241圆
数学运算学习讲义—花生十三4
四海公考行政能力测试讲义系列数学运算学习讲义—花生十三Arithmatical lecture notes—Peanut13花生十三2014年9月内部讲义严禁外传目录1 引言 (4)2 数学运算之行程问题 (4)2.1 行程问题基础概念 (4)2.2 行程三量基础比例关系 (4)2.3 比例份数思想介绍 (5)2.4 初等行程问题题型解析: (5)2.4.1 初等行程问题介绍 (5)2.4.2 例题解析 (6)2.5 相遇问题题型解析 (7)2.5.1 相遇问题介绍 (7)2.5.2 例题解析 (7)2.6 追击问题题型解析 (9)2.6.1 追击问题介绍 (9)2.6.2 例题解析 (9)2.7 流水问题题型解析 (10)2.7.1 流水问题介绍 (10)2.7.2 例题解析 (11)2.8 本章小结 (12)3 数学运算之工程问题 (13)3.1 工程问题基础概念 (13)3.2 工程量基本比例关系 (13)3.3 单独完工问题题型解析 (14)3.4 合作完工问题题型解析 (15)3.4.1 根据各自工作时间求解问题 (15)3.4.2 根据不同工作情况求解问题 (16)3.4.3 同时开工同时完工问题 (17)3.5 本章小结 (17)4 数学运算之排列组合问题 (18)4.1 排列组合问题基础概念 (18)4.2 排列组合的几种特殊情形 (18)4.3 简单分类分步习题解析 (20)4.4 包含特殊要求习题解析 (21)4.5 特殊情形习题解析 (22)4.6 本章小结 (24)5 数学运算之概率问题 (25)5.1 概率问题基础概念 (25)5.2概率问题常考题型解析 (26)5.2.1 相互独立事件同时发生的概率 (26)5.2.2 独立重复试验 (26)5.2.3 互斥事件发生概率 (27)5.2.4 总体概率 (27)5.2.5 等可能性事件概率 (28)5.3 本章小结 (29)6 数学运算之极限问题 (29)6.1 最不利情况极限题 (29)6.1.1 最不利情况极限题概述 (29)6.1.2 例题解析 (29)6.2 容斥类极限题 (30)6.3 和定最值极限题 (31)6.3.1 和定最值极限题概述 (31)6.3.2 例题解析 (31)7 数学运算之容斥问题 (33)7.1 容斥问题基础概念 (33)7.2 传统容斥问题解析 (33)7.3 新型容斥问题解析 (34)8 数学运算之几何问题 (35)8.1 几何问题基础公式 (35)8.2 平面几何问题解析 (36)8.3 立体几何问题解析 (38)8.3.1 基础立体几何问题 (38)8.3.2立体几何最值问题......................... 错误!未定义书签。
241圆的标准方程(基础知识+基本题型)(含解析)2022高二数学(选择性必修第一册)
2.4.1圆的标准方程(基础知识+基本题型)知识点一 确定圆的几何要素确定一个圆的最基本的要素是圆心和半径,当圆心位置与半径大小确定后,圆就唯一确定了.从集合的角度理解圆(1)圆的定义在平面内,到定点的距离等于定长的点的集合,定点叫做圆心,定长叫做半径.(2)确定一个圆的条件在平面直角坐标系中,圆心为(,)A a b ,半径长为(0)r r >的圆上的点M 的集合就是集合{|||}P M MA r ==.知识点二 圆的标准方程1.圆的标准方程的推导如图所示,设圆上任意一点(,)M x y ,圆心A 的坐标为(,)a b ,由||MA r =r =,等式两边平方得222()()x a y b r -+-=.①若点(,)M x y 在圆上,易知点M 的坐标满足方程①;反之,若点(,)M x y 的坐标适合方程①,则点M 在圆上,我们把方程222()()x a y b r -+-=称为圆心为(,)A a b ,半径长为(0)r r >的圆的标准方程.确定圆的标准方程的条件(1)圆的标准方程中有三个参数a ,b ,r ,其中实数对(,)a b 是圆心的坐标,能确定圆的位置;正数r 表示圆的半径,能确定圆的大小.(2)已知圆的圆心坐标和圆的半径,即可写出圆的标准方程,反之,已知圆的标准方程,即可写出圆的圆心坐标和圆的半径.2.几种常见的特殊位置的圆的方程1.圆的标准方程的推导圆的标准方程为222()()x a y b r-+-=,圆心为(,)A a b,半径长为r.设所给点为00(,)M x y,则点M与圆的位置关系及判断方法如下:(系来判断.(2)判断点与圆的位置关系时,还可将点的坐标代入圆的标准方程的左边,与半径的平方比较大小.考点一:圆的标准方程例1.求满足下列条件的各圆的方程:(1)圆心在原点,半径是3;(2)已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上;(3)经过点()5,1P ,圆心在点()8,3C -.【思路点拨】一般情况下,如果已知圆心或易于求出圆心,可用圆的标准方程来求解,用待定系数法,求出圆心坐标和半径.【答案】(1)229x y +=(2)22(2)10x y -+=(3)()()228325x y -++= 【解析】(1)229x y +=(2)线段AB 的中垂线方程为240x y --=,与x 轴的交点(2,0)即为圆心C 的坐标,所以半径为||CB =,所以圆C 的方程为22(2)10x y -+=.(3)解法一:∵圆的半径||5r CP ===,圆心在点()8,3C - ∴圆的方程是()()228325x y -++=解法二:∵圆心在点()8,3C -,故设圆的方程为()()22283x y r -++= 又∵点()5,1P 在圆上,∴()()2225813r -++=,∴225r = ∴所求圆的方程是()()228325x y -++=.例2 已知圆过两点(3,1)A ,(1,3)B -,且它的圆心在直线320x y --=上,求此圆的标准方程.解:方法1:设所求圆的标准方程为222()()x a y b r -+-=.依题意,有222222(3)(1)(1)(3)320a b r a b r a b ⎧-+-=⎪--+-=⎨⎪--=⎩,即22222262102610320a b a b r a b a b r a b ⎧+--=-⎪++-=-⎨⎪--=⎩,解得22410a b r ⎧=⎪=⎨⎪=⎩.故所求圆的标准方程为22(2)(4)10x y -+-=.方法2:直线AB 的斜率311132k -==---, 所以线段AB 的垂直平分线m 的斜率为2.线段AB 的中点的横坐标和纵坐标分别为3112x -==,1322y +==. 因此直线m 的方程为22(1)y x -=-即20x y -=.又因为圆心在直线320x y --=上,所以圆心是这两条直线的交点.联立方程,得20320x y x y -=⎧⎨--=⎩,解得24x y =⎧⎨=⎩.设圆心为C ,所以圆心坐标为(2,4),又因为半径长||r CA ==所以所求圆的标准方程为22(2)(4)10x y -+-=.方法3:设圆心为C .因为圆心C 在直线320x y --=上,所以可设圆心C 的坐标为(,32)a a -.又因为||||CA CB =2a =.所以圆心为(2,4),半径长||r CA ==.故所求圆的标准方程为22(2)(4)10x y -+-=.【总结升华】确定圆的方程的主要方法是待定系数法,即列出关于a 、b 、r 的方程组,求a 、b 、r 或直接求出圆心(a ,b )和半径r ,一般步骤为:(1)根据题意,设所求的圆的标准方程为(x ―a)2+(y ―b)2=r 2;(2)根据已知条件,建立关于a 、b 、r 的方程组;(3)解方程组,求出a 、b 、r 的值,并把它们代入所设的方程中去,就得到所求圆的方程.考点二:点与圆的位置关系例3.判断点M (6,9),N (3,3),Q (5,3)与圆(x ―5)2+(y ―6)2=10的位置关系.【答案】M 在圆上 N 在圆外 Q 在圆内【解析】 ∵圆的方程为(x ―5)2+(y ―6)2=10,分别将M (6,9),N (3,3),Q (5,3)代入得(6―5)2+(9―6)2=10,∴M 在圆上;(3―5)2+(3―6)2=13>10,∴N 在圆外;(5―5)2+(3―6)2=9<10,∴Q 在圆内.【总结升华】点与圆的位置关系,从形的角度来看,设圆心为O ,半径为r ,则点P 在圆内⇔|PQ|<r ;点P 在圆上⇔|PQ|=r ;点P 在圆外⇔|PO|>r .从数的角度来看,设圆的标准方程为(x ―a)2+(y ―b)2=r 2,圆心为A (a ,b ),半径为r ,则点M (x 0,y 0)在圆上⇔(x 0―a)2+(y 0―b)2=r 2;点M (x 0,y 0)在圆外⇔(x 0―a)2+(y 0―b)2>r 2;点M (x 0,y 0)在圆内⇔(x 0―a)2+(y 0―b)2<r 2.例4 已知点(1,2)A 在圆C :222()()2x a y a a -++=的内部,求实数a 的取值范围. 解:因为点A 在圆的内部,所以222(1)(2)2a a a -++<.所以250a +<,52a <-.所以a 的取值范围是5|2a a ⎧⎫<-⎨⎬⎩⎭. 总结:利用已知点与圆的位置关系确定圆中的参数的值或取值范围时,可直接将点的坐标代入圆的标准方程,依据点与圆的位置关系,得出方程或不等式,求解即可.例5 已知两点1(3,8)P 和2(5,4)P ,求以线段12P P 为直径的圆的标准方程,并判断点(5,3)M ,(3,4)N ,(3,5)P 是在圆上、在圆内、还是在圆外.解:设圆心(,)C a b ,半径长为r .因为点C 为线段12P P 的中点,所以3542a +==,8462b +==,即圆心坐标为(4,6)C .又由两点间的距离公式,得1||r CP =所求圆的标准方程为22(4)(6)5x y -+-=.分别计算点M ,N ,P 到圆心C 的距离:||CM =>||CN =,||CP =所以点点M 在此圆外,点N 在此圆上,点P 在此圆内.。
第24课 圆的基本性质
图 248
备用图
【解析】 (1)如解图,延长 AO 交 BC 于点 H,连结 BO. ∵AB=AC,OB=OC,∴点 A,O 在线段 BC 的中垂线上, ∴AO⊥BC.又∵AB=AC,∴AO 平分∠BAC. (2)如解图,过点 D 作 DK⊥AO 于点 K. 由(1)知 AO⊥BC,又∵OB=OC, 1 1 ∴BH=CH= BC=3,∠COH= ∠BOC. 2 2 1 ∵∠BAC= ∠BOC,∴∠COH=∠BAC. 2 CH 3 3 在 Rt△COH 中,∵sin∠COH= ,CH=3,∴sin∠COH= = ,∴AO=CO=5, CO CO 5 ∴OH= CO2-CH2= 52-32=4, 3 ∴AH=AO+OH=5+4=9,tan∠DOK=tan∠COH= . 4 在 Rt△ACH 中,∵AH=9,CH=3, CH 3 1 ∴tan∠CAH= = = ,AC= AH2+CH2= 92+32=3 10. AH 9 3 1 由(1)知∠BAH=∠CAH,∴tan∠BAH=tan∠CAH= . 3 设 DK=3a, DK 1 DK 3 在 Rt△ADK 中,tan∠DAK= = ,在 Rt△DOK 中,tan∠DOK= = , AK 3 OK 4 ∴OK=4a,OD=5a,AK=9a,∴AO=OK+AK=13a=5, 5 25 25 90 ∴a= ,∴OD=5a= ,∴CD=OC+OD=5+ = . 13 13 13 13
【典例 1】 (2016· 泰安)如图 246,A,B, C 是⊙O 上的三点, 且四边形 ABCO 是 平行四边形,OF⊥OC 交⊙O 于点 F, 则∠BAF 等于 ( ) A.12.5° B.15° C.20° D.22.5°
【解析】 连结 OB,如解图. ∵四边形 ABCO 是平行四边形, ∴OC=AB. 又∵OA=OB=OC,∴OA=OB=AB, ∴△AOB 为等边三角形. ∵OF⊥OC,OC∥AB,∴OF⊥AB, ∴∠BOF=∠AOF=30° , 1 ∴∠BAF= ∠BOF=15° . 2 【答案】 B
圆的计算与应用
圆的计算与应用圆一直以来都是几何学中的一个基本概念,具有广泛的应用价值。
在数学、科学、工程和日常生活中,我们都可以见到圆的存在和应用。
本文将探讨圆的计算方法和它在不同领域中的应用。
圆的计算方法圆是由一系列等距离于一个中心点的点组成的。
为了描述和计算圆的特征和属性,我们引入以下几个关键概念。
1. 圆的半径:圆上的任意一点到圆心的距离被称为半径,通常用字母r表示。
2. 圆的直径:通过圆心并且连接两个圆上的点,而且这两个点在圆上的直线称为圆的直径,直径是半径的两倍。
3. 圆的周长:圆的周长是指圆上一周的长度,也可以称为圆的周长或圆周长。
圆的周长可以通过公式C=2πr来计算,其中r是圆的半径,π是一个数学常数,约等于3.14159。
4. 圆的面积:圆的面积是指圆内部区域的大小。
圆的面积可以通过公式A=πr²来计算,其中r是圆的半径。
圆的应用1. 圆形建筑和结构:圆形建筑物和结构在建筑设计中被广泛应用。
例如,圆形剧场和穹顶天花板常常被用来改善声学效果。
此外,圆形建筑还可以提供更大的内部空间和更好的结构稳定性。
2. 轮子和运动:圆形物体的旋转特性使得它们非常适合用作车辆和机械中的轮子。
圆形轮子可以减少地面摩擦力,提供更顺畅的移动体验。
3. 数学和科学研究:圆形作为一个基本几何图形,被广泛应用于数学和科学领域的研究中。
从质点运动的轨迹到天体运动的描述,圆形都可以提供便捷和准确的方式。
4. 圆形运动的应用:圆形运动在日常生活中也有很多实际应用。
例如,摆钟的运动、地球在公转、机械工程中的转轴等都是圆形运动的典型例子。
5. 圆形交通设施:圆形交通设施在城市规划中被广泛应用。
例如,环形交叉口和环形公路可以提供更流畅和高效的交通流量。
总结圆作为一种基本几何形状,具有重要的计算和应用价值。
通过理解和应用圆的相关概念,我们可以在不同领域中更好地解决问题和优化设计。
圆的计算方法和广泛的应用使得我们更加认识到其在日常生活中的重要性和多样性。
新教材 人教A版高中数学选择性必修第一册全册各章节课后练习题 含解析
选择性必修第一册全册课后练习题本文档还有大量公式,在网页中显示可能会出现位置错误的情况,下载后均可正常显示,请放心下载练习!第一章空间向量与立体几何................................................................................................ - 2 -1.1.1空间向量及其线性运算......................................................................................... - 2 -1.1.2空间向量的数量积运算......................................................................................... - 8 -1.2空间向量基本定理.................................................................................................. - 15 -1.3.1空间直角坐标系 .................................................................................................. - 22 -1.3.2空间运算的坐标表示........................................................................................... - 28 -1.4.1.1空间向量与平行关系 ....................................................................................... - 34 -1.4.1.2空间向量与垂直关系 ....................................................................................... - 42 -1.4.2用空量研究距离、夹角问题............................................................................... - 51 -章末测验 ....................................................................................................................... - 64 - 第二章直线和圆的方程...................................................................................................... - 78 -2.1.1倾斜角与斜率 ...................................................................................................... - 78 -2.1.2两条直线平行和垂直的判定............................................................................... - 83 -2.2.1直线的点斜式方程............................................................................................... - 87 -2.2.2直线的两点式方程............................................................................................... - 92 -2.2.3直线的一般式方程............................................................................................... - 97 -2.3.1两条直线的交点坐标......................................................................................... - 102 -2.3.2两点间的距离公式............................................................................................. - 102 -2.3.3点到直线的距离公式......................................................................................... - 107 -2.3.4两条平行直线间的距离..................................................................................... - 107 -2.4.1圆的标准方程 .................................................................................................... - 113 -2.4.2圆的一般方程 .................................................................................................... - 118 -2.5.1直线与圆的位置关系......................................................................................... - 122 -2.5.2圆与圆的位置关系............................................................................................. - 128 -章末测验 ..................................................................................................................... - 135 - 第三章圆锥曲线的方程.................................................................................................... - 144 -3.1.1椭圆及其标准方程............................................................................................. - 144 -3.1.2.1椭圆的简单几何性质 ..................................................................................... - 150 -3.1.2.2椭圆的标准方程及性质的应用...................................................................... - 156 -3.2.1双曲线及其标准方程......................................................................................... - 164 -3.2.2双曲线的简单几何性质..................................................................................... - 171 -3.3.1抛物线及其标准方程......................................................................................... - 178 -3.3.2抛物线的简单几何性质..................................................................................... - 184 -章末测验 ..................................................................................................................... - 191 - 模块综合测验 ..................................................................................................................... - 202 -第一章 空间向量与立体几何1.1.1空间向量及其线性运算一、选择题1.空间任意四个点A ,B ,C ,D ,则DA →+CD →-CB →等于( ) A .DB → B .AC → C .AB → D .BA → D [DA →+CD →-CB →=DA →+BD →=BA →.]2.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( )A .平行四边形B .空间四边形C .等腰梯形D .矩形A [∵AO →+OB →=DO →+OC →,∴AB →=DC →. ∴AB →∥DC →且|AB →|=|DC →|. ∴四边形ABCD 为平行四边形.]3.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A ,B ,C 一定共面的是( )A .OM →=OA →+OB →+OC → B .OM →=2OA →-OB →-OC → C .OM →=OA →+12OB →+13OC →D .OM →=13OA →+13OB →+13OC → D [由OM →=13OA →+13OB →+13OC →,可得3OM →=OA →+OB →+OC →⇒OM →-OA →+OM →-OB →+OM →-OC →=0, 即AM →=-BM →-CM →.所以AM →与BM →,CM →在一个平面上,即点M 与点A ,B ,C 一定共面.] 4.若空间中任意四点O ,A ,B ,P 满足OP →=mOA →+nOB →,其中m +n =1,则( )A .P ∈AB B .P ∉ABC .点P 可能在直线AB 上D .以上都不对A [因为m +n =1,所以m =1-n , 所以OP →=(1-n )OA →+nOB →, 即OP →-OA →=n (OB →-OA →), 即AP →=nAB →,所以AP →与AB →共线. 又AP →,AB →有公共起点A ,所以P ,A ,B 三点在同一直线上, 即P ∈AB .]5.已知在长方体ABCD -A 1B 1C 1D 1中,点E 是A 1C 1的中点, 点F 是AE 的三等分点,且AF =12EF ,则AF →=( )A .AA 1→+12AB →+12AD → B .12AA 1→+12AB →+12AD →C .12AA 1→+16AB →+16AD → D .13AA 1→+16AB →+16AD →D [如图所示,AF →=13AE →,AE →=AA 1→+A 1E →,A 1E →=12A 1C 1→,A 1C 1→=A 1B 1→+A 1D 1→,A 1B 1→=AB →,A 1D 1→=AD →,所以AF →=13⎝ ⎛⎭⎪⎫AA 1→+12A 1C 1→=13AA 1→+16AB →+16AD →,故选D.]二、填空题6.已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若由OM →=-2OA →+OB →+λOC →确定的点M 与A ,B ,C 共面,则λ=________.2 [由M 、A 、B 、C 四点共面知:-2+1+λ=1,即λ=2.]7.在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,用a ,b ,c 表示D 1M →,则D 1M →=________.12a -12b +c [D 1M →=D 1D →+DM → =A 1A →+12(DA →+DC →) =c +12(-A 1D 1→+A 1B 1→) =12a -12b +c .]8.在空间四边形ABCD 中,E ,F 分别是AB ,CD 的中点,则EF →和AD →+BC →的关系是________.(填“平行”,“相等”或“相反”)平行 [设G 是AC 的中点,则EF →=EG →+GF →=12BC →+12AD →=12(AD →+BC →) 所以2EF →=AD →+BC →, 从而EF →∥(AD →+BC →).] 三、解答题9.如图,在空间四边形ABCD 中,G 为△BCD 的重心,E ,F 分别为边CD 和AD 的中点,试化简AG →+13BE →-12AC →,并在图中标出化简结果的向量.[解] ∵G 是△BCD 的重心,BE 是CD 边上的中线,∴GE →=13BE →.又12AC →=12(DC →-DA →)=12DC →-12DA →=DE →-DF →=FE →, ∴AG →+13BE →-12AC →=AG →+GE →-FE →=AF →(如图所示).10.在长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,点N 在AC 上,且AN ∶NC =2∶1,求证:A 1N →与A 1B →,A 1M →共面.[证明] ∵A 1B →=AB →-AA 1→, A 1M →=A 1D 1→+D 1M →=AD →-12AA 1→, AN →=23AC →=23(AB →+AD →), ∴A 1N →=AN →-AA 1→ =23(AB →+AD →)-AA 1→=23(AB →-AA 1→)+23(AD →-12AA 1→) =23A 1B →+23A 1M →, ∴A 1N →与A 1B →,A 1M →共面.11.(多选题)若A ,B ,C ,D 为空间不同的四点,则下列各式为零向量的是( ) A .AB →+2BC →+2CD →+DC → B .2AB →+2BC →+3CD →+3DA →+AC →C.AB →+CA →+BD →D.AB →-CB →+CD →-AD →BD [A 中,AB →+2BC →+2CD →+DC →=AB →+2BD →+DC →=AB →+BD →+BD →+DC →=AD →+BC →;B 中,2AB →+2BC →+3CD →+3DA →+AC →=2AC →+3CA →+AC →=0;C 中,AB →+CA →+BD →=AD →+CA →;D 中,AB →-CB →+CD →-AD →=AB →+BC →+CD →+DA →表示A →B →C →D →A 恰好形成一个回路,结果必为0.]12.(多选题)有下列命题,其中真命题的有( ) A .若AB →∥CD →,则A ,B ,C ,D 四点共线 B .若AB →∥AC →,则A ,B ,C 三点共线C .若e 1,e 2为不共线的非零向量,a =4e 1-25e 2,b =-e 1+110e 2,则a ∥b D .若向量e 1,e 2,e 3是三个不共面的向量,且满足等式k 1e 1+k 2e 2+k 3e 3=0,则k 1=k 2=k 3=0BCD [根据共线向量的定义,若AB →∥CD →,则AB ∥CD 或A ,B ,C ,D 四点共线,故A 错;因为AB →∥AC →且AB →,AC →有公共点A ,所以B 正确;由于a =4e 1-25e 2=-4-e 1+110e 2=-4b ,所以a ∥b ,故C 正确;易知D 也正确.]13.(一题两空)已知A ,B ,C 三点共线,则对空间任一点O ,若OA →=2OB →+μOC →,则μ=________;存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________.-1 0 [由A 、B 、C 三点共线,∴2+μ=1,∴μ=-1,又由λOA →+mOB →+nOC →=0得OA →=-m λOB →-n λOC →由A ,B ,C 三点共线知-m λ-nλ=1,则λ+m +n =0.]14.设e 1,e 2是平面上不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,则实数k 为________.-8 [因为BD →=CD →-CB →=e 1-4e 2,AB →=2e 1+k e 2,又A ,B ,D 三点共线,由共线向量定理得12=-4k ,所以k =-8.]15.如图所示,已知四边形ABCD 是平行四边形,点P 是ABCD 所在平面外的一点,连接P A ,PB ,PC ,PD .设点E ,F ,G ,H 分别为△P AB ,△PBC ,△PCD ,△PDA 的重心.(1)试用向量方法证明E ,F ,G ,H 四点共面;(2)试判断平面EFGH 与平面ABCD 的位置关系,并用向量方法证明你的判断. [证明] (1)分别连接PE ,PF ,PG ,PH 并延长,交对边于点M ,N ,Q ,R ,连接MN ,NQ ,QR ,RM ,∵E ,F ,G ,H 分别是所在三角形的重心,∴M ,N ,Q ,R 是所在边的中点,且PE →=23PM →,PF →=23PN →,PG →=23PQ →,PH →=23PR →.由题意知四边形MNQR 是平行四边形,∴MQ →=MN →+MR →=(PN →-PM →)+(PR →-PM →)=32(PF →-PE →)+32(PH →-PE →)=32(EF →+EH →).又MQ →=PQ →-PM →=32PG →-32PE →=32EG →.∴EG →=EF →+EH →,由共面向量定理知,E ,F ,G ,H 四点共面.(2)平行.证明如下:由(1)得MQ →=32EG →,∴MQ →∥EG →, ∴EG →∥平面ABCD .又MN →=PN →-PM →=32PF →-32PE → =32EF →,∴MN →∥EF →. 即EF ∥平面ABCD . 又∵EG ∩EF =E ,∴平面EFGH 与平面ABCD 平行1.1.2空间向量的数量积运算一、选择题1.已知a ⊥b ,|a |=2,|b |=3,且(3a +2b )⊥(λa -b ),则λ等于( ) A .32 B .-32 C .±32 D .1A [∵a ⊥b ,∴a ·b =0,∵3a +2b ⊥λa -b ,∴(3a +2b )·(λa -b )=0, 即3λa 2+(2λ-3)a ·b -2b 2=0,∴12λ-18=0,解得λ=32.]2.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( )A .a 2B .12a 2C .14a 2D .34a 2C [AE →·AF →=12(AB →+AC →)·12AD →=14(AB →·AD →+AC →·AD →)=14⎝ ⎛⎭⎪⎫a ×a ×12+a ×a ×12=14a 2.]3.已知长方体ABCD -A 1B 1C 1D 1,则下列向量的数量积一定不为0的是( ) A .AD 1→·B 1C →B .BD 1→·AC →C .AB →·AD 1→ D .BD 1→·BC →D [对于选项A ,当四边形ADD 1A 1为正方形时,可得AD 1⊥A 1D ,而A 1D ∥B 1C ,可得AD 1⊥B 1C ,此时有AD 1→·B 1C →=0;对于选项B ,当四边形ABCD 为正方形时,AC ⊥BD ,易得AC ⊥平面BB 1D 1D ,故有AC ⊥BD 1,此时有BD 1→·AC →=0;对于选项C ,由长方体的性质,可得AB ⊥平面ADD 1A 1,可得AB ⊥AD 1,此时必有AB →·AD 1→=0;对于选项D ,由长方体的性质,可得BC ⊥平面CDD 1C 1,可得BC ⊥CD 1,△BCD 1为直角三角形,∠BCD 1为直角,故BC 与BD 1不可能垂直,即BD 1→·BC →≠0.故选D.]4.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,向量BA 1→与向量AC →所成的角为( )A .60°B .150°C .90°D .120°D [BA 1→=BA →+AA 1→,|BA 1→|=2a ,AC →=A B →+AD →,|AC →|=2a .∴BA 1→·AC →=BA →·AB →+BA →·AD →+AA 1→·AB →+AA 1→·AD →=-a 2. ∴cos 〈BA 1→,AC →〉=-a 22a ·2a =-12.∴〈BA 1→,AC →〉=120°.]5.如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,AB =1,AD =2,AA ′=3,∠BAD =90°,∠BAA ′=∠DAA ′=60°,则AC ′的长为( )A .13B .23C .33D .43B [∵AC ′→=AB →+BC →+CC ′→,∴AC ′→2=(AB →+BC →+CC ′→)2=AB →2+BC →2+CC ′→2+2(AB →·BC →+AB →·CC ′→+BC →·CC ′→) =12+22+32+2(0+1×3cos 60°+2×3cos 60°) =14+2×92=23,∴|AC ′→|=23,即AC ′的长为23.] 二、填空题6.已知a ,b 是空间两个向量,若|a |=2,|b |=2,|a -b |=7,则cos 〈a ,b 〉=________.18[将|a -b |=7两边平方,得(a -b )2=7. 因为|a |=2,|b |=2,所以a ·b =12.又a ·b =|a ||b |cos 〈a ,b 〉,故cos 〈a ,b 〉=18.]7.已知a ,b 是异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b ,且AB =2,CD =1,则a ,b 所成的角是________.60° [AB →=AC →+CD →+DB →,∴CD →·AB →=CD →·(AC →+CD →+DB →)=|CD →|2=1, ∴cos 〈CD →,AB →〉=CD →·AB →|CD →||AB →|=12,∴异面直线a ,b 所成角是60°.]8.已知|a |=2,|b |=1,〈a ,b 〉=60°,则使向量a +λb 与λa -2b 的夹角为钝角的实数λ的取值范围是________.(-1-3,-1+3) [由题意知 ⎩⎨⎧(a +λb )·(λa -2b )<0,cos 〈a +λb ,λa -2b 〉≠-1. 即⎩⎨⎧(a +λb )·(λa -2b )<0,(a +λb )·(λa -2b )≠-|a +λb ||λa -2b |,得λ2+2λ-2<0.∴-1-3<λ<-1+ 3.] 三、解答题9.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB →=a ,AD →=b ,AP →=c .(1)试用a ,b ,c 表示出向量BM →; (2)求BM 的长.[解] (1)∵M 是PC 的中点,∴BM →=12(BC →+BP →)=12[AD →+(AP →-AB →)] =12[b +(c -a )]=-12a +12b +12c .(2)由于AB =AD =1,P A =2,∴|a |=|b |=1,|c |=2,由于AB ⊥AD ,∠P AB =∠P AD =60°,∴a·b =0,a·c =b·c =2·1·cos 60°=1, 由于BM →=12(-a +b +c ),|BM →|2=14(-a +b +c )2=14[a 2+b 2+c 2+2(-a·b -a·c +b·c )]=14[12+12+22+2(0-1+1)]=32.∴|BM →|=62,∴BM 的长为62.10.如图,已知直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值. [解] (1)证明:设CA →=a ,CB →=b ,CC ′→=c , 根据题意得|a |=|b |=|c |,且a·b =b·c =c·a =0. ∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=⎝ ⎛⎭⎪⎫b +12c ·⎝ ⎛⎭⎪⎫-c +12b -12a =-12c 2+12b 2=0, ∴CE →⊥A ′D →,即CE ⊥A ′D .(2)∵AC ′→=-a +c ,∴|AC ′→|=2|a |,|CE →|=52|a |, ∵AC ′→·CE →=(-a +c )·⎝ ⎛⎭⎪⎫b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=12|a |22×52|a |2=1010.∴异面直线CE 与AC ′所成角的余弦值为1010.11.(多选题)在正方体ABCD -A 1B 1C 1D 1中,下列命题正确的有( ) A .(AA 1→+AD →+AB →)2=3AB →2 B .A 1C →·(A 1B 1→-A 1A →)=0 C .AD 1→与A 1B →的夹角为60° D .正方体的体积为|AB →·AA 1→·AD →|AB [如图,(AA 1→+AD →+AB →)2=(AA 1→+A 1D 1→+D 1C 1→)2=AC 1→2=3AB →2;A 1C →·(A 1B 1→-A 1A →)=A 1C →·AB 1→=0;AD 1→与A 1B →的夹角是D 1C →与D 1A →夹角的补角,而D 1C →与D 1A →的夹角为60°,故AD 1→与A 1B →的夹角为120°;正方体的体积为|AB →||AA 1→||AD →|.故选AB.]12.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,若E 是底面正方形A 1B 1C 1D 1的中心, 则AC 1→与CE →( )A .重合B .平行但不重合C .垂直D .无法确定C [AC 1→=AB →+AD →+AA 1→,CE →=CC 1→+C 1E →=AA 1→-12(AB →+AD →),于是AC 1→·CE →=(AB →+AD →+AA 1→)·⎣⎢⎡⎦⎥⎤AA 1-12(AB →+AD →)=AB →·AA 1→-12AB →2-12AB →·AD →+AD →·AA 1→-12AD →·AB →-12AD →2+AA 1→2-12AA 1→·AB →-12AA 1→·AD →=0-12-0+0-0-12+1-0-0=0,故AC 1→⊥CE →.]13.(一题两空)如图,在长方体ABCD -A 1B 1C 1D 1中,设AD =AA 1=1,AB =2,P 是C 1D 1的中点,则B 1C →·A 1P →=________,B 1C →与A 1P →所成角的大小为________.1 60° [法一:连接A 1D ,则∠P A 1D 就是B 1C →与A 1P →所成角.连接PD ,在△P A 1D 中,易得P A 1=DA 1=PD =2,即△P A 1D 为等边三角形,从而∠P A 1D =60°,即B 1C →与A 1P →所成角的大小为60°.因此B 1C →·A 1P →=2×2×cos 60°=1.法二:根据向量的线性运算可得B 1C →·A 1P →=(A 1A →+AD →)·⎝⎛⎭⎪⎫AD →+12AB →=AD →2=1. 由题意可得P A 1=B 1C =2,则2×2×cos 〈B 1C →,A 1P →〉=1,从而〈B 1C →,A 1P →〉=60°.]14.已知在正四面体D -ABC 中,所有棱长都为1,△ABC 的重心为G ,则DG 的长为________.63 [如图,连接AG 并延长交BC 于点M ,连接DM ,∵G 是△ABC 的重心,∴AG =23AM ,∴AG →=23AM →,DG →=DA →+AG →=DA →+23AM →=DA →+23(DM →-DA →)=DA →+23⎣⎢⎡⎦⎥⎤12(DB →+DC →)-DA →=13(DA →+DB →+DC →),而(DA →+DB →+DC →)2=DA →2+DB →2+DC →2+2DA →·DB →+2DB →·DC →+2DC →·DA →=1+1+1+2(cos 60°+cos 60°+cos 60°)=6,∴|DG →|=63.]15.如图,正四面体V -ABC 的高VD 的中点为O ,VC 的中点为M .(1)求证:AO ,BO ,CO 两两垂直;(2)求〈DM →,AO →〉.[解] (1)证明:设VA →=a ,VB →=b ,VC →=c ,正四面体的棱长为1, 则VD →=13(a +b +c ),AO →=16(b +c -5a ), BO →=16(a +c -5b ),CO →=16(a +b -5c ),所以AO →·BO →=136(b +c -5a )·(a +c -5b )=136(18a ·b -9|a |2)=136(18×1×1×cos 60°-9)=0,所以AO →⊥BO →,即AO ⊥BO .同理,AO ⊥CO ,BO ⊥CO . 所以AO ,BO ,CO 两两垂直.(2)DM →=DV →+VM →=-13(a +b +c )+12c =16(-2a -2b +c ),所以|DM →|=⎣⎢⎡⎦⎥⎤16(-2a -2b +c )2=12. 又|AO →|=⎣⎢⎡⎦⎥⎤16(b +c -5a )2=22,DM →·AO →=16(-2a -2b +c )·16(b +c -5a )=14, 所以cos 〈DM →,AO →〉=1412×22=22. 又〈DM →,AO →〉∈[0,π], 所以〈DM →,AO →〉=π4.1.2空间向量基本定理一、选择题1.若向量{a ,b ,c }是空间的一个基底,则一定可以与向量p =2a +b ,q =2a-b 构成空间的另一个基底的向量是( )A .aB .bC .cD .a +bC [由p =2a +b ,q =2a -b 得a =14p +14q ,所以a 、p 、q 共面,故a 、p 、q 不能构成空间的一个基底,排除A ;因为b =12p -12q ,所以b 、p 、q 共面,故b 、p 、q 不能构成空间的一个基底,排除B ;因为a +b =34p -14q ,所以a +b 、p 、q 共面,故a +b 、p 、q 不能构成空间的一个基底,排除D.]2.在平行六面体ABCD -A 1B 1C 1D 1中,M 是上底面对角线AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →可表示为( )A .12a +12b +cB .12a -12b +cC .-12a -12b +cD .-12a +12b +cD [由于B 1M →=B 1B →+BM →=B 1B →+12(BA →+BC →) =-12a +12b +c ,故选D.]3.若向量MA →,MB →,MC →的起点M 与终点A ,B ,C 互不重合,且点M ,A ,B ,C 中无三点共线,满足下列关系(O 是空间任一点),则能使向量MA →,MB →,MC →成为空间一个基底的关系是( )A .OM →=13OA →+13OB →+13OC → B .MA →≠MB →+MC → C .OM →=OA →+OB →+OC →D .MA →=2MB →-MC →C [若MA →,MB →,MC →为空间一组基向量,则M ,A ,B ,C 四点不共面.选项A 中,因为13+13+13=1,所以点M ,A ,B ,C 共面;选项B 中,MA →≠MB →+MC →,但可能存在实数λ,μ使得MA →=λMB →+μMC →,所以点M ,A ,B ,C 可能共面;选项D 中,四点M ,A ,B ,C 显然共面.故选C.]4.空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM →=2MA →,N 为BC 中点,则MN →为( )A .12a -23b +12cB .-23a +12b +12cC .12a +12b -23cD .23a +23b -12cB [MN →=MA →+AB →+BN →=13OA →+OB →-OA →+12(OC →-OB →)=-23OA →+12OB →+12OC →=-23a +12b +12c .]5.平行六面体ABCD -A 1B 1C 1D 1中,向量AB →,AD →,AA 1→两两的夹角均为60°且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( )A .5B .6C .4D .8A [在平行六面体ABCD -A 1B 1C 1D 1中有,AC 1→=AB →+AD →+CC 1→=AB →+AD →+AA 1→所以有|AC 1→|=|AB →+AD →+AA 1→|,于是有|AC 1→|2=|AB →+AD →+AA 1→|2=|AB →|2+|AD →|2+|AA 1→|2+2|AB →|·|AD →|·cos 60°+2|AB →|·|AA 1→|·cos 60°+2|AD →||AA 1→|·cos 60°=25,所以|AC 1→|=5.]二、填空题6.在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________.(用a ,b ,c 表示)12a +14b +14c [因为在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,所以OE →=12(OA →+OD →)=12OA →+12OD →=12a +12×12(OB →+OC →)=12a +14(b +c )=12a +14b +14c .]7.已知{a ,b ,c }是空间的一个单位正交基底,{a +b ,a -b ,c }是空间的另一个基底,若向量m 在基底{a ,b ,c }下表示为m =3a +5b +9c ,则m 在基底{a +b ,a -b,3c }下可表示为________.4(a +b )-(a -b )+3(3c ) [由题意知,m =3a +5b +9c ,设m =x (a +b )+y (a -b )+z (3c )则有⎩⎨⎧ x +y =3x -y =53z =9,解得⎩⎨⎧x =4y =-1z =3.则m 在基底{a +b ,a -b,3c }可表示为m =4(a +b )-(a -b )+3(3c ).] 8.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,P A →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.23a -13b +23c [因为BG =2GD ,所以BG →=23BD →. 又BD →=BA →+BC →=P A →-PB →+PC →-PB →=a +c -2b , 所以PG →=PB →+BG →=b +23(a +c -2b ) =23a -13b +23c .] 三、解答题9.如图所示,正方体OABC -O ′A ′B ′C ′,且OA →=a ,OC →=b ,OO ′→=c .(1)用a ,b ,c 表示向量OB ′→,AC ′→;(2)设G ,H 分别是侧面BB ′C ′C 和O ′A ′B ′C ′的中心,用a ,b ,c 表示GH →.[解] (1)OB ′→=OB →+BB ′→=OA →+OC →+OO ′→=a +b +c . AC ′→=AC →+CC ′→=AB →+AO →+AA ′→=OC →+OO ′→-OA →=b +c -a . (2)法一:连接OG ,OH (图略), 则GH →=GO →+OH →=-OG →+OH → =-12(OB ′→+OC →)+12(OB ′→+OO ′→) =-12(a +b +c +b )+12(a +b +c +c ) =12(c -b ).法二:连接O ′C (图略),则GH →=12CO ′→=12(OO ′→-OC →) =12(c -b ).10.如图,在平行六面体ABCD -A 1B 1C 1D 1中,MA →=-13AC →,ND →=13A 1D →,设AB →=a ,AD →=b ,AA 1→=c ,试用a ,b ,c 表示MN →.[解] 连接AN ,则MN →=MA →+AN →.由已知可得四边形ABCD 是平行四边形,从而可得 AC →=AB →+AD →=a +b , MA →=-13AC →=-13(a +b ), 又A 1D →=AD →-AA 1→=b -c ,故AN →=AD →+DN →=AD →-ND →=AD →-13A 1D →=b -13(b -c ), 所以MN →=MA →+AN → =-13(a +b )+b -13(b -c ) =13(-a +b +c ).11.(多选题)已知a ,b ,c 是不共面的三个向量,则下列向量组中,不能构成一个基底的一组向量是( )A .2a ,a -b ,a +2bB .2b ,b -a ,b +2aC .a,2b ,b -cD .c ,a +c ,a -cABD [对于A ,因为2a =43(a -b )+23(a +2b ),得2a 、a -b 、a +2b 三个向量共面,故它们不能构成一个基底;对于B ,因为2b =43(b -a )+23(b +2a ),得2b 、b -a 、b +2a 三个向量共面,故它们不能构成一个基底;对于C ,因为找不到实数λ、μ,使a =λ·2b +μ(b -c )成立,故a 、2b 、b -c 三个向量不共面,它们能构成一个基底;对于D ,因为c =12(a +c )-12(a -c ),得c 、a +c 、a -c 三个向量共面,故它们不能构成一个基底,故选ABD.]12.(多选题)给出下列命题,正确命题的有( )A .若{a ,b ,c }可以作为空间的一个基底,d 与c 共线,d ≠0,则{a ,b ,d }也可以作为空间的一个基底B .已知向量a ∥b ,则a ,b 与任何向量都不能构成空间的一个基底C .A ,B ,M ,N 是空间四点,若BA →,BM →,BN →不能构成空间的一个基底,则A ,B ,M ,N 四点共面D .已知{a ,b ,c }是空间的一个基底,若m =a +c ,则{a ,b ,m }也是空间的一个基底ABCD [根据基底的概念,知空间中任何三个不共面的向量都可作为空间的一个基底.显然B 正确.C 中由BA →,BM →,BN →不能构成空间的一个基底,知BA →,BM →,BN →共面.又BA →,BM →,BN →过相同点B ,知A ,B ,M ,N 四点共面.所以C 正确.下面证明AD 正确:A 假设d 与a ,b 共面,则存在实数λ,μ,使得d =λa +μb ,∵d 与c 共线,c ≠0,∴存在实数k ,使得d =k c .∵d ≠0,∴k ≠0,从而c =λk a +μk b ,∴c 与a ,b 共面,与条件矛盾,∴d 与a ,b 不共面.同理可证D 也是正确的.于是ABCD 四个命题都正确,故选ABCD.]13.(一题两空)已知空间的一个基底{a ,b ,c },m =a -b +c ,n =x a +y b +c ,若m 与n 共线,则x =________,y =________.1 -1 [因为m 与n 共线, 所以存在实数λ,使m =λn ,即a -b +c =λx a +λy b +λc ,于是有⎩⎨⎧1=λx ,-1=λy ,1=λ,解得⎩⎨⎧x =1,y =-1.]14.(一题多空)已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.1 2 22 [由题意可令b =x 0e 1+y 0e 2+e 3,其中|e 3|=1,e 3⊥e i ,i =1,2.由b ·e 1=2得x 0+y 02=2,由b ·e 2=52得x 02+y 0=52,解得x 0=1,y 0=2,∴|b |=(e 1+2e 2+e 3)2=2 2.]15.在平行六面体ABCD -A 1B 1C 1D 1中,设AB →=a ,AD →=b ,AA 1→=c ,E ,F 分别是AD 1,BD 的中点.(1)用向量a ,b ,c 表示D 1B →,EF →;(2)若D 1F →=x a +y b +z c ,求实数x ,y ,z 的值. [解] (1)如图,D 1B →=D 1D →+DB →=-AA 1→+AB →-AD →=a -b -c ,EF →=EA →+AF →=12D 1A →+12AC →=-12(AA 1→+AD →)+12(AB →+AD →)=12(a -c ). (2)D 1F →=12(D 1D →+D 1B →)=12(-AA 1→+AB →-AD 1→) =12(-AA 1→+AB →-AD →-DD 1→) =12(a -c -b -c )=12a -12b -c , ∴x =12,y =-12,z =-1.1.3.1空间直角坐标系一、选择题1.空间两点A ,B 的坐标分别为(x ,-y ,z ),(-x ,-y ,-z ),则A ,B 两点的位置关系是( )A .关于x 轴对称B .关于y 轴对称C .关于z 轴对称D .关于原点对称B [纵坐标相同,横坐标和竖坐标互为相反数,故两点关于y 轴对称.] 2.已知A (1,2,-1),B (5,6,7),则直线AB 与平面xOz 交点的坐标是( ) A .(0,1,1) B .(0,1,-3)C .(-1,0,3)D .(-1,0,-5)D [设直线AB 与平面xoz 交点坐标是M (x ,y ,z ),则AM →=(x -1,-2,z +1),AB →=(4,4,8),又AM →与AB →共线,∴AM →=λAB →,即⎩⎨⎧x -1=4λ,-2=4λ,z +1=8λ,解得x =-1,z =-5,∴点M (-1,0,-5).故选D.]3.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |=( ) A .534 B .532 C .532D .132 C [M ⎝ ⎛⎭⎪⎫2,32,3 ,|CM |=4+⎝ ⎛⎭⎪⎫32-12+9=532.] 4.如图,在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的棱长为1,B 1E =14A 1B 1,则BE →等于( )A .⎝ ⎛⎭⎪⎫0,14,-1B .⎝ ⎛⎭⎪⎫-14,0,1C .⎝ ⎛⎭⎪⎫0,-14,1D .⎝ ⎛⎭⎪⎫14,0,-1C [{DA →,DC →,DD 1→}为单位正交向量,BE →=BB 1→+B 1E →=-14DC →+DD 1→,∴BE →=⎝ ⎛⎭⎪⎫0,-14,1.] 5.设{i ,j ,k }是单位正交基底,已知向量p 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则向量p 在基底{i ,j ,k }下的坐标是( )A .(12,14,10)B .(10,12,14)C .(14,12,10)D .(4,3,2)A [依题意,知p =8a +6b +4c =8(i +j )+6(j +k )+4(k +i )=12i +14j +10k ,故向量p 在基底{i ,j ,k }下的坐标是(12,14,10).]二、填空题6.在空间直角坐标系中,已知点P (1,2,3),过点P 作平面yOz 的垂线PQ ,则垂足Q 的坐标为________.(0,2,3) [过P 的垂线PQ ⊥面yOz ,则Q 点横坐标为0,其余不变,故Q (0,2,3).]7.设{e 1,e 2,e 3}是空间向量的一个单位正交基底,a =4e 1-8e 2+3e 3,b =-2e 1-3e 2+7e 3,则a ,b 的坐标分别为________.(4,-8,3),(-2,-3,7) [由题意可知a =(4,-8,3),b =(-2,-3,7).] 8.如图所示,以长方体ABCD -A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若DB 1→的坐标为(4,3,2),则AC 1→的坐标为________.(-4,3,2) [由DB 1→=DA →+DC →+DD 1→,且DB 1→=(4,3,2),∴|DA →|=4,|DC →|=3,|DD 1→|=2,又AC 1→=-DA →+DC →+DD 1→,∴AC 1→=(-4,3,2).]三、解答题9.已知三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,所有的棱长都是1,建立适当的坐标系,并写出各点的坐标.[解] 如图所示,取AC 的中点O 和A 1C 1的中点O 1,可得BO ⊥AC ,OO 1⊥AC ,分别以OB ,OC ,OO 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.∵三棱柱各棱长均为1,∴OA =OC =O 1C 1=O 1A 1=12,OB =32. ∵A ,B ,C 均在坐标轴上,∴A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0.∵点A 1与C 1在yOz 平面内, ∴A 1⎝ ⎛⎭⎪⎫0,-12,1,C 1⎝ ⎛⎭⎪⎫0,12,1.∵点B 1在xOy 平面内的射影为B ,且BB 1=1,∴B 1⎝ ⎛⎭⎪⎫32,0,1,即各点的坐标为A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0,A 1⎝ ⎛⎭⎪⎫0,-12,1,B 1⎝ ⎛⎭⎪⎫32,0,1,C 1⎝ ⎛⎭⎪⎫0,12,1. 10.棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别为棱DD 1,D 1C 1,BC 的中点,以{AB →,AD →,AA 1→}为正交基底,求下列向量的坐标:(1)AE →,AF →,AG →; (2)EF →,EG →,DG →.[解] 在正交基底{AB →,AD →,AA 1→}下,(1)AF →=12AB →+AD →+AA 1→, AE →=AD →+12AA 1→,AG →=AB →+12AD →,∴AE →=⎝ ⎛⎭⎪⎫0,1,12,AF →=⎝ ⎛⎭⎪⎫12,1,1,AG →=⎝ ⎛⎭⎪⎫1,12,0.(2)EF →=AF →-AE →=12AB →+12AA 1→,∴EF →=⎝ ⎛⎭⎪⎫12,0,12;EG →=AG →-AE →=AB →-12AD →-12AA 1→,∴EG →=⎝ ⎛⎭⎪⎫1,-12,-12;DG →=AG →-AD →=AB→-12AD →,∴DG →=⎝ ⎛⎭⎪⎫1,-12,0.11.(多选题)下列各命题正确的是( ) A .点(1,-2,3)关于平面xOz 的对称点为(1,2,3) B .点⎝ ⎛⎭⎪⎫12,1,-3关于y 轴的对称点为⎝ ⎛⎭⎪⎫-12,1,3C .点(2,-1,3)到平面yOz 的距离为1D .设{i ,j ,k }是空间向量的单位正交基底,若m =3i -2j +4k ,则m =(3,-2,4).ABD [“关于谁对称谁不变”,∴A 正确,B 正确,C 中(2,-1,3)到面yOz 的距离为2,∴C 错误.根据空间向量的坐标定义,D 正确.]12.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为正方体内一动点(包括表面),若AP →=xAB →+yAD →+zAA 1→,且0≤x ≤y ≤z ≤1.则点P 所有可能的位置所构成的几何体的体积是( )A .1B .12C .13D .16D [根据向量加法的几何意义和空间向量基本定理,满足0≤x ≤y ≤1的点P 在三棱柱ACD -A 1C 1D 1内;满足0≤y ≤z ≤1的点P 在三棱柱AA 1D 1-BB 1C 1内,故同时满足0≤x ≤y ≤1,0≤y ≤z ≤1的点P 在这两个三棱柱的公共部分(如图),即三棱锥A -A 1C 1D 1,其体积是13×12×1×1×1=16.]13.三棱锥P -ABC 中,∠ABC 为直角,PB ⊥平面ABC ,AB =BC =PB =1,M为PC 的中点,N 为AC 的中点,以{BA →,BC →,BP →}为基底,则MN →的坐标为________.⎝ ⎛⎭⎪⎫12,0,-12 [MN →=BN →-BM → =12(BA →+BC →)-12(BP →+BC →) =12BA →-12BP →, 故MN →=⎝ ⎛⎭⎪⎫12,0,-12.] 14.已知O 是坐标原点,点A (2,0,-2),B (3,1,2),C (2,-1,7). (1)若点P 满足OP →=OA →+OB →+OC →,则点P 的坐标为________; (2)若点P 满足AP →=2AB →-AC →,则点P 的坐标为________.(1)(7,0,7) (2)(4,3,-3) [(1)中OP →=OA →+OB →+OC →=(2i -2k )+(3i +j +2k )+(2i -j +7k )=7i +0j +7k ,∴P (7,0,7).(2)中,AP →=2AB →-AC →得OP →-OA →=2OB →-2OA →-OC →+OA →,∴OP →=2OB →-OC →=2(3i +j +2k )-(2i -j +7k ) =4i +3j -3k ,∴P (4,3,-3).]15.如图,在正四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,O 是AC 与BD 的交点,PO =1,M 是PC 的中点.设AB →=a ,AD →=b ,AP →=c .(1)用向量a ,b ,c 表示BM →.(2)在如图的空间直角坐标系中,求BM →的坐标.[解] (1)∵BM →=BC →+CM →,BC →=AD →,CM →=12CP →,CP →=AP →-AC →,AC →=AB →+AD →,∴BM →=AD →+12(AP →-AC →)=AD →+12AP →-12(AB →+AD →)=-12AB →+12AD →+12AP →=-12a +12b +12c .(2)a =AB →=(1,0,0),b =AD →=(0,1,0).∵A (0,0,0),O ⎝ ⎛⎭⎪⎫12,12,0,P ⎝ ⎛⎭⎪⎫12,12,1,∴c =AP →=OP →-OA →=⎝ ⎛⎭⎪⎫12,12,1,∴BM →=-12a +12b +12c =-12(1,0,0)+12(0,1,0)+12⎝ ⎛⎭⎪⎫12,12,1=⎝ ⎛⎭⎪⎫-14,34,12.1.3.2空间运算的坐标表示一、选择题1.已知三点A (1,5,-2),B (2,4,1),C (a,3,b +2)在同一条直线上,那么( ) A .a =3,b =-3 B .a =6,b =-1 C .a =3,b =2D .a =-2,b =1C [根据题意AB →=(1,-1,3),AC →=(a -1,-2,b +4), ∵AB →与AC →共线,∴AC →=λAB →, ∴(a -1,-2,b +4)=(λ,-λ,3λ),∴⎩⎨⎧a -1=λ,-2=-λ,b +4=3λ,解得⎩⎨⎧a =3,b =2,λ=2.故选C.]2.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于( ) A .(0,3,-6) B .(0,6,-20) C .(0,6,-6)D .(6,6,-6)B [由题a =(2,3,-4),b =(-4,-3,-2),设x =(w ,y ,z )则由b =12x -2a ,可得(-4,-3,-2)=12(w ,y ,z )-2(2,3,-4)=⎝ ⎛⎭⎪⎫12w ,12y ,12z-(4,6,-8)=⎝ ⎛⎭⎪⎫12w -4,12y -6,12z +8,解得w =0,y =6,z =-20,即x =(0,6,-20).]3.已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1)D .(-1,0,1)B [不妨设向量为b =(x ,y ,z ),A .若b =(-1,1,0),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. B .若b =(1,-1,0),则cos θ=a ·b |a |·|b |=12×2=12,满足条件. C .若b =(0,-1,1),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. D .若b =(-1,0,1),则cos θ=a ·b |a |·|b |=-22×2=-1≠12,不满足条件.故选B.]4.已知向量a =(-2,x,2),b =(2,1,2),c =(4,-2,1),若a ⊥(b -c ),则x 的值为( )A .-2B .2C .3D .-3A [∵b -c =(-2,3,1),a ·(b -c )=4+3x +2=0,∴x =-2.]5.已知A 、B 、C 三点的坐标分别为A (4,1,3),B (2,-5,1),C (3,7,λ),若AB →⊥AC →,则λ等于( )A .28B .-28C .14D .-14D [AB →=(-2,-6,-2),AC →=(-1,6,λ-3),∵AB →⊥AC →,∴AB →·AC →=-2×(-1)-6×6-2(λ-3)=0,解得λ=-14.] 二、填空题6.已知a =(1,1,0),b =(0,1,1),c =(1,0,1),p =a -b ,q =a +2b -c ,则p ·q =________.-1 [∵p =a -b =(1,0,-1),q =a +2b -c =(0,3,1), ∴p ·q =1×0+0×3+(-1)×1=-1.]7.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB →与CA →的夹角θ的大小是________.120° [AB →=(-2,-1,3),CA →=(-1,3,-2),cos 〈AB →,CA →〉=(-2)×(-1)+(-1)×3+3×(-2)14·14=-12,∴θ=〈AB →,CA →〉=120°.]8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.1 [以D 1A 1、D 1C 1、D 1D 分别为x ,y ,z 轴建立空间直角坐标系(图略),设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),∴B 1E →=(x -1,0,1),又F (0,0,1-y ),B (1,1,1),∴FB →=(1,1,y ),由于AB ⊥B 1E ,若B 1E ⊥平面ABF ,只需FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.] 三、解答题9.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求向量a 与向量b 的夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求实数k 的值.[解] (1)∵a =(1,1,0),b =(-1,0,2),∴a·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2,|b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010.(2)法一:∵k a +b =(k -1,k,2),k a -2b =(k +2,k ,-4),且k a +b 与k a -2b 互相垂直,∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0,∴k =2或k =-52, ∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52. 法二:由(1)知|a |=2,|b |=5,a·b =-1,∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2=2k 2+k -10=0,得k =2或k =-52. 10.已知正三棱柱ABC -A 1B 1C 1,底面边长AB =2,AB 1⊥BC 1,点O ,O 1分别是边AC ,A 1C 1的中点,建立如图所示的空间直角坐标系.(1)求正三棱柱的侧棱长;(2)求异面直线AB 1与BC 所成角的余弦值. [解] (1)设正三棱柱的侧棱长为h ,由题意得A (0,-1,0),B (3,0,0),C (0,1,0),B 1(3,0,h ),C 1(0,1,h ), 则AB 1→=(3,1,h ),BC 1→=(-3,1,h ), 因为AB 1⊥BC 1,所以AB 1→·BC 1→=-3+1+h 2=0, 所以h = 2.(2)由(1)可知AB 1→=(3,1,2),BC →=(-3,1,0), 所以AB 1→·BC →=-3+1=-2.因为|AB 1→|=6,|BC →|=2,所以cos 〈AB 1→,BC →〉=-226=-66.所以异面直线AB 1与BC 所成角的余弦值为66.11.(多选题)若向量a =(1,2,0),b =(-2,0,1),则下列结论正确的是( )。
九年级上册数学第24章《圆》知识点梳理完整版
【学习目标】九年级数学上册第24 章《圆》知识点梳理1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;5.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段 OA 绕着它的一个端点 O 旋转一周,另一个端点 A 所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心1 2n是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2) 轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. ②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. ③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. ⑤平行弦夹的弧相等. 要点诠释:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 3. 两圆的性质(1) 两个圆是一个轴对称图形,对称轴是两圆连心线.(2) 相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.4. 与圆有关的角(1) 圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角. ④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系 1. 判定一个点 P 是否在⊙O 上设⊙O 的半径为 ,OP= ,则有点 P 在⊙O 外;点 P 在⊙O 上; 点 P 在⊙O 内.要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2. 判定几个点A 、A 、 A 在同一个圆上的方法 当时, 在⊙O 上.3. 直线和圆的位置关系设⊙O 半径为 R ,点 O 到直线 的距离为 .(1)直线和⊙O没有公共点直线和圆相离.(2)直线和⊙O有唯一公共点直线和⊙O相切.(3)直线和⊙O有两个公共点直线和⊙O相交.4.切线的判定、性质(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1) 和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2) 和没有公共点,且的每一个点都在内部内含(3) 和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4) 和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O 表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的 2倍,通常用G 表示.(4)垂心:是三角形三边高线的交点.要点诠释:(1)任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2)解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S 为三角形的面积,P 为三角形的周长,r 为内切圆的半径). (3)三角形的外心与内心的区别:名称确定方法图形性质外心(三角形外三角形三边中垂线的(1)OA=OB=OC ;(2)外心不一接圆的圆心) 交点定在三角形内部内心(三角形内三角形三条角平分线(1)到三角形三边距离相等;切圆的圆心) 的交点(2)OA、OB、OC 分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为 R 的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为 R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R ,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积 S、扇形半径 R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】13 (1 + 1)2 + (0 - 3)2 OE 2 - EF 2 3 3 类型一、圆的基础知识1.如图所示,△ABC 的三个顶点的坐标分别为 A (-1,3)、B (-2,-2)、C (4,-2),则△ABC 外接圆半径的长度为 .【答案】 ;【解析】由已知得 BC∥x 轴,则 BC 中垂线为 x =-2 + 4 = 12那么,△ABC 外接圆圆心在直线 x=1 上,设外接圆圆心 P(1,a),则由 PA=PB=r 得到:PA 2=PB 2即(1+1)2+(a-3)2=(1+2)2+(a+2)2化简得 4+a 2-6a+9=9+a 2+4a+4 解得 a=0即△ABC 外接圆圆心为 P(1,0) 则 r = PA = = 【总结升华】 三角形的外心是三边中垂线的交点,由 B 、C 的坐标知:圆心 P (设△ABC 的外心为 P )必在直线x=1 上;由图知:BC 的垂直平分线正好经过(1,0),由此可得到 P (1,0);连接 PA 、PB ,由勾股定理即可求得⊙P 的半径长.类型二、弧、弦、圆心角、圆周角的关系及垂径定理2.如图所示,⊙O 的直径 AB 和弦 CD 相交于点 E ,已知 AE =1cm ,EB =5cm ,∠DEB=60°, 求 CD 的长.【答案与解析】作 OF⊥CD 于 F ,连接 OD .∵ AE =1,EB =5,∴ AB =6. ∵ OA =AB = 3 ,∴ OE =OA-AE =3-1=2.2在 Rt△OEF 中,∵ ∠DEB=60°,∴ ∠EOF=30°, ∴ EF = 1OE = 1 ,∴ OF = = .2在 Rt△DFO 中,OF = ,OD =OA =3,13OD 2 - OF 2∵ OF⊥CD,∴ DF =CF ,∴ CD =2DF = 2 cm .【总结升华】因为垂径定理涉及垂直关系,所以常常可以利用弦心距(圆心到弦的距离)、半径和半弦组成一个直角三角形,用勾股定理来解决问题,因而,在圆中常作弦心距或连接半径作为辅助线,然后用垂弦定理来解题.作 OF⊥CD 于 F ,构造 Rt△OEF,求半径和 OF 的长;连接 OD ,构造 Rt△OFD,求 CD 的长.举一反三:【变式】如图,AB 、AC 都是圆 O 的弦,OM⊥AB,ON⊥AC,垂足分别为 M 、N ,如果 MN =3,那么 BC = .C【答案】由 OM⊥AB,ON⊥AC,得 M 、N 分别为 AB 、AC 的中点(垂径定理),则 MN 是△ABC 的中位线,BC=2MN=6.3.如图,以原点 O 为圆心的圆交 x 轴于点 A 、B 两点,交 y 轴的正半轴于点 C ,D 为第一象限内⊙O 上的一点,若∠DAB = 20°,则∠OCD = .yCDAOBx(第 3 题)【答案】65°.【解析】连结 OD ,则∠DOB = 40°,设圆交 y 轴负半轴于 E ,得∠DOE= 130°,∠OCD =65°. 【总结升华】根据同弧所对圆周角与圆心角的关系可求. 举一反三:【变式】(2015•黑龙江)如图,⊙O 的半径是 2,AB 是⊙O 的弦,点 P 是弦 AB 上的动点,且 1≤OP ≤2,则弦 AB 所对的圆周角的度数是()A .60°B .120°C .60°或 120°D .30°或 150°【答案】C.【解析】作 OD ⊥AB ,如图,N O AMB∴ DF = = 32 - ( 3)2 = 6 (cm).6∵点P 是弦AB 上的动点,且1≤OP≤2,∴OD=1,∴∠OAB=30°,∴∠AOB=120°,∴∠AEB= ∠AOB=60°,∵∠E+∠F=180°,∴∠F=120°,即弦AB 所对的圆周角的度数为60°或120°.故选C.类型三、与圆有关的位置关系4.如图,在矩形 ABCD 中,点O 在对角线 AC 上,以OA 的长为半径的圆 O 与AD、AC 分别交于点 E、F,且∠ACB= ∠DCE.请判断直线 CE 与⊙O 的位置关系,并证明你的结论.【答案与解析】直线 CE 与⊙O相切理由:连接 OE∵OE=OA∴∠OEA=∠OAE∵四边形 ABCD 是矩形∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB∴∠DCE+∠DEC=90°, ∠ACB=∠DAC又∠DCE=∠ACB∴∠DEC+∠DAC=90°∵OE=OA∴∠OEA=∠DAC∴∠DEC+∠OEA=90°∴∠OEC=90°∴OE⊥EC∴直线 CE 与⊙O相切.【总结升华】本题考查了切线的判定:经过半径的外端点与半径垂直的直线是圆的切线.举一反三:【变式】如图,P 为正比例函数图象上的一个动点,的半径为3,设点P 的坐标为(x、y).(1)求与直线相切时点P 的坐标.(2)请直接写出与直线相交、相离时 x 的取值范围.【答案】(1)过作直线的垂线,垂足为.当点在直线右侧时,,得,(5,7.5).当点在直线左侧时,,得,( ,).当与直线相切时,点的坐标为(5,7.5)或( ,).(2)当时,与直线相交.当或时,与直线相离.类型四、圆中有关的计算5.(2015•丽水)如图,在△ABC 中,AB=AC,以AB 为直径的⊙O 分别与BC,AC 交于点D,E,过点D 作⊙O 的切线DF,交AC 于点F.(1)求证:DF⊥AC;(2)若⊙O 的半径为4,∠CDF=22.5°,求阴影部分的面积.【答案与解析】(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DF 是⊙O 的切线,∴DF⊥OD,∴DF⊥AC.(2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O 的半径为4,∴S 扇形AOE=4π,S△AOE=8 ,∴S 阴影=4π﹣8.【总结升华】本题主要考查了切线的性质,扇形的面积与三角形的面积公式,圆周角定理等,作出适当的辅助线,利用切线性质和圆周角定理,数形结合是解答此题的关键.类型五、圆与其他知识的综合运用6.如图(1)是某学校存放学生自行车的车棚示意图(尺寸如图(1)),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图(2)是车棚顶部截面的示意图, AB 所在圆的圆心为 O .车棚顶部用一种帆布覆盖,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留 π).【答案与解析】连接 OB ,过点 O 作 OE⊥AB,垂足为 E ,交 AB 于点 F ,如图(2). 由垂径定理,可知 E 是 AB 中点,F 是 AB 的中点,∴ AE= 1AB = 2 2,EF =2.设半径为 R 米,则 OE =(R-2)m .在 Rt△AOE 中,由勾股定理,得 R 2 = (R - 2)2 + (2 3)2 . 解得 R =4.∴ OE =2,OE = 1AO ,∴ ∠AOE=60°,∴ ∠AOB=120°.2∴ AB 的长为120 ⨯ 4π = 8π(m). 180 3 ∴ 帆布的面积为 8π⨯ 60 = 160π(m 2).3【总结升华】本题以学生校园生活中的常见车棚为命题背景,使考生在考场上能有一种亲切的感觉,这也体现了中考命题贴近学生生活实际的原则.求覆盖棚顶的帆布的面积,就是求以 AB 为底面的圆柱的侧面积.根据题意,应先求出 AB 所对的圆心角度数以及所在圆的半径,才能求 AB 的长.举一反三:【变式】某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所 示是水平放置的破裂管道有水部分的截面.①请你补全这个输水管道的圆形截面图;②若这个输水管道有水部分的水面宽 AB=16cm ,水最深的地方的高度为 4cm ,求这个圆形截面 的半径.【答案】①作法略.如图所示.3②如图所示,过 O 作OC⊥AB于D,交于 C,∵ OC⊥AB,∴.由题意可知,CD=4cm.设半径为x cm,则.在Rt△BOD中,由勾股定理得:∴.∴.即这个圆形截面的半径为 10cm.圆的基本概念和性质【学习目标】1.知识目标:在探索过程中认识圆,理解圆的本质属性;2.能力目标:了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;3.情感目标:通过圆的学习养成学生之间合作的习惯.【要点梳理】要点一、圆的定义及性质1.圆的定义(1)动态:如图,在一个平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 随之旋转所形成的图形叫做圆,固定的端点 O 叫做圆心,线段 OA 叫做半径. 以点 O 为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.(2)静态:圆心为 O,半径为 r 的圆是平面内到定点 O 的距离等于定长 r 的点的集合.要点诠释:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.2.圆的性质①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.要点诠释:①圆有无数条对称轴;②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.3.两圆的性质两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB 是⊙O 的直径,CD 是⊙O 中任意一条弦,求证:AB≥CD.证明:连结OC、OD2.弧∵AB=AO+OB=CO+OD≥CD(当且仅当CD 过圆心O 时,取“=”号) ∴直径AB 是⊙O 中最长的弦.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.【典型例题】类型一、圆的定义1.(2014 秋•邳州市校级月考)如图所示,BD,CE 是△ABC 的高,求证:E,B,C,D 四点在同一个圆上.【思路点拨】要证几个点在同一个圆上,就是证明这几个点到同一点的距离都相等即可.【答案与解析】证明:如图所示,取BC 的中点F,连接DF,EF.∵BD,CE 是△ABC 的高,∴△BCD 和△BCE 都是直角三角形.∴DF,EF 分别为Rt△BCD 和Rt△BCE 斜边上的中线,∴DF=EF=BF=CF.∴E,B,C,D 四点在以F 点为圆心,BC 为半径的圆上.【总结升华】要证几个点在同一个圆上,只能依据圆的定义,去说明这些点到平面内某一点的距离相等.举一反三:【变式】下列命题中,正确的个数是()⑴直径是弦,但弦不一定是直径;⑵半圆是弧,但弧不一定是半圆;⑶半径相等且圆心不同的两个圆是等圆;⑷一条弦把圆分成的两段弧中,至少有一段是优弧.A.1 个B.2 个C.3 个D.4 个【答案】⑴、⑵、⑶是正确的,⑷是不正确的.故选 C.类型二、圆及有关概念2.判断题(对的打√,错的打×,并说明理由)①半圆是弧,但弧不一定是半圆;()②弦是直径;()③长度相等的两段弧是等弧;()④直径是圆中最长的弦. ()【答案】①√ ②× ③× ④√.【解析】①因为半圆是弧的一种,弧可分为劣弧、半圆、优弧三种,故正确;②直径是弦,但弦不一定都是直径,只有过圆心的弦才是直径,故错;③只有在同圆或等圆中,长度相等的两段弧才是等弧,故错;④直径是圆中最长的弦,正确.【总结升华】理解弦与直径的关系,等弧的定义.举一反三:【变式】(2014•长宁区一模)下列说法中,结论错误的是()A .直径相等的两个圆是等圆B .长度相等的两条弧是等弧C .圆中最长的弦是直径D .一条弦把圆分成两条弧,这两条弧可能是等弧【答案】B.提示:A 、直径相等的两个圆是等圆,正确,不符合题意;B 、长度相等的两条弧圆周角不一定相等,它们不一定是等弧,原题的说法是错误的,符合题意;C 、圆中最长的弦是直径,正确,不符合题意;D 、一条直径把圆分成两条弧,这两条弧是等弧,正确,不符合题意,故选:B .3.直角三角形的三个顶点在⊙O 上,则圆心 O 在 .......................【答案】斜边的中点.【解析】根据圆的定义知圆心 O 到三角形的三个顶点距离相等,由三角形斜边的中线等于斜边的一半可知,斜边上的中点到各顶点的距离相等.【总结升华】圆心到圆上各点的距离相等. 4.判断正误:有 AB 、C D , AB 的长度为 3cm, C D 的长度为 3cm ,则 AB 与C D 是等弧.【答案】错误.【解析】“能够完全重合的弧叫等弧”.在半径不同的圆中也可以出现弧的长度相等,但它们不会完全重合,因此, 只有在同圆或等圆中,长度相等的弧才是等弧.【总结升华】在同圆或等圆中,长度相等的弧才是等弧.举一反三:【变式】有的同学说:“从优弧和劣弧的定义看,大于半圆的弧叫优弧,小于半圆的弧叫劣弧,所以优弧一定比劣 弧长.”试分析这个观点是否正确.甲同学:此观点正确,因为优弧大于半圆,劣弧小于半圆,所以优弧比劣弧长.乙同学:此观点不正确,如果两弧存在于半径不相等的两个圆中,如图,⊙O 中的优弧 AmB ,中的劣弧C D ,它们的长度大小关系是不确定的,因此不能说优弧一定比劣弧长.请你判断谁的说法正确?【答案】弧的大小的比较只能是在同圆或等圆中进行. 乙的观点正确.类型三、圆的对称性5.已知:如图,两个以 O 为圆心的同心圆中,大圆的弦 AB 交小圆于 C,D.求证:AC=BD.【答案与解析】证明:过 O 点作OM⊥AB于M,交大圆与 E、F 两点.如图,则EF 所在的直线是两圆的对称轴,所以 AM=BM,CM=DM,故AC=BD.【总结升华】作出与AB垂直的圆的对称轴,由圆的对称性可证得结论.垂径定理【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.利用垂径定理及其推论进行简单的计算和证明.【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(2)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(3)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;OD 2 + AD 2 42 + 32 (4) 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1.如图,AB 是⊙O 的弦,半径 OC⊥AB 于点 D ,且 AB =6 cm ,OD =4 cm ,则 DC 的长为( )A .5 cmB .2.5 cmC .2 cmD .1 cm【思路点拨】欲求 CD 的长,只要求出⊙O 的半径 r 即可,可以连结 OA ,在 Rt△AOD 中,由勾股定理求出 OA.【答案】D ;【解析】连 OA ,由垂径定理知 AD = 1AB = 3cm , 2所以在 Rt△AOD 中, AO = = = 5 (cm ).所以 DC =OC -OD =OA -OD =5-4=1(cm ).【点评】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形。
垫圈检验标准
4.1.1平垫圈--------------------------------------------------------------------------------------------------2
1范围
本标准备规定了标准件(垫圈)的要求、试验方法、检验规则、包装、标志、运输、贮存等内容。
本标准适用于本公司标准件(垫圈)的进厂检验和试验。
2规范性引用文件
下列文件中的条款通过本部分的引用而成为本部分的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本部分,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本部分。
5试验方法----------------------------------------------------------------------------------------------7
5.1垫圈检验的特点---------------------------------------------------------------------------------------7
GB/T93—1987
GB/T95—2002
GB/T96.1—2002
GB/T96.2—2002
GB/T97.1—2002
GB/T97.2—2002
GB/T848—2002
GB/T858—1988
GB/T886—4986
GB/T893.1—1986
《圆的周长》说课稿
《圆的周长》说课稿《圆的周长》说课稿1一.说教材内容的地位和作用“圆的周长”是六年级上册第四章“圆”的第四节内容。
“圆的周长”的概念教学是以小学中长方形、正方形周长为认知基础的,是小学中“圆的认识”的内容的深化,也是今后进一步研究圆的面积、的基础。
它起着承前启后的作用。
二.说教学目标1、认识圆的周长,能用滚动、线绕等方法测量圆的周长。
2、在测量活动中探索发现圆的周长与直径的关系,理解圆周率的意义。
3、能正确地计算圆的周长,能运用圆的周长解决一些简单的实际问题三.说教学重点和难点重点:圆周率和圆周长公式的探究难点:理解圆周率的探究过程四.说教法和教学手段1.本节课采用观察发现法为主,讲授法为辅的教学方法2.采用多媒体辅助教学五.说学法1.本节课采用学生自带学具,动手操作实验,自己得出结论的学习方法。
2.学具有:圆形物体,绳子,直尺,两把三角尺。
六.说教学过程(一)创设情境,揭示课题教学一开始设计了这样一个问题:两只蚂蚁分别绕正方形和圆形跑一圈,猜猜那只蚂蚁跑的路程长?估计学生通过思考后会回答:“只要比较这两个图形的.周长就可以了。
由于正方形的周长我们已经会求,那么圆的周长怎么求呢?这样就非常自然地过渡到了教学课题:圆周长的求法。
(二)探究课题,发现新知1.你能测出圆的周长吗?同桌动手测量。
汇报测量方法。
归纳“化曲为直”的方法2、观察猜想接着,教师设问:“正方形的周长与边长有关,那么圆的周长与什么有关呢?”教师再出示一组大小不等的圆。
估计学生通过观察后会回答:“圆的周长与直径有关,直径越长,圆的周长也越长。
”接着,教师继续设问:“正方形的周长是边长的4倍,那么圆的周长和直径是否存在倍数关系呢?”通过正方形与圆形的比较,使学生体会到科学猜想不是什么空穴来风,而往往是通过已知事物与未知事物的比较而产生的。
2.操作实验为了研究圆的周长和直径是否存在倍数关系,接着,教师引导学生们小组合作,用绳子、直尺等工具将已经准备好的物体的周长和直径测量出来。
新教材人教A版高中数学选择性必修第一册2.4.2 圆的一般方程 精品教学课件
[解析] (1)x2+y2-4x+2y+4=0 可化为(x-2)2+(y+1)2=1, 所以半径和圆心分别为 r=1,(2,-1). (2)因为 x2+y2-x+y+m=0 表示圆, 则 1+1-4m>0,所以 m<12.
题型二
求圆的一般方程
典例 2 圆C过点A(1,2),B(3,4),且在x轴上截得的弦长为6, 求圆C的方程.
即点 M 的轨迹方程为 x2+y2-4x-3y+241=0.
解法二:设点 M 的坐标为(x,y),连接 OC、PC,取线段 OC 的中点 A,连接 MA.
圆 C 的方程可化为(x-4)2+(y-3)2=4,圆心 C(4,3),|CP|=2.则点 A 的坐标为(2,32).
如图,在△OCP 中,M、A 分别是 OP、 OC 的中点,
由①②③得D=12,E=-22,F=27,或D=-8,E=-2, F=7.
故圆C的方程为x2+y2+12x-22y+27=0或x2+y2-8x-2y+7 =0.
[规律方法] 圆的方程的求法
求圆的方程时,如果由已知条件容易求得圆心坐标、半径或 需利用圆心的坐标或半径列方程的问题,一般采用圆的标准 方程,再用待定系数法求出a,b,r;如果已知条件与圆心和 半径都无直接关系,一般采用圆的一般方程,再用待定系数 法求出常数D,E,F.
(3)当 D2+E2-4F<0 时,方程不表示任何图形.
思考1:方程x2+y2+Dx+Ey+F=0都表示圆吗? 提示:不一定,当D2+E2-4F>0时才表示圆.
知识点2 圆的一般方程
(1)方程:当___D__2+__E_2_-_4_F_>__0____时,方程x2+y2+Dx+Ey+F =0称为圆的一般方程. (2)本质:圆的方程的另一种表示形式,更具有方程特征.
EJT1067-1998 X射线荧光分析用镅-241源
ICS 27.120.30F 51EJ/T 1067—1998X射线荧光分析用镅241源Americium-241 sources fluorescence analysisfor X-ray1998-03-25发布1998-09-01实施中国核工业总公司1998-03-25批准中国核工业总公司发布前 言1989年颁布的GB11808在实施中发现尚不够完善,同时为了适应有关新发布或修订的国家标准、核行业标准以及标准调整之需要,在GB 11808—89的基础上修订形成了本标准。
本标准按照EJ/T 804—93规定,重新编写了产品代号。
为了保证源的使用安全与环境安全,增加了源的表面污染和泄漏水平两项技术要求,根据源的实际使用经验,增加了对源芯松动及外形尺寸要求,并规定了相应的检验方法。
为适应生产过程中源活度、特定光子发射率的测量,修改了测量方法,在保证总不确定度不变的前提下,使之更易操作。
鉴于本标准的使用范围较窄,将其调整为推荐性核行业标准。
本标准从生效之日起,代替GB 11808—89。
本标准由全国核能标准化技术委员会提出并归口。
本标准起草单位:中国原子能科学研究院同位素研究所。
本标准主要起草人:卢玉楷。
1 范围本标准规定了X射线荧光分析用镅241源的产品分类、技术要求、测试方法等。
本标准适用于X射线荧光分析用镅241密封放射源(以下简称源)。
2 引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。
本标准出版时,所示版本均为有效。
所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。
GB 4075—83 密封放射源分级GB 4076—83 密封放射源一般规定GB 11806—89 放射性物质安全运输规定GB 15849—1995 密封放射源的泄漏检验方法GB/T 2828—81 逐批检查计数抽样程序及抽样表(适用于连续批的检查)EJ/T 804—93 放射性同位素产品代号3 定义本标准采用下列定义。
241《圆的标准方程》教学设计
241《圆的标准方程》教学设计教学设计:241《圆的标准方程》一、教学目标:1.掌握圆的标准方程的定义及其特点;2.能够根据已知条件写出圆的标准方程;3.能够通过圆的标准方程求解圆的相关问题。
二、教学内容:1.圆的标准方程的定义;2.圆的标准方程的特点;3.根据已知条件写出圆的标准方程;4.通过圆的标准方程求解圆的相关问题。
三、教学过程:1.导入:本节课将学习圆的标准方程。
在导入环节,教师可以通过播放一段关于圆的视频或者展示一些有关圆的图片,引起学生对圆的兴趣,激发他们的学习欲望。
2.知识讲解:(1)讲解圆的标准方程的定义及其特点,包括圆心的坐标(h,k)和半径r;(2)通过几个示例,让学生了解如何根据已知条件写出圆的标准方程;(3)讲解如何通过圆的标准方程求解圆的相关问题,如圆与坐标轴的交点、圆的切线等。
3.示范演示:教师以一个具体的例题来示范将已知条件转化为圆的标准方程,并解答相关问题,引导学生理解和掌握相关知识。
4.学生练习:学生进行小组或个人练习,完成一些相关的题目,巩固对圆的标准方程的理解和运用能力。
5.合作探究:让学生以小组为单位,自主探究一些实际问题,并通过圆的标准方程进行求解。
教师根据学生的实际情况给予必要的指导和辅助。
6.课堂讨论:教师引导学生将合作探究的结果进行汇报和总结,让学生相互之间进行讨论和交流,分享自己的思路和方法,加深对圆的标准方程的理解。
7.概念总结:教师对本节课所学的圆的标准方程进行总结,强调重点和难点,提醒学生复习和巩固。
8.作业布置:布置一些相关的练习题作为课后作业,要求学生独立完成,并在下节课上进行讲解和订正。
四、教学评价:教师通过观察学生的课堂表现、听取学生的回答、批改学生的作业等多种方式评价学生对圆的标准方程的掌握情况。
可以采用成绩评定、学生自评、同学互评等形式,以便学生及时发现和纠正自己的错误,提高学习效果。
五、教学反思:本节课采用了多种教学方法和形式,结合实际情况和学生的学习特点,既注重了对知识的讲解和演示,又注重了学生的参与和互动,以提高学生的学习兴趣和能动性。
§332圆与圆的位置关系
2.你今天所学的重要数学知识是:
3.你本节课感悟最深的数学思想(数学方法)是:
反思体验——固化创新思维元素
学习建议:(用15分钟时间独立完成,并注意规范书写)
1.判断下列两圆的位置关系:
(1) 与 ;
(2) 与 .
2.已知圆 与圆 相交,求实数 的取值范围.
3.已知以 为圆心的圆与圆 相切,求圆 的方程.
小组共性问题:
展示提高——形成创新思维能力
自我挑战一
已知两圆 与 :
(1)判断两圆的位置关系; (2)求两圆的公切线.
自我挑战二
求过点 且与圆 切于原点的圆的方程.
自我挑战三
我的知识网络图——归纳总结 串联整合
规律方
法总结:
创新思维能力培养反思体验过程
自我评价——激励创新思维意识
1.你完成本节学习设计方案的情况为( )
议题1:课本例7
在平面直角坐标系中分别作出圆心为 , ,半径分别是1,2的两圆,并判断两圆的位置关系
议题 2:判断下列两圆的位置关系:
(1)或困惑
合作探究——培养创新思维品质
探究点一
话题1:课本例8
判断圆 与圆 的位置关系,并画出图像。
话题2:判断圆 与圆 的位置关系。若相交,求两圆的公共线所在的直线方程及公共弦长.
4.已知一圆经过直线 与圆 的两个
交点,并且有最小面积,求此圆的方程.
课题
圆与圆的位置关系
第2课时
第 19周
学习目标
1.理解圆与圆的位置的种类;会利用平面直角坐标系中两点间的距离公式求两圆的连心线长;会用连心线长判断两圆的位置关系。
2.让学生通过观察图形,理解并掌握圆与圆的位置关系,培养学生数形结合的思想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十四章圆24.1 圆Ⅰ学法导引学习圆的基本性质,务必细心体会圆以下两个基本特征:一、圆是一个轴对称图形,圆的任意一条直径所在的直线都是它的对称轴;二、圆是一个中心对称图形,圆心是它的对称中心,而且圆绕圆心旋转任意一个角度所得的图形,都与原图形重合(这一特征也称为圆的旋转不变性).立足于这两个基本特征,就可以有机地把角、线段、弧联系在一起.Ⅱ思维整合解析重点1.垂径定理垂径定理可改述为:一条直线若满足:(1)过圆心;(2)垂直于弦;则可推出:(3)平分弦;(4)平分弦所对的优弧;(5)平分弦所对的劣弧.事实上,对于一个圆和一条直线,只要具备上述五个条件中的任何两个,就可以推出其余的三个.特别需要说明的是,结论“平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.”其中“弦不是直径”是它重要的条件,因为一个圆的任意两条直径总是互相平分的,但是它们未必垂直.【例1】如图24—1—1,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点.求证:AC=BD.解析关于圆的图形中往往隐含着很多关系,比如连接OA,OB,OC,OD,易知OA=OB,OC =OD,用有关三角形的知识不难证得本题,但是,考虑到两圆的弦AB,CD在同一条直线上,两圆又有共同的圆心,因此我们还可作出过点O且垂直于AB的直线,而后用垂径定理证明.证明过点O作OE⊥AB于E,则AE=BE,CE=DE.∴AE-CE=BE-DE,即AC=BD.点拨解有关圆的问题,时常需要添加辅助线,针对各种具体的情况,辅助线的添加有一定的规律,本例中作“垂直于弦的直径”就是一个很好的例证.【例2】如图24—1—2,矩形ABCD的边AB经过圆心O,E,F分别为AB,CD与⊙O的交点,若AE=3cm,AD=4cm,DF=5cm,则⊙O的半径等于__cm.解析连接OF,过O点作OG⊥CD.在Rt△OFG中,若设OF=R,则GF=R+AE-DF=R-2,OG=AD=4 解 5点拨我们经常把垂径定理和勾股定理结合在一起进行有关圆的半径r、圆心到弦的距离d、弦长a和弓形高h等数量的计算.这些量之间的关系是:根据这些关系,在a、r、d、h四个量中,知道其中任何两个量,就可以求出另外的两个量.2.同圆(或等圆)中弦、弧、圆心角之间的关系“同圆或等圆中,两个圆心角,两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等”.对这一重要结论的理解,应注意两个问题:一是“同圆或等圆中”是结论成立的先决条件,忽略了这一前提,将会产生错误;二是准确体会“等弧”的含义,我们说两条弧相等,根本的含义是指两条弧能够完全重合,所以长度相等的两条弧未必相等,所对圆心角相等的两条弧也未必是等弧.【例3】如图24—1—3,AB、CD是⊙O的两条弦,且AB=CD,试指出图中相等的弧.解析首先AB和CD所对的弧相等(两组),其次两条相等的弧减去或加上同一条弧所得的两条弧也相等.解相等的弧有以下四组:点拨像这种“识图”类的问题,务必要遵循一定的“线索”去探索,否则易漏或易重,本题的线索就是:一般地,一条弦所对的弧为两条,一条劣弧,一条优弧,这两条合起来组成一个圆周.所以,只要找出图中相等的劣弧,而后,一组相等的劣弧,必然对应一组相等的优弧.3.圆周角定理及其推论圆周角定理的证明体现了分类讨论的思想.在这里,“所有”的圆周角被分为三类:(1)圆心在圆周角的一条边上;(2)圆心在圆周角的外部;(3)圆心在圆周角的内部,其中以第一种情况为基础,其他两种情况都是通过转化为第一种情况而得到证明的.圆周角定理的推论:“在同圆或等圆中,同弧或等弧所对的圆周角相等”,其实这里大可不必提“在同圆或等圆中”,因为只有同圆或等圆中的两条弧才可相等.反之“相等的圆周角所对的弧也相等”,则必须加上这个至关重要的前提——“同圆或等圆中”.半圆(或直径)所对的圆周角是直角这一推论,为在圆中确定直角,构造垂直关系,创造了条件.【例4】如图24—1—4,⊙O中和的中点分别为E和F,直线EF交AC于P,交AB于Q.求证:△APQ为等腰三角形.解析需证∠AQP=∠APQ.但这两个角既不是圆周角,也不是圆心角,因此考虑把它们转换为圆周角,以便充分利用有关弧的条件.同理∠FAP=∠AEQ.又∠APQ=∠AFP+∠FAP,∠AQP=∠EAQ+∠AEQ,∴∠APQ=∠AQP.∴AP=AQ,即△APQ为等腰三角形.点拨圆的有关证明中,经常要经历这种由弧到角的变迁.【例5】如图24—1—5,已知AB是⊙O的直径,D是圆上任意一点(不与A,B重合),连接BD并延长到C,使DC=BD,连接AC交⊙O于点E.(1)AB与AC的大小有什么关系?为什么?(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由.解析AB是直径,连接AD,则∠ADB=90°.又∵BD=CD,∴AB=AC.解(1)AB=AC.连接AD,则∠ADB=90°.又∵BD=CD,∴AB=AC.(2)又∵△ABD是直角三角形,∴∠B<90°.同理,如果连接BE,则∠AEB=∠CEB=90°.∴∠BAC<90°,∠C<90°.∴△ABC是锐角三角形.点拨作直径所对的圆周角,构造直角三角形,是圆中又一种常见的辅助线.剖析难点本节的难点是圆的有关基本性质的综合应用.【例6】如图24—1—6,AC、BD是⊙O的互相垂直的两条弦,若CD=4,求圆心O到AB 的距离.解析过点O作OM⊥AB于点M,易得AM=BM.连接AO并延长交⊙O于点E,解连接AO并延长交⊙O于点E,连接BE,过O作OM⊥AB于点M,则AM=BM.∵AE是⊙O的直径,∴∠ABE=90°.∴∠AEB+∠BAE=90°.∵AC⊥BD,∴∠ACB+∠CBD=90°.∵∠AEB=∠ACB,∴∠BAE=∠CBD.点拨本题的“难”就难在头绪繁多,其中综合了垂径定理、圆周角定理的两个推论等诸多结论.只有理清思路,才能一步步把问题解决.点击易错点本节的易错点集中在对定理的条件和结论理解不透彻而经常出现的一些错误上,结合下面的例题说明.【例7】观察下列各选项中的图(图24—1—7到图24—1—10)及相应推理,其中正确的是( )解析选项A忽略了结论“在同圆或等圆中,两个圆心角相等,它们所对的弧也相等”的前提条件——同圆或等圆中;选项C忽略了结论“平分弦(非直径)的直径垂直于弦”的条件——被平分的弦非直径;选项D中AD非弦;故不能证出=的结论解 B点拨要透彻地理解一个结论,就不能断章取义,似是而非.Ⅲ能力升级平台【例8】(2005年,甘肃天水)在半径为5cm的圆内有两条平行弦,其中一条弦长为8cm,另一条弦长为6cm,则这两条平行弦之间的距离为____.解析本题有两种情形:(1)当两平行弦在圆心的两侧时(如图24—1—11),过O点作EF⊥AB于E,交CD于F,连接OA,OC.(2)当两条平行弦在圆心的同侧时(如图24—1—12),同理可求得两弦的距离为1cm.解7cm或1cm点拨本题意在考查大家思考问题的周密性,圆中类似问题很多,务请留意.求证:AE=BE.解析要证AE=BE,自然考虑证∠ABE=∠BAE,题中关系不明显,需要寻求第三角,试给出三种证法.证明证法一:连接AC,∵BC为⊙O的直径,∴∠BAC=90°,∴∠ACB+∠ABC=90°.∵AD⊥BC,∴∠BAD+∠ABC=90°.∴∠ACB=∠BAD.证法二:补成一个整圆,延长AD交⊙O于G(如图24—1—14).而OA=OB,∴∠BAO=∠ABO.∴∠1=∠2.∴AE=BE.点拨尝试用不同的方法解决同一个问题,既考查大家对相关知识掌握的熟练程度,又考验出大家灵活解决问题的能力.【例10】(应用题)一条30米宽的河上架有一半径为25米的圆弧形拱桥,请问一顶部宽6米,且高出水面4米的船能否通过此桥,并说明理由.解析根据船的尺寸和河宽,首先算出船要通过,桥的半径至少是多少米,再与25米比较.解假定该船恰能通过桥时,桥的半径为r,如图24—1—16,AB表示船能通过时拱桥的跨度(亦即水面宽),EF为船宽,CD为船顶到水面的距离.点拨本题用来解决问题所使用的数学知识很简单,关键在于如何建立恰当的“数学模型”,把实际问题转化为数学问题.(1)判定图中∠CEB与∠FDC的数量关系,并写出结论;(2)将直线l绕C点旋转(与CD不重合)在旋转过程中,E点,F点的位置也随之变化,请你在右面两个备用图中画出l在不同的位置时,使(1)的结论仍然成立的图形,标上相应字母,选择其中一个图形给予证明.解析这是一个动手操作型探究题,需按照题的要求,积极尝试,大胆探索,从中总结出规律.解(1)∠CEB=∠FDC;(2)l在不同的位置时,使∠CEB=∠FDC仍然成立的图形如图24—1—18所示,现证明其中的图24—1—18(2).证明:如图24—1—18(2).∵CD是⊙O的直径,∴∠CFD=90°,∴∠FDC+∠FCD=90°.点拨处理这种动态问题,宜明确两点:一是哪些因素在“动”,哪些因素“不动”,对不动的因素的把握,往往成为解决问题的关键;二是要善于比较各种不同状态的图形,从中找到它们共同的因素,这种共同的因素常常就是问题中所体现的规律之所在.【例12】(开放题)如图24—1—19,A、B、C、D四点都在⊙O上,且AB是圆内最长的弦.(1)要使图中的四边形ABCD是等腰梯形,应该添加条件:_____(任写一个).解析本题是一个综合性开放题,其中(1)题是一个条件开放题,(2)题是一个结论开放题.解(1)答案不唯一,如:①C,D是半圆的三等分点;②CD∥AB;③∠A=∠B;…(2)方案不唯一,如图24—1—20,给出了几种方案.方案一:连接OD、OC,如图24—1—20(1)所示.∵△ODC、△OAD、△BCO为等底等高的三角形,∴△ODC、△OAD、△OBC的面积相等;方案二:连接AC,OC,如图24—1—20(2)所示.证明略。