非线性规划和多目标规划模型-数学建模共45页文档
数学建模---非线性规划
基础部数学教研室
数学 建模
(3)编写主程序文件如下 [x,y]=fmincon('fun1',rand(3,1),[],[],[],[],zeros(3,1),[],'fu n2')
求得当 x1 值y
10.6511。
0.5522, x2
1.2033, x3
0.9478 时,最小
基础部数学教研室
数学 建模
其中 f ( x ) 是目标函数, A, b, Aeq , beq , lb, ub 是相应维数的 矩阵和向量, c( x ), ceq( x ) 是非线性向量函数。
基础部数学教研室
数学 建模
Matlab 中的命令是 [x,fval]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlco n,options) x 的返回值是决策向量 x 的取值,fval 返回的是目标函 数的取值。fun 是用 M 文件定义的函数 f ( x ) ;x0 是 x 的初 始 值 , 可 以 任 意 选 取 ; A,b,Aeq,beq 定 义 了 线 性 约 束 Ax b, Aeq x beq , 如 果 没 有 线 性 约 束 , 则 A=[],b=[],Aeq=[],beq=[];lb 和 ub 是变量 x 的下界和上界, 如果上界和下界没有约束,即 x 无下界也无上界,则 lb=[], ub=[],也可以写成 lb 的各分量都为-inf,ub 的各分量都为 inf ; nonlcon 是 用 M 文 件 定 义 的 非 线 性 向 量 函 数 c( x ), ceq( x ) ;options 定义了优化参数,可以使用 Matlab 缺省的参数设置。
hj ( x ) gi ( x )
非线性规划(数学建模)
1.023
1.031 1.073 1.311 1.080 1.150 1.213 1.156 1.023 1.076 1.142 1.083 1.161 1.076 1.110 0.965
1.048
1.226 0.977 0.981 1.237 1.074 1.562 1.694 1.246 1.283 1.105 0.766 1.121 0.878 1.326 1.078
m ax ( 1)R (X)Q (X), st .. x xn 1 1 x 2 x i 0 i 1 ,2 , ,n
3个模型均为非线性规划模型。
引 例
投资选择问题
某公司在一个时期内可用于投资的总资本为 b万元, 可供选择
的项目有n个。假定对第i个项目的投资总额为ai万元,收益总额为
2.212
1.296 0.688 1.084 0.872 0.825 1.006 1.216 1.244 0.861 0.977 0.922 0.958 0.926 1.146 0.990
引 例
收益和风险
每个投资项目的收益率可以看成一个随机变量,其均值可
以用样本均值(历史均值)来近似.因此, 预计第j种投资的平 均收益率为
0.978
0.947 1.003 1.465 0.985 1.159 1.366 1.309 0.925 1.086 1.212 1.054 1.193 1.079 1.217 0.889
1.184
1.323 0.949 1.215 1.224 1.061 1.316 1.186 1.052 1.165 1.316 0.968 1.304 1.076 1.100 1.012
max s.t.
R( X ) Q( X ) x1 x2 x8 1, xi 0
北京信息职业技术学校2019-2020学年第二学期《数学建模》第七章《非线性规划与多目标规划》(67张ppt)
s.t.
gi ( x) hj ( x)
0,i 1,2,L 0, j 1,2,L
m r
其中,x为n维欧式空间Rn中的向量, f (x)为 目标函数,gi (x)、hj (x)为约束条件. 且hj (x)、 gi (x)、 f (x)中至少有一个是非线性函数.
21
五、多目标规划模型
在许多实际问题中,衡量一个方案的好坏标准往往不 止一个,例如设计一个导弹,既要射程最远,又要燃料最 省,还要精度最高. 这一类问题统称为多目标最优化问题 或多目标规划问题. 我们先来看一个生产计划的例子.
22
例8 (生产计划问题)某厂生产三种布料 A1,A2,A3 ,该厂两班生产, 每周生产时间为80h,能耗不得超过160t标准煤 其它数据如下表:
数学建模
第十一章 规划模型2
学习目标:
1.会求解非线性规划模型 2. 理解多目标规划的转化思想 3. 了解动态规划的基本思路掌握最短路线问题
思政目标:提高学生的学习积极性和主动性,
并与生活实际相结合。
2
非线性规划模型 多目标规划模型 动态规划模型
3
四、非线性规划模型
前面介绍了线性规划问题,即目标函数和约束条件都 是线性函数的规划问题,但在实际工作中,还常常会遇到 另一类更一般的规划问题,其中目标函数和约束条件至少 有一个是非线性函数的规划问题,即非线性规划问题.
19
即:
L(x1,
x2
,
)
27 x1
0.25x1
20 x2
0.10x2
2x1
4x2
24
对 L(x1, x2 , )求各个变量的偏导数,并令它们等于零,得:
L 27 0.25 2 0
非线性规划和多目标规划模型数学建模
进一步考虑到角度的周期性,不碰撞的约束条件可写成:
ij i'jij 2ij
第5讲 非线性规划和多目标模型
最终,原非线性规划问题转化为
6
min i
iji'j 1 2 ( i ij) i2 6 1 , i ij,1i, 2,j,i,j , 61 ,2 , ,6
,
vsinyi0i'
,if
i'
3
2
,tani'
yi0 xi0
or 3
2
i'
2, tani'
yi0 Dxi0
(2)计算任意飞机在t时刻两者的距离:
d ij(i i,j j,t)2 (x i0 v tc o s (i i) x 0 j v tc o s (j j))2 (y i0 v ts in (i i) y 0 j v ts in (j j))2
s . t .
6
m in i i 1
d i j(i i,j j,t ) 8i j
i
6
目标函数也可以定义为
minmax 1i6
i
第5讲 非线性规划和多目标模型
我们来简单看一下其复杂程度
(1)区域内飞行时间:假设飞行角度为θi ’= θi + Δ θi
vDcosxi0i'
,if
0 i'
2
,
最优解 迭代法是主要求解方法: 通常从一个初始解出发,在可
行域中沿着使得目标函数降低的方向前进到下一个解。 一般求解方法:罚函数法,拉格朗日乘子法,近似规划
法等,或者采用智能算法,如:遗传算法,模拟退火算 法,蚁群算法等。
2-2014国赛集训专题1——多目标、非线性规划及综合评价模型
规划模型的数学模型表达式:
min(or max)u f ( x) x
s. t. hi ( x) 0, i 1,2,...,m.
gi ( x) 0( gi ( x) 0),i 1,2,..., p.
(二)建立规划模型的一般步骤 1.确定决策变量和目标变量; 2.确定目标函数的表达式; 3.寻找约束条件。
案例.求解 2005CUMCM 的 B 题 DVD 在线租赁的第 二、三个问题. 下面以 2005 年全国大学生数模竞赛 B 题 “DVD 在线租赁”问题第二、三问为例,介绍 0-1 规划 建模方法和多目标线性规划模型以及利用主要目 标法求解该模型.
案例2:2005B题 DVD在线租赁
考虑如下的在线 DVD 租赁问题。顾客缴 纳一定数量的月费成为会员,订购 DVD 租赁 服务。会员对哪些 DVD有兴趣,只要在线提 交订单,网站就会通过快递的方式尽可能满 足要求。会员提交的订单包括多张 DVD ,这 些DVD是基于其偏爱程度排序的。
2014数学建模集训专题一
多目标、非线性规划及综合评价建模
王义康 2014/7/5
专题主要内容
PART PART PART
I
多目标与非线性规划模型
II 综合评价模型 III 专题练习
PART I 多目标与非线性规划模型
1.1 规划模型回顾 1.2 多目标规划模型 1.3 非线性规划模型 1.4 Matlab优化工具箱简介
网站会根据手头现有的DVD数量和会员的订单
进行分发。每个会员每个月租赁次数不得超过
2次,每次获得3张DVD。会员看完3张DVD之
后,只需要将DVD放进网站提供的信封里寄回
(邮费由网站承担),就可以继续下次租赁。 请考虑以下问题:
非线性规划模型
非线性规划模型非线性规划模型在上一次作业中,我们对线性规划模型进行了相应的介绍及优缺点,然而在实际问题中并不是所有的问题都可以利用线性规划模型求解。
实际问题中许多都可以归结为一个非线性规划问题,即如果目标函数和约束条件中包含有非线性函数,则这样的问题称为非线性规划问题。
一般来说,解决非线性的问题要比线性的问题难得多,不像线性规划有适用于一般情况的单纯形法。
对于线性规划来说,其可行域一般是一个凸集,只要存在最优解,则其最优解一定在可行域的边界上达到;对于非线性规划,即使是存在最优解,却是可以在可行域的任一点达到,因此,对于非线性规划模型,迄今为止还没有一种适用于一般情况的求解方法,我们在本文中也只是介绍了几个比较常用的几个求解方法。
一、非线性规划的分类1无约束的非线性规划当问题没有约束条件时,即求多元函数的极值问题,一般模型为()min 0x Rf X X ∈⎧⎪⎨≥⎪⎩ 此类问题即为无约束的非线性规划问题1.1无约束非线性规划的解法 1.1.1一般迭代法即为可行方向法。
对于问题()min 0x Rf X X ∈⎧⎪⎨≥⎪⎩给出)(x f 的极小点的初始值)0(X ,按某种规律计算出一系列的),2,1()(Λ=k X k ,希望点阵}{)(k X 的极限*X 就是)(x f 的一个极小点。
由一个解向量)(k X求出另一个新的解向量)1(+k X向量是由方向和长度确定的,所以),2,1()1(Λ=+=+k P X X k k k k λ即求解k λ和k P ,选择k λ和k P 的原则是使目标函数在点阵上的值逐步减小,即.)()()(10ΛΛ≥≥≥≥k X f X f X f检验}{)(k X 是否收敛与最优解,及对于给定的精度0>ε,是否ε≤∇+||)(||1k X f 。
1.1.2一维搜索法当用迭代法求函数的极小点时,常常用到一维搜索,即沿某一已知方向求目标函数的极小点。
一维搜索的方法很多,常用的有: (1)试探法(“成功—失败”,斐波那契法,0.618法等); (2)插值法(抛物线插值法,三次插值法等); (3)微积分中的求根法(切线法,二分法等)。
数学建模-多目标规划
将上述问题化为标准后,用单纯形方法求解可得最佳决策
方案为: x1 4, x 2 3, Z 62 (万元)。
但是,在实际决策时,企业领导者必须考虑市场等 一系列其它条件,如: ① 根据市场信息,甲种产品的需求量有下降的趋势,因 此甲种产品的产量不应大于乙种产品的产量。 ②超过计划供应的原材料,需用高价采购,这就会使生产 成本增加。 ③应尽可能地充分利用设备的有效台时,但不希望加班。 ④应尽可能达到并超过计划产值指标56万元。 这样,该企业生产方案的确定,便成为一个多目标决 策问题,这一问题可以运用目标规划方法进行求解。
min Z pl ( lk d k lk d k )
l 1 k 1
L
K
i ( x1 , x2 , , xn ) g i ( i 1,2, , m )
f i d i d i f i ( i 1,2, , K )
式中:
min Z i ( fi fi ) 2
k
i ( x1 , x2 , , xn ) gi ( i 1, 2, , m ) 或写成矩阵形式: min Z ( F F )T A( F F )
( X ) G
i 1
式中, i 是与第i个目标函数相关的权重; A是由 i (i=1,2,…,k )组成的m×m对角矩阵。
目标规划模型 目标规划软件求解
目标规划模型
给定若干目标以及实现这些目标的优先顺 1.基本思想 : 序,在有限的资源条件下,使总的偏离目 标值的偏差最小。
2.目标规划的有关概念
例1:某一个企业利用某种原材料和现有设备可生产甲、 乙两种产品,其中,甲、乙两种产品的单价分别为8万元 和10万元;生产单位甲、乙两种产品需要消耗的原材料 分别为2个单位和1个单位,需要占用的设备分别为1单位 台时和2单位台时;原材料拥有量为11个单位;可利用的 设备总台时为10单位台时。试问:如何确定其生产方案 使得企业获利最大?
数学建模中的非线性规划问题
数学建模中的非线性规划问题在数学建模领域中,非线性规划问题是一类重要且常见的问题,它在实际应用中具有广泛的意义和价值。
非线性规划问题的研究和解决,对于优化问题的求解和实际应用具有重要的指导作用。
非线性规划问题可以简单地理解为在约束条件下寻找一个或多个使目标函数最优化的变量取值。
与线性规划问题不同,非线性规划问题在目标函数和约束条件中可能存在非线性项,因此其求解难度较大。
不同于线性规划问题的凸性、单调性等属性,非线性规划问题涉及到更多的数学工具和分析方法。
在实际应用中,非线性规划问题的出现非常普遍。
例如,在生产中,企业需要在有限的资源条件下使利润最大化,这就需要解决一个非线性规划问题。
除此之外,非线性规划问题还广泛应用于交通、能源、金融等领域。
不仅如此,非线性规划问题还可以用于统计数据拟合、函数逼近等问题的求解。
因此,研究和解决非线性规划问题具有非常重要的实际意义。
在解决非线性规划问题时,常用的方法主要包括精确解法和近似解法。
精确解法主要包括拉格朗日乘子法、KKT条件等,通过求解一系列方程和方程组来确定最优解。
这类方法通常适用于问题结构相对简单、目标函数和约束条件有良好性质的情况。
然而,对于问题结构复杂、目标函数和约束条件非常复杂的情况,精确解法往往效率较低,难以求解。
因此,在实际应用中,近似解法更为常见。
近似解法主要包括梯度下降法、牛顿法、拟牛顿法、遗传算法等。
这些方法通常基于局部优化思想,通过不断迭代和优化,逐步靠近最优解。
这类方法适用于一般性的非线性规划问题,具有较强的鲁棒性和适应性。
但是,这些方法也有其局限性,如收敛速度慢、易陷入局部最优等。
除了上述方法外,还有一些新的研究方法和算法被提出,如混合整数非线性规划、次梯度法、粒子群优化等。
这些方法在某些特定问题中表现出较好的运用效果,并有望在未来的研究中得到更广泛的应用。
总之,非线性规划问题在数学建模中占据重要地位,对于优化问题的求解和实际应用具有重要的指导作用。
数学建模第四部分-非线性规划
约束条件
产量、库存 与需求平衡 条件不变
能 力 限 制
x1 30 x2 40 x3 45 x4 20
x1 15w1 30 x2 15w2 40 5w1
x3 15w3 45 5w2 5w1
x4 15w4 20 5w1 5w2 5w3
非负限制
x3 y2 y3 35
x4 y3 25
x1 , x2 , x3 , x4 , y1 , y2 , y3 0
第四部分 非线性规划
模型求解
LINDO求解
最优解: x1~ x4:15,40,25,20; y1~ y3: 0,15,5 .
周次 1 2 3 4 需求 15 25 35 25 产量 15 40 25 20 库存 0 15 5 0 能力 30 40 45 20 成本 5.0 5.1 5.4 5.5
库存1000吨 B x22
x21
x11 x12
Hale Waihona Puke 第四部分 非线性规划约束 条件
汽油含原油A 的比例限制
A B
x11 0.5 x11 x21 x11 x21
x12 0.6 2 x12 3x22 x12 x22
x21 x22
x11 x12
甲(A50%) 乙(A60%)
0
500
1000
1500
z1 y1 , z2 y1 y2 , z3 y2 y3 , z4 y3 z1 z2 z3 z4 1, zk 0 (k 1,2,3,4) IP模型,LINDO求 解,得到的结果与 y1 y2 y3 1, y1 , y2 , y3 0 或 1
4周生产计划的总费用为528 (千元)
数学建模模型常用的四大模型及对应算法原理总结
数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。
建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。
然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。
整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。
整数规划的特殊情况是0-1规划,其变量只取0或者1。
多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。
目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。
目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。
设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。
设有q个优先级别,分别为P1, P2, …, Pq。
在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。
数学建模四大模型归纳
四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
1.2 微分方程组模型阻滞增长模型、SARS 传播模型。
1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。
1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。
如何将尽可能多的物品装入背包。
多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。
如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。
该问题属于NP 难问题。
● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。
工人i 完成工作j 的时间为ij d 。
如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
●旅行商问题(TSP)旅行商问题:有n个城市,城市i与j之间的距离为d,找一条经过n个城ij市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
●车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP问题是VRP问题的特例。
●车间作业调度问题(JSP)车间调度问题:存在j个工作和m台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。
数学建模线性和非线性规划
四,线形规划问题的解法及举例
美国一家公司以专门饲养并出售一种实验用的 动物而闻名。这种动物的生长对饲料中的三种营养 成分特别敏感,即蛋白质、矿物质和维生素。
需 要
蛋白质:70克
的
营
矿物质:3克
养
量
维生素:9.1毫克
现有五种饲料,公司希望找出满足动物营养 需要使成本达到最低的混合饲料配置。
每一种饲料每磅所含的营养成分
• x = linprog(f,A,b,Aeq,beq,lb,ub)
• x = linprog(f,A,b,Aeq,beq,lb,ub,x0)
• x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)
• [x,fval] = linprog(...)
• [x,fval,exitflag] = linprog(...)
• 发现算法时非常年轻,以至 到日本时,人们以为”线性 规划之父”是个老人,而对 他无人问津.
Leonid Vitalyevich Kantorovich
• Kantorovich(1912-1986)苏 联人,著名数学家和经济学 家,教授,年仅18岁获博士 学位.因在经济学上提出稀 缺资源的最优配置获诺贝 尔奖.线性规划对偶理论的 提出者,数学规划的三大创 始人之一.
请同学翻译上面的句子,你喜欢那一句?你有什么好的 表述?
引例1,动物饲料配置问题
美国一家公司以专门饲养并出售一种实验用的 动物而闻名。这种动物的生长对饲料中的三种营养 成分特别敏感,即蛋白质、矿物质和维生素。
需 要
蛋白质:70克
的
营
矿物质:3克
养
量
维生素:9.1毫克
现有五种饲料,公司希望找出满足动物营养 需要使成本达到最低的混合饲料配置。
非线性规划和多目标规划模型共45页文档
6
、
露
凝
无
游
氛
,
天
高
风
景澈。源自7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8
、
吁
嗟
身
后
名
,
于
我
若
浮
烟
。
9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
1
0
、
倚
南
窗
以
寄
傲
,
审
容
膝
之
易
安
。
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
END
非线性规划和多目标规划模型-数学建模共45页文档
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
非线性规划和多目标规划模型-数学建模PPT共45页
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省Байду номын сангаас归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
非线性规划和多目标规划模型-数学建 模
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
数学建模非线性规划模型
(11)
3.
假定投资者对风险—收益的相对偏好参数为ρ, 则模型(9)可转化为
min Q( x) (1 ) R( x) F ( x) M s.t x0
(12)
4.
将总收益R(x)与整体风险Q(x)相比,则 模型(9)可化为:
R( x ) max Q ( x ) s.t F ( x ) M x0
M(元):公司现有投资总额 Si(i=0~n):欲购买的第i种资产种类(其中i=0 表 示存入银行); xi(i=0~n):公司购买Si金额; ri(i=0~n):公司购买Si的平均收益率; qi(i=0~n):公司购买Si的平均损失率; p(i=0~n):公司购买Si超过ui时所付交易费率。
6.4.3 问题的分析
由于目标函数不是线性函数,因此这一问题的数学 模型为有约束条件的非线性规划模型。在日常生活 中非线性规划问题要比线性规划问题普遍。 模型求解 首先利用Mathematica计算(1)(2)中的参数a, b,c,d,e,并画出散点图和拟合曲线。
图-3
图-4
即:
a 50422 .2, b 5133 .33 c 1.01875 , d 4.09226 105 , e 4.25595 1010
max R( x ) s.t Q( x ) k F ( x) M x0
(10)
2.
假定投资的平均收益率为 r ,则投资M的收 益 h rM ,若要求总的收益R(x)大于等于 h,即R(x)≥h,则模型(9)可转化为
min s.t
Q( x) R( x) h F ( x) M x0
销售增长因子 1.00 1.40 1.70 1.85 1.95 2.00 1.95 1.80
数学建模非线性的规划模型共37页文档
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
数学建模非线性的规划模型
31、园日涉以成趣,门虽设而常关。 32、鼓腹无所思。朝起暮归眠。 33、倾壶绝余沥,窥灶不见烟。
34、春秋满四泽,夏云多奇峰,秋月 扬明辉 ,冬岭 秀孤松 。 35、丈夫志四海,我愿不知老。
Байду номын сангаас 41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹