第七讲 分式线性变换

合集下载

《高等代数》第七章 线性变换

《高等代数》第七章  线性变换

线性变换的多项式有以下性质:
1) f (A ) 是一线性变换.
2) 如果在 P[ x ] 中,有 h(x) = f (x) + g(x) , p(x) = f (x) g(x) ,
那么
h(A ) = f (A ) + g(A ) , p(A ) = f (A ) g(A ) .
特别地,
f (A ) g(A ) = g(A ) f (A ) .
定义为 数乘k变A 换= ,K可A用, K 表示. 显然,当 k = 1 时

们(k便A得)恒(等) =变K换(,A当(k) =) =0 K时A,便(得) .零变换.
显然,k A 还是线性变换. 2. 运算规律 1) ( kl ) A = k ( l A ) , 2) ( k + l ) A = k A + l A , 3) k (A + B ) = k A + k B , 4) 1 A = A .
证毕
五、线性变换的多项式
下面引进线性变换的多项式的概念.
1. 线性变换的幂
既然线性变换的乘法满足结合律,当若干个线
性变换 A 重复相乘时,其最终结果是完全确定的,
与乘积的结合方式无关. 因此当 n 个( n 是正整数)
线性变换 A 相乘时,我们就可以用 A A ... A
n个
来表示,称为 A 的 n 次幂,简单地记作 A n. 即
对于线性变换,我们已经定义了乘法、加法与 数量乘法三种运算. 由加法与数量乘法的性质可知, 线性空间 V 中全体线性变换,对于如上定义的加法 与数量乘法,也构成数域 P 上一个线性空间.
对于线性变换,我们也可定义逆变换.
四、线性变换的逆变换
1. 定义 定义5 线性空间 V 的线性变换 A 称为可逆的 如果有 V 的变换 B 存在,使

第7章线性变换

第7章线性变换

第7章线性变换§ 1线性变换的定义线性空间V到自身的映射,通常叫做V的一个变换,现在讨论的线性变换是线性空间的最简单也是最重要的一种变换。

一、线性变换的定义定义7・1设V为线性空间,若对于V中的任一向量按照一定的对应规则T,总有V中的一个确定的向量0与之对应,则这个对应规则T称为线性空间V中的一个变换,记为T©) = 0或Ta =股©外,0称为Q的象,&称为0的原象。

象的全体所构成的集合称为象集,记作T (V),即T (V) ={/? = T(«) I « G v}o由此定义可见,变换类似于微积分中的函数,不过微积分中的函数是两个实数集合间的对应,而这里的变换则是线性空间中的向量与向量之间的对应。

定义7.2线性空间V中的变换T,若满足条件(1)对任意w V有(2) 2 + 0) = %) + 丁(0);(3)对任意a eV及数域P中任意数£有T(ka) = kT (a),则称变换T为V中的线性变换。

例7.1线性空间V中的恒等变换或称单位变换£即£(«) = a (a E V)以及零变换o,即o(a) = 0 (tz G V)都是线性变换.例7.2设V是数域P上的线性空间,£是P中的某个数,定义V的变换如下:a Tka,« G V.这是一个线性变换,称为由数£决定的数乘变换,可用K表示•显然当比=1时,便得恒等变换,当比=0时, 便得零变换.例7.3在线性空间P[x]或者冲,求微商是一个线性变换•这个变换通常用©代表,即①(/(x)) =f V)-例7.4定义在闭区间[%闰上的全体连续函数组成实数域上一线性空间,以C(a,b)代表•在这个空间中变换9(/(兀))二是一线性变换.例7.5在疋中,定义下列变换:对任意的x2G7?3,((、& +勺) (5 丫(1 ] T A:?—兀3x2—0任丿丿<旺J k宀丿丿宀丿试确定它们是否为线性变换?5、Ji''X] + XT(兀2+);2)=T x2 + y2宀丿"+旳丿厂坷+比+£ +力、丫X] + £ '、1+力、勺+『3= +『3< K + >1 )<州丿< >1 >解对任意的x29G R和数£ GR,= T / 卜、兀2任丿5'、+ T‘刃、宀丿g、•(kx x + 总2、' k x2=T kx2= kx§卫3八l鋼丿+ 无2'5、=k兀3=^T兀2<兀I )故T是线性变换;/ 01、( ( \r 1 )T i x2+ 『2=T.兀2 +丁2=0 ,(儿丿/(勺+儿丿" + )5(、兀1/ 、〔]、< 2、兀2+ T.y2——0+0——0U3 J<^3>宀丿」丿上两式不等,故T]不是线性变换。

高等代数第7章线性变换[1]PPT课件

高等代数第7章线性变换[1]PPT课件
设A,BL(V), 定义A与B的和为V的一个变
换, 使"aV, 有 (A+B)(a) =A(a)+B(a).
1、A + B 也是V的一个线性变换.
因为对于所有的a,bV和数k,lP,有
(A+B)(ka+lb) = A(ka+lb ) +B(ka+lb ) = kA(a)+lA(b)+kB(a)+lB(b) = k (A+B)(a)+l (A+B)(b)
精选
2、乘法适合结合律,即 (AB)C = A(BC)
因为映射的合成满足结合律 3、乘法不满足交换律,即一般地
AB BA 如求微分变换D 与求积分变换J , 有
DJ = E ,但一般地 JD E 4、单位变换的作用 AE = EA = A 5、零变换的乘法 OA = AO = O
精选
二、线性变换的加法及其性质
精选
2、(1)交换律 A +B =B +A (2)结合律 (A+B)+C =A+(B+C) (3)零变换 A+O =A (4)负变换 A+(-A) = O
其中 (-A)(a)= -A(a), 从而
(A - B) = (A+ (-B)) 3、分配律 A(B+C) = AB +AC
(A+B)C = AC+BC
D是一个线性变换,称为微分变换.
例7 闭区间[a, b]上所有连续函数全体 组成实数域R上的线性空间C0(a, b). 定义变换
x
则J是一个J(线f (性x))变=换精选.a f (t)dt
二、线性变换的简单性质

(完整word版)第七章线性变换总结篇(高等代数).docx

(完整word版)第七章线性变换总结篇(高等代数).docx

第 7 章线性变换7.1 知识点归纳与要点解析一.线性变换的概念与判别1. 线性变换的定义数域P 上的线性空间 V 的一个变换称为线性变换, 如果对 V中任意的元素,和数域 P 中的任意数k ,都有:,kk。

注: V 的线性变换就是其保持向量的加法与数量乘法的变换。

2. 线性变换的判别设为数域 P 上线性空间 V 的一个变换,那么:为 V 的线性变换k l k l , , V , k,l P3. 线性变换的性质设 V 是数域 P 上的线性空间,为 V 的线性变换,1 ,2 ,, s ,V 。

性质 1.0 0,;性质 2. 若 1 , 2 , , s 线性相关,那么1,2 ,,s也线性相关。

性质 3. 设线性变换为单射,如果 1 , 2 ,, s 线性无关, 那么1 ,2,,s也线性无关。

注: 设 V 是数域 P 上的线性空间,1,2 ,, m,1,2,, s 是 V 中的两个向量组,如果:1 c111c122 c1ss2c211c222c2ssmcm1 1cm22cms s记:c11c21cm11, 2 ,, m1, 2 ,c12c22 cm2, sc1sc2scms于是,若 dim Vn , 1, 2 , ,n 是 V 的一组基, 是 V 的线性变换, 1 , 2 , , m 是V 中任意一组向量,如果:1 b111b12 2b1n n2b 21 1 b 22 2 b 2 n nmbm11bm22bmnn记:1 ,2 ,, m1 ,2 m那么:b11b21cm11, 2 ,, m1, 2 ,b12 b22 cm2, nb1nb2ncmnb11b21cm1设 Bb 12b 22c m2, 1 ,2 ,,m 是矩阵B 的列向量组,如果i , i ,, i 是12rb1n b2n cmn1 , 2,, m 的 一 个 极 大 线 性 无 关 组 , 那 么i 1 ,i 2 i r就 是1,2m 的一个极大线性无关组,因此向量组1,2m的秩等于秩B 。

第七讲线性变换

第七讲线性变换
1
f x V 。
0 和值域 TV ;
证明 V T 0 TV 。 证明:取 V 的基为 1 ,x, , x ,则
n


T 1,x, x n 1, x, x n A ,
1 0 A 0 M 0
0 0 0 M 0
0 1 0 2 0 0 0 0
2 4
0 0 0 0
0 1 2 0 2 0 4 0
AE11 , AE12 是线性无关
A V L( AE11 , AE12 , AE21 , AE22 ) L( AE11 , AE12 )
TV TL 1, x,L , x n L T 1 , T x ,L , T x n
L 1 , 0,x 2, 2 x3, L, n 1 x n
=L 且


1, x , x ,L , x , dim TV n. TV k k x k x k R .
(1) ker f x ker ker h , ①
E A , f A ( ) 最多有 n 个根,又 A 0, f A ( ) 的根全部不等于 0,设绝
对值最小的特征根为 ,那么对 0 , 都有 ( ) E A 0 ,即 A E 0 。 例 8 设 V 是全体次数不超过 n 的实系数多项式,再添上零多项式组成的实数域上的线性空 间,定义 V 上线性变换 T f x xf x f x . 求 T 的核 T
N L 1, 2, , t ,其中1, 2, , t 为N的一组基。 T L t 1,t 2 , ,n ,其中t 1,t 2 , , n 为T的一组基。

高等代数--第七章 线性变换_OK

高等代数--第七章 线性变换_OK
• 乘法 • 加 减 数乘 • 逆变换 • 变换的多项式
45
线性变换的乘法
首先,线性空间的线性变换作为映射的特殊 情形当然可以定义乘法。设A,B 是线性空间V 的两个线性变换,定义它们的乘积AB为
(A B )() A (B ()) ( V ).
容易证明,线性变换的乘积也是线性变换。事 实上,
(A B )( ) A (B ( )) A (B () B ())
A ( ) k1A (1) k2A (2) krA (r ),
14
又如果1 , 2 ,, r之间有一线性关系式 k11 k22 krr 0,
那么它们的象之间也有同样的关系
A ( ) k1A (1) k2A (2) krA (r ),
15
3. 线性变换把线性相关的向量组变成线性 相关的向量组.
A x1A 1 x2A 2 xnA n x1B 1 x2B 2 xnB n B .
20
结论1的意义就是,一个线性变换完全被它 在一组基上的作用所决定。
2.设 1,2,,n是线性空间V的一组基。对于
任意一组向量 1,2,,n一定有一个线性变换A
使
A i i ,i 1, 2, , n.
46
A (B ()) A (B ( )) (A B )( ) (A B )( ),
(A B )(k) A (B (k)) A (kB ())
kA (B ()) k(A B )().
这说明AB是线性的。
既然一般映射的乘法适合结合律,线性变换
的乘法当然也适合结合律,即
(A B )C A (B C ).
29
例3 在 F 22 中定义线性变换 A
X
a c
b
d
X

分式线性变换

分式线性变换

§2 分式线性变换一、教学目标或要求:理解分式线性变换的映射性质及应用 二、教学内容(包括基本内容、重点、难点): 基本内容:分式线性变换的映射性质,例题 重点:分式线性变换 难点:应用三、教学手段与方法: 讲授、练习四、思考题、讨论题、作业与练习:4-11§2 分式线性变换1、分式线性变换及其分解分式线性变换的概念 称变换dcz baz w ++=(7.3) 为分式线性变换或Möbius 变换,其中的d c b a ,,,为复常数,且0≠-bc ad .记为 。

规定时,, 时, 。

线性变换将扩充平面一一变换为扩充平面,逆变换 也是线性变换。

线性变换可分解为以下二种类型变换的复合(Ⅰ) 整线性变换 (当时,)(Ⅱ)反演变换 (当时,)(Ⅰ)型变换的几何意义——整线性变换下,原象与象是不改变图形方向的相似变换。

(Ⅱ)型变换的几何意义。

其中具有性质:,并且对称点都在过单位圆心的同一射线上。

把平面上的单位圆周映成平面上的单位圆周,并把单位圆周内(外)部映成单位圆外(内)部。

规定圆心 与 为关于单位圆周的对称点。

线性变换的复合仍是线性变换。

几个初等函数的映射性质1.h z w += (h 为常数)的映射性质: (1)是一个平移变换.(2)在复平面处处是保角的.这是因为,在复平面上处处有01≠='w . (3)将圆周映射为圆周.2.kz w = (k 为常数,且0≠k )的映射性质: (1)是旋转与伸长(或缩短)变换的叠加.(2)在复平面上处处是保角的.这是因为,0≠='k w 在复平面上处处成立. 3.zw 1=的映射性质: (1)该映射称为反演变换或倒数变换,它是相继施行两个对称变换的结果,一是关于实轴对称,二是关于单位圆周对称. (2)在复平面上除0=z 外,处处是保角的.(3)将圆周映射为圆周. 对于z 平面上的圆周(或直线)0)(22=++++D Cy Bx y x A映射zw 1=当0,0≠≠D A 时,将圆周映射为圆周; 当0,0=≠D A 时,将圆周映射为直线; 当0,0≠=D A 时,将直线映射为圆周; 当0,0==D A 时,将直线映射为直线. 分式线性变换的映射性质(7.3)式的“结构”是由平移变换、旋转与伸长(或缩短)变换及反演变换复合而成.1. 线性变换的保形性定义 两曲线在无穷远点处的交角是指它们在反演变换之下的象曲线在原点处的交角。

高等代数讲义ppt第七章 线性变换

高等代数讲义ppt第七章 线性变换

(4) 若A 是可逆的,则矩阵 A 也可逆,且A-1的矩阵是A-1。
例5 设 V是数域P上的n维线性空间,则L(V)与P n×n同构。
例6 设 A1,A2是 n 维线性空间 V 的两个线性变换,证明: A2V⊂A1V 的充要条件是存在线性变换 A 使得 A2=A1A 。
线性变换
§3 线性变换的矩阵
例4 设 A 是n维线性空间V的一个线性变换, A3=2E, B =A2-2A+2E, 证明:A,B都是可逆变换。
线性变换
§3 线性变换的矩阵
§3 线性变换的矩阵
定理1 设1, 2 , , n是线性空间V的一组基, 对V中任意n个向量 1,2 , ,n 存在唯一的线性变换 A∈L(V) 使任的何像得元,素只都要可选以取是适基当
线性变换
§1 线性变换的定义
二、线性变换的性质
性质1 设 A 是V的线性变换,则 A(0) 0, A( ) A()
性质2 线性变换保持线性组合与线性关系式不变。
性质3 线性变换把线性相关的向量组变成线性相关的向量组。
注意: 线性变换可能把线性无关的向量组变成线性相关的 向量组。
例3 设 1,2, ,r 是线性空间V的一组向量,A 是V的一个线
线性变换的加法满足以下运算规律:
(1) A + ( B + C ) = ( A + B ) + C
(2) A + B = B + A
线性变换
§2 线性变换的运算
定义2 设 A∈L(V),k∈P,对k与 A 的数量乘积 kA 定义为:
(kA) k A, V
结论2 对∀A ∈L(V),k∈P 有 kA∈L(V)。
Amn AmAn , (Am )n Amn, m, n N

分式线性变换的共形性

分式线性变换的共形性


2
共形映射成上半平面,使 z 1 i, i,0 变成 w 2, 1,0
2、指数函数与对数函数 指数函数
we
z
z
z ' z
在任意有限点均有 e
e
0因而在 z 平面上是保角的.
我们又知道 w e 的单叶性区域为平行与实轴宽不超过 2 的带形区域. 因此在带形区域
z d : 0 Im z h 0 h 2 内是单叶的.于是 w e
1、幂函数与根式函数 2、指数函数与对数函数
6、分式线性变换的应用
§4、关于共形映射的黎曼 存在定理和边界对应 定理
第七章、共形映射
§1 解析变换的特性 1、解析变换的保域性 定理1(保域定理):设 w f z 在区域 D 内解析且不恒常数,则 D 的像
G f D
也是一个区域。
G f D
为区域。
定理2:设函数 w f z 在 z z0 解析,并且 f ' ( z0 ) 0 ,那么 f z 在 z0 的一个邻域内单叶解析。 2、解析变换的保角性——导数的几何意义 设函数 w f z 是区域 D内的解析函数。设 z0 D, w0 f ( z0 ) 且 f ' ( z0 ) 0 2、1 导数辐角的几何意义
并且使上半平面一点 z a Im a 0 变为 w 0 例3:求出把上
例1:把上半 z平面共形映射成上半w平面的的分式线性变换可以写成
z 1共形映射成单位圆 w 1的分式线性变换,并且使上半平面一点
z a a 1变为w 0
例4:求把上半 z平面共形映射成上半 符合条件:
复变函数论
主讲:王明华

浅谈分式线性变换的性质及应用

浅谈分式线性变换的性质及应用

浅谈分式线性变换的性质及应用1 分式线性变换的定义在复变函数中,如果)(z f w =在区域D 内是单叶且保角的,则称它为D 内的共形映射. 形如dcz baz w ++=(1)其中0≠-bc ad 且R d c b a ∈,,,,称为分式线性变换,简记为)(z L w =,可变形为acw bdw z -+-=('1)且(1)式总可以分解成下列简单类型变换的组合: (Ⅰ)h kz w += (0≠k ) 称为整线性变换 (Ⅱ)zw 1=称为反演变换 由上可知分式线性变换是共形映射中的一种常见的基本变换,是扩充复平面到自身的一对一的映射.德国数学家A.F.Mobius 对此作过大量的研究,所以在很多文献中分式线性变换也称为Mobius 变换.2 分式线性变换的性质分式线性变换作为共形映射的一种基本变换,具有四个重要的性质,这些性质使它具有了很多的优点:在处理边界为圆弧或直线的区域变换中发挥了重要的作用,使复杂问题简单化.下面将给出它的四个重要性质.2.1 分式线性变换的保形性 定义1)289](1[P 二曲线在无穷远点处的交角为α,就是指它们在反演变换下的像曲线在原点处的交角为α.按照上面的定义,反演变换在0=z 及∞=z 处是保角的,且整线性变换在扩充z 平面上是保角(形)的,由此我们得出 定理1)290](1[P 分式线性变换(1)在扩充z 平面上是保形的.2.2 分式线性变换的保交比性 定义2)291290](1[-P 扩充z 平面上有顺序的四个相异点1z ,2z ,3z ,4z 构成下面的量,称为它们的交比,记为(1z ,2z ,3z ,4z )(1z ,2z ,3z ,4z )=2414z z z z --:2313z z z z --注 当四点中有一个点为∞时,应将包含此点的项用1代替. 定理2 在分式线性变换下,四点的交比不变. 证明 设 dcz baz w i i i ++= 4,3,2,1=i则))(())((d cz d cz z z bc ad w w j i j i j i ++--=- (j i ≠)利用上式可得(1w ,2w ,3w ,4w )=23132414:w w w w w w w w ----=2414z z z z --:2313z z z z --=(1z ,2z ,3z ,4z ) 证完.2.3 分式线性变换的保对称点性 定义3)294](1[P 1z ,2z 关于圆周γ:R a z =-对称是指1z ,2z 都在过圆心a 的同一条射线上,且合221R a z a z =--.此外,我们规定圆心a 与点∞关于γ对称. 在介绍定理之前先引入一引理如下: 引理)295](1[P 扩充z 平面上两点1z ,2z 关于圆周γ对称的充要条件是通过1z ,2z 的任意圆周都与γ正交.定理3 设扩充z 平面上两点1z ,2z 为关于圆周C 的一对对称点,那么在分式线性变换)(z L w =下,它们的象点1w =)(),(221z L w z L =两点也是关于圆周C 的象曲线圆周Γ的一对对称点.证明 设 过1w 及2w 的任何圆周'Γ,都是过1z ,2z 的圆周'C 由分式线性变换(1)变换而来,由上面的引理, 过1z ,2z 的任意圆周'C 都与C 正交,根据分式线性变换的保形性,过1w ,2w 的任何圆周'Γ与圆周Γ正交,又由引理知1w ,2w 关于Γ对称.证完.2.4 分式线性变换的保圆(周)性定理4 在分式线性变换(1)下,扩充z 平面上的圆周共形映射成扩充w 平面上的圆周. 证明 在圆周方程0)(22=++++D Cy Bx y x A (2) 中,令2_z z x +=,iz z y 2_-=,_22z z y x =+则(2)变为0___=+++D z z z Az ββ (3) 注 ,,,,R D C B A ∈AD >2β(在0=A 时,表示一直线),)(21iC B -=β. 在分式线性变换(1)下,利用('1)及 _______aw c b w d z -+-=(3)式变成扩充w 平面上的圆周0___=+++F w w w Ew γγ 其中Aba Dab a b a b Ab F cDc d c d c d Ad E -=++-=++-=γββββ__________)()(都是实数(在0=E 时,方程表示直线) 证完.3 分式线性变换的应用分式线性变换从几何角度“形”的方面对解析函数进行研究,是复变函数的重要组成部分,在复变函数中它在处理边界为圆弧或直线的区域变换中具有重要的作用,即任给两个圆周(或直线)C 及Γ,必存在一个分式线性变换,它把C 保形变换到Γ,若在C 上按逆时针方向取三个点)3,2,1(=i z i 相应地变到Γ上也是按逆时针方向的三个点)3,2,1(=i w i ,且这个分式线性变换将C 所围的左(右)侧区域变到Γ所围的左(右)侧区域;若在C 上按逆时针方向取的三个点)3,2,1(=i z i 相应地变到Γ上按顺时针方向的三个点)3,2,1(=i w i ,则这个分式线性变换将C 所围的左(右)侧区域变到Γ所围的右(左)侧区域.下面是几个典型的分式线性变换.3.1 将上半平面共形映射成上半平面的分式线性变换例1 把上半z 平面共形映射成上半w 平面的分式线性变换可以写成dcz baz w ++=,其中R d c b a ∈,,,且0>-bc ad (4)证明 )(21Im _w w iw -=)(21__dz c b z a dcz b az i ++-++=)(21_2z z d cz bcad i -+-=z dcz bc ad Im 2+-=此时它必将下半平面共形映射成下半平面.注将上半z 平面共形映射成下半w 平面的分式线性变换dcz baz w ++=只需让上式(4)中条件0<-bc ad ,它必将下半z 平面共形映射成上半w 平面.3.2 将上半平面共形映射成单位圆周内部的分式线性变换例2 求出将上半平面0Im >z 共形映射成单位圆1<w 的分式线性变换,并使上半平面上一点)0(Im >=a a z 变为0=w .解 如图根据分式线性变换的保对称点性,点a 关于实轴的对称点_a ,应该变到0=w 关于单位圆周的对称点∞=w ,这个变换应当具有形式_az a z kw --=其中k 是常数, k 值的确定,可使实轴上的点,例如0_=z 共形映射成单位圆周上的一点_aa kw =所以k aa k==_1因此,可以令βi e k =(β是实数),最后得到所求的变换为 _az a z e w i --=β(0Im >a ) (5)此时它必将下半平面0Im <z 共形映射成单位圆外部1>w .注 如果将上半平面0Im >z 共形映射成单位圆周外部1>w ,只需将(5)式中括号里的条件变为0Im <a ,同时它必将下半平面0Im <z 共形映射成单位圆内部1<w .3.3 将单位圆周内部共形映射成单位圆周内部的分式线性变换例3 求将单位圆周1<z 共形映射成单位圆周1<w 的分式线形变换,并使一点)1(<=a a z 变到0=z .解 如图)(z L w =由题意,所求的映射应将z 平面上的单位圆1:=z C 变为w 平面上的单位圆1:'=w C .由于要把点)1(<=a a z 变为点0=w ,而关于圆周C 与点a 对称的点是_1a,关于圆周'C 与点0=w 对称点是∞,由分式线形变换的保对称点性知,所求映射应将点a z =共形映射成点0=w ,将点_1az =共形映射成点∞=w .不妨设所求分式线性变换为_'1az az kw --=,'k 为待定系数. 即za a z k a w _'_1---=令'_k a k -=得za a z kw _1--=为确定k ,利用C 上的点的象在'C 上,取点1=z 代入上式应满足1=w ,即111_=--=aa kw所以1=k ,从而得θi e k =,(θ为任意实数).所以 za a z e w i _1--=θ,(1<a ,θ为任一实数). (6)此时它必将单位圆周外部1>z 变到单位圆周外部1>w .注 求将单位圆周1<z 共形映射成单位圆周外部1>w 的分式线性变换只需让(6)式括号中1>a 即可;同时,它必将单位圆周外部1>z 共形映射成单位圆周内部1<w .3.4 分式线性变换的综合应用综上所述,我们可求出任意圆形区域(含半平面)到圆形区域的线性变换,若没有任何其它要求,这种线性变换的表达式中包含了两个任意常数,因此,这种变换有无穷多个;如果指定区域内某点的象,则相应的这一点关于圆周(或直线)的对称点应变到相应象点关于象圆周的对称点,这样线性变换中就剩下一个任意复常数;圆的位置变换可经平移得到,圆心在原点的圆可用)0(>=ααz w 使圆放大或缩小,这样我们就可以将任意圆形域(含半平面)变成任意的圆形域(含半平面).例4 求将上半z 平面共形映射成圆R w w <-0的分式线性变换)(z L w =,使符合条件0)(w i L =,.0)('>i L解 做分式线性变换Rw w 0-=ξ 将圆R w w <-0共形映射成单位圆1<ξ.然后,作出上半平面0Im >z 到单位圆1<ξ的共形映射,使i z =变成0=ξ,该分式线性变换为iz iz ei +-=θξ (为了应用以上三例的结果,我们在z 平面与w 平面间插入一个“中间”平面——ξ平面.)复合以上两个分式线性变换得iz iz e R w w i +-=-θ0 它将上半z 平面共形映射成圆R w w <-0,i 变成0w .又由条件0)('>i L 可得()ie i z iz i z e dzdw R i iz i iz 2112θθ=++-+=== 也就是 ()⎪⎭⎫⎝⎛-=⋅=2'221Re πθθi i e R i i L所以 i e i ===-θπθπθ,2,02故所求分式线性变换为 0w iz iz Riw ++-= 从以上讨论得到分式线性变换作为一类特殊的共形映射有很好的性质,保圆性、保对称点性、保形性、保交比性,并且分式线性变换能将圆形区域(含半平面)变成规则的区域,它有很多用途.总结分式线性变换的这些特性对我们以后的学习会很有帮助的.而上述这些从性质和应用两方面说明了分式线性变换的重要性,鉴于此,我尝试对该领域内主要贡献者的观点进行归纳整理,力求使该部分内容更加清晰、系统,并从几何角度对分式线性变换作全面分析,更加体现出分式线性变换的重要作用.参考文献:[1] 钟玉泉. 复变函数论[M].北京:高等教育出版社,2005[2] 余家荣. 复变函数[M]. 北京:高等教育出版社,2005[3] 肖荫庵. 复变函数论[M].吉林: 东北师范大学出版社,1987[4] 于慎根、杨永发、张相梅. 复变函数与积分变换[M].天津:南开大学出版社,2006[5] 钟玉泉. 复变函数学习指导[M].北京: 高等教育出版社,2005[6] 杨林生. 复变函数[M].北京: 高等教育出版社,2001[7] 郑建华. 复变函数[M]. 北京: 清华大学出版社,2005[8] 方企勤. 复变函数教程[M]. 北京: 北京大学出版社,2003[9] James Ward Brown、Ruel V. Churchill (邓冠铁译)复变函数及应用[M].机械工业出版社,2006[10] 郭洪芝、腾桂兰. 复变函数[M]. 天津:天津大学出版社,2002。

线性变换的定义

线性变换的定义

第七章 线 性 变 换§ 1 线性变换的定义上一章我们看到,数域 P 上任意一个 n 维线性空间都与n P 同构,因之,有限维线性空间的同构可以认为是完全清楚了.线性空间是某一类事物从量的方面的一个抽象.我们认识客观事物,固然要弄清它们单个的和总体的性质,但是更重要的是研究它们之间的各种各样的联系.在线性空间中,事物之间的联系就反映为线性空间的映射.线性空间到自身的映射通常称为的一个变换.这一章中要讨论的线性变换就是最简单的,同时也可以认为是最基本的一种变换,正如线性函数是最简单的和最基本的函数一样. 线性变换是代数的一个主要研究对象.下面如果不特别声明,所考虑的都是某一固定的数域P 上的线性空间.定义 1 线性空间 V 的一个变换 A 称为线性变换,如果对于V 中的任意的元素αβ,和数域中任意数k ,都有()()A A αβαβ+=+()()A k kA αα= (1)以后我们一般用黑体答谢拉丁字 A , B ,…代表 V 的变换,()A k α或()A α代表 元素α在变换下的象.定义中等式(1)所表示的性质,有时也说成线性变换保持向量的加法与数量乘法. 问题1: 线性变换与线性同构有什么异同?下面我们来看几个简单的例子 ,它们表明线性变换这个概念是有丰富的内容的. 例 1 平面上的向量构成实数域上的二维线性空间 . 把平面围绕坐标原点按反时针方向旋转θ角,就是一个线性变换,我们用I θ表示。

如果平面上一个向量α在直角坐标系下的坐标是(,)x y ,那么象I θα()的坐标,即旋转θ角之后的坐标是(,)x y ''按照公式cos sin sin cos x x y y θθθθ'-⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪'⎝⎭⎝⎭⎝⎭ 来计算的.同样地,空间中绕轴的旋转也是一个线性变换.例 2 设α是几何空间中一固定的非零向量,把每个向量ξ变到它在α上的内映射的变换也是一个线性变换,以α∏表示它.用公式表示就是(,)()(,)ααξξααα∏= 这里(,)αξ表示内积.例 3 线性空间 V 中的恒等变换或称单位变换 E ,即()E αα= ()V α∈以及零变换0,即0()0α= ()V α∈都是线性变换.例 4 设V 是数域P 上的线性空间,k 是P 中某个数 ,定义V 的变换如下:,k αα→ ()V α∈不难证明,这是一个线性变换,称为由数 k 决定的数乘变换,可用k 表示.显然,当k=1时,我们便得恒等变换,当k=0时,便得零变换.例 5 在线性空间[]P x 或者[]n P x 中,求微商是一个线性变换.这个变换通常用D 代表,即11220r r k k k ααα+++=,(())()D f x f x '=例 6 定义在闭区间[a,b ]上的全体连续函数组成实数域上一线性空间,以C (a,b )代表.在这个空间中,变换(())()xa J f x f t dt =⎰ 是一线性变换 .例7 在线性空间V 中,定义0,.a a a V σ=∀∈其中0a 是V 中一个固定向量,试问σ是否为线性变换?解 当00a ≠时,.V αβ∀∈则有00(),(),.σαασβασαβα==0及(+)=但0()()2().σασβασαβ+=≠+因此当00a ≠时,α不是线性变换。

第七章线性变换(小结)

第七章线性变换(小结)

第七章 线性变换(小结)本章的重点: 线性变换的矩阵以及它们对角化的条件和方法. 本章的难点: 不变子空间的概念和线性变换与矩阵的一一对应关系.线性变换是线性代数的中心内容之一,它对于研究线性空间的整体结构以及向量之间的内在联系起着重要作用.线性变换的概念是解析几何中的坐标变换、数学分析中的某些变换替换等的抽象和推广,它的理论和方法,(特别是与之相适应的矩阵理论和方法)在解析几何、微分方程等许多其它应用学科,都有极为广泛的应用.本章的中心问题是研究线性变换的矩阵表示,在方法上则充分利用了线性变换与矩阵对应和相互转换. 一、线性变换及其运算1. 基本概念: 线性变换,可逆线性变换与逆变换; 线性变换的值域与核,秩与零度; 线性变换的和与差, 乘积和数量乘法, 幂及多项式.2. 基本结论(1) 线性变换保持零向量、线性组合与线性关系不变; 线性变换把负向量变为象的负向量、把线性相关的向量组变为线性相关的向量组(2) 线性变换的和、差、积、数量乘法和可逆线性变换的逆变换仍为线性变换.(3) 线性变换的基本运算规律(略).(4) 一个线性空间的全体线性变换关于线性变换的加法与数量乘法作成一个线性空间.(5) 线性空间V 的线性变换A 的象Im(A )= A V 与核ker A = A -1(0) (a) A 的象Im(A )= A V 与核ker A = A -1(0)是V 的(A -)子空间. (b)若dim(V )=n ,则Im(A )由V 的一组基的象生成: 即设V 的一组基n ααα,...,,21, Im(A )= A V =L(A α1, A α2,… ,A αn )={ A α|α∈V }.ker A = A -1(0)= { α∈V | A α=0}.(c)A 的秩(dim Im(A ))+A 的零度(dim ker A )=n .(d)A 是双射⇔A 是单射⇔ Ker(A )={0}⇔A 是满射.(e)像空间的一组基的原像与核空间的一组基合并就是线性空间V 的一组基:取Im A 的一组基r βββ ,,21,存在,,...,21r ααα使得A i i βα=,i=1,2,…,r. 再取ker A 的基,,...1n r αα+则,,...,21r ααα,,...1n r αα+就是V 的一组基. 二、线性变换与矩阵1.基本概念:(1)线性变换在基下的矩阵:设A ∈L(V),取定n 维线性空间V 的一组基n ααα,...,,21,则A α1, A α2,… ,A αn 可由α1,α2,…,αn 线性表示, 即(A α1, A α2,… ,A αn )=( n ααα,...,,21)A ,矩阵A 称为线性变换A 在此基下的矩阵.(2) 一个线性变换在不同基下的矩阵相似:设n ααα,...,,21,n βββ,...,,21是线性空间V 的两组基,(n βββ,...,,21)=(n ααα,...,,21)P, (A α1, A α2,… ,A αn )=( n ααα,...,,21)A ,则(A β1, A β2,… ,A β n )=(n βββ,...,,21)AP P 1-.2.基本结论(1) 若n ααα,,,21 是线性空间V 的一个基, V n ∈∀βββ,,,21 ,则存在唯一A )(V L ∈,使得A n i i i ,,2,1,)( ==βα.(2) 在取定n 维线性空间V 的一个基之后,将V 的每一线性变换与它在这个基下的矩阵相对应,则这个对应使得线性变换的和、乘积、数量乘积的矩阵分别对应于矩阵的和、乘积、数量乘积;可逆线性变换与可逆矩阵对应,且逆变换对应逆矩阵。

高等代数第七章线性变换

高等代数第七章线性变换

高等代数第七章线性变换一、定义:变换:线性空间V到自身的映射通常称为V的一个变换线性变换=线性映射+变换更准确地说线性变换的特点就是满足线性性以及定义域和陪域都是同一个线性空间*这里说的陪域是丘维生的高等代数里提出的一个概念,与值域的每一个自变量都有因变量相对应不同的是陪域包含自变量没有因变量相对应的情况这样解释是为了类比:同构映射=线性映射+双射也就是说同构映射的特点是满足线性性以及每一个自变量都有一个因变量相对应下面引出线性变换的准确定义线性变换:如果对于V中任意的元素 \alpha,\beta和数域P 中任意数k,都有\sigma(\alpha+\beta )=\sigma(\alpha)+\sigma(\beta) ,\sigma(k\alpha)=k\sigma(\alpha) 则称线性空间V的一个变换 \sigma 称为线性变换。

二、线性变换的矩阵所有线性变换的全体可以通过选取V的一组基与所有矩阵的全体建立一一对应的关系,将几何对象和代数对象建立转化。

只要取一组足够好的基,就可以得到足够好的矩阵。

某些特殊情况下,矩阵可以取成对角阵,就称线性变换可以对角化,不可对角的矩阵可以写成若尔当块的形式,则选取的基就为循环基,当做不到选取循环基时就只能上三角化或者下三角化。

三、矩阵的相似1.定义Ⅰ.①相似的定义: A,B\in P^{n\times n} ,若存在可逆矩阵 P ,使得 P^{-1}AP=B ,则称A与B是相似的②相似的标准型:若尔当标准型Ⅱ.类比合同(相抵):本质是初等变换①合同的定义: A,B\in P^{n\times n} 若存在可逆矩阵P ,使得 PAQ=B ,则称A与B是合同的②合同的标准型:PAQ=\left( \begin{array}{cc} E_{r}&0\\ 0&0 \end{array} \right),r=r(A),E(r)=\left( \begin{array}{cc} 1&&\\ &1 &\\ &...\\ &&1 \end{array} \right)_{r\times r}③性质:若 A\sim B ,则 \left| A \right|=\left| B \right| ,r(A)=r(B)若A\sim B ,则 A,B 的特征多项式相同,极小多项式相同若 A\sim B ,则 A'\sim B'*根据定义有 P^{-1}AP=B ,两边同时转置: P'A'(P')^{-1}=B' ,则 A'\sim B'若 A\sim B ,A可逆,则 A^{-1}\sim B^{-1}若 A\sim B ,则 A^{k}\sim B^{k}若 A\sim B , f(x)\in k[x] (f(x)是数域K上的多项式)则 f(A)\sim f(B) (A与B的多项式相似)*多项式的形式是 f(x)=x^{k}+x^{k-1}+...+x+m ,由A^{k}\sim B^{k} ,则 f(A)\sim f(B)若 A\sim B,则 A^{*}\sim B^{*} (A的伴随矩阵相似于B的伴随矩阵)四、矩阵的特征值和特征向量1.定义:对于矩阵A,若存在 x\ne0 (非零向量), x\inK^{n} ,s,t, Ax=\lambda x ,则称 \lambda 是 A 的一个特征值, x 是 \lambda 对应的特征向量2.求特征值、特征向量①求解特征多项式f(\lambda)=\left| \lambda E_{n} -A\right|=0\Rightarrow\lambda_{1},\lambda_{2},...,\lambda_{n} 为特征值②求 (\lambda_{i} E_{n} -A)x=0\Rightarrowx_{1},x_{2},...,x_{n} 为特征向量3.性质:若矩阵A的特征值为 \lambda_{1},...,\lambda_{n}① tr(A)=\lambda_{1}+...+\lambda_{n} ( tr(A) 为矩阵的迹:对角线元素之和为矩阵特征值之和)② \left| A\right|=\lambda_{1}\lambda_{2}...\lambda_{n}③哈密顿-凯莱定理:特征多项式一定是零化多项式f(\lambda)=\left| \lambda E_{n}-A \right|,f(A)=0*零化多项式: f(x)\in k[x] ( f(x) 是数域K上的多项式),若 f(A)=0 则称 f(x) 是 A 的零化多项式eg. f(x)=x^2-3x+1 则有 A^2-3A+E_{n}=0④若 f(A)=0\Rightarrow f(\lambda)=0eg. A^2-3A+E_{n}=0\Rightarrow\lambda^2-3\lambda+1=0则根据④若矩阵A的特征值为\lambda_{1},\lambda_{2},...,\lambda_{n}\Rightarrow A^{-1} 的特征值为\frac{1}{\lambda_{1}},\frac{1}{\lambda_{2}},...,\frac{ 1}{\lambda_{n}}\Rightarrow aA 的特征值为a\lambda_{1},a\lambda_{2},...,a\lambda_{n}\Rightarrow A^{k} 的特征值为\lambda_{1}^k,\lambda_{2}^k,...,\lambda_{n}^k五、矩阵A可对角化的判别办法① A_{n\times n} 可对角化 \Leftrightarrow n阶矩阵A有n个线性无关的特征向量设 \lambda_{1},\lambda_{2},...,\lambda_{s} 是两两不同的特征值②A可对角化 \LeftrightarrowdimV_{\lambda_{1}}+dimV_{\lambda_{2}}+...+dimV_{\lambd a_{s}}=n③(充分但不必要条件)A的特征多项式无重根 \Rightarrow A可对角化六、不变子空间定义:W是线性空间V的子空间,线性变换 \sigma:V\rightarrow V ,若 \sigma(W)\subseteq W ,则称W是\sigma 的不变子空间利用定义求不变子空间。

分式线性变换

分式线性变换

w1

az1 b cz1 d
, w2

az2 cz2
b d
, w2

az2 cz2
b d
17

w

w1

(az

b)(cz1 d ) (az1 b)(cz (cz d )(cz1 d )

d)
同理,有
(z z1)(ad bc) (cz d )(cz1 d )
过点w1

1 2
,
w2

1 2

3 2
i的直线Im
解 所求的分式线性变换为
(1,0,i, w) (1 i,1 i, , z) 即 w 1 : i 1 z (1 i) : 1 ,
w 0 i 0 z (1 i) 1
整理得 w iz 1 i . z 3i
20
四 分式线性变换的保圆周(圆)性
对(I)显然将圆周(或直线)变为圆周(或直线). 对(II)型: 因圆周(或直线)可表为
9
(1) 若c 0,则(7.7)有两个根
z1,2

(a

d) 2c
,
(d a)2 4bc




0时,
0时,
有两个相异不动点z1,
有一个二重不动点z
az2;
d
.
2c
(2) 若c 0,则(7.7)变为 (d a)z b 0,
当a d 0时,(7.7)有根 z b , 这时(7.3)为 w a z b , d a
0,
故(II )在z 0, 是保角的.
11

高等代数第7章线性变换PPT课件

高等代数第7章线性变换PPT课件

特征向量定义
对应于特征值m的非零向量x称为A的对应于特征值 m的特征向量。
设A是n阶方阵,如果存在数m和非零n维列向 量x,使得Ax=mx成立,则称m是A的一个特 征值。
求解方法
通过求解特征多项式f(λ)=|A-λE|的根得到特 征值,再代入原方程求解对应的特征向量。
特征多项式及其性质分析
特征多项式定义
量子力学
在量子力学中,特征值和特征向量用 于描述微观粒子的状态和能量级别。
图像处理
在图像处理中,特征值和特征向量可 以用于图像压缩和图像识别等任务。
经济学
在经济学中,特征值和特征向量可以 用于分析和预测经济系统的稳定性和 发展趋势。
04
线性变换对角化条
件及步骤
可对角化条件判断方法
判断矩阵是否可对角化
线性变换的性质与 矩阵性质对应
线性变换的性质如保持加法、 数乘等运算可以通过其对应的 矩阵性质来体现。例如,两个 线性变换的和对应两个矩阵的 和;线性变换的复合对应两个 矩阵的乘积等。
02
线性变换矩阵表示

标准基下矩阵表示法
定义
设V是n维线性空间,e1,e2,...,en 是V的一个基,T是V上的一个线 性变换,则T在基e1,e2,...,en下的 矩阵A称为T在基e1,e2,...,en下的 标准矩阵表示。
计算矩阵的高次幂
对于可对角化的矩阵A,可以利用对角化公式A=PDP^(-1)将A的高次幂转化为对角矩阵D的高次幂, 从而简化计算过程。
求解线性方程组
对于系数矩阵为可对角化矩阵的线性方程组,可以通过对角化将系数矩阵转化为对角矩阵,进而 简化方程组的求解过程。
计算行列式和逆矩阵
对于可对角化的矩阵A,其行列式值等于对角矩阵D的行列式值,逆矩阵可以通过对角化公式求得, 从而简化相关计算。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七讲 分式线性变换 形如()(,,,0)az b f z a b c d adbc cz d+=∈-≠+£且的分式函数,即等价于 :f →#,az b z w cz d +→=+为分式线性变换. f 是£上的双射.设()az b w f z cz d +==+,1()b dw z f w z cw a --=⇒=-,即1()dw b f w cw a --+=-. 1f -也是分式线性变换.特别地,11(0)()lim (0)()lim z z b f d az b af cz d c b f a dw b d f cw a c →∞--→∞⎧=⎪⎪+⎪∞==⎪+⎨⎪=-⎪⎪-+⎪∞==--⎩1 反演变换形如1w z=的变换,称为反演变换(如图7.1). 2 相似变换(1)平移变换:(),()f z z h h =+∈£(如图7.2).(2)旋转变换:(),()i f z e z θθ=⋅∈¡(如图7.3).(3)伸缩变换:(),(0)f z rz r =>(如图7.4).综上:相似变换统一写成arg ()()i k f z kz h k e z h =+=⋅+.引理1形如()(,,,0)az b f z a b c d ad bc cz d+=∈-≠+£且的分式线性变换必是一系列相似变换与反演变换的复合;反过来,相似变换与反演变换的复合也是某个分式线性变换.证明:(⇒) case1:0()az b a b c f z z d d d+=⇒==+是相似变换. case2:10()bc ad a c f z c cz d c-≠⇒=⋅++,即如下复合: 111bc ad bc ad a z cz d cz d c cz d c cz d c --→+→→⋅→⋅++++ (⇐) 设''()''a zb g zc zd +=+,要证()gf z 也是分式线性变换.经过计算,得 ('')('')()('')('')aa cb z ba db gf z ac bd z bc db +++=+++ 为分式线性变换.证毕.反演变换的性质✓ 保圆周性定理2 分时线性变换()az b f z cz d+=+将圆周(或直线)映为圆周(或直线). 证:(方法一)Q ()az b f z cz d +=+是1w z=和w kz h =+的复合而成的 ∴只需讨论1w z =或w kz h =+的形式,其中,后一情形显然.只讨论1w z=的情形. 圆周曲线的方程为0Azz Bz Bz C +++=其中,2,,A C B AC ∈>¡.(当0A =时,是直线方程).代入1w z=得到 0Cww Bw Bw A +++=依然为圆周曲线的方程.得证.(方法二)(1)圆周方程也可写为0z z r -=如图7.5,在反演变换1w z=下,像可写为 case1:圆周不过原点0z ≠(即0z r ≠)时,像为0222200z r w z r z r -=--依然是圆周曲线的方程. case2:圆周过原点0z =(即0z r =),像为001z w z w +=01(Re())2z w =,得证.(2)直线方程0(,,,)ax by c z x iy a b c ++==+∈¡,即Re(())a ib z c -=-,在反演变换下:case1:当0c ≠时,像是圆周曲线22a ib a ib w c c--+=. case2:当0c =时,像是直线Re(())0a ib w +=.✓ 保交比性定义 在£中取1234,,,(,,1,2,3,4)i j z z z z z z i j ≠=,则交比314112344232(,,,):z z z z z z z z z z z z --=--. 注:若4z =∞,则31123432(,,,)z z z z z z z z -=-. 保交比性 分时线性变换()az b f z cz d +=+,设()(1,2,3,4)i i w f z i ==,则 12341234(,,,)(,,,)w w w w z z z z =.ex1: 已知圆周11z -=上有三点1230,2,1z z z i ===+(如图7.6),求()az bf z cz d+=+使得1(0),(1),(2)12i f f i f -=∞+==. 解:由保交比性得1(,1,,)(0,2,1,)2i w i z -∞=+,即 110(1)0::112(1)212z i i w z i -+-=---+--(3)4()(1)i z f z i z --⇒=-.✓ 保边界性复函数()w f z =,其定义域D 为区域,则值域()f D 也是区域;设D ∂是D 的边界,则()f D ∂是()f D 的边界.若指定D ∂定向,则()f D ∂保持定向.注:沿区域D 的边界行走时,区域D 总在左边(如图7.7).ex2:如图7.8,设1{|Im 0},()D z z f z z=>=,求()f D . 解:D 边界{}D ∂=实数轴,()f D ∂也是()f D 的边界,由1w z =知()f D D ∂=∂,所以()f D 边界仍为实轴.D ∂Q 定向从左到右,由1w z=知()f D ∂定向从右到左()f D ⇒必是下半平面.✓ 保对称性称平面上的点12,z z 关于圆周或直线C 对称,设12,z z ∈£,case1:当C 为直线时,12,z z 关于C 对称,即通常意义下是镜像对称; case2:当C 为圆周时, C 的方程为0z z r -= 12,z z 关于C 对称21020012()(),,z z z z r z z z ⇔--=⇔三点一线,并且他们之间的距离满足21020z z z z r -⋅-=.若()az b f z cz d +=+且12,z z 关于C 对称,则12(),()f z f z 关于()f C 对称.ex3:求()az b f z cz d+=+满足 ()0,arg '(),{|Im 0},(){|1}2f i f i D z z f D w w π==-=>=<(如图7.9).解: i -Q 与i 关于实轴对称,由保对称性()f i -与()f i 关于()f D 对称()f i ⇒-=∞可推出()()k z i f z z i-=+ 由保边界性,0D ∈∂Q 故(0)()f f D ∈∂,即(0)1f =(0)(0)0k i f k i-==-+Q (0)1f k ∴== ∴可设i k e θ=,则()()i e z i f z z i θ-=+ 22'()()i i f z e z i θ∴=⋅+代入z i =得 ()21'()()arg '()222i i i f z e e f z πθθπθ-=-=⇒=- 由条件得01k θ=⇒= ()z i f z z i-∴=+. 更一般的变换()w f z =在D 上解析且'()0,f z z D ≠∀∈,称:()f D f D →为解析变换.✓ 保角性如图7.10,θ是曲线12,C C 在点P 处的夹角,则12(),()f C f C 在点()f P 处的夹角也是θ.设曲线[]0:(),,,()C z z t t P z t αβ=∈=,在点P 处的切线方向为0000'()|'()'()'()t t z t z t x t iy t ==+@,设曲线°[]:(),,C z z t t αβ=∈%%,曲线°C在点P 处的切线方向为 0'()z t % C ∴与°C 在点P 处的夹角0'()z t @与0'()z t %的夹角θ,即00'()arg '()z t z t θ=%,如图7.11. 设:()f D f D →解析变换(也就是解析函数),f 在0z z =处满足0'()0f z ≠,同上,设°,C C 在0z z =处相交(记号同上)如图7.12解析函数()w f z =是C 对应的方程,有000000'()'(())'()arg '()arg '()arg '()w t f z t z t w t f z z t =⋅⇒=+ (1)解析函数°()w f z =%是°C对应的方程,有 °°000000'()'(())'()arg '()arg '()arg '()w t f z t z t w t f z z t =⋅⇒=+%%% (2) 上(1)(2)两式相减得°0000'()'()arg arg '()'()w t z t w t z t =% 由定义°0000'()arg '()'()arg '()w t w t z t z t ϕθ⎧=⎪⎪⎨⎪=⎪⎩% 由上式得θϕ=,该性质称为保角性.注:00'()0arg '()f z f z ≠⇒有定义.引理1 设()w f z =在D 上解析且'()0,f z z D ≠∀∈,则f 在D 上每点保角. 注:若f 是D 上单叶解析函数,则:()f D f D →称为共形映射(保形映射).。

相关文档
最新文档