2-1随机变量及其分布
2-1离散型随机变量及其分布律
2}
C113C22 C135
1 35
P{ X
1}
C123C21 C135
12 35
每天从石家庄下火车的人数;
Y
昆虫的产卵数;
Z
七月份石家庄的最高温度;
E
2、在有些试验中,试验结果看来与数值无概率论 关,但我们可以引进一个变量来表示它的各 种结果.也就是说,把试验结果数值化.
正如裁判员在运动 场上不叫运动员的 名字而叫号码一样, 二者建立了一种对 应关系.
二、随机变量的概念
概率论
概率论
第一节 离散型随机变量及其 分布律
一、随机变量 二、离散型随机变量 三、二点分布 四、二项分布 五、泊松分布
概率论
一、随机变量概念的产生
在实际问题中,随机试验的结果可以用数 量来表示,由此就产生了随机变量的概念.
概率论
1、有些随机试验结果本身与数值有关 (本身就是一个数).
例如,掷一颗骰子面上出现的点数; X
X
5000
5)
k6
P(
X
k
)5k0060C5k000(10100)k
( 999 )5000k 1000
或诸如此类的计算问题,必须寻求近似方法.
我们先来介绍二项分布的泊松近似, 后面,我们将介绍二项分布的正态近似.
二、泊松分布
概率论
历史上,泊松分布是作为二项分布的近 似,于1837年由法国数学家泊松引入的 .
泊松分布,记作
X ~ P()
概率论
例 设离散型随机变量X服从参数为 的泊松
分布,且已知概率 PX 0 1 ,求:
e
1)参数 值;
2)概率 PX 3.
1
1 0.0613 6e
高中数学随机变量及其分布内容简介
高中数学随机变量及其分布内容简介
随机变量是概率论中的重要概念,指的是一个变量的取值由随机试验的结果决定。
在高中数学中,我们常常接触到一些常见的随机变量及其分布,这些内容是数学学习中的重要一环。
首先,我们要了解离散随机变量及其分布。
离散随机变量是指只取有限个或可数无限个可能值的随机变量。
在离散随机变量的分布中,最常见的是二项分布和泊松分布。
二项分布是指在n次独立重复的伯努利试验中成功的次数的概率分布,而泊松分布则是用于描述单位时间(或单位面积、单位体积)内随机事件发生的次数的分布。
另外,连续随机变量及其分布也是我们需要了解的内容。
连续随机变量是指取值在一段或多段连续区间内的随机变量。
在连续随机变量的分布中,最常见的是正态分布和指数分布。
正态分布是一种在数学、物理、工程领域中非常常见的分布,其形状呈钟形曲线,具有均值和标准差这两个参数。
而指数分布则是描述独立随机事件发生的时间间隔的分布。
在学习高中数学中的随机变量及其分布时,我们需要掌握如何计算随机变量的期望值、方差以及概率分布等重要性质。
通过学习随机变量及其分布,我们可以更好地理解概率论中的概念,为后续的数学学习打下坚实的基础。
总的来说,高中数学中的随机变量及其分布是一项重要的内容,通过学习这一部分知识,我们可以更好地理解概率论的相关概念,提高数学分析和问题解决的能力。
希望同学们能够认真学习这一部分内容,掌握其中的关键知识点,为未来的学习和发展打下良好的基础。
高中数学选修2-3 第二章随机变量及其分布 2-1-1离散型随机变量
一区间内的一切值,无法一一列出,故不是离散型随机变
量.
答案: B
2.某人练习射击,共有5发子弹,击中目标或子弹打完 则停止射击,射击次数为X,则“X=5”表示的试验结果为 ()
A.第5次击中目标 B.第5次未击中目标 C.前4次均未击中目标 D.前5次均未击中目标 解析: 射击次数X是一随机变量,“X=5”表示试验 结果“前4次均未击中目标”. 答案: C
(4)体积为64 cm3的正方体的棱长. [思路点拨] 要根据随机变量的定义考虑所有情况.
(1)接到咨询电话的个数可能是0,1,2,…出现 哪一个结果都是随机的,因此是随机变量.
(2)该运动员在某场比赛的上场时间在[0,48]内,是随机 的,故是随机变量.
(3)获得的奖次可能是1,2,3,出现哪一个结果都是随机 的,因此是随机变量.
人教版高中数学选修2-3 第二章 随机变量及其分布
第二章 随机变量及其分布
2.1 离散型随机变量及其分布列 2.1.1 离散型随机变量
课前预习
1.在一块地里种下10颗树苗,成活的树苗棵树为X. [问题1] X取什么数字? [提示] X=0,1,2…10.
2.掷一枚硬币,可能出现正面向上,反面向上两种结 果.
3.一个袋中装有5个白球和5个红球,从中任取3个.其 中所含白球的个数记为ξ,则随机变量ξ的值域为________.
解析: 依题意知,ξ的所有可能取值为0,1,2,3,故ξ的 值域为{0,1,2,3}.
答案: {0,1,2,3}
4.写出下列随机变量ξ可能取的值,并说明随机变量ξ =4所表示的随机试验的结果.
[问题2] 这种试验的结果能用数字表示吗? [提示] 可以,用数1和0分别表示正面向上和反面向 上. [问题3] 10件产品中有3件次品,从中任取2件,所含次 品个数为x,试写出x的值. [提示] x=0,1,2.
2-1,2 随机变量的概念 离散型随机变量
k k
k!
…
e
…
称X为泊松分布. 记为: π(λ)或P(λ), ( 0)
P{ X k }
k
k!
e , k 0,1, 2, ,
1 放射性物质在一段时间内的放射次数 2 在一定容积充分摇匀的水中的细菌数
3 野外一定空间中的某种昆虫数
4 一段时间寻呼台接到的呼叫次数, 5 一段时间的交通事故数,
第二章
随机变量及其分布
一、随机变量的概念
为了深入地研究随机现象,不能孤立的研究 随机试验的一个或几个事件,需要从整体去把握 其统计性质.例如,测试电子显像管的寿命,相比 “显像管的寿命不到6000小时”这类事件的概率 ,我们更关心显像管寿命的整体变化规律.因此, 将随机试验的结果数量化,即用一个变量来描述 试验结果,以便从数量关系来研究随机现象的统 计规律性.
p
n
记为X~B(n,p) 则X 称为二项分布,
例9 已知100个产品中有5个次品,现从中有放回 地取3次,每次任取1个,求在所取的3个中恰有2 个次品的概率. 解: 显然:它是3重贝努里概型 设X为所取的3个产品中的次品数
X~B(3,0.05)
2 2 P{ X 2} C3 0.05 0.95 0.07125
X pk
0 1 p
1 p
则称X服从0-1分布或两点分布.
例6“抛硬币”试验,观察正、反两面情况.
0, 当e 正面, X X (e ) 1, 当e 反面.
随机变量X服从 0-1分布. 其分布律为
X
pk
0 1 2
1 2
1
例 7 200 件产品中 , 有 190 件合格品 ,10 件不合格 品,现从中随机抽取一件,那末,若规定
2-1离散型随机变量及其分布律(2)
k P { X = k } = C 400 ( 0.02)k (0.98)400 k , k = 0,1,,400.
因此 P { X ≥ 2} = 1 P{ X = 0} P { X = 1}
= 1 (0.98)
400
400( 0.02)(0.98)
399
= 0.9972.
5. 泊松分布
n→∞
∴lim (λn )k = λk
n→ ∞
1 又∵ lim = lim λn = λ 0 = 0 n→∞ n n→∞ n
λn
∴由重要极限,得 由重要极限,
n→∞
lim(1
λn
n
)
nk
= lim[(1
n→∞
λn
n
n
)
λn
]
λn
n
(nk)
= lim[(1
n→∞
λn
n
)
λn (λn+ n k)
方法1. P {0 < X ≤ 2} 方法
= P{ X = 1} + P{ X = 2} 0 .3 .1 P 0.1, 0.6 ≤0x < 1 0 F( x) = = 0.6 + 0.3 = 0.9 P { 0 ≤ X < 2} = P{ X = 0} + P { X = 1} = 0.1 + 0.6 = 0.7
λk
k!
eλ
其中 λ ≈ npn.
(k = 0,1,, n)
有一繁忙的汽车站,每天有大量汽车通过 每天有大量汽车通过,设 例4 有一繁忙的汽车站 每天有大量汽车通过 设 每辆汽车在一天的某段时间内,出事故的概率为 每辆汽车在一天的某段时间内 出事故的概率为 0.0001,在每天的该段时间内有 在每天的该段时间内有1000 辆汽车通过 辆汽车通过, 在每天的该段时间内有 问出事故的次数不小于2的概率是多少 的概率是多少? 问出事故的次数不小于 的概率是多少 解 设 1000 辆车通过 辆车通过, 出事故的次数为 X , 则 X ~ B ( 1000 , 0 . 0001 ), 故所求概率为 P { X ≥ 2} = 1 P { X = 0} P { X = 1}
高中数学 第2章 概率 2.1 随机变量及其概率分布讲义 苏教版选修2-3-苏教版高二选修2-3数学
2.1 随机变量及其概率分布学习目标核心素养1.了解取有限值的离散型随机变量及其分布列的概念,了解分布列刻画随机现象的重要性,会求某些简单离散型随机变量的分布列.(重点、难点)2.掌握离散型随机变量分布列的性质,掌握两点分布的特征.(重点)1.通过对离散型随机变量的学习,提升数学抽象素养.2.借助随机变量的分布列,提升逻辑推理素养.1.随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.通常用大写拉丁字母X,Y,Z(或小写希腊字母ξ,η,ζ)等表示.思考1:随机变量是自变量吗?[提示] 不是,它是随试验结果变化而变化的,不是主动变化的.思考2:离散型随机变量的取值必须是有限个吗?[提示] 不一定.离散型随机变量的取值可以一一列举出来,所取值可以是有限个,也可以是无限个.2.概率分布列假定随机变量X有n个不同的取值,它们分别是x1,x2,…,x n,且P(X=x i)=p i,i=1,2,…,n,①则称①为随机变量X的概率分布列,简称为X的分布列.称表X x1x2…x nP p1p2…p np i(i =1,2,…,n)满足条件:①p i≥0(i=1,2,…,n);②p1+p2+…+p n=1.思考3:在离散型随机变量分布列中,每一个可能值对应的概率可以为任意的实数吗?[提示] 错误.每一个可能值对应的概率为[0,1]中的实数.思考4:离散型随机变量的分布列中,各个概率之和可以小于1吗?[提示] 不可以.由离散型随机变量的含义与分布列的性质可知不可以.思考5:离散型随机变量的各个可能值表示的事件是彼此互斥的吗?[提示] 是.离散型随机变量的各个可能值表示的事件不会同时发生,是彼此互斥的.3.两点分布如果随机变量X的分布表为X 10P p q其中0<p<1,q=1-p,这一类分布称为01分布或两点分布,并记为X~01分布或X~两点分布.1.掷均匀硬币一次,随机变量为( )A.掷硬币的次数B.出现正面向上的次数C.出现正面向上的次数或反面向上的次数D.出现正面向上的次数与反面向上的次数之和B[掷一枚硬币,可能出现的结果是正面向上或反面向上,以一个标准如正面向上的次数来描述这一随机试验,那么正面向上的次数就是随机变量ξ,ξ的取值是0,1.A项中,掷硬币的次数就是1,不是随机变量;C项中的标准模糊不清;D项中,出现正面向上的次数和反面向上的次数的概率的和必是1,对应的是必然事件,所以不是随机变量.] 2.设离散型随机变量ξ的分布列如下:ξ-1012 3P 0.100.200.100.200.40 Pξ0.40 [P(ξ<1.5)=P(ξ=-1)+P(ξ=0)+P(ξ=1)=0.10+0.20+0.10=0.40.] 3.设某项试验的成功率是失败率的2倍,用随机变量X描述一次试验成功与否(记X=0为试验失败,记X=1为试验成功),则P(X=0)等于________.1 3[设试验失败的概率为p,则2p+p=1,∴p=13.]随机变量的概念【例1】(1)国际机场候机厅中2019年5月1日的旅客数量;(2)2019年1月1日至5月1日期间所查酒驾的人数;(3)2019年6月1日某某到的某次列车到站的时间;(4)体积为1 000 cm3的球的半径长.[思路探究] 利用随机变量的定义判断.[解] (1)旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(2)所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(3)列车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.(4)球的体积为1 000 cm3时,球的半径为定值,不是随机变量.随机变量的辨析方法(1)随机试验的结果具有可变性,即每次试验对应的结果不尽相同.(2)随机试验的结果具有确定性,即每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.如果一个随机试验的结果对应的变量具有以上两点,则该变量即为随机变量.1.(1)下列变量中,是随机变量的是________.(填上所有正确的序号)①某人掷硬币1次,正面向上的次数;②某音乐歌曲《小苹果》每天被点播的次数;③标准大气压下冰水混合物的温度;④你每天早晨起床的时间.(2)一个口袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X,则X的可能取值构成集合________.事件{X=k}表示取出________个红球,________个白球,k=0,1,2,3,4.(1)①②④(2){0,1,2,3,4} k4-k[(1)①②④中每个事件的发生是随机的,具有可变性,故①②④是随机变量;标准大气压下冰水混合物的温度为0 ℃,是必然的,不具有随机性.(2)由题意可知,X的可能取值为0,1,2,3,4.{X=k}表示取出的4个球中含k个红球,4-k个白球.]随机变量的分布列及应用【例2】ξ表示取出的3只球中的最大,写出随机变量ξ的概率分布.[思路探究] 由本例中的取球方式可知,随机变量ξ与球的顺序无关,其中球上的最大只有可能是3,4,5,可以利用组合的方法计算其概率.[解] 随机变量ξ的可能取值为3,4,5.当ξ=3时,即取出的三只球中最大为3,则其他两只球的编号只能是1,2,故有P(ξ=3)=C22C35=110;当ξ=4时,即取出的三只球中最大为4,则其他两只球只能在编号为1,2,3的3只球中取2只,故有P(ξ=4)=C23C35=310;当ξ=5时,即取出的三只球中最大为5,则其他两只球只能在编号为1,2,3,4的4只球中取2只,故有P(ξ=5)=C24C35=610=35.因此,ξ的分布列为ξ34 5P11031035利用分布列及其性质解题时要注意以下两个问题:(1)X的各个取值表示的事件是互斥的.(2)不仅要注意∑i=1np i=1,而且要注意p i≥0,i=1,2,…,n.2.设随机变量ξ的概率分布为P⎝⎛⎭⎪⎫ξ=k5=ak(k=1,2,3,4,5).求:(1)常数a的值;(2)P ⎝ ⎛⎭⎪⎫ξ≥35; (3)P ⎝ ⎛⎭⎪⎫110<ξ<710.[解] 题目所给的ξ的概率分布表为ξ 15 25 35 45 55 Pa2a3a4a5a(1)由a +2a +3a +4a +5a =1,得a =15.(2)P ⎝ ⎛⎭⎪⎫ξ≥35=P ⎝ ⎛⎭⎪⎫ξ=35+P ⎝ ⎛⎭⎪⎫ξ=45+P ⎝ ⎛⎭⎪⎫ξ=55=315+415+515=45或P ⎝⎛⎭⎪⎫ξ≥35=1-P ⎝⎛⎭⎪⎫ξ≤25=1-⎝ ⎛⎭⎪⎫115+215=45.(3)因为110<ξ<710,所以ξ=15,25,35.故P ⎝ ⎛⎭⎪⎫110<ξ<710=P ⎝ ⎛⎭⎪⎫ξ=15+P ⎝ ⎛⎭⎪⎫ξ=25+P ⎝ ⎛⎭⎪⎫ξ=35=a +2a +3a =6a =6×115=25.随机变量的可能取值及试验结果[1.抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果.这种试验结果能用数字表示吗?[提示] 可以.用数字1和0分别表示正面向上和反面向上.2.在一块地里种10棵树苗,设成活的树苗数为X ,则X 可取哪些数字? [提示] X =0,1,2,3,4,5,6,7,8,9,10.3.抛掷一枚质地均匀的骰子,出现向上的点数为ξ,则“ξ≥4”表示的随机事件是什么?[提示] “ξ≥4”表示出现的点数为4点,5点,6点.【例3】 写出下列随机变量可能取的值,并说明随机变量所取的值和所表示的随机试验的结果.(1)袋中有大小相同的红球10个,白球5个,从袋中每次任取1个球,直到取出的球是白球为止,所需要的取球次数;(2)从标有1,2,3,4,5,6的6X卡片中任取2X,所取卡片上的数字之和.[思路探究] 分析题意→写出X可能取的值→分别写出取值所表示的结果[解] (1)设所需的取球次数为X,则X=1,2,3,4,…,10,11,X=i表示前i-1次取到红球,第i次取到白球,这里i=1,2, (11)(2)设所取卡片上的数字和为X,则X=3,4,5, (11)X=3,表示“取出标有1,2的两X卡片”;X=4,表示“取出标有1,3的两X卡片”;X=5,表示“取出标有2,3或标有1,4的两X卡片”;X=6,表示“取出标有2,4或1,5的两X卡片”;X=7,表示“取出标有3,4或2,5或1,6的两X卡片”;X=8,表示“取出标有2,6或3,5的两X卡片”;X=9,表示“取出标有3,6或4,5的两X卡片”;X=10,表示“取出标有4,6的两X卡片”;X=11,表示“取出标有5,6的两X卡片”.用随机变量表示随机试验的结果问题的关键点和注意点(1)关键点:解决此类问题的关键是明确随机变量的所有可能取值,以及取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果.(2)注意点:解答过程中不要漏掉某些试验结果.3.写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)在2018年大学的自主招生中,参与面试的5名考生中,通过面试的考生人数X;(2)射手对目标进行射击,击中目标得1分,未击中目标得0分,该射手在一次射击中的得分用ξ表示.[解] (1)X可能取值0,1,2,3,4,5,X=i表示面试通过的有i人,其中i=0,1,2,3,4,5.(2)ξ可能取值为0,1,当ξ=0时,表明该射手在本次射击中没有击中目标;当ξ=1时,表明该射手在本次射击中击中目标.1.本节课重点是随机变量的概念及随机变量的分布列及其性质,以及两点分布,难点是随机变量的取值及概率.2.判断一个试验是否为随机试验,依据是这个试验是否满足以下三个条件:(1)试验在相同条件下是否可以重复;(2)试验的所有可能结果是否是明确的,并且试验的结果不止一个;(3)每次试验的结果恰好是一个,而且在一次试验前无法预知出现哪个结果.3.本节课的易错点:在利用分布列的性质解题时要注意:①X=xi的各个取值所表示的事件是互斥的;②不仅要注意i=1np i=1,而且要注意0≤p i≤1,i=1,2,…,n.1.判断(正确的打“√”,错误的打“×”)(1)随机变量的取值可以是有限个,也可以是无限个.( )(2)在概率分布列中,每一个可能值对应的概率可以为任意的实数.( )(3)概率分布列中每个随机变量的取值对应的概率都相等.( )(4)在概率分布列中,所有概率之和为1.( )[解析] (1)√因为随机变量的每一个取值,均代表一个试验结果,试验结果有限个,随机变量的取值就有有限个,试验结果有无限个,随机变量的取值就有无限个.(2)×因为在概率分布列中每一个可能值对应随机事件的概率均在[0,1]X围内.(3)×因为分布列中的每个随机变量能代表的随机事件,并非都是等可能发生的事件.(4)√由分布列的性质可知,该说法正确.[答案] (1)√(2)×(3)×(4)√2.下列叙述中,是随机变量的为( )A.某人早晨在车站等出租车的时间B.把一杯开水置于空气中,让它自然冷却,每一时刻它的温度C.射击十次,命中目标的次数D .袋中有2个黑球,6个红球,任取2个,取得1个红球的可能性 C [根据随机变量的含义可知,选C.] 3.随机变量η的分布列如下:则x 0 0.55 [由分布列的性质得 0.2+x +0.35+0.1+0.15+0.2=1,解得x =0.故P (η≤3)=P (η=1)+P (η=2)+P (η=3)=0.2+0.35=0.55.] 4.袋中有相同的5个球,其中3个红球,2个黄球,现从中随机且不放回地摸球,每次摸1个,当两种颜色的球都被摸到时,即停止摸球,记随机变量X 为此时已摸球的次数,求随机变量X 的概率分布列.[解] 随机变量X 可取的值为2,3,4, P (X =2)=C 12C 13C 12C 15C 14=35;P (X =3)=A 22C 13+A 23C 12C 15C 14C 13=310;P (X =4)=A 33C 12C 15C 14C 13C 12=110;所以随机变量X 的概率分布列为:。
概率论§2.1 随机变量-§2.2离散型随机变量
0, w = (b1 , b2 ), (b1 , b3 ), (b2 , b3 ) 1, w = (a1 , b1 ), (a1 , b2 ), (a1 , b3 ) X = X (w ) = (a2 , b1 ), (a2 , b2 ), (a2 , b3 ) 2, w = (a1 , a2 )
18
分布函数的性质
(1) F(x)是x的不减函数 ,即
x1 x2 , F ( x1 ) F ( x2 )
(2)
F ( ) = lim F ( x ) = 0
x
F ( ) = lim F ( x ) = 1
x
理解:当x→+时,{X≤x}愈来愈趋于必然事件. (3)右连续性: 对任意实数 x0 ,
P ( X x ) = 1 P ( X x ) = 1 F ( x );
21
例1 设F1 ( x )与F2 ( x )分别为随机变量X 1与X 2
的分布函数,为了使 ( x ) = aF1 ( x ) bF2 ( x ) F
是某一随机变量的分布函数,则下列各组值 中应取(A)
3 2 ( A) a = , b = 5 5
连续型随机变量
如:“电视机的使用寿命”,实际中常遇到 的 24 “测量误差”等。
§2.2 离散型随机变量及其分布
定义 如果随机变量X 只取有限个或可列无限 多个不同可能值,则称X 为离散型随机变量. 例如, 抛一枚硬币,X 可取0,1有限个值。 可知X为一个离散型随机变量。 例如,电话交换台一天内接到的电话个数
F ( x0 0) = lim F ( x ) = F ( x0 )
x x0
19
如果一个函数满足上述三条性质,则一 定是某个随机变量 X 的分布函数。也就是说, 性质(1)-(3)是判别一个函数是否是某个随机 变量的分布函数的充分必要条件。
概率论与数理统计第2章随机变量及其分布
1 4
)0
(
3 4
)10
C110
(
1 4
)(
3 4
)9
0.756.
(2)因为
P{X
6}
C160
(
1)6 4
(
3 4
)4
0.016
,
即单靠猜测答对 6 道题的可能性是 0.016,概率很小,所
以由实际推断原理可推测,此学生是有答题能力的.
二项分布 b(n, p) 和 (0 1) 分布 b(1, p ) 还有一层密切关
P{X 4} P(A1 A2 ) P(A1)P(A2 ) 0.48 ,
P{X 6} P(A1A2 ) P(A1)P(A2 ) 0.08 , P{X 10} P(A1A2 ) P(A1)P(A2 ) 0.32 , 即 X 的分布律为
X 0 4 6 10
P 0.12 0.48 0.08 0.32
点 e, X 都有一个数与之对应. X 是定义在样本空间 S 上的
一个实值单值函数,它的定义域是样本空间 S ,值域是实数
集合 {0,1,2},使用函数记号将 X写成
0, e TT , X=X (e) 1, e HT 或TH ,
2, e HH.
▪
例2.2 测试灯泡的寿命.
▪
样本空间是 S {t | t 0}.每一个灯泡的实际使用寿命可
(2)若一人答对 6 道题,则推测他是猜对的还是有答 题能力.
解 设 X 表示该学生靠猜测答对的题数,则
X
~
b(10,
1) 4
.
(1) X 的分布律为
P{X
k}
C1k0
(
1)k 4
(
3 4
高中数学选修2-3 第二章随机变量及其分布 2-1-2离散型随机变量的分布列
所以随机变量ξ的分布列为:
ξ3
4
5
6
P
1 20
3 20
3 10
1 2
[规律方法] 1.确定离散型随机变量ξ的分布列的关键是 要搞清ξ取每一个值对应的随机事件,进一步利用排列、组 合知识求出ξ取每一个值的概率.对于随机变量ξ取值较多或 无穷多时,应由简单情况先导出一般的通式,从而简化过 程.
2.一般分布列的求法分三步:(1)首先确定随机变量ξ的 取值有哪些;(2)求出每种取值下的随机事件的概率;(3)列 表对应,即为分布列.
人教版高中数学选修2-3 第二章 随机变量及其分布
2.1.2 离散型随机变量的分布列
课前预习
1.抛掷一个骰子,用X表示骰子向上一面的点数. [问题1] X的可能取值是什么? [提示] X=1、2、3、4、5、6. [问题2] X取不同值时,其概率分别是多少? [提示] 都等于16.
2.一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3 只,以ξ表示取出的3只球中的最小号码.
特别提醒: 两点分布的试验结果只有两个可能性,且 其概率之和为1.
2.解决超几何分布问题的关注点 (1)超几何分布是概率分布的一种形式,一定要注意公 式中字母的范围及其意义,解决问题时可以直接利用公式求 解,但不能机械地记忆; (2)超几何分布中,只要知道M,N,n就可以利用公式 求出X取不同m的概率P(X=m),从而求出X的分布列.
课堂练习
1.下列表中能成为随机变量X的分布列的是( )
A. X -1
0
1
P -0.1 0.5 0.6
B. X -1
0
1
P 0.3 0.7 -0.1
C. X
-1
0
概率论与数理统计-第二章-随机变量及其分布函数ppt课件
表格: X
x1 x2
pk
p1 p2
概率分布图:
1P
xn
pn
0.5
x4 x3
x1
x2
X
.
由概率的性质易知离散型随机变量的分布列
pk
满足下列特征性质:
k 1
① pk 0(k 1,2,) [非负性]
②
pk 1 [规范性]用于确定待定参数
k 1
③ F( x) P( X x) P(X xi ). xi x
1. 2
.
【例2】设随机变量X的分布函数为
aex b, x 0
F(x)
0,
x0
解: 因为 F(x) 在 x=0 点右连续
求: 常数 a 和 b。
所以 lim F ( x) lim (ae x b) a b 0
x0
x0
又因为 F () lim (ae x b) b 1 x
1、两点分布 或(0 - 1)分布
two-point distribution
定义1 设离散型随机变量X的分布列为
X0 1 pk 1 p p
其中 0<p<1
则称 X 服从(0 - 1)分布,记作 X ~(0 - 1)分布
F(x)
(0 - 1)分布的分布函数
0 , x0 F ( x) 1 p, 0 x 1
X = “三次试验中 A 发生的次数”,
{ X 2} A1A2 A3 A1A2 A3 A1A2 A3 P{X 2} P(A1A2 A3 A1A2 A3 A1A2 A3 )
P(A1A2 A3 ) P(A1A2 A3 ) P(A1A2A3 ) P(A1)P(A2)P(A3) P(A1)P(A2)P(A3) P(A1)P(A2 )P(A3 ) C32 p2(1 p)32
随机变量及其分布列知识点
随机变量及其分布列知识点随机变量是描述随机实验结果的数值,它可以是离散的(只能取一些离散的数值)或连续的(可以取所有的数值)。
随机变量可以用来描述实验结果的各种特征,如数量、位置、时间等。
离散随机变量的分布列是一个表格,列出了随机变量取各个值的概率。
概率可以通过实验或理论分析得出。
在计算机科学和统计学中,分布列通常被表示为一个数组或字典。
离散随机变量的分布列有以下几个重要性质:1. 概率和为1:所有随机变量取值的概率之和等于1,即P(X=x1) + P(X=x2) + ... + P(X=xn) = 12.非负性:概率永远不会为负数,即P(X=x)>=0,对于所有的x。
3.互斥性:不同取值的随机变量概率互不重叠,即P(X=x1)与P(X=x2)不重叠,对于所有的x1和x24.互斥性:如果随机变量取值是离散的,那么分布列是一个离散函数,概率只在取值点有定义。
如果随机变量是连续的,那么分布列是一个连续函数,概率在区间上有定义。
离散随机变量的分布列可以用于计算各种统计量,如期望值、方差、标准差等。
期望值是随机变量取值的加权平均,方差是随机变量取值偏离平均值的程度。
标准差是方差的平方根,用来度量随机变量的离散程度。
在实际应用中,离散随机变量的分布列可以用来描述概率分布、事件的发生概率等。
它可以用来解决各种问题,如生活中的投资决策、经济模型的拟合、产品质量控制等。
例如,一个骰子的随机变量可以描述它可能的取值为1、2、3、4、5或6,对应的分布列是[1/6,1/6,1/6,1/6,1/6,1/6]。
这个分布列可以用来计算骰子摇出特定点数的概率,以及求得骰子取值的期望值和方差。
另一个例子是二项分布,它描述了在一系列独立实验中成功次数的概率分布。
二项分布的随机变量是一个离散随机变量,它的分布列可以用来计算成功次数的概率和期望值。
连续随机变量的分布列被称为概率密度函数。
概率密度函数描述了随机变量取值的概率密度,而不是概率。
概率论与数理统计第二章--随机变量及其分布
第十四页,编辑于星期二:四点 四十二分。
由于 X的取值点 3,4,5,6将R分成五个区间,
因此我们分段讨论可得,
?0,
x ? 3,
F( x )
F (x) ? ????00..02,5,
3 ? x ? 4, 4 ? x ? 5,
1
0.5
?0.5, 5 ? x ? 6,
0.2
?
0.05
??1,
x ? 6.
且每台设备在一天内发生故障的概率都是
0.01. 为保证设备正常工作,需要配备适量 的维修人员.假设一台设备的故障可由一人 来处理,且每人每天也仅能处理一台设备. 试分别在以下两种情况下求该公司设备发生 故障而当天无人修理的概率。 (1)三名修理工每人负责包修 60台 (2)三名修理工共同负责 180台
则称 X服从参数为 p的两点 (或0-1)分布.
第十九页,编辑于星期二:四点 四十二分。
?二项分布
例4. 设射手每一次击中目标的概率为 p,现连 续射击n次,求击中次数 X 的概率分布 .
若随机变量X的概率分布为
Pn (k)
?
P
(
X
?
k)?C
k
n
p
k
(1
?
p)n?k ,
k ? 0,1,? , n
其中 0< p<1,称X服从参数为n和 p的二项分布,
第二十一页,编辑于星期二:四点 四十二分。
?泊松分布
若随机变量 X的概率分布为
P( X ? k) ?e? ? ? k , k?0,1,2,? ? ,
k!
其中λ>0为常数,则称X服从参数为λ的泊松
分布,简记为 X ~ P (? )
概率论与数理统计2-1 一维随机变量及其分布 (3)
五、连续型随机变量 六、典型的连续型 随机变量及其分布
回
停 下
五、连续型随机变量 连续型随机变量
1. 密度函数 对于随机变量X, 定义 对于随机变量 ,若存在非负可积函 使得X 数 p(x) ( x∈R), 使得 的分布函数 ∈
F ( x) = ∫
或概率密度. 数,或概率密度 或概率密度
1 , 2 ≤ x ≤ 5, p( x ) = 3 0, 其它.
表示“ 设 A 表示“对 X 的观测值大于 3”, 即 A={ X >3 }.
由于 P ( A) = P { X > 3} = ∫
51
3
2 dx = , 3 3
进行3次独立观测中 设Y 表示对 X进行 次独立观测中 观测值大于 进行 次独立观测中, 3的次数 的次数, 的次数 则
P {a < X ≤ b} = P { a < X < b } = P{a ≤ X < b}
= P{a ≤ X ≤ b}
连续型随机变量的概率与区间的开闭无关 3º
P( A) = 0 P( A) = 1
A= ∅ A= Ω
的分布函数为: 例1 设连续型随机变量X的分布函数为: F( x) = A+ Barctan x − ∞ < x < ∞
1 x − 1 − e 2000 , F ( x) = 0,
x ≥ 0, x < 0.
(1) P { X > 1000}= 1 − P { X ≤ 1000} = 1 − F (1000)
1 − 1 − e 2000x , x ≥ 0, F ( x) = 0, x < 0.
2-1连续型随机变量及其分布律(3)
2 πσ 3) 当 x 时, p( x) 0; 4)曲线在 x μ σ 处有拐点;
5)曲线以 x 轴为渐近线; 6) 当固定 σ, 改变 μ 的大小时, p( x) 图形的形状不变,只是沿 着 x 轴作平移变换;
而 0 P{X c} P{c X c}
lim P{c X c}
0
c
lim p( x)d x 0. 0 c
P{X c} 0.
注. 1º若X为连续型随机变量,则 P{a X b} P{a X b} P{a X b}
第二章
第一节 连续型随机变量 及其分布密度 (3)
一、概率密度的概念与性质 二、常见连续型随机变量的分布 三、内容小结
一、概率密度的概念与性质
1.定义 对于随机变量X,若存在非负可积函数
p(x) ( xR), 使得X 的分布函数
y y p( x)
F
(
x)
x
p(t
)
dt
F(x)
o x
(3) 正态分布下的概率计算
原函数不是
初等函数
P{X x} F ( x) 1
e d t x
(
t μ)2 2σ2
2σ
? 方法一:利用MATLAB软件包计算
方法二:转化为标准正态分布查表计算
标准正态分布
当正态分布 N ( μ,σ2 ) 中的 μ 0, σ 1 时,这样 的正态分布称为标准正态分布,记为 N (0, 1).
离 散
{ X a} 是不可能事件 P{X a} 0.
2.1随机变量及其分布(1,2)课件
是右连续的, 即对任何实数 a 有 lim F x F (a )
x a
任一随机变量 的分布函数 都满足以上性质, 反之, 任一满足以上性质的函数, 都可作为某一 随机变量的分布函数.
X 服从离散均匀分布.
三、分布函数 离散型随机变量的特点是: 其取值范围是有限集
或可列集. 其概率分布可用列表法表示: X x1 , x2 , x3 , ..., xn , ... p p1 , p2 , p3 , ..., pn , ...
但有些随机变量是非离散的,它的取值可能是 某一
区间内的一切值.
x x
lim F x 1
(4) F ( x ) 至多有可数多个间断点, 且在其间断点处,
是右连续的, 即对任何实数 a 有 lim F x F (a ) 证(1)0 F ( x ) P{ X x } 1 (2) a b 时, X a
1 P{ X 2 } P{ X 4 } P{ X 6 } ... P{ X 2n } ...
p 2 p 4 p 6 ... p 2 n ... 1 p2 1 2 2 2 1 p p 2p 1 p 2
p2
若离散型 r , v . X 的概率分布为
X p x1 p1
A x2 xk
p2
pk
则对于集合 xn n 1,2,3,... 的任一子集 A, 事件
“ X 在 A 中取值” 即“X A ” 的概率为
P{ X A } pk
xk A
只有两种对立结果: 对于贝努利试验, “A发生” 与“A不发生” 设事件A发生的概率为 p ( 0 p 1 ) 则事件 A 发生的概率为 q 1 p 令X表示 一次贝努利试验中, A发生的次数, 即
高中数学人教A版选修2-3教案-2.1 离散型随机变量及其分布列_教学设计_教案_1
教学准备
1. 教学目标
离散型随机变量的分布列
2. 教学重点/难点
离散型随机变量的分布列
3. 教学用具
4. 标签
教学过程
一、基本知识概要:
1. 随机变量:随机试验的结果可以用一个变量来表示,这样的变量的随机变量,记作;
说明:若是随机变量,,其中是常数,则也是随机变量。
2. 离散型随机变量:随机变量可能取的值,可以按一定顺序一一列出
连续型随机变量:随机变量可以取某一区间内的一切值。
说明:①分类依据:按离散取值还是连续取值。
②离散型随机变量的研究内容:随机变量取什么值、取这些值的多与少、所取值的平均值、稳定性等。
说明:放回抽样时,抽到的次品数为独立重复试验事件,即。
例2:一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以表示取出的三只球中的最小号码,写出随机变量的分布列。
剖析:因为在编号为1,2,3,4,5的球中,同时取3只,所以小号码可能是1或2或3,即可以取1,2,3。
三、课堂小结
1会根据实际问题用随机变量正确表示某些随机试验的结果与随机事件;2熟练应用分布列的两个基本性质;
3能熟练运用二项分布计算有关随机事件的概率。
四、作业布置:教材P193页闯关训练。
高中数学人教A版选修2-3课件2-1-2离散型随机变量的分布列
销一件该商品的利润,求η的分布列.
探究一
探究二
探究三
探究四
思维辨析
当堂检测
解:由题易得,η的可能取值为200元,250元,300元,
则P(η=200)=P(ξ=1)=0.12,
P(η=250)=P(ξ=2)+P(ξ=3)=0.24+0.18=0.42,
=1
【做一做1】 离散型随机变量X的分布列为
X
1
1
4
)
P
则m的值为(
A.
C.
1
2
1
4
B.
2
3
m
4
1
3
1
3
1
D.
6
1
1
1
1
4
3
6
4
解析:由概率分布列的性质知, +m+ + =1,得 m= .
答案:C
1
6
2.两点分布
随机变量X的分布列为
X
P
0
1-p
1
p
若随机变量X的分布列具有上表的形式,则称X服从两点分布,并
C 345
C 350
C 350
.
,
探究一
探究二
探究三
探究四
思维辨析
当堂检测
离散型随机变量的分布列
例1 从装有除颜色外完全相同的6个白球,4个黑球和2个黄球的箱
中随机地取出两个球,规定每取出1个黑球赢2元,而每取出1个白球
输1元,取出黄球无输赢.
(1)以X表示赢得的钱数,随机变量X可以取哪些值?求X的分布列;
概率论与随机过程:2-1 随机变量及其分布函数
例3 设有函数 F(x)
F(x)
sin
x 0
0 x
其它
试说明F(x)能否是某个r.v 的分布函数.
解: 注意到函数 F(x)在[ 2, ]上下降,
不满足性质(1),故F(x)不能是分布函数.
或者
F() lim F(x) 0 x
不满足性质(2), 可见F(x)也不能是r.v 的 分布函数.
练:设连续型随机变量X的分布函数为
第二章教学计划(第1次课)
教学内容:
1.随机变量及其分布函数; 2.离散型随机变量及其分布。 教学目的及目标:
1.理解随机变量、分布函数、分布律的概念; 2.能对实际问题建立适当的随机变量,会求其分布函数; 3.能熟练求离散型随机变量的分布律,熟练掌握三种重要的
离散型分布; 4. 熟练掌握分布函数、分布律的性质及二者间的关系,并能熟
随机变量概念的产生是概率论发展史上的重大 事件. 引入随机变量后,对随机现象统计规律的研 究,就由对事件及事件概率的研究转变为对随机变 量及其取值规律的研究.
事件及 事件概率
随机变量及其 取值规律
对于随机试验,要求能够定义适当的随机变量表示 试验结果。
(*)例3: 考虑“测试灯泡寿命”这一试验。试验结 果本身是用数字描述的,令X表示灯泡的寿命 (以小时计),则X是随机变量,定义域为样本 空间 ={t|t≥0},值域为RX=[0,+∞)。 {X<500}:“任取出的灯泡的寿命小于500小时”;
随机变量的分布:对一个随机变量的统计规律性
的完整描述。
2、引入随机变量的意义
随机变量实际上就是定义域为事件域,值 域为实数集或其子集的一种实值函数.
ω.
X(ω)
Ω
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则称X 服从参数为 n, p 的二项分布, 记作 X~b(n, p).
n
注 (1) 显然 P{X=k}0,k =0,1,2,...,n ;
C
k n
pk q nk
1
(2)当n=1时二项分布化为(0-1)分布 k0
例3 设有20台机床, 独立地各加工一件齿轮, 若各机床 加工的废品率都是0.2, 求20件齿轮产品中的废品数的 分布律.
定义 设E是随机试验, 其样本空间是S={e}, 如果对
于每一个 e ∈S,都有一个实数 X(e) 与之对应,这样 就得到一个定义在 S 上的单值实值函数 X=X(e), 称为 随机变量. 常用字母 X, Y, , 等表示随机变量.
随机变量是定义在样本空间的实值函数,它与普通
的实函数有本质的区别. 一方面它的取值是随机的,而
例3 对于一批灯泡,设每一灯泡在某固定条件的耐用 时间为X,则 X :S[0,+∞)
随着取不同灯泡的试验结果不同,X 取不同的值. 取定灯泡,X 值才能确定,故X是随机变量.
例4 某射手每次射击打中目标的概率是p(0<p<1),现 在他连续向一目标射击,直到第一次击中目标为止,
则射击次数X是一个随机变量,X可以取到一切自然数 .
定义了随机变量后,随机事件就可以用随机
变量的取值来描述.
§2.2 离散型随机变量的概率分布
一、基本概念
❖离散型随机变量:随机变量所有可能取值是有限个或
可列个.
❖离散型随机变量的分布律:
定义 设离散型随机变量X所有可能取值为xk , k=1,2,…
X取各个可能值的概率为 pk , 即
P{X=xk }= pk , k =1,2,…
可以求得这个随机变量 X 所对应的样本空间中任何随
机事件的概率.
二、几种常见的离散型随机变量
1.(0-1)分布
如果随机变量X只能取 0, 1 两个值,其分布律为
P{X =1}=p, P{X =0}=1- p (0<p<1)
即
X0 1
pk 1-p p
或 P{ X k} pk (1 p)1k , k 0,1(0 p 1)
解: X 的可能取值为 0, 1, 2, 3, 4, 故 X的分布律为
X0
1
23Βιβλιοθήκη 4pk p (1-p)p (1-p)2p (1-p)3p (1-p)4
或写成 P{ X k} (1 p)k p , k 0,1,2,3, P{ X 4} (1 p)4
例2 设袋中有4个红球, 1个白球, 今从袋中随机抽取
例2 一袋中有6个球,分别标有 1, 2, 2, 2, 3, 3,从袋 中任取一个球,观察出现的数字.
解:样本空间 S={e1,e2,e3}, 其中ei={出现数字i },i=1, 2, 3 构造随机变量X:S {1, 2, 3}, 即 X(e1)=1, X(e2)=2, X(e3)=3.
❖ 当试验的可能结果本身是用数量描述的,这时构 造随机变量最容易.
两次, 每次取一个, 设 X 表示所取得的白球数, 试分
两种情况: (1) 放回抽取; (2)不放回抽取, 分别求出
X 的分布律.
解: (1) 放回
(2)不放回
X01 2 pk 4 4 4 2 1
55 55 55
X01
pk
43 42 54 54
离散型随机变量 X 的概率分布或分布律完全刻划 了离散型随机变量的分布情况,已知 X 的概率分布,
则称X服从参数为 p 的(0-1)分布或两点分布.
对于一次试验只有两种可能结果的概率分布都可 用两点分布来描述.如在射击中,只考虑 “击中” 与 “不中”; 对产品质量进行检验,如果我们只关心“合格” 与“不合格”, 则这类问题都可以归结为两点分布.
2.二项分布
(1)贝努利试验:只有两个可能结果A及A 的试验.
第二章 随机变量及其分布
§2.1 随机变量 §2.2 离散型随机变量的概率分布 §2.3 随机变量的分布函数 §2.4 连续型随机变量的概率密度 §2.5 随机变量的函数的分布
§2.1 随机变量
我们知道随机事件是由基本事件构成的,前面 所给出的定义无论是基本事件还是随机事件都是用 文字叙述给出,这有两个缺憾:一是非常繁琐,二 是尽管事件可以看成子集(样本空间的子集)但是 文字叙述却不符合数学的研究特点,因此为了更深 入地研究随机现象,我们就需要将随机试验的结果 数量化,也就是用某一变量取得各种不同的数值来 描述随机试验的结果,这样就引进了随机变量的概 念.
它取每一个可能值都有一定的概率;另一方面它的定
义域是样本空间S, 而S不一定是实数集.
e
分 离散型随机变量(取有限个或可数个值)
S
类 非离散型的随机变量(连续型随机变量)
X(e)
R
随机变量的概念在概率论与数理统计中既是基本的, 又是非常重要的.后面将会看到,由于引入了随机变量, 高等数学的方法就可用来研究随机现象了.
例1
考察抛硬币试验 S={H, T},其中H ={出现正面}, T={出现反面}.
用数字 “1” 代表事件“出现正面”, 用数字 “0” 代表事件“出现反面”, 则构造随机变量X:S {0,1},即X(H)=1, X(T)=0
此时,随机变量 X 随基本事件的变化而变化, 当基本事件确定,对应值 X 也相应确定.
()
称()式为离散型随机变量 X 的概率分布或分布律.
❖分布律常用表格表示: X x1 x2 … xk … pk p1 p2 … pk …
❖分布律具有性质:
1. pk 0, (k=1,2,...),
2. pk 1
k 1
例1 设一汽车在开往目的地的道路上需经过四盏信号 灯,每盏信号灯以概率 p 禁止汽车通过. 以 X 表示汽车 首次停下时, 它已通过的信号灯的盏数(设各信号灯的 工作是相互独立的), 求X 的分布律.
将 E 独立地重复进行n次, 则称这一串重复的独立试 验为(n重)贝努利试验.
(2) 二项分布: 设 X 表示 n 重贝努利试验中A事件 发生的次数, P(A)=p, 则X是一个随机变量, X 的可能 值为 0, 1, 2, …, n. X 的分布率为
P{X k} Cnk pk (1 p)nk , k 0,1,2,..., n
解 本题可看作是20次重复独立试验. 设X表示20件