人教版a版高中数学选修2-2第一章1.1.2《导数的概念》【练习】(教师版)

合集下载

人教版高中数学选修2-2习题第一章导数及其应用1.1.2导数的概念

人教版高中数学选修2-2习题第一章导数及其应用1.1.2导数的概念

第一章导数及其应用1.1变化率与导数导数的观点A 级基础稳固一、选择题1. y= x2在 x= 1 处的导数为 ()A. 2x B. 2 C. 2+ x D. 1分析:由于 f(x)= x2,x= 1,因此y= f(1+x)- f (1)= (1+x)2- 1= 2x+ (x)2,所以y=(2+x)= 2.x答案: B2.一物体运动知足曲线方程s=4t2+ 2t- 3,且 s′(5)= 42(m/s),其实质意义是 () A.物体 5 秒内共走过42 米B.物体每 5 秒钟运动42 米C.物体从开始运动到第 5 秒运动的均匀速度是42 米/秒D.物体以 t= 5 秒时的刹时速度运动的话,每经过一秒,物体运动的行程为42 米分析:由导数的物理意义知,s′ (5)= 42(m/s)表示物体在t= 5 秒时的刹时速度.答案: D3.设函数 f (x)在点 x0邻近有定义,且有 f(x0+x)- f(x0 )= a x+ b(x)2,(a,b 为常数 ),则 ()A. f′ (x)= a B. f′ (x)= bC. f′ (x0)= a D. f′ (x0)= b分析:由于 f′(x=f( x0+x)-f(x)=0)xa x+ b(x)2=(a+ b x)= a,因此 f′(xx0)=a.答案: C4.已知 y=x+ 4,则 y′|x1= ________.=555A. 2B. 10C. 5 D.-10分析:由题意知y=1+x+ 4- 1+ 4=5+x-5,y+-5+-5所以=5x1=5x=. 所以 y′|xx x=xx=5x ( 5+ x +5) 10.答案: B5.假如某物体做运动方程为s = 2(1- t 2)的直线运动 (s 的单位为 m , t 的单位为 s),那么 其在 1.2 s 末的刹时速度为 ()A .- 4.8 m/sB .- 0.88 m/sC . 0.88 m/sD . 4.8 m/s解 析 : 运 动 物 体 在1.2s 末 的 瞬 时 速 度 即 为 s 在 1.2 处 的 导数 , 所 以f ( 1.2+ t )- f ( 1.2)=t222[1-( 1.2+t ) ]- 2×( 1- 1.2 )=2(- 答案: A 二、填空题6.设函数t - 2.4)=- 4.8(m/s).f(x)知足f ( 1)- f ( 1- x )=- 1,则 f ′(1)= ________.x分析: f ( 1)- f ( 1- x ) = f ( 1- x )- f ( 1)= f ′(1)=- 1.x- x答案:- 17.函数 f(x)= x 2+ 1 在 x = 1 处可导,在求 f ′(1)的过程中,设自变量的增量为x ,则函数的增量y = ________.分析:y = f(1+ x)- f(1) =- (1 2+ 1)=2 x + ( x)2.答案: 2 x + (x)28.某物体做匀速直线运动,其运动方程是 s = vt ,则该物体在运动过程中其均匀速度与任何时辰的刹时速度的大小关系是________.s ( +t )- s ( t )分析: v 0== s t 0=ttv ( t 0+ t )- v ( t 0)=v tt= v.t答案:相等三、解答题19.利用导数的定义,求函数y = x 2+ 2 在点 x = 1 处的导数. 解:由于y = 1 2+2 - 1 =( x + x ) x 2+ 2- 2x x -(x ) 2,因此y =- 2x - x ,( x + x ) 2· x 2 x ( x + x ) 2· x 2因此 y ′=y = - 2x - x2=- 23,( x +2xx ) · xx因此 y ′|x =1=- 2.10.在自行车竞赛中,运动员的位移与竞赛时间t 存在关系 s(t)= 10t + 5t 2(s 的单位是 m ,t 的单位是 s).(1)求 t = 20,t = 0.1 时的s 与s ;t(2)求 t = 20 时的速度.解: (1) 当 t = 20, t = 0.1 时,s = s(20+ t)- s(20)= 10(20+ 0.1)+ 5(20+ 0.1)2- (10 ×20+ 5× 202)= 1+ 20+ 5×0.01=21.05.因此s 21.05 = 210.5.= 0.1ts( + t)+(+ t) 2- 10t - 5t 2(2)v ==10 t 5 t =tt5(t ) 2+ 10 t + 10tt(5 t + 10+ 10t)= 10+ 10t ,t=因此 t = 20 时的速度即为10+ 10×20= 210(m/s).B 级 能力提高1.某物体运动规律是 s = t 2 - 4t + 5,若此物体的刹时速度为 0,则 t = ()A .3B .2.5C .2D .1分析: s = (t + t)2- 4(t +t) + 5- ( t 2- 4t + 5)= 2t t + ( t)2- 4 t ,由于 v =st= 2t - 4= 0,因此 t = 2.答案: C2.婴儿从出生到第24 个月的体重变化如下图,第二年婴儿体重的均匀变化率为________kg/ 月.分析:第二年婴儿体重的均匀变化率为14.25- 11.25= 0.25(kg/月 ).24- 12答案: 0.253.若一物体运动方程是 (s 的单位是 m , t 的单位是 s)3t 2+ 2( t ≥3),s =29+ 3( t - 3) 2( 0≤t < 3) .求: (1) 物体在 t ∈内的均匀速度;(2) 物体的初速度v 0;(3) 物体在 t = 1 时的刹时速度.解: (1) 由于物体在 t ∈内的时间变化量为t = 5-3= 2,物体在 t ∈内的位移变化量为:= × 2+ 2- (3 ×32+ 2)= 3×(52- 32s 3 5 )= 48,因此物体在 t ∈上的均匀速度为 s 48 = 24(m/s).= 2t (2) 求物体的初速度 v 0 即求物体在 t = 0 时的刹时速度.由于物体在 t = 0 邻近的均匀变化率为s ( +)- ( ) == ftftt29+ 3[( 0+ t )- 3]2- 29- 3( 0- 3) 2= 3t - 18.t因此物体在 t = 0 处的刹时变化率为,s (3 t - 18)=- 18,t =即物体的初速度为- 18 m/s.(3)物体在 t = 1 时的刹时速度即为函数在 t = 1 处的刹时变化率.由于物体在 t = 1 邻近的均匀变化率为:s ( + )- ( )= f 1 t f 1 = tt29+ 3[( 1+ t )- 3]2- 29- 3( 1- 3) 2t - 12,= 3t因此物体在 t = 1 处的刹时变化率为:s = (3 t - 12)=- 12.t即物体在 t = 1 时的速度为- 12 m/s.。

2019人教版高中数学选修2-2习题第一章导数及其应用1.1.2导数的概念

2019人教版高中数学选修2-2习题第一章导数及其应用1.1.2导数的概念

9.利用导数的定义,求函数
1 y= x2+ 2 在点 x=1 处的导数.
1
1
解:因为 Δ y= ( x+ Δ x) 2+ 2 - x2+ 2 =
- 2xΔx-( Δ x) ( x+ Δ x) 2· x2
2
,所以
Δ Δ
y= x

-2x- Δ x x+Δ x) 2·
x 2,
所以 y′=
Δy Δ x=
- 2x- Δx
Δs Δ t = 2t -4= 0,所以 t =2. 答案: C 2 .婴儿从出生到第 24 个月的体重变化如图所示,第二年婴儿体重的平均变化率为
________kg/ 月.
解析:第二年婴儿体重的平均变化率为
14.25 - 11.25 24- 12 = 0.25(kg/ 月 ) .
答案: 0.25 3.若一物体运动方程是 ( s 的单位是 m, t 的单位是 s)
2
( x+ Δ x) 2· x2=- x3,
所以 y′|x= 1=- 2. 10.在自行车比赛中,运动员的位移与比赛时间
t 存在关系 s( t ) =10t + 5t 2( s 的单位是
m, t 的单位是 s) .
(1)
求 t = 20, Δ t =0.1
时的
Δ
s

Δ Δ
s t;
(2) 求 t = 20 时的速度.
解: (1) 当 t = 20, Δt = 0.1 时, Δ s = s(20 + Δ t ) - s(20) = 10(20 + 0.1) + 5(20 + 0.1) 2-(10 × 20 + 5 × 202) = 1+ 20+
5×0.01 = 21.05.
所以 Δs= 21.05 = 210.5. Δ t 0.1

【整合】人教a版高二数学选修2-2第一章第一节112导数的概念(同步教案).doc

【整合】人教a版高二数学选修2-2第一章第一节112导数的概念(同步教案).doc

教学日标:1.了解瞬时速度、瞬时变化率的概念;2.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;3.会求函数在某点的导数。

教学重点:瞬时速度、瞬时变化率的概念、导数的概念;教学难点:导数的概念.教学过程设计(一入情景引入,激发兴趣。

【教师引入】:“生活中有一些现象值得我们去研究,比如,子弹离开枪管那一瞬间的速度,奥运会上百米赛跑运动员冲向终点那一时刻的速度。

科学上对瞬时速度的研究也是非常有必要的,比如在天宫一号与神州八号的成功对接,最关键的就是它们每个瞬间的速度都相等。

(二)、探究新知,揭示概念探究:计算运动员在OS"箫这段时间里的平均速度,并思考以下问题:⑴运动员在这段吋I'可内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数心-4.9氏的图像,结合图形可知,嚼)h& - /X0)所以_ ——竺-0=0(5 /m),49虽然运动员在这段时间里的平均速度为0(s/加),显然,运动员在这段时间里不是静止的.由此可见,用平均速度描述运动员的运动状态是有一定的局限性•所以我们说“平均速度”只能粗略地描述运动员的运动状态.还有一种速度,它能更精确地刻画运动员在每个时刻的运动状态,我们称Z为:瞬时速度.那如何求运动员的瞬时速度呢?比如,高台跳水运动员在t = 2s时的瞬时速度是多少呢?大家有没有好的想法?(三)、分析归纳,抽象概括1.瞬时速度我们把物体在某T寸刻的速度称为瞬时速度。

运动员的平均速度不能反映他在某•时刻的瞬吋速度,那么,如何求运动员的瞬时速度呢?比如,t = 2时的瞬时速度是多少?考察t = 2附近的情况:思考:当&趋近于0时,平均速度“有什么样的变化趋势?结论:当△/趋近于0时,即无论/从小于2的一边,还是从大于2的一边趋近于2时,平均速度「都趋 近于一个确定的值-13.1 •从物理的角度看,时间|Af|间隔无限变小时,平均速度"就无限趋近于史的瞬时速度,因此,运动员在t = 2时的瞬时速度是-13.1m/5表示“当r = 2, △/趋近于0时,平均速度卩趋近于定值-13.1”小结:局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡 到瞬时速度的精确值。

人教新课标A版高二数学《选修2-2》1.1.2 导数的概念

人教新课标A版高二数学《选修2-2》1.1.2 导数的概念


Δt
65 ht0+Δt-ht0 -4.9 +Δt+6.5=0 ∴Δ lim =Δ lim → t→0 t 0 Δt 49
65 即运动员在 t0=98 s 时的瞬时速度为 0 m/s. 说明运动员处于跳水运动中离水面最高点处.
点评:运动物体瞬时速度问题实际上是函数平均变化率在物理知识上 的一个深入的应用.事实上,瞬时速度就是位移函数相对于时间的瞬 Δs 时 变 化 率 . 这 里 需 强 调 的 是 : 依 题 意 在 求 完 平 均 变 化 率 Δt = st0+Δt-st0 Δs Δs 后需对 求极限,只有当 Δ lim 为一个常数时,此常数 → t 0 Δt Δt Δt 才称为物体在 t=t0 时的瞬时速度.
Δy 点评: 的最终结果要先化简约分,再令 Δx=0 代入求出导数值. Δx
变式探究 2
若函数 y=x +ax 在 x=2 处的导数为 8,求 a 的值.
2
f2+Δx-f2 解:f′(2)=Δ lim x→0 Δx 2+Δx +a2+Δx-2 +2a =Δ lim x→0 Δx =Δ lim (Δx+4+a) x→0 =4+a. 由题意知 f′(2)=8, ∴4+a=8. 解得 a=4.
【答案】C
知识讲解: 1.了解导数的概念需注意 (1)Δx 是自变量 x 在 x0 处的改变量, 所以 Δx 可正、 可负, 但不能为零. 当 Δx>0(或 Δx<0)时, Δx→0 表示 x0+Δx 从右边(或从左边)趋近于 x0, Δy 是相应函数的改变量,Δy 可正、可负,也可以为零. (2)导数是一个局部概念,它只与函数 y=f(x)在 x=x0 处及其附近的函 数值有关,与 Δx 无关. fx0+Δx-fx0 (3)f′(x0)是一个常数,即当 Δx→0 时,存在一个常数与 Δx Δy 无限接近.如果当 Δx→0 时,Δ lim 不存在,则称函数 f ( x ) 在 x = x 处 0 → x 0Δx 不可导.

高中新课程数学(新课标人教A版)选修2-2《第一章 导数及其应用》知识点、考点、及其例题

高中新课程数学(新课标人教A版)选修2-2《第一章 导数及其应用》知识点、考点、及其例题

第一章导数及其应用知识点及练习题知识点1:导数概念的引入1. 导数的物理意义:瞬时速率。

一般的,函数()y f x =在0x x =处的瞬时变化率是000()()limx f x x f x x∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000()()limx f x x f x x∆→+∆-∆2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。

容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000()()lim ()n x n f x f x k f x x x ∆→-'==-3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆考点:导数的几何意义及其应用[例题] 已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程; (3)求斜率为4的曲线的切线方程.[变式训练] 已知函数f(x)=x3+x -16.(1)求曲线y =f(x)在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f(x)的切线,且经过原点,求直线l 的方程及切点坐标.知识点2:导数的计算1)基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α=,则1()f x xαα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()xf x a =,则()ln x f x a a '=6 若()x f x e =,则()xf x e '=7 若()log xa f x =,则1()ln f x x a '=8 若()ln f x x =,则1()f x x'=2)导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f xg x f x g x g x g x ''•-•'= 3)复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=•考点:导数的求导及运算1、已知()22sin f x x x π=+-,则()'0f =2、若()sin x f x e x =,则()'f x =3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( )319.316.313.310.D C B A 4.过抛物线y=x 2上的点M )41,21(的切线的倾斜角是() A.30° B.45° C.60° D.90° 5.如果曲线2932y x =+与32y x =-在0x x =处的切线互相垂直,则0x =知识点3:导数在研究函数中的应用1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增; 如果()0f x '<,那么函数()y f x =在这个区间单调递减. 2.函数的极值与导数极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是:(1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值;(2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数函数极大值与最大值之间的关系.求函数()y f x =在[,]a b 上的最大值与最小值的步骤 (1) 求函数()y f x =在(,)a b 内的极值;(2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.考点:1.导数在研究函数单调性中的应用2.导数在求函数极值与最值中的应用题型一:导数在研究函数单调性中的应用[例题] 设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y=(e -1)x +4.(1)求a ,b 的值; (2)求f (x )的单调区间.[变式训练] 设函数f(x)=xekx(k ≠0).(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(-1,1)内单调递增,求k 的取值范围.题型二:导数在求函数极值与最值中的应用[例题]已知函数f(x)=-x3+ax2+bx在区间(-2,1)内,当x=-1时取极小值,当x=23时取极大值.(1)求函数y=f(x)在x=-2时的对应点的切线方程;(2)求函数y=f(x)在[-2,1]上的最大值与最小值.[变式训练] 设函数f(x)=[ax2-(4a+1)x+4a+3]e x.(1)若曲线y=f(x)在点(1,f(1))处的切线方程与x轴平行,求a;(2)若f(x)在x=2处取得极小值,求a的取值范围.知识点4:解决实际问题利用导数的知识,,求函数的最大(小)值,从而解决实际问题考点:1、导数在切线方程中的应用2、导数在单调性中的应用3、导数在极值、最值中的应用4、导数在恒成立问题中的应用题型一:导数在切线方程中的运用1.曲线3x y =在P 点处的切线斜率为k,若k=3,则P 点为( ) A.(-2,-8) B.(-1,-1)或(1,1)C.(2,8)D.(-21,-81)2.曲线53123+-=x x y ,过其上横坐标为1的点作曲线的切线,则切线的倾斜角为( ) A.6π B.4π C.3π D.π43题型二:导数在单调性中的运用1.函数32()31f x x x =-+是减函数的区间为( ) A.(2,)+∞ B.(,2)-∞ C.(,0)-∞ D.(0,2)2.关于函数762)(23+-=x x x f ,下列说法不正确的是( ) A .在区间(∞-,0)内,)(x f 为增函数 B .在区间(0,2)内,)(x f 为减函数 C .在区间(2,∞+)内,)(x f 为增函数 D .在区间(∞-,0)),2(+∞⋃内,)(x f 为增函数3.已知函数()y xf x '=的图象如右图所示(其中'()f x 是函数()f x 的导函数),下面四个图象中()y f x =的图象大致是( )4、(2010年山东21)(本小题满分12分)已知函数).(111)(R a xaax nx x f ∈--+-= (Ⅰ)当处的切线方程;在点时,求曲线))2(,2()(1f x f y a=-=(Ⅱ)当12a ≤时,讨论()f x 的单调性.题型三:导数在最值、极值中的运用1.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( ) A .2B. 3C. 4D.52.函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( ) A.5 , - 15 B.5 , 4 C.- 4 , - 15 D.5 , - 163.已知函数)0()(3≠++=adcxaxxf是R上的奇函数,当1=x时)(xf取得极值-2.(1)试求a、c、d的值;(2)求)(xf的单调区间和极大值;4.设函数2312)(bxaxexxf x++=-,已知12=-=xx和为)(xf的极值点。

高中数学人教A版选修2-2 第一章1.1.2导数的概念教案 精品

高中数学人教A版选修2-2 第一章1.1.2导数的概念教案 精品

§1.1.2 导数的概念
教学目标:
1.了解瞬时速度、瞬时变化率的概念;
2.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵; 3.会求函数在某点的导数。

教学重点:瞬时速度、瞬时变化率的概念、导数的概念; 教学难点:导数的概念.
(一)、情景引入,激发兴趣
【教师引入】:“生活中有一些现象值得我们去研究,比如,子弹离开枪管那一瞬间的速度,奥运会上百米赛跑运动员冲向终点那一时刻的速度。

科学上对瞬时速度的研究也是非常有必要的,比如在天宫一号与神州八号的成功对接,最关键的就是它们每个瞬间的速度都相等。

(二)、探究新知,揭示概念。

人教版高中数学选修2-2课后习题参考答案

人教版高中数学选修2-2课后习题参考答案

新课程数学选修2(一)—2第一章课后习题解答第一章 导数及其应用 3.1变化率与导数 练习(P6)在第3 h 和5 h 时,原油温度的瞬时变化率分别为1-和3. 它说明在第3 h 附近,原油温度大约以1 ℃/h 的速度下降;在第5 h 时,原油温度大约以3 ℃/h 的速率上升.练习(P8)函数()h t 在3t t =附近单调递增,在4t t =附近单调递增. 并且,函数()h t 在4t 附近比在3t 附近增加得慢. 说明:体会“以直代曲”1的思想. 练习(P9) 函数33()4Vr V π=(05)V ≤≤的图象为根据图象,估算出(0.6)0.3r '≈,(1.2)0.2r '≈.说明:如果没有信息技术,教师可以将此图直接提供给学生,然后让学生根据导数的几何意义估算两点处的导数. 习题1.1 A 组(P10)1、在0t 处,虽然1020()()W t W t =,然而10102020()()()()W t W t t W t W t t t t--∆--∆≥-∆-∆.所以,企业甲比企业乙治理的效率高.说明:平均变化率的应用,体会平均变化率的内涵.2、(1)(1) 4.9 3.3h h t h t t t∆+∆-==-∆-∆∆,所以,(1) 3.3h '=-. 这说明运动员在1t =s 附近以3.3 m /s 的速度下降. 3、物体在第5 s 的瞬时速度就是函数()s t 在5t =时的导数.(5)(5)10s s t s t t t∆+∆-==∆+∆∆,所以,(5)10s '=. 因此,物体在第 5 s 时的瞬时速度为10 m /s ,它在第 5 s 的动能213101502k E =⨯⨯= J.4、设车轮转动的角度为θ,时间为t ,则2(0)kt t θ=>. 由题意可知,当0.8t =时,2θπ=. 所以258k π=,于是2258t πθ=.车轮转动开始后第3.2 s 时的瞬时角速度就是函数()t θ在 3.2t =时的导数.(3.2)(3.2)25208t t t t θθθππ∆+∆-==∆+∆∆,所以(3.2)20θπ'=. 因此,车轮在开始转动后第3.2 s 时的瞬时角速度为20π1s -. 说明:第2,3,4题是对了解导数定义及熟悉其符号表示的巩固.5、由图可知,函数()f x 在5x =-处切线的斜率大于零,所以函数在5x =-附近单调递增. 同理可得,函数()f x 在4x =-,2-,0,2附近分别单调递增,几乎没有变化,单调递减,单调递减. 说明:“以直代曲”思想的应用.6、第一个函数的图象是一条直线,其斜率是一个小于零的常数,因此,其导数()f x '的图象如图(1)所示;第二个函数的导数()f x '恒大于零,并且随着x 的增加,()f x '的值也在增加;对于第三个函数,当x 小于零时,()f x '小于零,当x 大于零时,()f x '大于零,并且随着x 的增加,()f x '的值也在增加. 以下给出了满足上述条件的导函数图象中的一种.说明:本题意在让学生将导数与曲线的切线斜率相联系. 习题3.1 B 组(P11)1、高度关于时间的导数刻画的是运动变化的快慢,即速度;速度关于时间的导数刻画的是速度变化的快慢,根据物理知识,这个量就是加速度.2、说明:由给出的()v t 的信息获得()s t 的相关信息,并据此画出()s t 的图象的大致形状. 这个过程基于对导数内涵的了解,以及数与形之间的相互转换.3、由(1)的题意可知,函数()f x 的图象在点(1,5)-处的切线斜率为1-,所以此点附近曲线呈下降趋势. 首先画出切线的图象,然后再画出此点附近函数的图象. 同理可得(2)(3)某点处函数图象的大致形状. 下面是一种参考答案.说明:这是一个综合性问题,包含了对导数内涵、导数几何意义的了解,以及对以直代曲思想的领悟. 本题的答案不唯一. 1.2导数的计算 练习(P18)1、()27f x x '=-,所以,(2)3f '=-,(6)5f '=.2、(1)1ln 2y x '=; (2)2x y e '=; (3)4106y x x '=-; (4)3sin 4cos y x x '=--;(5)1sin 33xy '=-; (6)21y x '=-.习题1.2 A 组(P18)1、()()2S S r r S r r r r r π∆+∆-==+∆∆∆,所以,0()lim(2)2r S r r r r ππ∆→'=+∆=. 2、()9.8 6.5h t t '=-+. 3、3213()34r V Vπ'=.4、(1)213ln 2y x x '=+; (2)1n x n x y nx e x e -'=+; (3)2323sin cos cos sin x x x x xy x -+'=; (4)9899(1)y x '=+; (5)2x y e -'=-; (6)2sin(25)4cos(25)y x x x '=+++. 5、()82f x x '=-+. 由0()4f x '=有 04822x =-+,解得032x =. 6、(1)ln 1y x '=+; (2)1y x =-. 7、1xy π=-+.8、(1)氨气的散发速度()500ln 0.8340.834t A t '=⨯⨯.(2)(7)25.5A '=-,它表示氨气在第7天左右时,以25.5克/天的速率减少. 习题1.2 B 组(P19) 1、(1)(2)当h 越来越小时,sin()sin x h xy h+-=就越来越逼近函数cos y x =.(3)sin y x =的导数为cos y x =.2、当0y =时,0x =. 所以函数图象与x 轴交于点(0,0)P .x y e '=-,所以01x y ='=-.所以,曲线在点P 处的切线的方程为y x =-.2、()4sin d t t '=-. 所以,上午6:00时潮水的速度为0.42-m /h ;上午9:00时潮水的速度为0.63-m /h ;中午12:00时潮水的速度为0.83-m /h ;下午6:00时潮水的速度为 1.24-m /h.1.3导数在研究函数中的应用 练习(P26)1、(1)因为2()24f x x x =-+,所以()22f x x '=-.当()0f x '>,即1x >时,函数2()24f x x x =-+单调递增; 当()0f x '<,即1x <时,函数2()24f x x x =-+单调递减. (2)因为()x f x e x =-,所以()1x f x e '=-.当()0f x '>,即0x >时,函数()x f x e x =-单调递增;当()0f x '<,即0x <时,函数()x f x e x =-单调递减. (3)因为3()3f x x x =-,所以2()33f x x '=-.当()0f x '>,即11x -<<时,函数3()3f x x x =-单调递增; 当()0f x '<,即1x <-或1x >时,函数3()3f x x x =-单调递减. (4)因为32()f x x x x =--,所以2()321f x x x '=--.当()0f x '>,即13x <-或1x >时,函数32()f x x x x =--单调递增;当()0f x '<,即113x -<<时,函数32()f x x x x =--单调递减.2、3、因为2()(0)f x ax bx c a =++≠,所以()2f x ax b '=+. (1)当0a >时,()0f x '>,即2bx a >-时,函数2()(0)f x ax bx c a =++≠单调递增; ()0f x '<,即2bx a<-时,函数2()(0)f x ax bx c a =++≠单调递减.(2)当0a <时,()0f x '>,即2bx a <-时,函数2()(0)f x ax bx c a =++≠单调递增;()0f x '<,即2bx a >-时,函数2()(0)f x ax bx c a =++≠单调递减.4、证明:因为32()267f x x x =-+,所以2()612f x x x '=-. 当(0,2)x ∈时,2()6120f x x x '=-<,因此函数32()267f x x x =-+在(0,2)内是减函数. 练习(P29)1、24,x x 是函数()y f x =的极值点,其中2x x =是函数()y f x =的极大值点,4x x =是函数()y f x =的极小值点. 2、(1)因为2()62f x x x =--,所以()121f x x '=-.注:图象形状不唯一.令()1210f x x '=-=,得112x =. 当112x >时,()0f x '>,()f x 单调递增;当112x <时,()0f x '<,()f x 单调递减.所以,当112x =时,()f x 有极小值,并且极小值为211149()6()212121224f =⨯--=-. (2)因为3()27f x x x =-,所以2()327f x x '=-. 令2()3270f x x '=-=,得3x =±. 下面分两种情况讨论:①当()0f x '>,即3x <-或3x >时;②当()0f x '<,即33x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当3x =-时,()f x 有极大值,并且极大值为54; 当3x =时,()f x 有极小值,并且极小值为54-. (3)因为3()612f x x x =+-,所以2()123f x x '=-. 令2()1230f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即22x -<<时;②当()0f x '<,即2x <-或2x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极小值,并且极小值为10-; 当2x =时,()f x 有极大值,并且极大值为22 (4)因为3()3f x x x =-,所以2()33f x x '=-.令2()330f x x '=-=,得1x =±. 下面分两种情况讨论:①当()0f x '>,即11x -<<时;②当()0f x '<,即1x <-或1x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当1x =-时,()f x 有极小值,并且极小值为2-; 当1x =时,()f x 有极大值,并且极大值为2 练习(P31)(1)在[0,2]上,当112x =时,2()62f x x x =--有极小值,并且极小值为149()1224f =-. 又由于(0)2f =-,(2)20f =.因此,函数2()62f x x x =--在[0,2]上的最大值是20、最小值是4924-. (2)在[4,4]-上,当3x =-时,3()27f x x x =-有极大值,并且极大值为(3)54f -=;当3x =时,3()27f x x x =-有极小值,并且极小值为(3)54f =-; 又由于(4)44f -=,(4)44f =-.因此,函数3()27f x x x =-在[4,4]-上的最大值是54、最小值是54-.(3)在1[,3]3-上,当2x =时,3()612f x x x =+-有极大值,并且极大值为(2)22f =.又由于155()327f -=,(3)15f =.因此,函数3()612f x x x =+-在1[,3]3-上的最大值是22、最小值是5527.(4)在[2,3]上,函数3()3f x x x =-无极值. 因为(2)2f =-,(3)18f =-.因此,函数3()3f x x x =-在[2,3]上的最大值是2-、最小值是18-. 习题1.3 A 组(P31)1、(1)因为()21f x x =-+,所以()20f x '=-<. 因此,函数()21f x x =-+是单调递减函数.(2)因为()cos f x x x =+,(0,)2x π∈,所以()1sin 0f x x '=->,(0,)2x π∈.因此,函数()cos f x x x =+在(0,)2π上是单调递增函数. (3)因为()24f x x =--,所以()20f x '=-<. 因此,函数()24f x x =-是单调递减函数. (4)因为3()24f x x x =+,所以2()640f x x '=+>. 因此,函数3()24f x x x =+是单调递增函数. 2、(1)因为2()24f x x x =+-,所以()22f x x '=+.当()0f x '>,即1x >-时,函数2()24f x x x =+-单调递增. 当()0f x '<,即1x <-时,函数2()24f x x x =+-单调递减. (2)因为2()233f x x x =-+,所以()43f x x '=-.当()0f x '>,即34x >时,函数2()233f x x x =-+单调递增. 当()0f x '<,即34x <时,函数2()233f x x x =-+单调递减.(3)因为3()3f x x x =+,所以2()330f x x '=+>. 因此,函数3()3f x x x =+是单调递增函数. (4)因为32()f x x x x =+-,所以2()321f x x x '=+-. 当()0f x '>,即1x <-或13x >时,函数32()f x x x x =+-单调递增. 当()0f x '<,即113x -<<时,函数32()f x x x x =+-单调递减.3、(1)图略. (2)加速度等于0.4、(1)在2x x =处,导函数()y f x '=有极大值;(2)在1x x =和4x x =处,导函数()y f x '=有极小值; (3)在3x x =处,函数()y f x =有极大值; (4)在5x x =处,函数()y f x =有极小值.5、(1)因为2()62f x x x =++,所以()121f x x '=+. 令()1210f x x '=+=,得112x =-. 当112x >-时,()0f x '>,()f x 单调递增; 当112x <-时,()0f x '<,()f x 单调递减.所以,112x =-时,()f x 有极小值,并且极小值为211149()6()212121224f -=⨯---=-.(2)因为3()12f x x x =-,所以2()312f x x '=-. 令2()3120f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为16; 当2x =时,()f x 有极小值,并且极小值为16-. (3)因为3()612f x x x =-+,所以2()123f x x '=-+. 令2()1230f x x '=-+=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为22; 当2x =时,()f x 有极小值,并且极小值为10-. (4)因为3()48f x x x =-,所以2()483f x x '=-. 令2()4830f x x '=-=,得4x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当4x =-时,()f x 有极小值,并且极小值为128-; 当4x =时,()f x 有极大值,并且极大值为128. 6、(1)在[1,1]-上,当112x =-时,函数2()62f x x x =++有极小值,并且极小值为4724. 由于(1)7f -=,(1)9f =,所以,函数2()62f x x x =++在[1,1]-上的最大值和最小值分别为9,4724. (2)在[3,3]-上,当2x =-时,函数3()12f x x x =-有极大值,并且极大值为16;当2x =时,函数3()12f x x x =-有极小值,并且极小值为16-. 由于(3)9f -=,(3)9f =-,所以,函数3()12f x x x =-在[3,3]-上的最大值和最小值分别为16,16-.(3)在1[,1]3-上,函数3()612f x x x =-+在1[,1]3-上无极值.由于1269()327f -=,(1)5f =-,所以,函数3()612f x x x =-+在1[,1]3-上的最大值和最小值分别为26927,5-.(4)当4x =时,()f x 有极大值,并且极大值为128.. 由于(3)117f -=-,(5)115f =,所以,函数3()48f x x x =-在[3,5]-上的最大值和最小值分别为128,117-. 习题3.3 B 组(P32)1、(1)证明:设()sin f x x x =-,(0,)x π∈. 因为()cos 10f x x '=-<,(0,)x π∈ 所以()sin f x x x =-在(0,)π内单调递减因此()sin (0)0f x x x f =-<=,(0,)x π∈,即sin x x <,(0,)x π∈. 图略 (2)证明:设2()f x x x =-,(0,1)x ∈. 因为()12f x x '=-,(0,1)x ∈所以,当1(0,)2x ∈时,()120f x x '=->,()f x 单调递增,2()(0)0f x x x f =->=;当1(,1)2x ∈时,()120f x x '=-<,()f x 单调递减,2()(1)0f x x x f =->=;又11()024f =>. 因此,20x x ->,(0,1)x ∈. 图略(3)证明:设()1x f x e x =--,0x ≠. 因为()1x f x e '=-,0x ≠所以,当0x >时,()10x f x e '=->,()f x 单调递增,()1(0)0x f x e x f =-->=;当0x <时,()10x f x e '=-<,()f x 单调递减,()1(0)0x f x e x f =-->=;综上,1x e x ->,0x ≠. 图略(4)证明:设()ln f x x x =-,0x >. 因为1()1f x x'=-,0x ≠ 所以,当01x <<时,1()10f x x'=->,()f x 单调递增, ()ln (1)10f x x x f =-<=-<; 当1x >时,1()10f x x'=-<,()f x 单调递减, ()ln (1)10f x x x f =-<=-<;当1x =时,显然ln11<. 因此,ln x x <. 由(3)可知,1x e x x >+>,0x >. . 综上,ln x x x e <<,0x >图略2、(1)函数32()f x ax bx cx d =+++的图象大致是个“双峰”图象,类似“”或“”的形状. 若有极值,则在整个定义域上有且仅有一个极大值和一个极小值,从图象上能大致估计它的单调区间.(2)因为32()f x ax bx cx d =+++,所以2()32f x ax bx c '=++. 下面分类讨论:当0a ≠时,分0a >和0a <两种情形: ①当0a >,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递增;当2()320f x ax bx c '=++<,即12x x x <<时,函数32()f x ax bx cx d =+++单调递减.当0a >,且230b ac -≤时,此时2()320f x ax bx c '=++≥,函数32()f x ax bx cx d =+++单调递增. ②当0a <,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即12x x x <<时,函数32()f x ax bx cx d =+++单调递增;当2()320f x ax bx c '=++<,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递减.当0a <,且230b ac -≤时,此时2()320f x ax bx c '=++≤,函数32()f x ax bx cx d =+++单调递减 1.4生活中的优化问题举例 习题1.4 A 组(P37)1、设两段铁丝的长度分别为x ,l x -,则这两个正方形的边长分别为4x ,4l x -,两个正方形的面积和为 22221()()()(22)4416x l x S f x x lx l -==+=-+,0x l <<.令()0f x '=,即420x l -=,2lx =.当(0,)2l x ∈时,()0f x '<;当(,)2lx l ∈时,()0f x '>.因此,2lx =是函数()f x 的极小值点,也是最小值点.所以,当两段铁丝的长度分别是2l时,两个正方形的面积和最小.2、如图所示,由于在边长为a 的正方形铁片的四角截去 四个边长为x 的小正方形,做成一个无盖方盒,所以无 盖方盒的底面为正方形,且边长为2a x -,高为x .(1)无盖方盒的容积2()(2)V x a x x =-,02ax <<.(2)因为322()44V x x ax a x =-+, 所以22()128V x x ax a '=-+.令()0V x '=,得2a x =(舍去),或6a x =. 当(0,)6a x ∈时,()0V x '>;当(,)62a ax ∈时,()0V x '<.因此,6ax =是函数()V x 的极大值点,也是最大值点.所以,当6ax =时,无盖方盒的容积最大.3、如图,设圆柱的高为h ,底半径为R , 则表面积222S Rh R ππ=+ 由2V R h π=,得2V h Rπ=. (第2题)因此,2222()222V V S R R R R R Rππππ=+=+,0R >. 令2()40V S R R R π'=-+=,解得R =.当R ∈时,()0S R '<;当)R ∈+∞时,()0S R '>. 因此,R =是函数()S R 的极小值点,也是最小值点. 此时,22V h R R π===. 所以,当罐高与底面直径相等时,所用材料最省.4、证明:由于211()()n i i f x x a n ==-∑,所以12()()n i i f x x a n ='=-∑.令()0f x '=,得11ni i x a n ==∑,可以得到,11ni i x a n ==∑是函数()f x 的极小值点,也是最小值点.这个结果说明,用n 个数据的平均值11ni i a n =∑表示这个物体的长度是合理的,这就是最小二乘法的基本原理.5、设矩形的底宽为x m ,则半圆的半径为2xm ,半圆的面积为28x π2m ,矩形的面积为28x a π-2m ,矩形的另一边长为()8a xx π-m 因此铁丝的长为22()(1)244xa x a l x x x x x πππ=++-=++,0x <<令22()104a l x x π'=+-=,得x =.当x ∈时,()0l x '<;当x ∈时,()0l x '>.因此,x =()l x 的极小值点,也是最小值点.时,所用材料最省. 6、利润L 等于收入R 减去成本C ,而收入R 等于产量乘单价. 由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润.收入211(25)2588R q p q q q q =⋅=-=-,利润2211(25)(1004)2110088L R C q q q q q =-=--+=-+-,0200q <<.求导得1214L q '=-+令0L '=,即12104q -+=,84q =.当(0,84)q ∈时,0L '>;当(84,200)q ∈时,0L '<;因此,84q =是函数L 的极大值点,也是最大值点.所以,产量为84时,利润L 最大,习题1.4 B 组(P37)1、设每个房间每天的定价为x 元,那么宾馆利润21801()(50)(20)7013601010x L x x x x -=--=-+-,180680x <<.令1()7005L x x '=-+=,解得350x =.当(180,350)x ∈时,()0L x '>;当(350,680)x ∈时,()0L x '>. 因此,350x =是函数()L x 的极大值点,也是最大值点.所以,当每个房间每天的定价为350元时,宾馆利润最大. 2、设销售价为x 元/件时,利润4()()(4)()(5)b x L x x a c cc x a x b b-=-+⨯=--,54b a x <<. 令845()0c ac bc L x x b b+'=-+=,解得458a bx +=.当45(,)8a b x a +∈时,()0L x '>;当455(,)84a b bx +∈时,()0L x '<.当458a bx +=是函数()L x 的极大值点,也是最大值点. 所以,销售价为458a b+元/件时,可获得最大利润.1.5定积分的概念 练习(P42) 83. 说明:进一步熟悉求曲边梯形面积的方法和步骤,体会“以直代曲”和“逼近”的思想.练习(P45)1、22112()[()2]()i i i i i s s v t n n n n n n '∆≈∆=∆=-+⋅=-⋅+⋅,1,2,,i n =.于是 111()n n ni i i i i is s s v t n ==='=∆≈∆=∆∑∑∑2112[()]ni i n n n ==-⋅+⋅∑22211111()()()2n n n n n n n n -=-⋅--⋅-⋅+2231[12]2n n=-++++31(1)(21)26n n n n ++=-⋅+111(1)(1)232n n =-+++取极值,得1111115lim [()]lim [(1)(1)2]323nnn n i i i s v n n n n →∞→∞====-+++=∑∑ 说明:进一步体会“以不变代变”和“逼近”的思想. 2、223km.说明:进一步体会“以不变代变”和“逼近”的思想,熟悉求变速直线运动物体路程的方法和步骤. 练习(P48)2304x dx =⎰. 说明:进一步熟悉定积分的定义和几何意义.从几何上看,表示由曲线3y x =与直线0x =,2x =,0y =所围成的曲边梯形的面积4S =.习题1.5 A 组(P50)1、(1)10021111(1)[(1)1]0.495100100i i x dx =--≈+-⨯=∑⎰; (2)50021111(1)[(1)1]0.499500500i i x dx =--≈+-⨯=∑⎰; (3)100021111(1)[(1)1]0.499510001000i i x dx =--≈+-⨯=∑⎰. 说明:体会通过分割、近似替换、求和得到定积分的近似值的方法.2、距离的不足近似值为:18112171310140⨯+⨯+⨯+⨯+⨯=(m ); 距离的过剩近似值为:271181121713167⨯+⨯+⨯+⨯+⨯=(m ).3、证明:令()1f x =. 用分点 011i i n a x x x x x b -=<<<<<<=将区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上任取一点(1,2,,)i i n ξ=作和式 11()nni i i b af x b a nξ==-∆==-∑∑, 从而 11lim nban i b adx b a n→∞=-==-∑⎰, 说明:进一步熟悉定积分的概念. 4、根据定积分的几何意义,0⎰表示由直线0x =,1x =,0y =以及曲线y =所围成的曲边梯形的面积,即四分之一单位圆的面积,因此4π=⎰.5、(1)03114x dx -=-⎰. 由于在区间[1,0]-上30x ≤,所以定积分031x dx -⎰表示由直线0x =,1x =-,0y =和曲线3y x =所围成的曲边梯形的面积的相反数.(2)根据定积分的性质,得10133311011044x dx x dx x dx --=+=-+=⎰⎰⎰.由于在区间[1,0]-上30x ≤,在区间[0,1]上30x ≥,所以定积分131x dx -⎰等于位于x轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.(3)根据定积分的性质,得202333110115444x dx x dx x dx --=+=-+=⎰⎰⎰由于在区间[1,0]-上30x ≤,在区间[0,2]上30x ≥,所以定积分231x dx -⎰等于位于x轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.说明:在(3)中,由于3x 在区间[1,0]-上是非正的,在区间[0,2]上是非负的,如果直接利用定义把区间[1,2]-分成n 等份来求这个定积分,那么和式中既有正项又有负项,而且无法抵挡一些项,求和会非常麻烦. 利用性质3可以将定积分231x dx-⎰化为02331x dx x dx -+⎰⎰,这样,3x 在区间[1,0]-和区间[0,2]上的符号都是不变的,再利用定积分的定义,容易求出031x dx -⎰,230x dx ⎰,进而得到定积分231x dx -⎰的值. 由此可见,利用定积分的性质可以化简运算.在(2)(3)中,被积函数在积分区间上的函数值有正有负,通过练习进一步体会定积分的几何意义. 习题1.5 B 组(P50)1、该物体在0t =到6t =(单位:s )之间走过的路程大约为145 m.说明:根据定积分的几何意义,通过估算曲边梯形内包含单位正方形的个数来估计物体走过的路程. 2、(1)9.81v t =.(2)过剩近似值:8111899.819.8188.292242i i =⨯⨯⨯=⨯⨯=∑(m ); 不足近似值:81111879.819.8168.672242i i =-⨯⨯⨯=⨯⨯=∑(m ) (3)49.81tdt ⎰; 49.81d 78.48t t =⎰(m ).3、(1)分割在区间[0,]l 上等间隔地插入1n -个分点,将它分成n 个小区间:[0,]l n ,2[,]l l n n ,……,(2)[,]n l l n -, 记第i 个区间为(1)[,]i l iln n-(1,2,i n =),其长度为 (1)il i l l x n n n-∆=-=.把细棒在小段[0,]l n ,2[,]l l n n ,……,(2)[,]n ll n-上质量分别记作: 12,,,n m m m ∆∆∆,则细棒的质量1ni i m m ==∆∑.(2)近似代替当n 很大,即x ∆很小时,在小区间(1)[,]i l iln n-上,可以认为线密度2()x x ρ=的值变化很小,近似地等于一个常数,不妨认为它近似地等于任意一点(1)[,]i i l il n n ξ-∈处的函数值2()i i ρξξ=. 于是,细棒在小段(1)[,]i l il n n-上质量2()i i i lm x nρξξ∆≈∆=(1,2,i n =).(3)求和得细棒的质量 2111()nnni i i i i i l m m x nρξξ====∆≈∆=∑∑∑. (4)取极限细棒的质量 21lim ni n i lm nξ→∞==∑,所以20l m x dx =⎰..1.6微积分基本定理练习(P55) (1)50; (2)503; (3)533-; (4)24; (5)3ln 22-; (6)12; (7)0; (8)2-.说明:本题利用微积分基本定理和定积分的性质计算定积分. 习题1.6 A 组(P55)1、(1)403; (2)13ln 22--; (3)9ln 3ln 22+-;(4)176-; (5)2318π+; (6)22ln 2e e --. 说明:本题利用微积分基本定理和定积分的性质计算定积分.2、3300sin [cos ]2xdx x ππ=-=⎰.它表示位于x 轴上方的两个曲边梯形的面积与x 轴下方的曲边梯形的面积之差. 或表述为:位于x 轴上方的两个曲边梯形的面积(取正值)与x 轴下方的曲边梯形的面积(取负值)的代数和. 习题1.6 B 组(P55)1、(1)原式=221011[]222x e e =-; (2)原式=4611[sin 2]22x ππ=; (3)原式=3126[]ln 2ln 2x =.2、(1)cos 1sin [][cos cos()]0mx mxdx m m m m ππππππ--=-=---=⎰;(2)sin 1cos [sin sin()]0mx mxdx m m m m ππππππ--=|=--=⎰;(3)21cos 2sin 2sin []224mx x mx mxdx dx m πππππππ----==-=⎰⎰;(4)21cos 2sin 2cos []224mx x mx mxdx dx mπππππππ---+==+=⎰⎰.3、(1)0.202220()(1)[]49245245t kt kt t kt t g g g g g gs t e dt t e t e t e k k k k k k----=-=+=+-=+-⎰.(2)由题意得 0.2492452455000t t e -+-=.这是一个超越方程,为了解这个方程,我们首先估计t 的取值范围. 根据指数函数的性质,当0t >时,0.201t e -<<,从而 5000495245t <<, 因此,500052454949t <<. 因此50000.2749245 3.3610e-⨯-≈⨯,52450.2749245 1.2410e-⨯-≈⨯,所以,70.271.2410245 3.3610t e ---⨯<<⨯.从而,在解方程0.2492452455000t t e -+-=时,0.2245t e -可以忽略不计.因此,.492455000t -≈,解之得 524549t ≈(s ). 说明:B 组中的习题涉及到被积函数是简单的复合函数的定积分,可视学生的具体情况选做,不要求掌握. 1.7定积分的简单应用 练习(P58)(1)323; (2)1.说明:进一步熟悉应用定积分求平面图形的面积的方法与求解过程. 练习(P59)1、52533(23)[3]22s t dt t t =+=+=⎰(m ).2、42403(34)[4]402W x dx x x =+=+=⎰(J ). 习题1.7 A 组(P60)1、(1)2; (2)92.2、2[]b b a a q q q qW k dr k k k r r a b==-=-⎰. 3、令()0v t =,即40100t -=. 解得4t =. 即第4s 时物体达到最大高度.最大高度为 424(4010)[405]80h t dt t t =-=-=⎰(m ). 4、设t s 后两物体相遇,则 2(31)105ttt dt tdt +=+⎰⎰,解之得5t =. 即,A B 两物体5s 后相遇.此时,物体A 离出发地的距离为 523500(31)[]130t dt t t +=+=⎰(m ).5、由F kl =,得100.01k =. 解之得1000k =. 所做的功为 0.120.10010005005W ldl l ==|=⎰(J ).6、(1)令55()501v t t t=-+=+,解之得10t =. 因此,火车经过10s 后完全停止. (2)1021000551(5)[555ln(1)]55ln1112s t dt t t t t =-+=-++=+⎰(m ). 习题1.7 B 组(P60)1、(1)22a aa x dx --⎰表示圆222x y a +=与x 轴所围成的上半圆的面积,因此2222aaa a x dx π--=⎰(2)120[1(1)]x x dx ---⎰表示圆22(1)1x y -+=与直线y x =所围成的图形(如图所示)的面积,因此,2120111[1(1)]114242x x dx ππ⨯---=-⨯⨯=-⎰. 2、证明:建立如图所示的平面直角坐标系,可设抛物线的方程为2y ax =,则2()2b h a =⨯,所以24ha b =.从而抛物线的方程为 224hy x b =.于是,抛物线拱的面积232202204422()2[]33b b h h S h x dx hx x bh b b =-=-=⎰. 3、如图所示.解方程组223y x y x⎧=+⎨=⎩得曲线22y x =+与曲线3y x =交点的横坐标11x =,22x =. 于是,所求的面积为122201[(2)3][3(2)]1x x dx x x dx +-+-+=⎰⎰.y xO1(第1(2)题)yxh b O (第2题)4、证明:2[]()R hR h R RMm Mm MmhW Gdr G G r r R R h ++==-=+⎰. 第一章 复习参考题A 组(P65)1、(1)3; (2)4y =-.2、(1)22sin cos 2cos x x xy x+'=; (2)23(2)(31)(53)y x x x '=-+-; (3)22ln ln 2x xy x x '=+; (4)2422(21)x x y x -'=+. 3、32GMm F r '=-. 4、(1)()0f t '<. 因为红茶的温度在下降.(2)(3)4f '=-表明在3℃附近时,红茶温度约以4℃/min 的速度下降. 图略.5、因为()f x =()f x '=.当()0f x '=>,即0x >时,()f x 单调递增;当()0f x '=<,即0x <时,()f x 单调递减.6、因为2()f x x px q =++,所以()2f x x p '=+. 当()20f x x p '=+=,即12px =-=时,()f x 有最小值. 由12p-=,得2p =-. 又因为(1)124f q =-+=,所以5q =. 7、因为2322()()2f x x x c x cx c x =-=-+, 所以22()34(3)()f x x cx c x c x c '=-+=--. 当()0f x '=,即3cx =,或x c =时,函数2()()f x x x c =-可能有极值. 由题意当2x =时,函数2()()f x x x c =-有极大值,所以0c >.由于 所以,当3c x =时,函数2()()f x x x c =-有极大值. 此时,23c=,6c =. 8、设当点A 的坐标为(,0)a 时,AOB ∆的面积最小. 因为直线AB 过点(,0)A a ,(1,1)P ,所以直线AB 的方程为001y x a x a--=--,即1()1y x a a =--. 当0x =时,1a y a =-,即点B 的坐标是(0,)1aa -. 因此,AOB ∆的面积21()212(1)AOBa a S S a a a a ∆===--.令()0S a '=,即2212()02(1)a aS a a -'=⋅=-. 当0a =,或2a =时,()0S a '=,0a =不合题意舍去. 由于 所以,当2a =,即直线的倾斜角为时,的面积最小,最小面积为2. 9、D .10、设底面一边的长为x m ,另一边的长为(0.5)x +m. 因为钢条长为14.8m. 所以,长方体容器的高为14.844(0.5)12.88 3.2244x x xx --+-==-.设容器的容积为V ,则32()(0.5)(3.22)2 2.2 1.6V V x x x x x x x ==+-=-++,0 1.6x <<.令()0V x '=,即26 4.4 1.60x x -++=. 所以,415x =-(舍去),或1x =. 当(0,1)x ∈时,()0V x '>;当(1,1.6)x ∈时,()0V x '<. 因此,1x =是函数()V x 在(0,1.6)的极大值点,也是最大值点. 所以,当长方体容器的高为1 m 时,容器最大,最大容器为1.8 m 3.11、设旅游团人数为100x +时,旅行社费用为2()(100)(10005)5500100000y f x x x x ==+-=-++(080)x ≤≤. 令()0f x '=,即105000x -+=,50x =.又(0)100000f =,(80)108000f =,(50)112500f =. 所以,50x =是函数()f x 的最大值点.所以,当旅游团人数为150时,可使旅行社收费最多. 12、设打印纸的长为x cm 时,可使其打印面积最大.因为打印纸的面积为623.7,长为x ,所以宽为623.7x,打印面积623.7()(2 2.54)(2 3.17)S x x x=-⨯-⨯23168.396655.9072 6.34x x=--,5.0898.38x <<. 令()0S x '=,即23168.3966.340x -=,22.36x ≈(负值舍去),623.727.8922.36≈. 22.36x =是函数()S x 在(5.08,98.38)内唯一极值点,且为极大值,从而是最大值点.所以,打印纸的长、宽分别约为27.89cm ,22.36cm 时,可使其打印面积最大. 13、设每年养q 头猪时,总利润为y 元.则 21()20000100300200002y R q q q q =--=-+-(0400,)q q N <≤∈.令0y '=,即3000q -+=,300q =.当300q =时,25000y =;当400q =时,20000y =.300q =是函数()y p 在(0,400]内唯一极值点,且为极大值点,从而是最大值点. 所以,每年养300头猪时,可使总利润最大,最大总利润为25000元.14、(1)2; (2)22e -; (3)1;(4)原式=22222000cos sin (cos sin )[sin cos ]0cos sin x x dx x x dx x x x xπππ-=-=+=+⎰⎰;(5)原式=22001cos sin 2[]224x x x dx πππ---==⎰.15、略. 说明:利用函数图象的对称性、定积分的几何意义进行解释.16、2.17、由F kl =,得0.0490.01k =. 解之得 4.9k =.所做的功为 20.30.30.10.14.9 4.90.1962l W ldl ==⨯|=⎰(J )第一章 复习参考题B 组(P66)1、(1)43()10210b t t '=-⨯. 所以,细菌在5t =与10t =时的瞬时速度分别为0和410-.(2)当05t ≤<时,()0b t '>,所以细菌在增加;当55t <<+()0b t '<,所以细菌在减少.2、设扇形的半径为r ,中心角为α弧度时,扇形的面积为S .因为212S r α=,2l r r α-=,所以2lrα=-.222111(2)(2)222l S r r lr r r α==-=-,02l r <<.令0S '=,即40l r -=,4lr =,此时α为2弧度.4lr =是函数()S r 在(0,)2l 内唯一极值点,且是极大值点,从而是最大值点.所以,扇形的半径为4l、中心角为2弧度时,扇形的面积最大.3、设圆锥的底面半径为r ,高为h ,体积为V ,那么222r h R +=.因此,222231111()3333V r h R h h R h h ππππ==-=-,0h R <<.令22103V R h ππ'=-=,解得h =.容易知道,h =是函数()V h 的极大值点,也是最大值点.所以,当h R =时,容积最大.把3h R =代入222r h R +=,得3r R =.由2R r απ=,得3α=.所以,圆心角为α=时,容积最大. 4、由于28010k =⨯,所以45k =. 设船速为x km /h 时,总费用为y ,则2420204805y x x x=⨯+⨯ 960016x x=+,0x > 令0y '=,即29600160x -=,24x ≈.容易知道,24x =是函数y 的极小值点,也是最小值点.当24x =时,960020(1624)()9412424⨯+÷≈(元/时) 所以,船速约为24km /h 时,总费用最少,此时每小时费用约为941元.5、设汽车以x km /h 行驶时,行车的总费用2390130(3)14360x y x x=++⨯,50100x ≤≤令0y '=,解得53x ≈(km /h ). 此时,114y ≈(元) 容易得到,53x ≈是函数y 的极小值点,也是最小值点.因此,当53x ≈时,行车总费用最少.所以,最经济的车速约为53km /h ;如果不考虑其他费用,这次行车的总费用约是114元.6、原式=4404422022[]2xxx x x e dx e dx e dx e e e e -----=+=-+|=+-⎰⎰⎰.7、解方程组 2y kx y x x=⎧⎨=-⎩ 得,直线y kx =与抛物线2y x x =-交点的横坐标为0x =,1k -.抛物线与x 轴所围图形的面积2312100111()[]23236x x S x x dx =-=-=-=⎰.由题设得11200()2k k Sx x dx kxdx --=--⎰⎰31221001()[]23kkk x x x kx dx x ---=--=-⎰3(1)6k -=.又因为16S =,所以31(1)2k -=.于是1k =说明:本题也可以由面积相等直接得到111220()()kk k x x kx dx kxdx x x dx -----=+-⎰⎰⎰,由此求出k 的值. 但计算较为烦琐.新课程数学选修2—2第二章课后习题解答第二章推理与证明2.1合情推理与演绎推理 练习(P77)1、由12341a a a a ====,猜想1n a =.2、相邻两行数之间的关系是:每一行首尾的数都是1,其他的数都等于上一行中与之相邻的两个数的和.3、设111O PQ R V -和222O P Q R V -分别是四面体111O PQ R -和222O P Q R -的体积, 则111222111222O PQR O P Q R V OP OQ OR V OP OQ OR --=⋅⋅. 练习(P81) 1、略.2、因为通项公式为n a 的数列{}n a , 若1n na p a +=,其中p 是非零常数,则{}n a 是等比数列;……………………大前提 又因为0cq ≠,则0q ≠,则11n n nn a cq q a cq++==;……………………………小前提 所以,通项公式为(0)n n a cq cq =≠的数列{}n a 是等比数列. ……………………结论 3、由AD BD >,得到ACD BCD ∠>∠的推理是错误的. 因为这个推理的大前提是“在同一个三角形中,大边对大角”,小前提是“AD BD >”,而AD 与BD 不在同一个三角形中.习题2.1 A 组(P83)1、21n a n =+()n N *∈. 2、2F V E +=+.3、当6n ≤时,122(1)n n -<+;当7n =时,122(1)n n -=+;当8n =时,122(1)n n ->+()n N *∈.4、212111(2)n n A A A n π++≥-(2n >,且n N *∈). 5、121217n n b b b b b b -=(17n <,且n N *∈).6、如图,作DE ∥AB 交BC 于E .因为两组对边分别平行的四边形是平行四边形, 又因为AD ∥BE ,AB ∥DE . 所以四边形ABED 是平行四边形.因为平行四边形的对边相等.又因为四边形ABED 是平行四边形. 所以AB DE =.因为与同一条线段等长的两条线段的长度相等,又因为AB DE =,AB DC =, 所以DE DC = 因为等腰三角形的两底角是相等的.又因为△DEC 是等腰三角形, 所以DEC C ∠=∠ 因为平行线的同位角相等又因为DEC ∠与B ∠是平行线AB 和DE 的同位角, 所以DEC B ∠=∠ 因为等于同角的两个角是相等的,又因为DEC C ∠=∠,DEC B ∠=∠, 所以B C ∠=∠ 习题2.1 B 组(P84)1、由123S =-,234S =-,345S =-,456S =-,567S =-,猜想12n n S n +=-+.2、略.3、略.2.2直接证明与间接证明 练习(P89)1、因为442222cos sin (cos sin )(cos sin )cos 2θθθθθθθ-=+-=,所以,命题得证. 2>,只需证22>,即证1313+>+>,只需要22>,即证4240>,这是显然成立的. 所以,命题得证. 3、因为222222222()()()(2sin )(2tan )16sin tan a b a b a b αααα-=-+==, 又因为sin (1cos )sin (1cos )1616(tan sin )(tan sin )16cos cos ab αααααααααα+-=+-=⋅22222222sin (1cos )sin sin 161616sin tan cos cos αααααααα-===, 从而222()16a b ab -=,所以,命题成立.说明:进一步熟悉运用综合法、分析法证明数学命题的思考过程与特点.(第6练习(P91)1、假设B ∠不是锐角,则90B ∠≥︒. 因此9090180C B ∠+∠≥︒+︒=︒. 这与三角形的内角和等于180°矛盾.所以,假设不成立. 从而,B ∠一定是锐角.2成等差数列,则=所以22=,化简得5=225=,即2540=, 这是不可能的. 所以,假设不成立..说明:进一步熟悉运用反证法证明数学命题的思考过程与特点. 习题2.2 A 组(P91)1、由于0a ≠,因此方程至少有一个跟bx a=.假设方程不止一个根,则至少有两个根,不妨设12,x x 是它的两个不同的根,则1ax b =①2ax b =②①-②得12()0a x x -=因为12x x ≠,所以120x x -≠,从而0a =,这与已知条件矛盾,故假设不成立. 2、因为(1tan )(1tan )2A B ++=展开得1tan tan tan tan 2A B A B +++=,即tan tan 1tan tan A B A B +=-. ①假设1tan tan 0A B -=,则cos cos sin sin 0cos cos A B A B A B -=,即cos()0cos cos A B A B += 所以cos()0A B +=.因为A ,B 都是锐角,所以0A B π<+<,从而2A B π+=,与已知矛盾.因此1tan tan 0A B -≠.①式变形得tan tan 11tan tan A BA B +=-,即tan()1A B +=.又因为0A B π<+<,所以4A B π+=. 说明:本题也可以把综合法和分析法综合使用完成证明.3、因为1tan 12tan αα-=+,所以12tan 0α+=,从而2sin cos 0αα+=.另一方面,要证3sin 24cos2αα=-,只要证226sin cos 4(cos sin )αααα=-- 即证222sin 3sin cos 2cos 0αααα--=, 即证(2sin cos )(sin 2cos )0αααα+-=由2sin cos 0αα+=可得,(2sin cos )(sin 2cos )0αααα+-=,于是命题得证. 说明:本题可以单独使用综合法或分析法进行证明,但把综合法和分析法结合使用进行证明的思路更清晰.4、因为,,a b c 的倒数成等差数列,所以211b ac =+.假设2B π<不成立,即2B π≥,则B 是ABC ∆的最大内角,所以,b a b c >>(在三角形中,大角对大边), 从而11112a c b b b +>+=. 这与211b a c=+矛盾. 所以,假设不成立,因此,2B π<.习题2.2 B 组(P91)1、要证2s a <,由于22s ab <,所以只需要2s s b<,即证b s <.因为1()2s a b c =++,所以只需要2b a b c <++,即证b a c <+. 由于,,a b c 为一个三角形的三条边,所以上式成立. 于是原命题成立. 2、由已知条件得2b ac =①2x a b =+,2y b c =+②要证2a cx y+=,只要证2ay cx xy +=,只要证224ay cx xy += 由①②,得22()()2ay cx a b c c a b ab ac bc +=+++=++,24()()2xy a b b c ab b ac bc ab ac bc =++=+++=++, 所以,224ay cx xy +=,于是命题得证. 3、由tan()2tan αβα+=得sin()2sin cos()cos αβααβα+=+,即sin()cos 2cos()sin αβααβα+=+. ……①要证3sin sin(2)βαβ=+即证3sin[()]sin[()]αβααβα+-=++即证3[sin()cos cos()sin ]sin()cos cos()sin αβααβααβααβα+-+=+++ 化简得sin()cos 2cos()sin αβααβα+=+,这就是①式.所以,命题成立.说明:用综合法和分析法证明命题时,经常需要把两者结合起来使用. 2.3数学归纳法 练习(P95)1、先证明:首项是1a ,公差是d 的等差数列的通项公式是1(1)n a a n d =+-. (1)当1n =时,左边=1a ,右边=11(11)a d a +-=, 因此,左边=右边. 所以,当1n =时命题成立. (2)假设当n k =时,命题成立,即1(1)k a a k d =+-. 那么,11(1)[(1)1]k k k a a d a k d d a k d +=+=+-+=++-. 所以,当1n k =+时,命题也成立.根据(1)和(2),可知命题对任何n N *∈都成立.再证明:该数列的前n 项和的公式是1(1)2n n n S na d -=+. (1)当1n =时,左边=11S a =,右边=111(11)12a d a ⨯-⨯+=,因此,左边=右边. 所以,当1n =时命题成立.(2)假设当n k =时,命题成立,即1(1)2k k k S ka d -=+.那么,1111(1)[(1)1]2k k k k k S S a ka d a k d ++-=+=++++-1(1)(1)[1]2k k a k d -=+++1(1)(1)2k kk a d +=++所以,当1n k =+时,命题也成立.根据(1)和(2),可知命题对任何n N *∈都成立. 2、略.。

【优选整合】高中数学人教a版选修2-2第一章1.1.2《导数的概念》【学案】(学生版)

【优选整合】高中数学人教a版选修2-2第一章1.1.2《导数的概念》【学案】(学生版)

x f x0 趋近于一个常数 x
l (也就是说平均变化率与某个常数 l 的差的绝对值越来越小,可以小于任意小的正数) ,那么常数 l 称为函
数 f x 在点 x0 的瞬时变化率,比如,运动的瞬时速度就是路程函数
y s t 的瞬时变化率.
2.导数与导函数
一般地, 设函数 y f x 在点 x0 附近有定义, 当自变量在 x x0 附近改变量为 x 时, 函数值相应的改
( 1)函数 y
f x 在x
x0 处的导数 f x0 = lim
y = lim
f (x0
x0 x x0
x) f x0 . x
( 2)对于导数的概念要抓住以下三个层次:设函数
f x 在区间 a,b 上有定义, x0 a, b ,
① 函 数 的 变 化 ( 增 量 ): 对 函 数 f x , 自 变 量 的 增 量 x = x0 x x0 , 相 应 的 函 数 的 增 量 是
2.基础预探
(1) 函数 y x 在 x 1处的导数为

(2) 已知函数 f x 在 x a 的导数为 A ,求 lim f a x0
x fa x
x

二、学习引领
1. 瞬时变化率
设函数 y f x 在 x0 附近有定义,当自变量在 x x0 附近改变量为 x 时,函数值相应的改变量为
y f x0
x f x0 ,如果当 x 趋近于 0 时,平均变化率 y = f x0 x
y f ( x x) f ( x) ;二是
求平均变化率 y f (x x) f (x) ;三是当 x 0 时,比值 y 趋近于一个常数.
x
x
x
变式训练 2:求函数 y
x

人教a版数学【选修2-2】1.1.2《导数的概念》ppt课件

人教a版数学【选修2-2】1.1.2《导数的概念》ppt课件

常数 叫做t0时刻的瞬时速度.即 常数 ,我们就把这个______ 于______
st0+Δt-st0 Δs lim Δt Δt→0 v= lim = ______________________. → Δt
Δt 0
故瞬时速度就是运动方程是S=-4t2+16t(S的单位为m;t的 单位为s),则该物体在t=2s时的瞬时速度为( ) A.3m/s B.2m/s C.1m/s D.0m/s [答案] D
Δx 0
典例探究学案
瞬时速度
1 2 已知自由落体的运动方程为s=2gt ,求: (1)落体在t0到t0+Δt这段时间内的平均速度; (2)落体在t0时的瞬时速度; (3)落体在t0=2秒到t1=2.1秒这段时间内的平均速度; (4)落体在t=2秒时的瞬时速度.
[分析] 平均速度 v 即平均变化率,而瞬时速度即是平均 速度 v 在Δt→0时的极限值,为此,要求瞬时速度,应先求出 平均速度,再求 v 当Δt→0时的极限值.
)
f1+Δx-f1 1 1 [解析] 原式=3 lim =3f ′(1). Δx Δx→0
4.(2013· 揭阳一中段考)若f(x)=x3,f ′(x0)=3,则x0的值 为( ) A.1 C.± 1 [答案] C B.-1 D.3 3
fx0+Δx-fx0 [解析] ∵f ′(x0)= lim Δx Δx→0 x0+Δx3-x3 0 = lim Δx Δx→0
3.对导数定义的理解要注意: 第一:Δx是自变量x在x0处的改变量,所以Δx可正可负,但 Δx≠0;Δy是函数值的改变量,可以为0; 第二:函数在某点的导数,就是在该点的函数值改变量与自 变量改变量之___的极限.因此,它是一个常数而不是变量 ; 比

人教版a版高中数学选修2-2第一章1.1.2《导数的概念》【练习】(教师版).docx

人教版a版高中数学选修2-2第一章1.1.2《导数的概念》【练习】(教师版).docx

高中数学学习材料唐玲出品1.1.2 导数的概念一、选择题1.函数在某一点的导数是( )A .在该点的函数值的增量与自变量的增量的比B .一个函数C .一个常数,不是变数D .函数在这一点到它附近一点之间的平均变化率【答案】 C【解析】 由定义,f ′(x 0)是当Δx 无限趋近于0时,Δy Δx无限趋近的常数,故应选C. 2.设f (x )在x =x 0处可导,则li m Δx →0 f x 0-Δx -f x 0Δx等于( ) A .-f ′(x 0)B .f ′(-x 0)C .f ′(x 0)D .2f ′(x 0) 【答案】A【解析】li m Δx →0 f x 0-Δx -f x 0Δx =li m Δx →0-f x 0-f x 0-Δx Δx=-li m Δx →0 f x 0-f x 0-Δx Δx=-f ′(x 0). 3.y =x 2在x =1处的导数为( )A .2xB .2C .2+ΔxD .1【答案】 B【解析】 ∵f (x )=x 2,x =1,∴Δy =f (1+Δx )2-f (1)=(1+Δx )2-1=2·Δx +(Δx )2∴Δy Δx =2+Δx ,当Δx →0时,Δy Δx →2,∴f ′(1)=2,故应选B.4.函数y =ax 2+bx +c (a ≠0,a ,b ,c 为常数)在x =2时的瞬时变化率等于( )A .4aB .2a +bC .bD .4a +b【答案】 D【解析】 ∵Δy Δx =a (2+Δx )2+b (2+Δx )+c -4a -2b -c Δx=4a +b +a Δx , ∴y ′|x =2=li m Δx →0 Δy Δx =li m Δx →0(4a +b +a ·Δx )=4a +b .故应选D. 5.曲线y =-1x在点(1,-1)处的导数值为( ) A .1 B .2C .-2D .-1 【答案】A【解析】f ′(1)=lim Δx →0 -11+Δx +1Δx =lim Δx →0 11+Δx=1. 6.设函数f (x )=ax 3+2,若f ′(-1)=3,则a 等于( )A .-1B.12C.13 D .1 【答案】D【解析】f ′(-1)=lim Δx →0 f -1+Δx -f -1Δx=3a .∴a =1. 二、填空题7.设函数y =f(x)在点x 0处可导,且f ′(x 0)>0,则曲线y =f(x)在点(x 0,f(x 0))处切线的 倾斜角的范围是________.【答案】⎝⎛⎭⎫0,π2 【解析】 k =f ′(x 0)>0,∴tan θ>0,∴θ∈⎝⎛⎭⎫0,π2. 8.与直线042=+-y x 平行的抛物线y =x 2的切线方程是 .【答案】 12-=x y【解析】设切点坐标为()200,x x ,则切线斜率为02x ,由02x =2得0x =1,故切点坐标为 (1,1),切线斜率为2,故切线方程为y -1=2(x -1),即12-=x y .三、解答题9.已知曲线y =4x在点P(1,4)处的切线与直线l 平行且距离为17,求直线l 的方程.【解析】 Δy Δx =f (x +Δx )-f (x )Δx =4x +Δx -4x Δx =-4Δx x (Δx )(x +Δx )=-4x (x +Δx ), 当Δx 无限趋近于0时,-4x (x +Δx )无限趋近于-4x 2, 即f ′(x )=-4x 2.k =f ′(1)=-4,切线方程是y -4=-4(x -1), 即为4x +y -8=0,设l :4x +y +c =0,则17=|c +8|42+12, ∴|c +8|=17,∴c =9,或c =-25,∴直线l 的方程为4x +y +9=0或4x +y -25=0.10.设函数f(x)=x 3+ax 2-9x -1 (a<0).若曲线y =f(x)的斜率最小的切线与直线12x +y =6平行,求a 的值.【解析】 ∵Δy =f (x 0+Δx )-f (x 0)=(x 0+Δx )3+a (x 0+Δx )2-9(x 0+Δx )-1-(x 30+ax 20-9x 0-1)=(3x 20+2ax 0-9)Δx +(3x 0+a )(Δx )2+(Δx )3,∴Δy Δx=3x 20+2ax 0-9+(3x 0+a )Δx +(Δx )2. 当Δx 无限趋近于零时,Δy Δx无限趋近于3x 20+2ax 0-9. 即f ′(x 0)=3x 20+2ax 0-9.∴f ′(x 0)=3⎝⎛⎭⎫x 0+a 32-9-a 23. 当x 0=-a 3时,f ′(x 0)取最小值-9-a 23. ∵斜率最小的切线与12x +y =6平行,∴该切线斜率为-12.∴-9-a 23=-12.解得a =±3. 又a <0,∴a =-3.。

数学知识点新人教A版高中数学(选修2-2)1.2《导数的计算》word教案4篇-总结

数学知识点新人教A版高中数学(选修2-2)1.2《导数的计算》word教案4篇-总结

§1.2.2基本初等函数的导数公式及导数的运算法则教学目标:1.熟练掌握基本初等函数的导数公式; 2.掌握导数的四则运算法则;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。

教学重点:基本初等函数的导数公式、导数的四则运算法则教学难点: 基本初等函数的导数公式和导数的四则运算法则的应用 教学过程: 一.创设情景四种常见函数y c =、y x =、2y x =、1y x=的导数公式及应用二.新课讲授(一)基本初等函数的导数公式表)(2)推论:[]''()()cf x cf x =(常数与函数的积的导数,等于常数乘函数的导数)三.典例分析例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)? 解:根据基本初等函数导数公式表,有'() 1.05ln1.05t p t =所以'10(10) 1.05ln1.050.08p =≈(元/年) 因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨. 例2.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+(2)y =xx --+1111; (3)y =x · sin x · ln x ;(4)y =xx 4; (5)y =xxln 1ln 1+-.(6)y =(2 x 2-5 x +1)e x(7) y =xx x xx x sin cos cos sin +-【点评】① 求导数是在定义域内实行的.② 求较复杂的函数积、商的导数,必须细心、耐心.例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为5284()(80100)100c x x x=<<-求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98% 解:净化费用的瞬时变化率就是净化费用函数的导数.''''252845284(100)5284(100)()()100(100)x x c x x x ⨯--⨯-==-- 20(100)5284(1)(100)x x ⨯--⨯-=-25284(100)x =- (1)因为'25284(90)52.84(10090)c ==-,所以,纯净度为90%时,费用的瞬时变化率是52.84元/吨.(2)因为'25284(98)1321(10090)c ==-,所以,纯净度为98%时,费用的瞬时变化率是1321元/吨.函数()f x 在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,''(98)25(90)c c =.它表示纯净度为98%左右时净化费用的瞬时变化率,大约是纯净度为90%左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快.四.课堂练习 1.课本P 92练习2.已知曲线C :y =3 x 4-2 x 3-9 x 2+4,求曲线C 上横坐标为1的点的切线方程;(y =-12 x +8)五.回顾总结(1)基本初等函数的导数公式表 (2)导数的运算法则六.布置作业§1.1.2 导数的概念学习目标1.掌握用极限给瞬时速度下的精确的定义;2.会运用瞬时速度的定义,求物体在某一时刻的瞬时速度. 一、预习与反馈(预习教材P 4~ P 6,找出疑惑之处)探究任务一:瞬时速度问题1:在高台跳水运动中,运动员有不同时刻的速度是 新知:1. 瞬时速度定义:物体在某一时刻(某一位置)的速度,叫做瞬时速度.探究任务二:导数问题2: 瞬时速度是平均速度ts∆∆当t ∆趋近于0时的 导数的定义:函数()y f x =在0x x =处的瞬时变化率是0000()()lim limx x f x x f x fx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或 即000()()()limx f x x f x f x x∆→+∆-'=∆注意:(1)。

高中数学 第一章 导数及其应用 1.1.2 导数的概念教案 新人教A版选修2-2(2021年整理)

高中数学 第一章 导数及其应用 1.1.2 导数的概念教案 新人教A版选修2-2(2021年整理)

江苏省苏州市高中数学第一章导数及其应用1.1.2 导数的概念教案新人教A版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省苏州市高中数学第一章导数及其应用1.1.2 导数的概念教案新人教A版选修2-2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省苏州市高中数学第一章导数及其应用1.1.2 导数的概念教案新人教A版选修2-2的全部内容。

导数的概念本节课的教学内容选自人教社普通高中课程标准实验教科书(A版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念》是第2课时.教学内容分析1.导数的地位、作用导数是微积分的核心概念之一,它是一种特殊的极限,反映了函数变化的快慢程度.导数是求函数的单调性、极值、曲线的切线以及一些优化问题的重要工具,同时对研究几何、不等式起着重要作用.导数概念是我们今后学习微积分的基础.同时,导数在物理学,经济学等领域都有广泛的应用,是开展科学研究必不可少的工具。

2.本课内容剖析教材安排导数内容时,学生是没有学习极限概念的.教材这样处理的原因,一方面是因为极限概念高度抽象,不适合在没有任何极限认识的基础上学习.所以,让学生通过学习导数这个特殊的极限去体会极限的思想,这为今后学习极限提供了认识基础.另一方面,函数是高中的重要数学概念,而导数是研究函数的有力工具,因此,安排先学习导数方便学生学习和研究函数.基于学生已经在高一年级的物理课程中学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度,再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型,并将瞬时变化率定义为导数,这是符合学生认知规律的.进行导数概念教学时还应该看到,通过若干个特殊时刻的瞬时速度过渡到任意时刻的瞬时速度;从物体运动的平均速度的极限是瞬时速度过渡到函数的平均变化率的极限是瞬时变化率,我们可以向学生渗透从特殊到一般的研究问题基本思想.教学目的1.使学生认识到:当时间间隔越来越小时,运动物体在某一时刻附近的平均速度趋向于一个常数,并且这个常数就是物体在这一时刻的瞬时速度;2.使学生通过运动物体瞬时速度的探求,体会函数在某点附近的平均变化率的极限就是函数在该点的瞬时变化率,并由此建构导数的概念;3.掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤;4.通过导数概念的构建,使学生体会极限思想,为将来学习极限概念积累学习经验;5.通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要过程.教学重点通过运动物体在某一时刻的瞬时速度的探求,抽象概括出函数导数的概念.教学难点使学生体会运动物体在某一时刻的平均速度的极限意义,由此得出函数在某点平均变化率的极限就是函数在该点的瞬时变化率,并由此得出导数的概念.教学准备1.查找实际测速中测量瞬时速度的方法;2.为学生每人准备一台Ti-nspire CAS图形计算器,并对学生进行技术培训;3.制作《数学实验记录单》及上课课件.教学流程框图教学流程设计充分尊重学生认知事物的基本规律,使学生在操作感知的基础上形成导数概念的表象,再通过表象抽象出导数概念,并通过运用导数概念解决实际问题使学生进一步体会导数的本质.教学的主要过程设计如下:复习准备理解平均速度与瞬时速度的区别与联系.体会模型感受当△t→0时,平均速度逼近于某个常数.提炼模型从形式上完成从平均速度向瞬时速度的过渡.形成概念由物体运动的瞬时速度推广到函数瞬时变化率,并由此得出导数的定义.应用概念理解导数概念,熟悉求导的步骤,应用计算结果解释瞬时变化率的意义.小结作业通过师生共同小结,使学生进一步感受极限思想对人类思维的重大影响.教学过程设计5分钟1.复习准备设计意图:让学生理解平均速度与瞬时速度的区别与联系,感受到平均速度在时间间隔很小时可以近似地表示瞬时速度.(1)提问:请说出函数从x1到x2的平均变化率公式.(2)提问:如果用x1与增量△x表示平均变化率的公式是怎样的?(3)高台跳水的例子中,在时间段]4965,0[里的平均速度是零,而实际上运动员并不是静止的.这说明平均速度不能准确反映他在这段时间里运动状态。

高中数学选修2-2(人教A版)第一章导数及其应用1.2知识点总结含同步练习及答案

高中数学选修2-2(人教A版)第一章导数及其应用1.2知识点总结含同步练习及答案

解:(1)因为 y =
所以在点 P 处的切线的斜率等于 4 .所以在点 P 处的切线方程是
y−

8 = 4(x − 2), 3
12x − 3y − 16 = 0.
(2)设切点为 (x 0 , y 0 ),则由(1)知切线的斜率 k = x2 ,切线方程为 y − y 0 = x2 (x − x 0 ) . 0 0 又切线过点 P (2,
求下列函数的导数: (1)y = e3x+2 ;(2)ln(2x − 1).

解:(1)y ′ = (e3x+2 ) = e3x+2 ⋅ (3x + 2)′ = 3e3x+2 ; (2)y ′ = (ln(2x − 1))′ =
1 2 . ⋅ (2x − 1)′ = 2x − 1 2x − 1
2.利用导数求函数的切线方程 描述: 利用导数求函数的切线方程 步骤一:求出函数 y = f (x) 在点 x0 处的导数 f ′ (x0 ) ; 步骤二:根据直线方程的点斜式,得到切线方程为 y − f (x0 ) = f ′ (x0 )(x − x0 ). 例题: 求曲线 y = ex + 1 在 (0, 2) 处的切线方程. 解:因为 y = ex + 1,所以 y ′ = ex ,故曲线 y = ex + 1在 (0, 2)处的切线斜率为
1 ;(4)f (x) = √x. x8
1 ) = (x−8 )′ = −8x−9 ; x8 1 1 1 1 (4)f ′ (x) = (√x )′ = (x 2 )′ = x− 2 = . 2 2√x
求下列函数的导数:
ex . x2 解:(1)y ′ = (sin x − cos x)′ = (sin x)′ − (cos x)′ = cos x + sin x; (2)y ′ = (x ln x)′ = x ′ ln x + x(ln x)′ = ln x + 1 ; (e x )′ ⋅ x 2 − e x ⋅ (x 2 )′ ex (x − 2) ex ′ (3)y ′ = ( . = = ) x2 x3 x4

高中数学人教A版选修(2-2)1.1 教学课件 《导数的概念》(人教A版)

高中数学人教A版选修(2-2)1.1 教学课件 《导数的概念》(人教A版)

分析:
s

s(t0

t )

s(t0 )

2 g t

1 2
g (t)2
__
v

s

s(t0
t) s(t0 )

2g

1
g (t )
t
t
2
解:
__
v

s

2g

1
g(t )
t
2
(1)将 Δt=0.1代入上式,得:
__
v 2.05g 20.5m / s.
(2)将 Δt=0.01代入上式,得:
v 4.9t 13.1
当△t = 0.01时, 当△t =0.001时, 当△t =0.0001时,
v 13.149 v 13.1049 v 13.10049
△t = 0.00001,
v 13.100049
△t =0.000001,
v 13.1000049 ……
判断极限 lim f (x0 x) f (x0 ) 是否存在。
x0
x
人民教育出版社 高二年级 | 选修2-2
【探讨2】导数是什么?
描述角度 文字语言 符号语言
本质 瞬时变化率
lim y
x0 x
图形语言 (切线斜 率)
(三)剖析概念加深理解
人民教育出版社 高二年级 | 选修2-2
f (x0 Δx) x
f (x0 )
.
1. f (x0 )与x0的值有关,不同的x0其导数值一般也不相同。
2. f (x0 )与x的具体取值无关。 3.瞬时变化率与导数是同一概念的两个名称。

人教A版选修2-2 1.1.2导数的概念 教案

人教A版选修2-2     1.1.2导数的概念  教案

§1.1.2导数的概念教学目标1.了解瞬时速度、瞬时变化率的概念;2.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;3.会求函数在某点的导数教学重点:瞬时速度、瞬时变化率的概念、导数的概念;教学难点:导数的概念.教学过程:一.创设情景(一)平均变化率(二)探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知, )0()4965(h h =, 所以)/(004965)0()4965(m s h h v =--=, 虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. 二.新课讲授1.瞬时速度我们把物体在某一时刻的速度称为瞬时速度。

运动员的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求运动员的瞬时速度呢?比如,2t =时的瞬时速度是多少?考察2t =附近的情况:ht o思考:当t ∆趋近于0时,平均速度v 有什么样的变化趋势?结论:当t ∆趋近于0时,即无论t 从小于2的一边,还是从大于2的一边趋近于2时,平均速度v 都趋近于一个确定的值13.1-. 从物理的角度看,时间t ∆间隔无限变小时,平均速度v 就无限趋近于史的瞬时速度,因此,运动员在2t =时的瞬时速度是13.1/m s - 为了表述方便,我们用0(2)(2)lim 13.1t h t h t∆→+∆-=-∆ 表示“当2t =,t ∆趋近于0时,平均速度v 趋近于定值13.1-”小结:局部以匀速代替变速,以平均速度代替瞬时速度,然后通过取极限,从瞬时速度的近似值过渡到瞬时速度的精确值。

2 导数的概念从函数y =f (x )在x =x 0处的瞬时变化率是:0000()()lim lim x x f x x f x f x x∆→∆→+∆-∆=∆∆ 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0'|x x y =,即0000()()()lim x f x x f x f x x∆→+∆-'=∆ 说明:(1)导数即为函数y =f (x )在x =x 0处的瞬时变化率 (2)0x x x ∆=-,当0x ∆→时,0x x →,所以0000()()()limx f x f x f x x x ∆→-'=- 三.典例分析例1.(1)求函数y =3x 2在x =1处的导数.分析:先求Δf =Δy =f (1+Δx )-f (1) =6Δx +(Δx )2再求6f x x ∆=+∆∆再求0lim 6x f x∆→∆=∆ 解:法一(略)法二:222211113313(1)|lim lim lim3(1)611x x x x x x y x x x =→→→-⋅-'===+=-- (2)求函数f (x )=x x +-2在1x =-附近的平均变化率,并求出在该点处的导数. 解:x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 200(1)(1)2(1)lim lim (3)3x x y x x f x x x∆→∆→∆--+∆+-+∆-'-===-∆=∆∆例2.(课本例1)将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第xh 时,原油的温度(单位:C o )为2()715(08)f x x x x =-+≤≤,计算第2h 时和第6h 时,原油温度的瞬时变化率,并说明它们的意义.解:在第2h 时和第6h 时,原油温度的瞬时变化率就是'(2)f 和'(6)f 根据导数定义,0(2)()f x f x f x x+∆-∆=∆∆ 22(2)7(2)15(27215)3x x x x+∆-+∆+--⨯+==∆-∆ 所以00(2)lim lim(3)3x x f f x x ∆→∆→∆'==∆-=-∆ 同理可得:(6)5f '=在第2h 时和第6h 时,原油温度的瞬时变化率分别为3-和5,说明在2h 附近,原油温度大约以3/C h o 的速率下降,在第6h 附近,原油温度大约以5/C h o的速率上升. 注:一般地,'0()f x 反映了原油温度在时刻0x 附近的变化情况.四.课堂练习1.质点运动规律为32+=t s ,求质点在3t =的瞬时速度为. 2.求曲线y =f (x )=x 3在1x =时的导数.3.例2中,计算第3h 时和第5h 时,原油温度的瞬时变化率,并说明它们的意义.五.回顾总结1.瞬时速度、瞬时变化率的概念2.导数的概念六.布置作业。

人教新课标A版高中数学选修2-2可编辑课件 第一章 导数及其应用 1.1.2 导数的概念

人教新课标A版高中数学选修2-2可编辑课件  第一章  导数及其应用 1.1.2  导数的概念
→ →
)
f(k)-f(x0) 3.若 f′(x0)=2,则 likm0 等于( → 2k A.-1 C.1 B.-2 1 D. 2
)
[答案] A
f(x0-k)-f(x0) [解析] likm0 → 2k f[x0+(-k)]-f(x0) 1 =- likm0 2 → -k 1 1 =- f′(x0)=- ×2=-1,故应选 A. 2 2
[答案] C
[解析] f(1+∆x)-f(1) 1 1 原式= li∆x→0 m = f′(1). 3 ∆x 3
2.设f(x)=ax+4,若f′(1)=2,则a等于( A.2 B.-2 f(x)-f(1) C.3 [解析] f′(1)=lixm1 D.-3 xm1a=a=2. =li x-1 [答案] A
=A+A=2A. f(a+4t)-f(a+5t) (2)litm →0 t f(a+4t)-f(a)+f(a)-f(a+5t) =litm0 → t f(a+4t)-f(a) f(a+5t)-f(a) =4litm0 -5litm → →0 4t 5t =4A-5A=-A.
[点评] 概念是分析解决问题的重要依据,只 有熟练掌握概念的本质属性,把握其内涵与 外延,才能灵活地应用概念进行解题,解决 这类问题的关键是等价变形,使问题转化.
(2)y′|x=x0 (x0+∆x)2+a(x0+∆x)+b-(x2+ax0+b) 0 =li∆x→0 m ∆x
=li∆x→0 m x2+2x0∆x+(∆x)2+ax0+a∆x+b-x2-ax0-b 0 0 ∆x 2x0∆x+a∆x+(∆x)2 =li∆x→0 m ∆x =li∆x→0 (2x0+a+∆x)=2x0+a. m
1.1.2 导数的概念 .
1.知道函数的瞬时变化率的概念,理解 导数的概念. 2.能利用导数的定义求函数的导数.

高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案

高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案

导数的几何意义当点趋近于点时,割线
趋近于确定的位置,这个确定位置的直线 P n P (,f ()) x 0x 0 P P n P P
).



高考不提分,赔付1万元,关注快乐学了解详情。

解析:图像中每点的斜率均表示这一时刻的速度.
答案:解析:4. 如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记 时刻五角星露出水面部分的图形面积为
,则导函数 的图象大致为

A .
B .
C
.D .
A
导函数 为单位时间内五角星出水的面积率,由图可知当一个角出来时,面积率由 开始,逐渐增多,当一个角
都出完了,则面积率一下由最大开始减小,当出最后两个角时,面积率会先增加,然后减小到 .
t S (t )(S (0)=0)y =(t )S ′()y =(t )S ′0。

人教A版高中数学选修2-2 1.2.2 基本初等函数的导数公式及导数运算法则1同步练习习题(含答案解析)

人教A版高中数学选修2-2 1.2.2 基本初等函数的导数公式及导数运算法则1同步练习习题(含答案解析)

选修2-2 1.2.2 第1课时 基本初等函数的导数公式及导数运算法则一、选择题1.曲线y =13x 3-2在点⎝⎛⎭⎪⎫-1,-73处切线的倾斜角为( ) A .30°B .45°C .135°D .60° [答案] B[解析] y ′|x =-1=1,∴倾斜角为45°.2.设f (x )=13x 2-1x x ,则f ′(1)等于( ) A .-16B.56 C .-76D.76[答案] B3.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( )A .4x -y -3=0B .x +4y -5=0C .4x -y +3=0D .x +4y +3=0[答案] A[解析] ∵直线l 的斜率为4,而y ′=4x 3,由y ′=4得x =1而x =1时,y =x 4=1,故直线l 的方程为:y -1=4(x -1)即4x -y -3=0.4.已知f (x )=ax 3+9x 2+6x -7,若f ′(-1)=4,则a 的值等于( )A.193 B.163 C.103 D.133 [答案] B[解析] ∵f ′(x )=3ax 2+18x +6,∴由f ′(-1)=4得,3a -18+6=4,即a =163. ∴选B.5.已知物体的运动方程是s =14t 4-4t 3+16t 2(t 表示时间,s 表示位移),则瞬时速度为0的时刻是( )A .0秒、2秒或4秒B .0秒、2秒或16秒C .2秒、8秒或16秒D .0秒、4秒或8秒 [答案] D[解析] 显然瞬时速度v =s ′=t 3-12t 2+32t =t (t 2-12t +32),令v =0可得t =0,4,8.故选D.6.(2010·新课标全国卷文,4)曲线y =x 3-2x +1在点(1,0)处的切线方程为( )A .y =x -1B .y =-x -1C .y =2x -2D .y =-2x -2 [答案] A[解析] 本题考查了导数的几何意义,切线方程的求法,在解题时应首先验证点是否在曲线上,然后通过求导得出切线的斜率,题目定位于简单题.由题可知,点(1,0)在曲线y =x 3-2x +1上,求导可得y ′=3x 2-2,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得过点(1,0)的曲线y =x 3-2x +1的切线方程为y =x -1,故选A.7.若函数f (x )=e x sin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为( )A.π2B .0C .钝角D .锐角[答案] C [解析] y ′|x =4=(e x sin x +e x cos x )|x =4=e 4(sin4+cos4)=2e 4sin(4+π4)<0,故倾斜角为钝角,选C.8.曲线y =x sin x 在点⎝ ⎛⎭⎪⎫-π2,π2处的切线与x 轴、直线x =π所围成的三角形的面积为 ( )A.π22B .π2C .2π2D.12(2+π)2 [答案] A[解析] 曲线y =x sin x 在点⎝ ⎛⎭⎪⎫-π2,π2处的切线方程为y =-x ,所围成的三角形的面积为π22. 9.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2011(x )等于( )A .sin xB .-sin xC .cos xD .-cos x[答案] D [解析] f 0(x )=sin x ,f 1(x )=f 0′(x )=(sin x )′=cos x ,f 2(x )=f 1′(x )=(cos x )′=-sin x ,f 3(x )=f 2′(x )=(-sin x )′=-cos x ,f 4(x )=f 3′(x )=(-cos x )′=sin x ,∴4为最小正周期,∴f 2011(x )=f 3(x )=-cos x .故选D.10.f (x )与g (x )是定义在R 上的两个可导函数,若f (x )、g (x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足( )A .f (x )=g (x )B .f (x )-g (x )为常数C .f (x )=g (x )=0D .f (x )+g (x )为常数 [答案] B[解析] 令F (x )=f (x )-g (x ),则F ′(x )=f ′(x )-g ′(x )=0,∴F (x )为常数.二、填空题11.设f (x )=ax 2-b sin x ,且f ′(0)=1,f ′⎝ ⎛⎭⎪⎫π3=12,则a =________,b =________. [答案] 0 -1[解析] f ′(x )=2ax -b cos x ,由条件知⎩⎪⎨⎪⎧ -b cos0=12π3a -b cos π3=12,∴⎩⎪⎨⎪⎧ b =-1a =0. 12.设f (x )=x 3-3x 2-9x +1,则不等式f ′(x )<0的解集为________. [答案] (-1,3) [解析] f ′(x )=3x 2-6x -9,由f ′(x )<0得3x 2-6x -9<0,∴x 2-2x -3<0,∴-1<x <3.13.曲线y =cos x 在点P ⎝⎛⎭⎪⎫π3,12处的切线的斜率为______. [答案] -32 [解析] ∵y ′=(cos x )′=-sin x ,∴切线斜率k =y ′|x =π3=-sin π3=-32. 14.已知函数f (x )=ax +b e x图象上在点P (-1,2)处的切线与直线y =-3x 平行,则函数f (x )的解析式是____________.[答案] f (x )=-52x -12e x +1[解析] 由题意可知,f ′(x )|x =-1=-3,∴a +b e -1=-3,又f (-1)=2,∴-a +b e -1=2,解之得a =-52,b =-12e , 故f (x )=-52x -12e x +1. 三、解答题15.求下列函数的导数:(1)y =x (x 2+1x +1x 3);(2)y =(x +1)(1x-1); (3)y =sin 4x 4+cos 4x 4;(4)y =1+x 1-x +1-x 1+x. [解析] (1)∵y =x ⎝ ⎛⎭⎪⎫x 2+1x +1x 3=x 3+1+1x2, ∴y ′=3x 2-2x3;(3)∵y =sin 4x 4+cos 4x4 =⎝ ⎛⎭⎪⎫sin 2x 4+cos 2x 42-2sin 2x 4cos 2x4 =1-12sin 2x 2=1-12·1-cos x 2=34+14cos x , ∴y ′=-14sin x ; (4)∵y =1+x 1-x +1-x 1+x =(1+x )21-x +(1-x )21-x =2+2x 1-x =41-x -2, ∴y ′=⎝ ⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2. 16.已知两条曲线y =sin x 、y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.[解析] 由于y =sin x 、y =cos x ,设两条曲线的一个公共点为P (x 0,y 0), ∴两条曲线在P (x 0,y 0)处的斜率分别为若使两条切线互相垂直,必须cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin2x 0=2,这是不可能的,∴两条曲线不存在公共点,使在这一点处的两条切线互相垂直.17.已知曲线C 1:y =x 2与C 2:y =-(x -2)2.直线l 与C 1、C 2都相切,求直线l 的方程.[解析] 设l 与C 1相切于点P (x 1,x 21),与C 2相切于点Q (x 2,-(x 2-2)2). 对于C 1:y ′=2x ,则与C 1相切于点P 的切线方程为y -x 21=2x 1(x -x 1),即y =2x 1x -x 21.① 对于C 2:y ′=-2(x -2),与C 2相切于点Q 的切线方程为y +(x 2-2)2=-2(x 2-2)(x -x 2), 即y =-2(x 2-2)x +x 22-4.② ∵两切线重合,∴2x 1=-2(x 2-2)且-x 21=x 22-4,解得x 1=0,x 2=2或x 1=2,x 2=0.∴直线l 的方程为y =0或y =4x -4.18.求满足下列条件的函数f (x ):(1)f (x )是三次函数,且f (0)=3,f ′(0)=0,f ′(1)=-3,f ′(2)=0;(2)f ′(x )是一次函数,x 2f ′(x )-(2x -1)f (x )=1.[解析] (1)设f (x )=ax 3+bx 2+cx +d (a ≠0)则f ′(x )=3ax 2+2bx +c由f (0)=3,可知d =3,由f ′(0)=0可知c =0,由f ′(1)=-3,f ′(2)=0可建立方程组⎩⎪⎨⎪⎧ f ′(1)=3a +2b =-3f ′(2)=12a +4b =0, 解得⎩⎪⎨⎪⎧a =1b =-3, 所以f (x )=x 3-3x 2+3.(2)由f ′(x )是一次函数可知f (x )是二次函数,则可设f (x )=ax 2+bx +c (a ≠0) f ′(x )=2ax +b ,把f (x )和f ′(x )代入方程,得x 2(2ax +b )-(2x -1)(ax 2+bx +c )=1整理得(a -b )x 2+(b -2c )x +c =1若想对任意x 方程都成立,则需 ⎩⎪⎨⎪⎧ a -b =0b -2c =0c =1解得⎩⎪⎨⎪⎧ a =2b =2c =1, 所以f (x )=2x 2+2x +1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.2导数的概念
一、选择题
1.函数在某一点的导数是( )
A .在该点的函数值的增量与自变量的增量的比
B .一个函数
C .一个常数,不是变数
D .函数在这一点到它附近一点之间的平均变化率
【答案】 C
【解析】 由定义,f ′(x 0)是当Δx 无限趋近于0时,Δy Δx 无限趋近的常数,故应选C. 2.设f (x )在x =x 0处可导,则li m Δx →0
f x 0-Δx -f x 0Δx 等于( ) A .-f ′(x 0) B .f ′(-x 0)
C .f ′(x 0)
D .2f ′(x 0)
【答案】A
【解析】li m Δx →0
f x 0-Δx -f x 0Δx =li m Δx →0-f x 0-f x 0-Δx Δx =-li m Δx →0
f x 0-f x 0-Δx Δx =-f ′(x 0). 3.y =x 2在x =1处的导数为( )
A .2x
B .2
C .2+Δx
D .1
【答案】 B
【解析】 ∵f (x )=x 2,x =1,
∴Δy =f (1+Δx )2-f (1)=(1+Δx )2-1=2·Δx +(Δx )2 ∴Δy Δx =2+Δx ,当Δx →0时,Δy Δx
→2,∴f ′(1)=2,故应选B. 4.函数y =ax 2+bx +c (a ≠0,a ,b ,c 为常数)在x =2时的瞬时变化率等于( )
A .4a
B .2a +b
C .b
D .4a +b
【答案】 D
【解析】 ∵Δy Δx =a (2+Δx )2
+b (2+Δx )+c -4a -2b -c Δx
=4a +b +a Δx , ∴y ′|x =2=li m Δx →0Δy Δx =li m Δx →0(4a +b +a ·Δx )=4a +b .故应选D. 5.曲线y =-1x
在点(1,-1)处的导数值为( ) A .1
B .2
C .-2
D .-1
【答案】A 【解析】f ′(1)=lim Δx →0-11+Δx +1Δx
=lim Δx →011+Δx =1. 6.设函数f (x )=ax 3+2,若f ′(-1)=3,则a 等于( )
A .-1 B.12
C.13 D .1 【答案】D
【解析】f ′(-1)=lim Δx →0f -1+Δx -f -1Δx
=3a .∴a =1. 二、填空题
7.设函数y =f(x)在点x 0处可导,且f ′(x 0)>0,则曲线y =f(x)在点(x 0,f(x 0))处切线的 倾斜角的范围是________.
【答案】⎝
⎛⎭⎪⎫0,π2 【解析】 k =f ′(x 0)>0,∴tan θ>0,∴θ∈⎝
⎛⎭⎪⎫0,π2. 8.与直线042=+-y x 平行的抛物线y =x 2
的切线方程是 .
【答案】12-=x y
【解析】设切点坐标为()200,x x ,则切线斜率为02x ,由02x =2得0
x =1,故切点坐标为 (1,1),切线斜率为2,故切线方程为y -1=2(x -1),即12-=x y .
三、解答题
9.已知曲线y =4x
在点P(1,4)处的切线与直线l 平行且距离为17,求直线l 的方程. 【解析】 Δy Δx =f (x +Δx )-f (x )Δx =4x +Δx -4x Δx =-4Δx x (Δx )(x +Δx )=-4x (x +Δx )
, 当Δx 无限趋近于0时,-4x (x +Δx )无限趋近于-4x
2, 即f ′(x )=-4x
2.k =f ′(1)=-4,切线方程是y -4=-4(x -1), 即为4x +y -8=0,
设l :4x +y +c =0,则17=|c +8|
42+12,
∴|c +8|=17,∴c =9,或c =-25,
∴直线l 的方程为4x +y +9=0或4x +y -25=0.
10.设函数f(x)=x 3+ax 2
-9x -1(a<0).若曲线y =f(x)的斜率最小的切线与直线12x +y =6平行,求a 的值.
【解析】 ∵Δy =f (x 0+Δx )-f (x 0)
=(x 0+Δx )3+a (x 0+Δx )2-9(x 0+Δx )-1-(x 30+ax 20-9x 0-1)
=(3x 20+2ax 0-9)Δx +(3x 0+a )(Δx )2+(Δx )3,
∴Δy Δx =3x 20+2ax 0-9+(3x 0+a )Δx +(Δx )2. 当Δx 无限趋近于零时,Δy Δx
无限趋近于3x 20+2ax 0-9. 即f ′(x 0)=3x 2
0+2ax 0-9. ∴f ′(x 0)=3⎝
⎛⎭⎪⎫x 0+a 32-9-a 23. 当x 0=-a 3时,f ′(x 0)取最小值-9-a 23
. ∵斜率最小的切线与12x +y =6平行,
∴该切线斜率为-12.
∴-9-a 2
3
=-12.解得a =±3.
又a<0,∴a=-3.。

相关文档
最新文档