 7×3 = 21 =羽毛球原来的个数
答:一共取了3次,网球和羽毛球原来各有21个。
探究一 探究二
探究二:
北师大版五年级下册第7单元用方程解决问题 教案
第7单元用方程解决问题对于方程的学习,本套教材安排了四次。
第一次是在四年级下册,学习的主要内容是初步认识方程,会用等式的性质解简单的方程,会列方程解决简单的实际问题。
第二次是在本册第五单元“分数除法”中,安排了运用方程解决简单的分数问题。
第三次是在本单元,其主要学习内容,一是解形如a±=b的简单方程,二是进一步运用方程解决问题。
通过本单元内容的学习,可以进一步加深学生对方程作为重要数学思想的理解。
第四次是六年级上册,主要内容是会用方程解决复杂的分数、百分数问题。
本单元是在四年级下册所学的字母表示数、初步认识方程,会用等式的性质解简单方程,会列方程解决简单的实际问题的基础上进行教学的。
通过本单元的学习,理解方程的意义,感受方程的思想方法及价值。
同时,在解决实际问题的过程中,经历将现实问题抽象为方程的过程,发展抽象能力和符号感。
因此,本单元教材编写的基本特点主要体现在以下两个方面。
1结合具体情景,经历寻找实际问题中数量之间相等的关系,列方程求解的全过程。
列方程解决实际问题的过程中,有三个关键步骤:一是根据题意找出等量关系;二是根据等量关系列出方程;三是解方程。
教材结合“邮票的张数”“相遇问题”两个具体情景,引导学生用方程解决实际问题,重视在现实背景下分析题目中的数量关系、求解方程,从学生已有的知识和经验出发,自主理解并掌握这些方程的解法。
这有助于学生理解解方程的过程,加深对列方程解决实际问题的体验,不仅如此,在学习的整个过程中,都关注学生用方程来解决实际问题,提高学生解决问题的能力。
2用不同的直观模型表示数量之间的相等关系,帮助学生分析和解决问题。
在“邮票的张数”“相遇问题”中,教材呈现了不同的图示表示实际问题中数量之间的相等关系。
期中,“邮票的张数”中用的是方框图,表示姐姐的邮票张数弟弟的邮票张数=180张,从中可以清楚看出姐姐的邮票张数=弟弟的邮票张数×3;“相遇问题”用的是线段图,可以直观地观察到淘气走的路程笑笑走的路程=840米。
五下第七单元:《用方程解决问题》知识点归纳
第七单元:《用方程解决问题》7、方程:含有未知数的等式称为方程。
(所有的方程都是等式,但等式不一定都是等式。
)使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
(方程的解是一个数;解方程是一个计算过程。
)8、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
9、解方程的方法:方法一:利用天平平衡原理(即等式的性质)解方程;方法二:利用加、减、乘、除运算数量关系解方程。
10、加、减、乘、除运算数量关系式:加法:和=加数+加数一个加数=和-两一个加数减法:差=被减数-减数被减数=差+减数减数=被减数-差乘法:积=因数×因数一个因数=积÷另一个因数除法:商=被除数÷除数被除数=商×除数除数=被除数÷商11、常用数量关系式:路程=速度×时间速度=路程÷时间时间=路程÷速度总价=单价×数量单价=总价÷数量数量=总价÷单价总产量=单产量×数量单产量=总产量÷数量数量=总产量÷单价被减数-减数=差减数=被减数-差被减数=差+减数(大数-小数=相差数大数-相差数=小数小数+相差数=大数)因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数(一倍量×倍数=几倍量几倍量÷倍数=一倍量几倍量÷一倍量=倍数)工作总量=工作效率×工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率12、相遇问题:特点:必须是同时的可根据不同的行程进行分析。
路程=速度和×相遇时间速度和=路程÷相遇时间相遇时间=路程÷速度和速度1=路程÷相遇时间-速度213、列方程解应用题的一般步骤:1、弄清题意,找出未知数,并用x表示。
一元一次方程的应用(7)日历数字问题同步培优题典(解析版)
七年级数学上册同步培优题典一元一次方程的应用(7)日历数字问题姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•道里区校级期中)在一张日历上,在同一行或同一列上任意圈出三个相邻的数,它们的和不可能是()A.60B.39C.40D.57【分析】列出代数式并化简,以选项中的数是3的倍数确定选项.【解析】如果三个数在同一列上时,设第二个数为x,则第一个数为x﹣7,第三个数为x+7.三个数字之和是x+x﹣7+x+7=3x.∵x是正整数,∴三个数的和是3的倍数.如果三个数在同一行上时,设第二个数为x,则第一个数为x﹣1,第三个数为x+1.三个数字之和是x+x﹣1+x+1=3x.∵x是正整数,∴三个数的和是3的倍数.综上所述:三个数的和是3的倍数.选项中的60、39、57都是3的倍数,而40不是3的倍数,故选:C.2.(2019秋•定州市期末)在如图所示的月历表中,任意框出表中竖列上的三个相邻的数,这三个数的和不可能是()A.72B.65C.51D.27【分析】设中间的数为x,从而可知三个数的和为3x,分别求出x的值即可判断.【解析】设中间的数为x,由表格可知:从上至下三个数分别为x﹣7,x,x+7,∴这三个数为:x﹣7+x+x+7=3x,当3x=72时,此时x=24,当3x=65,时,此时x=653,不符合题意,当3x=51时,此时x=17,当3x=27时,此时x=9,故选:B.3.(2019春•晋江市期末)小明在某月的日历上圈出了三个数a、b、c,并求出了它们的和为39,则这三个数在日历中的排位位置不可能的是()A.B.C.D.【分析】日历中的每个数都是整数且上下相邻是7,左右相邻差1,根据题意列方程可解.【解答】解;A:设最小的数是x,则x+(x+1)+(x+2)=39,解得:x=12,故本选项不符合题意;B:设最小的数是x,则x+(x+1)+(x+8)=39,解得x=10,故本选项不符合题意;C:设最小的数是x,则x+(x+8)+(x+16)=39,解得x=5,故本选项不符合题意;D:设最小的数是x,则x+(x+8)+(x+14)=39,解得x=173,故本选项符合题意.故选:D.4.(2018秋•蔡甸区期末)一个两位数,十位上的数比个位上的数的3倍大1,个位上的数与十位上的数的和等于9,这个两位数是()A.54B.72C.45D.62【分析】设个位数字为x,则十位数字是(3x+1).根据“个位上的数与十位上的数的和等于9”列出方程并解答.【解析】设个位数字为x,则十位数字是(3x+1),依题意得:x+(3x+1)=9,解得x=2,则3x+1=3×2+1=7,即所求的两位数是72.故选:B.5.(2020•盐城)把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x的值为()A.1B.3C.4D.6【分析】根据任意一行,任意一列及两条对角线上的数之和都相等,可得第三行与第三列上的两个数之和相等,依此列出方程即可.【解析】由题意,可得8+x=2+7,解得x=1.故选:A.6.(2019秋•黄陂区期末)在2020年1月的月历表中,用如图所示的“S”型框任意框出表中四个数,这四个数的和可能是()A.28B.34C.58D.82【分析】设四个数中最小的数为x,则另外三个数分别为(x+1),(x+6),(x+7),根据四个数的和,可得出关于x的一元一次方程,解之即可得出x的值,逐一分析各x值即可得出结论.【解析】设四个数中最小的数为x,则另外三个数分别为(x+1),(x+6),(x+7),依题意,得:x+(x+1)+(x+6)+(x+7)=28或x+(x+1)+(x+6)+(x+7)=34或x+(x+1)+(x+6)+(x+7)=58或x+(x+1)+(x+6)+(x+7)=82,解得:x=72或x=5或x=11或x=17.x=72不是整数,舍去;x=5在第一列,无法框出“S”型框,舍去;x=11在第七列,无法框出“S”型框,舍去.故选:D.7.(2019秋•北海期末)在排成每行七天的日历表中取下一个3×3的方块(如图),若方块中所有日期之和为207,则n的值为()A.23B.21C.15D.12【分析】先求出这九个日期之和,列出方程可求解.【解析】这九个日期分别为:n﹣8,n﹣7,n﹣6,n﹣1,n,n+1,n+6,n+7,n+8,∴所有日期之和=9n,由题意可得9n=207,∴n=23,故选:A.8.(2019秋•张家港市期末)小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是()A.B.C.D.【分析】日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.根据题意可列方程求解.【解析】A、设最小的数是x.x+x+7+x+7+1=19x=4 3故本选项不符合题意;B、设最小的数是x.x+x+6+x+7=19,x=2.故本选项符合题意.C、设最小的数是x.x+x+1+x+8=19,x=10 3,故本选项不符合题意.D、设最小的数是x.x+x+1+x+7=19,x=11 3,故本选项不符合题意.故选:B.9.(2019秋•霸州市期末)如图,表中给出的是某月的月历,任意选取“H”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能的是()A.63B.70C.96D.105【分析】设“H”型框中的正中间的数为x,则其他6个数分别为x﹣8,x﹣6,x+﹣1,x+1,x+6,x+8,表示出这7个数之和,然后分别列出方程解答即可.【解析】设“H”型框中的正中间的数为x,则其他6个数分别为x﹣8,x﹣6,x﹣1,x+1,x+6,x+8,这7个数之和为:x﹣8+x﹣6+x﹣1+x+1+x+x+6+x+8=7x.由题意得A、7x=63,解得:x=9,能求得这7个数;B、7x=70,解得:x=10,能求得这7个数;C、7x=96,解得:x=967,不能求得这7个数;D、7x=105,解得:x=15,能求得这7个数.故选:C.10.(2019秋•武安市期末)如图是某月份的日历表,任意框出同一列上的三个数,则这三个数的和不可能是()A.39B.43C.57D.66【分析】可设中间的数为x,根据竖列上相邻的数相隔7可得其余2个数,相加等于各选项中数字求解即可.【解析】A、设中间的数为x,则最小的数为x﹣7,最大的数为x+7.x+(x﹣7)+(x+7)=39,解得:x=13,故此选项错误;B、设中间的数为x,则最小的数为x﹣7,最大的数为x+7.x+(x﹣7)+(x+7)=43,解得:x=433,故此选项符合题意;C、设中间的数为x,则最小的数为x﹣7,最大的数为x+7.x+(x﹣7)+(x+7)=57,解得:x=19,故此选项错误;D、设中间的数为x,则最小的数为x﹣7,最大的数为x+7.x+(x﹣7)+(x+7)=66,解得:x=22,故此选项错误;故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020•孝感)有一列数,按一定的规律排列成13,﹣1,3,﹣9,27,﹣81,….若其中某三个相邻数的和是﹣567,则这三个数中第一个数是﹣81.【分析】设这三个数中的第一个数为x,则另外两个数分别为﹣3x,9x,根据三个数之和为﹣567,即可得出关于x的一元一次方程,解之即可得出结论.【解析】设这三个数中的第一个数为x,则另外两个数分别为﹣3x,9x,依题意,得:x﹣3x+9x=﹣567,解得:x=﹣81.故答案为:﹣81.12.(2019秋•越秀区期末)在一张普通的月历中,相邻三行里同一列的三个日期数之和为27,则这三个数分别是2,9,16.【分析】设三个数中最小的数为x,则另外两个数分别为(x+7),(x+14),根据三个日期数之和为27,即可得出关于x的一元一次方程,解之即可得出结论.【解析】设三个数中最小的数为x,则另外两个数分别为(x+7),(x+14),依题意,得:x+x+7+x+14=27,解得:x=2,∴x+7=9,x+14=16.故答案为:2,9,16.13.(2018秋•香坊区校级月考)有一列数,按一定规律排列成1、﹣4、16、﹣64、256…,其中某相邻三个数的和是﹣832,那么这三个数中最大的数是256.【分析】根据题目中的数字,可以发现数字的变化规律,再根据某相邻三个数的和是﹣832,可以列出相应的方程,从而求得最大的数,本题得以解决.【解析】∵有一列数,按一定规律排列成1、﹣4、16、﹣64、256…,∴这列数中每个数都是前面相邻数的﹣4倍,设这三个相邻的数中的中间数为x,则第一个数为−x4,第三个数为﹣4x,−x4+x+(﹣4x)=﹣832,解得:x=256,∴﹣4x=﹣4×256=﹣1024,−x4=−64,∴这三个数﹣64,256,﹣1024,∴这三个数中最大的数是256,故答案为:256.14.(2018秋•万州区期末)《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯七十八.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用78个碗,问有多少客人?”则客人的个数为72.【分析】设共有客人x人,根据“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用78个碗”列出方程即可.【解析】设有x个客人,则x2+x3+x4=78解得,x=72答;有72个客人.故答案是:72.15.(2019秋•黄冈期末)一个两位数,十位数字是个位数字的2倍,将两个数对调后得到的两位数比原来的两位数小36,这个两位数是84.【分析】首先设个位数字为x,则十位数字为2x,则原两位数可表示为10×2x+x,数字对调后所得两位数是(10x+2x),再根据“将两个数对调后得到的两位数比原来的两位数小36”可得方程:10×2x+x﹣(10x+2x)=36,解方程得到个位数,进而可得十位数字.【解析】设个位数字为x,则十位数字为2x,由题意得:10×2x+x﹣(10x+2x)=36,解得:x=4,则2x=8,答:原两位数是84.故答案为84.16.(2015秋•哈尔滨校级月考)一个数的一半,它的三分之一,它的百分之四十,它的六分之一,加起来一共是49,则这个数是35.【分析】设这个数为x,根据“一个数的一半,它的三分之一,它的百分之四十,它的六分之一,加起来一共是49”找到等量关系并列出方程求解即可.【解析】设这个数为x,根据题意得:1 2x+13x+40%x+16x=49,解得:x=35.故答案为:3517.(2019秋•沙坪坝区校级月考)如图是某月的月历,用一个矩形框,每次框住9个数.若这9个数之和是81,则这9个数中最大的数为17,这9个数之和可能会是100吗?不能(填“能”或“不能”)【分析】设中间的数为x,根据框柱的数之间的规律即可求出答案.【解析】设最中间的数为x,则这9个分别是x﹣8,x﹣7,x﹣6,x﹣1,x,x+1,x+6,x+7,x+8,这9个数之和为:x﹣8+x﹣7+x﹣6+x﹣1+x+x+1+x+6+x+7+x+8=9x,∴9x=81,∴x=9,∴最大的数为x+8=17,当9x=100时,此时x=100 9,所以这9个数之和不可能是100,故答案为:17,不能.18.(2019秋•东莞市期末)中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意2×2的4个数,设方框左上角第一个数是x,则这四个数的和为4x+16(用含x的式子表示)【分析】根据同一行中相邻两个数的差为1,同一列中,相邻两个数的差为7列出代数式.【解析】x+x+1+x+7+x+8=4x+16.故答案是:4x+16.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2015秋•吉安月考)生活与数学.(1)小明在某月的日历上象图①样圈了2×2个数,若正方形的方框内的四个数的和是44,那么这四个数是7、8、14、15.(直接写出结果)(2)小莉也在日历上象图②样圈出5个数,呈十字框形,若这五个数之和是60,则中间的数是12.(直接写出结果)(3)小虎说他在日历上向图③样圈了五个数,算了它们的和是65.你认为小虎计算正确吗?说明理由.拓展与推广:若干个偶数按每行8个数排成如图④所示:(1)写出图④中方框内的9个数的和与中间的数的关系是9个数的和是中间的数的9倍.(2)小明说若用图④中所画的方框去框9个数,其和可以是360,你能求出所框的中间一个数是多少吗?(3)小华画了一个如图⑤所示的斜框,小华能用这个斜框框处9个数的和为2016吗?若能,请求出第行中间一个数,若不能,请说明理由.【分析】(1)设第一个数是x,根据日历上的数据规律把所要求的数用代数式表示,用一元一次方程求解即可;(2)设中间的数是x,根据日历上的数据规律把所要求的数用代数式表示,用一元一次方程求解即可;(3)设中间一个为x,根据日历上的数据规律把所要求的数用代数式表示,用一元一次方程求解即可;拓展与推广:设中间的数是x,根据日历上的数据规律把所要求的数用代数式表示,用一元一次方程求解即可.【解析】(1)设第一个数是x,其他的数为x+1,x+7,x+8,则x+x+1+x+7+x+8=44,解得x=7;∴四个数分别为7、8、14、15,故答案为:7、8、14、15;(2)设中间的数是x,则5x=60,解得x=12,故答案为:12;(3)不准确,理由如下:设中间一个为x,则其它数从上到下依次为:x﹣14,x﹣7,x+7,x+14,则x﹣7+x﹣14+x+x+7+x+14=65,解得x=13;所以最上面一个数为x﹣14=﹣1,显然不在日历上,所以小虎计算错误;拓展与推广:①9个数的和是中间的数的9倍.②设中间的数是x,解得x=40;③由图⑤中数据的排列可知224这个偶数排在第14行的最后一个,因此其后的226这个偶数排在第15行第一个数,因此实际上图⑥这个框框不到226这个偶数,因此小华不可能框出9个数据的和为2016.20.(2018秋•宁都县期中)生活中处处有数学,表一是某月的日历表,用一个正方形框出3×3=9个数(如图),(1)在表中框出九个数之和最大的正方形;(2)若一个正方形内九个数字之和是108,求出它中间的数字;(3)将自然数1至2014按表二的方式排列,框出九个数其和能为2016吗?若能,求出该方框中的最小数,若不能,请说明理由.【分析】(1)根据表格容易找到九个数之和最大的正方形,中间数字为22;(2)设中间数字为a,根据九个数之间的联系即可列出方程,解方程即可;(3)和(2)一样,设中间数字为a,根据九个数之间的联系即可列出方程9a=2016,解方程求出x=224,但是224在第7列,由此即可判定这样的九个数不存在.【解析】(1)如图,红颜色框,是九个数之和最大的正方形;(2)设中间数字为a,则9a=108,解得a=12;(3)依题意得9a=2016,∵224÷7=32,∴224在第7列,故这样的九个数不存在.21.(2009秋•沙坪坝区校级月考)下面是2006年12月的日历,仔细观察,你能发现其中有何规律吗?(1)现任意圈出一竖列上相邻的三个数,设中间的一个为a,则用含a的代数式表示这三个数(从小到大排列)分别是a﹣7,a,a+7.(2)用正方形任意框出4个数,设最小的一个为a,则这4个数的和为4a+16.(3)现将连续自然数1至2008按图中的方式排成一个长方形阵列,用一个正方形框出16个数,如图①图中框出的这16个数的和为352;②图中要使一个正方形框出的16个数之和分别等于2000,2006,是否可能?若不可能,试说明理由;若有可能,请求出该正方形框出的16个数中的最小数和最大数.【分析】(1)根据每列中上面一个数比下面的一个数大7即可用中间的一个数表示出上面和下面的那个数;(2)根据框出的四个数的关系,用最小的数表示出来其他的三个数即可求得4个数的和;(3)①设左上角一个为n,然后表示出其他各数,最后即可表示出16个数的和与n的关系,最后将n =10代入求值即可;②令16(n+12)=2000或2006,求得n为正整数就行,否则就不行,【解析】(1)∵设中间一个数为a,则上面的一个数是a﹣7,下面的一个数是a+7,∴三个数按从小到大排列为:a﹣7,a,a+7;(2)设最小的一个为a,则右边一个为a+1,下面一个数是a+7,最后一个为a+8,故四个数的和为:a+(a+1)+(a+7)+(a+8)=4a+16;(3)①设左上角第一个数为n,根据相邻之间的关系可以得到下表:其中最小数为n,最大数为n+24.这16个数的和为16n+192=16(n+12).∴当n=10时,16(n+12)=16×22=352.②设在16(n+12)=2000,n=113,∴存在最小为113,最大为137,16(n+12)=2006,n=113.375,∴不存在.22.(2019秋•文水县期末)在日历上,我们可以发现其中某些数满足一定的规律,图是2020年1月份的日历,我们用如图所示的四边形框出五个数.2020年1月(1)将每个四边形框中最中间位置的数去掉后,将相对的两对数分别相减,再相加,例如:(10﹣8)+(16﹣2)=16,(21﹣19)+(27﹣13)=16.不难发现,结果都是16.若设中间位置的数为n,请用含n的式子表示发现的规律,并写出验证过程.(2)用同样的四边形框再框出5个数,若其中最小数的2倍与最大数的和为56,求出这5个数中的最大数的值.【分析】(1)根据运算法则写出规律即可;(2)设中间位置的数为x,则最小的数为x﹣7,最大的数为x+7.最小数的2倍与最大数的和为56,可得出关于x的一元二次方程,解之取其正值即可得出结论【解析】(1)规律:[(n+1)+(n+7)]+[(n+7)﹣(n﹣7)]=16.验证:[(n+1)+(n+7)]+[(n+7)﹣(n﹣7)]=(n+1﹣n+1)+(n+7﹣n+7)=2+14=16;(2)解:设中间位置的数为x,则最小的数为x﹣7,最大的数为x+7.根据题意得:2(x﹣7)+(x+7)=56.解得x=21.则x+7=28.答:这5个数中最大数的值为28.23.(2019秋•沈河区校级期中)生活与数学(1)莹莹在日历上圈出三个数,呈大写的“一”字,这三个数的和是中间数的3倍,莹莹又在日历上圈出5个数,呈“十”字框形,它们的和是50,则中间的数是10:(2)小丽同学也在某月的日历上圈出如图所示“七”字形,发现这八个数的和是125,那么这八个数中最大数为26:(3)在第(2)题中这八个数之和不能为101(填“能”或“不能”).【分析】(1)根据日历上的数据规律即可得出答案;(2)先根据日历上的数据规律把所要求的数用代数式表示,再用一元一次方程求解即可;(3)根据(2)的规律解得即可.【解析】(1)莹莹在日历上圈出三个数,呈大写的“一”字,这三个数的和是中间数的3倍,莹莹又在日历上圈出5个数,呈“十”字框形,它们的和是50,则中间的数是10;故答案为:3;10(2)设最小的数为x,则其余数分别为:x+6,x+7,x+8,x+14,x+21,x+22,x+23,根据题意得x+(x+6)+(x+7)+(x+8)+(x+14)+(x+21)+(x+22)+(x+23)=125,解得x=3,∴这八个数中最大数为3+23=26.故答案为:26;(3)x+(x+6)+(x+7)+(x+8)+(x+14)+(x+21)+(x+22)+(x+23)=101,解得x=0,但是日历上最小的数是1,所以在第(2)题中这八个数之和不能为101.故答案为:不能24.(2016秋•灌云县校级月考)生活与数学日一二三四五六12345678910111213141516171819202122232425262728293031(1)山姆同学在某月的日历上圈出2×2个数,如图1,正方形的方框内的四个数的和是48,那么这四个数是8,9,15,16.(2)小丽也在上面的日历上圈出2×2个数,如图2,斜框内的四个数的和是46,则它们分别是8,9,14,15.(3)刘莉也在日历上圈出5个数,呈十字框形,如图3,它们的和是55,则中间的数是11.(4)某月有5个星期日的和是75,则这个月中最后一个星期日是29号?【分析】先根据日历上的数据规律把所要求的数用代数式表示,用一元一次方程求解即可;【解析】(1)设第一个数是x,其他的数为x+1,x+7,x+8,则x+x+1+x+7+x+8=48,解得x=8;所以这四个数是:8,9,15,16;故答案为:8,9,15,16;(2)设第一个数是x,其他的数为x+1,x+6,x+7,则x+x+1+x+6+x+7=46,解得x=8.x+1=9,x+6=14,x+7=15;故答案为:8,9,14,15;(3)设中间的数是x,则5x=55,解得x=11;故答案为:11;(4)设最后一个星期日是x,x﹣7,x﹣14,x﹣21,x﹣28,则x+x﹣7+x﹣14+x﹣21+x﹣28=75,解得x=29;故答案为:29.。
7简易方程解决问题
今天上午8时,洪泽湖 蒋坝水位达14.14m, 超过警戒水位0.64m。
今日水位14.14m 警戒水位
警戒水位是多少米?
0.64m
今日水位14.14m 警戒水位
0.64m
警戒水位+超出部分=今日水位 今日水位—警戒水位=超出部分 今日水位—超出部分=警戒水位
警戒水位+超出部分=今日水位
解:设警戒水位是x米。 x+0.6x4==1144..1144-0今.日6水4警位戒14水.1位4m
解:设一个滴水龙头每分钟浪费x克水。
Байду номын сангаас
30x=1800
x=1800÷30
检验
x=60
答:一个滴水龙头每分钟浪费60克水.
口述数量关系式。
x米 2.7米
6.9米 12枝笔 共18元
每枝x元
原价 x 元 优惠 45元 现价128元
x克 每杯75克
口述数量关系式。
长江是我国第一长河,比黄河长835千米, 黄河长多少千米?
x=13.5
检验:把x=13.5代入原方程。 左边=13.5+0.64=14.14 右边=14.14 ∵左边=右边 ∴x=13.5是原方程的解。
答:警戒水位是13.5米。
0.64m
我们拿桶接了半小时,共接了1.8千克的水。 一个滴水的龙头每分钟浪费多少克水?
每分钟滴的水×30=半小时滴的水 1.8kg=1800g
找出等量关系,并列出方程。
1.一辆公共汽车中途到站后,先下去15人,又上 来9人,这时车上有30人。到站前车上有x人。
2.一本书240页,小刚看了5天,还剩165页没看, 平均每天看x页。
3.小明买了4支铅笔,每支x元,付给营业员2.5元, 找回0.1元。
初中数学苏科版七年级上册第四章一元一次方程4.3用一元一次方程解决问题(7)
用一元一次方程解决问题(1)一、情境引入数学实验室:准备一本月历,两人一组做游戏:(1)在月历的同一行上任意圈出相邻的5个数,并把这5个数的和告诉同学,让同学求出这5个数;(2)在月历上任意找1个数以及它的上、下、左、右的4个数,把这5个数的和告诉同学,让同学求出这5个数.二、问题解决问题1 一张桌子有一张桌面和四条桌腿,做一张桌面需要木料 m3,做一条桌腿需要木料 m3.用 m3木材可做多少张这样的桌子(不计木材加工时的损耗)?通过问题1的研究,你能概括出用一元一次方程解决问题的一般思路吗?三、思维拓展某市为更有效地利用水资源,制定了居民用水收费标准:如果一户每月用水量不超过15立方米,每立方米按元收费;如果超过15立方米,超过部分按每立方米元收费,其余仍按每立方米元计算.另外,每立方米加收..污水处理费1元.若某户一月份共支付水费元,求该户一月份用水量.四、课堂练习1.某商店今年共销售21英寸(54 cm)、25英寸(64 cm)、29英寸(74 cm)3种彩电360台,它们的销售数量的比是1∶7∶4.这3种彩电各销售了多少台?2.某学生寄了2封信和一些明信片,一共用了元.已知每封信的邮费为元,每张明信片的邮费为元.他寄了多少张明信片?3.一本书封面的周长为68 cm ,长比宽多6 cm .这本书封面的长和宽分别是多少?4.某人从甲地到乙地,全程的12 乘车,全程的13乘船,最后又步行4 km 到达乙地.甲、乙两地的路程是多少?用一元一次方程解决问题(2)一、问题引入问题2 小丽在水果店花18元买了苹果和橘子共6kg ,已知苹果每千克元,橘子每千克元,小丽买了苹果和橘子各多少?思考1:(1)找出问题中的已知数量,并填入下表;(2)设小丽买了x kg苹果,根据表格分析问题中的等量关系,列出方程.二、议一议:在问题2中,如果设橘子买了x千克,可以列出怎样的方程?三、数学运用例1 学校团委组织65名新团员为学校建花坛搬砖.女同学每人每次搬6块,男同学每人每次搬8块,每人搬了4次,共搬了1800块.问这些新团员中有多少名男同学?分析:等量关系是:.例2 某天,一蔬菜经营户用70元钱从蔬菜市场批发了辣椒和蒜苗共40kg到市场去卖,辣椒和蒜苗这天的批发价与零售价如表所示:课堂巩固1.期中考试后,班主任为了奖励学习进步的12名同学,让班长去买了12件奖品,其中笔记本每本3元,圆珠笔每支4元,共用了43元.班长买了几本笔记本和几支圆珠笔?2.甲、乙两个仓库共有粮食60t,甲仓库运进粮食14t,乙仓库运出粮食10t后,两个仓库的粮食数量相等.两个仓库原来各有多少粮食?3.某课外活动小组的女学生人数占全组人数的一半,如果再增加6个女学生,那么女学生人数就占全组人数的2,求这个课外活动小组的人数.34.两枝一样高的蜡烛,同时点燃后,第一支蜡烛每小时缩短8cm,第二支蜡烛每小时缩短6cm,2h后第二支蜡烛的高度是第一支蜡烛的倍,求这两支蜡烛原来的高度.用一元一次方程解决问题(3)例题讲解:问题3 某小组计划做一批“中国结”,如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个.该小组共有多少人?计划做多少个“中国结”?说明:请学生尝试分析问题中的等量关系.思考1:如何把问题中的等量关系的分析过程直观地展示出来?设该小组共有x人.(1)如果每人做5个“中国结”,那么共做了个,比计划个.课堂练习:1、将一堆糖果分给幼儿园某班的小朋友,如果每人分2颗,那么就多8颗,如果每人分3颗,那么就少12颗,这个班共有多少名小朋友?2、七年级(2)班举办了一次集邮展览,展出的邮票张数比每人4张多14张,比每人5张少26张,问:(1)这个班共有多少名学生?(2)展出的邮票共有多少张?3、某汽车队运送一批货物,每辆汽车装4t还剩下8t未装,每辆汽车装就恰好装完。
五年级数学100道利用方程解决实际问题
五年级数学100道利用方程解决实际问题五年级数学100道利用方程解决实际问题(一)班级姓名得分1.一个数的5倍加上3.2,和是38.2,求这个数。
2. 3.4比x的3倍少5.6,求x。
3.一个数的3.7倍加上这个数的1.3倍,和是120,求这个数?4.一个数的8倍比它的5倍多24,求这个数?5.x的6倍加上2.5与4的积,和是25,求x?6.某数的5倍加上3等于它的8倍减去9,求这个数?7.一个数的6倍减去15,正好等于这个数的4倍加5,这个数是多少?8.一个数的5倍加上这个数的8倍等于169,求这个数?五年级数学用方程解决实际问题(二)班级姓名得分1. 9个0.6比x的2倍多2.7,求x?2. 15个8比一个数的4倍多10,求这个数.(列方程解答)3.12.5减去一个数的2.5倍,等于这个数的3.5倍,求这个数?4. 3.5除17.5的商比一个数的4倍多0.2,求这个数?5.某校六年级有两个班,上学期级数学平均成绩是85分。
已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?6.一条公路长360m,甲乙两支施工队同时从公路两端向中间铺柏油。
甲队的施工数度是乙队的1.25倍,4天后纸条公路所有铺完。
甲乙两队分别铺白有几何米?7.甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。
甲每小时行45千米,乙每小时行多少千米?五年级数学用方程解决实际问题(三)班级姓名得分1.XXX买来72米布,恰好做20件大人衣服和16件儿童衣服。
每件大人衣服用2.4米,每件儿童衣服用布几何米?2.某班46名同学去划船,一共乘坐10只船,大船坐6人,小船坐4人,全部坐满。
问大船和小船各几只?3.两城相距480千米,甲乙两辆汽车同时从两城相对开出,3小时后两车相遇,甲车每小时行85千米,乙车每小时行几何千米?4.新岭要修一条长3300米的公路,甲乙两个工程队同时施工,15天完成,甲队每天修125米,乙队每天修几何米?5.甲乙两车同时从相距528千米的两地相向而行,6小时相遇,甲车每小时比乙车快6千米,求甲乙每小时各行几何千米?6.甲乙两地相距350千米,甲乙两车同时从两地相对开出,颠末3.5小时后两车相遇,甲车每小时行49千米,乙车每小时行几何千米?(用两种方法解答)五年级数学用方程解决实际问题(四)班级姓名得分1.两个施工队开凿一条隧道,甲施工队每天开凿15米,乙施工队平均每天开凿12米,这条长270米的隧道需要多少天开凿?(用两种方法解答)2.甲乙两辆汽车分别从相距800千米的两城相向开出,8小时相遇,甲车每小时行驶45千米,乙车每小时会驶几何千米?3. A,B两城相距150千米,甲乙两人同时骑自行车从两地相对出发,甲每小时行16千米,4小时后,两人还相距30千米,乙每小时行多少千米?4.辆汽车从相距400千米的两地同时相对开出,3小时后还相距10千米,一辆汽车每小时行驶55千米,求另外一辆汽车速度?(5. AB两城相距720千米,一列客车从A城开往B城,行2小时后,另外一辆货车从B城开往A城,4小时后与客车相遇,客车每小时行80千米,货车平均每小时行几何千米?6.师徒两人共同加工一批零件,徒弟每小时加工60个,徒弟每小时加工50个,两人共同加工275个零件要几何小时?五年级数学用方程解决实际问题(五)班级姓名得分1.某车间打算四月份生产零件5480个。
人教版小学数学五年级上册第五单元实际问题与方程(例7)教学设计
解决问题与方程例7
解:设黑色皮的块数为x块
2x-4=20
2x-4+4=20+4
2x=24
2x÷2=24பைடு நூலகம்2
x=12
答:黑色皮的块数为12块。
教学反思与改进
课时教学设计
课 时
五单元第11课时
课 题
实际问题与方程(例7)
教学内容分析
本课分层次安排的例7依托具体生活情境,让学生运用原有的知识经验自主计算,在解决问题同时,着重使学生理解两积之间的数量关系,并会用方程解决实际问题。这部分内容是解方程的应用。在用方程解决实际问题这一部分内容中,由实际问题引入前面没有出现过的方程,这样既分散了重难点,又关注了数学知识与现实世界的联系。
生:书写单位。
师:如何验证我们做的正确与否呢?
生:进行检验回顾以前的代入法检验。
生:还要记得写答。
3.小结
师:通过大家的合作交流,解决了问题,并获得了一颗自学之星。
【环节三:实践应用,随堂检测。】
1.课本75页做一做。
2.课本练习4-7题.
3.补充题目
【环节四:总结提升,拓展延伸。】
引导总结:
理解题意,找出未知数用x表示,根据等量关系式列方程;解方程求出未知数x,利用和差或倍的关系求出另一个未知数;检验写上答句。
师:前面的学习中,同学们的表现非常棒,接着,我要考一考同学们的自学能力了。看看谁能获得自学之星。
出示自学问题:
(1)利用方程的方法解决问题,确定未知数,用x表示:题目中含有几个未知数?我们应该设哪个未知数为x最好?其他的未知数该如何表示出来?
(2)分析题目的已知条件和问题,本题的等量关系是什么?
(3)根据等量关系列方程并解答。
《列方程解决实际问题(例7)》教学设计
《列方程解决实际问题(例7)》教学设计
学习内容:苏教版小学数学教材五年级下册第8页例7。
学习目标:
1.掌握形如x±a=b和ax±b=c的方程的解法,会列方程解决相关的实际问题。
2.使学生在观察、分析、抽象、概括的过程中,经历将现实问题抽象等式与方程的过程,体会方程是刻画现实世界的数学模型,发展抽象思维。
3.使学生养成独立思考、自觉检验的好习惯,树立学好数学的自信心。
学习重点:掌握形如x±a=b和ax±b=c的方程的解法,会列方程解决相关的实际问题。
学习难点:能找出数量间的等量关系,并列出方程。
学习准备:
学习过程:。
苏教版七上《用方程解决问题学案》期末复习学案(7)
《用方程解决问题学案》期末复习学案(7)班级 姓名 成绩一、基础训练1.一个两位数,十位上的数字是个位上数字的2倍,如果把十位上的数字与个位上的数字对调,那么得到的两位数就比原来的两位数小36,则原来的两位数是___本题考查的是什么问题?通常要寻找的等量关系是什么?_____________________________________________________________________________2.某文艺团体为“希望工程”募捐组织了一场那个义演,成人票每张8元,学生票每张5元,共售出1000张票,筹得票款6950元,若假设成人票x 张,那么可以列出方程________________________________________________.本题考查的是什么问题?通常要寻找的等量关系是什么?_____________________________________________________________________________3.甲、乙两人在一条长400幂的环形跑道上跑步,若同向跑,每隔103分钟相遇一次,若反向跑,则每隔40秒相遇一次,已知甲比乙跑的更快,这甲的速度是_____,乙的速度是_____.本题考查的是什么问题?通常要寻找的等量关系是什么?_____________________________________________________________________________4.某车间有62名工人,1名工人每天能生产甲零件12个或者乙零件23个,应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的甲种零件和乙种零件配套?(每3个甲零件和2个乙零件配套)本题考查的是什么问题?通常要寻找的等量关系是什么?_____________________________________________________________________________5.某商场卖出两个进价不同的手机,都卖了1200元,其中一个盈利50%,另一个亏本20%,这次买卖中,这家商场的盈利如何?_______________________________.本题考查的是什么问题?通常要寻找的等量关系是什么?_____________________________________________________________________________例题推荐例1. 29000元.设儿童票售出x 张,依题意可列出下列哪一个一元一次方程式?( )A .30x +50(700-x )=29000B .50x +30(700-x )=29000C .30x +50(700+x )=29000D .50x +30(700+x )=29000例2.A 种饮料B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(1)313x x -+=B .2(1)313x x ++=C .23(1)13x x ++=D .23(1)13x x +-=例3. 班长去文具店买毕业留言卡50张,每张标价2元,店老板说可以按标价九折优惠,则班长应付()A.45元B.90元C.10元D.100元例4.为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部8003倍,求彩电、冰箱、手机三大类产品元,已知销售的冰箱(含冰柜)数量是彩电数量的2分别销售多少万台(部),并计算获得的政府补贴分别为多少万元?例5.为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶?(2)该校准备再次..购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于...1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?二、针对训练1. 整理一批图书,如果由一个人单独做要花60小时。
列方程解决实际问题教案7篇
列方程解决实际问题教案7篇列方程解决实际问题教案篇1教学内容:教科书P14~P15例10、练一练P16第4~7题教学目标:1.使同学在解决实际问题的过程中,进一步理解并掌控形如a*+b*=c的方程的解法。
结合详细事例,经受自主尝试列方程解决稍繁复的相遇问题的过程。
2.能依据相遇问题中的等量关系列方程并解答,感受解题方法的多样化。
3.体验用方程解决问题的优越性,获得自主解决问题的积极情感和学好数学的信心。
教学重点:正确地查找数量之间的相等关系教学难点:掌控列方程解具有两积之和〔或差〕的数量关系的应用题的解法。
教学过程:一、复习导入1.在相遇问题中有哪些等量关系?甲速相遇时间+乙速相遇时间=路程〔甲速+乙速〕相遇时间=路程2.一辆客车和一辆货车从两地出发,相向而行,经过3小时相遇。
客车的速度是95千米/时,货车的速度是85千米/时。
两地相距多少千米?第一种解法:用两车的速度和相遇时间:〔95+85〕3第二种解法:把两车相遇时各自走的路程加起来:953+853师:画出线段图,并板书出两种解法3.揭示课题:假如我们把复习预备中的第2题改成已知两地之间的.路程、相遇时间及其中一辆车的速度,求另一辆车的速度,要求用方程解,又该怎样解答呢?这节课我们就来学习列方程解相遇问题的应用题。
〔板书课题〕二、教学新课1.出示P14例10一辆客车和一辆货车从相距540千米的两地出发,相向而行,经过3小时相遇。
客车的速度是95千米/时,货车的速度是多少?〔1〕指名读题,找出已知所求,引导同学依据复习题的线段图画出线段图。
〔2〕依据线段图同学找出数量间的相等关系甲速相遇时间+乙速相遇时间=路程〔甲速+乙速〕相遇时间=路程〔1〕列方程设未知数列方程并解答。
启发同学用不同方法列方程。
解:设货车的速度是为*千米/时。
953+3*=540 〔95+*〕3=540285+3*=1463 95+*=54033*=540-285 95+*=1803*= 255 *=180-95*=2553 *=85*=85答:货车的速度是为85千米/时。
人教版七年级数学上册作业课件 第三章 一元一次方程 专题训练(七) 列一元一次方程解决实际问题
(3)t 秒后点 A 表示的数为 6t-4,点 B 表示的数为 2t+2. ①当点 A 在点 B 的左侧时,有(2t+2)-(6t-4)=3,解得 t=34 ,此时 6t-4=21 ; ②当点 A 在点 B 的右侧时,有(6t-4)-(2t+2)=3,解得 t=94 ,此时 6t-4=129 . 综上所述,当 A,B 两点相距 3 个单位长度时,点 A 表示的数为21 或129
答:甲现在的年龄是 42 岁,乙现在的年龄是 56 岁
类型四 数字问题 5.一个两位数,十位上的数字比个位上的数字小4,如果把十位上的数字与个 位上的数字对调后,那么所得的两位数比原来的两位数的2倍小12,求原来的两位 数. 解:设原来十位上的数字为x,则个位上的数字为x+4.依题意,得10(x+4)+x =2(10x+x+4)-12,解得x=4,则x+4=8. 答:原来的两位数是48
解:设玻璃杯中水的高度下降 x mm,根据题意,得π(920 )2·x=125×125×81, 解得 x=6π25 ≈199.
答:玻璃杯中的水的高度下降约 199 mm
类型二 古代数学问题 2.(湘潭中考)“鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前 成书的《孙子算经》中,就有关于“鸡兔同笼”的记载:“今有雉兔同笼,上有 三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔 关在一个笼子里,从上面数,有35个头;从下面数,有94条腿.问笼中各有几只 鸡和兔? 解:设鸡有x只,则兔有(35-x)只,根据题意得2x+4(35-x)=94,解得x=23, 所以35-x=12.答:有鸡23只,兔12只
列方程解决简单的实际问题例7
4、钢琴的黑键有36个,比白键 少16个,白键有多少个?
想:( )○( )=( )
白键的个数-16=黑键的个数 x- 16= 36
5、某市居民用电每千瓦时的价格 是0.52元,芳芳比上个月付电费 23.4元,用电多少千瓦时?
想:( )○( )=( )
每千瓦时的价格×用电的千瓦时=总的电费 0.52 × x= 23.4
6、中华人民共和国国旗的长应是 宽的1.5倍,一面国旗长144厘米, 宽应是多少厘米?
想:( )○( )=( )
宽×1.5=长
x ×1.5=144
练一练:蓝鲸是世界上最大的动物, 一头蓝鲸重165吨,大约是一头非洲象 的33倍,这头非洲象大约多少吨?
先把等量关系式填写完整,再列方程解答
( )的体重×33=(
)的体重
列方程解答(先写等量关系式):
1、 汽车每小时行90千米,比火 车每小时少行20千米,火车每小 时行多少千米?
想:( 火车每小时行多少千米 )○- (20千米) =( 汽车每小时行多少千米 ) 注意:写的等量关系式一定要和列的方程
小红今年的体重-去年的体重=2.5千克
4、男生人数是女生的3倍。
女生人数×3=男生人数
5、一头蓝鲸的质量是非洲象的 33倍
一只非洲象的质量×33=一头蓝 鲸的质量
例7:
先说说题中的条件和问题,再找出 数量之间的相等关系。
例7:
去年的体重+2.5千克=今年的体重 今年的体重-去年的体重=2.5千克
相对应。
列方程解答:
2、一根蓝彩带比一根红彩带长 2.7米,蓝彩带长6.9米,红彩带 多少米?
想:( )○( )=( )
红彩带的长度+2.7米=蓝彩带的长度。
初中数学一元二次方程的应用题型分类——商品销售问题7(附答案)
初中数学一元二次方程的应用题型分类——商品销售问题7(附答案)1.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售,尽快减少库存,商场决定釆取降价措施,调查发现,每件衬衫,每降价1元,平均每天可多销售2件,若商场每天要盈利1200元,每件衬衫应降价()A.5元B.10元C.20元D.10元或20元2.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,为抢占市场份额,且经市场调查:每降价1元,每星期可多卖出20件.现在要使利润为6120元,每件商品应降价()元.A.3 B.5 C.2 D.2.53.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,为占有市场份额,且经市场调查:每降价1元,每星期可多卖出20件.现要在尽量优惠顾客情况下,同时获利6120元,每件商品应降价()元.A.3B.2.5C.2D.2或34.某商品的进价为每件40元,当售价为每件60元时,每星期可卖出300件;现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.现在要使每星期利润为6125元,设每件商品应降价x元,则可列方程为()A.(20+x)(300+20x)=6125 B.(20-x)(300-20x)=6125C.(20-x)(300+20x)=6125 D.(20+x)(300-20x)=61255.融侨半岛某文具店购入一批笔袋进行销售,进价为每个20元,当售价为每个50元时,每星期可以卖出100个,现需降价处理:售价每降价3元,每星期可以多卖出15个,店里每星期笔袋的利润要达到3125元.若设店主把每个笔袋售价降低x元,则可列方程为()A.(30+x)(100-15x)=3125 B.(30﹣x)(100+15x)=3125C.(30+x)(100-5x)=3125 D.(30﹣x)(100+5x)=31256.一件原价为100元的牛仔裤,先提价10%,再降价10%,现价是( )元A.100 B.99 C.907.某种药品原价为35元/盒,经过连续两次降价后售价为26元/盒,设平均每次降价的百分率为x,根据题意所列方程正确的是()A.35(1﹣x)2=35﹣26 B.35(1﹣2x)=26C.35(1﹣x)2=26 D.35(1﹣x2)=268.某花圃用花盆培育某种花卉,经过试验现,每盆花的盈利与每盆株数构成一定的关系,每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元,要使每盆的盈利为10元,设每盆增加x 株花苗,则( ) A .()()330.510x x +-=B .()()330.510x x -+=C .()()330.510x x --=D .()()330.510x x ++=9.某商店将一件商品的进价提价20%后又降价20%,以96元的价格出售,•则该商店卖出这种商品的盈亏情况是( ).A .不亏不赚B .亏4元C .赚6元D .亏24元10.一个产品原价为a 元,受市场经济影响,先提价20%后又降价15%,现价比原价多_____%.11.一超市销售某种品牌的牛奶,进价为每盒1.5元,售价为每盒2.2元时,每天可售5000盒,经过调查发现,若每盒降价0.1元,则可多卖2000盒。
五下《七 用方程解决问题》教案
第七单元:用方程解决问题邮票的张数教学目标1.通过解决姐、弟二人的邮票的张数问题,进一步理解方程的意义。
2.通过解决问题的过程,学会解形如2x-x=3这样的方程。
3.在列方程的过程中,发展抽象概括能力。
教学重点及难点1.寻找等量关系,画出合理的线路图。
2.解方程的书写格式。
教学过程一、创设情境,引出用方程解决实际问题:昨天我们已经学习了列方程解答简单的应用问题,今天这节课我们继续学习这方面的知识。
下面请同学们看图上的信息:谁能说一说图上告诉我们哪些信息?谁能根据这些信息找出等量关系?同学门谁能等量关系列出方程呢?根据学生回答板书:解:设弟弟有x张邮票,姐姐有3x张邮票。
x+3x=180(一个x与3个x 4x =60 合起来就是4 x=4个x) 3x=45×3=135答:弟弟有45张邮票,姐姐有135张邮票。
学生回答:1.我和姐姐一共有180张邮票。
2、姐姐邮票的张数已经是弟弟的3倍。
3、我比弟弟多90张邮票。
二、学生尝试姐姐的张数+弟弟的张数=180学生根据等量关系尝试列方程二、拓展延伸:用方程解决实际问题:如果利用姐姐比弟弟多90张的条件,可以怎样列方程呢?谁能说一说你是根据哪个等量关系列的方程。
小结:在列方程的过程中,由于有两个未知数,需要选择设一个未知数为x,在根据两个未知数之间的关系,用字母表示另一个未知数。
在解方程的过程中,比如:需要用到“一个x与3个x合起来就是4个x”。
分层练习,完善认知(运用新知,解决问题)出示练习题:略指导学生交流汇报学生尝试独立完成学生尝试独立完成四、课堂小结今天这节课我们学了什么内容,你学到了什么,还有哪些疑问?引导学生总结学过的知识学生回答:1.在列方程的过程中,由于有两个未知数,需要选择设一个未知数为x,在根据两个未知数之间的关系,用字母表示另一个未知数。
2.在解方程的过程中,相同的未知数可以相加减。
三、及时练习1.填空。
x+9x=( ) a-0.9a=( ) 6.5x-x+2.5x=( ) 3.2b+b-1.4b=( ) 9x-2×3x=( )2.我会解方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.《中华人民共和国个人所得税法》规定, 公民月工资不超过800元(人民币)得部分 不必纳税,超过800元的部分为各月应纳税 所得额,税款按下表分段累积计算。若某人 1月份应交纳此款项121元,则他的当月工资 是多少元?
全月应纳税所得额 不超过800元的部分 超过800元至2000元的部分 超过2000元至5000元的部分 超过5000元至20000元的部分 …… 税率 5% 10% 15% 20% ……
活动,若租一辆45座的小客车租金为250 元,租一辆60座的大客车的租金为300元, 已知租用的大客车比租用的小客车少
一辆,问租用的大、小客车各多少辆?应
付租金多少元?
相等关系:
小客车坐的人数+大客车坐的人数=570
例3.红光服装厂要生产某种型号学生服 一批,已知每3米长的布料可做上衣2件, 或裤子3条,一件上衣和一条裤子为一套, 计划用600米长的这种布料生产学生服, 应分别用多少布料生产上衣和裤子才能 恰好配套?共能生产多少套?
分析: 挖掘题目的隐含条件 (1)由这句话我们可以知道做一件上衣要1.5米 的布料,做一条裤子要1米的布料.
(2)上衣件数=裤子条数 上衣布料+裤子布料=600米
练习:某车间有52名工人,生产一种 螺栓与螺母,平均每人能生产螺栓 15个或螺母18个.问应分配多少人 生产螺栓,多少人生产螺母才能使生 产出来的螺栓与螺母配套?(一个 螺栓配四个螺母)
利息=本金×利率
本息和=本金+利息 商品利润=商品售价-商品进价
商品利润 商品利润率= 商品进价
例:某商品的进价是765元,按商品标价 的9折出售时,利润率是15﹪,商品的标 价是多少?
例4.李明以两种形式分别储蓄了2000元 和1000元,一年后全部取出,扣除利息所 得税后可得利息43.92元,已知两种储蓄 利率和为3.24%,问两种的年利率各是 多少?(提示:公民应交利息所得税=利息 金额×20%)
与体操队的人数的3倍的和等于42人, 求这三个队各有多少人? (1)体︰篮= 5︰6 (2)排=2×体-5 (3)篮+ 3×体=42
练习:某工厂三个车间共有194人, 其中乙车间人数比甲车间人数的 2倍多14人,丙车间人数比甲车间 人数的1/5多20人,求三个车间各 有多少人?
例2.某中学570名师生到“中华恐龙园”
2.甲从A地出发到B地,15分钟后乙也从 A地到B地,甲在B地休息60分钟,即由 原路返回A地,在离B地2千米处与乙相 遇,已知甲的速度为20千米/时,乙的 速度为16千米/时,求A,B两地的距离
1 .某工程,甲单独做12天完成,乙 单独做8天 2.有一个水池,有甲乙两进水管, 丙排水管,已知单开甲需6小时注满 水池,单开乙需8小时注满,单开丙 1 需4小时放完,现有水 ,三管齐开 3 需几小时注满水池?
练习: 1.某商品因换季准备打折销售,若按标 价七五折销售将亏25元,而按标价的九五 折出售将赚20元,问这种商品的标价是多少 元?
分析:设标价为 x 元 利润 售价 进价 25 75%x 75%x 25 95%x 95%x 20 20
75%x 25 95%x 20
x 225
例5.某人要在规定的时间从甲到乙, 如果甲每小时行18千米,可提前1小时 到达;如果每小时行9千米,则要迟到1 小时.如果他打算提前半小时到达,那 么他的速度应为多少?
1.A,B两地相距60千米,甲从A地步行 到B地,2小时后,乙骑车也从A地到B地, 已知甲每小时4千米,乙每小时行12千 米,乙到达B地立即返回,问乙出发经几 小时在返回的路上与甲相遇?
例:一个四位数,低位上的两个数字组 成的两位数比高位上的两个数字组成的 两位数的5倍多2,如果将低位上的两个 数字组成的两位数与高位上的两个数字 组成的两位数对调,那么所得的新四位 数比原四位数大7722,求原四位数。
一个两位数,十位数字比个位数字少3, 两个数字之和等于这个两位数的 1 ,求 这个两位数? 4
初中数学七年级上册 (苏科版
应用题复习课
知识回顾:
列方程解应用题的一般步骤是什么? 1.用字母表示适当的未知数;(设) 2.根据题中的相等关系列出方程;(列) 3.解方程,求出未知数的值;(解) 4.问题的答案.(答)
例1.某学校体操队和篮球队人数的 比是5:6,排球队的人数比体操队
的人数的2倍少5人,篮球队的人数