直接列举法求概率
计算概率常用的方法
计算概率的常用方法掌握概率的求法是这一章节的重点,那么求概率有哪些方法呢?下面以中考题为例说明求概率的常用方法。
1、列举法(2009年广州)有红、白、蓝三种颜色的小球各一个,它们除颜色外没有任何其他区别。
现将3个小球放入编号为①、②、③的三个盒子里,规定每个盒子里放一个且只能放一个小球。
(1)请用树状图或其他适当的形式列举出3个小球放入盒子的所有可能的情况。
(2)求红球恰好被放入②号盒子的概率。
解析:(1)3个小球分别放入编号为①、②、③的三个盒子的所有可能情况有:红白蓝、红蓝白、白红蓝、白蓝红、蓝红白、蓝白红,共6种。
(3)由(1)可知,红球恰好放入②号盒子的情况有白红蓝、蓝红白,共2种,所以红球恰好放入②号盒子的概率P=2/6=1/3。
评注:在一次实验中,如果可能出现的结果只是有限个,且各种结果出现的可能性大小相等,我们可以通过列举实验结果的方法,分析出随机事件发生的概率。
2、列表法(2009年成都)有一个均匀的正四面体,四个面上分别标有数字1、2、3、4,小红随机地抛掷一次,把着地一面的数字记为x;另有3张背面完全相同,正面上分别写有数字-2、-1、1的卡片,小亮将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y;然后他们计算出S=x+y的值。
(1)用树状图或表格表示出的所有可能的情况。
(2)分别求出当S=0和S<2的概率。
解析:(1)列表法分析如下:(2)由表格可知,所有可能出现的情况共有12种,其中S=0的有2种,S<2的有5种。
P(S=0)=2/12=1/6;P(S<2)=5/12。
评注:当一次实验涉及两个因素(例如投掷两个骰子),并且出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表法分析随机事件发生的概率。
3、树状图法(2009年安徽芜湖)“六一”儿童节,小明与小亮受邀到科技馆担任义务讲解员,他们俩各自独立地从A区(时代辉煌)、B区(科学启迪)、C区(智慧之光)、D区(儿童世界)这四个主题展区中随机选择一个为参观者服务。
25.2.1 用列表法求概率课件 2024-2025学年人教版数学九年级上册
B.
1
2
1
(1,1)
(1,2)
2
(2,1)
(2,2)
C.
D.
由列表可知,两次摸出小球的号码之积共有
4种等可能的情况,
)
知识讲解
知识点2 用列表法求概率
【例 2】一只不透明的袋子中装有两个完全相同的小球,上面分别标有1,
2两个数字,若随机地从中摸出一个小球,记下号码后放回,再随机地摸
1
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
(3)至少有一个骰子的点数为2.
2
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
3
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
4
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
5
(1,5)
(2,5)
(B )
A.
B.
C.
D.
随堂练习
2. 某次考试中,每道单项选择题一般有4个选项,某同学有两道题不
会做,于是他以“抓阄”的方式选定其中一个答案,则该同学的这两
道题全对的概率是( B )
A.
B.
C.
D.
随堂练习
3. 在6张卡片上分别写有1-6的整数,随机地抽取一张后放回,再随机
用列举法求概率讲解
第第二一个个
A
B
C DE C DE
H IH IH I H IH IH I
A AA AA A B B B B B B C CD DE E C C D D E E H I H I H I HI H I HI
当一次试验涉及两个因素时,且可能
出现的结果较多时,为不重复不遗漏地
列出所有可能的结果,通常用列表法
当一次试验涉及3个因素或3个以上 的因素时,列表法就不方便了,为不
重复不遗漏地列出所有可能的结果,
通常用树形图
巩固练习:在一个盒子中有质地均匀的3个小球,其中两个 小球都涂着红色,另一个小球涂着黑色,则计算以下事件的 概率选用哪种方法更方便?
1、从盒子中取出一个小球,小球是红球
直接列举
2、从盒子中每次取出一个小球,取出后再放回,取出两球
用列举法求概率
经过某十字路口的汽车,它可能继续直行,也可能左转或右转,如果这三种可能性大 小相同,同向而行的三辆汽车都经过这个十字路口时,求下列事件的概率:
(1)三辆车全部继续直行(2)两辆车右转,一辆车左转(3)至少有两辆车左转
左
直
右
左
直
右
左
直
右
左
直
右
左 直 右左 直 右左 直 右 左 直 右左 直 右左 直 右 左 直 右左 直 右左 直 右
的颜色相同
列表法或树形图
3、从盒子中每次取出一个小球,取出后再放回,连取了三
次,三个小球的颜色都相同
树形图
用列举法求概率
复习
求概率的方法有哪些种?
应怎样进行选择? 1、当一次试验涉及两个因素时,且可能出
现的结果较多时,为不重复不遗漏地列出所有 可能的结果,通常用列表法
25.2 用列举法求概率讲义 学生版
第25章概率初步25.2 用列举法求概率学习要求1、会通过列举法分析随机事件可能出现的结果,求出“结果发生的可能性相等”的随机事件的概率.2、能运用列表法和树状图法计算一些事件发生的概率.知识点一:直接列举法求概率例1.把1枚质地均匀的普通硬币重复掷两次,落地后出现一次正面一次反面的概率是()A.1 B.C.D.变式1.从长度分别为2、3、4、5的4条线段中任取3条,能构成钝角三角形的概率为()A.B.C.D.变式2.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.变式3.学校组织初三数学备课组全体教师去外校听课,安排了两辆车,按1~2编号,程、李两位教师可任意选坐一辆车.(1)用画树状图的方法或列表法列出所有可能的结果;(2)求程、李两位教师同坐2号车的概率.变式4.在2017年“KFC”乒乓球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛.(1)列表或画树状图表示乙队所有比赛结果的可能性;(2)求乙队获胜的概率.知识点二:列表法求概率例2.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?变式1.将A,B两男选手和C、D两女选手随机分成甲、乙两组参加乒乓球比赛,每组2人.(1)求男女混合选手在甲组的概率;(2)求两个女选手在同一组的概率.变式2.现有三张反面朝上的扑克牌:红桃2、红桃3、黑桃4.把牌洗匀后第一次抽取一张,记好花色和数字后将牌放回,重新洗匀第二次再抽取一张.(1)求两次抽得相同花色的概率;(2)求两次抽得的数字和是奇数的概率.(提示:三张扑克牌可以分别简记为红2、红3、黑4)变式3.班主任老师让同学们为班会活动设计一个抽奖方案,拟使中奖概率为60%.(1)小明的设计方案:在一个不透明的盒子中,放入10个球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黄球则表示中奖,否则不中奖.如果小明的设计符合老师要求,则盒子中黄球应有个,白球应有个;(2)小兵的设计方案:在一个不透明的盒子中,放入4个黄球和1个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球则表示中奖,否则不中奖.该设计方案是否符合老师的要求?试说明理由.变式4.一个不透明的布袋里装有3个完全相同的小球,每个球上面分别标有数字﹣1、0、1,小明先从布袋中随机抽取一个小球,然后放回搅匀,再从布袋中随机抽取一个小球,求第一次得到的数与第二次得到的数绝对值相等的概率(请用“画树状图”或“列表”等方法写出分析过程).变式5.有2个信封A、B,信封A装有四张卡片上分别写有1、2、3、4,信封B装有三张卡片分别写有5、6、7,每张卡片除了数字没有任何区别.从这两个信封中随机抽取两张卡片.(1)请你用列表法或画树状图的方法描述所有可能的结果;(2)把卡片上的两个数相加,求“得到的和是3的倍数”的概率.变式6.五•一期间,某商场开展购物抽奖活动,在不透明的抽奖箱中有4个分别标有数字1、2、3、4的小球,每个小球除数字外其余都相同.顾客随机抽取一个小球,不放回,再随机摸取一个小球,若两次摸出球的数字之和为“7”,则抽中一等奖,请用画树状图(或列表)的方法,求顾客抽中一等奖的概率.变式7.在不透明的布袋中装有1个白球,2个红球,它们除颜色外其余完全相同.(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个红球的概率;(2)若在布袋中再添加x个白球,充分搅匀,从中摸出一个球,使摸到白球的概率为,求添加的白球个数x.知识点三:画树状图求概率例3.不透明的袋子里装有2个红球和1个白球,这些球除了颜色外都相同.从中任意摸一个,放回摇匀,再从中摸一个,则两次摸到球的颜色相同的概率是()A.B.C.D.变式1.如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是()A.B.C.D.变式2.一个不透明的口袋中有3个小球,上面分别标有数字1,2,3,每个小球除数字外其他都相同,甲先从口袋中随机摸出一个小球,记下数字后放回;乙再从口袋中随机摸出一个小球记下数字,用画树状图(或列表)的方法,求摸出的两个小球上的数字之和为偶数的概率.变式3.我校开展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选两名进行督查.(1)请补全如下的树状图;(2)求恰好选中两名男学生的概率.变式4.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.变式5.如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.变式6.在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.变式7.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500ml)、红茶(500ml)和可乐(600ml),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.变式8.已知不等式组(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.变式9.某单位A,B,C,D四人随机分成两组赴北京,上海学习,每组两人.(1)求A去北京的概率;(2)用列表法(或树状图法)求A,B都去北京的概率;(3)求A,B分在同一组的概率.变式10.小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.变式11.交通信号灯(俗称红绿灯),至今已有一百多年的历史了.“红灯停,绿灯行”是我们日常生活中必须遵守的交通规则,这样才能保障交通的顺畅和行人的安全,下面这个问题你能解决吗?小刚每天骑自行车上学都要经过三个安装有红灯和绿灯的路口,假如每个路口红灯和绿灯亮的时间相同,那么,小刚从家随时出发去学校,他至少遇到一次红灯的概率是多少?不遇红灯的概率是多少?(请用树形图分析)变式12.一个不透明的袋子中,装有红黑两种颜色的小球(除颜色不同外其他都相同),其中一个红球,两个分别标有A、B黑球.(1)小李第一次从口袋中摸出一个球,并且不放回,第二次又从口袋中摸出一个球,则小李两次都摸出黑球的概率是多少?试用树状图或列表法加以说明;(2)小张第一次从口袋中摸出一个球,摸到红球不放回,摸到黑球放回.第二次又从口袋中摸出一个球,则小张第二次摸到黑球的概率是多少?试用树状图或列表法加以说明.拓展点一:游戏中的公平性问题例4.足球比赛前,裁判通常要掷一枚硬币来决定比赛双方的场地与首先发球者,其主要原因是()A.让比赛更富有情趣 B.让比赛更具有神秘色彩C.体现比赛的公平性 D.让比赛更有挑战性变式1.甲乙两人玩一个游戏,判定这个游戏公平不公平的标准是()A.游戏的规则由甲方确定B.游戏的规则由乙方确定C.游戏的规则由甲乙双方商定D.游戏双方要各有50%赢的机会变式2.(2014•玉林一模)小明和小亮玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数,则小明胜;若和为偶数则小亮胜.获胜概率大的是()A.小明 B.小亮 C.一样 D.无法确定变式3.小玲与小丽两人各掷一个正方体骰子,规定两人掷的点数和为偶数,则小玲胜;点数和为奇数,则小丽胜,下列说法正确的是()A.此规则有利于小玲 B.此规则有利于小丽C.此规则对两人是公平的 D.无法判断变式4.把一个可以自由转动的均匀转盘3等分,并在各个扇形内分别标上数字(如图),小明和小亮用图中的转盘做游戏;分别转动转盘两次,若两次数字之积是偶数,小明获胜,否则小亮获胜.你认为游戏是否公平?请说明理由.变式5.把大小和形状完全相同的6张卡片分成两组,每组3张,分别标上1、2、3,将这两组卡片分别放入两个盒(记为A盒、B盒)中搅匀,再从两个盒子中各随机抽取一张.(1)从A盒中抽取一张卡片,数字为奇数的概率是多少?(2)若取出的两张卡片数字之和为奇数,则小明胜;若取出的两张卡片数字之和为偶数,则小亮胜;试分析这个游戏是否公平?请说明理由.变式6.四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)随机抽取一张卡片,求恰好抽到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则如图所示.你认为这个游戏公平吗?请说明理由.变式7.小明和小亮用如图所示的两个转盘(每个转盘被分成三个面积相同的扇形)做游戏.同时转动两个转盘,如果所得颜色能配成紫色,那么小明获胜;如果所得颜色相同,那么小亮获胜,这个游戏对双方是否公平?请说明理由.变式8.在一个口袋中有3个完全相同的小球,把它们分别标号1、2、3.小李先随机地摸出一个小球,小张再随机地摸出一个小球.记小李摸出球的标号为x,小张摸出的球标号为y.小李和小张在此基础上共同协商一个游戏规则:当x>y时小李获胜,否则小张获胜.①若小李摸出的球不放回,求小李获胜的概率;②若小李摸出的球放回后小张再随机摸球,问他们制定的游戏规则公平吗?请说明理由.变式9.如图在圆盘的圆周上均匀的分布着0﹣9的10个数,箭头固定并指向0,圆盘可以任意旋转,记P k (k=1,2…9)表示箭头落在0﹣k之间的概率.如P3=.(1)求当k=8时的概率P8.(2)若规定,k取到奇数时,甲同学获胜,k取到偶数时,乙同学获胜,这样的规定是否公平?请说明理由.(3)请你设计一个规定,能公平的选出两位同学去参加某项活动.并说明你的规定是符合要求的.变式10.小红和小慧玩纸牌游戏.如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌上,小红先从中抽出一张,小慧从剩余的3张牌中也抽出一张.小慧说:抽出的两张牌的数字若都是偶数,你获胜;若一奇一偶,我获胜.(1)请用树状图表示出两人抽牌可能出现的所有结果;(2)若按小慧说的规则进行游戏,这个游戏公平吗?请说明理由.变式11.为从小明和小刚中选出一人去观看元旦文艺汇演,现设计了如下游戏,规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏是否公平.变式12.如图,小英和小丽用两个转盘做“配紫色”游戏,配成紫色小英得1分,否则小丽得1分,这个游戏对双方公平吗?(红色+蓝色=紫色)用树状图或表格求右面两个转盘配成紫色的概率.变式13.假期,六盘水市教育局组织部分教师分别到A、B、C、D四个地方进行新课程培训,教育局按定额购买了前往四地的车票.如图1是未制作完成的车票种类和数量的条形统计图,请根据统计图回答下列问题:(1)若去C地的车票占全部车票的30%,则去C地的车票数量是张,补全统计图.(2)若教育局采用随机抽取的方式分发车票,每人一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么余老师抽到去B地的概率是多少?(3)若有一张去A地的车票,张老师和李老师都想要,决定采取旋转转盘的方式来确定.其中甲转盘被分成四等份且标有数字1、2、3、4,乙转盘分成三等份且标有数字7、8、9,如图2所示.具体规定是:同时转动两个转盘,当指针指向的两个数字之和是偶数时,票给李老师,否则票给张老师(指针指在线上重转).试用“列表法”或“树状图”的方法分析这个规定对双方是否公平.易错点:分析事件的可能结果时易重复或者遗漏例5.一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()A.B.C.D.变式1.在一个不透明的袋子中装有仅颜色不同的5个小球,其中红球3个,黑球2个.(1)先从袋中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,填空:若A为必然事件,则m的值为,若A为随机事件,则m的取值为;(2)若从袋中随机摸出2个球,正好红球、黑球各1个,求这个事件的概率.变式2.在一个不透明的袋子中,放入了2个红球和m个白球,已知从中摸出一个球是红球的概率为0.4.(1)求m的值;(2)如果从中一次摸出2个球,求至少有一个是红球的概率,请用画树状图或列表的方法进行分析.变式3.不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外,其它都一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为.(1)求袋中黄球的个数;(2)第一次摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法求两次摸出的都是红球的概率.变式4.袋中装有除颜色外完全相同的2个红球和1个绿球.(1)现从袋中摸出1个球后放回,混合均匀后再摸出1个球.请用画树状图或列表的方法,求第一次摸到绿球,第二次摸到红球的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.。
用列举法求概率一一列举法和列表法
mianyangshiyanzhongxue heyi
2012.112.25
复习引入
• 必然事件; 在一定条件下必然发生的事件,
• 不可能事件; 在一定条件下不可能发生的事件
• 随机事件; 在一定条件下可能发生也可能不发生的事件,
2.概率的定义 •事件A发生的频率m/n接近于 某个常数,这时就把这个常数叫 做事件A的概率,记作P(A).
这个游戏对小亮和小明公 平吗?
你能求出小亮得分的概率吗?
用表格表示
红桃 1
2
3456 Nhomakorabea黑桃
1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
等可能性事件
等可能性事件
等可能性事件的两个特征: 1.出现的结果有限多个; 2.各结果发生的可能性相等;
等可能性事件的概率可以用列举法而求得。
列举法就是把要数的对象一一列举出来分析求解 的方法.
例2:掷两枚硬币,求下列事件的概率: (1)两枚硬币全部正面朝上。 (2)两枚硬币全部反面朝上。 (3)一枚硬币正面朝上,一枚反面朝下。
0≤P(A) ≤1. 必然事件的概率是1,不可能事件的概率是0.
• 问题1.掷一枚硬币,落地后会出现几种结果?
。正面、反面向上2种,可能性相等
• 问题2.抛掷一个骰子,它落地时向上的数有几 种可能? 6种等可能的结果
• 问题3.从分别标有1.2.3.4.5.的5根纸签中随机抽 取一根,抽出的签上的标号有几种可能? 5种等可能的结果。
用列举法求概率
用列举法求概率在概率论中,列举法是一种常用的求解事件概率的方法。
该方法的核心思想是通过列举事件的可能出现情况并计算这些情况的频率,来推断事件出现的概率。
下面将通过一个例子详细说明如何使用列举法来计算概率。
例子假设一家公司有5个员工,其中3个是男性,2个是女性。
现在从这5个员工中随机选择1个人,求该人是男性的概率。
首先,我们列举可能的情况,即从5个人中选择1个人,共有5种可能:1.选择第1个员工,是男性2.选择第2个员工,是男性3.选择第3个员工,是男性4.选择第4个员工,是女性5.选择第5个员工,是女性接下来,我们计算每种情况的概率。
1.选择第1个员工,是男性的概率为3/52.选择第2个员工,是男性的概率为3/53.选择第3个员工,是男性的概率为3/54.选择第4个员工,是女性的概率为2/55.选择第5个员工,是女性的概率为2/5最后,根据概率的定义,该人是男性的概率为选择男性的情况数除以所有情况数,即3/5,约为0.6。
通过以上例子,我们可以看出,列举法是一种非常简单有效的求解事件概率的方法。
对于一些简单的问题,我们可以通过列举可能的情况并计算概率来快速得出答案。
当然,在实际应用中,我们也需要注意一些问题,比如是否考虑了所有可能的情况、每种情况的概率是否正确等。
只有在全面准确考虑了所有问题,我们才能得出可靠的概率结果。
最后,需要注意的是,在更加复杂的情况下,列举法可能不能很好地处理问题,此时我们可以尝试其他方法,比如概率公式法、贝叶斯法等。
掌握各种求解概率的方法,可以让我们更加准确、高效地解决问题。
25.2 第1课时 用直接列举法和列表法求概率
25.2 第1课时用直接列举法和列表法求概率25.2用列举法求概率第1课时用直接列举法和列表法求概率一、基本目标【知识与技能】1.掌握用直接列举法和列表法求简单事件的概率的方法.2.运用概率知识解决计算涉及两个因素的一个事件概率的实际问题.【过程与方法】经历试验操作、观察、记录的过程,探究如何画出适当的表格,列举出事件的所有等可能结果,并总结出用列表法求事件概率的方法.【情感态度与价值观】合作探究如何画出适当的表格列举事件的所有等可能的结果,养成合作意识,形成缜密的思维习惯.二、重难点目标【教学重点】反正__、__反反__,故这两种试验的所有可能结果__一样__.环节2合作探究,解决问题【活动1】小组讨论(师生互学)【例1】先后两次抛掷一枚质地均匀的硬币.(1)求硬币两次都正面向上的概率;(2)求硬币两次向上的面相反的概率.【互动探索】(引发学生思考)上述问题中一次试验涉及几个因素?你是用什么方法不重复不遗漏地列出了所有可能的结果?【解答】列举先后两次抛掷一枚质地均匀的硬币的全部结果,它们是:正正、正反、反正、反反.所有的结果有4种,并且这4种结果出现的可能性相等.(1)所有可能的结果中,满足硬币两次都正面向上的结果只有1种,即“正正”,所以P(硬币两次都正面向上)=14.(2)硬币两次向上的面相反的结果共有2种,即“正反”“反正”,所以P(硬币两次向上的面相反)=24=12.【互动总结】(学生总结,老师点评)在一次试验中,如果可能出现的结果比较少,且各种结果出现的可能性大小相等,那么我们可以直接列举出试验结果,从而求出随机事件发生的概率.【例2】有5张看上去无差别的卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取1张,记下数字后放回洗匀,再从中随机抽取1张.(1)求两次抽到的数都是偶数的概率;(2)求第一次抽到的数比第二次抽到的数大的概率;(3)求两次抽到的数相等的概率.【互动探索】(引发学生思考)上述问题中一次试验涉及几个因素?你是用什么方法不重复不遗漏地列出了所有可能的结果?【解答】列表如下:第一次第二次1234 51(1,1)(2,1)(3,1)(4,1)(5,1)2(1,2)(2,2)(3,2)(4,2)(5,2)3(1,3)(2,3)(3,3)(4,3)(5,3)4(1,4)(2,4)(3,4)(4,4)(5,4)5(1,5)(2,5)(3,5)(4,5)(5,5)由表可以看出,可能出现的结果一共有25种,并且它们出现的可能性相等.(1)两次抽到的数都是偶数的结果有4种,即(2,2),(2,4),(4,2),(4,4),所以P(两次抽到的数都是偶数)=4 25.(2)第一次抽到的数比第二次抽到的数大的结果有10种,即(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),所以P(第一次抽到的数比第二次抽到的数大)=1025=25. (3)两次抽到的数相等的结果有5种,即(1,1),(2,2),(3,3),(4,4),(5,5),所以P (两次抽到的数相等)=525=15. 【互动总结】(学生总结,老师点评)在一次试验中,如果可能出现的结果比较多,且各种结果出现的可能性大小相等,那么我们可以列表列举出试验结果,从而求出随机事件发生的概率.【活动2】 巩固练习(学生独学)1.小明和小亮在玩“石头、剪子、布”的游戏,两人一起做同样手势的概率是( B )A.12B .13 C.14 D .152.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸出一个球,那么两次都摸到黄球的概率是( C )A.18B .16C .14D .123.李玲有红色、黄色、白色的三件运动短袖上衣和白色、黄色两条运动短裤.若任意组合穿着,则李玲穿着“衣裤同色”的概率是__13__. 4.同时掷两枚质地均匀的六面体骰子,计算下列事件的概率:(1)两枚骰子点数的和是6;(2)两枚骰子点数都大于4;(3)其中一枚骰子的点数是3.解:列表如下: 第一枚第二1 2 3 4 5 6枚1(1,1)(2,1)(3,1)(4,1)(5,1)(6,1) 2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2) 3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3) 4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4) 5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5) 6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6) 由表可以看出,同时掷两枚质地均匀的六面体骰子,可能出现的结果有36种,并且它们出现的可能性相等.(1)两枚骰子点数的和是6的结果有5种,即(1,5),(2,4),(3,3),(4,2),(5,1),所以P(两枚骰子点数的和是6)=5 36.(2)两枚骰子点数都大于4的结果有4种,即(5,5),(5,6),(6,5),(6,6),所以P(两枚骰子点数都大于4)=436=19.(3)其中一枚骰子的点数是3的结果有11种,即(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(3,1),(3,2),(3,4),(3,5),(3,6),所以P(其中一枚骰子的点数是3)=1136.【活动3】拓展延伸(学生对学)【例3】如图所示,小明和小亮用转盘做“配紫色”游戏(红色和蓝色在一起能配成紫色).小明转动的A盘被等分成4个扇形,小亮转动的B 盘被等分成3个扇形,两人分别转动转盘一次.两人转动转盘得到的两种颜色若能配成紫色则小明获胜,否则小亮获胜,这个游戏对双方公平吗?【互动探索】(引发学生思考)结合概率的相关知识,要使游戏对双方公平,则两人获胜的概率之间有什么关系?【解答】列表如下:红蓝黄蓝(红,(蓝,(黄,蓝)蓝)蓝)红(红,红)(蓝,红)(黄,红)黄(红,黄)(蓝,黄)(黄,黄)红(红,红)(蓝,红)(黄,红)由表可知,两人分别转动转盘一次,可能出现的结果共有12种,并且它们出现的可能性相同.其中能配成紫色的结果有3种,所以P(小明获胜)=312=14,P(小亮获胜)=1-14=34.因为14≠34,所以这个游戏对双方不公平.【互动总结】(学生总结,老师点评)判断一个游戏对双方是否公平,就看双方获胜的概率是否相等.若相等,则公平.否则,不公平.环节3课堂小结,当堂达标(学生总结,老师点评) 请完成本课时对应练习!。
25.2用列举法求概率--上课用
地扔进抽屉里,当他随意地从抽屉里拿出两只袜子时,恰
好成双的概率是多少?
知识点一.用枚举法求概率(等可能事件结果有限个):
思考:“同时抛掷两枚质地均匀的硬币”与“先后两
次抛掷一枚质地均匀的硬币”,这两种试验的所有可能结
果一样吗?
知识点一.用枚举法求概率(等可能事件结果有限个):
知识点二.用列表法求概率(等可能事件结果较多个):
改为“把一枚质地均匀的骰子掷两次”,得到的结果有变 化吗?为什么?
思考:如果把例2中的“同时掷两枚质地均匀的骰子”
知识点二.用列表法求概率(等可能事件结果较多个):
2.在一个不透明的布袋中有4个完全相同的乒乓球, 把它们分别标号为1,2,3,4,随机地摸出一个乒乓球,
知识点二.用列表法求概率(等可能事件结果较多个):
练习3.有6张看上去无差别的卡片,上面分别写着
1,2,3,4,5,6.随机抽取1张后,放回并混在一起,再随机抽
取1张,那么第二次取出的数字能够整除第一次取出的数字
的概率是多少?
三.课堂小结:
1.用列表法求概率时要注意些什么? 2.什么时候用列表法?
反思:用列表法求概率 1.步骤: ①列表:分清一次试验所涉及的两个因素,一个为横行, 一个为竖行,制作表格;
②计数:通过表格中的数据,分别求出某事件发生的数量
m与该试验的结果总数m的值;
③计算:利用概率公式
2.适用条件:
P ( A)
m n
计算出事件的概率.
如果事件中各种结果出现的可能性均等,含有两次操作 (如掷骰子两次)或两个条件(如两个转盘)的事件.
练习3.在一个不透明的口袋中装有红球2个,黑球2
列举法求概率
列举法求概率概率是数学中一个重要的概念,它描述了某个事件发生的可能性大小。
列举法是求解概率的一种常用方法,下面将详细介绍列举法求概率的步骤和应用。
一、列举法求解概率的基本步骤1. 定义事件首先需要明确所要研究的事件,例如掷一枚硬币出现正面或反面、从一副扑克牌中抽出一张红桃牌等。
2. 构建样本空间样本空间是指所有可能结果组成的集合。
对于掷硬币这个例子,样本空间为{正面,反面};对于抽扑克牌这个例子,样本空间为{红桃A、红桃2、……、红桃K、方块A、方块2、……、方块K、黑桃A、黑桃2、……、黑桃K、草花A、草花2、……、草花K}。
3. 确定事件发生的可能性在构建好样本空间后,需要确定所关注事件发生的可能性。
例如掷硬币出现正面和反面的概率相等,则P(正面)=P(反面)=1/2;抽到一张红桃牌的概率为P(红桃)=13/52=1/4。
4. 计算事件发生的概率最后,根据所得到的可能性,计算事件发生的概率。
例如掷硬币出现正面的概率为P(正面)=1/2;抽到一张红桃牌的概率为P(红桃)=1/4。
二、列举法求解概率的应用1. 掷骰子掷骰子是一个常见的游戏,我们可以使用列举法求解掷出某个点数的概率。
样本空间为{1,2,3,4,5,6},而掷出某个点数的事件可以表示为{1}、{2}、{3}、{4}、{5}或{6}。
因此,每个点数出现的概率均为1/6。
2. 抽扑克牌抽扑克牌也是一个常见的游戏,我们可以使用列举法求解抽到某种牌型(如顺子或同花顺)的概率。
样本空间为52张牌组成的集合,而顺子和同花顺分别有10种可能性(以A2345、23456、34567……10JQKJQKA等序列为例),因此它们出现的概率均为10/2598960。
3. 抛硬币抛硬币是一个简单的实验,我们可以使用列举法求解正反面出现的概率。
样本空间为{正面,反面},而正反面出现的概率均为1/2。
4. 抽彩票抽彩票也是一个常见的活动,我们可以使用列举法求解中奖的概率。
用直接列举法、列表法求概率
•
13、知人者智,自知者明。胜人者有 力,自 胜者强 。21.8.721.8.723:06:4623:06:46August 7, 2021
•
14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021年8月7日星期 六下午11时6分 46秒23:06:4621.8.7
•
15、最具挑战性的挑战莫过于提升自 我。。2021年8月下午 11时6分21.8.723:06August 7, 2021
白2 (白2,红1) (白2,红2) (白2,红3) (白2,白1) (白2,白2)
第1课时 用直接列举法、列表法求概率
从表中可以看出,两次摸球共有 25 种等可能的结果,其中摸 到两个红球的结果有 9 种,摸到一红一白的结果有 12 种,因此摸 到两个红球的概率是295,摸到一红一白的概率是1225.
第二十五章 概率初步
25.2 用列举法求概率
第二十五章 概率初步
第1课时 用直接列举法、列表法求概率
知识目标
目标突破 总结反思
第1课时 用直接列举法、列表法求概率
知识目标
1.通过自学课本例题,会用直接列举法求概率. 2.通过自学课本例题,当遇到从若干个元素中抽出2个元素 或对某个试验进行两次操作的问题时,会利用列表法求概率.
(1)两次摸出的乒乓球的标号相同; (2)两次摸出的乒乓球的标号和等于5.
第1课时 用直接列举法、列表法求概率
解:将两次乒乓球可能出现的结果列表如下:
第二次
1
2
3
4
第一次
1
(1,1) (1,2) (1,3) (1,4)
2
(2,1) (2,2) (2,3) (2,4)
3
(3,1) (3,2) (3,3) (3,4)
用列举法求概率(树形图法)
缺点
对于非常复杂的事件,树形图 可能会变得难以绘制和整理。
列举法与树形图法的应用场景
列举法适用于简单的事件,如掷骰子、抽签等。
树形图法适用于复杂的事件,如决策树、业务流程等。
通过列举法和树形图法,我们可以清晰地看到事件的全部可能性和它们之间的相互关系,从 而更好地理解和计算概率。在实际应用中,可以根据事件的复杂程度和具体情况选择合适的 方法来解决问题。
问题。
Байду номын сангаас
未来研究可以进一步探讨列举法 和树形图法的应用范围和局限性, 以及如何与其他概率计算方法进
行结合和比较。
谢谢
THANKS
树形图法能够清晰地表示 出事件之间的逻辑关系, 有助于理解概率的计算过 程。
适用范围广
树形图法适用于多个事件 之间相互独立或相互关联 的情况,适用范围较广。
缺点分析
绘制复杂
难以处理连续型概率
对于事件数量较多或关系较为复杂的 情况,树形图法的绘制过程可能较为 复杂。
树形图法更适合处理离散型概率问题, 对于连续型概率问题,处理起来较为 困难。
用列举法求概率(树形图法
目录
CONTENTS
• 列举法与树形图法的简介 • 树形图法的基本步骤 • 树形图法的实例分析 • 树形图法的优缺点分析 • 总结与展望
01 列举法与树形图法的简介
CHAPTER
列举法的定义
列举法
通过一一列出事件的所 有可能情况,直接计算
出概率的方法。
适用范围
适用于事件数量较少且 容易列出所有可能情况
将满足条件的样本点标记为“成功”,不满足条件的样本点标记为“失败”。
计算概率
01
计算成功样本点的数量:统计成 功样本点的数量。
用列举法求概率
1
2
(1,1) ( 1 , 2 ) ( 1 , 3 )
(2,1) ( 2 , 2 ) ( 2 , 3 )
3
(3,1) ( 3 , 2 ) ( 3 , 3 )
牌面数字等于4 的概率
P(A)
3 1 9 3
创设情景 引入新课 探究问题 寻找方法 引深拓展 归纳总结 巩固知识 实际应用 交流小结 形成能力
蚂蚁
巩固 3、假定孵化后,雏鸟为雌与为雄的概 率相同。如果三枚卵全部成功孵化,则 三只雏鸟中有两只雄鸟的概率是多少?
探究
三、连续两次抛掷一枚硬币,所有可 能出现的结果有哪些?我们知道用“列 表”法列举所有结果,能用“树形图”法 列举所有结果吗? 正 反
二 一
正 反
正 反 正正 反正 正反 反反
探究 二、 用“树形图”法列举:
1 2 3
(1,4) (1,5) (1,6) (1,7)
(2,4) (2,5) (2,6) (2,7)
(3,4) (3,5) (3,6) (3,7)
4 5 乙 7 6
求指针所指数字之和为偶数的概率。
归纳 “列表法”的意义:
当试验涉及两个因素(例如两个 转盘)并且可能出现的结果数目较多 时,为不重不漏地列出所有的结果, 通常采用“列表法”。
探究2:如果有两组牌,它们牌面数字分别为1、2、3,
那么从每组牌中各摸出一张牌,两张牌的牌面数字和 是多少?
问题:两张牌面数字和为几的概率最大?
创设情景 引入新课 探究问题 寻找方法 引深拓展 归纳总结 巩固知识 实际应用 交流小结 形成能力
方法1
第一张牌的 牌面数字 第二张牌的 牌面数字
列表法
1×5=5 2×5=10 3×5=15 4×5=20 5×5=25 6×5=30 1×6=6 2×6=12 3×6=18 4×6=24 5×6=30 6×6=36
求概率的三种方法
.求概率的方法在新课标实施以来,中考数学试题中加大了统计与概率局部的考察,表达了“学以致用〞这一理念. 计算简单事件发生的概率是重点,常用的方法有:列举法、列表法、画树状图法,这三种方法应该熟练掌握,先就有关问题加以分析. 一、列举法 例1:〔05济南〕如图1所示,打算了三张大小相同的纸片,其中两张纸片上各画一个半径相等的半圆,另一张纸片上画一个正方形.将这三张纸片放在一个盒子里摇匀,随机地抽取两张纸片,假设可以拼成一个圆形(取出的两张纸片都画有半圆形)则甲方赢;假设可以拼成一个蘑菇形(取出的一张纸片画有半圆、一张画有正方形)则乙方赢.你认为这个游戏对双方是公平的吗?假设不是,有利于谁? .分析:这个游戏不公平,因为抽取两张纸片,全部时机均等的结果为:半圆半圆,半圆正方形,正方形半圆,正方形正方形.所以取出的两张纸片都画有半圆形的概率为41. 取出的一张纸片画有半圆、一张画有正方形的概率为2142=,因为二者概率不等,所以游戏不公平. 说明: 此题采纳了一种较为有趣的试题背景,重在考查学生对概率模型的理解、以及对不确定事件发生概率值的计算.此题用列举方法,也可以用画树状图,列表法. 二、画树状图法 例2:〔06临安市〕不透明的口袋里装有白、黄、蓝三种颜色的乒乓球〔除颜色外其余都相同〕,其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为12.〔1〕试求袋中蓝球的个数.〔2〕第一次任意摸一个球〔不放回〕,第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.解析:⑴设蓝球个数为x 个,则由题意得21122=++x , 1=x答:蓝球有1个. 〔2〕树状图如下:∴ 两次摸到都是白球的概率 =61122=. 说明:解有关的概率问题首先弄清:①需要关注的是发生哪个或哪些结果.②无论哪种都是时机均等的,要对实践的分析得出概率通常用列表或画树状图来写出事件发生的结果,这样便于确定相关的概率. 此题是考查用树状图来求概率的方法,这种方法比拟直观,把全部可能的结果都一一排列出来,便于计算结果. 三、列表法 例3:〔06晋江市〕如图2,是由转盘和箭头组成的两个装置,装置A 、B 的转盘分别被平均分成三局部,装置A 上的数字是3、6、8;装置B 上的数字是4、5、7;这两个装置除了外表数字不同外,其他构造均相同,小东和小明分别同时转动A 、B 两个转盘〔一人转一个〕,如果我们规定箭头停留在较大数字的一方获胜〔如:假设A 、B 两个转盘的箭头分别停在6、4上,则小东获胜,假设箭头恰好停在分界图1 5 4 B768A 3图2.线上,则重新转一次〕,请用树状图或列表加以分析说明这个游戏公平吗? 解析:〔方法一〕画树状图: 由上图可知,全部等可能的结果共有9种,小东获胜的概率为95,小明获胜的概率为94,所以游戏不公平.由上表可知,全部等可能结果共有9种,小东获胜的概率为95,小明获胜的概率为94,所以游戏不公平.说明:用树状图法或列表法列举出的结果一目了然,当事件要经过屡次步骤〔三步以上)完成时,用这两种方法求事件的概率很有效.6开始。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中山市团益中学 初三数学 备课组
结合实际,引出问题
同学们,我们班共有49名同学,其中男 同学为28个,女同学21个,现要在男女 生中各选一名同学作为班长,那么男同 学的机会大,还是女同学的机会大呢?
他们的概率分别又是多少呢?
“扫雷”高手 现场展示
小王在游戏开始时随机 地踩中一个方格,踩中 后出现了如图所示的情 况.我们把与标号3的方 格相临的方格记为A区 域(画线部分),A区 域外的部分记为B区域, 第二步应该踩在A区域 还是B区域?
分析: ①抛两枚硬币所能产生的所有结
果分别是: ②所以: P(正正)= P(一正一反)= 。 ;P(反反)= 。 ;
巩固练习
1、袋子中装有红、绿各一个小球,随 机摸出1个小球后放回,再随机摸出一 个.求下列事件的概率: (1)第一次摸到红球,第二次摸到绿 球. (2)两次都摸到相同颜色的小球; (3)两次摸到的球中有一个绿球和一 个红球.
巩固练习
2、在一个不透明的袋子里放入除数字 外完全相同的两张卡片,卡片分别写 了1、2,搅匀后摸出一张记下数字, 放回后搅匀,再摸出一张。 (1)求两次摸出的数字相同的概率。 (2)求第一次摸到1,第二次摸到2的 概率。 (3)求两次摸出的数字之和为奇数的 概率。
小结:
1、本节课学习的重点内容是什么? 2、什么是列举法?
3、列举法的使用前提:
。
看看同学们的学பைடு நூலகம்效果
课堂检测要求:
1、要求学生独立完成;
2、书写工整
分析解决:
(1)“第二步应该踩在A区域还是B区 域”,最主要是由 决定。 (2)如何求出在A区域或者B区域的 概率呢? (3)当出现“1”或“2”时,又是怎 样呢?
归纳:
(1)什么是列举法?
(2)列举法一般在实验结果的 数量是 时使用。
例2:掷两枚硬币,求下列事件的概率: (1)两枚硬币全部正面朝上; (2)两枚硬币全部反面朝上; (3)一枚硬币正面朝上,一枚硬币反面 朝上.