2013-2014年华东师大版七年级数学下册期末考试题
华师大版七年级下册数学期末试题试卷含答案
华师大版七年级下册数学期末考试试卷一、选择题(每小题3分,共30分)1.(3分)下列是二元一次方程的是()A.3x﹣6=x B.3x=2y C.x﹣y2=0 D.2x﹣3y=xy2.(3分)下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.3.(3分)若关于x的方程x﹣2+3k=的解是正数,则k的取值范围是()A.k>B.k≥C.k<D.k≤4.(3分)为了搞活经济,某商场将一种商品A按标价9折出售,仍获利润10%,若商品A标价为33元,那么商品进货价为()A.31元B.元C.元D.27元5.(3分)根据不等式的性质,下列变形正确的是()A.由a>b得ac2>bc2B.由ac2>bc2得a>bC.由﹣a>2得a<2 D.由2x+1>x得x>16.(3分)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b ﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或107.(3分)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A. B.C. D.8.(3分)已知三角形的三边长为3,8,x.若周长是奇数,则x的值有()A.6个B.5个C.4个D.3个9.(3分)选用下列某一种形状的瓷砖密铺地面,不能做到无缝隙,不重叠要求的()A.正方形B.任意三角形 C.正六边形D.正八边形10.(3分)关于x的不等式组的整数解共有5个,则a的取值范围()A.a=﹣3 B.﹣4<a<﹣3 C.﹣4≤a<﹣3 D.﹣4<a≤﹣3二、填空题(每小题3分,共15分)11.若关于x的方程(k﹣2)x|k﹣1|+5k+1=0 是一元一次方程,则k+x= .12.方程3x﹣y=4中,有一组解x与y互为相反数,则3x+y= .13.一个多边形的每一个外角都等于72°,则这个多边形是边形.14.一个三角形有两条边相等,周长为18cm,三角形的一边长为4cm,则其他两边长分别为cm,cm.15.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打七折.小丽在这次活动中,两次购书总共付款元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是元.三、解答题(本题共8小题,共75分)16.(8分)﹣=.17.(9分)解方程组:.18.(9分)解不等式组:把解集表示在数轴上并求出它的整数解的和.19.(9分)如图,已知△ABC≌△DEF,∠A=32°,∠B=48°,BF=3,求∠DFE 的度数和EC的长.20.(9分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)将△ABC向下平移5个单位得△A1B1C1,画出平移后的△A1B1C1.(2)画出△ABC关于点B成中心对称的图形.(3)在直线l上找一点P,使△ABP的周长最小.21.(10分)如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC= 度;(2)求∠EDF的度数.22.(10分)某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A 型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案哪种方案的总费用最低23.(11分)如图,取一副三角板按图1拼接,固定三角板ADE(含30°),将三角板ABC(含45°)绕点A顺时针方向旋转一个大小为α的角(0°<α≤45°),试问:(1)当∠α=度时,能使图2中的AB∥DE;(2)当旋转到AB与AE重叠时(如图3),则∠α=度;(3)当△ADE的一边与△ABC的某一边平行(不共线)时,直接写出旋转角α的所有可能的度数;(4)当0°<α≤45°时,连接BD(如图4),探求∠DBC+∠CAE+∠BDE的值的大小变化情况,并说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017春•淅川县期末)下列是二元一次方程的是()A.3x﹣6=x B.3x=2y C.x﹣y2=0 D.2x﹣3y=xy【分析】二元一次方程就是含有两个未知数,并且未知数的项的最高次数是1的整式方程,依据定义即可判断.【解答】解:A、是一元一次方程,故错误;B、正确;C、未知数的项的最高次数是2,故错误;D、未知数的项的最高次数是2,故错误.故选B.【点评】此题考查了二元一次方程的条件:①只含有两个未知数;②未知数的项的次数都是1;③整式方程.2.(3分)(2016•云南)下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选A.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.(3分)(2017春•淅川县期末)若关于x的方程x﹣2+3k=的解是正数,则k的取值范围是()A.k>B.k≥C.k<D.k≤【分析】解方程得出x=﹣4k+3,由解为正数得出﹣4k+3>0,解之可得答案.【解答】解:解方程x﹣2+3k=,得:x=﹣4k+3,∵方程得解为正数,∴﹣4k+3>0,解得:k<,故选:C.【点评】本题主要考查解方程和不等式的能力,根据题意列出关于k的不等式是解题的关键.4.(3分)(2006•恩施州)为了搞活经济,某商场将一种商品A按标价9折出售,仍获利润10%,若商品A标价为33元,那么商品进货价为()A.31元B.元C.元D.27元【分析】本题要注意关键语“按标价9折出售,仍获利润10%”.要求商品进货价,可先设出未知数,再依题意列出方程求解.【解答】解:设进货价为x元.那么根据题意可得出:(1+10%)x=33×90%,解得:x=27,故选:D.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.5.(3分)(2017春•淅川县期末)根据不等式的性质,下列变形正确的是()A.由a>b得ac2>bc2B.由ac2>bc2得a>bC.由﹣a>2得a<2 D.由2x+1>x得x>1【分析】根据不等式的性质,可得答案.【解答】解;A、a>b,c=0时,ac2=bc2,故A错误;B、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故B正确;C、不等式的两边都乘以或除以同一个负数,不等号的方向改变,右边没诚乘以﹣2,故C错误;D、不等式的两边都加或都减同一个整式,不等号的方向不变,故D错误;故选:B.【点评】本题考查了不等式的性质,注意不等式的两边都乘以或除以同一个负数,不等号的方向改变.6.(3分)(2014•安顺)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或10【分析】先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.【解答】解:∵+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.【点评】本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.7.(3分)(2016•茂名)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.【分析】设有x匹大马,y匹小马,根据100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉1片瓦,列方程组即可.【解答】解:设有x匹大马,y匹小马,根据题意得,故选C【点评】本题考查了二元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组.8.(3分)(2017春•淅川县期末)已知三角形的三边长为3,8,x.若周长是奇数,则x的值有()A.6个B.5个C.4个D.3个【分析】根据三角形的三边关系定理可得8﹣3<x<8+3,解出x的取值范围,再根据周长为奇数确定x的值.【解答】解:根据三角形的三边关系可得:8﹣3<x<8+3,即:5<x<11,∵三角形的周长为奇数,∴x=6,8,10,共3个.故选D.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.9.(3分)(2017春•淅川县期末)选用下列某一种形状的瓷砖密铺地面,不能做到无缝隙,不重叠要求的()A.正方形B.任意三角形 C.正六边形D.正八边形【分析】根据密铺的条件能整除360度的能密铺地面,分别对每一项进行分析即可.【解答】解:A、正方形的每个内角是90°,能整除360°,能密铺;B、任意三角形的内角和是180°,能整除360°,能密铺;C、正六边形每个内角是120°,能整除360°,能密铺;D、正八边形每个内角是135°,不能整除360°,不能密铺;故选D.【点评】此题考查了平面镶嵌,用到的知识点是:一种正多边形的镶嵌应符合一个内角度数能整除360°.10.(3分)(2017春•淅川县期末)关于x的不等式组的整数解共有5个,则a的取值范围()A.a=﹣3 B.﹣4<a<﹣3 C.﹣4≤a<﹣3 D.﹣4<a≤﹣3【分析】首先解不等式组确定不等式组的解集,然后根据不等式的整数解有5个,即可得到一个关于a的不等式组,解不等式组即可求解.【解答】解:,解①得:x≥a,解②得:x<2,则不等式组的解集是:a≤x<2,不等式组有5个整数解,则﹣4<a≤﹣3,故选D.【点评】此题考查的是一元一次不等式的解法,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题(每小题3分,共15分)11.(3分)(2017春•淅川县期末)若关于x的方程(k﹣2)x|k﹣1|+5k+1=0 是一元一次方程,则k+x= .【分析】根据一元一次方程的定义,最高项的次数是1,且一次项系数不等于0即可求的m的值,进而求得x的值,从而求解.【解答】解:根据题意得:k﹣2≠0且|k﹣1|=1,解得:k=0.把k=0代入方程得﹣2x+1=0,解得:x=,则k+x=.故答案是:.【点评】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1,理解定义是关键.12.(3分)(2017春•淅川县期末)方程3x﹣y=4中,有一组解x与y互为相反数,则3x+y= 2 .【分析】两数互为相反数,则两数和为0,即x+y=0,x=﹣y.可将x=﹣y代入方程中解出x、y的值,再把x、y的值代入3x+y=2中.即可解出本题.【解答】解:依题意得:x=﹣y.∴3x﹣y=3x+x=4x=4,∴x=1,则y=﹣1.∴3x+y=2.故答案为:2【点评】本题考查的是二元一次方程的解法与相反数的性质的综合题目.注意:两数互为相反数,它们的和为0.13.(3分)(2014•金平区模拟)一个多边形的每一个外角都等于72°,则这个多边形是五边形.【分析】用多边形的外角和360°除以72°即可.【解答】解:边数n=360°÷72°=5.故答案为:五.【点评】本题考查了多边形的外角和等于360°,是基础题,比较简单.14.(3分)(2017春•淅川县期末)一个三角形有两条边相等,周长为18cm,三角形的一边长为4cm,则其他两边长分别为7 cm,7 cm.【分析】题目中只给出了周长为18cm,三角形的一边长为4cm,没有明确该边是底边还是腰,所以分两种情况进行讨论.【解答】解:(1)若4cm为底边,则另外两边均为(18﹣4)=7厘米;(2)若4cm为腰长,则另一腰为4厘米,底边为18﹣4×2=10厘米∵4+4<10,∴此时不能构成三角形,舍去.因此其他两边的长分别为7cm、7cm.故答案为:7,7.【点评】此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握;做题时注意分情况讨论,并注意是否能构成三角形.15.(3分)(2016•绍兴)书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打七折.小丽在这次活动中,两次购书总共付款元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是248或296 元.【分析】设第一次购书的原价为x元,则第二次购书的原价为3x元.根据x的取值范围分段考虑,根据“付款金额=第一次付款金额+第二次付款金额”即可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设第一次购书的原价为x元,则第二次购书的原价为3x元,依题意得:①当0<x≤时,x+3x=,解得:x=(舍去);②当<x≤时,x+×3x=,解得:x=62,此时两次购书原价总和为:4x=4×62=248;③当<x≤100时,x+×3x=,解得:x=74,此时两次购书原价总和为:4x=4×74=296;④当100<x≤200时,x+×3x=,解得:x≈(舍去);⑤当x>200时,x+×3x=,解得:x≈(舍去).综上可知:小丽这两次购书原价的总和是248或296元.故答案为:248或296.【点评】本题考查了一元一次方程的应用,解题的关键是分段考虑,结合熟练关系找出每段x区间内的关于x的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.三、解答题(本题共8小题,共75分)16.(8分)(2017春•淅川县期末)﹣=.【分析】首先对每个式子进行化简,然后去分母、去括号、移项、合并同类项、系数化为1即可求解.【解答】解:原式即﹣=,去分母,得5(10x﹣10)﹣3(10x+20)=18,去括号,得50x﹣50﹣30x﹣60=18,移项,得50x﹣30x=18+50+60,合并同类项,得20x=128,系数化为1得x=.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.17.(9分)(2013•黄冈)解方程组:.【分析】把方程组整理成一般形式,然后利用代入消元法其求即可.【解答】解:方程组可化为,由②得,x=5y﹣3③,③代入①得,5(5y﹣3)﹣11y=﹣1,解得y=1,把y=1代入③得,x=5﹣3=2,所以,原方程组的解是.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.18.(9分)(2017春•淅川县期末)解不等式组:把解集表示在数轴上并求出它的整数解的和.【分析】先求出每个不等式的解集,再求出不等式组的解集,求出不等式组的整数解,最后求解即可.【解答】解:∵解不等式①得:x<3,解不等式②得:x≥﹣4,∴不等式组的解集为﹣4≤x<3,在数轴上表示为:∴不等式组的最大整数解为﹣4、﹣3、﹣2、﹣1、0、1、2,∴这个不等式组的整数解得和为﹣4﹣3﹣2﹣1+0+1+2=﹣7.【点评】本题考查了解一元一次不等式组,不等式组的整数解,能根据不等式的解集求出不等式组的解集是解此题的关键.19.(9分)(2017春•淅川县期末)如图,已知△ABC≌△DEF,∠A=32°,∠B=48°,BF=3,求∠DFE的度数和EC的长.【分析】根据全等三角形的性质得出∠D=∠A=48°,∠E=∠B=32°,BC=EF,求出BF=EC,即可求出答案.【解答】解:∵△ABC≌△DEF,∠A=32°,∠B=48°,∴∠D=∠A=48°,∠E=∠B=32°,在△DEF中,∠D+∠E+∠DFE=180°,解得:∠DFE=100°,∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+CF,∴BF=EC,∵BF=3,∴EC=3.【点评】本题考查了全等三角形的性质定理,能正确根据全等三角形的性质进行推理是解此题的关键,注意:全等三角形的对应角相等,对应边相等.20.(9分)(2017春•淅川县期末)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)将△ABC向下平移5个单位得△A1B1C1,画出平移后的△A1B1C1.(2)画出△ABC关于点B成中心对称的图形.(3)在直线l上找一点P,使△ABP的周长最小.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用中心对称图形的性质得出对应点位置;(3)利用轴对称求最短路线的方法得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△DEF,即为所求;(3)如图所示:P点位置,使△ABP的周长最小.【点评】此题主要考查了旋转变换以及平移变换以及利用轴对称求最短路线,正确得出对应点位置是解题关键.21.(10分)(2017春•淅川县期末)如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC= 110 度;(2)求∠EDF的度数.【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°.【点评】此题考查了三角形的内角和定理、三角形的外角的性质、翻折变换等问题,解答的关键是沟通外角和内角的关系.22.(10分)(2012•河南)某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案哪种方案的总费用最低【分析】(1)根据购买一套A型课桌凳比购买一套B型课桌凳少用40元,以及购买4套A型和5套B型课桌凳共需1820元,得出等式方程求出即可;(2)利用要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,得出不等式组,求出a的值即可,再利用一次函数的增减性得出答案即可.【解答】解:(1)设A型每套x元,则B型每套(x+40)元.由题意得:4x+5(x+40)=1820.解得:x=180,x+40=220.即购买一套A型课桌凳和一套B型课桌凳各需180元、220元;(2)设购买A型课桌凳a套,则购买B型课桌凳(200﹣a)套.由题意得:,解得:78≤a≤80.∵a为整数,∴a=78、79、80.∴共有3种方案,设购买课桌凳总费用为y元,则y=180a+220(200﹣a)=﹣40a+44000.∵﹣40<0,y随a的增大而减小,∴当a=80时,总费用最低,此时200﹣a=120,即总费用最低的方案是:购买A型80套,购买B型120套.【点评】此题主要考查了一元一次方程的应用和不等式组的应用以及一次函数的增减性,根据已知得出不等式组,求出a的值是解题关键.23.(11分)(2017春•淅川县期末)如图,取一副三角板按图1拼接,固定三角板ADE(含30°),将三角板ABC(含45°)绕点A顺时针方向旋转一个大小为α的角(0°<α≤45°),试问:(1)当∠α=15 度时,能使图2中的AB∥DE;(2)当旋转到AB与AE重叠时(如图3),则∠α=45 度;(3)当△ADE的一边与△ABC的某一边平行(不共线)时,直接写出旋转角α的所有可能的度数;(4)当0°<α≤45°时,连接BD(如图4),探求∠DBC+∠CAE+∠BDE的值的大小变化情况,并说明理由.【分析】(1)根据平行线的性质,可得∠BAE=∠E=30°,再根据∠BAC=45°,即可得出∠CAE=45°﹣30°=15°;(2)根据当旋转到AB与AE重叠时,∠α=∠BAC即可得到结果;(3)要分5种情况进行讨论:AD∥BC、DE∥AB、DE∥BC、DE∥AC、AE∥BC,分别画出图形,计算出度数即可;(4)先设BD分别交AC、AE于点M、N,在△AMN中,∠AMN+∠CAE+∠ANM=180,再根据∠ANM=∠E+∠BDE,∠AMN=∠C+∠DBC,得出∠E+∠BDE+∠CAE+∠C+∠DBC=180°,然后根据∠C=30°,∠E=45°,即可得出∠BDE+∠CAE+∠DBC的度数.【解答】解:(1)如图2,当AB∥DE时,∠BAE=∠E=30°,∵∠BAC=45°,∴∠CAE=45°﹣30°=15°,即∠α=15°,故答案为:15;(2)当旋转到AB与AE重叠时,∠α=∠BAC=45°,故答案为:45;(2)当△ADE的一边与△ABC的某一边平行(不共线)时,旋转角α的所有可能的度数为15°,45°,105°,135°,150°.如图a﹣e所示:①当AD∥BC时,α=15°;②当DE∥AB时,α=45°;③当DE∥BC时,α=105°;④当DE∥AC时,α=135°;⑤当AE∥BC时,α=150°.(4)如图4,当0°<α≤45°时,∠DBC+∠CAE+∠BDE=105°,保持不变;理由如下:设BD分别交AC、AE于点M、N,在△AMN中,∠AMN+∠CAE+∠ANM=180°,∵∠ANM=∠E+∠BDE,∠AMN=∠C+∠DBC,∴∠E+∠BDE+∠CAE+∠C+∠DBC=180°,∵∠C=30°,∠E=45°,∴∠DBC+∠CAE+∠BDE=180°﹣75°=105°.【点评】本题考查了平行线的性质,三角形内角和定理以及旋转的性质的运用.解题时注意:旋转变化前后,对应点到旋转中心的距离相等,每一对对应点与旋转中心连线所构成的旋转角相等.。
七年级下学期数学期末试卷华师大版
2013年七年级下学期数学期末试卷(华师大版)2013春七年级(下)数学期末考试卷(满分:150分;考试时间:120分钟)班级座号姓名成绩一、选择题(每小题3分,共24分)每小题有四个答案,其中有且只有一个答案是正确的.1、一元一次方程3=x-2的解是()A、x=5B、x=-5C、x=1D、x=-12、在数轴上表示不等式2x-4>0的解集,正确的是()3、如果是二元一次方程2x-y=3的解,则m=()A、0B、-1C、2D、34、已知一个多边形的内角和为540°那么这个多边形是()A、四边形B、五边形C、六边形D、七边形5、以下图形不是轴对称图形的是()6.下列各组图形,可以经过平移变换由一个图形得到另一个图形的是()7.下列各组图形中,全等的一组是()8、为确保信息安全,信息需要加密传输,发送方由明文→密文(解密)。
接收方由密文→明(解密)。
已知加密规则为:明文a,b,c对应的密文a+1,2b+4,3c+9,例如明文1,2,3对应的密文2,8,18。
如果接收方收到密文7,18,15,则解密得到的明文为()A、4,5,6B、6,7,2C、2,6,7D、7,2,6二、填空题(每小题4分,共40分)9、若2x=5-3x,则2x+=510、如图1,△ABC平移后得△DEF,已知∠A=50°,∠B=60°,则∠F=度11.若xa-3+yb+1=2013是关于x、y的二元一次方程,则a+b=12.等腰三角形的两边长分别为5cm和2cm,则它的周长是cm13、不等式组的解集是14.如右图,△ABC按顺时针方向旋转一个角度后成为△AED,且∠BAD=120°,则旋转中心为,旋转角度为15、一个n边形的每个外角都为36°,则n=16、如图,天秤中的物体a、b、c例天秤处于平衡状态,则质量最大的物体是17、能与正三角形铺满地面的正多边形有(请写出一个)18、工人师傅在安装木制门框时,为了防止变形常常像图中所示,钉上两条斜拉的木条,这样做的原理是根据三、解答题(19-23每题9分,24-26每题10分,27题11共86分)19、(9分)解方程:=120(9分)、解方程组:21.(9分)解不等式,22、(9分)解不等式组:并把解集在数轴画出来。
华东师大版七年级数学下册期末测试卷
七年级数学下学期期末测试班级_______姓名_______一、 填空题:(每小题2分,共20分)1.当y=______时,代数式y-2与6-y 的值相等.2.已知方程3x+4y=1,用含y 的代数式表示x 为_______________________.3.请你编制一个解为21x y ==⎧⎨⎩的二元一次方程 组:______________________________4.如果某个直角三角形的一个锐角为300,那么它的另一个锐角为________.5.如果一个等腰三角形其中两边的长分别为3cm 和6cm,那么它的周长为__________.6.如图,△ABC 中,∠ACB =90°,CA =CB,CD ⊥A 于D,则图中有等腰三角形______个.7.如图,在△ABC 中,BC 边上的垂直平分线DE 交BC 于D,交AC 于点E,AB =5cm,AC =8cm,则△ABC 的周长为__________________cm.8.“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”.要解决此问题,如果设鸡有x 只,兔有y 只,则可列方程组________________.二、 选择题:(每小题3分,共24分)11.用“加减法”将方程组535541x y x y -=-+=-⎧⎨⎩中的未知数x 消去后得到的方程是( )A.y=4B.7y=4C.-7y=4D.-7y=1412.有两根长度分别为40cm 和50cm 的直木条,要钉一个三角形木架,应在下面直木条中选取( )A.10cmB.40cmC.90cm D100cm13.如果一个多边形的每个外角为30°,那么它的内角和为( )A.1800°B. 2160°C.1440°D.1620°A B D (第8题图) B A D C E (第9题图)14.小明做抛币实验,连续抛了3次都是反面向上,当他抛第4次时,反面向上是一件( )事件.A.必然B. 不可能C.确定D.随机15.下面属于确定事件的是( )A.灯泡的寿命是一年B.白龟山水库里鱼的总数是20000尾C.你所在班级女同学有48人D.明天会下雪16.下列说法正确的是()A.三角形的内角和和外角和都是3600B.正方形的内角和和外角和都是3600C五边形外角和是7200 D.三角形的内角和和外角和都是180017.如图∠EAB=115°, ∠ABC=45°,下列结果错误的是( )A.∠BAC=65°B.∠ACB=70°C.∠ACD=110°D.∠CBF=145°18.商店里某种服装的标价是200元/件,据了解,该种服装的标价要比进价高出100%,当销售高出进价的20%时,老板便可以盈利,假如你要购买一件该种服装,在不让老板亏损的前提下,最低可以把价还到( )A.110元B.120元C.130元 D140元三、解方程(或方程组):(每小题7分,共14分)19. 25321326x x+--= 20.356415x yx y-=+=-⎧⎨⎩四、解应用题:(第21,22题每题9分,第23题8分,第24题6分,共32分)21.小明三天共自学60页书,其中第二天比第一天多学了4页,第三天自学的页数是第一天的2倍,问小明第一天自学了多少页书?22.从平顶山乘汽车到郑州原来需要3.6小时,开通高速公路后,平均车速可以提高40千米/小时,那时,只需2小时就可以到达郑州,请问原来乘汽车从平顶山到郑州的平均车速是多少?平顶山到郑州的距离是多少千米?23.(6分)某车间每天能生产甲种零件500只,或者乙种零件600只,或者丙种零件750只,甲、乙、丙三种零件各一只配成一套,现要在30天内生产最多的成套产品,问甲、乙、丙三种零件各应生产多少天?24.小明和小方玩掷骰子游戏,如果掷得的数是偶数,小明得一分;如果掷得的数是3的倍数,小方得一分.(1)这个游戏对他们二人公平吗?(2分)(2)请设计一个对他们二人公平的游戏.(4分)五、 解答题:(第25题6分,第26题8分,共14分)25.在△ABC 中,AD 平分∠BAC ,∠B =40°,∠ADC =80°,求∠C 的度数.26.等边△ABC 中,BD 平分∠ABC,延长BC 到E,使CE =CD,连结D 、E.(1)求∠E 的度数;(4分)(2)△BDE 是什么三角形?为什么?(3分)(3)把“BD 平分△ABC ”改成什么条件,也能得到同样的结论?(1分)A B C D (第25题图) DA六、画图题:(共8分)27.如图,小明的家(A点)在一条河流(直线l,宽度忽略不计)的一侧,在河流的同侧有一公园(B点),小方的家恰好与小明的家关于此河流对称.(1) 画出小方家的位置;(3分)(2) 小方要去公园,应在什么地方过河,所走的路程最近?(3分)(3)小明要带着他的狗先到河边喝水,然后去公园找小方,请画出他所走的最短路径.(2分)(以上均要求画图准确,保留画图痕迹)A●B●七、探究题:(8分)28.现有8人分别乘两辆小汽车赶往火车站,其中一辆在距离火车站15千米的地方出了故障,此时离火车停止检票还有42分钟.唯一可用的一辆小汽车连司机在内能乘坐5人,它的平均车速为60千米/小时,如果人的步行速度为5千米/小时,请你为他们设计一些去火车站的方案,把这8人在停止检票之前都送到火车站,这些方案中哪个方案用的时间最少?(设计出一个正确方案即可得满分,在总分不超过120分的情况下,每设计出一个正确方案可多得2分.)。
2013-2014年华东师大版七年级数学下册期末考试题 (1)
2013-2014年七年级下期期末考试题班级 姓名:一、选择题(每小题3分,共30分) 1、正五边形的对称轴共有( ) A .2条 B .4条C .5条D .10条2、有一个两位数,它的十位数字与个位数字之和为5,则符合条件的数有( )个 A .4B .5C .6D .无数3、为了搞活经济,某商场将一种商品A 按标价9折出售,仍获利润10%,若商品A 标价为33元,那么商品进货价为( ) A .31元B .30.2元C .29.7元D .27元4、已知15 5-2x m y m =+=,若3m >-,则x 与y 的关系为( ) A .x y =B .x y <C .x y >D .不能确定5、一个多边形除了一个内角外,其余内角之和为257°,则这一内角等于( ) A .90°B .105°C .130°D .120°6、如图2,已知:在△ABC 中,AB=AC ,D 是BC 边上任意一点,DF ⊥AC 于点F ,E 在AB 边上,ED ⊥BC 于D ,∠AED=155°,则∠EDF 等于( ) A .50° B .65° C .70°D .75°7、有一种足球是由32块黑白相间的牛皮缝制而成的(如图3),黑皮可看作正五边形,白皮可看作正六边形,设白皮有x 块,则黑皮有()32x -块,每块白皮有六条边,共6x 边,因每块白皮有三条边和黑皮连在一起,故黑皮有3x 条边.要求出白皮、黑皮的块数,列出的方程正确的是( ) A .332x x =-B .()3532x x =-C .()5332x x =-D .632x x =-ABCF ED图2图38、如图4,将正方形ABCD 的一角折叠,折痕为AE , ∠B ′AD 比∠B ′AE 大48°,设∠B ′AE 和∠B ′AD 的度数分别为x 、y ,那么x 、y 所适合的一个方程组是( )A .4890y x y x -=⎧⎨+=⎩B .482y x y x -=⎧⎨=⎩C .48290y x y x -=⎧⎨+=⎩D .48290x y y x -=⎧⎨+=⎩9、一个两位数的十位数字与个位数字之和是7,如果把这个两位数加上45,那么恰好成为个位数字与十位数字对调后的两位数,则这个两位数是( ) A .16 B .25 C .38 D .49 10、等腰三角形的腰长是4cm ,则它的底边长不可能是( )A .1cmB .3cmC .6cmD .9cm二、填空题(每小题3分,共30分)11、五边形中,前四个角的比为1∶2∶3∶4,第五个角比最小角多100°,则五边形的五个内角分别为_____________________.12、本学期,我们做过“抢30”的游戏,如果将游戏规则中“不可以连说三个数,谁先抢到30谁就获胜”,改为“每次可以连说三个数,谁先抢到33谁就获胜”,那么采取适当策略,其结果_________者胜.13、如图1,在△ABC ,∠A=36°,D 为AC 边上的一点,AD=BD=BC ,则图中的等腰三角形共有_______个.14、已知△ABC 的边长a 、b 、c 满足(1)()2240a b -+-=,(2)c 为偶数,则c 的值为________.15、已知不等式523x a <+的解集是32x <,则a 的值是________. 16、方程34x y -=中,有一组解x 与y 互为相反数,则3________x y += 17.一个正方形有_____条对角线.18、一个三角形有两条边相等,周长为18cm ,三角形的一边长为4cm ,则其他两边长分别为________.19、将一筐橘子分给若干个小朋友,如果每人分4个橘子,剩下9个;如果每人分6个橘子,则最后一个小朋友分得的橘子将少于3个,由以上可知共有________个小朋友分________个橘子.ABCD图 1BACDE B ′图420、根据x 的2倍与5的和比x 的12小10,可列方程为________________. 三、解答题(每小题10分,共60分)21、如图5,在△ABC 中,BO 平分∠ABC ,CO 平分∠ACB ,DE 过O 且平行于BC ,已知△ADE 的周长为10cm ,BC 的长为5cm ,求△A BC 的周长.22、儿童公园的门票价格规定如下表:购票人数 1~50人 51~100人 100人以上 每人门票价13元11元9元某校七(1)、(2)两个班共104人去游儿童公园,其中(1)班人数较少,不到50人,(2)班人数较多,经估算,如果两班都以班为单位分别购票,则一共应付1240元,问:(1)两班名有多少学生?(2)如果两联合起来,作为一个团体购票,可以省多少钱?23、已知31x y =⎧⎨=-⎩是方程组3108x ky mx y +=⎧⎨+=⎩的解,求k 和m 的值.24、已知一个等腰三角形的三边长分别为x 、2x 、5x -3,求这个三角形的周长.ABCE DO图525、某校七(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:捐款(元) 1 2 3 4人数(人) 6 7表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,你有办法弄清这两个被污染的两个数字吗?说明你的理由.26、某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B 种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.(1)求A、B型号衣服进价各是多少元?(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案?并简述购货方案.华师七下期末能力测试题三参考答案一、填空题1、40°,80°,120°,160°,140°2、先报3、34、45、答案不惟一6、27、答案不惟一8、7,79、1800°10、125102x +=-二、选择题11、C 12、B 13、D 14、B 15、C 16、B 17、B 18、C 19、A 20、D 三、解答题 21、15cm22、(1)班有48人,(2)班有56人,合买可省304元23、解:把31x y =⎧⎨=-⎩代入方程组()33110318k m ⨯+-⨯=⎧⎪⎨-=⎪⎩得,解得:k =-1,m =3.24、显然2x x ≠,又若53x x =-,则532x x x +-=不合题意. 所以:253x x =-,解得:1x =,所以三角形周长为1225++=. 25、解:设捐款2元的有x 人,捐款3元的有y 人,则6740162347100x y x y +++=⎧⎨⨯+++⨯=⎩ 解之得:32x y =⎧⎨=⎩ 答:捐款2元的有3人,捐款3元的有20人.26、(1)设A 种型号的衣服每件x 元,B 种型号的衣服y 元,则:91018101281880x y x y +=⎧⎨+=⎩,解之得90100x y =⎧⎨=⎩ (2)设B 型号衣服购进m 件,则A 型号衣服购进()24m +件,可得:()18243069919 22428m m m m ++⎧⎪⎨+⎪⎩≥解之得≤≤12≤ ∵m 为正整数,∴m =10、11、12,2m +4=24、26、28.答:有三种进货方案:(1) B 型号衣服购买10件,A 型号衣服购进24件; (2) B 型号衣服购买11件,A 型号衣服购进26件;(3) B 型号衣服购买12件,A 型号衣服购进28件.。
华东师大版七年级数学下册期末考试试题
数学七年级(下) 期末测试卷(满分:100分时间:120分钟)班级姓名成绩一、选择题(每小题2分,共16分)1.在三角形的三个外角中,锐角最多只有( )A.3个B.2个C.1个D.0个2.若三角形的三个内角的比值为1:2:3,则此三角形为 ( )A.锐角三角形B.直角三角形C.等边三角形D.钝角三角形3.在一个多边形的内角中,锐角最多可以有( )A.1个B.2个C.3个D.4个4.下列正多边形的组合中,能够铺满地面的有( )A.整八边形和正方形B.正七边形和正三角形C.正五边形和正八边形D.正八边形和正三角形5.等腰三角形的两边长是7cm, 5cm,它的周长是( )A.19cmB.17cmC.17cm或19cmD.无法确定6.某同学前4次的成绩为95,82,76,88,马上进行第五次考试了,他想五次成绩的平均成绩不低于85分,那么该次测验至少要考()A.82分B.83分C.84分D.85分7.下列图形中,你认为不同于其他三个图形的是()A.长方形B.两条相交直线C.等腰三角形D.线段8.已知4条线段的长度为3cm,5cm,6cm,8cm,从中任取三条,能够成的不同的三角形的个数为()A.2B.3C.4D.5二、填空题(每小题3分,共18分)1.在等腰三角形中,有一个角是400,则顶角为 .2.一组数据:-2,0,3,3,8的平均数是 .中位数是 .众数是 .3.若一个多边形的内角和是23400,则多边形的边数是 ,它的外角和 .4.写出两组能够成等腰三角形的三边长度是 .5.如图4所示,在△ABC 中,AB=AC, 则多边形的边数是 ,它的外角和是 .6.若在河中捞一网鱼,共有20条,这20条鱼都做上标记,然后将这20条鱼放回河中,过一段时间后,第二次捞了3网, 一共有63条,其中3条鱼有标记,你估计河中有 条鱼.三、作图题(每小题8分,共16分) 1.已知等边三角形ABC ,如图-5,请在平面上找一点P ,使△PAB 、△PBC 、△PAC 、同时为等腰三角形.有多少个不同的结果?ABCED图—4 ABC图—52.在图期-6中找一点M ,使点M 到两边AB 、BC 的距离相等,并且MD 。
华师大版七年级数学下册《期末试卷》(附答案)
华师大版七年级数学下册《期末试卷》(附答案)学校姓名班级座位号一、选择题(每小题3分,共30分)1.方程3x-1=-x+1的解是(。
)。
A。
x=-2 B。
x=0 C。
x=1 D。
x=22.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()。
A。
B。
C。
D。
3.三角形的三边长分别是3,1-2a,8,则数a的取值范围是()。
A。
-5<a<-2 B。
-5<a<2 C。
5<a<11 D。
a<24.如果关于x的不等式(a+2)x>a+2的解集为x<1,那么a的取值范围是()。
A。
a>5 B。
a-2 D。
a<-55.不等式组的解集在数轴上表示为()。
A。
B。
C。
D。
6.将△XXX沿BC方向平移3个单位得△DEF。
若△ABC的周长等于8,则四边形ABFD的周长为()。
A。
14 B。
12 C。
10 D。
87.XXX所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,超过部分每吨加收2元,XXX家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是()。
A。
5x+4(x+2)=44 B。
5x+4(x-2)=44 C。
9(x+2)=44 D。
9(x+2)-4×2=448.CD相交于点F,如图,在△ABC中,∠ABC、∠XXX的平分线BE,且∠ABC=42°,∠A=60°,则∠XXX等于()。
A。
121° B。
120° C。
119° D。
118°9.把边长相等的正五边形ABCDE和正方形ABFG按照XXX所示的方式叠合在一起,则∠EAG的度数是()。
A。
18° B。
20° C。
28° D。
30°10.如图,△ABC≌△ADE且BC、DE交于点O,连结BD、CE,则下列四个结论:①BC=DE,②∠ABC=∠ADE,③∠BAD=∠CAE,④BD=CE,其中一定成立的有()。
华东师大版七年级(下)期末数学试卷
2013-2014学年华东师大版七年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)(2014春•苏州期末)“顺风”汽车队车辆数是“速达”汽车队车辆数的2倍,现从“顺风”队调9辆去“速达”队后,“顺风”队汽车数是“速达”队汽车数的1.5倍,求“顺风”和“速达”两队原来各有汽车多少辆?若设“速达”队原来有汽车x辆,根据题意,得()A.2x﹣9=1.5(x+9)B.2x=1.5x+9 C.x﹣9=1.5x+9 D.2x﹣9=﹣1.5x 2.(3分)(2014春•苏州期末)一个两位数,个位数字与十位数字的和是9,如果各位数字对调后所得的两位数比原来的两位数大9,那么原两位数是()A.54 B.37 C.72 D.453.(3分)(2007•广州)以为解的二元一次方程组是()A.B.C.D.4.(3分)(2007•乐山)某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应按排几天精加工,几天粗加工?设安排x天精加工,y天粗加工.为解决这个问题,所列方程组正确的是()A.B.C.D.5.(3分)(2002•三明)某中肥皂原零售价每块2元,凡购买二块以上(含二块),商场推出两种优惠销售办法,第一种:一块按原价,其余按原价的七折优惠;第二种:全部按原价的八折优惠,你在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少需购买肥皂()A.5块B.4块C.3块D.2块6.(3分)(2014春•邓州市校级期末)已知方程组的解满足x+y<0,则m的取值范围是()A.m>﹣1 B.m>1 C.m<﹣1 D.m<17.(3分)(2014春•邓州市校级期末)已知三角形的一边长为2,另一边长为3,且它的周长为偶数,那么第三边长为()A.1 B.2 C.3 D.48.(3分)(2014秋•洪江市期中)适合条件∠A=2∠B=3∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形9.(3分)(2014秋•监利县期末)下列命题正确的是()A.三角形的角平分线,中线,高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.直角三角形斜边上的高等于斜边的一半10.(3分)(2013秋•临海市期中)有下列说法:①形状相同的图形是全等形;②全等形的大小相同,形状也相同;③全等三角形的面积相等;④面积相等的两个三角形全等;⑤若△ABC≌△A1B1C1,△A1B1C1≌△A2B2C2,则△ABC≌△A2B2C2.其中正确的说法有()A.2个B.3个C.4个D.5个二、填空题(每小题3分,共24分)11.(3分)(2014春•苏州期末)方程组的解是.12.(3分)(2005•济南)某商场计划每月销售900台电脑,2007年5月1日至7日黄金周期间,商场开展促销活动,5月的销售计划又增加了30%,已知黄金周这7天平均每天销售54台,则这个商场本月后24天平均每天至少销售台才能完成本月计划.13.(3分)(2014春•苏州期末)已知关于x的不等式组的整数解共有4个,则a的取值范围是.14.(3分)(2015•开江县二模)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打折.15.(3分)(2014春•苏州期末)在x=﹣3,﹣2,﹣1,0中,满足不等式组的x值是.16.(3分)(2014春•苏州期末)某图形先绕点O顺时针旋转120°,再绕点O 逆时针旋转160°,若要该图形回到原来的位置,应该把它绕点O旋转.17.(3分)(2014春•苏州期末)四条线段的长分别为5cm,6cm,8cm,13cm,以其中任意三条线段为边可以构成个三角形.18.(3分)若a,b,c为三角形的三边长,化简|a﹣b﹣c|+|a﹣c+b|+|a+b+c|等于.三、解答题(共66分)19.(8分)(2014春•苏州期末)A、B两地相距450千米,甲,乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过多少小时两车相距50千米?20.(12分)判断下列图形是否全等,并说明理由:(1)周长相等的等边三角形;(2)周长相等的直角三角形;(3)周长相等的菱形;(4)所有的正方形.21.(8分)(2014春•苏州期末)一个不等边三角形的边长都是整数,且周长是12,这样的三角形共有多少个?22.(10分)(2000•绍兴)某市平均每天产生垃圾700吨,由甲、乙两个垃圾处理厂处理.已知甲厂每小时可处理垃圾55吨,需费用550元;乙厂每小时可处理垃圾45吨,需费用495元.问:(1)甲、乙两厂同时处理该市的垃圾,每天需几小时完成?(2)如果规定该市每天用于处理垃圾的费用不得超过7370元,甲厂每天处理垃圾至少需要多少小时?23.(8分)(2014春•天水期中)老师将一批铅笔分给几个小朋友,若每人分5支,还余2支;若每人分6支,那么最后一个小朋友分得的铅笔少于2支,求小朋友的人数与铅笔的支数.24.(8分)(2005•天水)某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总票数的,若提前购票,则给予不同程度的优惠,在五月份内,团体票每张12元,共售出团体票的;零售票每张16元,共售出零售票的一半.如果在六月份内,团体票按每张16元出售,并计划在六月份内售出全部余票,那么零售应按每张多少元定价才能使这两个月的票款收入持平?25.(12分)(2006•嘉兴一模)为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校人数多于乙校人数,且甲校人数不够90人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的(1)如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?(2)甲、乙两校各有多少学生准备参加演出?(3)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请为两校设计一种省钱的购买服装方案.2013-2014学年华东师大版七年级(下)期末数学试卷参考答案一、选择题(每小题3分,共30分)1.A;2.D;3.C;4.D;5.B;6.C;7.C;8.C;9.B;10.B;二、填空题(每小题3分,共24分)11.;12.33;13.-3<a≤-2;14.7;15.-2和-1;16.顺时针;40°;17.2;18.a+3b+c;三、解答题(共66分)19.;20.;21.;22.;23.;24.;25.;。
华东师大版七年级数学下册期末试卷含答案
华东师大版七年级数学下册期末试卷含答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .22.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .803.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.实数a ,b 在数轴上对应点的位置如图所示,化简2()a b +( )A.﹣2a-b B.2a﹣b C.﹣b D.b7.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.1 3B.710C .35D.13208.在平面直角坐标系中,点P(-2,2x+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A,B,C均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是()A.B. C. D.10.已知2,1=⎧⎨=⎩xy是二元一次方程组7,{1ax byax by+=-=的解,则a b-的值为A.-1 B.1 C.2 D.3二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x3﹣4x=________.2.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b++=________.3.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.方程()()()()32521841x x x x +--+-=的解是_________.5.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t 时后两车相距50千米,则t 的值为____________.5.若x 的相反数是3,y =5,则x y +的值为_________.三、解答题(本大题共6小题,共72分)1.解方程:(1)5(8)6(27)22m m m +--=-+ (2)2(3)7636x x x --+=-2.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?3.如图,直线AB //CD ,BC 平分∠ABD ,∠1=54°,求∠2的度数.4.在△ABC 中,AB=AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧..作△ADE ,使AD=AE ,∠DAE =∠BAC ,连接CE . (1)如图1,当点D 在线段BC 上,如果∠BAC=90°,则∠BCE=________度;(2)设BAC α∠=,BCE β∠=.①如图2,当点在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了 名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为 ;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.某商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(立方米/件)质量(吨/件)A型商品0.8 0.5B型商品 2 1(1)已知一批商品有A、B两种型号,体积一共是20立方米,质量一共是10.5吨,求A、B两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、D5、C6、A7、B8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、x (x+2)(x ﹣2)2、()()2a b a b ++.3、70.4、3x =.5、2或2.56、2或-8三、解答题(本大题共6小题,共72分)1、(1)10m =;(2)5x =2、(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1.3、72°4、(1)90;(2)①180αβ+=︒,理由略;②当点D 在射线BC.上时,a+β=180°,当点D 在射线BC 的反向延长线上时,a=β.5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、(1)A 种型号商品有5件,B 种型号商品有8件;(2)先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元。
七年级数学下册期末考试卷附带答案-华东师大版
A.不等式 有唯一的正整数解B. 是不等式 的一个解
C.不等式 的解集是 D.不等式 的整数解有无数个
10.如图所示, 中AC边上的高线是()
A.线段HAB.线段BHC.线段BCD.线段BA
二、填空题
11.写出二元一次方程2x-y=5的一个整数解______.
(1)直接写出a、b的值,a=___________,b=___________;
(2)动点P从点C出发,以每秒4个单位的速度向右运动,同时动点Q从点B出发,以每秒2个单位的速度向右运动,设运动时间为 秒,请用含 的式子表示点P___________,点Q___________以及线段PQ长度;(PQ就是点P与点Q之间的距离)
A. B.
C. D.
3.若 ,则下列不等式一定成立的是()
A. B. C. D.
4.如图的三角形纸片中, 且 .沿过点 的直线折叠这个三角形,使点 落在 边上的点 处,折痕为 ,若 的周长为7cm,则 的长为()
A.3cmB.4cmC.5cmD.6cm
5.下列长度的三条线段,能组成三角形的是()
A. B. C. D.
七年级数学下册期末考试卷附带答案-华东师大版
一、单选题
1.若二元一次方程组 有唯一解,则a的值为( )
A.a≠0B.a≠6C.a=0D.a为任意数
2.一次知识竞赛共有20道选择题,答对一题得5分;答错或不答,每题扣1分.要使总得分不少于88分,则至少要答对几道题?若设答对 道题,可列出的不等式为()
(3)在(2)的条件下,若点M在A点以每秒6个单位向左与P、Q同时运动,当M点与P点或者Q点相遇时,则立即改变运动方向,以原速度向相反方向运动.当P,Q两点相遇时,三个点均停止运动.试探求下列问题:
(一)2014年华东师大版七年级数学下册期末考试题含答案
2014年七年级下期期末考试题班级 姓名:一、选择题(每小题3分,共30分) 1、正五边形的对称轴共有( ) A .2条 B .4条 C .5条 D .10条 2有一个两位数,它的十位数字与个位数字之和为5,则符合条件的数有( )个 A .4B .5C .6D .无数3、为了搞活经济,某商场将一种商品A 按标价9折出售,仍获利润10%,若商品A 标价为33元,那么商品进货价为( ) A .31元B .30.2元C .29.7元D .27元4、已知15 5-2x m y m =+=,若3m >-,则x 与y 的关系为( ) A .x y =B .x y <C .x y >D .不能确定5、一个多边形除了一个内角外,其余内角之和为257°,则这一内角等于( ) A .90°B .105°C .130°D .120°6、如图2,已知:在△ABC 中,AB=AC ,D 是BC 边上任意一点,DF ⊥AC 于点F ,E在AB 边上,ED ⊥BC 于D ,∠AED=155°,则∠EDF 等于( ) A .50° B .65° C .70°D .75°7、有一种足球是由32块黑白相间的牛皮缝制而成的(如图3),黑皮可看作正五边形,白皮可看作正六边形,设白皮有x 块,则黑皮有()32x -块,每块白皮有六条边,共6x 边,因每块白皮有三条边和黑皮连在一起,故黑皮有3x 条边.要求出白皮、黑皮的块数,列出的方程正确的是( ) A .332x x =-B .()3532x x =-C .()5332x x =-D .632x x =-8、如图4,将正方形ABCD 的一角折叠,折痕为AE , ∠B ′AD 比∠B ′AE 大48°,设∠B ′AE 和∠B ′AD 的度数分别为x 、y ,那么x 、y 所适合的一个方程组是( )ABCF ED图2BACDEB ′图3A .4890y x y x -=⎧⎨+=⎩B .482y x y x -=⎧⎨=⎩C .48290y x y x -=⎧⎨+=⎩D .48290x y y x -=⎧⎨+=⎩9、一个两位数的十位数字与个位数字之和是7,如果把这个两位数加上45,那么恰好成为个位数字与十位数字对调后的两位数,则这个两位数是( ) A .16B .25C .38D .4910、等腰三角形的腰长是4cm ,则它的底边长不可能是( )A .1cmB .3cmC .6cmD .9cm 二、填空题(每小题3分,共30分)11、五边形中,前四个角的比为1∶2∶3∶4,第五个角比最小角多100°,则五边形的五个内角分别为_____________________.12.已知方程456x y -=,用含x 的代数式表示y 得_____,用含y 的代数式表示x 得_____13、如图1,在△ABC ,∠A=36°,D 为AC 边上的一点,AD=BD=BC ,则图中的等腰三角形共有_______个. 14、已知△ABC 的边长a 、b 、c 满足(1)()2240a b -+-=,(2)c 为偶数,则c 的值为________.15.若关于x 的方程1(2)510k k x k --++=是一元一次方程,则k =_____,x =_____.16、方程34x y -=中,有一组解x 与y 互为相反数,则3________x y += 17.一个正方形有_____条对角线.18、一个三角形有两条边相等,周长为18cm ,三角形的一边长为4cm ,则其他两边长分别为________.19、将一筐橘子分给若干个小朋友,如果每人分4个橘子,剩下9个;如果每人分6个橘子,则最后一个小朋友分得的橘子将少3个,由以上可知共有________个小朋友分________个橘子. 20、根据x 的2倍与5的和比x 的12小10,可列方程为________________. 三、解答题(60分)21如图5,在△ABC 中,BO 平分∠ABC ,CO 平分∠ACB ,DE 过O 且平行于BC ,已知△ADE 的周长为10cm ,BC 的长为5cm ,求△A BC 的周长.(10分)ABCD图1A E D O22.(18分)解下列方程(组):(1)121.20.30.5x x-+-=;(2)2282810x yx y-=⎧⎨-=⎩,;(3)231 342 457 5615x yx y⎧+=⎪⎪⎨⎪+=⎪⎩,.23.(6分)若方程120ax+=的解是a=3,求不等式(x+2)y>-6的解集.24、儿童公园的门票价格规定如下表:8分购票人数1~50人51~100人100人以上每人门票价13元11元9元某校七(1)、(2)两个班共104人去游儿童公园,其中(1)班人数较少,不到50人,(2)班人数较多,经估算,如果两班都以班为单位分别购票,则一共应付1240元,问:(1)两班名有多少学生?(2)如果两联合起来,作为一个团体购票,可以省多少钱?25、已知31xy=⎧⎨=-⎩是方程组3108x kymx y+=⎧⎨+=⎩的解,求k和m的值.(6分)26.已知一个等腰三角形的三边长分别为x、2x、5x-3,求这个三角形的周长(6分)27、某校七(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:捐款(元) 1 2 3 4人数(人) 6 7表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,你有办法弄清这两个被污染的两个数字吗?说明你的理由.(6分)。
华师大版七年级下册数学期末考试试题带答案
华师大版七年级下册数学期末考试试卷一、选择题(每小题3分,共21分)1.(3分)下列方程中解为x=0的是()A.x+1=﹣1 B.2x=3x C.2x=2 D.2.(3分)不等式﹣2x>3的解集是()A.B.C.D.3.(3分)已知2x﹣3y=5,若用含y的代数式表示x,则正确的是()A.B.C.D.4.(3分)下列各图中,正确画出AC边上的高的是()A.B.C.D.5.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)把边长相等的正五边形ABCDE和正方形ABFG按照如图所示的方式叠合在一起,则∠EAG的度数是()A.18°B.20°C.28°D.30°7.(3分)如图是某月份的日历表,任意框出同一列上的三个数,则这三个数的和不可能是()A.39 B.43 C.57 D.66二、填空题(每小题4分,共40分)8.(4分)已知x=3是方程2x﹣a=1的解,则a=.9.(4分)若代数式5x﹣1的值与6互为相反数,则x=.10.(4分)若a>b,则a+b2b.(填“>”、“<”或“=”)11.(4分)方程组经“消元”后可得到一个关于x、y的二元一次方程组为.12.(4分)一个多边形的内角和是它的外角和的4倍,这个多边形是边形.13.(4分)已知围绕某一点的m个正三角形和n个正六边形恰好铺满地面,若n=1,则m 的值为.14.(4分)如图,在△ABC中,∠B=70°,∠BAC=45°,AD⊥BC于点D,则∠CAD的度数为.15.(4分)如图,在△ABC中,∠C=90°,AC=4,将△ABC沿射线CB方向平移得到△DEF,若平移的距离为2,则四边形ABED的面积等于.16.(4分)如图,点P是等边三角形ABC内的一点,连结PB、PC.将△PBC绕点B逆时针旋转到△P′BA的位置,则∠PBP′的度数是.17.(4分)如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点.若△ABC 的面积为m,则△BEF的面积为.三、解答题(共89分)18.(9分)解方程:2(x﹣7)=10+5x.19.(9分)解方程组:.20.(9分)解不等式组:,并把它的解集在数轴上表示出来.21.(9分)如图,已知△ABC.(1)若AB=4,AC=5,则BC边的取值范围是;(2)点D为BC延长线上一点,过点D作DE∥AC,交BA的延长线于点E,若∠E=55°,∠ACD=125°,求∠B的度数.22.(9分)如图,△ABC的三个顶点和点O都在正方形网格的格点上,每个小正方形的边长都为1.(1)将△ABC先向右平移4个单位,再向上平移2个单位得到△A1B1C1,请画出△A1B1C1;(2)请画出△A2B2C2,使△A2B2C2和△ABC关于点O成中心对称;(3)在(1)、(2)中所得到的△A1B1C1与△A2B2C2成轴对称吗?若成轴对称,请画出对称轴;若不成轴对称,请说明理由.23.(9分)儿童商店举办庆“六•一”大酬宾打折促销活动,某商品若按原价的七五折出售,要亏25元;若按原价的九折出售,可赚20元.设该商品的原价为x元.(1)若将该商品按原价的八折出售,则售价为元;(用含x的代数式表示)(2)求出x的值.24.(9分)已知关于x、y的二元一次方程组.(1)当k=1时,解这个方程组;(2)若﹣1<k≤1,设S=x﹣8y,求S的取值范围.25.(13分)某批发部有甲、乙两种产品.已知甲产品的批发单价比乙产品的批发单价少10元;8件甲产品的总价正好和7件乙产品的总价相等.(1)求甲、乙两产品的批发单价各是多少?(2)友谊商店计划从该批发部购进以上两种产品.①若所用资金为590元,且购进甲产品不超过5件,则该店购进乙产品至少多少件?②试探索:能否通过合理安排,使所用资金恰好为750元?若能,请给出进货方案;若不能,请说明理由.26.(13分)如图,已知△ABC≌△CDA,将△ABC沿AC所在的直线折叠至△AB′C的位置,点B的对应点为B′,连结BB′.(1)直接填空:B′B与AC的位置关系是;(2)点P、Q分别是线段AC、BC上的两个动点(不与点A、B、C重合),已知△BB′C的面积为36,BC=8,求PB+PQ的最小值;(3)试探索:△ABC的内角满足什么条件时,△AB′E是直角三角形?参考答案与试题解析一、选择题(每小题3分,共21分)1.(3分)(2016春•石狮市期末)下列方程中解为x=0的是()A.x+1=﹣1 B.2x=3x C.2x=2 D.【分析】看看x=0能使ABCD四个选项中哪一个方程的左右两边相等,就是哪个答案;也可以分别解这四个选项中的方程.【解答】解:A、由x+1=﹣1得,x=﹣2;B、由2x=3x得,x=0;C、由2x=2得,x=1;D、由+4=5x得,x=1.故选B.【点评】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值2.(3分)(2016春•石狮市期末)不等式﹣2x>3的解集是()A.B.C.D.【分析】直接把x的系数化为1即可.【解答】解:不等式的两边同时除以﹣2得,x<﹣.故选D.【点评】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.3.(3分)(2016春•石狮市期末)已知2x﹣3y=5,若用含y的代数式表示x,则正确的是()A.B.C.D.【分析】把y看做已知数求出x即可.【解答】解:方程2x﹣3y=5,解得:x=,故选B【点评】此题考查了解二元一次方程,解题的关键是将y看做已知数求出x.4.(3分)(2016春•诸城市期末)下列各图中,正确画出AC边上的高的是()A.B.C.D.【分析】根据三角形高的定义,过点B与AC边垂直,且垂足在边AC上,然后结合各选项图形解答.【解答】解:根据三角形高线的定义,只有D选项中的BE是边AC上的高.故选:D.【点评】本题主要考查了三角形的高线的定义,熟记定义并准确识图是解题的关键.5.(3分)(2016春•石狮市期末)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】结合选项根据轴对称图形与中心对称图形的概念求解即可.【解答】解:A、不是轴对称图形,也不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、不是轴对称图形,是中心对称图形.故选C.【点评】本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2016春•石狮市期末)把边长相等的正五边形ABCDE和正方形ABFG按照如图所示的方式叠合在一起,则∠EAG的度数是()A.18°B.20°C.28°D.30°【分析】∠EAG的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解.【解答】解:正五边形的内角的度数是×(5﹣2)×180°=108°,正方形的内角是90°,则∠EAG=108°﹣90°=18°.故选A.【点评】本题考查了多边形的内角和定理,求得正五边形的内角的度数是关键.7.(3分)(2016春•石狮市期末)如图是某月份的日历表,任意框出同一列上的三个数,则这三个数的和不可能是()A.39 B.43 C.57 D.66【分析】可设中间的数为x,根据竖列上相邻的数相隔7可得其余2个数,相加等于各选项中数字求解即可.【解答】解:A、设中间的数为x,则最小的数为x﹣7,最大的数为x+7.x+(x﹣7)+(x+7)=39,解得:x=13,故此选项错误;B、设中间的数为x,则最小的数为x﹣7,最大的数为x+7.x+(x﹣7)+(x+7)=43,解得:x=,故此选项符合题意;C、设中间的数为x,则最小的数为x﹣7,最大的数为x+7.x+(x﹣7)+(x+7)=57,解得:x=19,故此选项错误;D、设中间的数为x,则最小的数为x﹣7,最大的数为x+7.x+(x﹣7)+(x+7)=66,解得:x=22,故此选项错误;故选:B.【点评】此题主要考查了一元一次方程的应用;得到日历中一竖列3个数之间的关系是解决本题的难点.二、填空题(每小题4分,共40分)8.(4分)(2016春•石狮市期末)已知x=3是方程2x﹣a=1的解,则a=5.【分析】把x=3代入方程计算即可求出a的值.【解答】解:把x=3代入方程得:6﹣a=1,解得:a=5,故答案为:5【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.(4分)(2016春•石狮市期末)若代数式5x﹣1的值与6互为相反数,则x=﹣1.【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:5x﹣1+6=0,移项合并得:5x=﹣5,解得:x=﹣1,故答案为:﹣1【点评】此题考查了解一元一次方程,以及相反数,熟练掌握相反数的性质是解本题的关键.10.(4分)(2016春•石狮市期末)若a>b,则a+b>2b.(填“>”、“<”或“=”)【分析】根据不等式的两边都加(或减去)同一个整式,不等号的方向不变,可得答案.【解答】解:不等式的两边都加b,不等号的方向不变,得a+b>2b,故答案为:>.【点评】本题考查了不等式的性质,熟记不等式的性质是解题关键.11.(4分)(2016春•石狮市期末)方程组经“消元”后可得到一个关于x、y的二元一次方程组为..【分析】先把第1个方程和第3个方程相加消去z,然后把所得的新方程和第2个方程组成方程组即可.【解答】解:,①+③得x+3y=6④,由②④组成方程组得.故答案为.【点评】本题考查了解三元一次方程组:利用加减消元法或代入消元法把解三元一次方程组的问题转化为解二元一次方程组的问题.12.(4分)(2016春•石狮市期末)一个多边形的内角和是它的外角和的4倍,这个多边形是十边形.【分析】一个多边形的内角和是它的外角和的4倍,而外角和是360°,则内角和是4×360°.n 边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【解答】解:设这个多边形有n条边.由题意得:(n﹣2)×180°=360°×4,解得n=10.则这个多边形是十边形.故答案为:十.【点评】本题考查了多边形内角与外角,已知多边形的内角和求边数,可以转化为方程的问题来解决.13.(4分)(2016春•石狮市期末)已知围绕某一点的m个正三角形和n个正六边形恰好铺满地面,若n=1,则m的值为4.【分析】根据正三角形的每个内角是60°,正六边形的每个内角是120°,结合镶嵌的条件即可求出答案.【解答】解:∵正三角形和正六边形的一个内角分别是60°,120°,而4×60°+120°=360°,∴m=4,n=1,故答案为:4.【点评】此题主要考查了平面镶嵌,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.14.(4分)(2016春•石狮市期末)如图,在△ABC中,∠B=70°,∠BAC=45°,AD⊥BC于点D,则∠CAD的度数为25°.【分析】根据垂直定义可得∠ADB=90°,根据直角三角形两锐角互余可得∠BAD的度数,进而可得∠CAD的度数.【解答】解:∵AD⊥BC,∴∠ADB=90°,∵∠B=70°,∴∠BAD=20°,∵∠BAC=45°,∴∠DAC=45°﹣20°=25°,故答案为:25°.【点评】此题主要考查了三角形内角和定理,关键是掌握直角三角形两锐角互余.15.(4分)(2016春•石狮市期末)如图,在△ABC中,∠C=90°,AC=4,将△ABC沿射线CB方向平移得到△DEF,若平移的距离为2,则四边形ABED的面积等于8.【分析】根据平移的性质,经过平移,对应点所连的线段平行且相等,可得四边形ABED是平行四边形,再根据平行四边形的面积公式即可求解.【解答】解:∵将△ABC沿CB向右平移得到△DEF,平移距离为2,∴AD∥BE,AD=BE=2,∴四边形ABED是平行四边形,∴四边形ABED的面积=BE×AC=2×4=8.故答案为:8.【点评】本题主要考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.16.(4分)(2016春•石狮市期末)如图,点P是等边三角形ABC内的一点,连结PB、PC.将△PBC绕点B逆时针旋转到△P′BA的位置,则∠PBP′的度数是60°.【分析】首先根据等边三角形的性质可得∠ABC=60°,然后再根据旋转可得∠ABP′=∠CBP,进而可得∠PBP′的度数.【解答】解:∵△ABC是等边三角形,∴∠ABC=60°,∵△PBC绕点B逆时针旋转到△P′BA的位置,∴∠ABP′=∠CBP,∴∠PBP′=∠ABP′+∠ABP=∠PBC+∠ABP=60°,故答案为:60°.【点评】此题主要考查了等边三角形的性质和旋转的性质,关键是掌握旋转前、后的图形全等.17.(4分)(2016春•石狮市期末)如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点.若△ABC的面积为m,则△BEF的面积为m.【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【解答】解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC=m,∴S△BCE=S△ABC=m,∵点F是CE的中点,∴S△BEF=S△BCE=×m=m.故答案为:m.【点评】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.三、解答题(共89分)18.(9分)(2016春•石狮市期末)解方程:2(x﹣7)=10+5x.【分析】根据解一元一次方程的一般步骤:去括号、移项、合并同类项、系数化为1,可得答案.【解答】解:去括号,得:2x﹣14=10+5x,移项,得:2x﹣5x=10+14,合并同类项,得:﹣3x=24,系数化为1,得:x=﹣8.【点评】此题考查解一元一次方程,熟练掌握解题步骤是关键.19.(9分)(2016春•石狮市期末)解方程组:.【分析】将第一个方程直接代入第二个方程,然后利用代入消元法求解即可.【解答】解:,①代入②得,3x+10x=26,解得x=2,将x=2代入①得,y=2×2=4,所以,方程组的解是.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.20.(9分)(2016春•石狮市期末)解不等式组:,并把它的解集在数轴上表示出来.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组组的解集.【解答】解:,解①得x<﹣2,解②得x≤1,则不等式组的解集是x<﹣2.【点评】本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.21.(9分)(2016春•石狮市期末)如图,已知△ABC.(1)若AB=4,AC=5,则BC边的取值范围是1<BC<9;(2)点D为BC延长线上一点,过点D作DE∥AC,交BA的延长线于点E,若∠E=55°,∠ACD=125°,求∠B的度数.【分析】(1)利用三角形的三边关系确定第三边的取值范围即可;(2)首先利用平行线的性质确定∠EDB的度数,然后利用三角形内角和定理确定∠B的度数即可.【解答】解:(1)∵AB=4,AC=5,∴5﹣4<BC<4+5,即1<BC<9,故答案为:1<BC<9;(2)∵∠ACD=125°,∴∠ACB=180°﹣∠ACD=55°,∵∠E=55°,∴∠B=180°﹣∠E﹣∠BDE=180°﹣55°﹣55°=70°.【点评】本题考查了三角形的三边关系及平行线的性质,解题的关键是能够了解三角形的三边关系及两直线平行同位角相等的知识,难度不大.22.(9分)(2016春•石狮市期末)如图,△ABC的三个顶点和点O都在正方形网格的格点上,每个小正方形的边长都为1.(1)将△ABC先向右平移4个单位,再向上平移2个单位得到△A1B1C1,请画出△A1B1C1;(2)请画出△A2B2C2,使△A2B2C2和△ABC关于点O成中心对称;(3)在(1)、(2)中所得到的△A1B1C1与△A2B2C2成轴对称吗?若成轴对称,请画出对称轴;若不成轴对称,请说明理由.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用关于点O对称点的性质得出对应点位置;(3)利用轴对称图形的定义得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)如图所示:△A1B1C1与△A2B2C2成轴对称,直线a,b即为所求.【点评】此题主要考查了旋转变换以及平移变换,得出对应点位置是解题关键.23.(9分)(2016春•石狮市期末)儿童商店举办庆“六•一”大酬宾打折促销活动,某商品若按原价的七五折出售,要亏25元;若按原价的九折出售,可赚20元.设该商品的原价为x 元.(1)若将该商品按原价的八折出售,则售价为80%x元;(用含x的代数式表示)(2)求出x的值.【分析】(1)将该商品按原价的八折出售,即按照原价的80%出售;(2)设这种商品的标价是x元.根据定价的七五折出售将亏25元和定价的九折出售将赚20元,分别表示出进价,从而列方程求解.【解答】解:(1)依题意得:80%x.故答案是:80%x;(2)根据题意,得0.75x+25=0.9x﹣20,解得x=300.【点评】考查了一元一次方程的应用,注意:七五折即标价的75%,九折即标价的90%.24.(9分)(2016春•石狮市期末)已知关于x、y的二元一次方程组.(1)当k=1时,解这个方程组;(2)若﹣1<k≤1,设S=x﹣8y,求S的取值范围.【分析】(1)写出k=1时的方程组,然后将第二个方程乘以2,再利用加减消元法求解即可;(2)两个方程相减表示出S,再根据k的取值范围求解即可.【解答】解:(1)k=1时,方程组为,②×2得,2x+6y=10③,③﹣①得,11y=11,解得y=1,将y=1代入②得,x+3=5,解得x=2,所以,方程组的解是;(2),①﹣②得,x﹣8y=﹣3k﹣3,∵﹣1<k≤1,∴﹣3≤﹣3k<3,﹣6≤﹣3k﹣3<0,∴S的取值范围是﹣6≤S<0.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.25.(13分)(2016春•石狮市期末)某批发部有甲、乙两种产品.已知甲产品的批发单价比乙产品的批发单价少10元;8件甲产品的总价正好和7件乙产品的总价相等.(1)求甲、乙两产品的批发单价各是多少?(2)友谊商店计划从该批发部购进以上两种产品.①若所用资金为590元,且购进甲产品不超过5件,则该店购进乙产品至少多少件?②试探索:能否通过合理安排,使所用资金恰好为750元?若能,请给出进货方案;若不能,请说明理由.【分析】(1)设甲产品的批发单价为x元/件,乙产品的批发单价为(x+10)元/件,根据8件甲产品的总价正好和7件乙产品的总价相等即可得出关于x的一元一次方程,解方程即可得出结论;(2)①设该店购进乙产品至少m件,根据所用资金为590元,且购进甲产品不超过5件,即可得出关于m的一元一次方程,解方程即可得出结论;②假设能,购进甲产品a件,乙产品b件,结合甲、乙产品的单价以及用资金恰好为750元,即可得出70a+80b=750,令a分别等于1,2,3,…,验证b值是否为正整数,当a、b 均为正整数时,即是所求结论.【解答】解:(1)设甲产品的批发单价为x元/件,乙产品的批发单价为(x+10)元/件,由已知得:8x=7(x+10),解得:x=70,x+10=80.答:甲产品的批发单价为70元/件,乙产品的批发单价为80元/件.(2)①设该店购进乙产品至少m件,由已知得:5×70+80m=590,解得:m=3.答:该店购进乙产品至少3件.②假设能,购进甲产品a件,乙产品b件,由已知得:70a+80b=750,当a=1时,b=,不合适;当a=2时,b=,不合适;当a=3时,b=,不合适;当a=4时,b=,不合适;当a=5时,b=5,合适;当a=6时,b=,不合适;当a=7时,b=,不合适;当a=8时,b=,不合适;当a=9时,b=,不合适;当a=10时,b=,不合适.综上可知:当甲、乙产品各购进5件时,所用资金恰好为750元.【点评】本题考查了一元一次方程,解题的关键是:(1)根据数量关系列出关于x的一元一次方程;(2)①根据数量关系列出关于m的一元一次方程;②代入a值验证b值何时为整数.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.26.(13分)(2016春•石狮市期末)如图,已知△ABC≌△CDA,将△ABC沿AC所在的直线折叠至△AB′C的位置,点B的对应点为B′,连结BB′.(1)直接填空:B′B与AC的位置关系是垂直;(2)点P、Q分别是线段AC、BC上的两个动点(不与点A、B、C重合),已知△BB′C的面积为36,BC=8,求PB+PQ的最小值;(3)试探索:△ABC的内角满足什么条件时,△AB′E是直角三角形?【分析】(1)根据翻折变换的性质得到AB=AB′,∠BAC=∠B′AC,根据等腰三角形的性质得到结论;(2)根据三角形的面积公式求出△BB′C的BC边上的高,根据轴对称变换的性质解答;(3)分∠AB′E=90°和∠AEB′=90°两种情况,根据翻折变换的性质和平行线的性质解答.【解答】解:(1)由翻折变换的性质可知,AB=AB′,∠BAC=∠B′AC,∴B′B⊥AC,故答案为:垂直;(2)∵AB=AB′,∠BAC=∠B′AC,∴AC是B′B的垂直平分线,∴点B′与点B关于直线AC轴对称,连接B′Q,则B′Q是PB+PQ的最小值,∵△BB′C的面积为36,BC=8,∴△BB′C的BC边上的高为36×2÷8=9,当B′Q⊥BC时,B′Q最小,∴PB+PQ的最小值为9;(3)①如图1,当∠ACB=45°时,∠AEB′=90°.∵由翻折变换的性质可知,∠BCA=∠B′CA,∴∠BCB′=90°,∵△ABC≌△CDA,∴AB=CD,BC=AD,∴四边形ABCD的平行四边形,∴AD∥BC,∴∠AEB′=∠BCB′=90°;②如图2,由翻折变换的性质可知,当∠ABC=90°时,∠AB′E=90°.【点评】本题考查的是翻折变换的性质、轴对称﹣最短路径问题、等腰三角形的性质,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.。
2013七年级数学下学期期末试卷华东师大版及答案
七年级数学期末试卷 姓名: 分数: 一、选择题(每小题3分,共30分) 1.将方程0.50.2 1.550.90.20.5x x --+=变形正确的是( ) A.521550925x x --+= B.521550.925x x --+= C.52155925x x --+= D.520.93102x x -+=- 2.下列方程中,与方程组325431x y x y -=⎧⎨+=⎩,的解不同的方程组是( ) A.128201293x y x y -=⎧⎨+=⎩B.9615862x y x y -=⎧⎨+=⎩C.32554x y x y -=⎧⎨+=⎩D.76431x y x y +=⎧⎨+=⎩3.如图,下列图案中是轴对称图形的是( )A.①② B.①②③C.①③④ D.②③④4.下列推理错误的是( ) A.在ABC △中,A B C ==∠∠∠,ABC ∴△为等边三角形B.在ABC △中,AB AC =,且B C =∠∠,ABC ∴△为等边三角形C.在ABC △中,60A =∠,60B =∠,ABC ∴△为等边三角形D.在ABC △中,AB AC =,60B =∠,ABC ∴△为等边三角形5.三条线段a bc ,,分别满足下列条件,其中能构成三角形的是( ) A.4a b +=,9a b c ++= B.::1:2:3a b c =C.::2:3:4a b c = D.::2:2:4a b c =6.某工程甲单独完成要45天,乙单独完成要30天,若乙先单独干22天,剩下的由甲单独完成.问甲、乙一共用几天可以完成全部工作?若设甲、乙共有x 天完成,则符合题意的方程是( )A.222214530x -+= B.222213045x ++= C.222214530x ++= D.2213045x x -+=7.小刚投掷一枚硬币,结果前9次都是正面朝上,请问他第10次掷硬币出现正面朝上的机会是( ) A.14 B.910 C.1 D.12 8.下列说法:①0x =是210x -<的解;②13x =不是310x ->的解;③210x -+<的解集是2x >;④12x x >⎧⎨>⎩,的解集是1x >.其中正确的个数是( ) A.1个 B.2个 C.3个 D.4个9.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种商品的定价是多少?设定价为x ,则下列方程中正确的是( )A.759202510010x x -=+ B.759202510010x x +=+ C.759252010010x x -=+ D.759252010010x x +=- 10.如图2,在直角三角形ABC 中,90BAC =∠,AB AC =,D 为BC 上一点,AB BD =,DE BC ⊥,交AC 于E ,则图中的等腰三角形的个数有( )A.3个 B.4个 C.5个 D.6个二、填空题(每小题3分,共30分)11.若关于x 的方程1(2)510k k x k --++=是一元一次方程,则k =_____,x =_____.12.已知方程456x y -=,用含x 的代数式表示y 得_____,用含y 的代数式表示x 得_____.13.方程37x -=的解为_____.14.若方程组23(3)34a b x c xy x y -+-+=⎧⎨-=⎩,是关于x y ,的二元一次方程组,则代数式a b c ++的值是_____.15.等腰三角形两腰上的高所夹的锐角为70,则等腰三角形的三个内角的度数分别为_____.16.已知:如图所示,在ABC △中,点D E F ,,分别为BC AD CE ,,的中点,且24cm ABC S =△,则阴影部分的面积为_____.17.不等式835x x ->-的最大整数解是:_____.18.四个图形分别是正三角形、等腰梯形、长方形、正五边形,它们全部是轴对称图形,其中对称轴的条数最少的图形是_____.19.为了解决我国北方严重缺水问题,水利部在长江上、中、下游启动了南水北调工程,但仍然鼓励市民节约用水.某市出台收费方法:用水不超过10吨,每吨0.8元;超过10吨的部分按每吨1.5元收费.王老师三月份平均水费为每吨1.0元,则王老师三月份用水_____吨,应交水费_____元.20.写出两个不同性质的确定事件:①_____,_____,一个不确定事件:_____.E D C B AE F B A三、解答题(共24分)21.(18分)解下列方程(组):(1)12 1.20.30.5x x -+-=; (2)2282810x y x y -=⎧⎨-=⎩,;(3)2313424575615x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,.22.(6分)若方程120ax +=的解是3x =,求不等式(2)6x x +<-的解集.四、应用题(每小题18分,共36分)23.七年级某班举行元旦化妆晚会,分别将男生脸上涂上蓝色油彩,女生脸上涂上红油彩.游戏时,每个男生都看见涂红色的人数是涂蓝色人的数的2倍,而每个女生都看见涂蓝色的人数是涂红色人数的35.问晚会上男、女生各有几个?24.某蔬菜公司收购蔬菜260吨,准备加工后上市销售.该公司的加工能力是:每天精加工8吨或粗加工20吨.现计划在22天内完成加工任务,且尽可能多的精加工,该公司应安排几天粗加工,几天粗加工,才能按期完成任务?如果每吨蔬菜粗加工后的利润是1500元,精加工后的利润为3000元,那么该公司出售这些加工后的蔬菜共可获利多少?参考答案24.解:设粗加工x 吨蔬菜,则精加工(260)x -吨蔬菜,有26022208x x -+=. 解得140x =.此时240120x -=. 故粗加工天数为140720=(天),精加工天数为22715-=(天). 公司可获利为15001403000120210000360000570000⨯+⨯=+=(元). 或:设安排粗加工x 天,精加工y 天,则22820260x y x y +=⎧⎨+=⎩,.解得157x y =⎧⎨=⎩,.此时精加工:158120⨯=(吨),粗加工:207140⨯=(吨),再计算利润也可以.。
华东师大版七年级数学下册期末试卷(及参考答案)
华东师大版七年级数学下册期末试卷(及参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±3 2.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°3.按如图所示的运算程序,能使输出的结果为12的是( )A .3,3x y ==B .4,2x y =-=-C .2,4x y ==D .4,2x y ==4.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.已知x 是整数,当30x x 的值是( )A .5B .6C .7D .86.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A.118°B.119°C.120°D.121°7.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A .B .C .D .8.满足方程组35223x y mx y m+=+⎧⎨+=⎩的x,y的值的和等于2,则m的值为().A.2B.3C.4D.59.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对10.已知2,1=⎧⎨=⎩xy是二元一次方程组7,{1ax byax by+=-=的解,则a b-的值为A.-1 B.1 C.2 D.3 二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x3﹣4x=________.2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为________.4.如果方程(m-1)x|m|+2=0是表示关于x的一元一次方程,那么m的取值是________.5.若264a=,则3a=________.6.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解方程组:12433313412 x yx y++⎧=⎪⎪⎨--⎪-=⎪⎩2.若不等式组122x ax x+≥⎧⎨->-⎩①有解;②无解.请分别探讨a的取值范围.3.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.4.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校,如图所示是小明从家到学校这一过程中所走的路程s(米)与时间 t(分)之间的关系.(1)小明从家到学校的路程共米,从家出发到学校,小明共用了分钟;(2)小明修车用了多长时间?(3)小明修车以前和修车后的平均速度分别是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、D5、A6、C7、B8、C9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、x (x+2)(x ﹣2)2、20°.3、(3,7)或(3,-3)4、-15、±26、54°三、解答题(本大题共6小题,共72分)1、178y 7x ⎧=⎪⎪⎨⎪=-⎪⎩2、①a >-1②a ≤-13、(1)DE=3;(2)ADB S 15∆=.4、证明略5、(1)40;(2)72;(3)280.6、(1)2000米,20分钟;(2)5;(3) 100(m/min),200(m/min)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013-2014年七年级下期期末考试题
班级 姓名:
一、选择题(每小题3分,共30分) 1、正五边形的对称轴共有( ) A .2条 B .4条
C .5条
D .10条
2、有一个两位数,它的十位数字与个位数字之和为5,则符合条件的数有( )
个 A .4
B .5
C .6
D .无数
3、为了搞活经济,某商场将一种商品A 按标价9折出售,仍获利润10%,若商品A 标价为33元,那么商品进货价为( ) A .31元
B .30.2元
C .29.7元
D .27元
4、已知15 5-2x m y m =+=,若3m >-,则x 与y 的关系为( ) A .x y =
B .x y <
C .x y >
D .不能确定
5、一个多边形除了一个内角外,其余内角之和为257°,则这一内角等于( ) A .90°
B .105°
C .130°
D .120°
6、如图2,已知:在△ABC 中,
AB=AC ,D 是BC 边上任意一点,DF ⊥AC 于点F ,E 在AB 边上,ED ⊥BC 于D ,∠AED=155°,则∠EDF 等于( ) A .50° B .65° C .70°
D .75°
7、有一种足球是由32块黑白相间的牛皮缝制而成的(如图3),黑皮可看作正五边形,白皮可看作正六边形,设白皮有x 块,则黑皮有()32x -块,每块白皮有六条边,共6x 边,因每块白皮有三条边和黑皮连在一起,故黑皮有3x 条边.要求出白皮、黑皮的块数,列出的方程正确的是( ) A .332x x =-
B .()3532x x =-
C .()5332x x =-
D .632x x =-
A
B
C
F E
D
图2
图3
8、如图4,将正方形ABCD 的一角折叠,折痕为AE , ∠B ′AD 比∠B ′AE 大48°,设∠B ′AE 和∠B ′AD 的度数分别为x 、y ,
那么x 、y 所适合的一个方程组是( )
A .4890y x y x -=⎧⎨+=⎩
B .482y x y x -=⎧⎨=⎩
C .48290
y x y x -=⎧⎨+=⎩
D .48290
x y y x -=⎧⎨+=⎩
9、一个两位数的十位数字与个位数字之和是7,如果把这个两位数加上45,那么恰好成为个位数字与十位数字对调后的两位数,则这个两位数是( ) A .16 B .25 C .38 D .49 10、等腰三角形的腰长是4cm ,则它的底边长不可能是( )
A .1cm
B .3cm
C .6cm
D .9cm
二、填空题(每小题3分,共30分)
11、五边形中,前四个角的比为1∶2∶3∶4,第五个角比最小角多100°,则五边形的五个内角分别为_____________________.
12、本学期,我们做过“抢30”的游戏,如果将游戏规则中“不可以连说三个数,谁先抢到30谁就获胜”,改为“每次可以连说三个数,谁先抢到33谁就获胜”,那么采取适当策略,其结果_________者胜.
13、如图1,在△ABC ,∠A=36°,D 为AC 边上的一点,AD=BD=BC ,则图中的等腰三角形共有_______个.
14、已知△ABC 的边长a 、b 、c 满足(1)()2
240a b -+-=,(2)c 为偶数,则c 的值为________.
15、已知不等式523x a <+的解集是3
2
x <
,则a 的值是________. 16、方程34x y -=中,有一组解x 与y 互为相反数,则3________x y += 17.一个正方形有_____条对角线.
18、一个三角形有两条边相等,周长为18cm ,三角形的一边长为4cm ,则其他两边长分别为________.
19、将一筐橘子分给若干个小朋友,如果每人分4个橘子,剩下9个;如果每人分6个橘子,则最后一个小朋友分得的橘子将少于3个,由以上可知共有________个小朋友分________个橘子.
A
B
C
D
图 1
B
A
C
D
E B ′
图4
20、根据x 的2倍与5的和比x 的
1
2
小10,可列方程为________________. 三、解答题(每小题10分,共60分)
21、如图5,在△ABC 中,BO 平分∠ABC ,CO 平分∠ACB ,DE 过O 且平行
于BC ,已知△ADE 的周长为10cm ,BC 的长为5cm ,求△A BC 的周长.
22、儿童公园的门票价格规定如下表:
购票人数 1~50人 51~100人 100人以上 每人门票价
13元
11元
9元
某校七(1)、(2)两个班共104人去游儿童公园,其中(1)班人数较少,不到50人,(2)班人数较多,经估算,如果两班都以班为单位分别购票,则一共应付1240元,问:(1)两班名有多少学生?(2)如果两联合起来,作为一个团体购票,可以省多少钱?
23、已知31x y =⎧⎨=-⎩是方程组3108x ky mx y +=⎧⎨+=⎩的解,求k 和m 的值.
24、已知一个等腰三角形的三边长分别为x 、2x 、5x -3,求这个三角形的周长.
A
B
C
E D
O
图5
25、某校七(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:
捐款(元) 1 2 3 4
人数(人) 6 7
表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,你有办法弄清这两个被污染的两个数字吗?说明你的理由.
26、某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B 种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.
(1)求A、B型号衣服进价各是多少元?
(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案?并简述购货方案.
华师七下期末能力测试题三参考答案
一、填空题
1、40°,80°,120°,160°,140°
2、先报
3、3
4、4
5、答案不惟一
6、2
7、答案不惟一
8、7,7
9、1800°
10、1
25102
x +=-
二、选择题
11、C 12、B 13、D 14、B 15、C 16、B 17、B 18、C 19、A 20、D 三、解答题 21、15cm
22、(1)班有48人,(2)班有56人,合买可省304元
23、解:把31x y =⎧⎨=-⎩代入方程组()33110
318k m ⨯+-⨯=⎧⎪⎨-=⎪⎩
得,解得:k =-1,m =3.
24、显然2x x ≠,又若53x x =-,则532x x x +-=不合题意. 所以:253x x =-,解得:1x =,所以三角形周长为1225++=. 25、解:设捐款2元的有x 人,捐款3元的有y 人,则
6740
162347100
x y x y +++=⎧⎨
⨯+++⨯=⎩ 解之得:32x y =⎧⎨=⎩ 答:捐款2元的有3人,捐款3元的有20人.
26、(1)设A 种型号的衣服每件x 元,B 种型号的衣服y 元,则:
91018101281880x y x y +=⎧⎨+=⎩,解之得90
100
x y =⎧⎨
=⎩ (2)设B 型号衣服购进m 件,则A 型号衣服购进()24m +件,可得:
()182430699
19 22428
m m m m ++⎧⎪⎨
+⎪⎩≥解之得≤≤12≤ ∵m 为正整数,
∴m =10、11、12,2m +4=24、26、28.
答:有三种进货方案:(1) B 型号衣服购买10件,A 型号衣服购进24件; (2) B 型号衣服购买11件,A 型号衣服购进26件;(3) B 型号衣服购买12件,A 型号衣服购进28件.。