非线性规划和多目标规划模型-数学建模共45页文档
数学建模---非线性规划

基础部数学教研室
数学 建模
(3)编写主程序文件如下 [x,y]=fmincon('fun1',rand(3,1),[],[],[],[],zeros(3,1),[],'fu n2')
求得当 x1 值y
10.6511。
0.5522, x2
1.2033, x3
0.9478 时,最小
基础部数学教研室
数学 建模
其中 f ( x ) 是目标函数, A, b, Aeq , beq , lb, ub 是相应维数的 矩阵和向量, c( x ), ceq( x ) 是非线性向量函数。
基础部数学教研室
数学 建模
Matlab 中的命令是 [x,fval]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlco n,options) x 的返回值是决策向量 x 的取值,fval 返回的是目标函 数的取值。fun 是用 M 文件定义的函数 f ( x ) ;x0 是 x 的初 始 值 , 可 以 任 意 选 取 ; A,b,Aeq,beq 定 义 了 线 性 约 束 Ax b, Aeq x beq , 如 果 没 有 线 性 约 束 , 则 A=[],b=[],Aeq=[],beq=[];lb 和 ub 是变量 x 的下界和上界, 如果上界和下界没有约束,即 x 无下界也无上界,则 lb=[], ub=[],也可以写成 lb 的各分量都为-inf,ub 的各分量都为 inf ; nonlcon 是 用 M 文 件 定 义 的 非 线 性 向 量 函 数 c( x ), ceq( x ) ;options 定义了优化参数,可以使用 Matlab 缺省的参数设置。
hj ( x ) gi ( x )
非线性规划(数学建模)

1.023
1.031 1.073 1.311 1.080 1.150 1.213 1.156 1.023 1.076 1.142 1.083 1.161 1.076 1.110 0.965
1.048
1.226 0.977 0.981 1.237 1.074 1.562 1.694 1.246 1.283 1.105 0.766 1.121 0.878 1.326 1.078
m ax ( 1)R (X)Q (X), st .. x xn 1 1 x 2 x i 0 i 1 ,2 , ,n
3个模型均为非线性规划模型。
引 例
投资选择问题
某公司在一个时期内可用于投资的总资本为 b万元, 可供选择
的项目有n个。假定对第i个项目的投资总额为ai万元,收益总额为
2.212
1.296 0.688 1.084 0.872 0.825 1.006 1.216 1.244 0.861 0.977 0.922 0.958 0.926 1.146 0.990
引 例
收益和风险
每个投资项目的收益率可以看成一个随机变量,其均值可
以用样本均值(历史均值)来近似.因此, 预计第j种投资的平 均收益率为
0.978
0.947 1.003 1.465 0.985 1.159 1.366 1.309 0.925 1.086 1.212 1.054 1.193 1.079 1.217 0.889
1.184
1.323 0.949 1.215 1.224 1.061 1.316 1.186 1.052 1.165 1.316 0.968 1.304 1.076 1.100 1.012
max s.t.
R( X ) Q( X ) x1 x2 x8 1, xi 0
北京信息职业技术学校2019-2020学年第二学期《数学建模》第七章《非线性规划与多目标规划》(67张ppt)

s.t.
gi ( x) hj ( x)
0,i 1,2,L 0, j 1,2,L
m r
其中,x为n维欧式空间Rn中的向量, f (x)为 目标函数,gi (x)、hj (x)为约束条件. 且hj (x)、 gi (x)、 f (x)中至少有一个是非线性函数.
21
五、多目标规划模型
在许多实际问题中,衡量一个方案的好坏标准往往不 止一个,例如设计一个导弹,既要射程最远,又要燃料最 省,还要精度最高. 这一类问题统称为多目标最优化问题 或多目标规划问题. 我们先来看一个生产计划的例子.
22
例8 (生产计划问题)某厂生产三种布料 A1,A2,A3 ,该厂两班生产, 每周生产时间为80h,能耗不得超过160t标准煤 其它数据如下表:
数学建模
第十一章 规划模型2
学习目标:
1.会求解非线性规划模型 2. 理解多目标规划的转化思想 3. 了解动态规划的基本思路掌握最短路线问题
思政目标:提高学生的学习积极性和主动性,
并与生活实际相结合。
2
非线性规划模型 多目标规划模型 动态规划模型
3
四、非线性规划模型
前面介绍了线性规划问题,即目标函数和约束条件都 是线性函数的规划问题,但在实际工作中,还常常会遇到 另一类更一般的规划问题,其中目标函数和约束条件至少 有一个是非线性函数的规划问题,即非线性规划问题.
19
即:
L(x1,
x2
,
)
27 x1
0.25x1
20 x2
0.10x2
2x1
4x2
24
对 L(x1, x2 , )求各个变量的偏导数,并令它们等于零,得:
L 27 0.25 2 0
非线性规划和多目标规划模型数学建模

进一步考虑到角度的周期性,不碰撞的约束条件可写成:
ij i'jij 2ij
第5讲 非线性规划和多目标模型
最终,原非线性规划问题转化为
6
min i
iji'j 1 2 ( i ij) i2 6 1 , i ij,1i, 2,j,i,j , 61 ,2 , ,6
,
vsinyi0i'
,if
i'
3
2
,tani'
yi0 xi0
or 3
2
i'
2, tani'
yi0 Dxi0
(2)计算任意飞机在t时刻两者的距离:
d ij(i i,j j,t)2 (x i0 v tc o s (i i) x 0 j v tc o s (j j))2 (y i0 v ts in (i i) y 0 j v ts in (j j))2
s . t .
6
m in i i 1
d i j(i i,j j,t ) 8i j
i
6
目标函数也可以定义为
minmax 1i6
i
第5讲 非线性规划和多目标模型
我们来简单看一下其复杂程度
(1)区域内飞行时间:假设飞行角度为θi ’= θi + Δ θi
vDcosxi0i'
,if
0 i'
2
,
最优解 迭代法是主要求解方法: 通常从一个初始解出发,在可
行域中沿着使得目标函数降低的方向前进到下一个解。 一般求解方法:罚函数法,拉格朗日乘子法,近似规划
法等,或者采用智能算法,如:遗传算法,模拟退火算 法,蚁群算法等。
2-2014国赛集训专题1——多目标、非线性规划及综合评价模型

规划模型的数学模型表达式:
min(or max)u f ( x) x
s. t. hi ( x) 0, i 1,2,...,m.
gi ( x) 0( gi ( x) 0),i 1,2,..., p.
(二)建立规划模型的一般步骤 1.确定决策变量和目标变量; 2.确定目标函数的表达式; 3.寻找约束条件。
案例.求解 2005CUMCM 的 B 题 DVD 在线租赁的第 二、三个问题. 下面以 2005 年全国大学生数模竞赛 B 题 “DVD 在线租赁”问题第二、三问为例,介绍 0-1 规划 建模方法和多目标线性规划模型以及利用主要目 标法求解该模型.
案例2:2005B题 DVD在线租赁
考虑如下的在线 DVD 租赁问题。顾客缴 纳一定数量的月费成为会员,订购 DVD 租赁 服务。会员对哪些 DVD有兴趣,只要在线提 交订单,网站就会通过快递的方式尽可能满 足要求。会员提交的订单包括多张 DVD ,这 些DVD是基于其偏爱程度排序的。
2014数学建模集训专题一
多目标、非线性规划及综合评价建模
王义康 2014/7/5
专题主要内容
PART PART PART
I
多目标与非线性规划模型
II 综合评价模型 III 专题练习
PART I 多目标与非线性规划模型
1.1 规划模型回顾 1.2 多目标规划模型 1.3 非线性规划模型 1.4 Matlab优化工具箱简介
网站会根据手头现有的DVD数量和会员的订单
进行分发。每个会员每个月租赁次数不得超过
2次,每次获得3张DVD。会员看完3张DVD之
后,只需要将DVD放进网站提供的信封里寄回
(邮费由网站承担),就可以继续下次租赁。 请考虑以下问题:
非线性规划模型

非线性规划模型非线性规划模型在上一次作业中,我们对线性规划模型进行了相应的介绍及优缺点,然而在实际问题中并不是所有的问题都可以利用线性规划模型求解。
实际问题中许多都可以归结为一个非线性规划问题,即如果目标函数和约束条件中包含有非线性函数,则这样的问题称为非线性规划问题。
一般来说,解决非线性的问题要比线性的问题难得多,不像线性规划有适用于一般情况的单纯形法。
对于线性规划来说,其可行域一般是一个凸集,只要存在最优解,则其最优解一定在可行域的边界上达到;对于非线性规划,即使是存在最优解,却是可以在可行域的任一点达到,因此,对于非线性规划模型,迄今为止还没有一种适用于一般情况的求解方法,我们在本文中也只是介绍了几个比较常用的几个求解方法。
一、非线性规划的分类1无约束的非线性规划当问题没有约束条件时,即求多元函数的极值问题,一般模型为()min 0x Rf X X ∈⎧⎪⎨≥⎪⎩ 此类问题即为无约束的非线性规划问题1.1无约束非线性规划的解法 1.1.1一般迭代法即为可行方向法。
对于问题()min 0x Rf X X ∈⎧⎪⎨≥⎪⎩给出)(x f 的极小点的初始值)0(X ,按某种规律计算出一系列的),2,1()(Λ=k X k ,希望点阵}{)(k X 的极限*X 就是)(x f 的一个极小点。
由一个解向量)(k X求出另一个新的解向量)1(+k X向量是由方向和长度确定的,所以),2,1()1(Λ=+=+k P X X k k k k λ即求解k λ和k P ,选择k λ和k P 的原则是使目标函数在点阵上的值逐步减小,即.)()()(10ΛΛ≥≥≥≥k X f X f X f检验}{)(k X 是否收敛与最优解,及对于给定的精度0>ε,是否ε≤∇+||)(||1k X f 。
1.1.2一维搜索法当用迭代法求函数的极小点时,常常用到一维搜索,即沿某一已知方向求目标函数的极小点。
一维搜索的方法很多,常用的有: (1)试探法(“成功—失败”,斐波那契法,0.618法等); (2)插值法(抛物线插值法,三次插值法等); (3)微积分中的求根法(切线法,二分法等)。
数学建模-多目标规划

将上述问题化为标准后,用单纯形方法求解可得最佳决策
方案为: x1 4, x 2 3, Z 62 (万元)。
但是,在实际决策时,企业领导者必须考虑市场等 一系列其它条件,如: ① 根据市场信息,甲种产品的需求量有下降的趋势,因 此甲种产品的产量不应大于乙种产品的产量。 ②超过计划供应的原材料,需用高价采购,这就会使生产 成本增加。 ③应尽可能地充分利用设备的有效台时,但不希望加班。 ④应尽可能达到并超过计划产值指标56万元。 这样,该企业生产方案的确定,便成为一个多目标决 策问题,这一问题可以运用目标规划方法进行求解。
min Z pl ( lk d k lk d k )
l 1 k 1
L
K
i ( x1 , x2 , , xn ) g i ( i 1,2, , m )
f i d i d i f i ( i 1,2, , K )
式中:
min Z i ( fi fi ) 2
k
i ( x1 , x2 , , xn ) gi ( i 1, 2, , m ) 或写成矩阵形式: min Z ( F F )T A( F F )
( X ) G
i 1
式中, i 是与第i个目标函数相关的权重; A是由 i (i=1,2,…,k )组成的m×m对角矩阵。
目标规划模型 目标规划软件求解
目标规划模型
给定若干目标以及实现这些目标的优先顺 1.基本思想 : 序,在有限的资源条件下,使总的偏离目 标值的偏差最小。
2.目标规划的有关概念
例1:某一个企业利用某种原材料和现有设备可生产甲、 乙两种产品,其中,甲、乙两种产品的单价分别为8万元 和10万元;生产单位甲、乙两种产品需要消耗的原材料 分别为2个单位和1个单位,需要占用的设备分别为1单位 台时和2单位台时;原材料拥有量为11个单位;可利用的 设备总台时为10单位台时。试问:如何确定其生产方案 使得企业获利最大?
数学建模中的非线性规划问题

数学建模中的非线性规划问题在数学建模领域中,非线性规划问题是一类重要且常见的问题,它在实际应用中具有广泛的意义和价值。
非线性规划问题的研究和解决,对于优化问题的求解和实际应用具有重要的指导作用。
非线性规划问题可以简单地理解为在约束条件下寻找一个或多个使目标函数最优化的变量取值。
与线性规划问题不同,非线性规划问题在目标函数和约束条件中可能存在非线性项,因此其求解难度较大。
不同于线性规划问题的凸性、单调性等属性,非线性规划问题涉及到更多的数学工具和分析方法。
在实际应用中,非线性规划问题的出现非常普遍。
例如,在生产中,企业需要在有限的资源条件下使利润最大化,这就需要解决一个非线性规划问题。
除此之外,非线性规划问题还广泛应用于交通、能源、金融等领域。
不仅如此,非线性规划问题还可以用于统计数据拟合、函数逼近等问题的求解。
因此,研究和解决非线性规划问题具有非常重要的实际意义。
在解决非线性规划问题时,常用的方法主要包括精确解法和近似解法。
精确解法主要包括拉格朗日乘子法、KKT条件等,通过求解一系列方程和方程组来确定最优解。
这类方法通常适用于问题结构相对简单、目标函数和约束条件有良好性质的情况。
然而,对于问题结构复杂、目标函数和约束条件非常复杂的情况,精确解法往往效率较低,难以求解。
因此,在实际应用中,近似解法更为常见。
近似解法主要包括梯度下降法、牛顿法、拟牛顿法、遗传算法等。
这些方法通常基于局部优化思想,通过不断迭代和优化,逐步靠近最优解。
这类方法适用于一般性的非线性规划问题,具有较强的鲁棒性和适应性。
但是,这些方法也有其局限性,如收敛速度慢、易陷入局部最优等。
除了上述方法外,还有一些新的研究方法和算法被提出,如混合整数非线性规划、次梯度法、粒子群优化等。
这些方法在某些特定问题中表现出较好的运用效果,并有望在未来的研究中得到更广泛的应用。
总之,非线性规划问题在数学建模中占据重要地位,对于优化问题的求解和实际应用具有重要的指导作用。