信号采样与重建的编程实现

合集下载

离散信号的采样与重建matlab编程

离散信号的采样与重建matlab编程

离散信号的采样与重建是数字信号处理中的重要概念,它涉及到信号的采样、离散化、量化和还原等过程。

在数字信号处理中,离散信号的采样与重建是一个核心问题,它直接影响着信号的质量和信息的准确性。

在本文中,我们将使用Matlab编程来探讨离散信号的采样与重建,通过实例演示这一过程的具体步骤和原理。

在Matlab中,我们可以使用一些内置函数和工具来完成离散信号的采样与重建,这些工具能够帮助我们更好地理解信号处理的基本原理和方法。

1. 离散信号的采样在数字信号处理中,信号的采样是指将连续信号转换成离散信号的过程。

采样过程中,我们需要确定采样频率和采样间隔,以及信号的起始和结束时间。

在Matlab中,可以使用`sample`函数来实现信号的离散采样。

我们可以定义一个正弦波信号,并对其进行离散采样:```matlabt = 0:0.01:1; 定义时间序列f = 5; 正弦波频率x = sin(2*pi*f*t); 生成正弦波信号fs = 100; 采样频率n = length(t); 采样点数ts = 1/fs; 采样间隔x_sampled = x(1:fs:end); 对信号进行离散采样```在上面的示例中,我们定义了正弦波信号的时间序列`t`,计算了采样频率和采样间隔,然后使用`sample`函数对信号进行了离散采样,得到了采样后的离散信号`x_sampled`。

2. 离散信号的重建离散信号的重建是指将离散采样得到的信号重新转换成连续信号的过程。

在Matlab中,可以使用`interp1`函数来实现信号的重建。

我们可以对上面采样得到的离散信号进行线性插值重建:```matlabt_reconstructed = 0:ts:1;x_reconstructed = interp1(0:ts:1, x_sampled, t_reconstructed, 'linear');```在上面的示例中,我们定义了重建后的时间序列`t_reconstructed`,然后使用`interp1`函数对离散信号进行线性插值重建,得到了重建后的连续信号`x_reconstructed`。

实验三 信号采样与重建(实验报告)

实验三 信号采样与重建(实验报告)

《信号与系统》实验报告学院 专业 班级姓名 学号 时间实验三 信号采样与重建一、实验目的1、进一步学习MATLAB 的函数及其表示。

2、掌握及验证信号的SHANNON 采样定理。

3、由采样序列重构恢复原信号。

二、实验内容1、对连续时间信号y(t)=sin(24πt)+ sin(40πt),它有12Hz 和20Hz 两个等幅度分量。

用MATLAB 作图求出Nyquist 频率2fmax 。

t in 1/4sec.y (t )Analog Signalt in 1/12sec.s i n (24*p i *t )t in 1/20sec.s i n (40*p i *t )作图法判断频谱法判断2、设连续信号x(t)=exp(-1000|t|)时A、求傅利叶变换X(jw)。

(先书面求出变换公式,可判断出在2000Hz以上,其频谱幅度已经很小,因此,该处频率就可近似当成信号的最高频率)。

B、现在取采样频率fs=5000Hz,可得到信号序列x1[n],求离散DFT频谱X1(e jw)C、减小采样频率至fs=1000Hz,则可得到序列x2[n],求频谱X2(e jw)D、分别针对x1[n]与x2[n],试重建恢复(用三次样条函数或sinc函数)出对应的连续信号x1(t)与x2(t),并与原信号x(t)作对比。

最后根据抽样定理的知识,简单说明采样频率的大小对信号重建质量的影响。

5000Hz采样序列的重构情况 1000Hz采样序列的重构情况三、思考题:①连续时间信号的傅利叶变换matlab求法,这里采用的近似公式是什么?②从序列重构连续信号所采用的matlab函数是什么?采用三次样条内插函数,即利用Xa=spline(nTs,X,t)来实现。

其中X和nTs分包含在nTs 时刻和样本X(n)的数组,但存在一些误差。

③shannon采样定理中的信号Nyquist频率是指什么?与采样频率有什么不同?Nyquist频率是指是指最低允许的抽样率,是带限信号频率宽度的2倍,并且Nyquist 频率信号带宽是采样频率的一半。

数字信号处理实验报告-信号采集与重建

数字信号处理实验报告-信号采集与重建

数字信号处理实验报告-信号采集与重建实验二信号的采样与重建一.实验目的(1)通过观察采样信号的混叠现象,进一步理解奈奎斯特采样频率的意义。

(2)通过实验,了解数字信号采样转换过程中的频率特征。

(3)对实际的音频文件作内插和抽取操作,体会低通滤波器在内插和抽取中的作用。

二.实验内容(1)采样混叠,对一个模拟信号Va(t)进行等间采样,采样频率为200HZ,得到离散时间信号V(n).Va(t)由频率为30Hz,150Hz,170Hz,250Hz,330Hz的5个正弦信号的加权和构成。

Va(t)=6cos(60pi*t)+3sin(300pi*t)+2cos(340pi*t)+4cos(500pi*t)+10sin(660pi*t)观察采样后信号的混叠效应。

程序:clear,close all, t=0:0.1:20; Ts=1/2; n=0:Ts:20;V=8*cos(0.3*pi*t)+5*cos(0.5*pi*t+0.6435)-10*sin(0.7*pi*t);Vn=8*cos(0.3*pi*n)+5*cos(0.5*pi*n+0.6435)-10*sin(0.7*pi*n); subplot(221)plot(t,V), grid on,subplot(222) stem(n,Vn,'.'), grid on,40200-20-4040200-20-400510152021101520(2)输入信号X(n)为归一化频率f1=0.043,f2=0.31的两个正弦信号相加而成,N=100,按因子M=2作抽取:(1)不适用低通滤波器;(2)使用低通滤波器。

分别显示输入输出序列在时域和频域中的特性。

程序:clear;N=100; M=2;f1=0.043; f2=0.31; n=0:N-1;x=sin(2*pi*f1*n)+sin(2*pi*f2*n); y1=x(1:2:100);y2=decimate(x,M,'fir'); figure(1);stem(n,x(1:N));title('input sequence'); xlabel('n');ylabel('fudu'); figure(2); n=0:N/2-1; stem(n,y1);title('output sequence without LP'); xlabel('n');ylabel('fudu'); figure(3); m=0:N/M-1;stem(m,y2(1:N/M));title('output sequence with LP'); xlabel('n');ylabel('fudu'); figure(4);[h,w]=freqz(x);plot(w(1:512),abs(h(1:512)));title('frequency spectrum of the input sequence');xlabel('w');ylabel('fudu'); figure(5);[h,w]=freqz(y1);plot(w(1:512),abs(h(1:512)));title('frequency spectrum of the output sequence without LP');xlabel('w');ylabel('fudu'); figure(6);[h,w]=freqz(y2);plot(w(1:512),abs(h(1:512)));title('frequency spectrum of the output sequence without LP');xlabel('w');ylabel('fudu');input sequence21.510.5fudu0-0.5-1-1.5-202120304050n60708090100output sequence without LP21.510.5fudu0-0.5-1-1.5-20510152025n3035404550output sequence with LP1.510.5fudu0-0.5-1-1.50510152025n3035404550frequency spectrum of the inputsequence5045403530fudu252021105000.511.5wfrequency spectrum of the output sequence without LP3022.533.52520fudu15105000.511.5w22.533.5感谢您的阅读,祝您生活愉快。

实验九信号的采样与恢复

实验九信号的采样与恢复
(1)理想上采样开关与实际的采样开关有何不同? (2)采样香农定理的物理意义是什么? (3)为什么说零阶保持器不是理想的低通滤波器? 六、实验报告 (1)分别绘制f(t)、fs(t)以及恢复后信号的波形。 (2)写出本实验调试中的体会。
第4页
实验九 信号的采样与恢复
一、实验目的
(1)掌握电信号的采样和恢复的实验电路。 (2)通过本实验,加深学生对采样定理的理解。 二、实验设备
序号
型号
备注
1 DJK01 电源控制屏
该控制屏包含”三相电源输
出”等几个模块
2 DJK15 控制理论实验挂箱 或 DJK16 控制理论实验挂箱
3 双踪慢扫描示波器
三、实验原理
(2)为使所选的f(t)信号经频率为fs的周期脉冲采样后,希望 通过滤波器后信号的失真小,则采样频率和低通滤波器的截止频 率应各取多少,试设计一满足上述要求的低通滤波器。
(3)将(2)计算求得的 f(t)和 s(t)送至采样器,观察采样 后的正弦波的波形。
(4)改变采样频率如fS=4B,和fS<2B,再用示波器观察恢复后的 信号,并比较失真度。 五、思考题
第2页
即使用图 9-3 所示的理想滤波器,也不能获得原有的f(t)信号。 图 9-4 为信号采样的实验电路图。
图 9-4
(2)信号的恢复 为了实验对被检对象的有效控制,必须把所得的离散信号恢 复为相应的连续信号。工程上常用的低通滤波器是零阶保持器, 它的传递函数为
G
h
(s)
=
1
− e −Ts S
或近似地表示为
这就是香农采样定理,它表示采样角频率ωs(或采样频率fs) 若能满足式(3),则采样后的离散信号fS(t)信号就会有连续信号 f(t)的全部信息,如把fs(t)信号送至具有图 9-3 所示特性的理想 滤波器输入端,则其输出就是原有的连续信号f(t)。

信号实验:连续信号的采样和恢复

信号实验:连续信号的采样和恢复

电子科技大学实验报告学生姓名:学号:指导老师:日期:2016年 12月 10日一、实验室名称: 连续信号的采样和恢复 二、实验项目名称:实验项目四:连续信号的采样和恢复 三、实验原理:实际采样和恢复系统如图3.4-1所示。

可以证明,奈奎斯特采样定理仍然成立。

⊗)x t )(t P T )图3.4-1 实际采样和恢复系统采样脉冲:其中,T s πω2=,2/)2/sin(τωτωτs s kk k T a =,T <<τ。

采样后的信号:∑∞-∞=-=−→←k s S FS k j X T j X t x )((1)()(ωωω当采样频率大于信号最高频率两倍,可以用低通滤波器)(ωj H r 由采样后的()()2()FT T ksk p t P j a k ωπδωω+∞=-∞←−→=-∑信号)(t x S 恢复原始信号)(t x 。

目的:1、使学生通过采样保持电路理解采样原理。

2、使学生理解采样信号的恢复。

任务:记录观察到的波形与频谱;从理论上分析实验中信号的采样保持与恢复的波形与频谱,并与观察结果比较。

四、实验内容实验内容(一)、采样定理验证实验内容(二)、采样产生频谱交迭的验证五、项目需用仪器设备名称:数字信号处理实验箱、信号与系统实验板的低通滤波器模块U11和U22、采样保持器模块U43、PC 机端信号与系统实验软件、+5V 电源六、实验步骤:打开PC 机端软件SSP.EXE ,在下拉菜单“实验选择”中选择“实验六”;使用串口电缆连接计算机串口和实验箱串口,打开实验箱电源。

实验内容(一)、采样定理验证 实验步骤:1、连接接口区的“输入信号1”和“输出信号”,如图3.4-2所示。

图3.4-2 观察原始信号的连线示意图2、信号选择:按“3”选择“正弦波”,再按“+”或“-”设置正弦波频率为“2.6kHz ”。

按“F4”键把采样脉冲设为10kHz 。

七、实验数据及结果分析:八、九.实验结论:1.当采样频率大于信号最高频率两倍,可以用低通滤波器将由采样后的信号恢复到原始信号。

信号采样与重建的编程实现

信号采样与重建的编程实现

课程设计任务书学生:凯鑫专业班级:电信1203班指导教师:阙大顺,王虹工作单位:信息工程学院题目: 信号采集与重建的编程实现初始条件:1.Matlab6.5以上版本软件;2.课程设计辅导资料:“Matlab语言基础及使用入门”、“数字信号处理原理与实现”、“Matlab及在电子信息课程中的应用”等;3.先修课程:信号与系统、数字信号处理、Matlab应用实践及信号处理类课程等。

要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1.课程设计时间:1周(课实践);2.课程设计容:信号采样与重建的编程实现,具体包括:连续信号的时域采样、频谱混叠分析、由离散序列恢复模拟信号等;3.本课程设计统一技术要求:研读辅导资料对应章节,对选定的设计题目进行理论分析,针对具体设计部分的原理分析、建模、必要的推导和可行性分析,画出程序设计框图,编写程序代码(含注释),上机调试运行程序,记录实验结果(含计算结果和图表),并对实验结果进行分析和总结;4.课程设计说明书按学校“课程设计工作规”中的“统一书写格式”撰写,具体包括:①目录;②与设计题目相关的理论分析、归纳和总结;③与设计容相关的原理分析、建模、推导、可行性分析;④程序设计框图、程序代码(含注释)、程序运行结果和图表、实验结果分析和总结;⑤课程设计的心得体会(至少500字);⑥参考文献;⑦其它必要容等。

时间安排:1)第1-2天,查阅相关资料,学习设计原理。

2)第3-4天,方案选择和电路设计仿真。

3)第4-5天,电路调试和设计说明书撰写。

4)第6天,上交课程设计成果及报告,同时进行答辩。

指导教师签名:年月日系主任(或责任教师)签名:年月日摘要数字信号处理是一门理论与实践紧密结合的课程。

做大量的习题和上机实验,有助于进一步理解和巩固理论知识,还有助于提高分析和解决实际问题的能力。

过去用其他算法语言,实验程序复杂,在有限的实验课时所做的实验容少。

连续信号的采样与重构

连续信号的采样与重构
t1=0:0.00001:1;
f=3000;fs=5120;
x=3*sin(2*pi*f*t1);
subplot(2,1,1)
plot(t1,x);
xlabel('时间,mseec');ylabel('幅值');
title('连续时间信号');
axis([0 0.001 -3.2 3.2]) ;
subplot(2,1,2);
subplot(2,2,3);
n=0:10;
xs=2*n.*exp(-n);
k=0:length(n)-1;
stem(k,xs);grid
xlabel('时间n');
ylabel('幅值');
title('离散时间信号X【n】');
subplot(2,2,4);
wd=0:pi/255:pi;
hd=freqs(xs,1,wd);
mag=[0 1 0 0];
x=fir2(101,freq,mag);
[xz,w]=freqz(x,1,512);
subplot(2,1,1)
plot(w/pi,abs(xz));
axis([0 1 0 1]);
grid
title('输入谱');
subplot(2,1,2)
l=input('欠采样因子=');
subplot(2,2,2);
wa=0:10/511:10;
ha=freqs(2,[1 2 1],wa);
plot(wa/(2*pi),abs(ha));grid
xlabel('频率');

自动控制原理--信号的采样与复现

自动控制原理--信号的采样与复现

例1 设 e(t) 1(t) ,试求 e* (t) 的拉氏变换。
解:显然,对于给定的 e(t),其拉式变换
为 E(s) 1 ,根据式(8-6)定义,可得
s
E* (s) e(kT ) ekTs 1 eTs e2Ts k 0
这是一个无穷等比级数,公比为eTs,求
级数和可得闭合形式
E*(s)
例3 xt Asin 0t ,求x t 和 X s 。
解:由拉式变换的一般公式,可得
L[x(t)] xs A0
s 2 02
所以 ,x(s)有两个极点 。t 0时 ,xt 0 ,
由式(8-7)得
X s
A0 T
s
1
jks 2
02
A0 T
s2
1 02
s
1
js 2
02
s
1
js 2
jT
e2
sin T
T
sin(T
/
2)
e
jT
2
T 2 2
T / 2
• 零阶保持器的频率特性如图所示
Gh j
Gh j
T
0
s
2s
3s
2
Gh j
3
• 零阶除了允许主频谱分量通过之外,还 允许一部分附加高频分量通过。因此复 现出的信号与原信号是有差别的。
4、小结
• 采样控制系统的结构; • 计算机控制的采样系统的优点; • 采样过程和采样定理; • 零阶保持器的传函和特性。
(4)随机采样:采样是随机进行的,没有固定的规律
1、信号的采样过程
et
e* t
e* t
et T e*t
0
0
t

连续时间信号的采样与重构及其实现

连续时间信号的采样与重构及其实现

连续时间信号的采样与重构及其实现
信号处理是现代通信系统中至关重要的一环,其中采样与重构是
一种基本的信号处理技术。

在连续时间信号处理中,采样的作用是将
信号从连续时间域转换为离散时间域。

而重构的作用则是将离散时间
域信号重新转换为连续时间信号,以便于信号的处理和传输。

在采样的过程中,需要将连续时间信号按照一定的时间间隔进行
取样,得到一个离散时间序列。

采样过程中最关键的参数是采样频率,也就是每秒采用的样本数,通常用赫兹(Hz)表示。

采样频率越高,
离散时间序列的准确性就越高,但同时也会增加采样处理的复杂度。

重构的过程则是将离散时间信号恢复成连续时间信号。

由于采样
本身会将连续时间信号进行离散化处理,因此需要进行一定的插值和
滤波处理才能够准确地重构信号。

常见的重构算法包括插值算法、直
接复制算法和最小均方误差算法等。

在实现上,采样和重构的算法都需要借助于一定的数学模型和计
算机技术。

在现代通信系统中,基于数字信号处理技术的采样和重构
算法广泛应用于音频信号、视频信号、图像信号等多种信号处理领域。

数学模型包括傅里叶变换、拉普拉斯变换、小波变换等等。

总之,采样和重构是现代通信系统中非常重要的信号处理技术,
对于准确传输和处理信号具有至关重要的作用。

采用数字信号处理技
术可以实现高效的采样和重构,为现代通信系统的发展提供重要的支撑。

应用_MATLAB实现连续信号的采样与重构仿真

应用_MATLAB实现连续信号的采样与重构仿真

应用_MATLAB实现连续信号的采样与重构仿真MATLAB是一款强大的数学建模和仿真软件,非常适合用于实现连续信号的采样与重构仿真。

本文将详细介绍如何使用MATLAB实现这一过程,并探讨其中的原理和细节。

一、连续信号的采样在MATLAB中,可以使用采样函数`sample(`来实现对连续信号的采样。

采样过程的关键参数是采样频率和采样周期。

采样频率表示单位时间内采样的次数,采样周期表示两次采样之间的时间间隔。

假设我们要对一个连续信号进行采样,步骤如下:1.定义采样频率和采样周期采样频率一般根据采样要求来确定,可以根据信号的最高频率进行选择。

常见的采样频率有8kHz、16kHz等。

采样周期是采样频率的倒数,即`Ts=1/fs`。

2.创建一个采样时间序列通过`Ts`和信号的时间长度确定采样时间序列,可以使用`linspace(`函数生成等间隔的采样时间序列。

3.对信号进行采样使用`sample(`函数对信号进行采样。

该函数接受两个参数,第一个参数是要采样的信号,第二个参数是采样时间序列。

4.可视化采样结果使用`plot(`函数可以将连续信号和采样信号在同一个图中进行比较,以便观察采样效果。

二、连续信号的重构重构是指将离散的采样信号还原为原始的连续信号。

实现连续信号的重构可以使用内插函数,如线性插值、多项式插值等。

在MATLAB中,可以使用`interp(`函数来实现信号的重构。

假设我们已经得到了采样信号和采样时间序列,步骤如下:1.定义重构时间序列重构时间序列与采样时间序列的生成方式相同,可以使用`linspace(`函数生成等间隔的时间序列。

2.对采样信号进行插值使用`interp(`函数对采样信号进行插值。

该函数接受两个参数,第一个参数是采样时间序列,第二个参数是采样信号。

3.可视化重构结果使用`plot(`函数将重构信号与原始信号进行比较,以便观察重构效果。

三、仿真实例为了更好地理解连续信号的采样与重构过程,在这里我们以正弦信号为例进行仿真。

实验一信号的采样与恢复

实验一信号的采样与恢复

实验一信号的采样与恢复一、实验目的1.了解电信号的采样方法与过程及信号的恢复。

2.验证采样定理。

二、实验设备信号与系统实验(二)挂箱(ZK-3)、低频函数信号发生器、虚拟示波器三、实验内容1.研究正弦信号被采样的过程以及采样后的离散化信号恢复为连续信号的波形。

2.用采样定理分析实验结果。

四、实验原理1.离散时间信号可以从离散信号源获得,也可以由连续时间信号经采样而获得。

采样信号fs(t)可以看成连续信号f(t)和一组开关函数S(t)的乘积。

S(t)是一组周期性窄脉冲。

由对采样信号进行傅立叶级数分析可知,采样信号的频谱包括了原连续信号以及无限多个经过平移的原信号频谱。

平移的频率等于采样频率fs 及其谐波频率2fs、3fs²²²。

当采样后的信号是周期性窄脉冲时,平移后信号频率的幅度按(Sinx)/x规律衰减。

采样信号的频谱是原信号频谱的周期性延拓,它占有的频带要比原信号频谱宽得多。

2.采样信号在一定条件下可以恢复原来的信号,只要用一截止频率等于原信号频谱中最高频率fn 的低通滤波器,滤去信号中所有的高频分量,就得到只包含原信号频谱的全部内容,即低通滤波器的输出为恢复后的原信号。

3.原信号得以恢复的条件是fs 2B,其中fs 为采样频率,B 为原信号占有的频带宽度。

Fmin=2B 为最低采样频率。

当fs 2B 时,采样信号的频谱会发生混迭,所以无法用低通滤波器获得原信号频谱的全部内容。

在实际使用时,一般取fs=(5-10)B 倍。

实验中选用fs 2B、fs=2B、fs 2B 三种采样频率对连续信号进行采样,以验证采样定理 要是信号采样后能不失真的还原,采样频率fs 必须远大于信号频率中最高频率的两倍。

2.下面的框图表示了对连续信号的采样和对采样信号的恢复过程。

实验时,除选用足够高的采样频率外,还常采用前置低通滤波器来防止信号频谱的过宽而造成采样后信号频谱的混迭。

图12-1 信号的采样与恢复原理框图五、实验步骤1.连接一采样信号(方波)发生器、采样器、低通滤波器组成的采样与恢复电路(实验电路采用信号与系统(二)挂箱的“信号的采样与恢复”单元)。

信号的采样与恢复(采样定理)

信号的采样与恢复(采样定理)

实验一信号的采样与恢复(采样定理)一、实验目的1、了解信号的采样方法与过程以及信号恢复的方法。

2、验证采样定理。

二、实验设备1、Dais-XTB信号与系统实验箱一台2、双踪示波器一台3、任意函数发生器一台三、实验原理1、离散时间信号可以从离散信号源获得,也可以从连续时间信号采样而得。

采样信号x s(t)可以看成连续信号x(t)和一组开关函数s(t)的乘积。

s(t)是一组周期性窄脉冲,如图2-5-1,T s称为采样周期,其倒数f s=1/T s称采样频率。

图2-5-1 矩形采样信号对采样信号进行傅里叶分析可知,采样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。

平移的频率等于采样频率f s及其谐波频率2f s、3f s……。

当采样信号是周期性窄脉冲时,平移后的频率幅度按sinx/x规律衰减。

采样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。

2、采样信号在一定条件下可以恢复到原信号。

只要用一截止频率等于原信号频谱中最高频率f n的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出端可以得到恢复后的原信号。

3、原信号得以恢复的条件是f s≥2f max,f s为采样频率,f max为原信号的最高频率。

当fs <2f max时,采样信号的频谱会发生混迭,从发生混迭后的频谱中无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频率的信号是极少的,因此即使f s=2 f max,恢复后的信号失真还是难免的。

实验中选用f s<2 f max、f s=2 f max、f s>2 f max三种采样频率对连续信号进行采样,以验证采样定理:要使信号采样后能不失真地还原,采样频率f s必须大于信号最高频率的两倍。

4、连续信号的采样和采样信号的复原原理框图如图2-5-2所示。

除选用足够高的采样频率外,常采用前置低通滤波器来防止原信号频谱过宽而造成采样后信号频谱的混迭,但这也会造成失真。

信号的采样与重建

信号的采样与重建

信号的采样与重建一、 设计目的和意义通过用MATLAB 对f(t)= 5sin(2*pi*30*t)+2sin(2*pi*60*t)+0.5sin(2*pi*90*t)进行设计仿真,让我们通过试验论证理论的正确性,同时学会使用并掌握MATLAB 软件的使用,进一步熟悉掌握连续时间信号的傅立叶变换、采样定理等。

二、 设计原理通过使用软件MATLAB 对采样信号模拟仿真,进行采样、傅里叶变换通过数字图形对设计的F (T )显示,观察其形状变化。

1、时间的傅立叶变换:X(jw)=()jwt x t e dt ∞--∞⎰; (2-1)X(t)=1/2()jwt X jw e dw π∞-∞⎰. (2-2)2、离散时间的傅立叶变换:X(jwe )=[]jw nn x n e∞-=-∞∑; (2-3)X[n]=21/2()jw jwn X e e dw ππ⎰. (2-4)3、采样定理:设x(t)是某一个带限信号,在|w|>Wm 时,X (jw )=0。

如果Ws:>2Wm ,其中Ws=2π/T,那么x(t)就唯一地由其样本x(nT),n=0,1,2++--,···所决定。

已知这些样本值,我们能用如下 办法重建X(t)信号:产生一个周期冲激串,其冲激幅度就是这些依次而来的样本值,然后将 冲激串通过一个增益T ,截止频率大于Wm ,而小于(Ws-Wm )的理想低通滤波器,该滤波器的 输出就是x(t)。

4、频谱的平移:0()((0))fejw t e x t X j w w −−→-。

(2-5) 三、 详细设计步骤1.建立源信号:f(t)= 5sin(2*pi*30*t)+2sin(2*pi*60*t)+0.5sin(2*pi*90*t),对f (t )进行采样,其结果显示如图1所示: t=-1:pi/100:1;x1=5*sin(2*pi*30*t);x2=2*sin(2*pi*60*t); x3=0.5*sin(2*pi*90*t);f=x1+x2+x3;subplot(221),plot(t,x1);subplot(222),plot(t,x2); subplot(223),plot(t,x3);subplot(224),plot(t,f);2、采样:用120Hz 的频率对f(t)进行采样,其采样图如图(2)所示;用240Hz 的频率对f(t)进行采样,其采样图如图(3)所示: fs1=120;t1=-1:1/fs1:1;f1=5*sin(2*pi*30*t1)+2*sin(2*pi*60*t1)+0.5*sin(2*pi*90*t1);figure(1);plot(t1,f1);axis([-0.1 0.1 -8 8]);hold off;fs2=240;t2=-1:1/fs2:1;f2=5*sin(2*pi*30*t2)+2*sin(2*pi*60*t2)+0.5*sin(2*pi*90*t2);figure(2);plot(t2,f2);axis([-0.1 0.1 -8 8]);hold off;3、将二个采样信号进行快速离散傅里叶变换(FFT),观察频谱图,指出是否产生频谱混迭现象. 用120Hz的频率对f(t)进行采样,其采样后快速傅立叶变换频谱图图(4)所示;用240Hz的频率对f(t)进行采样,其采样后快速傅立叶变换频谱图图(5)所示:f1=30;f2=60;f3=90;fs=120;N=120;W=2*pi*5;k=0:N-1;w=k*W/N;t=0:1/fs:0.1;x1=5*sin(2*pi*f1*t)+2*sin(2*pi*f2*t)+0.5*sin(2*pi*f3*t);xf1=fft(x1,N);xf1=abs(xf1);w1=120*k/Nfigure(1);plot(w1,xf1);f1=30;f2=60;f3=90;fs=240;N=240;W=2*pi*5;k=0:N-1;w=k*W/N;t=0:1/fs:0.1;x2=5*sin(2*pi*f1*t)+2*sin(2*pi*f2*t)+0.5*sin(2*pi*f3*t);xf2=fft(x2,N);xf2=abs(xf2);w2=240*k/Nfigure(2);plot(w2,xf2);4、因为用信号fs=120HZ进行采样时,fs<2f3,其采样频率太小,所以采样信号重建无法复原,其重建如图(6)所示。

连续信号的采样与恢复实验报告

连续信号的采样与恢复实验报告

连续信号的采样与恢复实验报告实验报告:连续信号的采样与恢复一、实验目的:1.了解连续信号的采样原理和采样定理;2.理解采样后信号的频谱特性;3.掌握信号恢复的方法。

二、实验原理:采样定理:对于频谱带宽有限的信号,为了保证采样信号不发生混叠现象,必须满足采样频率大于信号频谱的最高分量频率的两倍。

三、实验器材:1.信号发生器;2.示波器;3.编码器;4.数字示波器;5.连接线。

四、实验步骤及结果:1.首先使用信号发生器产生频率为1kHz、幅值为5V的正弦信号作为待采样信号;2.将信号发生器输出的信号连接至示波器进行观察;3.将示波器输出信号连接至编码器进行信号的采样;4.将编码器的输出信号连接至数字示波器,观察离散采样值;5.对离散采样值进行信号恢复,使用零阶保持、线性插值和兰特尔-曼豪姆插值三种恢复方法;6.将恢复后的信号与原信号进行比较,观察恢复的效果。

实验结果:在示波器上观察到频率为1kHz、幅值为5V的正弦信号。

数字示波器上显示出了一系列离散的采样值。

通过零阶保持、线性插值和兰特尔-曼豪姆插值三种方法进行信号恢复后,观察到恢复的信号与原信号基本一致。

五、实验分析:1.信号恢复的效果受到采样频率和采样幅值的影响,采样频率过低或采样幅值过小都会造成信号失真;2.零阶保持方法可以保持离散信号的幅值不变,但是无法恢复信号的高频分量;3.线性插值可以恢复少量的高频分量,但是如果信号存在高频噪声或非线性失真,会导致恢复后信号的质量下降;4.兰特尔-曼豪姆插值是一种高阶插值方法,能够更好地恢复信号的高频分量,但是计算量较大。

六、实验总结:通过本次实验,我了解了连续信号的采样原理和恢复方法,掌握了采样频率的要求和恢复过程中常用的插值方法。

实验中,我观察到了采样信号和恢复信号的特性,并进行了比较分析。

实验结果表明,在合适的采样条件和恢复方法下,可以有效地采样和恢复信号。

《信号与系统》课程设计-信号采样与重建

《信号与系统》课程设计-信号采样与重建

《信号与系统》课程设计——信号的采样与重建【设计题目】信号的采样与重建 【设计要求】(1) 理解并掌握采样定理。

(2) 分别给定的带限信号进行临界采样、欠采样、过采样,观察采样前后信号的时域波形及频谱特点。

(3) 分别对临界采样、欠采样、过采样后的信号进行重构,设计合理的滤波器,完成信号的重建。

【设计工具】MATLAB 【设计原理】1 采样定理取样定理论述了在一定条件下,一个连续时间信号完全可以用该信号在等时间间隔上的瞬时值(或称样本值)表示,这些样本值包含了连续时间信号的全部信息,利用这些样本值可以恢复原信号。

可以说取样定理在连续时间信号与离散时间信号中架起了一座桥梁。

其具体内容如下:取样定理:设为带限信号,带宽为0F ,则当取样频率02F F s ≥时,可从取样序列)()(s a nT x n x =中重构,否则将导致)(n x 的混叠现象。

带限信号的最低取样频率称为Nyquist (奈奎斯特)速率。

图1给出信号采样原理图图1 信号采样原理图由图1可见,)()()(t t f t f Ts s δ⋅=,其中,冲激采样信号)(t Ts δ的表达式为:∑∞-∞=-=n sT nT t t s)()(δδ (1)其傅立叶变换为∑∞-∞=-n s s n )(ωωδω,其中ss T πω2=。

设)(ωj F ,)(ωj F s 分别为)(t f ,)(t f s 的傅立叶变换,由傅立叶变换的频域卷积定理,可得:∑∑∞-∞=∞-∞=-=-=n ssn s s s n j F T n j F j F )]([1)(*)(21)(ωωωωδωωπω (2)若设)(t f 是带限信号,带宽为m ω如图(2),由式(2)可见,)(t f 经过采样后的频谱)(ωj F s 就是将)(ωj F 在频率轴上搬移至 ,,,,,02ns s s ωωω±±±处(幅度为原频谱的s 1倍)。

因此,当m s ωω2≥时如图(4),频谱不发生混叠;而当m s ωω2<时如图(5),频谱发生混叠。

利用MATLAB实现连续信号的采样与重构仿真

利用MATLAB实现连续信号的采样与重构仿真

利用MATLAB实现连续信号的采样与重构仿真MATLAB是一个非常强大的数学计算工具,广泛应用于工程和科学领域。

在信号处理领域,MATLAB提供了许多功能和工具,可以方便地进行连续信号的采样和重构仿真。

首先,我们需要了解什么是连续信号的采样和重构。

连续信号是指在时间上连续变化的信号,例如声音信号或电压信号。

采样是指将连续信号在一定时间间隔内进行离散化处理,得到一组离散的样本点。

而重构是指根据采样得到的离散样本点,通过插值等技术恢复出原始连续信号。

下面我们将利用MATLAB进行连续信号的采样和重构仿真。

首先,我们定义一个连续信号。

例如,我们可以定义一个正弦信号:```matlabfs = 1000; % 采样频率t = 0:1/fs:1; % 时间范围为1秒f=10;%正弦波频率x = sin(2*pi*f*t); % 定义的连续信号```接下来,我们可以使用`plot`函数绘制连续信号的波形图:```matlabfigure;plot(t, x);xlabel('时间 (s)');ylabel('幅值');title('连续信号波形图');```我们可以看到,绘制出了一个正弦波的波形图。

接下来,我们可以对连续信号进行采样。

采样是以一定的时间间隔对连续信号进行离散化处理。

在MATLAB中,可以使用`downsample`函数实现采样。

我们假设采样频率为200Hz,即每秒采样200个样本点。

```matlabfs_sample = 200; % 采样频率x_sample = downsample(x, fs/fs_sample); % 采样得到的离散样本点t_sample = 0:1/fs_sample:1/fs_sample*(length(x_sample)-1); % 对应的时间点```然后,我们使用`stem`函数绘制离散样本点的图像:```matlabfigure;stem(t_sample, x_sample);xlabel('时间 (s)');ylabel('幅值');title('采样信号图');```我们可以看到,绘制出了一组离散样本点的图像。

用matlab实现连续信号采样和重建的教学实践

用matlab实现连续信号采样和重建的教学实践

用matlab实现连续信号采样和重建的教学实践连续信号采样和重建是数字信号处理领域中的重要概念。

在数字信号处理中,连续信号通常会被离散化为离散时间信号,并通过数字信号处理算法进行处理。

而在对连续信号进行离散化的过程中,就需要进行采样和重建。

在本文中,我们将介绍如何用matlab实现连续信号采样和重建,旨在帮助学生加深对这一概念的理解和掌握。

具体实践步骤如下:1.生成一个连续信号首先,我们需要生成一个连续信号作为样本信号。

这里我们可以使用matlab自带的信号生成函数,例如sin、cos、sawtooth等。

例如,我们可以生成一个频率为2Hz的正弦波信号:t = 0:0.001:1;f = 2;x = sin(2*pi*f*t);plot(t,x);2.对连续信号进行采样接下来,我们需要对连续信号进行采样。

采样可以理解为对原始信号进行抽取,以获取离散时间信号。

在matlab中,我们可以使用resample函数进行采样。

具体实现代码如下:Fs = 100; % 采样率为100Hzx_resampled = resample(x,Fs,1000);t_resampled = 0:1/Fs:(length(x_resampled)-1)/Fs;plot(t_resampled,x_resampled);这里我们将原始信号采样率降低到100Hz,并用resample函数实现了采样。

3.对离散时间信号进行重建最后,我们需要对离散时间信号进行重建,以恢复原始的连续信号。

在matlab中,我们可以使用interp1函数进行重建。

具体实现代码如下:这里我们用interp1函数将离散时间信号重新插值,从而得到与原始信号相同的连续信号。

通过以上实践步骤,我们成功地实现了连续信号采样和重建,并加深了对该概念的理解和掌握。

在实际应用中,我们可以根据需要选择不同的采样率和重建方法,以满足实际需求。

利用MATLAB实现连续信号的采样与重构仿真

利用MATLAB实现连续信号的采样与重构仿真

利用MATLAB实现连续信号的采样与重构仿真连续信号的采样与重构是数字信号处理中的常见任务之一、在MATLAB中,可以使用内置的函数和工具箱来实现连续信号的采样与重构仿真。

首先,我们需要生成一个连续信号。

可以选择任何一个连续信号,比如正弦信号、余弦信号等。

以下以正弦信号为例进行说明。

使用MATLAB的`sin(`函数可以生成一个正弦信号。

可以设置信号的频率、幅度、相位等参数来定制生成的信号。

以下是生成一个频率为1Hz,幅度为1的正弦信号的示例代码:```matlabt=0:0.001:1;%生成时间序列,采样频率为1000Hz,时长为1秒f=1;%设置信号频率为1HzA=1;%设置信号幅度为1phi = 0; % 设置信号相位为0x = A * sin(2 * pi * f * t + phi); % 生成正弦信号```生成信号后,可以使用`plot(`函数来绘制信号的图像,以便观察信号的形态。

```matlabplot(t, x);xlabel('时间(秒)');ylabel('振幅');title('正弦信号');```生成连续信号后,接下来就是进行采样。

采样是指在连续时间域上对信号进行离散采样,形成离散时间域上的序列。

在MATLAB中,有多种采样方法可以选择,比如周期采样、等间隔采样等。

以下以等间隔采样为例进行说明。

首先需要设置采样的频率和采样间隔,然后使用`resample(`函数对连续信号进行采样。

```matlabfs = 100; % 设置采样频率为100HzTs = 1/fs; % 计算采样间隔n=0:Ts:1;%根据采样间隔生成采样时间序列xs = A * sin(2 * pi * f * n + phi); % 进行等间隔采样```对于周期信号,还可以使用`pulseshape(`函数设置脉冲信号的形状,用于模拟实际的采样系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计任务书学生:凯鑫专业班级:电信1203班指导教师:阙大顺,王虹工作单位:信息工程学院题目: 信号采集与重建的编程实现初始条件:1.Matlab6.5以上版本软件;2.课程设计辅导资料:“Matlab语言基础及使用入门”、“数字信号处理原理与实现”、“Matlab及在电子信息课程中的应用”等;3.先修课程:信号与系统、数字信号处理、Matlab应用实践及信号处理类课程等。

要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1.课程设计时间:1周(课实践);2.课程设计容:信号采样与重建的编程实现,具体包括:连续信号的时域采样、频谱混叠分析、由离散序列恢复模拟信号等;3.本课程设计统一技术要求:研读辅导资料对应章节,对选定的设计题目进行理论分析,针对具体设计部分的原理分析、建模、必要的推导和可行性分析,画出程序设计框图,编写程序代码(含注释),上机调试运行程序,记录实验结果(含计算结果和图表),并对实验结果进行分析和总结;4.课程设计说明书按学校“课程设计工作规”中的“统一书写格式”撰写,具体包括:①目录;②与设计题目相关的理论分析、归纳和总结;③与设计容相关的原理分析、建模、推导、可行性分析;④程序设计框图、程序代码(含注释)、程序运行结果和图表、实验结果分析和总结;⑤课程设计的心得体会(至少500字);⑥参考文献;⑦其它必要容等。

时间安排:1)第1-2天,查阅相关资料,学习设计原理。

2)第3-4天,方案选择和电路设计仿真。

3)第4-5天,电路调试和设计说明书撰写。

4)第6天,上交课程设计成果及报告,同时进行答辩。

指导教师签名:年月日系主任(或责任教师)签名:年月日摘要数字信号处理是一门理论与实践紧密结合的课程。

做大量的习题和上机实验,有助于进一步理解和巩固理论知识,还有助于提高分析和解决实际问题的能力。

过去用其他算法语言,实验程序复杂,在有限的实验课时所做的实验容少。

MATLAB强大的运算和图形显示功能,可使数字信号处理上机实验效率大大提高。

特别是它的频谱分析和滤波器分析与设计功能很强,使数字信号处理工作变得十分简单、直观。

本实验设计的题目是:信号的采样与恢复。

通过产生一个连续时间信号并生成其频谱,然后对该连续信号抽样,并对采样后的频谱进行分析,实验中,原连续信号的频谱由于无法实现真正的连续,所以通过扩大采样点的数目来代替,理论上当采样点数无穷多的时候即可实现连续,基于此尽可能增加采样点数并以此来产生连续信号的频谱。

信号采样过程中,通过采样点的不同控制采样频率实现大于或小于二倍最高连续信号的频率,从而可以很好的验证采样定理。

关键词:信号采样信号重建MATLAB 编程目录1.软件介绍 (1)2.课程设计的方案 (2)2.1课程设计的原理 (2)2.1.1连续信号的采样定理 (2)2.1.2信号采样 (3)2.1.3信号重建 (5)2.2设计的思路 (5)2.3设计方案优缺点 (5)3.信号采样程序及仿真 (6)3.1连续信号x(t)及其抽样函数x(n) (6)3.2 采样程序及其波形 (8)3.3 200Hz 幅频特性程序及波形 (9)3.4 400Hz幅频特性程序及波形 (10)3.5 1000Hz幅频特性程序及波形 (11)3.6波形分析 (12)4.信号的重建程序及仿真 (12)4.1采样信号的重建程序与波形 (12)4.2 误差分析 (16)5心得体会 (17)6参考文献 (18)1.软件介绍MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。

它将数值分析、矩形计算、视化以线性动态线性系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多领域一面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。

MATLAB是矩阵实验室(Matrix Laboratory)之意。

除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。

经过不断完善MATLAB已经发展成为适合多学科,多种工作平台的功能强大大大型软件。

成为线性代数,自动控制理论,数理统计,数字信号处理,时间序列分析,动态系统仿真等高级课程的基本教学工具。

MTLAB的语言特点:(1)语言简洁紧凑,使用方便灵活,库函数极其丰富。

(2)运算符丰富。

(3)MATLAB既具有结构化的控制语句(如for循环,while循环,break语句和if语句),又有面向对象编程的特性。

(4)程序限制不严格,程序设计自由度大。

(5)MATLAB的图形功能强大。

(6)MATLAB的缺点是,它和其他高级程序相比,程序的执行速度较慢。

由于MATLAB的程序不用编译等预处理,也不生成可执行文件,程序为解释执行,所以速度较慢。

2.课程设计的方案2.1课程设计的原理2.1.1连续信号的采样定理模拟信号经过 (A/D) 变换转换为数字信号的过程称为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率 fs ,重复出现一次。

为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成分的两倍,这称之为采样定理。

时域采样定理从采样信号)(t f s 恢复原信号)(t f 必需满足两个条件:(1) )(t f 必须是带限信号,其频谱函数在||ω> s ω各处为零;(对信号的要求,即只有带限信号才能适用采样定理。

)(2) 取样频率不能过低,必须 s ω>2 m ω(或 s f >2m f )。

(对取样频率的要求,即取样频率要足够大,采得的样值要足够多,才能恢复原信号。

)如果采样频率T s /2πω=大于或等于m ax 2ω,即max 2ωω≥s (m ax 2ω为连续信号)(t ε的有限频谱),则采样离散信号t ⋅ω能无失真地恢复到原来的连续信号 )(t ε。

一个频谱在区间(- m ω,m ω)以外为零的频带有限信号)(t f ,可唯一地由其在均匀间隔 S T 上的样点值)(nTs f 所确定。

根据时域与频域的对称性,可以由时域采样定理直接推出频域采样定理。

一个时间受限信号()t f ,它集中在(m m ωω+-,)的时间围,则该信号的频谱()ωj F 在频域中以间隔为1ω的冲激序列进行采样,采样后的频谱)(1ωj F 可以惟一表示原信号的条件为重复周期m t T 21≥。

采样信号 )(t f s 的频谱是原信号频谱 )(ωj F 的周期性重复,它每隔 重复出现一次。

当s ω>2 m ω时,不会出现混叠现象,原信号的频谱的形状不会发生变化,从而能从采样信号 )(t f s 中恢复原信号 )(t f 。

(注:s ω>2 m ω的含义是:采样频率大于等于信号最高频率的2倍;这里的“不混叠”意味着信号频谱没有被破坏,也就为后面恢复原信号提供了可能)(a)(b) (c)图* 抽样定理a) 等抽样频率时的抽样信号及频谱(不混叠)b) 高抽样频率时的抽样信号及频谱(不混叠)c) 低抽样频率时的抽样信号及频谱(混叠)2.1.2信号采样如图1所示,给出了信号采样原理图信号采样原理图(a )由图1可见,)()()(t t f t f s T s δ⋅=,其中,冲激采样信号)(t s T δ的表达式为:∑∞-∞=-=n s T nT t t s )()(δδ 其傅立叶变换为∑∞-∞=-n s s n )(ωωδω,其中ss T πω2=。

设)(ωj F ,)(ωj F s 分别为)(t f ,)(t f s 的傅立叶变换,由傅立叶变换的频域卷积定理,可得∑∑∞-∞=∞-∞=-=-=n s s n s s s n j F T n j F j F )]([1)(*)(21)(ωωωωδωωπω若设)(t f 是带限信号,带宽为m ω, )(t f 经过采样后的频谱)(ωj F s 就是将)(ωj F 在频率轴上搬移至 ,,,,,02ns s s ωωω±±±处(幅度为原频谱的s T 1倍)。

因此,当m s ωω2≥时,频谱不发生混叠;而当m s ωω2<时,频谱发生混叠。

一个理想采样器可以看成是一个载波为理想单位脉冲序列)(t T δ的幅值调制器,即理想采样器的输出信号)(*t e ,是连续输入信号)(t e 调制在载波)(t T δ上的结果,如图2所示。

图2 信号的采样用数学表达式描述上述调制过程,则有)()()(*t t e t e T δ=理想单位脉冲序列)(t T δ可以表示为∑∞=-=0)()(n T nT t t δδ其中)(nT t -δ是出现在时刻nT t =,强度为1的单位脉冲。

由于)(t e 的数值仅在采样瞬时才有意义,同时,假设00)(<∀=t t e 所以)(*t e 又可表示为:*0()()()n e t e nT t nT δ∞==-∑2.1.3信号重建用时域插公式()()()a n x t x n g t nT ∞=-∞=-∑(其中sin()()sin ()s t T g t c F t t T ππ==)完成信号的重建。

2.2设计的思路连续信号是指自变量的取值围是连续的,且对于一切自变量的取值,除了有若干个不连续点以外,信号都有确定的值与之对应。

严格来说,MATLAB 并不能处理连续信号,而是用等时间间隔点的样值来近似表示连续信号。

当取样时间间隔足够小时,这些离散的样值就能较好地近似连续信号。

时域对连续时间信号进行采样,是给它乘以一个采样脉冲序列,就可以得到采样点上的样本值,信号被采样前后在频域的变化,可以通过时域频域的对应关系分别求得了采样信号的频谱。

在一定条件下,一个连续时间信号完全可以用该信号在等时间间隔上的瞬时值来表示,并且可以用这些样本值把信号完全恢复过来。

这样,抽样定理为连续时间信号与离散时间信号的相互转换提供了理论依据。

通过观察采样信号的频谱,发现它只是原信号频谱的线性重复搬移,只要给它乘以一个门函数,就可以在频域恢复原信号的频谱,在时域是否也能恢复原信号时,利用频域时域的对称关系,得到了信号。

2.3设计方案优缺点优点:MATLAB 在绘图方面提供了相当高级的函数序及程序界面,即使用户没有丰富的程序设计经验,也能够快速地得到自己想要的结果,熟练的使用MATLAB 的程序员或研究人员能缩短研究开发时间,从而提高竞争力,MATLAB 和其他高级语言有良好的接口,可以方便地实现与其他语言的混合编程,从而进一步扩宽MATLAB 的应用潜力。

缺点:MATLAB占用存空间很大,并且会因硬盘分区是NTFS格式还是FAT 格式而有差异。

相关文档
最新文档