七年级数学上册 1.4.2《有理数的除法(第1课时 有理数的除法)》教案 (新版)新人教版

合集下载

统编教材人教版七年级数学上册1.4.2 第1课时 有理数的除法法则 公开课教学课件

统编教材人教版七年级数学上册1.4.2 第1课时 有理数的除法法则 公开课教学课件

解:(1)原式=-23×-58÷-14 =-23×58×4 =-53. (2)原式=-47×-134×-32=-4. (3)原式=(-2)×3×(-3)=18.
(4)原式=-52×-156×-18×-14 =52×156×18×14 =14.
知识管理
有理数的除法法则 法则一:除以一个不等于 0 的数,等于乘这个数的 倒数 ,这个法则
1 也可表示成 a÷b= a·b (b≠0).
法则二:两数相除,同号得 正 ,异号得 正 ,并把绝对值 相除 .0 除以任何一个不等于 0 的数,都得 0 .
归类探究
类型之一 有理数的除法运算 计算:
(1)36÷(-9); (2)(-48)÷(-6); (3)(-32)÷4; (4)(-110)÷(-5). 解:(1)-4.(2)8.(3)-8.(4)22. 【点悟】 有理数的除法运算与乘法运算类似,关键是确定商的符号, 同号得正,异号得负,并把绝对值相除.
统编教材人教版七年级数学上册
第一章 有理数
1.4.2 第1课时 有理数的除法法则
学习指南
教学目标 1.理解有理数除法的意义,熟练掌握有理数除法法则. 2.会进行有理数的除法运算.
情景问题引入 活动内容:(1)前面我们学习了“有理数的乘法”,那么自然会想到有理 数有除法.如何进行有理数的除法运算呢?开门见山,直接引出本节知识的 核心. (-12)÷(-3)=? (2)回忆小学里乘法与除法互为逆运算,并提问:被除数、除数、商之间 有何关系?
【解析】 a1=12,a2=1-1 12=2,a3=1-1 2=-1,a4=1-1-1=12,…. 可以发现:数列以12,2,-1 循环出现. 因为 2 019÷3=673, 所以 a2 019=-1.

1.4.2第1课时有理数的除法法则-人教版七年级数学上册课件(共16张PPT)

1.4.2第1课时有理数的除法法则-人教版七年级数学上册课件(共16张PPT)

1 4
2 3
1 6
-1 1
合作探究 有理数的除法法则
快速计算
正数除以负数 负数除以负数 零除以负数
8÷(-4) =-2 (-9)÷(-3) =3 0÷(-5) =0
负数除以正数 (-8)÷ 4 =-2
我们发现:
8 ( 1 ) =-2
4
(9) ( 1 ) =3
3
0
(
1 5
)
=0
(8) 1 =-2
4
2.下列运算结果等于1的是( D )
A.(-5)+(-5)
B.(-5)-(-5)
C.(-5)×(-5)
D.(-5)÷(-5)
当堂检测
3.计算:
(1) 68 17
4
(3) 0.25 1 2
1 2
(2)48 12
4
(4) 1
2
2
5
5
12
当堂检测
4.化简下列分数:
(1) 28 7
(2) 3 39
要点归纳: 1.两个法则都可以用来求两个有理数相除. 2.如果两数相除,能够整除的就选择法则二,
不能够整除的就选择用法则一.
典例分析
例 1 计算(1)(-36) 9;
(2)
(
12 ) 25
(
3) 5
.
解:(1)(-36)9= -(369)=-4;
(2)
(
12 ) 25
(
3) 5
(
12 ) 25
(
12
15
36
7 14
5 1
2
解: 3
1
1
10
3
2
课堂小结
有理数除法法则:

人教版数学七年级上册1.4《有理数的除法》(第1课时)教学设计

人教版数学七年级上册1.4《有理数的除法》(第1课时)教学设计

人教版数学七年级上册1.4《有理数的除法》(第1课时)教学设计一. 教材分析人教版数学七年级上册1.4《有理数的除法》(第1课时)是学生在学习了有理数加减乘运算的基础上,进一步深化对有理数运算的理解和掌握。

本节内容主要介绍了有理数的除法运算,包括同号有理数的除法、异号有理数的除法以及除以0的情况。

通过本节课的学习,学生能够掌握有理数除法的基本运算方法,并能够正确进行计算。

二. 学情分析学生在进入七年级之前,已经初步掌握了有理数的基本概念和加减乘运算。

但是,对于除法运算,学生可能还存在一些困惑和误解。

因此,在教学过程中,教师需要针对学生的实际情况进行引导和讲解,帮助学生理解和掌握有理数的除法运算。

三. 教学目标1.知识与技能目标:学生能够理解有理数除法的基本概念,掌握同号有理数、异号有理数以及除以0的除法运算方法,并能够正确进行计算。

2.过程与方法目标:通过小组合作、讨论交流等方法,培养学生解决问题的能力和团队合作精神。

3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的耐心和细心,使学生能够积极主动地参与数学学习。

四. 教学重难点1.教学重点:学生能够掌握有理数除法的基本运算方法,并能够正确进行计算。

2.教学难点:学生能够理解和掌握同号有理数、异号有理数以及除以0的除法运算方法。

五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助学生理解和掌握有理数除法的基本概念和运算方法。

2.实例讲解法:教师通过具体的例子,解释和说明有理数除法的运算规则,让学生能够直观地理解和掌握。

3.小组合作法:学生分组进行讨论和交流,共同解决问题,培养团队合作精神和解决问题的能力。

六. 教学准备1.教学PPT:教师准备相关的教学PPT,包括有理数除法的运算规则、例题等,以便进行直观的教学展示。

2.练习题:教师准备一些练习题,用于学生在课堂上进行操练和巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾之前学过的有理数加减乘运算,激发学生的学习兴趣,为新课的学习做好铺垫。

人教版七年级上册 1.4.2有理数的除法(第一课时)

人教版七年级上册 1.4.2有理数的除法(第一课时)

(2)15 ( 3)= 5
15( 1)= 5
3
变为倒数
观察下列两组式子,你能找到它们的共同点吗?
“÷”变“×”
(1)15 3= 5
15 1 = 5
3
变为倒数
“÷”变“×”
一变:符号; 二变:除数.
(2)15 ( 3)= 5
15( 1)= 5
3
变为倒数
三、典例精析
例1 计算:(1) 36 9
3
二、归纳法则
15 3 15 1
3
15
3
15
1 3
有理数的除法法则:
除以一个不等于0的数,等于乘这个数的倒数.
a b a 1 b≠0
b
比一比
让我们再来观察下列两个算式,商的符号及其 绝对值与被除数和除数有没有关系?试着总结 一下规律.
(1)15 3 5
(2)15 3 5
被除数与除 数符号相反
二、归纳法则
怎样计算 15 呢?
根据除法是乘法的逆运算,就是要求一个数,
使它与 相乘得 15 .
因为
(5) 3 15
所以
15 3 5

另一方面,我们有 (15) 1 5

3
于是有 15 3 15 1 ③
3
③式表明,一个数除以 可以 转化为乘 1 来进行,
3
即一个数除以 ,等于乘 的倒数 1 .
3
二、归纳法则
想一想
仿照上面的方法,我们再来看如何计算
15 3
因为 5 3 15 所以 15 3 5
想一想
(15)
1 3
(15)
1 3
5
于是有
15
3

人教版七年级数学上册1.4.2有理数的除法公开课精品教案

人教版七年级数学上册1.4.2有理数的除法公开课精品教案
(4)(-12)÷(-4)÷(-1 );
(5)(- )×(- )÷(-0.25).
二 、探究新知
1、由上面的问题1,计算方便吗?想过别的方法吗?
2、由上面的问题2,你的计算方法是先算 法,再算法。
例2计算下列各题,从对(3)(4)(5)的解决中你能发现什么?
(1)(-36 )÷9;(2)(-125 )÷(-5);
(3)-2.5÷ ×(- );
(4)(-12)÷(-4)÷(-1 );
对左边问题,学生独立解决,遇到问题学生可以提出,然后由同学补充完善,从对(3)(4)(5)的解决中不难发现进行有理数乘除运算时的运算顺序,学生自己归纳
板书设计
有理数的除法
例2计算下列各题,从对(3)(4)(5)的解决中你能发现什么?
(1)(-36 )÷9;
(2)(-125 )÷(-5);
(3)-2.5÷ ×(- );
1.4.2有理数的除法
教学目标
1)使学生了解有理数除法的意义,掌握有理数除法法则,会进行有理数的除法运算;
(2)使学生理解有理数倒数的意义,能熟练地进行有理数加减乘除混合运算.
2.过程与方法:
使学生在 探索有理数除法的过程中体会法则之间的转化关系,同时体会与乘法法则的类比关系,从而对问题思考有一定的方式和方法.
3.情感、态度与价值观:
在独立思 考的基础上,积极参与对数学问题的讨论,能从交流中获益.
教学重(难)点
正确运用法则进行有理数的混合运算
教学方法
讲授法讨论法读书指导法
学法指导
练习法
辅助准备
多媒体
教师活动
学生活动
一、创设8)÷(—1.4)、2) 2+(—8)÷2
(5)(- )×(- )÷(-0.25).

七年级数学上册(人教版)1.4.2有理数的除法(第一课时)教学设计

七年级数学上册(人教版)1.4.2有理数的除法(第一课时)教学设计
1.学生对有理数除法法则的理解程度,特别是对“除以一个不等于0的数等于乘这个数的倒数”这一概念的理解。
2.学生在运算过程中对符号的处理能力,包括正负号的判断和运算顺序的掌握。
3.学生的合作能力和交流能力,如何在小组讨论中发挥各自的优势,共同解决问题。
针对学生的个体差异,教师应采取以下策略:
1.对于基础较好、理解能力较强的学生,可以适当提高要求,引导他们进行更深入的思考和实践。
(二)讲授新知
在导入新课的基础上,我会向学生讲解有理数除法的定义和法则。首先,通过具体例题,让学生理解除以一个不等于0的数等于乘这个数的倒数。接着,讲解有理数除法的运算步骤,特别是符号的处理方法。在此过程中,注重引导学生从具体实例中发现规律,逐步提炼出有理数除法的运算规则。
(三)学生小组讨论
讲授新知后,我会组织学生进行小组讨论。将学生分成若干小组,每组4-6人,让她们针对以下问题进行讨论:
1.引导学生通过观察、分析、归纳等方法,发现并理解有理数除法的运算规律。
2.培养学生运用数学语言进行表达、交流,提高学生的合作能力。
3.引导学生从不同角度思考问题,培养学生的逻辑思维和发散思维能力。
(三)情感态度与价值观
1.使学生感受到数学学习的乐趣,激发学生学习数学的热情。
2.培养学生勇于探索、积极思考的学习态度,提高学生的自主学习能力。
2.对于基础较弱、理解能力稍差的学生,教师要耐心指导,通过具体例题和实际操作,帮助他们理解和掌握有理数除法的运算规律。
3.创设轻松愉快的学习氛围,鼓励学生积极参与课堂讨论,提高他们的自信心。
四、教学内容与过程
(一)导入新课
在课程开始时,我将通过一个与学生生活密切相关的实际问题导入新课。例如,提出以下问题:“如果你有一块巧克力,要平均分给4个好朋友,每个人能得到多少巧克力?”通过这个问题,引导学生回顾之前学过的整数除法,并自然过渡到本节课的有理数除法。接着,我会追问:“如果这块巧克力不是完整的,而是3/4块,你们还能平均分给4个好朋友吗?该如何计算?”从而引出有理数除法的概念。

人教版七年级数学上册:1.4.2《有理数的除法》教学设计3

人教版七年级数学上册:1.4.2《有理数的除法》教学设计3

人教版七年级数学上册:1.4.2《有理数的除法》教学设计3一. 教材分析人教版七年级数学上册1.4.2《有理数的除法》是学生在掌握了有理数的加法、减法、乘法的基础上进行学习的,是有理数运算法则的重要组成部分。

本节内容主要介绍有理数的除法运算方法,通过实例让学生理解有理数除法的基本概念和运算规则,培养学生运用有理数解决实际问题的能力。

二. 学情分析七年级的学生已经掌握了有理数的加法、减法、乘法,具备了一定的数学基础。

但是,对于有理数的除法,学生可能存在一些认知上的困难,如除以一个负数、除以零等问题。

因此,在教学过程中,教师需要结合学生的实际情况,通过具体实例,引导学生理解并掌握有理数除法的运算规则。

三. 教学目标1.让学生掌握有理数除法的基本概念和运算规则。

2.培养学生运用有理数解决实际问题的能力。

3.提高学生逻辑思维能力和团队协作能力。

四. 教学重难点1.教学重点:有理数除法的基本概念和运算规则。

2.教学难点:除以一个负数、除以零等特殊情况的处理。

五. 教学方法1.采用问题驱动法,引导学生主动探究有理数除法的运算规则。

2.运用实例分析法,通过具体实例让学生理解有理数除法的运算方法。

3.采用小组合作学习法,培养学生的团队协作能力和逻辑思维能力。

六. 教学准备1.准备相关课件和教学素材。

2.准备计时器,用于记录每个环节的时间。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾已学过的有理数加法、减法、乘法知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过课件展示有理数除法的基本概念和运算规则,让学生初步了解有理数除法。

3.操练(15分钟)教师提出一些有关有理数除法的问题,让学生分组讨论并解决问题。

如:–2÷3等于多少?–-5÷2等于多少?–0÷3等于多少?学生通过小组合作,共同探讨这些问题,总结出有理数除法的运算规则。

4.巩固(10分钟)教师针对本节课的内容,设计一些练习题,让学生独立完成。

人教版七年级数学上册:1.4.2《有理数的除法》教学设计1

人教版七年级数学上册:1.4.2《有理数的除法》教学设计1

人教版七年级数学上册:1.4.2《有理数的除法》教学设计1一. 教材分析《有理数的除法》是人教版七年级数学上册第一章第四节的一部分,主要内容包括有理数的除法运算和除法法则。

本节课的内容是学生在学习了有理数的加减乘法的基础上进行学习的,是对前面所学知识的进一步拓展和延伸。

教材通过具体的例子和练习题,使学生掌握有理数除法的基本运算方法,并能够灵活运用。

二. 学情分析七年级的学生已经掌握了有理数的加减乘法运算,具备了一定的数学基础。

但是,对于有理数的除法,学生可能还存在一些困惑和疑问。

因此,在教学过程中,教师需要结合学生的实际情况,通过具体的例子和练习题,引导学生理解和掌握有理数的除法运算。

三. 教学目标1.理解有理数除法的概念和意义。

2.掌握有理数除法的运算方法。

3.能够正确进行有理数除法的计算。

4.能够运用有理数除法解决实际问题。

四. 教学重难点1.教学重点:有理数除法的运算方法。

2.教学难点:理解有理数除法的概念和意义,以及如何运用有理数除法解决实际问题。

五. 教学方法采用讲授法和练习法进行教学。

通过讲解和示范,使学生理解和掌握有理数除法的运算方法。

通过练习题的训练,使学生巩固所学知识,并能够灵活运用。

六. 教学准备1.教材和教学参考书。

2.投影仪和幻灯片。

3.练习题和答案。

七. 教学过程1.导入(5分钟)通过提问的方式,引导学生回顾已学的有理数的加减乘法运算,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过讲解和示范,向学生介绍有理数的除法运算,让学生理解有理数除法的概念和意义,并掌握有理数除法的运算方法。

3.操练(10分钟)学生根据教师所给的例子,进行有理数除法的计算。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)学生独立完成教师布置的练习题,教师检查学生的答案,并及时给予指导和纠正。

5.拓展(10分钟)教师通过给出一些实际问题,让学生运用有理数除法进行解决。

教师引导学生思考和讨论,拓展学生的思维。

人教版七年级数学上册第一单元《1.4.2有理数的除法法则》教案设计

人教版七年级数学上册第一单元《1.4.2有理数的除法法则》教案设计

人教版七年级数学上册第一单元《有理数的除法法则》教案设计1.4.2有理数的除法第1课时有理数的除法法则1.理解有理数除法的意义,掌握有理数除法法则,会进行有理数除法运算;(重点)2.通过学习有理数除法法则,体会转化思想,会将乘除混合运算统一为乘法运算.(难点)一、情境导入1.计算:(1)25×0.2=________; (2)12×(-3)=________;(3)(-1.2)×(-2)=________;(4)(-125)×0=________. 2.由(-3)×4=________,再由除法是乘法的逆运算,可得(-12)÷(-3)=4,(-12)÷4=______.同理,(-3)×(-4)=________,12÷(-4)=________,12÷(-3)=________. 观察上面的算式及计算结果,你有什么发现?换一些算式再试一试.二、合作探究探究点一:有理数的除法及分数化简【类型一】 直接判定商的符号和绝对值进行除法运算计算:(1)(-15)÷(-3);(2)12÷(-14); (3)(-0.75)÷(0.25).解析:采用有理数的除法:两数相除,同号得正,异号得负,并把绝对值相除解答. 解:(1)(-15)÷(-3)=+(15÷3)=5;(2)12÷(-14)=-(12÷14)=-48; (3)(-0.75)÷(0.25)=-(0.75÷0.25)=-3.方法总结:注意先确定运算的符号.根据“同号得正,异号得负”的法则进行计算.本题属于基础题,考查对有理数的除法运算法则掌握的程度. 【类型二】 分数的化简 化简下列分数: (1)-21-7=________;(2)-36=________;(3)-6-0.3=________;(4)-28-49=________. 解析:(1)-21-7=-7×3-7=3;(2)-36=-3(-3)×(-2)=-12;(3)-6-0.3=(-0.3)×20-0.3=20;(4)-28-49=2849=4×77×7=47. 解:(1)3;(2)-12;(3)20;(4)47. 方法总结:化简分数时要注意分子、分母的符号,同号结果为正,异号结果为负.【类型三】 将除法转化为乘法进行计算计算:(1)(-18)÷(-23); (2)16÷(-43)÷(-98). 解析:本题可采用有理数的除法:除以一个数就等于乘以这个数的倒数解答.解:(1)(-18)÷(-23)=(-18)×(-32)=18×32=27; (2)16÷(-43)÷(-98)=16×(-34)×(-89)=16×34×89=323. 方法总结:此题考查了有理数的除法运算,有理数的除法运算通常利用除以一个数等于乘以这个数的倒数化为乘法运算来求.【类型四】 根据a b ,a +b 的符号,判断a 和b 的符号如果a +b <0,a b >0,那么这两个数( )A .都是正数B .符号无法确定C .一正一负D .都是负数解析:∵a b>0,根据“两数相除,同号得正”可知,a 、b 同号,又∵a +b <0,∴可以判断a 、b 均为负数.故选D.方法总结:此题考查了有理数乘法和加法法则,将二者综合考查是考试中常见的题型,此题的侧重点在于考查学生的逻辑推理能力.探究点二:有理数的乘除混合运算计算:(1)-2.5÷58×(-14); (2)(-47)÷(-314)×(-112). 解析:(1)把小数化成分数,同时把除法变成乘法,再根据有理数的乘法法则进行计算即可.(2)首先把乘除混合运算统一成乘法,再确定积的符号,然后把绝对值相乘,进行计算即可.解:(1)原式=-52×85×(-14)=52×85×14=1; (2)原式=(-47)×(-143)×(-32)=-(47×143×32)=-4. 方法总结:解题的关键是掌握运算方法,先统一成乘法,再计算.三、板书设计有理数除法法则:1.任何数除以一个不为0的数,等于乘以这个数的倒数,即a ÷b =a ×1b(b ≠0). 2.(1)两个数相除,同号为正,异号得负,并把绝对值相除.(2)0除以任何一个不为0的数,都得0.让学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用.教学设计是可以采用课本的引例做为探究除法法则的导入.让学生自己探索并总结除法法则,同时也让学生对比乘法法则和除法法则,加深印象.教学时应该使学生掌握除法的两种运算方法:1.在除式的项和数字不复杂的情况下直接运用除法法则求解;2.在多个有理数进行除法运算或者是乘、除混合运算时应该把除法转化为乘法,然后统一用乘法的运算律解决问题.1.4.2 有理数的除法第1课时有理数的除法法则教学目标:1.了解有理数除法的定义.2.经历探索有理数除法法则的过程,会进行有理数的除法运算.3.会化简分数.教学重点:正确应用法则进行有理数的除法运算.教学难点:怎样根据不同的情况来选取适当的方法求商.教与学互动设计:(一)创设情境,导入新课1.小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?(50×20=1000)放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?(1000÷50=20).2.从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?(二)合作交流,解读探究1.比较大小:8÷(-4)8×(-);(-15)÷3 (-15)×;(-1)÷(-2)(-1)×(-).小组合作完成上面题目的填空,探讨并归纳出有理数的除法法则.2.运用法则计算:(1)(-15)÷(-3);(2)(-12)÷(-);(3)(-8)÷(-).观察商的符号及绝对值同被除数和除数的关系,探讨归纳有理数除法法则的另一种说法.3.师生共同完成课本P34例5,P35例6、例7.乘除混合运算该怎么做呢?通过课本P36例7的学习,由学生自己叙述计算的方法:先将除法转换为乘法,然后确定积的符号,最后求出结果.(三)应用迁移,巩固提高1.计算:(1)(-36)÷9;(2)(-63)÷(-9);(3)(-)÷;(4)0÷3;(5)1÷(-7);(6)(-6.5)÷0.13;(7)(-)÷(-);(8)0÷(-5).2.化简下列分数:(1);(2);(3);(4).(四)总结反思,拓展升华本节课大家一起学习了有理数除法法则.有理数的除法计算有2种方法:一是根据“除以一个数等于乘以这个数的倒数”,二是根据“两数相除,同号得正,异号得负,并把绝对值相除”.一般能整除时用第二种方法.(五)课堂跟踪反馈夯实基础1.选择题(1)如果一个数除以它的倒数,商是1,那么这个数是()A.1B.2C.-1D.±1(2)若两个有理数的商是负数,那么这两个数一定是()A.都是正数B.都是负数C.符号相同D.符号不同提升能力2.计算题(1)(-2)÷(-);(2)3.5÷÷(-1); (3)-÷(-7)÷(-);(4)(-1)÷(+)÷(-).第2课时 有理数的加、减、乘、除混合运算1.能熟练地运用有理数的运算法则进行有理数的加、减、乘、除混合运算;(重点)2.能运用有理数的运算律简化运算;(难点)3.能利用有理数的加、减、乘、除混合运算解决简单的实际问题.(难点)一、情境导入1.在小学我们已经学习过加、减、乘、除四则运算,其运算顺序是先算________,再算________,如果有括号,先算__________里面的.2.观察式子3×(2+1)÷(5-12),里面有哪几种运算,应该按什么运算顺序来计算? 二、合作探究 探究点一:有理数的加、减、乘、除混合运算计算:(1)(2-13)×(-6)-(1-12)÷(1+13); (2)(-316-113+114)×(-12). 解析:(1)先计算括号内的,再按“先乘除,后加减”的顺序进行;(2)可考虑利用乘法的分配律进行简便计算.解:(1)(2-13)×(-6)-(1-12)÷(1+13)=53×(-6)-12÷43=(-10)-12×34=-10-38=-1038; (2)(-316-113+114)×(-12)=(-3-16-1-13+1+14)×(-12)=(-3-14)×(-12)=-3×(-12)-14×(-12)=3×12+14×12=36+3=39. 方法总结:在进行有理数的混合运算时,应先观察算式的特点,若能应用运算律进行简化运算,就先简化运算,在简化运算后,再利用混合运算的顺序进行运算.探究点二:运用计算器进行有理数的混合运算用计算器计算:-25÷5-15×(-23). 解析:不同品牌的计算器的操作方法可能有所不同,具体参见计算器的使用说明. 解:按键顺序为(-)25÷5-15×(-)2÷3=就可得结果为5.探究点三:有理数混合运算的应用已知海拔每升高1000m ,气温下降6℃,某人乘热气球旅行,在地面时测得温度是8℃,当热气球升空后,测得高空温度是-1℃,热气球的高度为________m.解析:此类问题考查有理数的混合运算,解题时要正确理解题意,列出式子求解,由题意可得[8-(-1)]×(1000÷6)=1500(m),故填1500.方法总结:本题的考点是有理数的混合运算,熟练运用运算法则是解题的关键.三、板书设计1.有理数加减乘除混合运算的顺序:先算乘除,再算加减,有括号的先算括号里面的,同级运算从左到右依次进行.2.利用运算律简化运算3.运用计算器进行有理数的混合运算4.有理数混合运算的应用这节课主要讲授了有理数的加减乘除混合运算.运算顺序“先乘除后加减”学生早已熟练掌握,让学生学会分析题目中所包含的运算是本节课的重难点.在教学时,要注意结合学生平时练习中出现的问题,及时纠正和指导,培养学生良好的解题习惯.1.4.2 有理数的除法第4课时有理数的加、减、乘、除混合运算教学目标:掌握有理数加、减、乘、除运算的法则及运算顺序,能够熟练运算.教学重难点:如何按有理数的运算顺序,正确而合理地进行计算.教与学互动设计:(一)创设情境,导入新课观察式子×(-)×÷里有哪种运算,应该按什么运算顺序来计算较简便?(二)合作交流,解读探究引导首先计算小括号里的减法,然后再按照从左到右的顺序进行乘除运算,这样运算的步骤基本清楚了.另外带分数进行乘除运算时,必须化成假分数.注意有理数混合运算的步骤:先乘除,后加减,有括号先算括号里面的.(三)应用迁移,巩固提高【例1】(1)-3÷2÷(-2);(2)-×(-1)÷(-2);(3)-÷×(-)÷(-);(4)20÷(-4)×5+5×(-3)÷15-7.【例2】某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元.这个公司去年总的盈亏情况如何?(四)总结反思,拓展升华引导学生一起小结:①有理数的运算顺序:先乘除,后加减,有括号的先算括号里面的;②要注意认真审题,根据题目意思正确选择途径,仔细运算,注意检查,使结果无误.(五)课堂跟踪反馈夯实基础1.选择题(1)下列各数中互为倒数的是()A.4和-B.-0.75和-C.-1和1D.-5和(2)若a<b<0,那么下列式子成立的是()A.<B.ab<1C.>1D.<12.若a、b互为倒数,c、d互为相反数,m为最大的负整数,则+ab+= .提升能力3.计算题(1)(-4)÷(-2)÷(-1);(2)(-5)÷(-1)××(-2)÷7;(3)1÷(-1)+0÷(-5.6)-(-4.2)×(-1);(4)÷(+-).4.已知a、b互为相反数,c、d互为倒数,x的绝对值为1,求3x-(a+b+cd)-x.。

人教版初中数学七年级上册精品教学课件 第1章 有理数 1.4.2 第1课时 有理数的除法

人教版初中数学七年级上册精品教学课件 第1章 有理数 1.4.2 第1课时 有理数的除法
大数的符号相同,a,b的绝对值无法比较大小,故a+b的正负不能确定.
4.下列各式的值等于 9 的是( D )
A.
|+63|
-7
-63
5.计算:
(1)(-36)÷(-12)=
3
|-63|
B. |-7|
3
(2)64 ÷ -3 8 =
C. -|-7|
;
3
-2
.
D.
-63
-7
快乐预习感知
6.化简:
-32
=
题可以利用除法法则直接除;第(2)小题不能整除,可以先确定符号,
利用小学学过的约分进行化简.
-18
=-18÷3=-6.
3
-24
24÷8
3
(2)-16 = 16÷8 = 2.
解:(1)
快乐预习感知
1
1.若=-4,则 x 的值是( C )
1
பைடு நூலகம்
A.4
B.4
1
C.-4
D.-4
2.下列运算错误的是( A )
-8
B. 4
-8
C.-4
8
D.-4
相除.0
互动课堂理解
1.有理数的除法法则的运用
【例 1】 计算:
(1)(-15)÷(-3);
1
(2)(-12)÷ - 4 ;
(3)(-0.75)÷0.25;
1
(4)(-12)÷ - ÷(-100).
12
分析第(1)(3)小题直接运用除法法则进行有理数的除法运算,首
4
-6
(2)-0.2=
9
(3)--72=
(1)
-8
;
30

人教版数学七年级上册1.4.2《有理数的除法(1)》教学设计1

人教版数学七年级上册1.4.2《有理数的除法(1)》教学设计1

人教版数学七年级上册1.4.2《有理数的除法(1)》教学设计1一. 教材分析《有理数的除法(1)》是人教版数学七年级上册的教学内容,本节课主要让学生掌握有理数除法的基本运算方法,理解有理数除法的运算规律,培养学生解决实际问题的能力。

教材通过引入日常生活中的一些实例,让学生感受有理数除法的实际意义,进而引导学生探究有理数除法的运算方法。

二. 学情分析学生在七年级上册已经学习了有理数的加法、减法、乘法,对有理数的基本运算有了初步了解。

但学生在解决实际问题时,往往不能灵活运用有理数运算规律。

因此,在教学过程中,教师需要关注学生的认知水平,引导学生将实际问题转化为有理数除法运算问题,并通过实例让学生感受有理数除法的运算规律。

三. 教学目标1.知识与技能:使学生掌握有理数除法的基本运算方法,理解有理数除法的运算规律。

2.过程与方法:培养学生解决实际问题的能力,提高学生运用有理数除法解决生活中的问题。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、合作探究的精神。

四. 教学重难点1.教学重点:有理数除法的基本运算方法。

2.教学难点:理解有理数除法的运算规律,解决实际问题。

五. 教学方法1.情境教学法:通过引入日常生活中的一些实例,让学生感受有理数除法的实际意义。

2.引导发现法:教师引导学生观察、分析实例,发现有理数除法的运算规律。

3.合作学习法:学生分组讨论,共同解决问题,提高学生合作能力。

六. 教学准备1.教学课件:制作课件,展示实例和教学内容。

2.教学素材:准备一些实际问题,用于引导学生解决。

3.教学工具:黑板、粉笔、投影仪等。

七. 教学过程1.导入(5分钟)利用课件展示日常生活中的一些实例,如购物时找零、制作食品时配料等,引导学生感受有理数除法的实际意义。

2.呈现(10分钟)教师通过讲解,向学生介绍有理数除法的基本运算方法,如“同号两数相除,异号两数相除”等。

同时,引导学生观察实例,发现有理数除法的运算规律。

人教版数学七年级上册1.2《有理数的除法》教案

人教版数学七年级上册1.2《有理数的除法》教案

人教版数学七年级上册1.2《有理数的除法》教案一. 教材分析《有理数的除法》是初中数学的重要内容,人教版七年级上册第1.2节主要介绍有理数的除法法则。

学生在学习了有理数的加减乘法之后,进一步学习有理数的除法,有助于加深对有理数运算规律的理解。

本节内容通过具体的例子,引导学生掌握有理数除法的基本法则,为学生以后学习更复杂的数学运算打下基础。

二. 学情分析学生在进入七年级之前,已经掌握了整数的除法运算,但对负数的除法了解不多。

因此,在教学过程中,教师需要利用学生已有的知识,通过具体的实例,引导学生理解负数除法的规律。

同时,学生需要在学习过程中,培养运算的准确性,以及解决问题的能力。

三. 教学目标1.了解有理数除法的基本概念,掌握有理数除法的法则。

2.能够正确进行有理数的除法运算。

3.培养学生的运算能力,提高学生解决问题的能力。

四. 教学重难点1.教学重点:有理数除法的基本法则,有理数除法的运算过程。

2.教学难点:负数除法运算的理解,以及运算过程的准确性。

五. 教学方法采用问题驱动法,通过实例引导学生自主探究有理数除法的规律,以小组合作交流的方式,共同解决问题。

同时,结合讲授法,对学生的疑问进行解答,帮助学生深入理解有理数除法。

六. 教学准备1.教学PPT,包括有理数除法的定义,除法法则,以及相关的实例。

2.练习题,包括不同类型的有理数除法题目。

3.教学黑板,用于板书关键知识点和运算过程。

七. 教学过程1.导入(5分钟)教师通过一个简单的实例,引导学生回顾整数的除法运算,激发学生的学习兴趣。

例如:5除以3等于多少?引导学生思考,引出有理数除法的学习。

2.呈现(10分钟)教师通过PPT展示有理数除法的定义,除法法则,以及相关的实例。

让学生初步了解有理数除法的基本概念。

3.操练(10分钟)教师提出练习题目,让学生独立完成。

例如:计算以下有理数除法题目:(1)8除以3;(2)-6除以4;(3)7除以-2。

教师在这个过程中,对学生的疑问进行解答,帮助学生掌握有理数除法的运算过程。

7年级数学上册 1.4.2 有理数的除法(1)

7年级数学上册 1.4.2 有理数的除法(1)

1.4.2 有理数的除法
第1课时
·
教学目标 理解有理数的除法法则,能够运用有理数的除法法则进 行有理数的除法运算.
教学重难点 重点:正确应用法则进行有理数的除法运算. 难点:根据不同的情况选取适当的方法求商.
1a÷.除b以=a一 b1个不(等b于≠00)的. 数,等于乘这个数的 倒数 ,即 2.两数相除,同号得 正 ,异号得 负 ,并把绝对 值相除 .0除以任何一个不等于0的数,都得0 .
观察右侧算式, 两个有理数相除时:
除法能否转化为乘法? 商的符号如何确定?
商的绝对值如何确定?
正数除以正数 负数除以正数 零除以正数
8÷4 =2 8 1 =2 4
(-8)÷4 =-2 (8) 1 =-2 4
0÷4 =0 0 1 =0 4
因为 所以
(-2)×48=-84, 8 1
4
(-8)÷(4=8)-24.
(8)
1 4
04 0 1 4
除以一个非零的数等于乘以这个正数的倒数。
有理数除法法则:组卷网
除以一个数, 等于_乘__以_这__个__数__的__倒_数__学_科_网.
a÷b=a ·1 (b≠0).
b
注意:除法在运算时有 2 个要素要发生变化。
1除变 乘 2 除数 变 倒数
72÷9=__8__,
0除以任何一个不等于0的数都得__0___.
0不能作为除数
知识点 有理数除法法则 C
B
C
4
1 4
-2
A D
-4 -13
-3 30
解:(1)原式=
5 8
解:(2)原式= 2
3
解:(3)原式= 3
5
解:(4)原式= 5 7

人教版七年级数学上册1.4.2《有理数的除法》教案

人教版七年级数学上册1.4.2《有理数的除法》教案
3.重点难点解析:在讲授过程中,我会特别强调同号异号判断和绝对值计算这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数除法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示有理数除法的基本原理,如用实物进行分割等。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解有理数除法的基本概念。有理数除法是指将两个有理数相除的运算。它是解决生活中分配、分割等问题的有力工具。
2.案例分析:接下来,我们来看一个具体的案例。例如,如果8个苹果要平均分给4个小朋友,每个小朋友能得到几个苹果?通过这个案例,展示有理数除法在实际中的应用,以及它如何帮助我们解决问题。
1.教学重点
(1)有理数除法法则:同号得正,异号得负,绝对值相除;
(2)有理数除法运算方法:先判断符号,再计算绝对值;
(3)乘除互为逆运算的原理;
(4)运用有理数除法解决实际问题。
举例解释:
-重点1:强调同号得正,异号得负的法则,使学生掌握除法运算的基本规律;
-重点2:训练学生先判断符号,再进行绝对值运算的步骤,提高解题准确性;
人教容】
一、教学内容
人教版七年级数学上册1.4.2《有理数的除法》
1.理解有理数的除法法则,掌握有理数除法的运算方法;
2.能够熟练运用除法法则,解决实际问题;
3.了解除法与乘法的关系,掌握乘除互为逆运算的原理。
具体内容包括:
(1)有理数除法法则:同号得正,异号得负,绝对值相除;
此外,学生在小组讨论中分享的成果让我看到了他们的创新意识和解决问题的能力。但同时,我也发现有些学生对于乘除互为逆运算的原理理解不够透彻,这在一定程度上影响了他们解题的思路。针对这一点,我计划在复习环节中加入更多关于乘除互为逆运算的实例,帮助学生巩固这一知识点。

人教版七年级上册数学教学设计:1.4.2有理数的除法

人教版七年级上册数学教学设计:1.4.2有理数的除法




知识和能力的储备
在前一节课学生已经学习了有理数的乘法运算,并且在小学阶段学生已经知道除法是乘法的逆运算,这为我们推导有理数的除法法则打下了基础。
教学难点
(1)商的符号的确定。
(2)0不能作除数的理解。
教学目标
学会进行有理数的除法运算
能利用有理数的除法法则化简一个分数
死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。
四、拓展提升
经历利用已有的知识解决新问题的探索过程




教学内容与师生活动
设计意图和
关注的学生
一、旧知复习
写出下列各数的倒数(完成下面的表格)。
二、新知学习
【学习指导一】
1.完成下列计算
2、归纳有理数的除法法则:
1)、除以一个不等于0的数,等于.
教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。2)、两数相除,同号得,异号得,并把绝对值相,0除以任何一个不等于0的数,都得.
3.小练习:
计算(1) (2)
【自学指导二】尝试训练
化简下列分数:
反思与收获:分数可以理解为_________除以________.
三、巩固练习

人教版七年级数学上册:1.4.2《有理数的除法》说课稿

人教版七年级数学上册:1.4.2《有理数的除法》说课稿

人教版七年级数学上册:1.4.2 《有理数的除法》说课稿一. 教材分析人教版七年级数学上册1.4.2《有理数的除法》这一节,是在学生掌握了有理数的概念、加减乘除法的基础上进行讲解的。

本节内容主要介绍有理数的除法运算规则,使学生能够熟练掌握有理数的除法运算,并能够灵活运用到实际问题中。

教材从生活实例出发,引导学生学习有理数的除法,让学生通过观察、分析、归纳等过程,自己发现并总结有理数除法的运算规则。

然后,通过大量的练习,使学生熟练掌握有理数的除法运算,提高学生的数学运算能力。

二. 学情分析七年级的学生已经掌握了有理数的基本概念,具备了一定的数学运算能力,能够理解和掌握有理数的加减乘除法。

但是,对于有理数的除法,由于生活中的除法实例与数学中的除法存在一定的差异,学生可能对此部分内容的理解存在一定的困难。

因此,在教学过程中,教师需要关注学生的学习情况,针对学生的疑难点进行重点讲解,引导学生通过观察、分析、归纳等方法,自主发现并总结有理数除法的运算规则。

三. 说教学目标1.知识与技能目标:使学生理解有理数除法的概念,掌握有理数除法的运算规则,能够熟练地进行有理数的除法运算。

2.过程与方法目标:通过观察、分析、归纳等方法,培养学生自主学习的能力,提高学生的数学思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生感受到数学与生活的紧密联系。

四. 说教学重难点1.教学重点:有理数除法的运算规则,有理数除法运算的步骤。

2.教学难点:理解有理数除法的本质,掌握有理数除法的运算规则,能够灵活运用到实际问题中。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等,引导学生自主学习,发现并总结有理数除法的运算规则。

2.教学手段:利用多媒体课件、黑板、粉笔等传统教学手段,结合数学软件、网络资源等现代教育技术手段,提高课堂教学效果。

六. 说教学过程1.导入新课:通过生活实例,引导学生学习有理数的除法,激发学生的学习兴趣。

最新人教版《有理数的除法》教学设计教案(第1课时)

最新人教版《有理数的除法》教学设计教案(第1课时)

第一章有理数1.4 有理数的乘除法1.4.2 有理数的除法第1课时一、教学目标【知识与技能】掌握有理数除法法则,会进行有理数的除法运算以及分数的化简.【过程与方法】通过学习有理数除法法则,体会转化思想,会将乘除混合运算统一为乘法运算.【情感态度与价值观】培养学生勇于探索积极思考的良好学习习惯.二、课型新授课三、课时第1课时,共2课时。

四、教学重难点【教学重点】正确应用法则进行有理数的除法运算.【教学难点】灵活运用有理数除法的两种法则.五、课前准备教师:课件、直尺、倒数图片等。

学生:三角尺、练习本、铅笔、圆珠笔或钢笔。

六、教学过程(一)导入新课根据实验测定,高度每增加1km,气温大概下降6℃. 某登山运动员攀登某高峰的途中发回信息,报告他所在高度的温度是-15℃,当时地面气温为3℃. 请问你能确定登山运动员所在的位置高度吗?(出示课件2)(二)探索新知1.师生互动,探究有理数的除法法则(出示课件4)教师问1:小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?学生回答:50×20=100.教师问2:放学时,小明仍然以每分钟50米的速度回家,应该走多少分钟?学生回答:100 ÷50=20.教师问3:从上面这个例子你可以发现,有理数除法与有理数乘法之间满足怎样的关系?学生回答:有理数除法与有理数乘法互为逆运算.教师问4:引入负数后,如何计算有理数的除法呢?以8÷(-4)为例.(出示课件5)师生共同讨论后解答如下:根据除法意义,这就是要求一个数,使它与-4相乘得8.因为(-2)×(-4)=8所以8÷(-4)=-2 ①另外,我们知道,8×(-14)=-2 ②由①、②得8÷(-4)=8×(-14)③③式表明,一个数除以-4可以转化为乘以-14来进行,即一个数除以-4,℃等于乘以-4的倒数-14.教师问5:对于其他的数是不是也可以呢?请完成下面的题目:(出示课件6)学生回答:中间组由上到下答案依次为:-2,-6,45,-8;右边组由上到下答案依次为:-2,-6,45,-8;教师问6:上面各组数计算结果有什么关系?由此你能得到有理数的除法法则了吗?学生回答:上面各组数计算结果相等,有理数的除法可以转化为乘法进行计算.教师问7:观察下列两组式子,你能找到它们的共同点吗?(出示课件7)学生回答:除以一个数等于乘以它的倒数.教师问8:除数能为0吗?学生回答:不能为0.教师问9:换其他数的除法进行类似讨论,是否仍有除以a(a≠0)可以转化为乘以1a呢?[例如(-10)÷(-0.4)]学生做题后回答:仍然可以.总结点拨: 从而得出有理数除法法则:(出示课件8)除以一个不等于0的数,等于乘以这个数的倒数.这个法则也可以表示成:a÷b=a·1b(b≠0), 其中a 、b 表示任意有理数(b≠0)教师问10:利用上面的除法法则计算下列各题.(出示课件9)(1)(–54)÷ (–9); (2)(–27) ÷3;(3)0 ÷ (–7); (4)(–24) ÷(–6).学生回答:(1)6;(2)-9;(3)0;(4)4教师问11:从上面我们能发现商的符号有什么规律?学生回答:同号得正,异号得负.总结点拨:(出示课件10)两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.教师问12:到现在为止我们有了两个除法法则,那么两个法则是不是都可以用于解决两数相除呢?(出示课件11)师生共同解答如下:1. 两个法则都可以用来求两个有理数相除.2. 如果两数相除,能够整除的就选择法则二,不能够整除的就选择用法则一.例1:计算:(出示课件12)(1)(–36) ÷ 9;(2)(-1225)÷(-35) .师生共同解答如下:解:(1)(–36) ÷ 9= –(36×19 )= –4;(2)例2:化简下列各式:(出示课件14)(1) −123 ;(2)−45−12 . 师生共同解答如下:解:(1)(2)例3:计算:(出示课件)(1) (2) 师生共同解答如下:解:(1)原式=12557 ÷5=(125+57)×15=125×15+57×15=25+17=2517点拨:如果有带分数,可以将带分数写成整数部分和分数部分的和,利用分配律进行运算,更加简便.(2)原式=52×85×14= 1点拨:将小数化为分数.总结点拨:1. 有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算.2. 乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算).(三)课堂练习(出示课件19-22)1. (–21) ÷7的结果是( )A .3B .–3C .13 D. –132. 计算:(–12) ÷ 3=_______.3. 填空:(1)若a ,b 互为相反数,且a ≠ b ,则a b =________;(2)当a < 0时,|a |a =_______;(3)若 a>b ,a b <0,则a ,b 的符号分别是__________. (4)若–3x=12,则x =_____.4.若|2x +6|+|3−y |=0,则x y =_________.5. (1)计算(- 45)÷(- 2) ;(2)计算-0.5÷78×(- 54);(3)计算(-7)÷(- 32)÷(- 75)参考答案:1.B2.-43.(1)-1;(2)-1;(3)a>0,b<0;(4)-44.-1 解析:由题意得,|2x +6|+|3−y |=0,解得x=-3,y=3,所以x y =−33=-1.5.解:(1)原式=45×12=25(2)原式=12×87×54=57(3)原式=-7×23×57=-103(四)课堂小结今天我们学了哪些内容:除以一个不等于0的数,等于乘以这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除.零除以任何一个不等于零的数,都得零.(五)课前预习预习下节课(1.4.2)36页到37页的相关内容。

1.4.2 有理数的除法(课时1) 教案

1.4.2 有理数的除法(课时1) 教案
例2:化简下列分数:
(分子除以分母。学生独立完成。
师:有理数除法化为有理数乘法以后,可以利用有理数乘法的运算律简化运算。
例3:计算:
(1) ;(2)
师:除法运算中遇到小数、分数问题,我们应如何处理?遇到乘除混合运算,应如何处理?
生:像小学一样,小数化成分数,可以进行约分;遇到乘除混合运算,先把除法转化为乘法。
1.4.2有理数的除法(1)
课型
新授
单位
主备人
教学目标:
1.知识与技能:理解有理数除法法则,会进行有理数的除法运算。
2.过程与方法:让学生经历有理数除法法则的探究过程,培养学生的观察、归纳、概括、运算及逆向思维能力。
3.情感、价值观:通过学生自己思索、判断,培养学生学习数学的自信心。
重点、难点:
教学重点:探究有理数除法法则的形成过程,熟记两则有理数除法法则法则,能有根据地有步骤地进行有理数除法运算。
教学难点:有理数除法法则的发现及法则的完整表述,商的符号的正确处理。
教学准备:
PPT课件和微课等。
教学过程
一、创设情景、引入新课
课件出示:小明从家里到学校,每分钟走50米,共走了20分钟,问小明家离学校有多远?
放学后,小明仍然以每分钟50米的速度回家,应该走多少分钟?
师:1.从上面的例子你可以发现,有理数除法与乘法之间满足怎样的关系?
生:除法与乘法之间有互逆关系
2.学生回答完问题后,教师提出课题——有理数的除法。
3.你能很快地说出下列各数的倒数吗?
原数
-5
7
0
-1
倒数
【让学生回顾之前学过的倒数知识,为学习有理数除法作好准备。】
二、自主学习、合作探究
1.如何解决

最新人教部编版初一七年级数学上册《有理数的除法》优质教案

最新人教部编版初一七年级数学上册《有理数的除法》优质教案

1.4.2有理数的除法第1课时 有理数的除法【知识与技能】1.了解有理数除法的定义.2.经历有理数除法法则的导出及运用过程,会进行有理数的除法运算.【过程与方法】1.通过有理数除法法则的导出及运用,让学生体会转化思想.2.培养学生运用数学思想指导数学思维活动的能力.【情感态度】在独立思考的基础上,积极参与对数学问题的讨论,能从交流中获益.【教学重点】正确应用法则进行有理数的除法运算.【教学难点】怎样根据不同的情况来选取适当的方法求商.一、情境导入,初步认识我们在前几节课和大家一起学习了有理数的乘法.并且还由乘法而认识了有理数的倒数问题.那大家知道乘法的逆运算是什么?该如何计算和应用.这就是本节课我们学习的内容.试一试 (-10)÷2=?交流因为除法是乘法的逆运算,也就是求一个数“?”,使(?)×2=-10 显然有(-5)×2=-10,所以(-10)÷2=-5我们还知道:(-10)×21=-5 由上式表明除法可转为乘法.即:(-10)÷2=(-10)×21 再试一试:(-16)÷(-4)=?【归纳结论】除以一个数,等于乘以这个数的倒数(除数不能为0).用字母表示为a ÷b=a ×b 1(b ≠0). 二、思考探究,获取新知 计算:(1)(-36)÷9; (2)(-63)÷(-9);(3)(-1512)÷53; (4)0÷3; (5)1÷(-7); (6)(-6.5)÷0.13; (7)(-54)÷(-52); (8)0÷(-5). 思考在大家的计算过程中,应用除法法则的同时,有没有新的发现?【教学说明】让学生进行分组讨论并计算,师生共同归纳结论.【归纳结论】两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.在得出以上结论后,教师向学生阐述:这个运算方法的得出为计算有理数除法又添了一种方法.我们要根据具体情况灵活选用方法.大家试着比较一下,以上各题分别用哪种运算法则更简便.【讨论】(1)、(2)、(5)、(6)用确定符号,并把绝对值相除.(3)、(7)用除以一个数,等于乘以这个数的倒数.【教学说明】在小学里学生都知道除号与分数线可相互转换,如-312=-12÷3.利用这个关系,学生可以将分数进行化简.试一试 教材第35页练习.三、典例精析,掌握新知例1 化简下列分数(1)-312(2)-1245(3)14-7-(4)8-0 【教学说明】此题较简单,可让学生口答.完成此题后,教师让学生接着做教材第36页上面的练习第1题.A.1个B.2个C.3个D.4个【分析】本题含有绝对值符号,故要考虑a 、b 的正负情况.当a>0,b>0时,原式=2;当a>0,b<0或a<0,b>0时,原式=0;当a<0,b<0时,原式=-2,所以一共有2,0,-2三个可能的值,选C.例3试着用计算器计算(1)-0.056÷1.4=________; (2)1.252÷(-4.4)≈________;(3)(-3.561)÷(-1.96)≈________.【答案】(1)-0.04 (2)-0.285 (3)1.817【教学说明】让学生练习用计算器进行有理数的除法计算.通过自己的亲身的探索、操作而增强学生的独立意识和动手能力.四、运用新知,深化理解1.(1)如果一个数除以它的倒数,商是1,那么这个数是( )A.1B.2C.-1D.±1(2)若两个有理数的商是负数,那么这两个数一定是( )A.都是正数B.都是负数C.符号相同D.符号不同(4)若a+b<0,ab >0,则下列成立的是( ) A.a>0,b>0B.a<0,b<0C.a>0,b<0D.a<0,b>02.计算题.【教学说明】本栏目设计了两道大题,第1大题为选择题,是有关概念性的内容,可让学生回答,第2题为计算题,可让学生独立完成后板演.【答案】1.(1)D (2)D (3)B (4)B2.(1)6(2)-27(3)-53(4)935五、师生互动,课堂小结本节课大家一起学习了有理数除法法则.有理数的除法有两种方法,一是除以一个数等于乘以这个数的倒数,二是“两数相除,同号得正,异号得负,并把绝对值相除”.一般能整除时用第二种.1.布置作业::从教材习题1.4中选取.2.完成练习册中本课时的练习.3.选做题.(1)若a 、b 是互为倒数,则3ab=_______.(2)若xyz<0,且yz<0,那么x_______0.(填“>”或“<”)(3)当_______时,代数式2-x 3没有意义. (4)________的倒数等于本身,________的相反数等于本身,_________的绝对值等于本身,一个数除以________等于本身,一个数除以________等于这个数的相反数.本节知识是在学生已有有理数乘法知识的基础上,可通过学生经历从具体情境中抽象出法则的过程,使他们发现其中的规律,掌握必要的技能,于学习中发展数感和符号感.教学时遵循启发式教学原则,注意创设问题情境,及时点拨,通过学生亲自演算和教师的引导,达到准确认识有理数除法法则的目的.成功名言警句:2、对我来说,不学习,毋宁死。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.4.2《有理数的除法》教案
第1课时有理数的除法
教学内容
课本第34页.
教学目标
1.知识与技能
掌握有理数除法法则,会进行有理数的除法运算以及分数的化简.
2.过程与方法
通过学习有理数除法法则,体会转化思想,会将乘除混合运算统一为乘法运算.
3.情感态度与价值观
培养学生勇于探索积极思考的良好学习习惯.
重、难点与关键
1.重点:正确应用法则进行有理数的除法运算.
2.难点:灵活运用有理数除法的两种法则.
3.关键:会将有理数的除法转化为乘法.
教学过程
一、复习提问
1.小学里,除法的意义是什么?它与乘法有什么关系?
已知两数的积与一个因数,求另一个因数,用除法,乘法与除法互为逆运算除以一个数等于乘以这个数的倒数.
2.求下列各数的倒数:
(1)-;(2)-0.125;(3)-1.
二、新授
引入负数后,如何计算有理数的除法呢?
例如8÷(-4).
根据除法意义,这就是要求一个数,使它与-4相乘得8.
因为(-2)×(-4)=8
所以 8÷(-4)=-2 ①
另外,我们知道,8×(-)=-2 ②
由①、②得 8÷(-4)=8×(-)③
③式表明,一个数除以-4可以转化为乘以-来进行,即一个数除以-4,•等于乘以-4的倒数-.
探索:换其他数的除法进行类似讨论,是否仍有除以a(a≠0)可以转化为乘以呢?[例如(-10)÷(-4)]
从而得出有理数除法法则:
除以一个不等于0的数,等于乘以这个数的倒数.
这个法则也可以表示成:
a÷b=a·(b≠0),
其中a、b表示任意有理数(b≠0)
例如:
两数相除的商仍有符号和绝对值两部分组成,由于除法可转化为乘法,因此商的符号确定与有理数乘法类似,你能否得到与有理数乘法法则类似的除法法则吗?
两数相除,同号得正,异号得负,并把绝对值相除.
零除以任何一个不等于零的数,都得零.
这是有理数除法法则的另一种说法,具体采用哪一种方法,灵活选用.
例5:计算:(1)(-36)÷9;(2)(-)÷(-).
分析:(1)题,36能被9整除,可以用方法二,直接除;(2)题是分数除法,•可转化为乘法.
解:(1)(-36)÷9=-(36÷9)=-4(先确定符号,再求绝对值);
(2)(-)÷(-)=(-)×(-)=.
例6:化简下列分数:
(1);(2).
分析:分数可以理解为除法,所以要按除法法则进行,可以直接除,也可以转化为乘法,利用乘法的运算性质简化分数.
解:(1)=(-12)÷3=-4;
(2)=(-45)÷(-12)=(-45)×(-)=.
例7:计算:
(1)(-125)÷(-5);(2)-2.5÷×(-).
分析:(1)题是分数除法,应转化为乘法,由于125化为假分数,计算量大,可以把125写成125+后用分配律.(2)题是乘除混合运算,应将它统一为乘法,以便约分.解:(1)(-125)÷(-5)
=125÷5 (先确定符号)
=(125+)×(除转化为乘,同时将125写成125+)
=125×+×(运用分配律)
=25+=25
(2)-2.5÷×(-)=××=1
遇到乘除混合运算时,可先确定结果的符号,再将它统一为乘法,另外,既有小数,也有分数时,通常把小数化为分数,以便约分.
三、巩固练习
课本第36页练习
1.(1)原式=(-72)÷9=-8;
(2)原式=(-30)÷(-45)=30÷45=;(3)0.
2.(1)原式=-(36+)×=-(36×+×)
=-(4+)=-4;
(2)原式=-12××=-;
(3)原式=-××4=-.
四、课堂小结
本节课学习了有理数的除法法则,有理数的除法有两种方法.一是根据“除以一个数,等于乘以这个数的倒数”,转化为乘法,按乘法法则进行.二是根据“两数相除,同号得正,异号得负,并把绝对值相除.一般能整除时用第二种方法.乘除混合运算,先统一为乘法,再按几个不等于0的数相乘的法则计算.
五、作业布置
1.课本第38页习题1.4第4、6、7(4)~(8).
2.选用课时作业设计.
第一课时作业设计
一、填空题.
1.-84÷7=_____,(-36)÷(-12)=_______.
2.(-1)÷(-2)=______,6÷(-3)=________.
3.两个数相除,若商为正,则这两个数______.
4.若m·n互为倒数,则mn=______,m÷n=_____.
5.如果<0,ab>0,则c_____0.
二、选择题.
6.两数的商为正数,那么这两个数().
A.和为正 B.差为正 C.积为正 D.以上都不对
7.如果ab≠0,那么的值不可能是().
A.0 B.1 C.2 D.-2
8.若a+b<0, >0,则下列结论成立的().
A.a>0,b>0 B.a<0,b<0
C.a>0,b<0 D.a<0,b>0
三、化简下列分数.
9.(1).
四、计算题:
10.(-81)÷2×(-)÷8. 11.-1+5÷(-)×6.
12.100÷2×÷5÷5.
13.-(-.
14.(-289)÷17.。

相关文档
最新文档