全国各地高考模拟数学试题汇编导数与定积分(理卷B)PDF.pdf
高考数学B版真题及模拟:导数与积分
即A
1 k
,
ln
k
2
,B
1 k
1,
ln
k
,
∵A、B在直线y=kx+b上,∴
2
ln ln k
k
k
k 1 b, k
1 k
1
b
⇒
b k
1 2.
ln
2,
评析 解决本题的关键是知道切点既在曲线上,又在切线上.
7.(2014江西,13,5分)若曲线y=e-x上点P处的切线平行于直线2x+y+1=0,则点P的坐标是 .
b=
.
答案 1-ln 2
解析 直线y=kx+b与曲线y=ln x+2,y=ln(x+1)均相切,设切点分别为A(x1,y1),B(x2,y2),由y=ln x+2得
y'= 1 ,由y=ln(x+1)得y'= 1 ,
x
x 1
∴k=
1 x1
=
1 x2 1
,∴x1=
1 k
,x2=
1 k
-1,
∴y1=-ln k+2,y2=-ln k.
则y0=2 x03 -3x0,且切线斜率为k=6 x02 -3,所以切线方程为y-y0=(6 x02 -3)(x-x0), 因此t-y0=(6 x02 -3)(1-x0).整理得4x03 -6x02 +t+3=0.设g(x)=4x3-6x2+t+3, 则“过点P(1,t)存在3条直线与曲线y=f(x)相切”等价于“g(x)有3个不同零点”.
令h(x)=x(x-1)-ln x,则g(x)= h(x) ,并且h(1)=0,
x
2024全国高考真题数学汇编:导数在研究函数中的应用
2024全国高考真题数学汇编导数在研究函数中的应用一、单选题1.(2024上海高考真题)已知函数()f x 的定义域为R ,定义集合 0000,,,M x x x x f x f x R ,在使得 1,1M 的所有 f x 中,下列成立的是()A .存在 f x 是偶函数B .存在 f x 在2x 处取最大值C .存在 f x 是严格增函数D .存在 f x 在=1x 处取到极小值二、多选题2.(2024全国高考真题)设函数2()(1)(4)f x x x ,则()A .3x 是()f x 的极小值点B .当01x 时, 2()f x f xC .当12x 时,4(21)0f xD .当10x 时,(2)()f x f x 3.(2024全国高考真题)设函数32()231f x x ax ,则()A .当1a 时,()f x 有三个零点B .当0a 时,0x 是()f x 的极大值点C .存在a ,b ,使得x b 为曲线()y f x 的对称轴D .存在a ,使得点 1,1f 为曲线()y f x 的对称中心三、填空题4.(2024全国高考真题)曲线33y x x 与 21y x a 在 0, 上有两个不同的交点,则a 的取值范围为.四、解答题5.(2024全国高考真题)已知函数3()e x f x ax a .(1)当1a 时,求曲线()y f x 在点 1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.6.(2024全国高考真题)已知函数 1ln 1f x ax x x .(1)当2a 时,求 f x 的极值;(2)当0x 时, 0f x ,求a 的取值范围.7.(2024全国高考真题)已知函数 1ln 1f x a x x .(1)求 f x 的单调区间;(2)当2a 时,证明:当1x 时, 1e x f x 恒成立.8.(2024上海高考真题)对于一个函数 f x 和一个点 ,M a b ,令 22()()s x x a f x b ,若 00,P x f x 是 s x 取到最小值的点,则称P 是M 在 f x 的“最近点”.(1)对于1()(0)f x x x,求证:对于点 0,0M ,存在点P ,使得点P 是M 在 f x 的“最近点”;(2)对于 e ,1,0x f x M ,请判断是否存在一个点P ,它是M 在 f x 的“最近点”,且直线MP 与()y f x 在点P 处的切线垂直;(3)已知()y f x 在定义域R 上存在导函数()f x ,且函数()g x 在定义域R 上恒正,设点11,M t f t g t , 21,M t f t g t .若对任意的t R ,存在点P 同时是12,M M 在 f x 的“最近点”,试判断 f x 的单调性.9.(2024北京高考真题)设函数 ln 10f x x k x k ,直线l 是曲线 y f x 在点 ,0t f t t 处的切线.(1)当1k 时,求 f x 的单调区间.(2)求证:l 不经过点 0,0.(3)当1k 时,设点 ,0A t f t t , 0,C f t , 0,0O ,B 为l 与y 轴的交点,ACO S 与ABO S 分别表示ACO △与ABO 的面积.是否存在点A 使得215ACO ABO S S △△成立?若存在,这样的点A 有几个?(参考数据:1.09ln31.10 ,1.60ln51.61 ,1.94ln71.95 )10.(2024天津高考真题)设函数 ln f x x x .(1)求 f x 图象上点 1,1f 处的切线方程;(2)若 f x a x 在 0,x 时恒成立,求a 的值;(3)若 12,0,1x x ,证明 121212f x f x x x .11.(2024全国高考真题)已知函数3()ln (1)2x f x ax b x x (1)若0b ,且()0f x ,求a 的最小值;(2)证明:曲线()y f x 是中心对称图形;(3)若()2f x 当且仅当12x ,求b 的取值范围.参考答案1.B【分析】对于ACD 利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B ,构造函数2,1,111,1x f x x x x即可判断.【详解】对于A ,若存在()y f x 是偶函数,取01[1,1]x ,则对于任意(,1),()(1)x f x f ,而(1)(1)f f ,矛盾,故A 错误;对于B ,可构造函数 2,1,,11,1,1,x f x x x x满足集合 1,1M ,当1x 时,则 2f x ,当11x 时, 1,1f x ,当1x 时, 1f x ,则该函数 f x 的最大值是 2f ,则B 正确;对C ,假设存在 f x ,使得 f x 严格递增,则M R ,与已知 1,1M 矛盾,则C 错误;对D ,假设存在 f x ,使得 f x 在=1x 处取极小值,则在1 的左侧附近存在n ,使得 1f n f ,这与已知集合M 的定义矛盾,故D 错误;故选:B.2.ACD【分析】求出函数 f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数 f x 在 1,3上的值域即可判断C ;直接作差可判断D.【详解】对A ,因为函数 f x 的定义域为R ,而 22141313f x x x x x x ,易知当 1,3x 时, 0f x ,当 ,1x 或 3,x 时, 0f x 函数 f x 在 ,1 上单调递增,在 1,3上单调递减,在 3, 上单调递增,故3x 是函数 f x 的极小值点,正确;对B ,当01x 时, 210x x x x ,所以210x x ,而由上可知,函数 f x 在 0,1上单调递增,所以 2f x f x ,错误;对C ,当12x 时,1213x ,而由上可知,函数 f x 在 1,3上单调递减,所以 1213f f x f ,即 4210f x ,正确;对D ,当10x 时, 222(2)()12141220f x f x x x x x x x ,所以(2)()f x f x ,正确;故选:ACD.3.AD【分析】A 选项,先分析出函数的极值点为0,x x a ,根据零点存在定理和极值的符号判断出()f x 在(1,0),(0,),(,2)a a a 上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的,a b ,使得x b 为()f x 的对称轴,则()(2)f x f b x 为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,33)a 为()f x 的对称中心,则()(2)66f x f x a ,据此进行计算判断,亦可利用拐点结论直接求解.【详解】A 选项,2()666()f x x ax x x a ,由于1a ,故 ,0,x a 时()0f x ,故()f x 在 ,0,,a 上单调递增,(0,)x a 时,()0f x ,()f x 单调递减,则()f x 在0x 处取到极大值,在x a 处取到极小值,由(0)10 f ,3()10f a a ,则(0)()0f f a ,根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a ,3(2)410f a a ,则(1)(0)0,()(2)0f f f a f a ,则()f x 在(1,0),(,2)a a 上各有一个零点,于是1a 时,()f x 有三个零点,A 选项正确;B 选项,()6()f x x x a ,a<0时,(,0),()0x a f x ,()f x 单调递减,,()0x 时()0f x ,()f x 单调递增,此时()f x 在0x 处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b 为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x ,即32322312(2)3(2)1x ax b x a b x ,根据二项式定理,等式右边3(2)b x 展开式含有3x 的项为303332C (2)()2b x x ,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立,于是不存在这样的,a b ,使得x b 为()f x 的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简(1)33f a ,若存在这样的a ,使得(1,33)a 为()f x 的对称中心,则()(2)66f x f x a ,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a ,于是266(126)(1224)1812a a x a x a即126012240181266a a a a,解得2a ,即存在2a 使得(1,(1))f 是()f x 的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax ,2()66f x x ax ,()126f x x a ,由()02a f x x ,于是该三次函数的对称中心为,22a a f ,由题意(1,(1))f 也是对称中心,故122a a ,即存在2a 使得(1,(1))f 是()f x 的对称中心,D 选项正确.故选:AD【点睛】结论点睛:(1)()f x 的对称轴为()(2)x b f x f b x ;(2)()f x 关于(,)a b 对称()(2)2f x f a x b ;(3)任何三次函数32()f x ax bx cx d 都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是()0f x 的解,即,33b b f aa是三次函数的对称中心4. 2,1 【分析】将函数转化为方程,令 2331x x x a ,分离参数a ,构造新函数 3251,g x x x x 结合导数求得 g x 单调区间,画出大致图形数形结合即可求解.【详解】令 2331x x x a ,即3251a x x x ,令 32510,g x x x x x 则 2325351g x x x x x ,令 00g x x 得1x ,当 0,1x 时, 0g x , g x 单调递减,当 1,x 时, 0g x , g x 单调递增, 01,12g g ,因为曲线33y x x 与 21y x a 在 0, 上有两个不同的交点,所以等价于y a 与 g x 有两个交点,所以 2,1a .故答案为:2,1 5.(1) e 110x y (2)1, 【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析0a 和0a 两种情况,利用导数判断单调性和极值,分析可得2ln 10a a ,构建函数解不等式即可;解法二:求导,可知()e x f x a 有零点,可得0a ,进而利用导数求 f x 的单调性和极值,分析可得2ln 10a a ,构建函数解不等式即可.【详解】(1)当1a 时,则()e 1x f x x ,()e 1x f x ,可得(1)e 2f ,(1)e 1f ,即切点坐标为 1,e 2 ,切线斜率e 1k ,所以切线方程为 e 2e 11y x ,即 e 110x y .(2)解法一:因为()f x 的定义域为R ,且()e x f x a ,若0a ,则()0f x 对任意x R 恒成立,可知()f x 在R 上单调递增,无极值,不合题意;若0a ,令()0f x ,解得ln x a ;令()0f x ,解得ln x a ;可知()f x 在 ,ln a 内单调递减,在 ln ,a 内单调递增,则()f x 有极小值 3ln ln f a a a a a ,无极大值,由题意可得: 3ln ln 0f a a a a a ,即2ln 10a a ,构建 2ln 1,0g a a a a ,则 120g a a a,可知 g a 在 0, 内单调递增,且 10g ,不等式2ln 10a a 等价于 1g a g ,解得1a ,所以a 的取值范围为 1, ;解法二:因为()f x 的定义域为R ,且()e x f x a ,若()f x 有极小值,则()e x f x a 有零点,令()e 0x f x a ,可得e x a ,可知e x y 与y a 有交点,则a ,若0a ,令()0f x ,解得ln x a ;令()0f x ,解得ln x a ;可知()f x 在 ,ln a 内单调递减,在 ln ,a 内单调递增,则()f x 有极小值 3ln ln f a a a a a ,无极大值,符合题意,由题意可得: 3ln ln 0f a a a a a ,即2ln 10a a ,构建 2ln 1,0g a a a a ,因为则2,ln 1y a y a 在 0, 内单调递增,可知 g a 在 0, 内单调递增,且 10g ,不等式2ln 10a a 等价于 1g a g ,解得1a ,所以a 的取值范围为 1, .6.(1)极小值为0,无极大值.(2)12a 【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就12a 、102a 、0a 分类讨论后可得参数的取值范围.【详解】(1)当2a 时,()(12)ln(1)f x x x x ,故121()2ln(1)12ln(1)111x f x x x x x,因为12ln(1),11y x y x在 1, 上为增函数,故()f x 在 1, 上为增函数,而(0)0f ,故当10x 时,()0f x ,当0x 时,()0f x ,故 f x 在0x 处取极小值且极小值为 00f ,无极大值.(2) 11ln 11ln 1,011a x ax f x a x a x x x x,设 1ln 1,01a x s x a x x x,则222111211111a a x a a ax a s x x x x x ,当12a 时, 0s x ,故 s x 在 0, 上为增函数,故 00s x s ,即 0f x ,所以 f x 在 0, 上为增函数,故 00f x f .当102a 时,当0x 0s x ,故 s x 在210,a a 上为减函数,故在210,a a上 0s x s ,即在210,a a上 0f x 即 f x 为减函数,故在210,a a上 00f x f ,不合题意,舍.当0a ,此时 0s x 在 0, 上恒成立,同理可得在 0, 上 00f x f 恒成立,不合题意,舍;综上,12a .【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.7.(1)见解析(2)见解析【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当1x 时,1e 21ln 0x x x 即可.【详解】(1)()f x 定义域为(0,) ,11()ax f x a x x当0a 时,1()0ax f x x,故()f x 在(0,) 上单调递减;当0a 时,1,x a时,()0f x ,()f x 单调递增,当10,x a时,()0f x ,()f x 单调递减.综上所述,当0a 时,()f x 的单调递减区间为(0,) ;0a 时,()f x 的单调递增区间为1,a ,单调递减区间为10,a.(2)2a ,且1x 时,111e ()e (1)ln 1e 21ln x x x f x a x x x x ,令1()e 21ln (1)x g x x x x ,下证()0g x 即可.11()e 2x g x x ,再令()()h x g x ,则121()e x h x x,显然()h x 在(1,) 上递增,则0()(1)e 10h x h ,即()()g x h x 在(1,) 上递增,故0()(1)e 210g x g ,即()g x 在(1,) 上单调递增,故0()(1)e 21ln10g x g ,问题得证8.(1)证明见解析(2)存在,0,1P (3)严格单调递减【分析】(1)代入(0,0)M ,利用基本不等式即可;(2)由题得 22(1)e x s x x ,利用导函数得到其最小值,则得到P ,再证明直线MP 与切线垂直即可;(3)根据题意得到 10200s x s x ,对两等式化简得 01()f xg t ,再利用“最近点”的定义得到不等式组,即可证明0x t ,最后得到函数单调性.【详解】(1)当(0,0)M 时, 222211(0)02s x x x x x ,当且仅当221x x 即1x 时取等号,故对于点 0,0M ,存在点 1,1P ,使得该点是 0,0M 在 f x 的“最近点”.(2)由题设可得 2222(1)e 0(1)e x x s x x x ,则 2212e x s x x ,因为 221,2e x y x y 均为R 上单调递增函数,则 2212e xs x x 在R 上为严格增函数,而 00s ,故当0x 时, 0s x ,当0x 时, 0s x ,故 min 02s x s ,此时 0,1P ,而 e ,01x f x k f ,故 f x 在点P 处的切线方程为1y x .而01110MP k ,故1MP k k ,故直线MP 与 y f x 在点P 处的切线垂直.(3)设 221(1)()s x x t f x f t g t ,222(1)()s x x t f x f t g t ,而 12(1)2()s x x t f x f t g t f x , 22(1)2()s x x t f x f t g t f x ,若对任意的t R ,存在点P 同时是12,M M 在 f x 的“最近点”,设 00,P x y ,则0x 既是 1s x 的最小值点,也是 2s x 的最小值点,因为两函数的定义域均为R ,则0x 也是两函数的极小值点,则存在0x ,使得 10200s x s x ,即 10000212()()0s x x t f x f x f t g t ① 20000212()()0s x x t f x f x f t g t ②由①②相等得 044()0g t f x ,即 01()0f x g t ,即 01()f x g t,又因为函数()g x 在定义域R 上恒正,则 010()f xg t 恒成立,接下来证明0x t ,因为0x 既是 1s x 的最小值点,也是 2s x 的最小值点,则 1020(),()s x s t s x s t ,即 2220011x t f x f t g t g t ,③ 2220011x t f x f t g t g t ,④③ ④得 222200222()2()22()x t f x f t g t g t 即 22000x t f x f t ,因为 2200,00x t f x f t 则 0000x t f x f t,解得0x t ,则 10()f tg t 恒成立,因为t 的任意性,则 f x 严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到 01()f x g t,再利用最值点定义得到0x t 即可.9.(1)单调递减区间为(1,0) ,单调递增区间为(0,) .(2)证明见解析(3)2【分析】(1)直接代入1k ,再利用导数研究其单调性即可;(2)写出切线方程()1()(0)1k y f t x t t t,将(0,0)代入再设新函数()ln(1)1t F t t t ,利用导数研究其零点即可;(3)分别写出面积表达式,代入215ACO ABO S S 得到13ln(1)21501t t t t ,再设新函数15()13ln(1)2(0)1t h t t t t t研究其零点即可.【详解】(1)1()ln(1),()1(1)11x f x x x f x x x x,当 1,0x 时, 0f x ;当 0,x ,()0f x ¢>;()f x 在(1,0) 上单调递减,在(0,) 上单调递增.则()f x 的单调递减区间为(1,0) ,单调递增区间为(0,) .(2)()11k f x x ,切线l 的斜率为11k t,则切线方程为()1()(0)1k y f t x t t t,将(0,0)代入则()1,()111k k f t t f t t t t,即ln(1)1k t k t t tt ,则ln(1)1t t t ,ln(1)01t t t ,令()ln(1)1t F t t t,假设l 过(0,0),则()F t 在(0,)t 存在零点.2211()01(1)(1)t t t F t t t t ,()F t 在(0,) 上单调递增,()(0)0F t F ,()F t 在(0,) 无零点, 与假设矛盾,故直线l 不过(0,0).(3)1k 时,12()ln(1),()1011x f x x x f x x x.1()2ACO S tf t ,设l 与y 轴交点B 为(0,)q ,0t 时,若0q ,则此时l 与()f x 必有交点,与切线定义矛盾.由(2)知0q .所以0q ,则切线l 的方程为 111ln 1x t y t t t,令0x ,则ln(1)1t y q y t t.215ACO ABO S S ,则2()15ln(1)1t tf t t t t,13ln(1)21501t t t t ,记15()13ln(1)2(0)1th t t t t t, 满足条件的A 有几个即()h t 有几个零点.2222221313221151315294(21)(4)()21(1)(1)(1)(1)t t t t t t t h t t t t t t ,当10,2t时, 0h t ,此时 h t 单调递减;当1,42t时, 0h t ,此时 h t 单调递增;当 4,t 时, 0h t ,此时 h t 单调递减;因为1(0)0,0,(4)13ln 520131.6200.802h h h,15247272(24)13ln 254826ln 548261.614820.5402555h,所以由零点存在性定理及()h t 的单调性,()h t 在1,42上必有一个零点,在(4,24)上必有一个零点,综上所述,()h t 有两个零点,即满足215ACO ABO S S 的A 有两个.【点睛】关键点点睛:本题第二问的关键是采用的是反证法,转化为研究函数零点问题.10.(1)1y x (2)2(3)证明过程见解析【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到2a ,再证明2a 时条件满足;(3)先确定 f x 的单调性,再对12,x x 分类讨论.【详解】(1)由于 ln f x x x ,故 ln 1f x x .所以 10f , 11f ,所以所求的切线经过 1,0,且斜率为1,故其方程为1y x .(2)设 1ln h t t t ,则 111t h t t t,从而当01t 时 0h t ,当1t 时 0h t .所以 h t 在 0,1上递减,在 1, 上递增,这就说明 1h t h ,即1ln t t ,且等号成立当且仅当1t .设 12ln g t a t t ,则ln 1f x a x x x a x x a x g .当 0,x0, ,所以命题等价于对任意 0,t ,都有 0g t .一方面,若对任意 0,t ,都有 0g t ,则对 0,t 有112012ln 12ln 1212g t a t t a t a t at a t t t,取2t ,得01a ,故10a .再取t,得2022a a a,所以2a .另一方面,若2a ,则对任意 0,t 都有 212ln 20g t t t h t ,满足条件.综合以上两个方面,知a 的值是2.(3)先证明一个结论:对0a b ,有 ln 1ln 1f b f a a b b a.证明:前面已经证明不等式1ln t t ,故lnln ln ln ln ln ln 1ln 1bb b a a a b a aa b b b b b a b a a,且1lnln ln ln ln ln ln ln 1ln 11a a b b a a b b b a b b a a a a a a b a b a b b,所以ln ln ln 1ln 1b b a a a b b a,即 ln 1ln 1f b f a a b b a.由 ln 1f x x ,可知当10e x 时 0f x ,当1ex 时()0f x ¢>.所以 f x 在10,e上递减,在1,e上递增.不妨设12x x ,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1211ex x 时,有122122121ln 1f x f x f x f x x x x x x ,结论成立;情况二:当1210e x x 时,有 12121122ln ln f x f x f x f x x x x x .对任意的10,e c,设ln ln x x x c cln 1x x 由于 x单调递增,且有1111111ln 1ln11102e2e ec c,且当2124ln 1x c c,2cx2ln 1c 可知2ln 1ln 1ln 102c x x c.所以 x 在 0,c 上存在零点0x ,再结合 x 单调递增,即知00x x 时 0x ,0x x c 时 0x .故 x 在 00,x 上递减,在 0,x c 上递增.①当0x x c 时,有 0x c ;②当00x x112221e e f f c,故我们可以取1,1q c .从而当201cx q1ln ln ln ln 0x x x c c c c c c q c.再根据 x 在 00,x 上递减,即知对00x x 都有 0x ;综合①②可知对任意0x c ,都有 0x ,即ln ln 0x x x c c .根据10,e c和0x c 的任意性,取2c x ,1x x,就得到1122ln ln 0x x x x .所以12121122ln ln f x f x f x f x x x x x 情况三:当12101e x x时,根据情况一和情况二的讨论,可得11e f x f21e f f x而根据 f x 的单调性,知 1211e f x f x f x f或 1221e f x f x f f x .故一定有12f x f x 成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合 f x 的单调性进行分类讨论.11.(1)2 (2)证明见解析(3)23b【分析】(1)求出 min 2f x a 后根据()0f x 可求a 的最小值;(2)设 ,P m n 为 y f x 图象上任意一点,可证 ,P m n 关于 1,a 的对称点为 2,2Q m a n 也在函数的图像上,从而可证对称性;(3)根据题设可判断 12f 即2a ,再根据()2f x 在 1,2上恒成立可求得23b .【详解】(1)0b 时, ln 2xf x ax x,其中 0,2x ,则112,0,222f x a a x x x x x,因为 22212x x x x,当且仅当1x 时等号成立,故 min 2f x a ,而 0f x 成立,故20a 即2a ,所以a 的最小值为2 .,(2) 3ln12x f x ax b x x的定义域为 0,2,设 ,P m n 为 y f x 图象上任意一点,,P m n 关于 1,a 的对称点为 2,2Q m a n ,因为 ,P m n 在 y f x 图象上,故 3ln 12m n am b m m,而 3322ln221ln 122m m f m a m b m am b m a m m,2n a ,所以 2,2Q m a n 也在 y f x 图象上,由P 的任意性可得 y f x 图象为中心对称图形,且对称中心为 1,a .(3)因为 2f x 当且仅当12x ,故1x 为 2f x 的一个解,所以 12f 即2a ,先考虑12x 时, 2f x 恒成立.此时 2f x 即为 3ln21102x x b x x在 1,2上恒成立,设 10,1t x ,则31ln201t t bt t在 0,1上恒成立,设 31ln2,0,11t g t t bt t t,则2222232322311t bt b g t bt t t,当0b ,232332320bt b b b ,故 0g t 恒成立,故 g t 在 0,1上为增函数,故 00g t g 即 2f x 在 1,2上恒成立.当203b 时,2323230bt b b ,故 0g t 恒成立,故 g t 在 0,1上为增函数,故 00g t g 即 2f x 在 1,2上恒成立.当23b ,则当01t 时, 0g t故在 上 g t 为减函数,故 00g t g ,不合题意,舍;综上, 2f x 在 1,2上恒成立时23b .而当23b 时,而23b 时,由上述过程可得 g t 在 0,1递增,故 0g t 的解为 0,1,即 2f x 的解为 1,2.综上,23b .【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.。
高考理科数学模拟试卷(含答案)
高考理科数学模拟试卷(含答案)高考理科数学模拟试卷(含答案)本试卷共分为选择题和非选择题两部分,第Ⅰ卷(选择题)在1至2页,第Ⅱ卷(非选择题)在3至4页,共4页,满分150分,考试时间为120分钟。
注意事项:1.答题前,请务必填写自己的姓名和考籍号。
2.答选择题时,请使用2B铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,请使用橡皮擦擦干净后再选涂其他答案标号。
3.答非选择题时,请使用0.5毫米黑色签字笔,在答题卡规定位置上书写答案。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,请只将答题卡交回。
第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={-1.0.1.2.3.4},B={y|y=x,x∈A},则A2B=A){0.1.2}B){0.1.4}C){-1.0.1.2}D){-1.0.1.4}2.已知复数z=1/(1+i),则|z|=A)2B)1C)2D)23.设函数f(x)为奇函数,当x>0时,f(x)=x-2,则f(f(1))=A)-1B)-2C)1D)24.已知单位向量e1,e2的夹角为π/2,则e1-2e2=A)3B)7C)3D)75.已知双曲线2x^2-y^2=1(a>0,b>0)的渐近线方程为y=±3x,则双曲线的离心率是A)10B)10/10C)10D)3/96.在等比数列{an}中,a1>0,则“a1<a4”是“a3<a5”的A)充分不必要条件B)必要不充分条件C)充要条件D)既不充分也不必要条件7.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是A)i≤6?B)i≤5?C)i≤4?D)i≤3?8.已知a、b为两条不同直线,α、β、γ为三个不同平面,则下列命题中正确的是①若α//β,α//γ,则β//γ;②若a//α,a//β,则α//β;③若α⊥γ,β⊥γ,则α⊥β;④若a⊥α,XXXα,则a//b。
全国百套高考数学模拟试题分类汇编 导数与极限解答题b.docx
2008届全国百套高考数学模拟试题分类汇编11导数与极限三、解答题(第二部分)51> 已知函数f (尤)=e x -ln(x + l)-l(x>0),(1)求函数f(x)的最小值;(2)若0 <yvx,求证:e x~y -1 > ln(x + l)-ln(j + l).解:(1) f\x)=e x, .................................................. 2分x + 1当x>0 时,>1,—<1,所以当x>0 时,f\x) > 0 ,x + 1则函数/(X)在[0, + 8)上单调递增,所以函数f(x)的最小值/(0) = 0 ;......................................... 5分(2)由(1)知,当尤〉0时,/(x) > 0,x > y ,f(x-y) = e x~y -ln(x-y+ 1)-1 >0, e x~y - l>ln(x-y + l) ① ........................................ 7分ln(.x - v +1) - [ln(x +1) - ln( v + 1)] =ln 火*-')""' >。
,-X + l/. ln(x- y+ 1) > ln(x + l) -ln(y + 1) ②................................. 10 分由①②得e'-v -1 > ln(x +1) — ln(y + 1) .......................................... 12 分52、(河南省许昌市2008年上期末质量评估)已知函数r(x)=-|x2 + 2ax, g(x) =3a2lnx+b,其中a〉0.设两曲线y = r (x),y=g(x)有公共点,且在公共点处的切线相同.(I )用a表示b;(II)求证:f (x) ^g(x), (x>0).20. 解:(I )设y=f(x)与尸g(,)(x>0)在公共点(s’。
专题09 导数及其应用-2023年高考真题和模拟题数学分项汇编(全国通用)含答案
(2)已知函数
f
x
xex
ax
a2
a
0
有唯一零点
x0
,求证:
x0
4 9
且
a
9 25
.
9.(2023·四川广安·四川省广安友谊中学校考模拟预测)已知函数
f
(x)
ln
x x
ln 2
2
a 1
2 x
(a
0)
.
(1)若函数 f (x) 在 x 1处的切线斜率为 1 ,求实数 a 的值; 9
(2)若函数 f (x) 有且仅有三个不同的零点,分别设为 x1, x2 , x3.
(1)讨论 f x 的单调性;
(2)证明:当 a 0 时, f x 2lna 3 .
2 【答案】(1)答案见解析
(2)证明见解析
【详解】(1)因为 f (x) a ex a x ,定义域为 R ,所以 f x aex 1 ,
当 a 0 时,由于 ex 0 ,则 aex 0 ,故 f x aex 1 0 恒成立, 所以 f x 在 R 上单调递减;
11.(2023·山东日照·三模)已知函数
f
x
ax2 e x 1
lnx
lna
1 有三个零点.
(1)求 a 的取值范围;
(2)设函数 f x 的三个零点由小到大依次是 x1, x2 , x3 .证明: aex1x3 e .
12.(2023·山东烟台·统考三模)已知函数 f x ex a, g x ln x a ,其中 a R .
当 a 0 时,令 f x aex 1 0 ,解得 x ln a ,
当 x ln a 时, f x 0 ,则 f x 在 , ln a 上单调递减;
2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)
2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。
高考数学(理)(全国通用)高考试题汇编第三章导数与定积分含解析精品配套练习
极大值
极小值
所以 f x 的极值点是 x1, x2 , 从而 f x1 f x2 x13 ax12 bx1 1 x23 ax22 bx2 1=
x1 3
3x12
2ax1
b
x2 3
3x22
2ax2
b
1 a
3
x12
x22
2
b 3
x1
x2
2=
1 a
3
x12
x22
2
b 3
x1
x2
2=
4a3 2ab 2
27 3
当x
,ln a 时, h x 0 ,此时 h x 单调递增;
当 x ln a,0 时, h x 0 ,此时 h x 单调递减;
当 x 0, 时, h x 0 ,此时 h x 单调递增 .
所以当 x ln a 时, h x 取得极大值, 极大值为 h ln a a ln2 a 2ln a sin ln a cos ln a 2 ,
② 当 0 a 2 时,令 f x 0 ,得 0 x 2
4 2a
2
或x
2
4 2a
,
2
2 4 2a
2 4 2a
所以 f x 的单调增区间为 0,
和
,,
2
2
同理 f x 的单调减区间为 2
4 2a , 2 2
4 2a ; 2
③ 当 a 0 时,令 f x
0 ,得 x 2
4 2a
.
2
2 所以 f x 的单调 增区 间为
函数 h x 有极小值,极小值为 h 0 2a 1;
当 0 a 1 时,函数 h x 在 ,ln a 和 0, 上单调递增,在 ln a,0 上单调递减,函数
十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):导数与定积分
(1)f(x)存在唯一的极值点;
(2)f(x)=0 有且仅有两个实根,且两个实根互为倒数.
49.(2019·江苏,19,16 分,难度)设函数 f(x)=(x-a)(x-b)(x-c),a,b,c∈R,f'(x)为 f(x)的导函数.
(1)若 a=b=c,f(4)=8,求 a 的值;
(2)若 a≠b,b=c,且 f(x)和 f'(x)的零点均在集合{-3,1,3}中,求 f(x)的极小值;
3
38.(2015·全国 1·文 T14)已知函数 f(x)=ax +x+1 的图象在点(1,f(1))处的切线过点(2,7),则 a= .
2
39.(2015·全国 2·文 T16)已知曲线 y=x+ln x 在点(1,1)处的切线与曲线 y=ax +(a+2)x+1 相切,则 a= .
x
1
40.(2015·陕西·理 T15)设曲线 y=e 在点(0,1)处的切线与曲线 y=x (x>0)上点 P 处的切线垂直,则 P 的坐
T13) 已 知 函 数
y=f(x) 的 图 象 是 折 线 段
ABC, 其 中
A(0,0),B
1 2
,5
,C(1,0). 函 数
y=xf(x)(0≤x≤1)的图象与 x 轴围成的图形的面积为________________.
44.(2012·全国·文 T13)曲线 y=x(3ln x+1)在点(1,1)处的切线方程为 .
34.(2017·天津,文 10)已知 a∈R,设函数 f(x)=ax-ln x 的图象在点(1,f(1))处的切线为 l,则 l 在 y 轴上的
截距为 .
海南省2024届高考全真模拟卷(二)数学
2023—2024学年海南省高考全真模拟卷(二)数学1.本试卷满分150分,测试时间120分钟,共4页.2.考查范围:集合、常用逻辑用语、不等式、三角函数、平面向量、解三角形、函数和导数.一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“1x ∀≥,2sin 1x x -<”的否定是( )A .1x ∃<,2sin 1x x -≥B .1x ∃≥,2sin 1x x -≥C .1x ∀<,2sin 1x x -≥D .1x ∀≥,2sin 1x x -≥2.已知集合{}270A x x x =-<,{}4B x x =>,则A B = ( )A .∅B .()4,7C .()0,+∞D .()0,43.已知()2,3m =- ,()1,4n =- ,(),1p λ= ,若()3m n p +⊥,则λ=( )A .9B .9-C .19D .19-4.声强级I L (单位:dB )由公式12101g 10I I L -⎛⎫=⎪⎝⎭给出,其中I 为声强(单位:2W /m ).若学校图书规定:在阅览室内,声强级不能超过40dB ,则最大声强为( )A .6210W /m -B .7210W /m -C .8210W /m-D .9210W /m-5.已知函数()f x 的图象在区间[]1,3上连续不断,则“()f x 在[]1,3上存在零点”是“()310i f i ==∑,*i ∈N ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.我们把顶角为36︒的等腰三角形称为“最简三角形”.已知cos36︒=“最美三角形”的顶角与一个底角之和的余弦值为()ABCD7.已知函数()()2sin 03f x x πωω⎛⎫=-> ⎪⎝⎭在50,6π⎡⎤⎢⎥⎣⎦上恰有5个极值点,则当ω取得最小值时,()f x 图象的对称中心的横坐标可能为( )A .730πB .815πC .1115π-D .23π8.已知函数()23,3,69,3,x x f x x x x ⎧-≤⎪=⎨-+->⎪⎩若函数()()()22g x f x af x ⎡⎤=-+⎣⎦有6个零点,则a 的值可能为( )A .1-B .2-C .3-D .4-二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)9.已知,a b ∈R ,且0a b >>,则( )A .2222a a b b->-B .532log log a b >C<D.))221122ab ->-10.下列命题正确的是( )A .x ∃∈R ,24912x x +<B .x ∀∈R ,22sin 5sin 30x x -+≥C .若命题“x ∀∈R ,()212304a x ax +-+>”为真命题,则实数a 的取值范围为()(),13,-∞-+∞ D .若[]10,3x ∀∈,[]21,2x ∃∈,使得()22511log 13x x m +≥-,则实数m 的最小值为1911.数学与生活存在紧密联系,很多生活中的模型多源于数学的灵感.已知某建筑物的底层玻璃采用正六边形为主体,再以正六边形的每条边作为正方形的一条边构造出六个正方形,如图所示,则在该图形中,下列说法正确的是()A.1GH BD ⎫=⎪⎪⎭B.BE BD =+C.12GB BD CF =-D.IC BD =12.已知函数()cos tan 2f x x x x =-,则( )A .π是()f x 的一个周期B .()f x 的图象关于,02π⎛⎫-⎪⎝⎭中心对称C .()f x ≤在0,4π⎛⎫⎪⎝⎭上恒成立D .()12y f x x π=--在3,22ππ⎛⎫- ⎪⎝⎭上的所有零点之和为4π三、填空题(本题共4小题,每小题5分,共20分)13.已知集合{}240A x ax =-=,{B x y ==,若A B A = ,则实数a 的值可以是________.(写出一个满足条件的值即可)14.若函数()221382sin x x f x m x -+⎛⎫=+⋅⋅ ⎪⎝⎭的图象关于y 轴对称,则m =________.15.已知正数a ,b满足11a b+=()()234a b ab -≥,则22a b +=________.16.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,已知4c =,60C =︒,2DC BD DA =+,则DA DB ⋅的最大值为________.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且24cos 4cos a B c b A =-.(Ⅰ)求c的值;(Ⅱ)若3C π=,a b +=,求ABC △的面积.18.(12分)已知函数()24ln 1f x x x =-+.(Ⅰ)求曲线()y f x =在()()1,1f 处的切线方程;(Ⅱ)求()f x 的单调区间与极值.19.(12分)某公司生产一类电子芯片,且该芯片的年产量不超过35万件,每万件电子芯片的计划售价为16万元.已知生产此类电子芯片的成本分为固定成本与流动成本两个部分,其中固定成本为30万元/年,每生产x 万件电子芯片需要投入的流动成本为()f x (单位:万元),当年产量不超过14万件时,()2243f x x x =+;当年产量超过14万件时,()4001780f x x x=+-.假设该公司每年生产的芯片都能够被销售完.(Ⅰ)写出年利润()g x (万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(Ⅱ)如果你作为公司的决策人,为使公司获得的年利润最大,每年应生产多少万件该芯片?20.(12分)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,(),m c b = ,3cos ,cos 22A B n B π⎛⎫+⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭ ,且m n.(Ⅰ)若4a =,c =,求ABC △的周长;(Ⅱ)若2CM MB = ,3AM =,求a b +的最大值.21.(12分)如图为函数()()2cos f x x ωϕ=+0,2πωϕ⎛⎫><⎪⎝⎭的部分图象,且4CD π=,5,212A π⎛⎫-- ⎪⎝⎭.(Ⅰ)求ω,ϕ的值;(Ⅱ)将()f x 的图象上所有点的横坐标扩大到原来的3倍(纵坐标不变),再向右平移34π个单位长度,得到函数()g x 的图象,讨论函数()y g x a =-在区间,2ππ⎡⎤-⎢⎥⎣⎦的零点个数.22.(12分)已知函数()22sin f x ax x =+,()f x 的导函数为()f x '.(Ⅰ)若()f x 在5,23ππ⎡⎤⎢⎥⎣⎦上单调递减,求实数a 的取值范围;(Ⅱ)当[]0,x π∈时,记函数()f x '的极大值和极小值分别为λ,μ,求证:23λμ≥+.2023—2024学年海南省高考全真模拟卷(二)数学・答案1.B 因为全称量词命题的否定为存在量词命题,故“1x ∀…,2sin 1x x -<”的否定是“1x ∃…,2sin 1x x -…”,故选B .2.C 因为{}{}27007A x x x x x =-<=<<,故()0,A B =+∞ ,故选C .3.A 依题意,()31,9m n +=- ,故()390m n p λ+⋅=-+=,解得9λ=,故选A .4.C 依题意,1210lg 4010I -⎛⎫⎪⎝⎭…,则4121010I -…,则810I -…,故选C .5.B()310i f i ==∑,()()()*1230i f f f ∈⇔++=N .“()f x 在[]1,3上存在零点”时,不一定有“()310i f i ==∑,*i ∈N”,但“()310i f i ==∑,*i ∈N ”时,一定有“()f x 在[]1,3上存在零点”,故选B .6. A 依题意,“最美三角形”的顶角与一个底角之和为108︒,则()22cos108cos 18072cos7212cos 361212=-=-=-=-⨯=︒︒︒︒-=︒,故选A .7.B 令()232x k k ππωπ-=+∈Z ,故()76k x k ππωω=+∈Z ,735,66745,66πππωωπππωω⎧+⎪⎪⎨⎪+>⎪⎩…解得3155ω<…,故当ω取得最小值时,()2sin 53f x x π⎛⎫=-⎪⎝⎭,令()253x k k ππ-=∈Z ,则12515x k ππ=+,所以8015f π⎛⎫= ⎪⎝⎭,故选B .8.C 作出函数()f x 的图象如图所示,令()f x t =,则由题意可得220t at -+=有2个不同的实数解1t ,2t ,且()12,3,0t t ∈-,则280,9320,30,2a a a⎧⎪->⎪++>⎨⎪⎪-<<⎩解得113a -<<-,观察可知,3a =-满足题意,故选C .9.CD 对于A ,令12a =,14b =,可知2222a a b b -<-,故A 错误;对于B,当a =,13b =时,52log 1a =-,3log 1b =-,此时532log log a b =,故B 错误;对于C ,因为>,所以<,故C 正确;对于D ,因为2211a b <,且021<-<,所以22112)2)a b ->,故D 正确,故选CD .10.BD 对于A ,因为x ∀∈R ,24922312x x x +⋅⋅=…,当且仅当32x =时,等号成立,故A 错误;对于B ,令[]sin 1,1t x =∈-,则22sin 5sin 30x x -+…,即为22530t t -+…,而2253y t t =-+在[]1,1-上单调递减,故010y ……,故B 正确;对于C ,显然230a +>,且2230a a --<,解得13a -<<,故C错误;对于D ,当[]0,3x ∈时,()25minlog 10x ⎡⎤+=⎣⎦,当[]1,2x ∈时,min 1139x m m ⎛⎫-=- ⎪⎝⎭,故109m -…,所以19m …,故D 正确,故选BD .11.ACD易知BC BD =,故21GH GA AE EH BC BD BD ⎫=++=+=⎪⎪⎭,而GH BD ,故A正确;易知2CF DE =,12BE BD DE BD CF =+=+ ,故B错误;12GB GA AB BD CF =+=- ,故C 正确;而CC IB BC =+ ,1124BC BD CF =-,)1324IB BF BC CF BD CF BD ⎫==+=+=+⎪⎭,故IC BD =+,故D 正确,故选ACD .12.ABD()tan2f x x x =-,则()()()()tan2tan2f x x x x x f x πππ+=+-+=-=,故π是()f x 的一个周期,故A正确;因为()()()][()sin 2tan 2sin2tan20f x f x x x x x πππ⎡⎤--+=-----+-=⎣⎦,故()f x 的图象关于,02π⎛⎫-⎪⎝⎭中心对称,故B 正确;易知()22cos 2f x x x '=-,当0,4x π⎛⎫∈ ⎪⎝⎭时,令()0f x '=,解得8x π=,故当0,8x π⎛⎫∈ ⎪⎝⎭时,()0f x '>,当,84x ππ⎛⎫∈ ⎪⎝⎭时,()0f x '<,故max ()18f x f π⎛⎫==> ⎪⎝⎭C 错误;当,42x ππ⎛⎫∈ ⎪⎝⎭时,()0f x '<,结合奇偶性和周期性作出()f x 在对应区间上的大致图象如图所示,又12y x π=-,()y f x =的图象均关于,02π⎛⎫⎪⎝⎭中心对称,故D 选项中对应区间上所有零点之和为4π,故D 正确,故选ABD .13.1(答案不唯一) 根据题意得{}2,2B =-,A B A A B =⇔⊆ .若0a …,则A =∅,满足题意;若0a >,则44a=,得1a =,故横线上填写的a 的值满足0a …或1a =均可.14.12-依题意,()()424sin x x f x m x -=+⋅⋅为偶函数,sin y x =为奇函数,则()424x x g x m -=+⋅为奇函数,故()0120g m =+=,得12m =-.经检验,当12m =-时,()g x 为奇函数,()f x 为偶函数,故12m =-.15.6 由23()4()a b ab -…,得222()4a b ab a b -…,即21144ab a b ab⎛⎫+- ⎪⎝⎭…,故12ab ab +….又12ab ab +=…,当且仅当1ab ab =时,等号成立,此时1,11ab a b=⎧⎪⎨+=⎪⎩故226a b +=.16.8825- 作ABC △的外接圆O .设AB 的中点为M ,则由题意知()24DC AD BD MD =+= ,故15DM CM = ,()()222||||4DA DB DM MA DM MA DM MA DM ⋅=+⋅-=-=-,由60ACB ∠=︒,故点C 的轨迹是以AB 为弦,圆周角为3π的优弧上,故当CM AB ⊥时,CM 取最大值,即DM 取最大值,此时CAB △为等边三角形,DM =128842525DA DB ⋅=-=- .17.解:(Ⅰ)依题意,24cos 4cos a B b A c +=,由正弦定理得,()4sin cos 4sin cos 4sin 4sin sin A B B A A B C c C +=+==,而sin 0C ≠,故4c =.(Ⅱ)由余弦定理得,22222cos ()332316c a b ab C a b ab ab =+-=+-=-=,得163ab =,故1sin 2ABC S ab C ==△.18.解:依题意,()42f x x x='-,0x >.(Ⅰ)()412121f =-'⨯=-,()114ln112f =-+=,故所求切线方程为()221y x -=--,即240x y +-=.(Ⅱ)令()0f x '=,解得x =(x ∈时,()0f x '<,当)x ∈+∞时,()0f x '>,故()f x的单调递减区间为(,单调递增区间为)+∞,则()f x的极小值为32ln2f =-,无极大值.19.解:(Ⅰ)根据题意得,当014x ……时,()()22163012303g x x f x x x =--=-+-,当1435x <…时,()()400163050g x x f x x x=--=--,故()221230,014,340050,1435.x x x g x x x x ⎧-+-⎪⎪=⎨⎪--<⎪⎩………(Ⅱ)当014x ……时,()2212303g x x x =-+-,且当09x ……时,()g x 单调递增,当914x <…时,()g x 单调递减,此时()max 2()98112930243g x g ==-⨯+⨯-=.当1435x <…时,()4005050210g x x x =---=…,当且仅当20x =时,等号成立.因为2410>,故当9x =时,()g x 取得最大值24,即为使公司获得的年利润最大,每年应生产9万件该芯片.20.解:因为m n ,故3cos cos22A B c B b π+⎛⎫+= ⎪⎝⎭,由正弦定理得,sin sin sin cos2A B B C B +=.又sin 0B ≠,则sin cos cos sin 222A B C CC π+-===,即2sin cos sin 222C C C =,而sin 02C ≠,故1cos 22C =,故23C π=.(Ⅰ)由余弦定理得,2222cos c a b ab C =+-,即2217162402b b b ⎛⎫=+-⨯⨯-= ⎪⎝⎭,整理得23280b b --=,解得2b =或43-(舍去),c =ABC △的周长为6+.(Ⅱ)设0,3CAM πα⎛⎫∠=∈ ⎪⎝⎭,3CMA πα∠=-.由正弦定理得,sin sin sin CM AC AMCMA Cα==∠,即23sin sin 3a b παα===⎛⎫- ⎪⎝⎭a α=,3cos b αα=+,所以()3cos a b αααϕ+=+=+,其中tan ϕ⎫=⎪⎪⎭,,64ππϕ⎛⎫∈ ⎪⎝⎭,则当2παϕ+=时,a b +.21.解:(Ⅰ)根据题意得,44T π=,故T π=,22Tπω==,故()()2cos 2f x x ϕ=+.将5,212A π⎛⎫-- ⎪⎝⎭代入,得()52212k k πϕππ⎛⎫⨯-+=-+∈ ⎪⎝⎭Z ,解得()26k k πϕπ=-+∈Z ,又2πϕ<,故6πϕ=-.(Ⅱ)依题意,()23222cos 2cos 34633g x x x πππ⎡⎤⎛⎫⎛⎫=--=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.函数()y g x a =-在区间,2ππ⎡⎤-⎢⎥⎣⎦()g x 的图象与直线y a =在,2ππ⎡⎤-⎢⎥⎣⎦上的交点个数.当,2x ππ⎡⎤∈-⎢⎥⎣⎦时,224,3333x πππ⎡⎤-∈--⎢⎥⎣⎦,结合余弦函数图象可知,当,2x ππ⎡⎤∈--⎢⎥⎣⎦时,()g x 单调递减,当,22x ππ⎛⎤∈-⎥⎝⎦时,()g x 单调递增,且()1g π-=-,12g π⎛⎫=⎪⎝⎭,22g π⎛⎫-=- ⎪⎝⎭,作出函数()g x 在,2ππ⎡⎤-⎢⎥⎣⎦上的大致图象如图所示.观察可知,当2a =-或11a -<…时,()y g x a =-有1个零点;当21a -<-…时,()y g x a =-有2个零点;当2a <-或1a >时,()y g x a =-有0个零点.22.解:(Ⅰ)依题意,()22cos f x ax x +'=,根据题意知,()0f x '…在5,23ππ⎡⎤⎢⎥⎣⎦上恒成立,即cos x a x -…在5,23ππ⎡⎤⎢⎥⎣⎦上恒成立.令()cos x m x x -=,5,23x ππ⎡⎤∈⎢⎥⎣⎦,则()2sin cos x x x m x x +'=,令()sin cos n x x x x =+,2x π⎡∈⎢⎣,则()cos n x x x '=,则3,22x ππ⎡⎤∈⎢⎥⎣⎦时,()0n x '…,35,23x ππ⎛⎤∈ ⎥⎝⎦时,()0n x '>,故()n x 在3,22ππ⎡⎤⎢⎥⎣⎦上单调递减,在35,23ππ⎛⎤ ⎥⎝⎦上单调递增.而02n π⎛⎫> ⎪⎝⎭,302n π⎛⎫< ⎪⎝⎭,503n π⎛⎫< ⎪⎝⎭,故03,22x ππ⎛⎫∃∈ ⎪⎝⎭,()00n x =,当0,2x x π⎡⎫∈⎪⎢⎣⎭时,()0n x >,()0m x '>,当05,3x x π⎛⎤∈ ⎥⎝⎦时,()0n x <,()0m x '<,故min 53()min ,2310m x m m πππ⎧⎫⎛⎫⎛⎫==-⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎩⎭,则310a π-…,故实数a 的取值范围为3,10π⎛⎤-∞-⎥⎝⎦.(Ⅱ)令()()g x f x =',则()()2sin g x a x -'=,设1x ,2x 分别为函数()f x '在[]0,π上的极大值点与极小值点,所以()()120g x g x ''==,12sin sin a x x ==,则01a <…,且12x x π+=.所以()11222222cos cos ax x ax x λμ-=+--,由12x x π+=,得21cos cos x x =-,其中102x π<…,1sin a x =,故()]()()11111111112222cos cos 233cos 23sin 3cos sin ax x a x x ax x a x x x x λμπππ⎡-=+--+=+-=+-⎣.设()3sin 3cos sin h x x x x x π=+-,0,2x π⎡⎫∈⎪⎢⎣⎭,则()()3cos h x x x π=-',令()0h x '=,解得3x π=,故当03x π<…时,()0h x '<,()h x 在0,3π⎛⎫ ⎪⎝⎭上单调递减,当32x ππ<…时,()0h x '>,()h x 在,32ππ⎛⎫ ⎪⎝⎭上单调递增,故()332h x h π⎛⎫= ⎪⎝⎭…,即23λμ-…,故23λμ+….。
2024年高考真题汇编(数学)(新课标卷+全国卷)PDF版含答案
2024年高考真题汇编数学(新课标卷+全国卷)目录2024年普通高等学校招生全国统一考试(新课标I卷)数学2024年普通高等学校招生全国统一考试(新课标II卷)数学2024年普通高等学校招生全国统一考试(全国甲卷)理科数学2024年普通高等学校招生全国统一考试(全国甲卷)文科数学(部分)参考答案2024年普通高等学校招生全国统一考试(新课标I 卷)数学一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ()A.{1,0}-B.{2,3}C.{3,1,0}--D.{1,0,2}-2.若1i 1zz =+-,则z =()A.1i -- B.1i -+ C.1i- D.1i+3.已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =()A.2- B.1- C.1D.24.已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A.3m- B.3m -C.3m D.3m5.,则圆锥的体积为()A. B. C. D.6.已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A.(,0]-∞B.[1,0]-C.[1,1]- D.[0,)+∞7.当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A.3B.4C.6D.88.已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A.(10)100f > B.(20)1000f >C.(10)1000f <D.(20)10000f <二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A.(2)0.2P X >>B.(2)0.5P X ><C.(2)0.5P Y >> D.(2)0.8P Y ><10.设函数2()(1)(4)f x x x =--,则()A.3x =是()f x 的极小值点B.当01x <<时,()2()f x f x<C.当12x <<时,4(21)0f x -<-< D.当10x -<<时,(2)()f x f x ->11.造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A.2a =- B.点在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点()00,x y 在C 上时,0042y x ≤+三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.13.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .16.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x yC a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.17.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为427,求AD .18.已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.19.设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.2024年普通高等学校招生全国统一考试(新课标II 卷)数学一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知1i z =--,则z =()A.0B.1C.D.22.已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则()A.p 和q 都是真命题B.p ⌝和q 都是真命题C.p 和q ⌝都是真命题D.p ⌝和q ⌝都是真命题3.已知向量,a b满足1,22a a b =+= ,且()2b a b -⊥ ,则b = ()A.12B.22C.32D.14.某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理下表亩产量[900,950)[950,1000)[1000,1050)[1100,1150)[1150,1200)频数612182410据表中数据,结论中正确的是()A.100块稻田亩产量的中位数小于1050kgB.100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg 至300kg 之间D.100块稻田亩产量的平均值介于900kg 至1000kg 之间5.已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为()A.221164x y +=(0y >)B.221168x y +=(0y >)C.221164y x +=(0y >)D.221168y x +=(0y >)6.设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =与()y g x =恰有一个交点,则=a ()A.1- B.12C.1D.27.已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为()A.12B.1C.2D.38.设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为()A.18B.14C.12D.1二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9.对于函数()sin 2f x x =和π()sin(2)4g x x =-,下列正确的有()A.()f x 与()g x 有相同零点B.()f x 与()g x 有相同最大值C.()f x 与()g x 有相同的最小正周期D.()f x 与()g x 的图像有相同的对称轴10.抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则()A.l 与A 相切B.当P ,A ,B 三点共线时,||PQ =C.当||2PB =时,PA AB ⊥D.满足||||PA PB =的点P 有且仅有2个11.设函数32()231f x x ax =-+,则()A.当1a >时,()f x 有三个零点B.当0a <时,0x =是()f x 的极大值点C.存在a ,b ,使得x b =为曲线()y f x =的对称轴D.存在a ,使得点()()1,1f 为曲线()y f x =的对称中心三、填空题:本大题共3小题,每小题5分,共15分.12.记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =________.13.已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 1αβ=+,则sin()αβ+=_______.14.在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有________种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =.(1)求A .(2)若2a =,sin sin 2C c B =,求ABC 的周长.16.已知函数3()e x f x ax a =--.(1)当1a =时,求曲线()y f x =在点()1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.17.如图,平面四边形ABCD 中,8AB =,3CD =,AD =,90ADC ︒∠=,30BAD ︒∠=,点E ,F 满足25AE AD = ,12AF AB =,将AEF △沿EF 对折至PEF !,使得PC =.(1)证明:EF PD ⊥;(2)求面PCD 与面PBF 所成的二面角的正弦值.18.某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.(2)假设0p q <<,(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii )为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?19.已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =,过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11kk+-的等比数列;(3)设n S 为12n n n P P P ++ 的面积,证明:对任意的正整数n ,1n n S S +=.2024年普通高等学校招生全国统一考试(全国甲卷)理科数学一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设5i z =+,则()i z z +=()A.10iB.2iC.10D.2-2.集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð()A.{}1,4,9 B.{}3,4,9C.{}1,2,3 D.{}2,3,53.若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为()A.5B.12C.2- D.72-4.等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =()A.2- B.73C.1D.25.已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.6.设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.237.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A.B.C. D.8.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1+ B.1- C.32D.19.已知向量()()1,,,2a x x b x =+=,则()A.“3x =-”是“a b ⊥”的必要条件B.“3x =-”是“//a b”的必要条件C.“0x =”是“a b ⊥”的充分条件 D.“1x =-+”是“//a b”的充分条件10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A.①③ B.②④C.①②③D.①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A.32B.C.72D.212.已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为()A.2B.3C.4D.二、填空题:本题共4小题,每小题5分,共20分.13.1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______.14.已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙______.15.已知1a >,8115log log 42a a -=-,则=a ______.16.有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间262450乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+则认为该工厂产品的优级品率提高了,根据抽取的150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?12.247≈)附:22()()()()()n ad bcKa b c d a c b d-=++++()2P K k≥0.0500.0100.001 k 3.841 6.63510.82818.记n S为数列{}n a的前n项和,且434n nS a=+.(1)求{}n a的通项公式;(2)设1(1)nn nb na-=-,求数列{}n b的前n项和为n T.19.如图,在以A,B,C,D,E,F为顶点的五面体中,四边形ABCD与四边形ADEF均为等腰梯形,//,//BC AD EF AD,4,2AD AB BC EF====,ED FB==M为AD的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值.20.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.21.已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.[选修4-5:不等式选讲]23.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.2024年普通高等学校招生全国统一考试(全国甲卷)文科数学(部分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ()A.{}1,2,3,4 B.{}1,2,3C.{}3,4 D.{}1,2,92.设z =,则z z ⋅=()A.-iB.1C.-1D.23.若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为()A.5B.12C.2- D.72-4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=()A.2- B.73C.1D.295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.236.已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.7.曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为()A.16B.32C.12D.8.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A.B.C.D.9.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1+B.1- C.32D.1原10题略10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A.①③ B.②④C.①②③D.①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A.32B.C.72D.2二、填空题:本题共4小题,每小题5分,共20分.原13题略12.函数()sin f x x x =在[]0,π上的最大值是______.13.已知1a >,8115log log 42a a -=-,则=a ______.14.曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.15.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的通项公式.16.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求点M 到ABF 的距离.17.已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1ex f x -<恒成立.18.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.19.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.20.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.参考答案2024年普通高等学校招生全国统一考试(新课标I 卷)数学参考答案一、单项选择题【答案】1.A 【解析】【详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.【答案】2.C 【解析】【详解】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.【答案】3.D 【解析】【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.【答案】4.A 【解析】【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.【答案】5.B 【解析】【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r=即=,故3r=,故圆锥的体积为1π93⨯=.故选:B.【答案】6.B【解析】【详解】因为()f x在R上单调递增,且0x≥时,()()e ln1xf x x=++单调递增,则需满足()2021e ln1aa-⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a-≤≤,即a的范围是[1,0]-.故选:B.【答案】7.C【解析】【详解】因为函数siny x=的的最小正周期为2πT=,函数π2sin36y x⎛⎫=-⎪⎝⎭的最小正周期为2π3T=,所以在[]0,2πx∈上函数π2sin36y x⎛⎫=-⎪⎝⎭有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C【答案】8.B【解析】【详解】因为当3x<时()f x x=,所以(1)1,(2)2f f==,又因为()(1)(2)f x f x f x>-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f>+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f>+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.二、多项选择题【答案】9.BC 【解析】【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误;因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<,而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误,故选:BC .【答案】10.ACD 【解析】【详解】对A ,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B ,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x>,错误;对C ,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.【答案】11.ABD 【解析】【详解】对于A :设曲线上的动点(),P x y ,则2x >-4x a -=,04a -=,解得2a =-,故A 正确.对于B24x +=,而2x >-,()24x+=.当0x y ==()2844=-=,故()在曲线上,故B 正确.对于C :由曲线的方程可得()()2221622y x x =--+,取32x =,则2641494y =-,而64164525624510494494494---=-=>⨯,故此时21y >,故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D :当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =--≤++,故0004422y x x -≤≤++,故D 正确.故选:ABD.三、填空题【答案】12.32【解析】【详解】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x ya b-=得2b y a =±,即22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225b AF a ==,又122AF AF a -=,得1222513AF AF a a =+=+=,解得4a =,代入25ba=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:32【答案】13.ln 2【解析】【详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e x y x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 2【答案】14.12【解析】【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==.从而()()()441234113382kk k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==.而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲的总得分不小于2的概率为2312p p +=.故答案为:12.四、解答题【答案】15.(1)由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得22222cos 222a b c C ab ab +-===,因为()0,πC ∈,所以sin 0C >,从而sin 2C ==,又因为sin C B =,即cos 2B =,注意到()0,πB ∈,所以π3B =.(2)由(1)可得π3B =,2cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ232162sin sin sin 124622224A ⎛⎫⎛⎫==+=⨯=⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而623136,4222a c b c +====,由三角形面积公式可知,ABC 的面积可表示为211316233sin 222228ABC S ab C c c c +==⋅⋅= ,由已知ABC 的面积为3+,可得2338c =,所以c =【答案】16.(1)由题意得2239941b a b =⎧⎪⎪⎨⎪+=⎪⎩,解得22912b a ⎧=⎨=⎩,所以12e ==.(2)法一:3312032APk -==--,则直线AP 的方程为132y x =-+,即260x y +-=,352AP ==,由(1)知22:1129x y C +=,设点B 到直线AP 的距离为d ,则1255352d ==,则将直线AP 沿着与AP 垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ++=,1255=,解得6C =或18C =-,当6C =时,联立221129260x y x y ⎧+=⎪⎨⎪++=⎩,解得03x y =⎧⎨=-⎩或332x y =-⎧⎪⎨=-⎪⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,当()0,3B -时,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当33,2B ⎛⎫--⎪⎝⎭时,此时12lk =,直线l 的方程为12y x =,即20x y -=,当18C =-时,联立2211292180x y x y ⎧+=⎪⎨⎪+-=⎩得22271170y y -+=,227421172070∆=-⨯⨯=-<,此时该直线与椭圆无交点.综上直线l 的方程为3260x y --=或20x y -=.法二:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,设()00,B x y,则220012551129x y =⎪+=⎪⎩,解得00332x y =-⎧⎪⎨=-⎪⎩或0003x y =⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一.法三:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离5d =,设(),3sin B θθ,其中[)0,2θ∈π1255=,联立22cos sin 1θθ+=,解得cos 21sin 2θθ⎧=-⎪⎪⎨⎪=-⎪⎩或cos 0sin 1θθ=⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一;法四:当直线AB 的斜率不存在时,此时()0,3B -,16392PAB S =⨯⨯= ,符合题意,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当线AB 的斜率存在时,设直线AB 的方程为3y kx =+,联立椭圆方程有2231129y kx x y =+⎧⎪⎨+=⎪⎩,则()2243240k x kx ++=,其中AP k k ≠,即12k ≠-,解得0x =或22443k x k -=+,0k ≠,12k ≠-,令22443k x k -=+,则2212943k y k -+=+,则22224129,4343k k B k k ⎛⎫--+ ⎪++⎝⎭同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,5=,解得32k =,此时33,2B ⎛⎫-- ⎪⎝⎭,则得到此时12lk =,直线l 的方程为12y x =,即20x y -=,综上直线l 的方程为3260x y --=或20x y -=.法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当l 的斜率存在时,设3:(3)2PB y k x -=-,令()()1122,,,P x y B x y ,223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +--+--=,()()()2222Δ24124433636270k kk k k =--+-->,且AP k k ≠,即12k ≠-,21222122241243,36362743k k x x k PB k k x x k ⎧-+=⎪⎪+==⎨--⎪=⎪+⎩,A 到直线PB距离192PAB d S ==⋅ ,12k ∴=或32,均满足题意,1:2l y x ∴=或332y x =-,即3260x y --=或20x y -=.法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当直线l 斜率存在时,设3:(3)2l y k x =-+,设l 与y 轴的交点为Q ,令0x =,则30,32Q k ⎛⎫-+⎪⎝⎭,联立223323436y kx k x y ⎧=-+⎪⎨⎪+=⎩,则有()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,其中()()22223Δ8343436362702k k k k k ⎛⎫=--+--> ⎪⎝⎭,且12k ≠-,则2222363627121293,3434B B k k k k x x k k ----==++,则211312183922234P B k S AQ x x k k +=-=+=+,解的12k =或32k =,经代入判别式验证均满足题意.则直线l 为12y x =或332y x =-,即3260x y --=或20x y -=.【答案】17.(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥,又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥,根据平面知识可知//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .(2)如图所示,过点D 作DE AC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF ,根据二面角的定义可知,DFE ∠即为二面角A CP D --的平面角,即sin 7DFE ∠=,即tan DFE ∠=因为AD DC ⊥,设AD x =,则CD =,由等面积法可得,2DE =,又242xCE -==,而EFC 为等腰直角三角形,所以2EF =,故242tan 4DFE x∠==x =AD =.【答案】18.(1)0b =时,()ln 2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,(2)()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .(3)因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln21102x x b x x +-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln 201t t bt t+-+>-在()0,1上恒成立,设()()31ln 2,0,11t g t t bt t t+=-+∈-,则()()2222232322311tbtbg t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.【答案】19.(1)首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d-=+=+',得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可.换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(),i j 就是()()()1,2,1,6,5,6.(2)由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组.(如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.(3)定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立,则数列1,2,...,42m +一定是(),i j -可分数列:命题1:,i A j B ∈∈或,i B j A ∈∈;命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠.此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组;③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠.此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124241k k +<+,即2114k k ->,故21k k >.由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=.但这导致2112k k -=,矛盾,所以,i B j A ∈∈.设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个.所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>=++++++++.这就证明了结论.2024年普通高等学校招生全国统一考试(新课标II 卷)数学参考答案一、单项选择题【答案】1.C 【解析】【详解】若1i z =--,则z ==.故选:C.【答案】2.B 【解析】【详解】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p ⌝是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题,综上,p ⌝和q 都是真命题.故选:B.【答案】3.B 【解析】【详解】因为()2b a b -⊥ ,所以()20b a b -⋅= ,即22b a b =⋅,又因为1,22a a b =+=,所以22144164a b b b +⋅+=+= ,从而22=b .故选:B.【答案】4.C 【解析】【详解】对于A,根据频数分布表可知,612183650++=<,所以亩产量的中位数不小于1050kg ,故A 错误;对于B ,亩产量不低于1100kg 的频数为341024=+,所以低于1100kg 的稻田占比为1003466%100-=,故B 错误;对于C ,稻田亩产量的极差最大为1200900300-=,最小为1150950200-=,故C 正确;对于D ,由频数分布表可得,亩产量在[1050,1100)的频数为100(612182410)30-++++=,所以平均值为1(692512975181025301075241125101175)1067100⨯⨯+⨯+⨯+⨯+⨯+⨯=,故D 错误.故选;C.【答案】5.A 【解析】【详解】设点(,)M x y ,则0(,),(,0)P x y P x ',因为M 为PP '的中点,所以02y y =,即(,2)P x y ,又P 在圆2216(0)x y y +=>上,所以22416(0)x y y +=>,即221(0)164x y y +=>,即点M 的轨迹方程为221(0)164x y y +=>.故选:A 【答案】6.D 【解析】【详解】解法一:令()()f x g x =,即2(1)1cos 2a x x ax +-=+,可得21cos a x ax -=+,令()()21,cos a x F x ax G x =-=+,原题意等价于当(1,1)x ∈-时,曲线()y F x =与()y G x =恰有一个交点,注意到()(),F x G x 均为偶函数,可知该交点只能在y 轴上,可得()()00F G =,即11a -=,解得2a =,若2a =,令()()F x G x =,可得221cos 0x x +-=因为()1,1x ∈-,则220,1cos 0x x ≥-≥,当且仅当0x =时,等号成立,可得221cos 0x x +-≥,当且仅当0x =时,等号成立,则方程221cos 0x x +-=有且仅有一个实根0,即曲线()y F x =与()y G x =恰有一个交点,所以2a =符合题意;综上所述:2a =.解法二:令()()()2()1cos ,1,1h x f x g x ax a x x =-=+--∈-,原题意等价于()h x 有且仅有一个零点,因为()()()()221cos 1cos h x a x a x ax a x h x -=-+---=+--=,则()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即()020h a =-=,解得2a =,若2a =,则()()221cos ,1,1h x x x x =+-∈-,又因为220,1cos 0x x ≥-≥当且仅当0x =时,等号成立,可得()0h x ≥,当且仅当0x =时,等号成立,即()h x 有且仅有一个零点0,所以2a =符合题意;故选:D.【答案】7.B 【解析】【详解】解法一:分别取11,BC B C 的中点1,D D ,则11AD A D ==可知111131662222ABC A B C S S =⨯⨯⨯==⨯= 设正三棱台111ABC A B C -的为h ,则(11115233ABC A B C V h -=++=,解得433h =,如图,分别过11,A D 作底面垂线,垂足为,M N ,设AM x =,。
历年(2019-2023)全国高考数学真题分项(导数及其应用)汇编(附答案)
历年(2019-2023)全国高考数学真题分项(导数及其应用)汇编考点一 导数的运算1.【多选】(2022•新高考Ⅰ)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x ='.若3(2)2f x -,(2)g x +均为偶函数,则( ) A .(0)0f =B .1()02g -=C .(1)f f -=(4)D .(1)g g -=(2)考点二 利用导数研究曲线上某点切线方程2.(2021•新高考Ⅰ)若过点(,)a b 可以作曲线x y e =的两条切线,则( ) A .b e a <B .a e b <C .0b a e <<D .0a b e <<3.(2022•新高考Ⅰ)若曲线()x y x a e =+有两条过坐标原点的切线,则a 的取值范围是 . 4.(2022•新高考Ⅱ)曲线||y ln x =过坐标原点的两条切线的方程为 , .5.(2021•新高考Ⅱ)已知函数()|1|x f x e =-,10x <,20x >,函数()f x 的图象在点1(A x ,1())f x 和点2(B x ,2())f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 的取值范围是 . 考点三 利用导数研究函数的单调性6.(2023•新高考Ⅱ)已知函数()x f x ae lnx =-在区间(1,2)上单调递增,则a 的最小值为( ) A .2eB .eC .1e -D .2e -7.(2023•新高考Ⅰ)已知函数()()x f x a e a x =+-. (1)讨论()f x 的单调性;(2)证明:当0a >时,3()22f x lna >+. 8.(2022•浙江)设函数()(0)2ef x lnx x x=+>. (Ⅰ)求()f x 的单调区间;(Ⅱ)已知a ,b R ∈,曲线()y f x =上不同的三点1(x ,1())f x ,2(x ,2())f x ,3(x ,3())f x 处的切线都经过点(,)a b .证明:(ⅰ)若a e >,则0b f <-(a )1(1)2ae<-;(ⅱ)若0a e <<,123x x x <<,则2213211266e a e ae e x x a e --+<+<-. (注: 2.71828e =⋯是自然对数的底数) 9.(2022•新高考Ⅱ)已知函数()ax x f x xe e =-. (1)当1a =时,讨论()f x 的单调性; (2)当0x >时,()1f x <-,求a 的取值范围; (3)设*n N ∈(1)ln n +>+.10.(2021•新高考Ⅱ)已知函数2()(1)x f x x e ax b =--+. (Ⅰ)讨论()f x 的单调性;(Ⅱ)从下面两个条件中选一个,证明:()f x 恰有一个零点.①2122e a <…,2b a >; ②102a <<,2b a …. 11.(2021•浙江)设a ,b 为实数,且1a >,函数2()()x f x a bx e x R =-+∈. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围;(Ⅲ)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点1x ,2x ,满足22122blnb e x x e b>+.(注: 2.71828e = 是自然对数的底数) 12.(2021•新高考Ⅰ)已知函数()(1)f x x lnx =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且blna alnb a b -=-,证明:112e a b<+<. 13.(2020•海南)已知函数1()x f x ae lnx lna -=-+.(1)当a e =时,求曲线()y f x =在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若()1f x …,求a 的取值范围.14.(2019•浙江)已知实数0a ≠,设函数()f x alnx =+0x >. (Ⅰ)当34a =-时,求函数()f x 的单调区间;(Ⅱ)对任意21[x e∈,)+∞均有()2f x a …,求a 的取值范围. 注: 2.71828e =⋯为自然对数的底数.考点四 利用导数研究函数的极值15.【多选】(2023•新高考Ⅱ)若函数2()(0)b cf x alnx a x x =++≠既有极大值也有极小值,则( ) A .0bc >B .0ab >C .280b ac +>D .0ac <16.【多选】(2022•新高考Ⅰ)已知函数3()1f x x x =-+,则( ) A .()f x 有两个极值点 B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线17.(2023•新高考Ⅱ)(1)证明:当01x <<时,2sin x x x x -<<;(2)已知函数2()cos (1)f x ax ln x =--,若0x =为()f x 的极大值点,求a 的取值范围.考点五 利用导数研究函数的最值18.(2022•新高考Ⅰ)已知函数()x f x e ax =-和()g x ax lnx =-有相同的最小值. (1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.参考答案考点一 导数的运算1.【多选】(2022•新高考Ⅰ)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x ='.若3(2)2f x -,(2)g x +均为偶函数,则( ) A .(0)0f =B .1()02g -=C .(1)f f -=(4)D .(1)g g -=(2)【过程解析】3(2)2f x - 为偶函数,∴可得33(2)(2)22f x f x -=+,()f x ∴关于32x =对称,令54x =,可得3535(2(2)2424f f -⨯=+⨯,即(1)f f -=(4),故C 正确; (2)g x + 为偶函数,(2)(2)g x g x ∴+=-,()g x 关于2x =对称,故D 不正确; ()f x 关于32x =对称,32x ∴=是函数()f x 的一个极值点, ∴函数()f x 在3(2,)t 处的导数为0,即33()()022g f ='=,又()g x ∴的图象关于2x =对称,53((022g g ∴==,∴函数()f x 在5(2,)t 的导数为0,52x ∴=是函数()f x 的极值点,又()f x 的图象关于32x =对称,5(2∴,)t 关于32x =的对称点为1(2,)t ,由52x =是函数()f x 的极值点可得12x =是函数()f x 的一个极值点,11(()022g f ∴='=, 进而可得17()()022g g ==,故72x =是函数()f x 的极值点,又()f x 的图象关于32x =对称,7(2∴,)t 关于32x =的对称点为1(2-,)t ,11()()022g f ∴-='-=,故B 正确; ()f x 图象位置不确定,可上下移动,即每一个自变量对应的函数值不是确定值,故A 错误. 解法二:构造函数法,令()1sin f x x π=-,则3(2)1cos 22f x x π-=+,则()()cosg x f x x ππ='=-,(2)cos(2)cos g x x x πππππ+=-+=-, 满足题设条件,可得只有选项BC 正确, 故选:BC .考点二 利用导数研究曲线上某点切线方程2.(2021•新高考Ⅰ)若过点(,)a b 可以作曲线x y e =的两条切线,则( ) A .b e a <B .a e b <C .0b a e <<D .0a b e <<【过程解析】法一:函数x y e =是增函数,0x y e '=>恒成立, 函数的图象如图,0y >,即切点坐标在x 轴上方, 如果(,)a b 在x 轴下方,连线的斜率小于0,不成立. 点(,)a b 在x 轴或下方时,只有一条切线. 如果(,)a b 在曲线上,只有一条切线; (,)a b 在曲线上侧,没有切线;由图象可知(,)a b 在图象的下方,并且在x 轴上方时,有两条切线,可知0a b e <<. 故选:D .法二:设过点(,)a b 的切线横坐标为t ,则切线方程为()t t y e x t e =-+,可得(1)t b e a t =+-,设()(1)f t a t =+-,可得()()t f t e a t '=-,(,)t a ∈-∞,()0f t '>,()f t 是增函数, (,)t a ∈+∞,()0f t '<,()f t 是减函数,因此当且仅当0a b e <<时,上述关于t 的方程有两个实数解,对应两条切线. 故选:D .3.(2022•新高考Ⅰ)若曲线()x y x a e =+有两条过坐标原点的切线,则a 的取值范围是 . 【过程解析】()x x y e x a e '=++,设切点坐标为0(x ,00())x x a e +, ∴切线的斜率000()x x k e x a e =++,∴切线方程为000000()(())()x x x y x a e e x a e x x -+=++-,又 切线过原点,000000()(())()x x x x a e e x a e x ∴-+=++-, 整理得:2000x ax a +-=,切线存在两条,∴方程有两个不等实根,∴△240a a =+>,解得4a <-或0a >,即a 的取值范围是(-∞,4)(0-⋃,)+∞, 故答案为:(-∞,4)(0-⋃,)+∞.4.(2022•新高考Ⅱ)曲线||y ln x =过坐标原点的两条切线的方程为 , . 【过程解析】当0x >时,y lnx =,设切点坐标为0(x ,0)lnx , 1y x '=,∴切线的斜率01k x =, ∴切线方程为0001()y lnx x x x -=-, 又 切线过原点,01lnx ∴-=-, 0x e ∴=,∴切线方程为11()y x e e-=-,即0x ey -=,当0x <时,()y ln x =-,与y lnx =的图像关于y 轴对称, ∴切线方程也关于y 轴对称, ∴切线方程为0x ey +=,综上所述,曲线||y ln x =经过坐标原点的两条切线方程分别为0x ey -=,0x ey +=,故答案为:0x ey -=,0x ey +=.5.(2021•新高考Ⅱ)已知函数()|1|x f x e =-,10x <,20x >,函数()f x 的图象在点1(A x ,1())f x 和点2(B x ,2())f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 的取值范围是 . 【过程解析】当0x <时,()1x f x e =-,导数为()x f x e '=-, 可得在点1(A x ,_11)x e -处的斜率为_11x k e =-, 切线AM 的方程为_1_11(1)()x x y e e x x --=--,令0x =,可得_1_111x x y e x e =-+,即_1_11(0,1)x x M e x e -+, 当0x >时,()1x f x e =-,导数为()x f x e '=, 可得在点2(B x ,_21)x e -处的斜率为_22x k e =,令0x =,可得_2_221x x y e x e =--,即_2_22(0,1)x x N e x e --,由()f x 的图象在A ,B 处的切线相互垂直,可得_1_2121x x k k e e =-⋅=-, 即为120x x +=,10x <,20x >,所以2||1(0,1)||x AM BN e ===∈.故答案为:(0,1).考点三 利用导数研究函数的单调性6.(2023•新高考Ⅱ)已知函数()x f x ae lnx =-在区间(1,2)上单调递增,则a 的最小值为( ) A .2eB .eC .1e -D .2e -【过程解析】对函数()f x 求导可得,1()x f x ae x'=-, 依题意,10x ae x -…在(1,2)上恒成立,即1x a xe…在(1,2)上恒成立,设1(),(1,2)x g x x xe =∈,则22()(1)()()()x x x x x e xe e x g x xe xe -++'==-, 易知当(1,2)x ∈时,()0g x '<, 则函数()g x 在(1,2)上单调递减, 则11()(1)max a g x g e e-===….故选:C . 7.(2023•新高考Ⅰ)已知函数()()x f x a e a x =+-. (1)讨论()f x 的单调性;(2)证明:当0a >时,3()22f x lna >+. 【过程解析】(1)()()x f x a e a x =+-, 则()1x f x ae '=-,①当0a …时,()0f x '<恒成立,()f x 在R 上单调递减,②当0a >时,令()0f x '=得,1x lna=, 当1(,)x ln a ∈-∞时,()0f x '<,()f x 单调递减;当1(x ln a ∈,)+∞时,()0f x '>,()f x 单调递增,综上所述,当0a …时,()f x 在R 上单调递减;当0a >时,()f x 在1(,)ln a -∞上单调递减,在1(ln a,)+∞上单调递增.证明:(2)由(1)可知,当0a >时,2111()(()1min f x f ln a a ln a lna a a a==+-=++,要证3()22f x lna >+,只需证23122a lna lna ++>+,只需证2102a lna -->, 设g (a )212a lna =--,0a >, 则g '(a )21212a a a a -=-=, 令g '(a )0=得,2a =,当(0,)2a ∈时,g '(a )0<,g (a)单调递减,当(2a ∈,)+∞时,g '(a )0>,g (a )单调递增,所以g (a)11(022222g ln ln =--=->…, 即g (a )0>, 所以2102a lna -->得证, 即3()22f x lna >+得证. 8.(2022•浙江)设函数()(0)2ef x lnx x x=+>. (Ⅰ)求()f x 的单调区间;(Ⅱ)已知a ,b R ∈,曲线()y f x =上不同的三点1(x ,1())f x ,2(x ,2())f x ,3(x ,3())f x 处的切线都经过点(,)a b .证明:(ⅰ)若a e >,则0b f <-(a )1(1)2ae<-;(ⅱ)若0a e <<,123x x x <<,则2213211266e a e ae e x x a e --+<+<-. (注: 2.71828e =⋯是自然对数的底数) 【过程解析】(Ⅰ) 函数()(0)2ef x lnx x x=+>, ∴2212()22e x ef x x x x -'=-+=,(0)x >, 由22()02x e f x x -'=>,得2ex >,()f x ∴在(2e ,)+∞上单调递增; 由22()02x ef x x -'=<,得02e x <<,()f x ∴在(0,)2e 上单调递减. (Ⅱ)()i 证明: 过(,)a b 有三条不同的切线,设切点分别为1(x ,1())f x ,2(x ,2())f x ,3(x ,3())f x ,()()()i i i f x b f x x a ∴-='-,(1i =,2,3),∴方程()()()f x b f x x a -='-有3个不同的根,该方程整理为21()()022e ex a lnx b x x x ----+=,设21()()()22e eg x x a lnx b x x x=----+,则223231111()()()()22e e e g x x a x e x a x x x x x x x'=-+-+--+=---, 当0x e <<或x a >时,()0g x '<;当e x a <<时,()0g x '>, ()g x ∴在(0,)e ,(,)a +∞上为减函数,在(,)e a 上为增函数, ()g x 有3个不同的零点,g ∴(e )0<且g (a )0>,21()()022e e e a lne b e e e ∴----+<,且21()()022e ea a lnab a a a----+>, 整理得到12a b e <+且()2eb lna f a a>+=, 此时,12a b e <+,且()2e b lna f a a >+=,此时,1()(1)1()02222a a e e b f a lna lna b e e a a ---<+-+--+>, 整理得12a b e <+,且()2e b lna f a a>+=, 此时,b f -(a )113(1)1()2222222a a e a elna lna e e a e a--<+-+-+=--,设μ(a )为(,)e +∞上的减函数,μ∴(a )3022elne e<--=, ∴10()(1)2ab f a e<-<-. ()ii 当0a e <<时,同()i 讨论,得:()g x 在(0,)a ,(,)e +∞上为减函数,在(,)a e 上为增函数, 不妨设123x x x <<,则1230x a x e x <<<<<,()g x 有3个不同的零点,g ∴(a )0<,且g (e )0>,21()()022e e e a lne b e e e ∴----+>,且21()022e e a a lna b a a a----+<, 整理得122a ab lna e e+<<+, 123x x x << ,1230x a x e x ∴<<<<<,2()12a e eag x lnx b x x+=-+-+ , 设,(0,1)e a t m x e ==∈,则方程2102a e ealnx b x x+-+-+=即为:202a e a t t lnt b e e +-+++=,即为2(1)02mm t t lnt b -++++=, 记123123,,e e et t t x x x ===, 则1t ,2t ,3t 为2(1)02m m t t lnt b -++++=有三个不同的根, 设31311x t e k t x a ==>>,1am e =<, 要证:2213211266e a e ae e x x a e --+<+<-, 即证132266e a e e at t e a e--+<+<-, 即证:213132(13)(12)236()m m m t t m m t t --++--<+,而2111(1)02m m t t lnt b -++++=,且2333(1)02m m t t lnt b -++++=, ∴22131313()(1)()02m lnt lnt t t m t t -+--+-=, ∴131313222lnt lnt t t m m t t -+--=-⨯-, ∴即证21313132(13)(12)36()lnt lnt m m m m t t m t t ---+-⨯<-+,即证1132313()(13)(12)072t t t lnt m m m t t +--++>-,即证2(1)(13)(12)0172k lnk m m m k +--++>-, 记(1)(),11k lnkk k k ϕ+=>-,则211()(2)0(1)k k lnk k kϕ=-->-, ()k ϕ∴在(1,)+∞为增函数,()()k m ϕϕ∴>,∴22(1)(13)(12)(1)(13)(12)172172k lnk m m m m lnm m m m k m +--++--++>+--, 设2(1)(13)(12)()72(1)m m m m m lnm m ω---+=++,01m <<, 则2322322(1)(3204972)(1)(33)()072(1)72(1)m m m m m m x m m m m ω---+-+'=>>++,()m ω∴在(0,1)上是增函数,()m ωω∴<(1)0=, 2(1)(13)(12)072(1)m m m m lnm m ---+∴+<+,即2(1)(13)(12)0172m lnm m m m m +--++>-, ∴若0a e <<,123x x x <<,则2213211266e a e ae e x x a e --+<+<-. 9.(2022•新高考Ⅱ)已知函数()ax x f x xe e =-. (1)当1a =时,讨论()f x 的单调性; (2)当0x >时,()1f x <-,求a 的取值范围; (3)设*n N ∈(1)ln n +>+.【过程解析】(1)当1a =时,()(1)x x x f x xe e e x =-=-,()(1)x x x f x e x e xe '=-+=,0x e > ,∴当(0,)x ∈+∞时,()0f x '>,()f x 单调递增;当(,0)x ∈-∞时,()0f x '<,()f x 单调递减.(2)令()()11(0)ax x g x f x xe e x =+=-+>, ()1f x <- ,()10f x +<, ()(0)0g x g ∴<=在0x >上恒成立, 又()ax ax x g x e axe e '=+-,令()()h x g x =',则()()(2)ax ax ax x ax ax x h x ae a e axe e a e axe e '=++-=+-, (0)21h a ∴'=-,①当210a ->,即12a >,存在0δ>,使得当(0,)x δ∈时,()0h x '>,即()g x '在(0,)δ上单调递增. 因为()(0)0g x g '>'=,所以()g x 在(0,)δ内递增,所以()1f x >-,这与()1f x <-矛盾,故舍去;②当210a -…,即12a …, ()(1)ax ax x ax x g x e axe e ax e e '=+-=+-,若10ax +…,则()0g x '<,所以()g x 在[0,)+∞上单调递减,()(0)0g x g =…,符合题意. 若10ax +>,则1111(1)(1)2222()0x ln x x x axaxxax ln ax xxx g x e axe e ee eeee +++++'=+-=---=剟,所以()g x 在(0,)+∞上单调递减,()(0)0g x g =…,符合题意. 综上所述,实数a 的取值范围是12a …. 另解:()f x 的导数为()(1)(0)ax x f x ax e e x '=+->,①当1a …时,()(1)0ax x ax x x f x ax e e e ex e e '=+->--=…,所以()f x 在(0,)+∞递增,所以()1f x >-,与题意矛盾;②当0a …时,()10ax x x f x e e e '--<剟, 所以()f x 在(0,)+∞递减,所以()1f x <-,满足题意;.③当102a <…时,11122211()(1)[(1)]22x x x x f x x e e e x e '+-=+-….设121()(1)(0)2x G x x e x =+->,1211()022x G x e '=-<,则()G x 在(0,)+∞递减,所以()0G x <,12()()0x f x e G x '=<,所以()f x 在(0,)+∞递减,所以()1f x <-,满足题意;④当112a <<时,(1)()[(1)]ax a x f x e ax e -'=+-,令(1)()(1)a x H x ax e -=+-,则()()ax f x e H x '=,(1)()(1)a x H x a a e -'=+-,可得()H x '递减,(0)21H a '=-,所以存在00x >,使得0()0H x '=.当0(0,)x x ∈时,()0H x '>, ()H x 在0(0,)x 递增,此时()0H x >,所以当0(0,)x x ∈时,()()0ax f x e H x '=>,()f x 在0(0,)x 递增,所以()1f x >-,与题意矛盾. 综上可得,a 的取值范围是(-∞,1]2.(3)由(2)可知,当12a =时,12()1(0)x x f x xe e x =-<->,令*1(1)()x ln n N n=+∈得,111(1)(1)21(1)1ln n n ln e e n +++⋅-<-,整理得,11(10ln n n+<,∴11(1ln n >+,∴1()n ln n +>,∴11231((...(1)12n nk k k n ln ln ln n k n ==++>=⨯⨯⨯=+∑,...(1)ln n +>+.另解:运用数学归纳法证明. 当1n =时,左边22ln ==>成立.假设当(1,*)n k k k N =∈…...(1)ln k ++>+.当1n k =+...(2)ln k +>+,只要证(1)(2)ln k ln k ++>+,21(2)(1)(1)11k ln k ln k lnln k k +>+-+==+++. 可令11t k =+,则(0t ∈,1]2(1)ln t >+,再令2x x =∈,则需证明12(2x lnx x x ->∈.构造函数1()2()((1g x lnx x x x =--∈,22211()1(1)0g x x x x'=--=--<,可得()g x 在(1上递减, 则()g x g <(1)0=,所以原不等式成立, 即1n k =+...(2)ln k ++>+成立....(1)ln n +>+成立.10.(2021•新高考Ⅱ)已知函数2()(1)x f x x e ax b =--+. (Ⅰ)讨论()f x 的单调性;(Ⅱ)从下面两个条件中选一个,证明:()f x 恰有一个零点.①2122e a <…,2b a >; ②102a <<,2b a …. 【过程解析】(Ⅰ)2()(1)x f x x e ax b =--+ ,()(2)x f x x e a '=-,①当0a …时,当0x >时,()0f x '>,当0x <时,()0f x '<,()f x ∴在(,0)-∞上单调递减,在(0,)+∞上单调递增,②当0a >时,令()0f x '=,可得0x =或(2)x ln a =,()i 当102a <<时,当0x >或(2)x ln a <时,()0f x '>,当(2)0ln a x <<时,()0f x '<,()f x ∴在(-∞,(2))ln a ,(0,)+∞上单调递增,在((2)ln a ,0)上单调递减, 1()2ii a =时, ()(1)0x f x x e '=-… 且等号不恒成立,()f x ∴在R 上单调递增,()iii 当12a >时, 当0x <或(2)x ln a >时,()0f x '>,当0(2)x ln a <<时,()0f x '<,()f x 在(,0)-∞,((2)ln a ,)+∞上单调递增,在(0,(2))ln a 上单调递减. 综上所述:当0a … 时,()f x 在(,0)-∞上单调递减;在(0,)+∞上 单调递增;当102a << 时,()f x 在(-∞,(2))ln a 和(0,)+∞上单调递增;在((2)ln a ,0)上单调递减; 当12a = 时,()f x 在R 上单调递增; 当12a >时,()f x 在(,0)-∞和((2)ln a ,)+∞ 上单调递增;在(0,(2))ln a 上单调递减. (Ⅱ)证明:若选①,由 (Ⅰ)知,()f x 在(,0)-∞上单调递增,(0,(2))ln a 单调递减,((2)ln a ,)+∞ 上()f x 单调递增.注意到((1)0,(0)1210f ef b a =-<=->->.()f x ∴ 在( 上有一个零点; 22((2))((2)1)222(2)222(2)(2(2))f ln a ln a a a ln a b aln a a aln a a aln a ln a =-⋅-⋅+>--+=-,由2122e a <… 得0(2)2ln a <…,(2)(2(2))0aln a ln a ∴-…, ((2))0f ln a ∴>,当0x … 时,()((2))0f x f ln a >…,此时()f x 无零点.综上:()f x 在R 上仅有一个零点.另解:当1(2a ∈,22e 时,有(2)(0ln a ∈,2],而(0)1210f b a =->-=,于是2((2))((2)1)2(2)f ln a ln a a aln a b =-⋅-+(2)(2(2))(2)0ln a a ln a b a =-+->,所以()f x 在(0,)+∞没有零点,当0x <时,(0,1)x e ∈,于是2()()0b f x ax b f a <-+⇒-<,所以()f x 在(,0)上存在一个零点,命题得证.若选②,则由(Ⅰ)知:()f x 在(-∞,(2))ln a 上单调递增, 在((2)ln a ,0)上单调递减,在(0,)+∞ 上单调递增.22((2))((2)1)222(2)222(2)(2(2))f ln a ln a a aln a b aln a a aln a a aln a ln a =--+--+=-…,102a <<,(2)0ln a ∴<,(2)(2(2))0aln a ln a ∴-<,((2))0f ln a ∴<, ∴当0x … 时,()((2))0f x f ln a <…,此时()f x 无零点.当0x > 时,()f x 单调递增,注意到(0)1210f b a =--<…,取c =21b a << ,∴1c >>,又易证1c e c >+,∴22221()(1)(1)(1)(1)11111102c f c c e ac b c c ac b a c b c b b b =--+>-+-+=-+->+-=-++-=>,()f x ∴在(0,)c 上有唯一零点,即()f x 在(0,)+∞上有唯一零点.综上:()f x 在R 上有唯一零点. 11.(2021•浙江)设a ,b 为实数,且1a >,函数2()()x f x a bx e x R =-+∈. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围;(Ⅲ)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点1x ,2x ,满足22122blnb e x x e b>+.(注: 2.71828e = 是自然对数的底数) 【过程解析】(Ⅰ)()x f x a lna b '=-,①当0b …时,由于1a >,则0x a lna >,故()0f x '>,此时()f x 在R 上单调递增;②当0b >时,令()0f x '>,解得b lnlna x lna >,令()0f x '<,解得blnlna x lna <,∴此时()f x 在(,b lnlna lna -∞单调递减,在(,)b lnlna lna+∞单调递增;综上,当0b …时,()f x 的单调递增区间为(,)-∞+∞;当0b >时,()f x 的单调递减区间为(,)blnlna lna-∞,单调递增区间为(,)blnlna lna+∞;(Ⅱ)注意到x →-∞时,()f x →+∞,当x →+∞时,()f x →+∞,由(Ⅰ)知,要使函数()f x 有两个不同的零点,只需()(0min blnlna f x f lna=<即可,∴20b blnlnlna lna a b e lna lna-⋅+<对任意22b e >均成立,令b ln lna t lna =,则20t a bt e -+<,即20tlna e bt e -+<,即20bln lna b ln lna e b e lna-⋅+<,即20bln blna b e lna lna -⋅+<,∴20bb b lne lna lna-⋅+<对任意22b e >均成立, 记22(),2bg b b b lne lna b e lna =-⋅+>,则1()1()()b lna g b ln b ln lna lnb lna b lna'=-+⋅⋅=-, 令g '(b )0=,得b lna =,①当22lnae >,即22e a e >时,易知g (b )在2(2e ,)lna 单调递增,在(,)lna +∞单调递减,此时g (b )22()1(1)0g lna lna lna ln e lna lna e =-⋅+=⋅+>…,不合题意;②当22lna e …,即221e a e <…时,易知g (b )在2(2e ,)+∞单调递减,此时2222222222()(2)2222[(2)()]e g b g e e e ln e lna e e ln e ln lna e lna lna <=-⋅+=--+, 故只需22[22()]0ln ln lna lna -+-+…,即2()222lna ln lna ln ++…,则2lna …,即2a e …; 综上,实数a 的取值范围为(1,2]e ;(Ⅲ)证明:当a e =时,2()x f x e bx e =-+,()x f x e b '=-,令()0f x '=,解得4x lnb =>, 易知22222422()()433(13)0lnb min f x f lnb e b lnb e b blnb e b b e e b e e e e ==-⋅+=-+<-+=-<-=-<,()f x ∴有两个零点,不妨设为1x ,2x ,且12x lnb x <<, 由2222()0x f x e bx e =-+=,可得222x e e x b b=+,∴要证22122blnb e x x e b >+,只需证2122x e blnb x b e >,只需证22122x b lnb e x e >, 而222222222222()20e eb b e e f e e e e e e e b=-+=-<-<,则212e x b <, ∴要证22122x b lnbe x e>,只需证2x e blnb >,只需证2()x ln blnb >, 而()222221(())()()(4)404ln blnb f ln blnb e bln blnb e blnb bln blnb e blnb bln b e b ln e e bln =-+=-+<-+=⋅+=-<,2()x ln blnb ∴>,即得证.12.(2021•新高考Ⅰ)已知函数()(1)f x x lnx =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且blna alnb a b -=-,证明:112e a b<+<. 【过程解析】(1)解:由函数的过程解析式可得()11f x lnx lnx '=--=-,(0,1)x ∴∈,()0f x '>,()f x 单调递增,(1,)x ∈+∞,()0f x '<,()f x 单调递减, 则()f x 在(0,1)单调递增,在(1,)+∞单调递减.(2)证明:由blna alnb a b -=-,得111111ln ln a a b b b a -+=-,即1111(1)(1)ln ln a a b b-=-, 由(1)()f x 在(0,1)单调递增,在(1,)+∞单调递减, 所以()max f x f =(1)1=,且f (e )0=, 令11x a =,21x b=,则1x ,2x 为()f x k = 的两根,其中(0,1)k ∈. 不妨令1(0,1)x ∈,2(1,)x e ∈,则121x ->,先证122x x <+,即证212x x >-,即证211()()(2)f x f x f x =<-, 令()()(2)h x f x f x =--,则()()(2)(2)[(2)]h x f x f x lnx ln x ln x x '='+'-=---=--在(0,1)单调递减, 所以()h x h '>'(1)0=, 故函数()h x 在(0,1)单调递增,1()h x h ∴<(1)0=.11()(2)f x f x ∴<-,122x x ∴<+,得证.同理,要证12x x e +<, (法一)即证211x e x <<-, 根据(1)中()f x 单调性, 即证211()()()f x f x f e x =>-, 令()()()x f x f e x ϕ=--,(0,1)x ∈, 则()[()]x ln x e x ϕ'=--,令0()0x ϕ'=, 0(0,)x x ∈,()0x ϕ'>,()x ϕ单调递增,0(x x ∈,1),()0x ϕ'<,()x ϕ单调递减,又0x e <<时,()0f x >,且f (e )0=,故0lim ()0x x ϕ+→=, ϕ(1)f =(1)(1)0f e -->,()0x ϕ∴>恒成立, 12x x e +<得证,(法二)12()()f x f x =,1122(1)(1)x lnx x lnx -=-, 又1(0,1)x ∈,故111lnx ->,111(1)x lnx x ->,故12112222(1)(1)x x x lnx x x lnx x +<-+=-+,2(1,)x e ∈, 令()(1)g x x lnx x =-+,()1g x lnx '=-,(1,)x e ∈, 在(1,)e 上,()0g x '>,()g x 单调递增, 所以()g x g <(e )e =,即222(1)x lnx x e -+<,所以12x x e +<,得证, 则112e a b<+<. 13.(2020•海南)已知函数1()x f x ae lnx lna -=-+. (1)当a e =时,求曲线()y f x =在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若()1f x …,求a 的取值范围.【过程解析】(1)当a e =时,()1x f x e lnx =-+, 1()x f x e x∴'=-, f ∴'(1)1e =-, f (1)1e =+,∴曲线()y f x =在点(1,f (1))处的切线方程为(1)(1)(1)y e e x -+=--,当0x =时,2y =,当0y =时,21x e -=-, ∴曲线()y f x =在点(1,f (1))处的切线与两坐标轴围成的三角形的面积1222211S e e =⨯⨯=--. (2)方法一:由()1f x …,可得11x ae lnx lna --+…,即11x lna e lnx lna -+-+…, 即11x lna lnx e lna x lnx x e lnx -+++-+=+…, 令()t g t e t =+, 则()10t g t e '=+>,()g t ∴在R 上单调递增, (1)()g lna x g lnx +- …1lna x lnx ∴+-…, 即1lna lnx x -+…, 令()1h x lnx x =-+, 11()1xh x x x-∴'=-=, 当01x <<时,()0h x '>,函数()h x 单调递增, 当1x >时,()0h x '<,函数()h x 单调递减,()h x h ∴…(1)0=,0lna ∴…, 1a ∴…,故a 的范围为[1,)+∞.方法二:由()1f x …可得11x ae lnx lna --+…,0x >,0a >, 即11x ae lnx lna ---…,设()1x g x e x =--,()10x g x e ∴'=->恒成立,()g x ∴在(0,)+∞单调递增, ()(0)1010g x g ∴>=--=, 10x e x ∴-->, 即1x e x >+,再设()1h x x lnx =--, 11()1x h x x x-∴'=-=, 当01x <<时,()0h x '<,函数()h x 单调递减, 当1x >时,()0h x '>,函数()h x 单调递增,()h x h ∴…(1)0=,10x lnx ∴--…, 即1x lnx -…1x e x -∴…,则1x ae ax -…,此时只需要证ax x lna -…, 即证(1)x a lna --…,当1a …时, (1)0x a lna ∴->>-恒成立,当01a <<时,(1)0x a lna -<<-,此时(1)x a lna --…不成立, 综上所述a 的取值范围为[1,)+∞.方法三:由题意可得(0,)x ∈+∞,(0,)a ∈+∞, 11()x f x ae x-∴'=-, 易知()f x '在(0,)+∞上为增函数,①当01a <<时,f '(1)10a =-<,11111((1)0aa f ae a a e a--'=-=->,∴存在01(1,x a∈使得0()0f x '=,当0(1,)x x ∈时,()0f x '<,函数()f x 单调递减,()f x f ∴<(1)1a lna a =+<<,不满足题意,②当1a …时,10x e ->,0lna >,1()x f x e lnx -∴-…,令1()x g x e lnx -=-,11()x g x e x-∴'=-, 易知()g x '在(0,)+∞上为增函数, g ' (1)0=,∴当(0,1)x ∈时,()0g x '<,函数()g x 单调递减,当(1,)x ∈+∞时,()0g x '>,函数()g x 单调递增,()g x g ∴…(1)1=, 即()1f x …,综上所述a 的取值范围为[1,)+∞.方法四:1()x f x ae lnx lna -=-+ ,0x >,0a >, 11()x f x ae x-∴'=-,易知()f x '在(0,)+∞上为增函数, 1x y ae -= 在(0,)+∞上为增函数,1y x=在0,)+∞上为减函数, 1x y ae -∴=与1y x=在0,)+∞上有交点, ∴存在0(0,)x ∈+∞,使得01001()0x f x ae x -'=-=, 则0101x ae x -=,则001lna x lnx +-=-,即001lna x lnx =--, 当0(0,)x x ∈时,()0f x '<,函数()f x 单调递减, 当0(x x ∈,)+∞时,()0f x '>,函数()f x 单调递增,0100()()x f x f x ae lnx lna -∴=-+ (000000011)1211lnx x lnx lnx x x x =-+--=-+-… ∴000120lnx x x --… 设1()2g x lnx x x=--,易知函数()g x 在(0,)+∞上单调递减,且g (1)1010=--=,∴当(0x ∈,1]时,()0g x …,0(0x ∴∈,1]时,000120lnx x x --…, 设()1h x x lnx =--,(0x ∈,1],1()10h x x ∴'=--<恒成立, ()h x ∴在(0,1]上单调递减,()h x h ∴…(1)1110ln =--=,当0x →时,()h x →+∞,01lna ln ∴=…,1a ∴….方法五:()1f x …等价于11x ae lnx lna --+…,该不等式恒成立.当1x =时,有1a lna +…,其中0a >. 设g (a )1a lna =+-,则g '(a )110a=+>, 则g (a )单调递增,且g (1)0=. 所以若1a lna +…成立,则必有1a …. ∴下面证明当1a …时,()1f x …成立.设()1x h x e x =--,()1x h x e ∴'=-,()h x ∴在(,0)-∞单调递减,在(0,)+∞单调递增,()(0)1010h x h ∴=--=…,10x e x ∴--…,即1x e x +…,把x 换成1x -得到1x e x -…,1x lnx - …,1x lnx ∴-….11()1x x f x ae lnx lna e lnx x lnx --∴=-+--厖?,当1x =时等号成立.综上,1a …. 14.(2019•浙江)已知实数0a ≠,设函数()f x alnx =+0x >. (Ⅰ)当34a =-时,求函数()f x 的单调区间; (Ⅱ)对任意21[x e∈,)+∞均有()f x …a 的取值范围.注: 2.71828e =⋯为自然对数的底数.【过程解析】(1)当34a =-时,3()4f x lnx =-+,0x >,3()4f x x '=-+= ∴函数()f x 的单调递减区间为(0,3),单调递增区间为(3,)+∞.(2)由f (1)12a …,得04a <…,当0a <…时,()f x …20lnx --…,令1t a=,则t …,设()22g t t lnx =,t …,则2()2g t t lnx=,()i 当1[7x ∈,)+∞,则()2g x g lnx =--…,记()p x lnx =--,17x …,则1()p x x '--==, 列表讨论:()2()2()0g t g p x p x ∴==厖.()ii 当211[,7x e ∈时,()g t g =…,令()(1)q x x =++,21[x e ∈,17,则()10q x'=+>,故()q x 在21[e ,1]7上单调递增,1()(7q x q ∴…,由()i 得11()()7777q p p =-<-(1)0=,()0q x ∴<,()0g t g ∴=>…,由()()i ii 知对任意21[x e ∈,)+∞,t ∈,)+∞,()0g t …,即对任意21[x e∈,)+∞,均有()f x …综上所述,所求的a 的取值范围是(0.考点四 利用导数研究函数的极值15.【多选】(2023•新高考Ⅱ)若函数2()(0)b c f x alnx a x x =++≠既有极大值也有极小值,则( ) A .0bc > B .0ab > C .280b ac +> D .0ac <【过程解析】函数定义域为(0,)+∞, 且223322()a b c ax bx c f x x x x x --'=--=, 由题意,方程()0f x '=即220ax bx c --=有两个正根,设为1x ,2x , 则有120b x x a+=>,1220c x x a -=>,△280b ac =+>, 0ab ∴>,0ac <,20ab ac a bc ∴⋅=<,即0bc <.故选:BCD .16.【多选】(2022•新高考Ⅰ)已知函数3()1f x x x =-+,则( ) A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线【过程解析】2()31f x x '=-,令()0f x '>,解得3x <或3x >,令()0f x '<,解得33x <<,()f x ∴在(,)-∞+∞上单调递增,在(上单调递减,且99(0,(03939f f +--=>=>, ()f x ∴有两个极值点,有且仅有一个零点,故选项A 正确,选项B 错误;又33()()112f x f x x x x x +-=-+-++=,则()f x 关于点(0,1)对称,故选项C 正确;假设2y x =是曲线()y f x =的切线,设切点为(,)a b ,则23122a a b⎧-=⎨=⎩,解得12a b =⎧⎨=⎩或12a b =-⎧⎨=-⎩, 显然(1,2)和(1,2)--均不在曲线()y f x =上,故选项D 错误.故选:AC .17.(2023•新高考Ⅱ)(1)证明:当01x <<时,2sin x x x x -<<; (2)已知函数2()cos (1)f x ax ln x =--,若0x =为()f x 的极大值点,求a 的取值范围.【过程解析】(1)证明:设2()sin g x x x x =--,(0,1)x ∈,则()12cos g x x x '=--,()2sin 0g x x ∴''=-+<,()g x ∴'在(0,1)上单调递减,()(0)0g x g ∴'<'=,()g x ∴在(0,1)上单调递减,()(0)0g x g ∴<=,即2sin 0x x x --<,(0,1)x ∈,2sin x x x ∴-<,(0,1)x ∈,设()sin h x x x =-,(0,1)x ∈,则()1cos 0h x x '=->,()h x ∴在(0,1)上单调递增,()(0)0h x h ∴>=,(0,1)x ∈,即sin 0x x ->,(0,1)x ∈,sin x x ∴<,(0,1)x ∈,综合可得:当01x <<时,2sin x x x x -<<;(2)解:22()sin 1x f x a ax x '=-+- ,222222()cos (1)x f x a ax x +∴''=-+-, 且(0)0f '=,2(0)2f a ''=-+,①若2()20f x a ''=->,即a <<时,易知存在10t >,使得1(0,)x t ∈时,()0f x ''>,()f x ∴'在1(0,)t 上单调递增,()(0)0f x f ∴'>'=,()f x ∴在1(0,)t 上单调递增,这显然与0x =为函数的极大值点相矛盾,故舍去;②若2()20f x a ''=-<,即a <a >存在20t >,使得2(x t ∈-,2)t 时,()0f x ''<,()f x ∴'在2(t -,2)t 上单调递减,又(0)0f '=,∴当20t x -<<时,()0f x '>,()f x 单调递增;当20x t <<时,()0f x '<,()f x 单调递减,满足0x =为()f x 的极大值点,符合题意;③若2()20f x a ''=-=,即a =()f x 为偶函数,∴只考虑a =的情况,此时22())1x f x x '=+-,(0,1)x ∈时, 2221()22(1)011x f x x x x x '>-+=->--, ()f x ∴在(0,1)上单调递增,与显然与0x =为函数的极大值点相矛盾,故舍去.综合可得:a 的取值范围为(-∞,⋃,)+∞.考点五 利用导数研究函数的最值18.(2022•新高考Ⅰ)已知函数()x f x e ax =-和()g x ax lnx =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【过程解析】(1)()f x 定义域为R ,()x f x e ax =- ,()x f x e a '∴=-,若0a …,则()0f x '>,()f x 无最小值,故0a >,当()0f x '=时,x lna =,当x lna <时,()0f x '<,函数()f x 在(,)lna -∞上单调递减,当x lna >时,()0f x '>,函数()f x 在(,)lna +∞上单调递增,故()()min f x f lna a alna ==-,()g x 的定义域为(0,)+∞,()g x ax lnx =- ,1()g x a x'∴=-, 令()0g x '=,解得1x a =, 当10x a <<时,()0g x '<,函数()g x 在1(0,)a 上单调递减, 当1x a >时,()0g x '>,函数()g x 在1(a,)+∞上单调递增, 故()1min g x lna =+,函数()x f x e ax =-和()g x ax lnx =-有相同的最小值1a alna lna ∴-=+,0a > ,1a alna lna ∴-=+化为101a lna a --=+, 令1()1x h x lnx x -=-+,0x >, 则222211(1)121()(1)(1)(1)x x x h x x x x x x x +--+'=-=-=+++, 0x > ,221()0(1)x h x x x +'∴=>+恒成立, ()h x ∴在(0,)+∞上单调递增,又h (1)0=,h ∴(a )h =(1),仅有此一解, 1a ∴=.(2)证明:由(1)知1a =,函数()x f x e x =-在(,0)-∞上单调递减,在(0,)+∞上单调递增, 函数()g x x lnx =-在(0,1)上单调递减,在(1,)+∞上单调递增,设()()()2(0)x u x f x g x e x lnx x =-=-+>, 则1()22x x u x e e x'=-+>-,当1x …时,()20u x e '->…, 所以函数()u x 在(1,)+∞上单调递增,因为u (1)20e =->,所以当1x …时,()u x u …(1)0>恒成立,即()()0f x g x ->在1x …时恒成立, 所以1x …时,()()f x g x >,。
2022年全国高考数学真题及模拟题汇编:导数(附答案解析)
2022年全国高考数学真题及模拟题汇编:导数一.选择题(共5小题) 1.曲线()lnxf x x=在点(1,f (1))处的切线与两坐标轴围成的三角形的面积为( ) A .14B .12C .1D .22.函数2()lnxf x x=的单调减区间是( ) A .2[e ,)+∞B .[,)e +∞C .(0,2]eD .(0,]e3.函数()2f x xlnx =-在1x =处的切线方程为( ) A .20x y +=B .240x y --=C .30x y --=D .10x y ++=4.偶函数()f x '为()f x 的导函数,()f x '的图象如图所示,则函数()f x 的图象可能为()A .B .C .D .5.已知定义在R 上的可导函数()f x ,对x R ∀∈,都有2()()x f x e f x -=,当0x >时,()()0f x f x '+<,若211(21)(1)a a e f a e f a -+-+,则实数a 的取值范围是( )A .[0,2]B .(-∞,1][2-,)+∞C .(-∞,0][2,)+∞D .[1-,2]二.多选题(共2小题)6.已知函数()f x 的导函数为()f x ',若()()2()f x xf x f x x <'<-对(0,)x ∈+∞恒成立,则下列不等式中,一定成立的是( ) A .f π(1)()f π< B .f π(1)()f π> C .(2)1(1)42f f <+ D .(2)1(1)42f f +< 7.对于函数3211()32f x x x cx d =+++,c ,d R ∈,下列说法正确的是( )A .存在c ,d 使得函数()f x 的图像关于原点对称B .()f x 是单调函数的充要条件是14cC .若1x ,2x 为函数()f x 的两个极值点,则441218x x +>D .若2c d ==-,则过点(3,0)P 作曲线()y f x =的切线有且仅有2条 三.填空题(共6小题)8.已知2()(4)(0f x lnx ax b x a =++->,0)b >在1x =处取得极值,则21a b+的最小值为 .9.函数()f x xlnx x =-在1[,2]2上的最大值为 .10.函数()cos 1x f x e x =⋅+在0x =的切线方程为 . 11.已知函数()f x f +'(1)22x e ex x =+,则()f x '= . 12.直线3y kx =-与曲线4y x x =+相切,则k = .13.若函数3()31f x x x =--在区间(2,23)a a -+上有最大值,则实数a 的取值范围是 . 四.解答题(共10小题)14.已知函数()(1)f x x lnx ax =--,a R ∈.(1)设函数()()(()g x f x f x =''为()f x 的导函数),求()g x 的零点个数; (2)若()f x 的最大值是0,求实数a 的值.15.已知函数32()32f x x ax bx =-+在点1x =处有极小值1-. (1)求a 、b 的值;(2)求()f x 在[0,2]上的值域. 16.已知函数2()x f x xe x ax =--.(1)当12a =时,求()f x 的单调区间; (2)当0x 时,()0f x ,求实数a 的取值范围. 17.已知函数32()3f x x ax a =-+,0a >.(1)求证:()y f x =在(1,f (1))处和(1-,(1))f -处的切线不平行; (2)讨论()f x 的零点个数.18.已知函数2()((0,1))f x x xlna a =+∈,(0,1)x ∈.(1)当a e =时,求()()x g x e f x =在(0,(0))g 处的切线方程. (2)讨论函数()f x 的单调性;(3)若()x f x ae lnx >对(0,1)x ∀∈恒成立,求实数a 的取值范围. 19.已知函数212()log (1)f x ax x =-+.(1)若2a =-,求函数()f x 的单调区间; (2)若函数()f x 的定义域为R ,求实数a 范围; (3)若函数()f x 的值域为R ,求实数a 范围;(4)若函数()f x 在区间(1,1)-上是增函数,求实数a 的取值范围. 20.已知函数2()()f x xlnx ax x a R =-+∈. (1)当0a =时,求()f x 的单调区间;(2)若()f x 有两个零点1x ,2x ,且122x x >,证明:1228x x e>. 21.已知函数21()2()2f x x ax lnx a R =-+∈. (1)当53a =时,求函数()f x 的单调区间;(2)设函数21()()22g x f x x =-+,若()g x 有两个不同的零点1x ,2x ,求证:122x x e +>.22.已知函数2()(1)(1)f x x lnx x m x =--+-,m R ∈. (1)讨论()f x 极值点的个数.(2)若()f x 有两个极值点1x ,2x ,且12x x <,证明:12()()24f x f x m +>-. 23.设函数()()x f x x ae a R =-∈. (Ⅰ)求函数()f x 的极值:(Ⅱ)若()+∞时恒成立,求a的取值范围.f x ax在[0x∈,)2022年全国高考数学真题及模拟题汇编:导数参考答案与试题解析一.选择题(共5小题) 1.曲线()lnxf x x=在点(1,f (1))处的切线与两坐标轴围成的三角形的面积为( ) A .14B .12C .1D .2【考点】利用导数研究曲线上某点切线方程【分析】先利用导数求出切线方程,然后求出切线的横、纵截距,利用面积公式即可求出面积.【解答】解:由题意知f (1)0=,21()lnxf x x -'=, 故f '(1)1=,所以切线为1y x =-, 令0x =得1y =-;令0y =得1x =,故切线与两坐标轴围成的三角形的面积11|1|122S =⨯-⨯=.故选:B .【点评】本题考查导数的几何意义和三角形面积的计算,属于基础题. 2.函数2()lnxf x x =的单调减区间是( ) A .2[e ,)+∞B.)+∞C .(0,2]eD.【考点】利用导数研究函数的单调性 【分析】求导得312()(0)lnxf x x x -'=>,当x ∈,)+∞时,()0f x ',()f x 单调递减,从而可得答案. 【解答】解:2()(0)lnxf x x x=>, 2431212()(0)x xlnxlnx x f x x x x ⋅--∴'==>,当x ∈,)+∞时,()0f x ',()f x 单调递减,∴函数2()lnxf x x=的单调减区间是)+∞, 故选:B .【点评】本题考查了利用导数研究函数的单调性,熟练掌握导函数的符号与函数单调性的关系是关键,考查运算能力,属于中档题.3.函数()2f x xlnx =-在1x =处的切线方程为( ) A .20x y +=B .240x y --=C .30x y --=D .10x y ++=【考点】利用导数研究曲线上某点切线方程【分析】求出原函数的导函数,得到函数在1x =处的导数值,再求出f (1)的值,利用直线方程的点斜式得答案.【解答】解:由()2f x xlnx =-,得()1f x lnx '=-, f ∴'(1)11lnx =-=-,又f (1)2=-,∴函数()2f x xlnx =-在1x =处的切线方程为21(1)y x +=-⨯-,即10x y ++=. 故选:D .【点评】本题考查利用导数研究过曲线上某点处的切线方程,关键是熟记基本初等函数的导函数,是基础题.4.偶函数()f x '为()f x 的导函数,()f x '的图象如图所示,则函数()f x 的图象可能为()A .B .C .D .【考点】导数及其几何意义【分析】利用导函数的正负确定原函数的单调性,即可判断选项A ,D ,由原函数为三次函数,即可判断选选项B ,C .【解答】解:由题意可知,()f x '为偶函数,设()f x '的图象与x 轴的两个交点的横坐标分别为1x -,1x , 由图象可得,当1x x <-时,()0f x '>,则()f x 单调递增, 当11x x x -<<时,()0f x '<,则()f x 单调递减, 当1x x >时,()0f x '>,则()f x 单调递增, 故选项A 错误,选项D 错误;由()f x '的图象可知,()f x '在0x =左右的函数值是变化的,不同的,而选项C 中,()f x 的图象在0x =左右是一条直线,其切线的斜率为定值,即导数()f x '为定值,故选项C 错误,选项B 正确. 故选:B .【点评】本题考查了导函数的图象的理解与应用,导函数与原函数之间关系的应用,解题的关键是掌握导数的正负确定原函数的单调性,考查了逻辑推理能力与识图能力,属于中档题. 5.已知定义在R 上的可导函数()f x ,对x R ∀∈,都有2()()x f x e f x -=,当0x >时,()()0f x f x '+<,若211(21)(1)a a e f a e f a -+-+,则实数a 的取值范围是( )A .[0,2]B .(-∞,1][2-,)+∞C .(-∞,0][2,)+∞D .[1-,2]【考点】利用导数研究函数的单调性【分析】令()()x g x e f x =,判断()g x 的单调性和奇偶性,根据211(21)(1)a a e f a e f a -+-+,得到(21)(1)g a g a -+,再求出a 的取值范围.【解答】解:令()()x g x e f x =,则当0x >时,()[()()]0x g x e f x f x ''=+<, 所以()()x g x e f x =在区间(0,)+∞单调递减, 又2()()(())()()x x x x g x e f x e e f x e f x g x ---=-===, 所以()g x 为偶函数,且在区间(,0)-∞单调递增,又211(21)(1)a a e f a e f a -+-+,即(21)(1)g a g a -+, 所以|21||1|a a -+,即22(21)(1)a a -+,解得0a 或2a ,所以a 的取值范围为(-∞,0][2,)+∞. 故选:C .【点评】本题考查了利用导数研究函数的单调性和函数的奇偶性,考查了转化思想,属中档题.二.多选题(共2小题)6.已知函数()f x 的导函数为()f x ',若()()2()f x xf x f x x <'<-对(0,)x ∈+∞恒成立,则下列不等式中,一定成立的是( ) A .f π(1)()f π< B .f π(1)()f π> C .(2)1(1)42f f <+ D .(2)1(1)42f f +< 【考点】利用导数研究函数的最值 【分析】设2()()f x x g x x -=,()()f x h x x=,(0,)x ∈+∞,求出函数的导数,根据函数的单调性判断即可. 【解答】解:设2()()f x x g x x -=,()()f x h x x=,(0,)x ∈+∞, 则243[()1]2[()]()2()()f x x x f x x xf x f x x g x x x '---'-+'==,2()()()xf x f x h x x '-'=, 因为()()2()f x xf x f x x '<<-对(0,)x ∈+∞恒成立, 所以()0g x '<,()0h x '>,所以()g x 在(0,)+∞上单调递减,()h x 在(0,)+∞上单调递增, 则g (1)g >(2),h (1)()h π<, 即22(1)1(2)212f f -->,(1)()1f f ππ<, 即(2)142f f +<(1),f π(1)()f π<, 故选:AD .【点评】本题考查导数与不等式的综合应用,考查构造函数的方法的灵活应用与推理论证能力.7.对于函数3211()32f x x x cx d =+++,c ,d R ∈,下列说法正确的是( )A .存在c ,d 使得函数()f x 的图像关于原点对称B .()f x 是单调函数的充要条件是14cC .若1x ,2x 为函数()f x 的两个极值点,则441218x x +>D .若2c d ==-,则过点(3,0)P 作曲线()y f x =的切线有且仅有2条【考点】利用导数研究曲线上某点切线方程;命题的真假判断与应用;利用导数研究函数的极值【分析】利用奇函数的定义即可判断选项A ,求出()f x ',利用导数的正负与函数单调性的关系,求解即可判断选项B ,利用极值的定义以及指数的性质、韦达定理求解,即可判断选项C ,求出函数的极值点,作出函数的大致图,即可判断选项D . 【解答】解:若存在c ,d 使得函数()f x 的图象关于原点对称, 则函数()f x 为奇函数,因为函数3211()32f x x x cx d =+++,c ,d R ∈,则3211()32f x x x cx d -=-+-+,因为2()()2f x f x x d +-=+对于任意的x ,不满足()()0f x f x -+=, 所以函数()f x 不是奇函数, 故选项A 错误;因为函数3211()32f x x x cx d =+++,c ,d R ∈,则2()f x x x c '=++,要使得()f x 是单调函数, 必满足△140c =-,解得14c , 故选项B 正确;若函数有两个极值点,必满足△0>,即14c <, 此时12121x x x x c +=-⎧⎨=⎩,所以222121212()212x x x x x x c +=+-=-,则4422222222121212()2(12)22412(1)1x x x x x x c c c c c +=+-=--=-+=--,因为14c <, 所以22112(1)12(1)148c -->--=,所以441218x x +>, 故选项C 正确;若2c d ==-,则3211()2232f x x x x =+--,所以2()2f x x x '=+-,令()0f x '=,解得2x =-或1x =,当2x <-时,()0f x '>,则()f x 单调递增, 当21x -<<时,()0f x '<,则()f x 单调递减, 当1x >时,()0f x '>,则()f x 单调递增,所以当2x =-时,()f x 取得极大值,当1x =时,()f x 取得极小值, 作出函数的大致图象如图所示,其中两条虚线代表两条相切的切线, 故选项D 正确. 故选:BCD .【点评】本题以命题的真假判断为载体,考查了导数的综合应用,主要考查了利用导数研究函数的单调性、极值的理解与应用,利用导数研究曲线的切线问题,函数图象的理解与应用,奇函数定义的理解与应用,考查了逻辑推理能力与化简运算能力,属于中档题. 三.填空题(共6小题)8.已知2()(4)(0f x lnx ax b x a =++->,0)b >在1x =处取得极值,则21a b+的最小值为 3 .【考点】利用导数研究函数的极值【分析】根据在1x =处取得极值,求出23a b +=,由基本不等式“1“的应用代入求最小值. 【解答】解:1()24f x ax b x'=++-,因为()f x 在1x =处取得极值,所以f '(1)0=, 即1240a b ++-=,所以23a b +=. 所以211211221()(2)(41)(523333b a a b a b a b a b +=++=++++=, 当且仅当1a b ==时取等号.把1a =,1b =代入()f x 检验得,1x =是()f x 的极值点, 故21a b+的最小值为3. 故答案为:3.【点评】本题主要考查利用导数研究极值的方法,基本不等式求最值的方法等知识,属于中等题.9.函数()f x xlnx x =-在1[,2]2上的最大值为 222ln - .【考点】利用导数研究函数的最值【分析】求导分析,可求得(){max f x max f =(2),1()}2f ,作差f (2)1()2f -,可得答案.【解答】解:()f x xlnx x =-,()11f x lnx lnx ∴'=+-=,当1[2x ∈,1)时,()0f x '<,()f x 单调递减,当(1x ∈,2]时,()g x 单调递增,∴当1x =时,()f x 取得最小值,(){max f x max f =(2),1()}2f ,又f (2)111153()222()20222222f ln ln ln ln ln -=---=-=>=>,所以()222max f x ln =-, 故答案为:222ln -.【点评】本题考查利用导数研究函数的最值,考查运算求解能力,属于中档题.10.函数()cos 1x f x e x =⋅+在0x =的切线方程为 20x y -+= . 【考点】利用导数研究曲线上某点切线方程【分析】求出原函数的导函数,得到函数在0x =处的导数值,再求出(0)f ,利用直线方程的点斜式得答案.【解答】解:由()cos 1x f x e x =⋅+,得()cos sin x x f x e x e x '=⋅-⋅, 则(0)1f '=,又(0)2f =,∴函数()cos 1x f x e x =⋅+在0x =的切线方程为21(0)y x -=⨯-,即20x y -+=. 故答案为:20x y -+=.【点评】本题考查利用导数研究过曲线上某点处的切线方程,关键是熟记基本初等函数的导函数,是基础题.11.已知函数()f x f +'(1)22x e ex x =+,则()f x '= 222x ex e -+ . 【考点】导数的运算【分析】根据导数的公式即可得到结论. 【解答】解:()f x f +'(1)22x e ex x =+,()f x f ∴'+'(1)22x e ex =+, f ∴'(1)f +'(1)22e e =+, f ∴'(1)2=,()222x f x ex e ∴'=-+, 故答案为:222x ex e -+.【点评】本题主要考查导数的基本运算,比较基础.12.直线3y kx =-与曲线4y x x =+相切,则k = 3-或5 . 【考点】利用导数研究曲线上某点切线方程【分析】求出原函数的导函数,设出切点坐标,由题意可得切点横坐标与k 的方程组,求解得答案.【解答】解:由4y x x =+,得314y x '=+,设切点为4000(,)x x x +,则30400143k x kx x x ⎧=+⎪⎨-=+⎪⎩,解得013x k =-⎧⎨=-⎩或015x k =⎧⎨=⎩. 3k ∴=-或5.故答案为:3-或5.【点评】本题考查利用导数研究过曲线上某点处的切线方程,考查运算求解能力,是中档题. 13.若函数3()31f x x x =--在区间(2,23)a a -+上有最大值,则实数a 的取值范围是 (2-,1]2- .【考点】利用导数研究函数的最值【分析】对()f x 求导得2()33f x x '=-,求得其最大值点,再根据()f x 在区间(2,23)a a -+上有最大值,求出a 的取值范围.【解答】解:因为函数3()31f x x x =--,所以2()33f x x '=-, 当1x <-时,()0f x '>,()f x 单调递增, 当11x -<<时,()0f x '<,()f x 单调递减, 当1x >时,()0f x '>,()f x 单调递增, 所以当1x =-时,()f x 取得最大值,又(1)f f -=(2)2=,且()f x 在区间(2,23)a a -+上有最大值, 所以21232a a -<-<+,解得122a -<-,所以实数a 的取值范围是(2-,1]2-.故答案为:(2-,1]2-.【点评】本题考查导数的综合应用,考查了转化思想,属于中档题. 四.解答题(共10小题)14.已知函数()(1)f x x lnx ax =--,a R ∈.(1)设函数()()(()g x f x f x =''为()f x 的导函数),求()g x 的零点个数; (2)若()f x 的最大值是0,求实数a 的值. 【考点】利用导数研究函数的最值【分析】(1)由题意得()2g x lnx ax =-,令()0g x =,得2lnx a x =,设(),0lnxh x x x=>,求导可知函数()h x 的单调递增区间是(0,)e ,单调递减区间是(,)e +∞,作出函数()h x 的大致图象,数形结合即可求出()g x 的零点个数. (2)由(1)可知当12a e 和0a 时,函数()f x 无最大值,当102a e<<时,存在1(1,)x e ∈,2(,)x e ∈+∞,使得12()()2h x h x a==,由单调性可知222222222()()(1)(1)02max lnx f x f x x lnx ax x lnx x x ==--=-⋅-=,从而求出a 的值. 【解答】解:(1)由题意得()()2g x f x lnx ax ='=-, 令()0g x =,得2lnxa x=, 设(),0lnx h x x x =>,则21()lnxh x x-'=, 当x e >时,()0h x '<;当0x e <<时,()0h x '>,∴函数()h x 的单调递增区间是(0,)e ,单调递减区间是(,)e +∞, ∴1()()max h x h e e==, 作出函数()h x 的大致图象如图所示, 数形结合可知, 当20a 或12a e =,即0a 或12a e=时,函数()g x 有1个零点; 当12a e >,即12a e>时,函数()g x 没有零点; 当102a e <<,即102a e<<时,函数()g x 有2个零点.(2)由1可知()(()2)f x x h x a '=-, ①当12ae时,()0f x '恒成立,()f x 在(0,)+∞上单调递减,无最大值, ②当0a 时,存在唯一的0(0x ∈,1],使得0()2h x a =, 当0x x >时,()0f x '>,当00x x <<时,()0f x '<,()f x ∴在0(0,)x 上单调递减,0(x ,)+∞上单调递增,无最大值,③当102a e<<时,存在1(1,)x e ∈,2(,)x e ∈+∞,使得12()()2h x h x a ==, 易得()f x 在1(0,)x ,2(x ,)+∞上单调递减,在1(x ,2)x 上单调递增,又当(0,1)x ∈时,()(1)0f x x lnx ax =--<,∴222222222()()(1)(1)02max lnx f x f x x lnx ax x lnx x x ==--=-⋅-=, 解得:22x e =,∴22212lnx a x e ==.【点评】本题主要考查了利用导数研究函数的单调性和最值,考查了方程的根与函数零点的关系,同时考查了数形结合的数学思想,属于中档题. 15.已知函数32()32f x x ax bx =-+在点1x =处有极小值1-. (1)求a 、b 的值;(2)求()f x 在[0,2]上的值域.【考点】利用导数研究函数的最值;利用导数研究函数的极值【分析】(1)依题意,得f (1)1=-,f '(1)0=,联立方程组,即可解得a 、b 的值; (2)可求得()(1)(31)f x x x '=-+,[0x ∈,2],分别解不等式()0f x '>和()0f x '<,可得函数()f x 的单调增区间与单调递减区间,从而可求得()f x 在[0,2]上的值域. 【解答】解:(1)函数32()32f x x ax bx =-+在点1x =处有极小值1-,2()362f x x ax b ∴'=-+,f '(1)3620a b =-+=,① 且f (1)1321a b =-+=-,② 联立①②得:13a =,12b =-;(2)由(1)得32()f x x x x =--,2()321(1)(31)f x x x x x ∴'=--=-+,[0x ∈,2], 由2()3210f x x x '=-->得12x <; 由2()3210f x x x '=--<得01x <,∴函数()f x 在区间[0,1)上单调递减,在区间(1,2]上单调递增;又(0)0f =,f (1)1=-,f (2)8422=--=, ()f x ∴在[0,2]上的值域为[1-,2].【点评】本题考查利用导数求函数的极值与最值,考查导数的几何意义,考查方程思想与转化化归思想的应用,考查运算求解能力,属于中档题. 16.已知函数2()x f x xe x ax =--. (1)当12a =时,求()f x 的单调区间; (2)当0x 时,()0f x ,求实数a 的取值范围.【考点】利用导数研究函数的最值;利用导数研究函数的单调性【分析】(1)对()f x 求导,利用导数与单调性的关系即可求解()f x 的单调区间; (2)()(1)x f x x e ax =--,令()1x g x e ax =--,求出()x g x e a '=-,对a 分类讨论,即可求解满足题意的a 的取值范围. 【解答】解:(1)当12a =时,21()(1)2x f x x e x =--,则()1(1)(1)x x x f x e xe x e x '=-+-=-+. 令()0f x '=,则1x =-或0,当(x ∈-∞,1)(0-⋃,)+∞时,()0f x '>;当(1,0)x ∈-时,()0f x '<; ()f x ∴的单调递增区间为(,1)-∞-,(0,)+∞,单调递减区间为(1,0)-.(2)由题设,()(1)x f x x e ax =--,令()1x g x e ax =--,则()x g x e a '=-. 若1a ,当(0,)x ∈+∞时,()0g x '>,()g x 为增函数,而(0)0g =,∴当0x 时,()0g x ,即()0f x .若1a >,当(0,)x lna ∈时,()0g x '<,()g x 为减函数,而(0)0g =,∴当(0,)x lna ∈时,()0g x <,即()0f x <,不符合题意.综上,实数a 的取值范围为(-∞,1].【点评】本题主要考查利用导数研究函数的单调性与最值,考查分类讨论思想与运算求解能力,属于中档题.17.已知函数32()3f x x ax a =-+,0a >.(1)求证:()y f x =在(1,f (1))处和(1-,(1))f -处的切线不平行; (2)讨论()f x 的零点个数.【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程【分析】(1)依题意,若f '(1)(1)f ='-,则0a =,与0a >矛盾,从而证得结论成立; (2)由①知,()f x 在(,0)-∞,(2,)a +∞上单调递增,在(0,2)a 上单调递减,分102a <<,12a =时,12a >三类讨论,可得答案. 【解答】解:(1)证明:2()363(2)f x x ax x x a '=-=-,0a >,① 若()y f x =在(1,f (1))处和(1-,(1))f -处的切线平行, 则f '(1)(1)f ='-,即3636a a -=+, 解得0a =,与0a >矛盾,所以()y f x =在(1,f (1))处和(1-,(1))f -处的切线不平行; (2)(0)0f a =>,(1)120f a -=--<,0(1,0)x ∴∃∈-,使得0()0f x =;由①知,()f x 在(,0)-∞,(2,)a +∞上单调递增,在(0,2)a 上单调递减, ()f x ∴在(,0)-∞上有唯一零点0x ; 又311(2)44()()22f a a a a a a =-+=-+-,1∴︒当102a <<时,(2)0f a >,由单调性知()f x 有且仅有一个零点0x ; 2︒当12a =时,(2)0f a =,由单调性知()f x 有且仅有两个零点0x 和1; 3︒当12a >时,(2)0f a <,(3)0f a a =>, 1(0,2)x a ∴∃∈,使得1()0f x =;2(2,3)x a a ∈,2()0f x =,此时共有3个零点0x 、1x ,2x ; 综上,当102a <<时,()f x 有且仅有一个零点; 当12a =时,()f x 有且仅有两个零点; 当12a >时,()f x 有且仅有3个零点. 【点评】本题考查利用导数研究函数的极值,考查分类讨论思想、转化与化归思想的综合运用,考查逻辑推理能力与运算求解能力,属于难题. 18.已知函数2()((0,1))f x x xlna a =+∈,(0,1)x ∈.(1)当a e =时,求()()x g x e f x =在(0,(0))g 处的切线方程. (2)讨论函数()f x 的单调性;(3)若()x f x ae lnx >对(0,1)x ∀∈恒成立,求实数a 的取值范围.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数研究函数的最值【分析】(1)根据题意可得,当a e =时,2()()x g x e x x =+,求导得()g x ',由导数的几何意义可得()01k g ='=切,又(0)0g =,即可得出答案.(2)求导得()2f x lna x '=+,(0,1)x ∈,分两种情况:20a e -<,21e a -<<,讨论()f x '的正负,进而可得()f x 的单调区间.(3)由于2xae lnx x xlna <+,则()x x ln ae lnx ae x>对任意(0,1)x ∈恒成立,设()(0)lnxH x x e x=<<,求导分析()H x 的单调性,进而可得x x a e >对任意(0,1)x ∈恒成立,设()xxG x e =,(0,1)x ∈,只需()max a G x >,即可得出答案. 【解答】解:(1)当a e =时,22()()[]()x x x g x e f x e x xlne e x x ==+=+,22()()(21)(31)x x x g x e x x e x e x x '=+++=++, 所以()01k g ='=切, 又(0)0g =,所以()g x 在(0,(0))g 处的切线方程为01(0)y x -=-,即y x =. (2)因为2()f x x xlna =+,(0,1)x ∈, 所以()2f x lna x '=+,(0,1)x ∈, 若20a e -<,即2lna -,当(0,1)x ∈时,()0f x '<,()f x 单调递减, 若21e a -<<,即20lna -<<,012lna<-<,当02lnax <<-时,()0f x '<,函数()f x 单调递减, 当12lnax -<<时,()0f x '>,函数()f x 单调递增, 综上所述,当20a e -<时,函数()f x 在(0,1)x ∈上单调递减, 当21e a -<<时,函数()f x 在(0,)2lna x ∈-上单调递减,在(2lna-,1)上单调递增. (3)因为2x ae lnx x xlnx <+,所以()x x x lnx x lna ln ae x ae ae +<=, 即()x x ln ae lnx ae x>对任意(0,1)x ∈恒成立, 设()(0)lnxH x x e x=<<,则21()lnxH x x -'=, 当(0,)x e ∈时,()0H x '>,()H x 在(0,)e 上单调递增, 又(0,1)x ∈,(0,1)a ∈,所以(0,)x ae e ∈,由()()x H ae H x >得x ae x >对任意(0,1)x ∈恒成立,即x xa e>对任意(0,1)x ∈恒成立, 设()xxG x e =,(0,1)x ∈, 则1()0xxG x e -'=>, 所以()G x 在(0,1)上单调递增, 所以()G x G <(1)1e =,所以a 的取值范围为1[e,1).【点评】本题考查导数的综合应用,解题中需要理清思路,属于中档题. 19.已知函数212()log (1)f x ax x =-+.(1)若2a =-,求函数()f x 的单调区间; (2)若函数()f x 的定义域为R ,求实数a 范围; (3)若函数()f x 的值域为R ,求实数a 范围;(4)若函数()f x 在区间(1,1)-上是增函数,求实数a 的取值范围. 【考点】函数的定义域及其求法;利用导数研究函数的单调性【分析】(1)2a =时,212()log (21)f x x x =--+,利用符合函数的单调性可求函数的单调区间;(2)因为()f x 的定义域为R ,所以210ax x -+>对x R ∀∈恒成立,转化为含参数的一元二次不等式恒成立问题求解;(3)由函数()f x 的值域为R ,则21t ax x =-+可取所有大于0的实数,分析可知0a =和0a >时均有符合条件的a ,解不等式可得a 的取值范围;(4)由符合函数的单调性可转化为21t ax x =-+在(1,1)-上为减函数,且0t >,分三种情况求解即可.【解答】解:(1)2a =时,212()log (21)f x x x =--+,由2210x x --+>,解得1(1,)2x ∈-,故函数定义域为1(1,)2x ∈-,令221t x x =--+,则12log y t =,因为()t x 在1(1,)4--单调递增,在1(4-,1)2单调递减,而12log y t =在0t >时单调递减,由复合函数的单调性可知,()f x 在1(1,)4--单调递减,在11(,)42-单调递增,故()f x 的单调递增区间为11(,)42-,单调递减区间为1(1,)4--;(2)因为()f x 的定义域为R , 所以210ax x -+>对x R ∀∈恒成立,当0a =时,10x -+>,所以1x <-,不合题意;当0a <时,21y ax x =-+开口向下,必有0y <的部分,不合题意; 当0a >时,由△0<得,140a -<,解得14a >, 综上,a 的取值范围是1(4,)+∞;(3)若函数()f x 的值域为R , 21t ax x =-+可取所有大于0的实数,当0a =时,1t x =-+,符合题意;当00a >⎧⎨⎩时,即0140a a >⎧⎨-⎩,104a <时符合题意,综上,a 的取值范围是[0,1]4;(4)令221t x x =--+,则12log y t =,因为12log y t =在0t >时单调递减,由复合函数的单调性可知,要满足若函数()f x 在区间(1,1)-上是增函数, 则21t ax x =-+在(1,1)-上为减函数,且0t >, ①当0a >时,需112(1)110a t a -⎧-⎪⎨⎪=-+⎩,解得102a <;②当0a =时,1t x =-+,只需t (1)110=-+即可,即00,成立,故0a =符合题意; ③当0a <时,需112(1)110a t a -⎧--⎪⎨⎪=-+⎩即1120a a ⎧-⎪⎨⎪⎩,结合0a <可知此情况无解;综上,实数a 的取值范围是[0,1]2.【点评】本题考查了符合函数的单调性,以及利用符合函数单调性求解参数范围的问题,属于中档题.20.已知函数2()()f x xlnx ax x a R =-+∈. (1)当0a =时,求()f x 的单调区间;(2)若()f x 有两个零点1x ,2x ,且122x x >,证明:1228x x e >. 【考点】利用导数研究函数的最值;利用导数研究函数的单调性【分析】(1)当0a =时,求得()2f x lnx '=+,即可求得()f x 的单调区间; (2)依题意,得12112211lnx lnx a x x x x =+=+,结合式子的特点构造函数,求导,利用函数的导数与函数单调性的关系即可证明结论成立.【解答】解:(1)当0a =时,()(0)f x xlnx x x =+>, ()2f x lnx '∴=+,令()0f x '>,得21x e >,令()0f x '<,得210x e<<, ()f x ∴的单调增区间是21(,)e +∞,单调减区间是21(0,)e ; (2)证明:若()f x 有两个零点1x ,2x ,则22111122220,0x lnx ax x x lnx ax x -+=-+=, ∴12112211lnx lnx a x x x x =+=+. 由122x x >,令211()2x tx t =<,则111111()11lnx ln tx x x tx tx +=+, ∴111lnt lnx t =--,∴211()11tlntlnx ln tx lnt lnx t ==+=--, ∴1212(1)()112111lnt tlnt t lntln x x lnx lnx t t t +=+=-+-=----. 令(1)()2(2)1t lnth t t t +=->-,则212()(1)lnt t t h t t -+-'=-,令1()2(2)t lnt t t tϕ=-+->,则22221(1)()10t t t t t ϕ-'=-++=>,()t ϕ∴在(2,)+∞上单调递增,∴3()(2)2202t ln ϕϕ>=->, ∴2()()0(1)t h t t ϕ'=>-,则()h t 在(2,)+∞上单调递增,∴28()(2)322h t h ln ln e >=-=,即1228()ln x x ln e>, ∴1228x x e >. 【点评】本题主要考查了利用导数研究函数的单调性与最值,考查分离参数法与构造函数法的综合运用,考查转化与化归思想及逻辑推理能力、综合运算能力、抽象思维能力,属于难题.21.已知函数21()2()2f x x ax lnx a R =-+∈. (1)当53a =时,求函数()f x 的单调区间;(2)设函数21()()22g x f x x =-+,若()g x 有两个不同的零点1x ,2x ,求证:122x x e +>.【考点】利用导数研究函数的最值;利用导数研究函数的单调性 【分析】(1)由题意,代入53a =,对函数求导,再求单调区间即可,(2)由题意,()g x 有两个零点,可利用分离参数法,将两个根转化为关于t 的函数,再证明结论即可.【解答】解:(1)当53a =时,2110(),023f x x x lnx x =-+>,21103103(31)(3)()333x x x x f x x x x x-+--'∴=+-==⋅由()0f x '>,得()f x 的单调增区间为1(0,),(3,)3+∞;由()0f x '<,得()f x 的单调减区间为1(,3)3.证明:(2)由题意.得()220g x lnx ax =-+=有两个根122,2lnx x x a x+⇔=有两个根1x ,2x . 令221()(0),()lnx lnx m x x m x x x+--'=>=. 由11()0,()0m x x m x x e e''>⇒<<⇒>.()m x ∴在1(0,)e上单调递增,在1(,)e +∞上单调递减.()g x 有两个不同的零点1x ,2.x 不妨设12x x <.∴1210x x e<<< 要证明:122x x e+>,需证:2e>. 需证:1221x x e>.(※) 又1221121221122242lnx lnx lnx lnx lnx lnx a x x x x x x ++-++====-+. ∴22221111122211()(1)()41x x x x x lnln x x x ln x x x x x x +++==--. 今211x t x =>,且(1)()1t lnth t t +--, 得212()(1)t lnt t h t t --'=-. 令1()2r t t lnt t=--,得2221221()10t t r t t t t -+'=+-=>.()r t ∴在(1,)+∞上单调递增,()r t r >(1)0=,即()0h t '>.()h t ∴在(1,)+∞上单调递增,()h t h >(1)2,∴12121221()42()2ln x x ln x x x x e +>⇒>-⇒>, ∴(※)式成立.【点评】本题考查导数的综合应用,考查学生的综合能力,属于难题. 22.已知函数2()(1)(1)f x x lnx x m x =--+-,m R ∈. (1)讨论()f x 极值点的个数.(2)若()f x 有两个极值点1x ,2x ,且12x x <,证明:12()()24f x f x m +>-. 【考点】利用导数研究函数的极值;利用导数研究函数的最值【分析】(1)先求导,根据导数和函数的单调性的关系即可判断函数的极值点;(2)构造函数()()(2)h x f x f x =+-,利用导数和函数单调性和最值的关系,可得要证12()()24f x f x m +>-,即可证明122x x +,再根据导数和极值的关系去证明2121122lnx lnx x x x x ->-+,再利用换元法,再构造导数,利用导数和函数的最值的关系即可证明. 【解答】解:(1)2()(1)(1)f x x lnx x m x =--+-,函数()f x 的定义域为(0,)+∞, 1()2f x lnx x m x∴'=--+, 令1()2g x lnx x m x=--+, 222222112121(21)(1)()2x x x x x x g x x x x x x -++--+-∴'=+-==-=-, 当()0g x '=时,解得1x =,当01x <<时,()0g x '>,函数()g x 得到递增, 当1x >时,()0g x '<,函数()g x 得到递减, ()max g x g ∴=(1)3m =-,①当3m 时,()()0f x g x '=恒成立,∴函数()f x 在(0,)+∞上单调递减, ∴函数()f x 无极值点,②当3m >时,1103m <<,g (1)0>,112()0g ln m m m =-<,1()0g m lnm m lnm m m =--<-<,∴存在11(x m∈,1),2(1,)x ∈+∞,则12()()0g x g x ==,即12()()0f x f x '='=,故()f x 有2个极值点,综上所述当3m 时,无极值点,当3m >时,有2个极值点. (2)证明:22()()(2)(1)(1)(1)(2)(2)(1)(2)h x f x f x x lnx x m x x ln x x m x =+-=--+-+----+--,01x <<,则11()(2)442h x lnx ln x x x x'=----++-, 则11()(2)442x lnx ln x x x xϕ=----++-, 2211111111()4(2)(1)(2)(1)2(2)22x x x x x x x x xϕ∴'=+-++=+--+-----,01x <<,∴11102x x>>>-, ∴112202x x +>+>-,221122222(1)1x x x x x +==>--+--+, ∴111102x x->->-, ()0x ϕ∴'>,()x ϕ∴在(0,1)上单调递增,则()x ϕϕ<(1)0=,即()0h x '<, ()h x ∴在(0,1)上单调递减,则()h x h >(1)24m =-, 101x <<,111()()(2)24h x f x f x m ∴=+->-,要证12()()24f x f x m +>-, 只需证21()(2)f x f x -, 121x ->,21x >,112x x ->,()f x ∴在1(x ,2)x 上是增函数,∴只需要证112x x -,即证122x x +, 由111120lnx x m x --+=,222120lnx x m x --+=, 两式相减可得212121122()0x x lnx lnx x x x x ----+=, 即212112120lnx lnx x x x x -+-=-,12x x +>,∴2121214()x x x x >+, 下面证明2121122lnx lnx x x x x ->-+, 即证2212112(1)1x x x ln x x x ->+,令211x t x =>, 即证2201t lnt t -->+, 令22()01t p t lnt t -=->+,0t >, 则22214(1)()0(1)(1)t p t t t t t -'=-=>++,()p t ∴在(1,)+∞上单调递增, ()p t p ∴>(1)0=,∴2121122lnx lnx x x x x ->-+, 又21221121212124022()lnx lnx x x x x x x x x -=+->+--++,212121212()()2(2)(1)0x x x x x x x x ∴+-+-=+-++>, 122x x ∴+>,问题得以证明.【点评】本题考查了函数的单调性,最值问题,考查导数的应用以及函数恒成立问题,考查转化思想,分类讨论思想,是难题.23.设函数()()x f x x ae a R =-∈. (Ⅰ)求函数()f x 的极值:(Ⅱ)若()f x ax 在[0x ∈,)+∞时恒成立,求a 的取值范围. 【考点】利用导数研究函数的极值;利用导数研究函数的最值【分析】(Ⅰ)求出()f x ',分两种情况讨论a 的范围,在定义域内,分别令()0f x '>求得x 的范围,可得函数()f x 增区间,()0f x '<求得x 的范围,可得函数()f x 的减区间;根据单调性即可求得()f x 的极值⋅(Ⅱ)参变分离,将问题转化为用导数求函数的最值问题⋅ 【解答】解:(Ⅰ)由题可知()1x f x ae '=-,①当0a ,()0f x ',()f x 在R 上单调递增,()f x ∴没有极值; ②当0a >,()0f x '=时,1x ln a=.当1(,)x ln a ∈-∞时,()0f x '>,()f x 单调递增;当1(,)x ln a ∈+∞时,()0f x '<,()f x 单调递减;()f x ∴在1x ln a =时取得极大值11ln a-,没有极小值⋅综上所述,当0a 时,()f x 无极值;当0a >时,()f x 有极大值11ln a-,无极小值;(Ⅱ)()f x ax x ax a ⇒+()x x e x a x e ⇒+ [0x ∈,)+∞,∴xxax e +, 令(),0xxg x x x e =+,则原问题()max a g x ⇔,[0x ∈,)+∞,22(1)(1)()()()x x x x x x e x e e x g x x e x e +-+-'==++,101x x ->⇒<, [0x ∴∈,1),()0g x '>,()g x 单调递增;(1,)x ∈+∞,()0g x '<,()g x 单调递减;∴1()(1)1max g x g e ==+,∴11a e⋅+ a ∴的取值范围为1[1e+,)+∞.【点评】本题主要考查利用导数研究函数的极值,利用导数研究不等式恒成立问题等知识,属于中等题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
。
13. (2015·山东省实验中学第二次考试·13)函数 f ( x) = x sin x + cos x + x2 ,则不等式
f (ln x) f (1) 的解集为___________.
14.(2015·盐城市高三年级第三次模拟考试·14)若函数 f(x)=-lnx+ax2+bx-a-2b 有两
数 f (x) , 当 x 0 时 , f (x) + f (x) 0 , 若 a = sin 1 f (sin 1) , b = −3 f (−3) , x
c = ln 3 f (ln 3) ,则下列关于 a,b, c 的大小关系正确的是( )
A. b c a C. c b a
B. a c b D. b a c
任意 x (0,+) ,都有 f [ f (x) − log2 x] = 6 ,若 x0 是方程 f (x) − f (x) = 4 的一个解,且
x0 (a, a +1)(a N * ) ,则实数 a = ▲ .
( ) 12. (2015·山东省实验中学第二次考试·11)定积分 1 2x + ex dx = 0
D.( 1 ,1) 3
8. (2015 · 山 东 省 潍 坊 市 第 一 中 学 高 三 过 程 性 检 测 · 9) 已 知
f ( x) = ex (sin x − cos x)(0 x 2015 ) ,则函数 f ( x) 的各极大值之和为( )
( ) ex 1− e2014
A.
1− e2
AC 和 BD 路边各修建一个物流中心 E 和 F . 为缓解交通压力,决定修建两条互相垂直的公
路 PE 和 PF. 设 EPA = (0 ). 2
(1)为减少周边区域的影响,试确定 E, F 的位置,使△ PAE 与△ PFB 的面积之和最小;
(2)为节省建设成本,试确定 E, F 的位置,使 PE + PF 的值最小.
个极值点 x1,x2,其中- 1 <a<0,b>0,且 f(x2)=x2>x1,则方程 2a[f(x)]2+bf(x)- 2
1=0 的实根个数为
.
15. (2015· 徐州、连云港、宿迁三市高三第三次模拟·17)(本小题满分 10 分)如图,在 P 地
正西方向 8km 的 A 处和正东方向 1km 的 B 处各一条正北方向的公路 AC 和 BD, 现计划在
x2
+
a 2x
6
展
开 式 的 常 数 项 是 15 , 右 图 阴 影 部 分 是 由 曲 线 y = x2 和 圆
)
D. − 3 2
x2 + y2 = a及x 轴围成的封闭图形,则封闭图形的面积为( )
A. − 1 46
C. 4
B. + 1 46
D. 1 6
3. (江西省新八校 2014-2015 学年度第二次联考·12)已知定义域为 R 的奇函数 f (x) 的导函
是
.
10、(2015·山东省滕州市第五中学高三模拟考试·15)若函数 f (x) = ln x + ax 存在与直线
2x − y = 0 平行的切线,则实数 a 的取值范围是
__.
2
书山有路
11.(2015.江西省上饶市高三第三次模拟考试·15)设定义域为 (0,+) 的单调函数 f (x) ,对
f (b) −
是[a,b]上的“双中值函数”.已知函数 f (x) = x3 − x2 + a 是[0,a]上的“双中值函数”,则实数 a 的
取值范围是( )
A. (1 , 1) 32
B.( 3 ,3) 2
C.( 1 ,1) 2
7.(2015·山西省太原市高三模拟试题二·12)
书山有路
专题 2 不等式、函数与导数
第 4 讲 导数与定积分(B 卷)
一、选择题(每题 5 分,共 30 分)
1、(2015·山东省滕州市第五中学高三模拟考试·4) 0 (x − ex )dx =( −1
A. −1− 1 e
B. −1
C. − 3 + 1 2e
2.(2015·德州市高三二模(4
月)数学(理)试题·9)
C. (2 + ln 2,3].
D. (3, 2 + ln 2]
6 . (2015. 江西省上饶市高三第三次模拟考试 ·12) 定 义 : 如 果 函 数 f (x) 在 [a,b]上 存 在
x1, x2 (a x1 x2 b) 满足
f
'(x1) =
f (b) − f (a) b−a
,
f
'(x2 ) =
(2)若函数 h(x) = (x2 − 3kx− 3) f (x) 在区间 (k, 1 ) 内单调递减,求此时 k 的取值 k
范围. 17. (2015· 徐州、连云港、宿迁三市高三第三次模拟·20)(本小题满分 10 分)已知函数 f ( x) = 1 x3 + ax2 − x + b, 其中 a, b 为常数.
3 (1)当 a = −1时,若函数 f ( x) 在[0,1] 上的最小值为 1 , 求 b 的值;
3 (2)讨论函数 f ( x) 在区间 (a,+) 上单调性; (3)若曲线 y = f ( x) 上存在一点 P, 使得曲线在点 P 处的切线与经过点 P 的另一条切线互
( ) e2x 1− e2014
C.
1− e2
二、非选择题(60 分)
B. 10082 D. 1008
9. (江西省新八校 2014-2015 学年度第二次联考·16)函数 f (x) = −x3 − x + sin x ,当
(0, ) 时,恒有 f (cos2 + 2msin ) + f (−2m − 2) 0 成立,则实数 m 的取值范围 2
4.(2015·赣州市高三适用性考试·4)
|lnx|+2,(x 0) 5.(2015·赣州市高三适用性考试·12)若函数 f (x)= 3 − x2, (x 0) ,方程 f [ f (x)]=a 只
1
书山有路
有五个不同的实根,则实数 a 的取值范围是( )
A. (2 + ln 2,e]
B. (e, 2 + ln3]
16.(江西省新八校 2014-2015 学年度第二次联考·21() 本小题满分 10 分)已知函数 f (x) = ekx ( k 为不零的实数, e 为自然对数的底数).
(1)若函数 y = f (x) 与 y = x3 的图象有公共点,且在它们的某一处有共同的切线,
3
书山有路 求 k 的值;