2017年黑龙江省大庆市中考数学模拟试卷及答案(三)

合集下载

2017大庆市中考数学模拟试题

2017大庆市中考数学模拟试题

初四数学测试题一.选择题(共10小题)1.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B 的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边B.介于A、B之间C.介于B、C之间D.在C的右边2.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A .B .C .D .3.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3 B.7×10﹣3C.7×10﹣4D.7×10﹣54.一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是()A.15个 B.13个 C.11个 D.5个5.下面四个手机应用图标中是轴对称图形的是()A .B .C .D .6.若0<x<1,则x ,,x2的大小关系是()A .<x<x2 B.x <<x2 C.x2<x < D .<x2<x7.下列命题中假命题是()A.两组对边分别相等的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.一组对边平行一组对角相等的四边形是平行四边形D.一组对边平行一组对边相等的四边形是平行四边形8.如图,从①∠1=∠2 ②∠C=∠D ③∠A=∠F 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0 B.1 C.2 D.39.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=﹣图象上的点,并且y1<0<y2<y3,则下列各式中正确的是()A.x1<x2<x3B.x1<x3<x2 C.x2<x1<x3 D.x2<x3<x110.从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上一年减少;本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业的收人每年比上年增加,设4年内(本年度为第一年)的总投入为M万元,总收入为N万元,则有()A.M=N B.M>N C.M<N D.无法确定二.选择题(共8小题)11.在函数中,自变量x的取值范围是.12.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是(填“甲”或“乙”).13.在△ABC中,BO平分∠ABC,CO平分∠ACB,当∠A=50°时,∠BOC=.14.若a2n=5,b2n=16,则(ab)n=.15.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为.16.如图,河流两岸a、b互相平行,点A、B是河岸a上的两座建筑物,点C、D是河岸b上的两点,A、B的距离约为200米.某人在河岸b上的点P处测得∠APC=75°,∠BPD=30°,则河流的宽度约为米.17.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA 交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为.18.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是.三.选择题(共10小题)19.计算:.20.关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.(1)求m的取值范围;(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22=8,求m的值.21.若关于x 的不等式组恰有三个整数解,求实数a的取值范围.22.在咸宁创建”国家卫生城市“的活动中,市园林公司加大了对市区主干道两旁植“景观树”的力度,平均每天比原计划多植5棵,现在植60棵所需的时间与原计划植45棵所需的时间相同,问现在平均每天植多少棵树?23.某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是.(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数.(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?24.在△ABC中,AC=BC,∠ACB=90°,E是线段BC的中点,D在边AC上,线段BD和AE交于点F.(1)如图1,AD=CD 时,求的值;(2)如图2,=时,求∠BFE的正切值.25.如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2=(m 为常数,且m≠0)的图象交于点A(﹣2,1)、B(1,n).(1)求反比例函数和一次函数的解析式;(2)连结OA、OB,求△AOB的面积;(3)直接写出当y1<y2<0时,自变量x的取值范围.26.由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m3)与时间x(天)的关系如图中线段l2所示(不考虑其它因素).(1)求原有蓄水量y1(万m3)与时间x(天)的函数关系式,并求当x=20时的水库总蓄水量.(2)求当0≤x≤60时,水库的总蓄水量y(万m3)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m3为严重干旱,直接写出发生严重干旱时x的范围.27.如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.28.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M 的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.。

2017大庆中考数学模拟试卷

2017大庆中考数学模拟试卷

2017大庆中考数学模拟试卷备战中考的考生可以对中考数学模拟试题多加练习,这样可以提高自己的中考数学成绩,以下是小编精心整理的2017大庆中考数学模拟试题,希望能帮到大家!2017大庆中考数学模拟试题一、选择题:1.若|m|=3,|n|=5且m-n>0,则m+n的值是( )A.-2B.-8或 -2C.-8或 8D.8或-22.如图,已知∠α的一边在x轴上,另一边经过点A(2,4),顶点为(﹣1,0),则sinα的值是( )A.0.4B.C.0.6D.0.83.下列四个图案中,属于中心对称图形的是( )A. B. C. D.4.2016年2月19日,经国务院批准,设立无锡市新吴区,将无锡市原新区的鸿山、旺庄、硕放、梅村、新安街道划和滨湖区的江溪街道归新吴区管辖.新吴区现有总人口322819人,这个数据用科学记数法(精确到千位)可表示为( )A.323×103B.3.22×105C.3.23×105D.0.323×1065.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是( )A.5个B.6个C.7个D.8个6.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心、正方形对角线的长为半径画弧,交数轴于点A,则点A表示的数是 ( )A.-B.2-C.1-D.1+7.如果( )2÷( )2=3,那么a8b4等于( )A.6B.9C.12D.818.若非零实数a、b满足4a2+b2=4ab,则 =( )A.2B.﹣2C.4D.﹣49.使有意义的x的取值范围是( )A.x≥B.x>C.x>﹣D.x≥﹣10.下列说法中,正确的是( )A.两条对角线相等的四边形是平行四边形B.两条对角线相等且互相垂直的四边形是矩形C.两条对角线互相垂直平分的四边形是菱形D.两条对角线互相垂直平分且相等的四边形是菱形11.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25 m,则y与x的函数关系式为( )12.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是( )二、填空题:13.分解因式:a2﹣6a+9﹣b2= .14.化简: =_______.15.暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明和小亮选到同一个社区参加实践活动的概率为 .16.结合正比例函数y=4x的图像回答:当x>1时,y的取值范围是17.如图,正方形ABCD的边长为25,内部有6个全等的正方形,小正方形的顶点E、F、G、H分别落在边AD、AB、BC、CD上,则每个小正方形的边长为 .18.若函数y=mx2+(m+2)x+0.5m+1的图象与x轴只有一个交点,那么m的值为 .三、解答题:19.解不等式组 .20.央视新闻报道从5月23日起,在《朝闻天下》、《新闻直播间》、《新闻联播》和《东方时空》等多个栏目播放《湟鱼洄游季探秘青海湖》新闻节目,广受全国观众关注,青海电视台到我市某中学进行宣传调查活动,随机调查了部分学生对湟鱼洄游的了解程度,以下是根据调查结果做出的统计图的一部分:(1)根据图中信息,本次调查共随机抽查了名学生,其中“不了解”在扇形统计图中对应的圆心角的度数是,并补全条形统计图;(2)该校共有3000名学生,试估计该校所有学生中“非常了解”的有多少名?(3)青海电视台要从随机调查“非常了解”的学生中,随机抽取两人做为“随行小记者”参与“湟鱼洄游”的宣传报道工作,请你用树状图或列表法求出同时选到一男一女的概率是多少?并列出所有等可能的结果.21.如图,△ABC内接于⊙O,且BC是⊙O的直径,AD⊥BC于D,F是弧BC中点,且AF交BC于E,连接OA,(1)求证:AE平分∠DAO;(2)若AB=6,AC=8,求OE的长.22.如图,是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面10米处有一建筑物HQ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据: =1.414, =1.732)23.如图,在一面靠墙的空地商用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式及自变量的取值范围;(2)已知墙的最大可用长度为8米;①求所围成花圃的最大面积;②若所围花圃的面积不小于20平方米,请直接写出x的取值范围.24.(1)如图1,在线段AB上取一点C(BC>AC),分别以AC、BC 为边在同一侧作等边ACD与等边BCE,连结AE、BD,则ACE经过怎样的变换(平移、轴对称、旋转)能得到DCB?请写出具体的变换过程;(不必写理由)(2)如图2,在线段AB上取一点C(BC>AC),如果以AC、BC为边在同一侧作正方形ACDG与正方形CBEF,连结EG,取EG的中点M,设 DM的延长线交EF于N,并且DG=NE;请探究DM与FM的关系,并加以证明;(3)在图2的基础上,将正方形CBEF绕点C顺时针旋转(如图3),使得A、C、E在同一条直线上,请你继续探究线段MD、MF的关系,并加以证明.25.如图,已知抛物线与x轴交于A(﹣1,0)、B(5,0)两点,与y 轴交于点C(0,5).(1)求该抛物线所对应的函数关系式;(2)D是笫一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连结BD、CD.设点D的横坐标为m,△BCD的面积为S.①求S关于m的函数关系式及自变量m的取值范围;②当m为何值时,S有最大值,并求这个最大值;③直线BC能否把△BDF分成面积之比为2:3的两部分?若能,请求出点D的坐标;若不能,请说明理由.。

2017年黑龙江大庆中考数学模拟真题

2017年黑龙江大庆中考数学模拟真题

2017年黑龙江大庆中考数学模拟真题学生在准备中考数学的时候多做中考数学模拟试题并多复习,这样才能更好提升,以下是小编精心整理的2017年黑龙江大庆中考数学模拟试题,希望能帮到大家!2017年黑龙江大庆中考数学模拟试题一、选择题(每小题3分,共30分)1 .在下列各数中,比-1小的数是( )A.1B.-1C.-2D.02.某种生物细菌的直径为0.0000382cm,把0.0000382用科学记数法表示为( )A.3.82×10-4B.3.82×10-5C.3.82×10-6D.38.2×10-63.所示是由四个大小相同的正方体组成的几何体,那么它的主视图是( )4.下列运算正确的是( )A.a6+a3=a9B.a2•a3=a6C.(2a)3=8a3D.(a-b)2=a2-b25.剪纸是中国特有的民间艺术,在所示的四个剪纸图案中,既是轴对称图形又是中心对称图形的是( )6.已知:,O为⊙O的圆心,点D在⊙O上,若∠AOC=110°,则∠ADC的度数为( )A.55°B.110°C.125°D.72.5°第6题图第7题图第8题图7.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得(单位:尺),则井深为( )A.1.25尺B.57.5尺C.6.25尺D.56.5尺8.,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1∶0.75,坡长BC=10米,则此时AB的长约为(参考数据:sin40°≈0.64,cos40°≈0. 7 7,tan40°≈0.84)()A.5.1米B.6.3米C.7.1米D.9.2米9.,在一张矩形纸片ABCD中,AD=4cm,点E,F分别是CD和AB的中点,现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH,若HG的延长线恰好经过点D,则CD的长为( )A.2cmB.23cmC.4cmD.43cm第 9题图第10题图10.,直线y=12x与双曲线y=kx(k>0,x>0)交于点A,将直线y=12x向上平移4个单位长度后,与y轴交于点C,与双曲线y=kx(k>0,x>0)交于点B,若OA=3BC,则k的值为( )A.3B.6C.94D.92二、填空题(每小题3分,共24分)11.分解因式:x3-4x= .12.,在菱形ABCD中,若AC=6,BD=8,则菱形ABCD的面积是.第12题图第14题图第15题图13.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是.14.某同学在体育训练中统计了自己五次“1分钟跳绳”的成绩,并绘制了所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是个.15.,△ABC的两条中线AD和BE相交于点G,过点E作EF∥BC 交AD于点F,那么FGAG= .16.设一列数中相邻的三个数依次为m、n、p,且满足p=m2-n,若这列数为-1,3,-2,a,-7,b,…,则b= .17.在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′1x,1y称为点P的“倒影点”,直线y=-x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=kx的图象上.若AB=22,则k= .18.,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P.若AB=6,BC=33,则下列结论:①F是CD的中点;②⊙O的半径是2;③AE=92CE;④S阴影=32.其中正确结论的序号是.三、解答题(共66分)19.(6分),AB∥CD,点E是CD上一点,∠ AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.20.(6分)(1)计算:(2017-π)0-14-1+|-2|;(2)化简:1-1a-1÷a2-4a+4a2-a.21.(8分),延长▱ABCD的边AD到F,使DF=DC,延长CB到点E,使BE=BA,分别连接AE,CF.求证:AE=CF.22.(8分)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:030),根据图中信息,解答下列问题:(1)求调查的总人数并补全条形统计图;(2)如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.23.(8分)在江苏卫视《最强大脑》节目中,搭载百度大脑的小度机器人以3∶1的总战绩,斩获2017年度脑王巅峰对决的晋级资格,人工智能时代已经扑面而来.某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其他因素),那么每个机器人的标价至少是多少元?24.(8分),直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于点D,过点D作DE⊥MN于点E.(1)求证:DE是⊙O 的切线;。

【真卷】2017年黑龙江省大庆市中考数学模拟试卷及解析PDF(三)

【真卷】2017年黑龙江省大庆市中考数学模拟试卷及解析PDF(三)

2017年黑龙江省大庆市中考数学模拟试卷(三)一、选择题(共10小题,每小题3分,满分30分)1.(3分)某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣82.(3分)实数a,b在数轴上的对应点的位置如图所示,则结论正确的是()A.a>﹣2 B.a<﹣3 C.﹣a<b D.a<﹣b3.(3分)下列说法中,错误的是()A.平行四边形的对角线互相平分B.五边形的内角和是540°C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形4.(3分)若0<x<1,则x,x2,x3的大小关系是()A.x<x2<x3B.x<x3<x2C.x3<x2<x D.x2<x3<x5.(3分)小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.6.(3分)由若干个形状大小相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数至少有()A.4个 B.5个 C.6个 D.7个7.(3分)下列轴对称图形中,对称轴条数是四条的图形是()8.(3分)已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论不正确的是()A.DF⊥AB B.CG=2GAC.CG=DF+GE D.S四边形BFGC=﹣19.(3分)已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=的图象上.下列结论中正确的是()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y110.(3分)定义运算:a⋆b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b⋆b﹣a⋆a的值为()A.0 B.1 C.2 D.与m有关二、填空题(共8小题,每小题3分,满分24分)11.(3分)在函数y=中,自变量x的取值范围是.12.(3分)若a x+y=6,a y=3,则a2x=.13.(3分)已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是.14.(3分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC 于点D,则∠DBC=度.15.(3分)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”,例如:3=22﹣12,3就是一个智慧数,在正整数中,从1开始,第2017个智慧数是.16.(3分)如图,某广告牌竖直矗立在水平地面上,经测量,得到如下相关数据:CD=2m,∠CAB=30°,∠DBF=45°,AB=10m,则广告牌的高EF=m.(结果保留根号)17.(3分)如图,点C在以AB为直径的半圆弧上,∠ABC=30°,沿直线CB将半圆折叠,点A落在点A′处,A′B和交于点D,已知AB=6,则图中阴影部分的面积为.18.(3分)如图,在第一象限内作与x轴的夹角为30°的射线OC,在射线OC上取点A,过点A作AH⊥x轴于点H,在抛物线y=x2(x>0)上取一点P,在y轴上取一点Q,使得P,O,Q为顶点的三角形与△AOH全等,则符合条件的点A 有个.三、解答题(共10小题,满分66分)19.(4分)计算:(π﹣2017)0++|﹣2|+()﹣1.20.(4分)已知(m﹣n)2=8,(m+n)2=2,求m2+n2的值.21.(5分)(1)解不等式3(2x+5)>2(4x+3)并将其解集在数轴上表示出来.(2)写出一个一元一次不等式,使它和(1)中的不等式组的解集为x≤2,这个不等式可以是.22.(6分)楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么月需售出多少辆汽车?(注:销售利润=销售价﹣进价)23.(7分)近年来,各地“广场舞”噪音干扰的问题备受关注,相关人员对本地区15﹣65岁年龄段的500名市民进行了随机调查,在调查过程中对“广场舞”噪音干扰的态度有以下五种:A:没影响;B:影响不大;C:有影响,建议做无声运动,D:影响很大,建议取缔;E:不关心这个问题,将调查结果绘统计整理并绘制成如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)填空m=,态度为C所对应的圆心角的度数为;(2)补全条形统计图;(3)若全区15﹣65岁年龄段有20万人,估计该地区对“广场舞”噪音干扰的态度为B的市民人数;(4)若在这次调查的市民中,从态度为A的市民中抽取一人的年龄恰好在年龄段15﹣35岁的概率是多少?24.(7分)如图所示,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,AD=3,求AE和BF的长.25.(7分)如图,在平面直角坐标系xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求正比例函数和反比例函数的解析式;(2)将直线OA向上平移3个单位长度后与y轴相交于点B,与反比例函数的图象在第四象限内的交点为C,连接AB,AC.①求点C的坐标;②求△ABC的面积.26.(8分)某通讯公司推出A、B两种手机话费套餐,这两种套餐每月都有一定的固定费用和免费通话时间,超过免费通话时间的部分收费标准为:A套餐a元/分,B套餐b元/分,使用A、B两种套餐的通话费用y(元)与通话时间x(分)之间的函数图象如图所示.(1)当手机通话时间为50分钟时,写出A、B两种套餐的通话费用.(2)求a,b的值.(3)当选择B种套餐比A种套餐更合算时,求通话时间x的取值范围.27.(9分)如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,,求PA的长.(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.28.(9分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.2017年黑龙江省大庆市中考数学模拟试卷(三)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣8【解答】解:0.00000095=9.5×10﹣7,故选:A.2.(3分)实数a,b在数轴上的对应点的位置如图所示,则结论正确的是()A.a>﹣2 B.a<﹣3 C.﹣a<b D.a<﹣b【解答】解:由点的坐标,得A、0>a>﹣3,故本选项错误;B、a<b﹣3故本选项错误;C、﹣a<b,故本选项错误;D、a<﹣b,故本选项正确;故选:D.3.(3分)下列说法中,错误的是()A.平行四边形的对角线互相平分B.五边形的内角和是540°C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形【解答】解:∵平行四边形的对角线互相平分,∴A选项正确;∵五边形内角和=(5﹣2)×180°=540°,∴B选项正确;∵菱形的对角线互相垂直,∴C选项正确;∵只有对角线互相垂直且平分的四边形才是菱形,∴D选项错误;∴错误的是D,故选D.4.(3分)若0<x<1,则x,x2,x3的大小关系是()A.x<x2<x3B.x<x3<x2C.x3<x2<x D.x2<x3<x【解答】解:∵0<x<1,∴假设x=,则x=,x2=,x3=,∵<<,∴x3<x2<x.故选C.5.(3分)小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.【解答】解:共4种情况,有1种情况每个路口都是绿灯,所以概率为.故选:A.6.(3分)由若干个形状大小相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数至少有()A.4个 B.5个 C.6个 D.7个【解答】解:由俯视图易得最底层有4个正方体,由主视图第二层最多有2个正方体,最少有1个正方体,那么最少有4+1=5个立方体.故选:B.7.(3分)下列轴对称图形中,对称轴条数是四条的图形是()A.B.C.D.【解答】解:A、有4条对称轴,故此选项正确;B、有无数条对称轴,故此选项错误;C、有2条对称轴,故此选项错误;D、有6条对称轴,故此选项错误.故选:A.8.(3分)已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论不正确的是()A.DF⊥AB B.CG=2GAC.CG=DF+GE D.S四边形BFGC=﹣1【解答】解:∵四边形ABCD是菱形,∴∠FAG=∠EAG,∠1=∠GAD,AB=AD,∵∠1=∠2,∴∠GAD=∠2,∴AG=GD,∵GE⊥AD,∴GE垂直平分AD,∴AE=ED,∵F为边AB的中点,∴AF=AE,在△AFG和△AEG中,,∴△AFG≌△AEG(SAS),∴∠AFG=∠AEG=90°,∴DF⊥AB,∴A正确;∵DF⊥AB,F为边AB的中点,∴AF=AB=1,AD=BD,∵AB=AD,∴AD=BD=AB,∴△ABD为等边三角形,∴∠BAD=∠BCD=60°,∴∠BAC=∠1=∠2=30°,∴AC=2AB•cos∠BAC=2×2×=2,AG===,∴CG=AC﹣AG=2﹣=,∴CG=2GA,∴B正确;∵GE垂直平分AD,∴ED=AD=1,由勾股定理得:DF===,GE=tan∠2•ED=tan30°×1=,∴DF+GE=+==CG,∴C正确;∵∠BAC=∠1=30°,∴△ABC的边AC上的高等于AB的一半,即为1,FG=AG=,S四边形BFGC=S△ABC﹣S△AGF=×2×1﹣×1×=﹣=,∴D不正确;故选:D.9.(3分)已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=的图象上.下列结论中正确的是()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y1【解答】解:∵k2≥0,∴﹣k2≤0,﹣k2﹣1<0,∴反比例函数y=的图象在二、四象限,∵点(﹣1,y1)的横坐标为﹣1<0,∴此点在第二象限,y1>0;∵(2,y2),(3,y3)的横坐标3>2>0,∴两点均在第四象限y2<0,y3<0,∵在第四象限内y随x的增大而增大,∴0>y3>y2,∴y1>y3>y2.故选:B.10.(3分)定义运算:a⋆b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b⋆b﹣a⋆a的值为()A.0 B.1 C.2 D.与m有关【解答】解:(方法一)∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a+b=1,∴b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=b(a+b﹣b)﹣a(a+b﹣a)=ab﹣ab=0.(方法二)∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a+b=1.∵b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=b﹣b2﹣a+a2=(a2﹣b2)+(b﹣a)=(a+b)(a﹣b)﹣(a﹣b)=(a﹣b)(a+b﹣1),a+b=1,∴b⋆b﹣a⋆a=(a﹣b)(a+b﹣1)=0.(方法三)∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a2﹣a=﹣m,b2﹣b=﹣m,∴b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=﹣(b2﹣b)+(a2﹣a)=m﹣m=0.故选A.二、填空题(共8小题,每小题3分,满分24分)11.(3分)在函数y=中,自变量x的取值范围是x≥0且x≠3.【解答】解:由题意,得x≥0且x﹣3≠0,解得x≥0且x≠3,故答案为:x≥0且x≠3.12.(3分)若a x+y=6,a y=3,则a2x=4.【解答】解:∵a x+y=6,a y=3,∴a x•a y=6,∴a x=2,∴a2x=(a x)2=22=4,故答案为:4.13.(3分)已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是2.8.【解答】解:因为一组数据10,8,9,x,5的众数是8,所以x=8.于是这组数据为10,8,9,8,5.该组数据的平均数为:(10+8+9+8+5)=8,方差S2=[(10﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(5﹣8)2]=2.8.故答案为:2.8.14.(3分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC 于点D,则∠DBC=30度.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=(180°﹣∠A)=×(180°﹣40°)=70°,∵MN垂直平分线AB,∴AD=BD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故答案为:30.15.(3分)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”,例如:3=22﹣12,3就是一个智慧数,在正整数中,从1开始,第2017个智慧数是2692.【解答】解:1不能表示为两个正整数的平方差,所以1不是“智慧数”.对于大于1的奇正整数2k+1,有2k+1=(k+1)2﹣k2(k=1,2,…).所以大于1的奇正整数都是“智慧数”.对于被4整除的偶数4k,有4k=(k+1)2﹣(k﹣1)2(k=2,3,…).即大于4的被4整除的数都是“智慧数”,而4不能表示为两个正整数平方差,所以4不是“智慧数”.对于被4除余2的数4k+2(k=0,1,2,3,…),设4k+2=x2﹣y2=(x+y)(x﹣y),其中x,y为正整数,当x,y奇偶性相同时,(x+y)(x﹣y)被4整除,而4k+2不被4整除;当x,y奇偶性相异时,(x+y)(x﹣y)为奇数,而4k+2为偶数,总得矛盾.所以不存在自然数x,y使得x2﹣y2=4k+2.即形如4k+2的数均不为“智慧数”.因此,在正整数列中前四个正整数只有3为“智慧数”,此后,每连续四个数中有三个“智慧数”.因为2017=(1+3×672),4×(672+1)=2692,所以2692是第2017个“智慧数”,故答案为:2692.16.(3分)如图,某广告牌竖直矗立在水平地面上,经测量,得到如下相关数据:CD=2m,∠CAB=30°,∠DBF=45°,AB=10m,则广告牌的高EF=(4+4)m.(结果保留根号)【解答】解:如图,过点D作DG⊥AF于点G,设DG=xm,则CG=(x+2)m,在Rt△BGD中,∵∠BGD=90°,∠DBG=45°,∴BG=DG=xm,∴AG=BG+AB=(x+10)m.在Rt△AGC中,∵∠AGC=90°,∠CAG=30°,∴tan30°=,∴=,∴x=4+2,∴EF=CG=CD+DG=2+4+2=4+4(m)答:广告牌的高EF=(4+4)m.故答案为(4+4).17.(3分)如图,点C在以AB为直径的半圆弧上,∠ABC=30°,沿直线CB将半圆折叠,点A落在点A′处,A′B和交于点D,已知AB=6,则图中阴影部分的面积为π.【解答】解:连接AD,CD,∵沿直线CB将半圆折叠,点A落在点A′处,∴∠ABC=∠CBA′=30°,AB=A′B=6,∴∠ABD=60°,∵AB是半圆的直径,∴∠ADB=90°,∴∠BAD=30°,∴==,BD=AB=A′B,∴CD=BD=A′B,∠A′DC=60°,∴图中阴影部分的面积==π,故答案为:π.18.(3分)如图,在第一象限内作与x轴的夹角为30°的射线OC,在射线OC上取点A,过点A作AH⊥x轴于点H,在抛物线y=x2(x>0)上取一点P,在y轴上取一点Q,使得P,O,Q为顶点的三角形与△AOH全等,则符合条件的点A 有4个.【解答】解:①当∠POQ=∠OAH=60°,若以P,O,Q为顶点的三角形与△AOH 全等,那么A、P重合;由于∠AOH=30°,设A坐标为(a,b),在直角三角形OAH中,tan∠AOH=tan30°==,设直线OA的方程为y=kx,把A的坐标代入得k==,所以直线OA:y=x,联立抛物线的解析式,得:,解得,;故A(,);②当∠POQ=∠AOH=30°,此时△POQ≌△AOH;易知∠POH=60°,则直线OP:y=x,联立抛物线的解析式,得:,解得,;故P(,3),那么A(3,);③当∠OPQ=90°,∠POQ=∠AOH=30°时,此时△QOP≌△AOH;易知∠POH=60°,则直线OP:y=x,联立抛物线的解析式,得:,解得、,故P(,3),∴OP=2,QP=2,∴OH=OP=2,AH=QP=2,故A(2,2);④当∠OPQ=90°,∠POQ=∠OAH=60°,此时△OQP≌△AOH;此时直线OP:y=x,联立抛物线的解析式,得:,解得、,∴P(,),∴QP=,OP=,∴OH=QPQP=,AH=OP=,故A(,).综上可知:符合条件的点A有四个,且坐标为:(,)或(3,)或(2,2)或(,).故答案为:4.三、解答题(共10小题,满分66分)19.(4分)计算:(π﹣2017)0++|﹣2|+()﹣1.【解答】解:(π﹣2017)0++|﹣2|+()﹣1=1+2+2﹣+2=5+20.(4分)已知(m﹣n)2=8,(m+n)2=2,求m2+n2的值.【解答】解:∵(m﹣n)2+(m+n)2=m2+n2﹣2mn+m2+n2+2mn=2(m2+n2)=8+2=10,∴m2+n2=10÷2=5.21.(5分)(1)解不等式3(2x+5)>2(4x+3)并将其解集在数轴上表示出来.(2)写出一个一元一次不等式,使它和(1)中的不等式组的解集为x≤2,这个不等式可以是x﹣1≤1(答案不唯一).【解答】解:(1)去括号得,6x+15>8x+6,移项得,6x﹣8x>6﹣15,合并同类项得,﹣2x>﹣9,把x的系数化为1得,x<4.5;(2)x﹣1≤1.故答案为:x﹣1≤1(答案不唯一).22.(6分)楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么月需售出多少辆汽车?(注:销售利润=销售价﹣进价)【解答】解:设月需售出x辆汽车,当0<x≤5时,(32﹣30)×5=10<25,不符合题意;当5<x≤30时,x{32﹣[30﹣0.1(x﹣5)]}=25,解得:x1=﹣25(舍去),x2=10.答:该月需售出10辆汽车.23.(7分)近年来,各地“广场舞”噪音干扰的问题备受关注,相关人员对本地区15﹣65岁年龄段的500名市民进行了随机调查,在调查过程中对“广场舞”噪音干扰的态度有以下五种:A:没影响;B:影响不大;C:有影响,建议做无声运动,D:影响很大,建议取缔;E:不关心这个问题,将调查结果绘统计整理并绘制成如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)填空m=32,态度为C所对应的圆心角的度数为115.2°;(2)补全条形统计图;(3)若全区15﹣65岁年龄段有20万人,估计该地区对“广场舞”噪音干扰的态度为B的市民人数;(4)若在这次调查的市民中,从态度为A的市民中抽取一人的年龄恰好在年龄段15﹣35岁的概率是多少?【解答】解:(1)m=100﹣10﹣5﹣20﹣33=32;态度为C所对应的圆心角的度数为:32%×360=115.2°;故答案为:32,115.2°;(2)500×20%﹣15﹣35﹣20﹣5=25,补全条形统计图;(3)估计该地区对“广场舞”噪音干扰的态度为B的市民人数为:20×33%=6.6(万人);(4)从态度为A的市民中抽取一人的年龄恰好在年龄段15﹣35岁的概率是:=.24.(7分)如图所示,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,AD=3,求AE和BF的长.【解答】(1)证明:∵AD∥BC,∴∠C+∠ADE=180°,∵∠BFE=∠C,∴∠AFB=∠EDA,∵AB∥DC,∴∠BAE=∠AED,∴△ABF∽△EAD;(2)解:∵AB∥CD,BE⊥CD,∴∠ABE=90°,∵AB=4,∠BAE=30°,∴AE=2BE,由勾股定理可求得AE=,∵△ABF∽△EAD,∴,即,∴BF=.25.(7分)如图,在平面直角坐标系xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求正比例函数和反比例函数的解析式;(2)将直线OA向上平移3个单位长度后与y轴相交于点B,与反比例函数的图象在第四象限内的交点为C,连接AB,AC.①求点C的坐标;②求△ABC的面积.【解答】解:(1)根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,解得:k=﹣1,∴正比例函数的解析式为:y=﹣x,将点A(2,﹣2)代入y=,得:﹣2=,解得:m=﹣4;∴反比例函数的解析式为:y=﹣;(2)①直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,则点B的坐标为(0,3),联立两函数解析式,解得:或,∴第四象限内的交点C的坐标为(4,﹣1),②∵OA∥BC,∴S=S△OBC=×BO×x C=×3×4=6.△ABC26.(8分)某通讯公司推出A、B两种手机话费套餐,这两种套餐每月都有一定的固定费用和免费通话时间,超过免费通话时间的部分收费标准为:A套餐a元/分,B套餐b元/分,使用A、B两种套餐的通话费用y(元)与通话时间x(分)之间的函数图象如图所示.(1)当手机通话时间为50分钟时,写出A、B两种套餐的通话费用.(2)求a,b的值.(3)当选择B种套餐比A种套餐更合算时,求通话时间x的取值范围.【解答】解:(1)由图象可知,当手机通话时间为50分钟时,A、B两种套餐的通话费用分别为10元、20元;(2)a==0.2,b==0.18,所以,a,b的值分别是0.2,0.18;(3)A种套餐超过免费时间y与x的函数关系式为y=0.2x﹣5(x>75),由图象可知,当75<x<150时,若A、B两种套餐的通话费相同,则0.2x﹣5=20,解得x=125,∴当x>125时,选择B种套餐更合算.27.(9分)如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,,求PA的长.(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.【解答】(1)解:直线PD为⊙O的切线证明:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD∵∠PDA=∠PBD,∴∠BDO=∠PDA∴∠ADO+∠PDA=90°,即PD⊥OD∵点D在⊙O上,∴直线PD为⊙O的切线.(2)解:∵BE是⊙O的切线,∴∠EBA=90°∵∠BED=60°,∴∠P=30°∵PD为⊙O的切线,∴∠PDO=90°在Rt△PDO中,∠P=30°,∴,解得OD=1∴∴PA=PO﹣AO=2﹣1=1(3)(方法一)证明:如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF ∵∠PDA=∠PBD∠ADF=∠ABF∴∠ADF=∠PDA=∠PBD=∠ABF∵AB是圆O的直径∴∠ADB=90°设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°即90°+x+2x=180°,解得x=30°∴∠ADF=∠PDA=∠PBD=∠ABF=30°∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°∴∠DBE=60°,∴△BDE是等边三角形.∴BD=DE=BE又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°∴△BDF是等边三角形.∴BD=DF=BF∴DE=BE=DF=BF,∴四边形DFBE为菱形(方法二)证明:如图3,依题意得:∠ADF=∠PDA,∠APD=∠AFD,∵∠PDA=∠PBD,∠ADF=∠ABF,∠PAD=∠DAF,∴∠ADF=∠AFD=∠BPD=∠ABF∴AD=AF,BF∥PD∴DF⊥PB∵BE为切线∴BE⊥PB∴DF∥BE∴四边形DFBE为平行四边形∵PE、BE为切线∴BE=DE∴四边形DFBE为菱形28.(9分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.【解答】解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,∴抛物线的解析式为y=x2﹣x﹣1;(2)令y=0,则x﹣1=0,解得x=,∴点A的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴当t=2时,p有最大值;(3)∵△AOB绕点M沿逆时针方向旋转90°,∴A1O1∥y轴时,B1O1∥x轴,设点A1的横坐标为x,①如图1,点O1、B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1,解得x=,②如图2,点A1、B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1的纵坐标大,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1+,解得x=﹣,。

2017年黑龙江省大庆市林甸四中中考数学三模试卷(解析版)

2017年黑龙江省大庆市林甸四中中考数学三模试卷(解析版)

2017年黑龙江省大庆市林甸四中中考数学三模试卷一、选择题(每小题3分,共30分)1.(3分)下列计算正确的是()A.2a+3b=5ab B.(﹣2a2b)3=﹣6a6b3C.D.(a+b)2=a2+b22.(3分)如图,所给图形中是中心对称图形但不是轴对称图形的是()A.B.C.D.3.(3分)若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形4.(3分)从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为()A.B.C.D.5.(3分)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()A.B.C.D.6.(3分)将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360°B.540°C.720°D.900°7.(3分)如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是()A.﹣1B.1C.D.8.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A.B.C.D.9.(3分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.84B.336C.510D.132610.(3分)如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P 沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P、Q出发t秒时,△BPQ的面积为y(cm2),已知y与t的函数关系的图象如图2(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5cm;②当0<t≤5时,y=t2;③直线NH的解析式为y=﹣t+27;④若△ABE与△QBP相似,则t=秒,其中正确结论的个数为()A.4B.3C.2D.1二、填空题(每小题3分,共24分)11.(3分)要使代数式有意义,则x的取值范围是.12.(3分)据报载,2016年我国发展固定宽带接入新用户260000000户,其中260000000用科学记数法表示为.13.(3分)已知是二元一次方程组的解,则2n﹣m的平方根是.14.(3分)对于任意实数m、n,定义一种运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是.15.(3分)已知关于x的分式方程+=1的解是非负数,则a的取值范围是.16.(3分)如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC 相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是cm.17.(3分)如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=2.将△ABC绕点C 逆时针旋转α角后得到△A′B′C,当点A的对应点A'落在AB边上时,旋转角α的度数是度,阴影部分的面积为.18.(3分)如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点,若青蛙从4这点开始跳,则经2015次跳后它停在数对应的点上.三、解答题:(共66分)19.(4分)计算:﹣sin60°+×.20.(6分)先化简,再求值:(﹣)÷,其中x是方程3x2﹣x﹣1=0的根.21.(8分)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2,并写出点A2、C2的坐标.22.(6分)已知关于x的方程x2+3x+=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为符合条件的最大整数,求此时方程的根.23.(6分)如图所示,已知AB是圆O的直径,圆O过BC的中点D,且DE⊥AC.(1)求证:DE是圆O的切线;(2)若∠C=30°,CD=10cm,求圆O的半径.24.(8分)学校为统筹安排大课间体育活动,在各班随机选取了一部分学生,分成四类活动:“篮球”、“羽毛球”、“乒乓球”、“其他”进行调查,整理收集到的数据,绘制成如下的两幅统计图.(1)学校采用的调查方式是;学校共选取了名学生;(2)补全统计图中的数据:条形统计图中羽毛球人、乒乓球人、其他人、扇形统计图中其他%;(3)该校共有1200名学生,请估计喜欢“乒乓球”的学生人数.25.(8分)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y =(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C 的坐标为(﹣2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标.26.(8分)在2014年“元旦”前夕,某商场试销一种成本为30元的文化衫,经试销发现,若每件按34元的价格销售,每天能卖出36件;若每件按39元的价格销售,每天能卖出21件.假定每天销售件数y(件)是销售价格x(元)的一次函数.(1)直接写出y与x之间的函数关系式y=.(2)在不积压且不考虑其他因素的情况下,每件的销售价格定为多少元时,才能使每天获得的利润P最大?27.(10分)以坐标原点为圆心,1为半径的圆分别交x,y轴的正半轴于点A,B.(1)如图一,动点P从点A处出发,沿x轴向右匀速运动,与此同时,动点Q从点B处出发,沿圆周按顺时针方向匀速运动.若点Q的运动速度比点P的运动速度慢,经过1秒后点P运动到点(2,0),此时PQ恰好是⊙O的切线,连接OQ.求∠QOP的大小;(2)若点Q按照(1)中的方向和速度继续运动,点P停留在点(2,0)处不动,求点Q 再经过5秒后直线PQ被⊙O截得的弦长.28.(12分)已知抛物线y=﹣+bx+c与y轴交于点C,与x轴的两个交点分别为A(﹣4,0),B(1,0).(1)求抛物线的解析式;(2)已知点P在抛物线上,连接PC,PB,若△PBC是以BC为直角边的直角三角形,求点P的坐标;(3)已知点E在x轴上,点F在抛物线上,是否存在以A,C,E,F为顶点的四边形是平行四边形?若存在,请直接写出点E的坐标;若不存在,请说明理由.2017年黑龙江省大庆市林甸四中中考数学三模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列计算正确的是()A.2a+3b=5ab B.(﹣2a2b)3=﹣6a6b3C.D.(a+b)2=a2+b2【解答】解:A、2a+3b无法计算,故此选项错误;B、(﹣2a2b)3=﹣8a6b3,故此选项错误;C、+=2+=3,正确;D、(a+b)2=a2+b2+2ab,故此选项错误;故选:C.2.(3分)如图,所给图形中是中心对称图形但不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,也不是中心对称图形.故A选项错误;B、是轴对称图形,也是中心对称图形.故B选项错误;C、不是轴对称图形,是中心对称图形.故C选项正确;D、是轴对称图形,不是中心对称图形.故D选项错误.故选:C.3.(3分)若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形【解答】已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD 的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选:D.4.(3分)从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为()A.B.C.D.【解答】解:从四条线段中任意选取三条,所有的可能有:1,3,5;1,3,7;1,5,7;3,5,7共4种,其中构成三角形的有3,5,7共1种,则P(构成三角形)=.故选:C.5.(3分)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()A.B.C.D.【解答】解:∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,连接CD,如图所示:∵∠OBD=∠OCD,∴sin∠OBD=sin∠OCD==.故选:D.6.(3分)将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360°B.540°C.720°D.900°【解答】解:①将矩形沿对角线剪开,得到两个三角形,两个多边形的内角和为:180°+180°=360°;②将矩形从一顶点剪向对边,得到一个三角形和一个四边形,两个多边形的内角和为:180°+360°=540°;③将矩形沿一组对边剪开,得到两个四边形,两个多边形的内角和为:360°+360°=720°,④将矩形沿一组邻边剪开,得到一个三角形和一个五边形,其内角和为:180°+540°=720°;故选:D.7.(3分)如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是()A.﹣1B.1C.D.【解答】解:作FH⊥x轴,EC⊥y轴,FH与EC交于D,如图,A点坐标为(2,0),B点坐标为(0,2),OA=OB,∴△AOB为等腰直角三角形,∴AB=OA=2,∴EF=AB=,∴△DEF为等腰直角三角形,∴FD=DE=EF=1,设F点横坐标为t,代入y=﹣x+2,则纵坐标是﹣t+2,则F的坐标是:(t,﹣t+2),E点坐标为(t+1,﹣t+1),∴t(﹣t+2)=(t+1)•(﹣t+1),解得t=,∴E点坐标为(,),∴k=×=.故选:D.8.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是()A.B.C.D.【解答】解:观察二次函数图象可知:开口向上,a>0;对称轴大于0,﹣>0,b<0;二次函数图象与y轴交点在y轴的正半轴,c>0.∵反比例函数中k=﹣a<0,∴反比例函数图象在第二、四象限内;∵一次函数y=bx﹣c中,b<0,﹣c<0,∴一次函数图象经过第二、三、四象限.故选:C.9.(3分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.84B.336C.510D.1326【解答】解:1×73+3×72+2×7+6=510,故选:C.10.(3分)如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P 沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P、Q出发t秒时,△BPQ的面积为y(cm2),已知y与t的函数关系的图象如图2(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5cm;②当0<t≤5时,y=t2;③直线NH的解析式为y=﹣t+27;④若△ABE与△QBP相似,则t=秒,其中正确结论的个数为()A.4B.3C.2D.1【解答】解:①根据图(2)可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度都是1cm/s,∴BC=BE=5cm,∴AD=BE=5(故①正确);②如图1,过点P作PF⊥BC于点F,根据面积不变时△BPQ的面积为10,可得AB=4,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB==,∴PF=PB sin∠PBF=t,∴当0<t≤5时,y=BQ•PF=t•t=t2(故②正确);③根据5﹣7秒面积不变,可得ED=2,当点P运动到点C时,面积变为0,此时点P走过的路程为BE+ED+DC=11,故点H的坐标为(11,0),设直线NH的解析式为y=kx+b,将点H(11,0),点N(7,10)代入可得:,解得:.故直线NH的解析式为:y=﹣t+,(故③错误);④当△ABE与△QBP相似时,点P在DC上,如图2所示:∵tan∠PBQ=tan∠ABE=,∴=,即=,解得:t=.(故④正确);综上可得①②④正确,共3个.故选:B.二、填空题(每小题3分,共24分)11.(3分)要使代数式有意义,则x的取值范围是x≥﹣1且x≠0.【解答】解:根据题意,得,解得x≥﹣1且x≠0.12.(3分)据报载,2016年我国发展固定宽带接入新用户260000000户,其中260000000用科学记数法表示为 2.6×108.【解答】解:2 6000 0000用科学记数法表示为2.6×108.故答案为:2.6×108.13.(3分)已知是二元一次方程组的解,则2n﹣m的平方根是±2.【解答】解:∵是二元一次方程组的解,∴,解得∵2n﹣m=2×3﹣2=4,∴2n﹣m的平方根为±2.故答案为:±2.14.(3分)对于任意实数m、n,定义一种运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是4≤a<5.【解答】解:根据题意得:2※x=2x﹣2﹣x+3=x+1,∵a<x+1<7,即a﹣1<x<6解集中有两个整数解,∴a的范围为4≤a<5,故答案为:4≤a<515.(3分)已知关于x的分式方程+=1的解是非负数,则a的取值范围是a≥1且a≠2.【解答】解:分式方程去分母得:a﹣2=x﹣1,解得:x=a﹣1,由方程的解为非负数,得到a﹣1≥0,且a﹣1≠1,解得:a≥1且a≠2.故答案是:a≥1且a≠2.16.(3分)如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC 相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是8cm.【解答】解:设AH=a,则DH=AD﹣AH=8﹣a,在Rt△AEH中,∠EAH=90°,AE=4,AH=a,EH=DH=8﹣a,∴EH2=AE2+AH2,即(8﹣a)2=42+a2,解得:a=3.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴===.∵C△HAE=AE+EH+AH=AE+AD=12,∴C△EBF=C△HAE=8.故答案为:8.17.(3分)如图,在△ABC中,∠ACB=90°,∠ABC=30°,BC=2.将△ABC绕点C 逆时针旋转α角后得到△A′B′C,当点A的对应点A'落在AB边上时,旋转角α的度数是60度,阴影部分的面积为.【解答】解:∵AC=A′C,且∠A=60°,∴△ACA′是等边三角形.∴∠ACA′=60°,∴∠A′CB=90°﹣60°=30°,∵∠CA′D=∠A=60°,∴∠CDA′=90°,∵∠B′CB=∠A′CB′﹣∠A′CB=90°﹣30°=60°,∴∠CB′D=30°,∴CD=CB′=CB=×2=1,∴B′D==,∴S△CDB′=×CD×DB′=×1×=,S扇形B′CB==,则阴影部分的面积为:﹣,故答案为:﹣.18.(3分)如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点,若青蛙从4这点开始跳,则经2015次跳后它停在数2对应的点上.【解答】解:由4起跳,4是偶数,沿逆时针下一次只能跳一个点,落在3上,3是奇数,沿顺时针跳两个点,落在5上,5是奇数,沿顺时针跳两个点,落在2上,2是偶数,沿逆时针下一次只能跳一个点,落在1上,1是奇数,沿顺时针跳两个点,落在3上,…3﹣5﹣2﹣1﹣3,周期为4;又由2015=4×503+3,经过2015次跳后它停在的点所对应的数为2.故答案为:2.三、解答题:(共66分)19.(4分)计算:﹣sin60°+×.【解答】解:原式=﹣+4×=﹣+2=+2=.20.(6分)先化简,再求值:(﹣)÷,其中x是方程3x2﹣x﹣1=0的根.【解答】解:原式=×=×=,∵3x2﹣x﹣1=0,∴x+1=3x2,∴原式==.21.(8分)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2,并写出点A2、C2的坐标.【解答】解:(1)△A1B1C1为所作,点A1的坐标为(2,﹣4);(2)△A2BC2为所作,点A2、C2的坐标分别为(﹣2,2),(﹣1,4).22.(6分)已知关于x的方程x2+3x+=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为符合条件的最大整数,求此时方程的根.【解答】解:(1)∵关于x的方程x2+3x+=0有两个不相等的实数根,∴△=32﹣4×1×=9﹣3m>0,∴m<3;(2)∵m<3,∴符合条件的最大整数是2,∴原方程为x2+3x+=0,解得:x1=,x2=.23.(6分)如图所示,已知AB是圆O的直径,圆O过BC的中点D,且DE⊥AC.(1)求证:DE是圆O的切线;(2)若∠C=30°,CD=10cm,求圆O的半径.【解答】(1)证明:连接OD,∵D是BC的中点,O为AB的中点,∴OD∥AC.又∵DE⊥AC,∴OD⊥DE,∵OD为半径,∴DE是圆O的切线.(2)解:连接AD;∵AB是圆O的直径,∴∠ADB=90°=∠ADC,∴△ADC是直角三角形.∵∠C=30°,CD=10,∴AD=.∵OD∥AC,OD=OB,∴∠B=30°,∴△OAD是等边三角形,∴OD=AD=,∴圆O的半径为cm.24.(8分)学校为统筹安排大课间体育活动,在各班随机选取了一部分学生,分成四类活动:“篮球”、“羽毛球”、“乒乓球”、“其他”进行调查,整理收集到的数据,绘制成如下的两幅统计图.(1)学校采用的调查方式是抽样调查;学校共选取了100名学生;(2)补全统计图中的数据:条形统计图中羽毛球21人、乒乓球18人、其他25人、扇形统计图中其他25%;(3)该校共有1200名学生,请估计喜欢“乒乓球”的学生人数.【解答】解:(1)校采用的调查方式是抽样调查,总人数=36÷36%=100(名),故答案为抽样调查,100.(2)条形统计图中羽毛球人数:100×21%=21(人),乒乓球人数:100×18%=18(人),扇形统计图中其他占:1﹣36%﹣21%﹣18%=25%,其他有100×25%=25(人),故答案分别为21,18,25,25%.(3)1000×18%=180(人),答:估计喜欢“乒乓球”的学生人数有180人.25.(8分)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y =(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C 的坐标为(﹣2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标.【解答】解:(1)过点A作AD⊥x轴,垂足为D由A(n,6),C(﹣2,0)可得,OD=n,AD=6,CO=2∵tan∠ACO=2∴=2,即=2∴n=1∴A(1,6)将A(1,6)代入反比例函数,得m=1×6=6∴反比例函数的解析式为将A(1,6),C(﹣2,0)代入一次函数y=kx+b,可得解得∴一次函数的解析式为y=2x+4(2)由可得,解得x1=1,x2=﹣3∵当x=﹣3时,y=﹣2∴点B坐标为(﹣3,﹣2)26.(8分)在2014年“元旦”前夕,某商场试销一种成本为30元的文化衫,经试销发现,若每件按34元的价格销售,每天能卖出36件;若每件按39元的价格销售,每天能卖出21件.假定每天销售件数y(件)是销售价格x(元)的一次函数.(1)直接写出y与x之间的函数关系式y=﹣3x+138.(2)在不积压且不考虑其他因素的情况下,每件的销售价格定为多少元时,才能使每天获得的利润P最大?【解答】解:(1)设y=kx+b,则(34,36),(39,21),故,解得:,∴y与x之间的函数关系式y=﹣3x+138;故答案为:﹣3x+138;(2)设每件的销售价格定为x元时,才能使每天获得的利润P最大,P=(x﹣30)(﹣3x+138)=﹣3x2+228x﹣4140,当x=﹣=﹣=38,故当每件的销售价格定为38元时,才能使每天获得的利润P最大.27.(10分)以坐标原点为圆心,1为半径的圆分别交x,y轴的正半轴于点A,B.(1)如图一,动点P从点A处出发,沿x轴向右匀速运动,与此同时,动点Q从点B处出发,沿圆周按顺时针方向匀速运动.若点Q的运动速度比点P的运动速度慢,经过1秒后点P运动到点(2,0),此时PQ恰好是⊙O的切线,连接OQ.求∠QOP的大小;(2)若点Q按照(1)中的方向和速度继续运动,点P停留在点(2,0)处不动,求点Q 再经过5秒后直线PQ被⊙O截得的弦长.【解答】解:(1)如图一,连接AQ.由题意可知:OQ=OA=1.∵OP=2,∴A为OP的中点.∵PQ与⊙O相切于点Q,∴△OQP为直角三角形.∴.即△OAQ为等边三角形.∴∠QOP=60°.(2)由(1)可知点Q运动1秒时经过的弧长所对的圆心角为30°,若Q按照(1)中的方向和速度继续运动,那么再过5秒,则Q点落在⊙O与y轴负半轴的交点处(如图二).设直线PQ与⊙O的另外一个交点为D,过O作OC⊥QD于点C,则C为QD的中点.∵∠QOP=90°,OQ=1,OP=2,∴QP=.∵,∴OC==.∵OC⊥QD,OQ=1,OC=,∴QC==.∴QD=.28.(12分)已知抛物线y=﹣+bx+c与y轴交于点C,与x轴的两个交点分别为A(﹣4,0),B(1,0).(1)求抛物线的解析式;(2)已知点P在抛物线上,连接PC,PB,若△PBC是以BC为直角边的直角三角形,求点P的坐标;(3)已知点E在x轴上,点F在抛物线上,是否存在以A,C,E,F为顶点的四边形是平行四边形?若存在,请直接写出点E的坐标;若不存在,请说明理由.【解答】解:(1)抛物线的解析式为y=﹣(x+4)(x﹣1),即y=﹣x2﹣x+2;(2)存在.当x=0,y═﹣x2﹣x+2=2,则C(0,2),∴OC=2,∵A(﹣4,0),B(1,0),∴OA=4,OB=1,AB=5,当∠PCB=90°时,∵AC2=42+22=20,BC2=22+12=5,AB2=52=25∴AC2+BC2=AB2∴△ACB是直角三角形,∠ACB=90°,∴当点P与点A重合时,△PBC是以BC为直角边的直角三角形,此时P点坐标为(﹣4,0);当∠PBC=90°时,PB∥AC,如图1,设直线AC的解析式为y=mx+n,把A(﹣4,0),C(0,2)代入得,解得,∴直线AC的解析式为y=x+2,∵BP∥AC,∴直线BP的解析式为y=x+p,把B(1,0)代入得+p=0,解得p=﹣,∴直线BP的解析式为y=x﹣,解方程组得或,此时P点坐标为(﹣5,﹣3);综上所述,满足条件的P点坐标为(﹣4,0),P2(﹣5,﹣3);(3)存在点E,设点E坐标为(m,0),F(n,﹣n2﹣n+2)①当AC为边,CF1∥AE1,易知CF1=3,此时E1坐标(﹣7,0),②当AC为边时,AC∥EF,易知点F纵坐标为﹣2,∴﹣n2﹣n+2=﹣2,解得n=,得到F2(,﹣2),F3(,﹣2),根据中点坐标公式得到:=或=,解得m=或,此时E2(,0),E3(,0),③当AC为对角线时,AE4=CF1=3,此时E4(﹣1,0),综上所述满足条件的点E为(﹣7,0)或(﹣1,0)或(,0)或(,0).。

黑龙江省大庆市中考三模数学考试试卷

黑龙江省大庆市中考三模数学考试试卷

黑龙江省大庆市中考三模数学考试试卷姓名:________ 班级:________ 成绩:________一、填空题: (共10题;共10分)1. (1分)如果关于x的不等式组的整数解仅有1,2,那么适合这个不等式组的整数a,b组成的有序数对(a,b)共有________个.2. (1分) (2017九下·梁子湖期中) 分解因式:x3﹣9x=________.3. (1分)袋中共有2个红球,4个黄球,从中任取一个球是白球,这个事件是________事件.4. (1分)如果反比例函数y= 的图象在每一个象限内y随x的增大而增大,那么a满足的条件是________.5. (1分) (2020七下·湘桥期末) 为了了解班中学生每月的零花钱,某班5名同学记录了自己一周的零花钱分别是:12,9,10,11,13(单位:元),如果该班有50名学生,估计全班同学一周的零花钱约为________元。

6. (1分)已知经过原点的抛物线y=﹣2x2+4x与x轴的另一个交点为A,现将抛物线向右平移m(m>0)个单位长度,所得抛物线与x轴交于C,D,与原抛物线交于点P,设△PCD的面积为S,则用m表示S=________.7. (1分)(2019·瑞安模拟) 如图所示,在两建筑物之间有一高为15米的旗杆,从高建筑物的顶端A点经过旗杆顶点恰好看到矮建筑物的底端墙角C点,且俯角a为60°,又从A点测得矮建筑物左上角顶端D点的俯角β为30°,若旗杆底部点G为BC的中点(点B为点A向地面所作垂线的垂足)则矮建筑物的高CD为________.8. (1分)(2019·营口) 如图,在矩形ABCD中,,,点E从点A出发,以每秒2个单位长度的速度沿AD向点D运动,同时点F从点C出发,以每秒1个单位长度的速度沿CB向点B运动,当点E到达点D时,点E,F同时停止运动.连接BE,EF,设点E运动的时间为t,若是以BE为底的等腰三角形,则t 的值为________.9. (1分)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为________.10. (1分) (2018六上·普陀期末) 已知有大小两种纸杯和一桶果汁,其中小纸杯与大纸杯的容量之比为,如果果汁恰好装满小纸杯个,则可以装满大纸杯的个数是________.二、选择题 (共6题;共12分)11. (2分)在Rt△ABC中,cotA=,则∠A的度数是()A . 90°B . 60°C . 45°D . 30°12. (2分)如图所示,把一个正方形三次对折后沿虚线剪下,则所得图形是()A .B .C .D .13. (2分) (2019七上·丹东期中) 如图是由若干个同样大小的正方体搭成几何体从上往下看到的图形,小正方形中的数字表示该位置立方体的个数,则这个几何体从正面看应该是()A .B .C .D .14. (2分) (2019七下·宜兴期中) 若a=0.32 , b=﹣3﹣2 , c=(﹣3)0 ,那么a、b、c三数的大小为()A . a>c>bB . a>b>cC . c>b>aD . c>a>b15. (2分)函数中,自变量x的取值范围是()A . 全体实数B . x≠1C . x>1D . x≥116. (2分)如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2 ,则该半圆的半径为()A . (4+)cmB . 9 cmC . 4cmD . 6cm三、解答题 (共10题;共73分)17. (5分)计算:①2cos30°+|﹣3|﹣(2010﹣π)0+(﹣1)2011②sin230°+sin45°tan60°+cos230°﹣tan30°.18. (10分)(2020·杭州模拟)(1)计算:;(2)先化简,再求值:,其中, .19. (15分) (2017八下·沧州期末) 某森林公园从正门到侧门有一条公路供游客运动,甲徒步从正门出发匀速走向侧门,出发一段时间开始休息,休息了0.6小时后仍按原速继续行走.乙与甲同时出发,骑自行车从侧门匀速前往正门,到达正门后休息0.2小时,然后按原路原速匀速返回侧门.图中折线分别表示甲、乙到侧门的路程y(km)与甲出发时间x(h)之间的函数关系图象.根据图象信息解答下列问题.(1)求甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式.(2)求甲、乙第一次相遇的时间.(3)直接写出乙回到侧门时,甲到侧门的路程.20. (5分)如图:等腰梯形ABCD中,AD∥BC,AB=DC,AD=3,AB=4,∠B=60°求梯形的面积.21. (6分) (2019九上·泉州月考) 如果一元二次方程ax2+bx+c=0 的两根 x1 , x2均为正数,其中x1>x2 ,且满足1<x1﹣x2<2,那么称这个方程有“友好根”.(1)方程(x﹣)(x﹣)=0________“友好根”(填:“有”或“没有”);(2)已知关于x的 x2﹣(t﹣1)x+t﹣2=0有“友好根”,求 t的取值范围.22. (7分)某同学报名参加学校秋季运动会,有以下 5 个项目可供选择:径赛项目:100m、200m、1000m (分别用 A1、A2、A3 表示);田赛项目:跳远,跳高(分别用 T1、T2 表示).(1)该同学从 5 个项目中任选一个,恰好是田赛项目的概率 P 为________;(2)该同学从5个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率 P1,利用列表法或树状图加以说明;(3)该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率 P2 为________.23. (5分) CD是经过∠BCA的顶点C的一条直线,CA=CB,E、F分别是直线CD上两点,且∠BEC=∠CFA=∠,若直线CD经过∠BCA的内部,且E、F在射线C、D上,请解答下面的三个问题:(1)如图1,若∠BCA=,∠=,则∠BCE∠CAF;BE CF(填“>”、“<”、“=”);并证明这两个结论。

黑龙江省大庆市2017年中考数学模拟试卷(3月)(含答案解析)

黑龙江省大庆市2017年中考数学模拟试卷(3月)(含答案解析)

2017年黑龙江省大庆市中考数学模拟试卷(3月份)一、选择题(本题共10个小题,每小题3分,共30分)1.5的倒数为()A.B.5C.D.﹣52.下列各式运算正确的是()A.2﹣1=﹣2B.23=6C.22•23=26D.(23)2=263.如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm4.如图,在△ABC中,AC=DC=DB,∠ACD=100°,则∠B等于()A.50°B.40°C.25°D.20°5.甲、乙两名学生10次立定跳远成绩的平均数相同,若甲10次立定跳远成绩的方差S甲2=0.006,2=0.035,则()乙10次立定跳远成绩的方差S乙A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人成绩的稳定性不能比较6.经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是()A.B.C.D.7.如图,桌上放着一摞书和一个茶杯,从左边看到的图形是()A.B.C.D.8.如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是()A.∠3=∠4B.∠A+∠ADC=180°C.∠1=∠2D.∠A=∠59.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)10.反比例函数y=(k>0)的部分图象如图所示,A,B是图象上两点,AC⊥x轴于点C,BD ⊥x轴于点D,若△AOC的面积为S1,△BOD的面积为S2,则S1和S2的大小关系为()A.S1>S2B.S1=S2C.S1<S2D.无法确定二、填空题(本题共8小题,每小题3分,共24分)11.2008年5月18日晚,中央电视台举办了“爱的奉献”大型募捐活动.据了解,本次活动社会各界共向四川灾区捐款大约1510000000元人民币,这个数字用科学记数法可表示为元人民币.12.已知|x|=5,y=3,则x﹣y=.13.计算:=.。

模拟测评黑龙江省大庆市中考数学三模试题(含答案详解)

模拟测评黑龙江省大庆市中考数学三模试题(含答案详解)

黑龙江省大庆市中考数学三模试题 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,有三块菜地△ACD 、△ABD 、△BDE 分别种植三种蔬菜,点D 为AE 与BC 的交点,AD 平分∠BAC ,AD =DE ,AB =3AC ,菜地△BDE 的面积为96,则菜地△ACD 的面积是( ) A .24 B .27 C .32 D .362、生活中常见的探照灯、汽车大灯等灯具都与抛物线有关.如图,从光源P 点照射到抛物线上的光线,PA PB 等反射以后沿着与直线PF 平行的方向射出,若CAP α∠=︒,DBP β∠=︒,则APB ∠的度数为( )° A .2αB .2βC .αβ+D .5()4αβ+ ·线○封○密○外3、下列各式中,不是代数式的是( )A .5ab 2B .2x +1=7C .0D .4a ﹣b4、有理数a ,b 在数轴上对应的位置如图所示,则下列结论正确的是( ).A .0a >B .1b >C .0a b ->D .a b >5、整式mx n -的值随x 取值的变化而变化,下表是当x 取不同值时对应的整式的值:则关于x 的方程8mx n -+=的解为( )A .1x =-B .0x =C .1x =D .3x =6、如图,菱形OABC 的边OA 在平面直角坐标系中的x 轴上,60AOC ∠=︒,4OA =,则点C 的坐标为( )A .(2,B .()2C .(D .()2,27、2021年10月16日,中国神舟十三号载人飞船的长征二号F 遥十三运载火箭在中国酒泉卫星发射中心按照预定时间精准点火发射,约582秒后,神舟十三号载人飞船与火箭成功分离,进入预定轨道,截至2021年11月2日,“神舟十三号”载人飞船已在轨飞行18天,距离地球约63800000千米,用科学记数法表示63800000为( )A .66.3810⨯B .76.3810⨯C .86.3810⨯D .96.3810⨯8、一元二次方程240x -=的根为( )A .2x =-B .2x =C .2x =± D.x =9、如图,一个几何体是由六个大小相同且棱长为1的立方块组成,则这个几何体的表面积是( )A .16B .19C .24D .36 10、下列图形中,能用AOB ∠,1∠,O ∠三种方法表示同一个角的是( ) A . B .C .D . 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分)1、在下图中,AB 是O 的直径,要使得直线AT 是O 的切线,需要添加的一个条件是________.(写一个条件即可) ·线○封○密○外2、如图中给出了某城市连续5天中,每一天的最高气温和最低气温(单位:C ︒),那么最大温差是________C ︒.3、若关于x 的一元二次方程x 2﹣10x +m =0可以通过配方写成(x ﹣n )2=0的形式,那么于m +n 的值是___________4、若23x y -=,则()2225x y x y --+-的值是______.5、在平行四边形ABCD 中,对角线AC 长为8cm ,30BAC ∠=︒,5cm AB =,则它的面积为______cm 2.三、解答题(5小题,每小题10分,共计50分)1、作图题:如图,在平面直角坐标系中,ABC 的顶点(0,1),(2,0),(4,4)A B C 均在正方形网格的格点上.(1)画出ABC 关于x 轴对称的图形111A B C △并写出顶点1A ,1C 的坐标;(2)已知P 为y 轴上一点,若ABP △与ABC 的面积相等,请直接与出点P 的坐标. 2、(1)如图1,四边形ABCD 是矩形,以对角线AC 为直角边作等腰直角三角形EAC ,且90EAC ∠=︒.请证明:22222EC AB BC =+; (2)图2,在矩形ABCD 中,2AB =,6BC =,点P 是AD 上一点,且04AP <<,连接PC ,以PC 为直角边作等腰直角三角形EPC ,90EPC ∠=︒,设AP x =,EC y =,请求出y 与x 的函数关系式; (3)在(2)的条件下,连接BE ,若点P 在线段AD 上运动,在点P 的运动过程中,当EBC 是等腰三角形时,求AP 的长.3、如图,在同一剖面内,小明在点A 处用测角仪测得居民楼的顶端F 的仰角为27°,他水平向右前进了30米来到斜坡的坡脚B 处,沿着斜坡BC 上行25米到达C 点,用测角仪测得点F 的仰角为54°,然后,水平向右前进一段路程来到了居民楼的楼底E 处,若斜坡BC 的坡度为3:4,请你求出居民楼EF 的高度. (测角仪的高度忽略不计,计算结果精确到0.1米.参考数据:sin 270.45︒≈,tan 270.51︒≈,sin540.81︒≈,tan54 1.38︒≈)4、数学课上,王老师准备了若干个如图1的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为b ,宽为a 的长方形.并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形. ·线○封○密·○外(1)请用两种不同的方法求图2大正方形的面积:方法1: ;方法2: ;(2)观察图2,请你写出代数式:(a +b )2,a 2+b 2,ab 之间的等量关系 ;(3)根据(2)题中的等量关系,解决如下问题:①已知:a +b =5,(a ﹣b )2=13,求ab 的值;②已知(2021﹣a )2+(a ﹣2020)2=5,求(2021﹣a )(a ﹣2020)的值.5、如图,在ABC 中,AB AC =,AD BC ⊥于点D ,E 为AC 边上一点,连接BE 与AD 交于点F .G 为ABC 外一点,满足ACG ABE ∠=∠,FAG BAC ∠=∠,连接EG .(1)求证:ABF ACG ≅△△;(2)求证:BE CG EG =+.-参考答案-一、单选题1、C【解析】【分析】利用三角形的中线平分三角形的面积求得S △ABD =S △BDE =96,利用角平分线的性质得到△ACD 与△ABD 的高相等,进一步求解即可. 【详解】 解:∵AD =DE ,S △BDE =96, ∴S △ABD =S △BDE =96, 过点D 作DG ⊥AC 于点G ,过点D 作DF ⊥AB 于点F ,∵AD 平分∠BAC , ∴DG=DF , ∴△ACD 与△ABD 的高相等, 又∵AB =3AC , ∴S △ACD =13S △ABD =196323⨯=. 故选:C . 【点睛】 本题考查了角平分线的性质,三角形中线的性质,解题的关键是灵活运用所学知识解决问题. 2、 C ·线○封○密○外【解析】【分析】根据平行线的性质可得,EPA PAC EPB PBD ∠=∠∠=∠,进而根据APB APE BPE ∠=∠+∠即可求解【详解】 解:,PF AC PF BD ∥∥∴,EPA PAC EPB PBD ∠=∠∠=∠∴APB APE BPE ∠=∠+∠αβ=+故选C【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.3、B【解析】【分析】根据代数式的定义即可判定.【详解】A. 5ab 2是代数式;B. 2x +1=7是方程,故错误;C. 0是代数式;D. 4a ﹣b 是代数式;故选B .【点睛】此题主要考查代数式的判断,解题的关键是熟知:代数式的定义:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.单独的一个数或一个字母也是代数式.4、D【解析】【分析】先根据数轴可得101a b <-<<<,再根据有理数的减法法则、绝对值性质逐项判断即可得.【详解】 解:由数轴的性质得:101a b <-<<<. A 、0a <,则此项错误; B 、1b <,则此项错误; C 、0a b -<,则此项错误; D 、1a b >>,则此项正确; 故选:D . 【点睛】 本题考查了数轴、有理数的减法、绝对值,熟练掌握数轴的性质是解题关键. 5、A 【解析】 【分析】 根据等式的性质把8mx n -+=变形为8mx n -=-;再根据表格中的数据求解即可. 【详解】 解:关于x 的方程8mx n -+=变形为8mx n -=-, 由表格中的数据可知,当8mx n -=-时,1x =-; 故选:A .·线○封○密○外【点睛】本题考查了等式的性质,解题关键是恰当地进行等式变形,根据表格求解.6、A【解析】【分析】如图:过C 作CE ⊥OA ,垂足为E ,然后求得∠OCE =30°,再根据含30°角直角三角形的性质求得OE ,最后运用勾股定理求得CE 即可解答.【详解】解:如图:过C 作CE ⊥OA ,垂足为E ,∵菱形OABC ,4OA =∴OC =OA =4∵60AOC ∠=︒,∴∠OCE =30°∵OC =4∴OE =2∴CE==∴点C 的坐标为(2,.故选A .【点睛】 本题主要考查了菱形的性质、含30°直角三角形的性质、勾股定理等知识点,作出辅助线、求出OE 、CE 的长度是解答本题的关键. 7、B 【解析】 【分析】 科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数;确定n 的值时,要把原数变成a ,小数点移动了多少位,n 的绝对值与小数点移动的位数相同;当原数的绝对值大于10时,n 为正整数,当原数的绝对值小于1时,n 为负整数. 【详解】 763800000 6.3810=⨯ 故选:B 【点睛】 本题考查了科学记数法的表示方法;科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,熟练地掌握科学记数法的表示方法是解本题的关键. 8、C 【解析】 【分析】 ·线○封○密○外先移项,把方程化为24,x = 再利用直接开平方的方法解方程即可.【详解】解:240x -=,24,x ∴=2,x ∴=± 即122,2,x x故选C【点睛】本题考查的是一元二次方程的解法,掌握“利用直接开平方的方法解一元二次方程”是解本题的关键.9、C【解析】【分析】分别求出各视图的面积,故可求出表面积.【详解】由图可得图形的正视图面积为4,左视图面积为 3,俯视图的面积为5故表面积为2×(4+3+5)=24故选C .【点睛】此题主要考查三视图的求解与表面积。

黑龙江省大庆市中考数学3月模拟试卷(含解析)

黑龙江省大庆市中考数学3月模拟试卷(含解析)

2017年黑龙江省大庆市中考数学模拟试卷(3月份)一、选择题(本题共10个小题,每小题3分,共30分)1.5的倒数为()A.B.5 C.D.﹣52.下列各式运算正确的是()A.2﹣1=﹣2 B.23=6 C.22•23=26D.(23)2=263.如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm4.如图,在△ABC中,AC=DC=DB,∠ACD=100°,则∠B等于()A.50° B.40° C.25° D.20°5.甲、乙两名学生10次立定跳远成绩的平均数相同,若甲10次立定跳远成绩的方差S甲2=0.006,乙10次立定跳远成绩的方差S2=0.035,则()乙A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人成绩的稳定性不能比较6.经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是()A.B.C.D.7.如图,桌上放着一摞书和一个茶杯,从左边看到的图形是()A.B.C.D.8.如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是()A.∠3=∠4 B.∠A+∠ADC=180°C.∠1=∠2 D.∠A=∠59.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)10.反比例函数y=(k>0)的部分图象如图所示,A,B是图象上两点,AC⊥x轴于点C,BD⊥x轴于点D,若△AOC的面积为S1,△BOD的面积为S2,则S1和S2的大小关系为()A.S1>S2B.S1=S2 C.S1<S2D.无法确定二、填空题(本题共8小题,每小题3分,共24分)11.2008年5月18日晚,中央电视台举办了“爱的奉献”大型募捐活动.据了解,本次活动社会各界共向四川灾区捐款大约1510000000元人民币,这个数字用科学记数法可表示为元人民币.12.已知|x|=5,y=3,则x﹣y= .13.计算: = .14.函数y=中自变量x的取值范围是.15.如图,直线AB、CD相交于点O,OE⊥AB,垂足为O,如果∠EOD=42°,则∠AOC= 度.16.如图,已知矩形ABCD,P、R分别是BC和DC上的点,E、F分别是PA,PR的中点.如果DR=3,AD=4,则EF的长为.17.观察下面两行数:2,4,8,16,32,64,…①5,7,11,19,35,67,…②根据你发现的规律,取每行数的第10个数,求得它们的和是(要求写出最后的计算结果).18.如图,菱形AB1C1D1的边长为1,∠B1=60°;作AD2⊥B1C1于点D2,以AD2为一边,做第二个菱形AB2C2D2,使∠B2=60°;作AD3⊥B2C2于点D3,以AD3为一边做第三个菱形AB3C3D3,使∠B3=60°…依此类推,这样做的第n个菱形AB n C n D n的边AD n的长是.三、解答题(本题共3小题,每小题5分,共15分)19.计算:(﹣1)﹣2+2sin245°﹣(1﹣)020.先化简,再求值:÷x,其中x=.21.解方程组:.四、应用题(本大题2小题,共12分)22.在同一条件下,对同一型号的汽车进行耗油1升所行驶路程的实验,将收集到的数据作为一个样本进行分析,绘制出部分频数分布直方图和部分扇形统计图.如下图所示(路程单位:km)结合统计图完成下列问题:(1)扇形统计图中,表示12.5≤x<13部分的百分数是;(2)请把频数分布直方图补充完整,这个样本数据的中位数落在第组;(3)哪一个图能更好地说明一半以上的汽车行驶的路程在13≤x<14之间?哪一个图能更好地说明行驶路程在12.5≤x<13的汽车多于在14≤x<14.5的汽车?23.海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.五、推理与计算(本大题3小题,共21分)24.已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x 轴对称,若△OAB的面积为6,求m的值.25.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.(1)求证:△ABF≌△EDF;(2)若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.26.已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=.(1)求证:AM•MB=EM•MC;(2)求EM的长;(3)求sin∠EOB的值.六、综合应用与探究(本大题2小题,共18分)27.夏季来临,商场准备购进甲、乙两种空调,已知甲种空调每台进价比乙种空调多500元,用40000元购进甲种空调的数量与用30000元购进乙种空调的数量相同.请解答下列问题:(1)求甲、乙两种空调每台的进价;(2)若甲种空调每台售价2500元,乙种空调每台售价1800元,商场计划用不超过36000元购进空调共20台,且全部售出,请写出所获利润y(元)与甲种空调x(台)之间的函数关系式,并求出所能获得的最大利润.28.已知抛物线y=﹣ax2+2ax+b与x轴的一个交点为A(﹣1,0),与y轴的正半轴交于点C.(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;(2)当点C在以AB为直径的⊙P上时,求抛物线的解析式;(3)坐标平面内是否存在点M,使得以点M和(2)中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.2017年黑龙江省大庆市杜尔伯特二中中考数学模拟试卷(3月份)参考答案与试题解析一、选择题(本题共10个小题,每小题3分,共30分)1.5的倒数为()A.B.5 C.D.﹣5【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:5的倒数是,故选:A.2.下列各式运算正确的是()A.2﹣1=﹣2 B.23=6 C.22•23=26D.(23)2=26【考点】负整数指数幂;有理数的乘方;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别根据负整数指数幂、有理数的乘方、同底数幂的乘法、幂的乘方与积的乘方的法则计算即可.【解答】解:A、错误,应等于;B、错误,应等于8;C、错误,应等于25;D、正确.故选D.3.如图,C,D是线段AB上两点.若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于()A.3cm B.6cm C.11cm D.14cm【考点】两点间的距离.【分析】先根据CB=4cm,DB=7cm求出CD的长,再根据D是AC的中点求出AC的长即可.【解答】解:∵C,D是线段AB上两点,CB=4cm,DB=7cm,∴CD=DB﹣BC=7﹣4=3cm,∵D是AC的中点,∴AC=2CD=2×3=6cm.故选B.4.如图,在△ABC中,AC=DC=DB,∠ACD=100°,则∠B等于()A.50° B.40° C.25° D.20°【考点】三角形的外角性质;三角形内角和定理.【分析】根据等边对等角和三角形的内角和定理,可先求得∠CAD的度数;再根据外角的性质,求∠B的度数.【解答】解:∵AC=DC=DB,∠ACD=100°,∴∠CAD==40°,∵∠CDB是△ACD的外角,∴∠CDB=∠A+∠ACD=100°=40°+100°=140°,∵DC=DB,∴∠B==20°.故选D.5.甲、乙两名学生10次立定跳远成绩的平均数相同,若甲10次立定跳远成绩的方差S甲2=0.035,则()2=0.006,乙10次立定跳远成绩的方差S乙A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人成绩的稳定性不能比较【考点】方差;算术平均数.【分析】本题考查了如何判定一组数据的稳定性,数据的方差越小,数据就越稳定.【解答】解:因为甲乙平均数相同,而S甲2=0.006,S乙2=0.035,很显然S甲2<S乙2,所以甲的成绩更稳定一些.故选A.6.经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,看两辆汽车经过这个十字路口全部继续直行的情况占总情况的多少即可.【解答】解:列表得:∴一共有9种情况,两辆汽车经过这个十字路口全部继续直行的有一种,∴两辆汽车经过这个十字路口全部继续直行的概率是,故选A.7.如图,桌上放着一摞书和一个茶杯,从左边看到的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从左面看所得到的图形即可.【解答】解:从左面可看到几个上下相邻的长方形上面有一个小长方形.故选D.8.如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是()A.∠3=∠4 B.∠A+∠ADC=180°C.∠1=∠2 D.∠A=∠5【考点】平行线的判定.【分析】结合图形分析两角的位置关系,根据平行线的判定方法判断.【解答】解:∵∠1=∠2,∴BC∥AD(内错角相等,两直线平行).故选C.9.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由题意可知此题规律是(x+2,y﹣3),照此规律计算可知顶点P(﹣4,﹣1)平移后的坐标是(﹣2,﹣4).故选A.10.反比例函数y=(k>0)的部分图象如图所示,A,B是图象上两点,AC⊥x轴于点C,BD⊥x轴于点D,若△AOC的面积为S1,△BOD的面积为S2,则S1和S2的大小关系为()A.S1>S2B.S1=S2 C.S1<S2D.无法确定【考点】反比例函数系数k的几何意义.【分析】根据反比例函数的性质可以得到△AOC和△DBO的面积等于|k|的一半,由此可以得到它们的关系.【解答】解:依据比例系数k的几何意义可得两个三角形的面积都等于|k|,故S1=S2.故选B.二、填空题(本题共8小题,每小题3分,共24分)11.2008年5月18日晚,中央电视台举办了“爱的奉献”大型募捐活动.据了解,本次活动社会各界共向四川灾区捐款大约1510000000元人民币,这个数字用科学记数法可表示为1.51×109元人民币.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1510000000元人民币,这个数字用科学记数法可表示为 1.51×109元人民币,故答案为:1.51×109.12.已知|x|=5,y=3,则x﹣y= 2或﹣8 .【考点】有理数的减法;绝对值.【分析】绝对值等于一个正数的数有两个,且它们互为相反数.熟练运用有理数的运算法则.【解答】解:∵|x|=5,∴x=±5,又y=3,则x﹣y=2或﹣8.13.计算: = .【考点】分式的加减法.【分析】本题考查了分式的加减运算.解决本题首先应通分,最后要注意将结果化为最简分式.【解答】解:原式=.故答案为.14.函数y=中自变量x的取值范围是x≥﹣且x≠1 .【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式求解即可.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故答案为:x≥﹣且x≠1.15.如图,直线AB、CD相交于点O,OE⊥AB,垂足为O,如果∠EOD=42°,则∠AOC= 48 度.【考点】垂线;对顶角、邻补角.【分析】由OE⊥AB,∠EOD=42°,利用互余关系求∠BOD,再利用对顶角相等求∠AOC.【解答】解:∵OE⊥AB,∠EOD=42°,∴∠BOD=90°﹣∠EOD90°﹣42°=48°,∵∠BOD与∠AOC是对顶角,∴∠BOD=∠AOC=48°.16.如图,已知矩形ABCD,P、R分别是BC和DC上的点,E、F分别是PA,PR的中点.如果DR=3,AD=4,则EF的长为 2.5 .【考点】三角形中位线定理;矩形的性质.【分析】根据勾股定理求AR;再运用中位线定理求EF.【解答】解:∵四边形ABCD是矩形,∴△ADR是直角三角形,∵DR=3,AD=4,∴AR===5,∵E、F分别是PA,PR的中点,∴EF=AR=×5=2.5.故答案为:2.5.17.观察下面两行数:2,4,8,16,32,64,…①5,7,11,19,35,67,…②根据你发现的规律,取每行数的第10个数,求得它们的和是2051 (要求写出最后的计算结果).【考点】规律型:数字的变化类.【分析】观察①中各数都符合2n的形式,②中各数比①中对应数字大3,按此规律即可求得①、②中第10个数的值,从而求和.【解答】解:根据题意可知,①中第10个数为210=1024;②第10个数为210+3=1027,故它们的和为1024+1027=2051.18.如图,菱形AB1C1D1的边长为1,∠B1=60°;作AD2⊥B1C1于点D2,以AD2为一边,做第二个菱形AB2C2D2,使∠B2=60°;作AD3⊥B2C2于点D3,以AD3为一边做第三个菱形AB3C3D3,使∠B3=60°…依此类推,这样做的第n个菱形AB n C n D n的边AD n的长是.【考点】菱形的性质.【分析】本题要找出规律方能解答.第一个菱形边长为1,∠B1=60°,可求出AD2,即第二个菱形的边长…按照此规律解答即可.【解答】解:第1个菱形的边长是1,易得第2个菱形的边长是;第3个菱形的边长是()2;…每作一次,其边长为上一次边长的;故第n个菱形的边长是()n﹣1.故答案为:()n﹣1.三、解答题(本题共3小题,每小题5分,共15分)19.计算:(﹣1)﹣2+2sin245°﹣(1﹣)0【考点】特殊角的三角函数值;零指数幂;负整数指数幂.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式==1.20.先化简,再求值:÷x,其中x=.【考点】分式的化简求值.【分析】本题的关键是正确进行分式的通分、约分,并准确代值计算.【解答】解:原式==+1=,当x=时,原式==﹣4.21.解方程组:.【考点】解二元一次方程组.【分析】此题先采用加减消元法再用代入消元法最简单,将(1)+(2)即可达到消元的目的.【解答】解:①+②,得3x=9,∴x=3.把x=3代入②,得3﹣y=5,∴y=﹣2.∴原方程组的解是.四、应用题(本大题2小题,共12分)22.在同一条件下,对同一型号的汽车进行耗油1升所行驶路程的实验,将收集到的数据作为一个样本进行分析,绘制出部分频数分布直方图和部分扇形统计图.如下图所示(路程单位:km)结合统计图完成下列问题:(1)扇形统计图中,表示12.5≤x<13部分的百分数是;(2)请把频数分布直方图补充完整,这个样本数据的中位数落在第组;(3)哪一个图能更好地说明一半以上的汽车行驶的路程在13≤x<14之间?哪一个图能更好地说明行驶路程在12.5≤x<13的汽车多于在14≤x<14.5的汽车?【考点】频数(率)分布直方图;扇形统计图;中位数.【分析】(1)用单位1减去其他所占的百分比即可;(2)以第3组为基准算出总数:9÷0.3=30,那么中位数应是第15个和第16个的平均数,前两个小组的人数之和为:2+30×0.3=11,那么中位数就落在第3小组;(3)直方图能反映数据集中的趋势,扇形统计图能更好的显示出相应的百分比.【解答】解:(1)1﹣13.3%﹣6.7%﹣30%﹣30%=20%;(2)第2组的频数=30×20%=6,如图:样本数据的中位数落在第3组;(3)扇形统计图能很好地说明一半以上的汽车行驶的路程在13≤x<14之间;条形统计图(或直方统计图)能更好地说明行驶路程在12.5≤x<13的汽车多于在14≤x<14.5的汽车.23.海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.【考点】解直角三角形的应用﹣方向角问题.【分析】过点P作PD⊥AC于D,在Rt△PBD和Rt△PAD中,根据三角函数AD,BD就可以PD 表示出来,根据AB=12海里,就得到一个关于PD的方程,求得PD.从而可以判断如果渔船不改变航线继续向东航行,有没有触礁危险.【解答】解:有触礁危险.理由:过点P作PD⊥AC于D.设PD为x,在Rt△PBD中,∠PBD=90°﹣45°=45度.∴BD=PD=x.在Rt△PAD中,∵∠PAD=90°﹣60°=30°∴AD=x∵AD=AB+BD∴x=12+x∴x=∵6(+1)<18∴渔船不改变航线继续向东航行,有触礁危险.五、推理与计算(本大题3小题,共21分)24.已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x 轴对称,若△OAB的面积为6,求m的值.【考点】反比例函数的性质;反比例函数的图象;反比例函数图象上点的坐标特征;关于x 轴、y轴对称的点的坐标.【分析】(1)根据反比例函数的图象是双曲线.当k>0时,则图象在一、三象限,且双曲线是关于原点对称的;(2)由对称性得到△OAC的面积为3.设A(x、),则利用三角形的面积公式得到关于m的方程,借助于方程来求m的值.【解答】解:(1)根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m﹣7>0,则m>7;(2)∵点B与点A关于x轴对称,若△OAB的面积为6,∴△OAC的面积为3.设A(x,),则x•=3,解得m=13.25.如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.(1)求证:△ABF≌△EDF;(2)若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.【考点】翻折变换(折叠问题);全等三角形的判定;菱形的判定.【分析】(1)因为△BCD关于BD折叠得到△BED,显然△BCD≌△BED,得出CD=DE=AB,∠E=∠C=∠A=90°.再加上一对对顶角相等,可证出△ABF≌△EDF;(2)利用折叠知识及菱形的判定可得出四边形BMDF是菱形.【解答】(1)证明:由折叠可知,CD=ED,∠E=∠C.在矩形ABCD中,AB=CD,∠A=∠C.∴AB=ED,∠A=∠E.∵∠AFB=∠EFD,∴△AFB≌△EFD.(2)解:四边形BMDF是菱形.理由:由折叠可知:BF=BM,DF=DM.由(1)知△AFB≌△EFD,∴BF=DF.∴BM=BF=DF=DM.∴四边形BMDF是菱形.26.已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=.(1)求证:AM•MB=EM•MC;(2)求EM的长;(3)求sin∠EOB的值.【考点】相似三角形的判定与性质;勾股定理;圆周角定理;锐角三角函数的定义.【分析】(1)连接A、C,E、B点,那么只需要求出△AMC和△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB;(2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度;(3)过点E作EF⊥AB,垂足为点F,通过作辅助线,解直角三角形,结合已知条件和(1)(2)所求的值,可推出Rt△EOF各边的长度,根据锐角三角函数的定义,便可求得sin∠EOB的值.【解答】(1)证明:连接AC、EB,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB,∴,∴AM•BM=EM•CM;(2)解:∵DC是⊙O的直径,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=,CD=8,且EC为正数,∴EC=7,∵M为OB的中点,∴BM=2,AM=6,∵AM•BM=EM•CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4;(3)解:过点E作EF⊥AB,垂足为点F,∵OE=4,EM=4,∴OE=EM,∴OF=FM=1,∴EF=,∴sin∠EOB=.六、综合应用与探究(本大题2小题,共18分)27.夏季来临,商场准备购进甲、乙两种空调,已知甲种空调每台进价比乙种空调多500元,用40000元购进甲种空调的数量与用30000元购进乙种空调的数量相同.请解答下列问题:(1)求甲、乙两种空调每台的进价;(2)若甲种空调每台售价2500元,乙种空调每台售价1800元,商场计划用不超过36000元购进空调共20台,且全部售出,请写出所获利润y(元)与甲种空调x(台)之间的函数关系式,并求出所能获得的最大利润.【考点】二次函数的应用;分式方程的应用.【分析】(1)根据题意可以列出相应的方程,从而可以分别求得甲、乙两种空调每台的进价,注意分式方程要检验;(2)根据题意和(1)中的答案可以得到所获利润y(元)与甲种空调x(台)之间的函数关系式,然后根据商场计划用不超过36000元购进空调共20台,可以求得x的取值范围,从而可以求得所能获得的最大利润.【解答】解:(1)设乙种空调每台进价为x元,,解得,x=1500经检验x=1500是原分式方程的解,∴x+500=2000,答:甲种空调每台2000元,乙种空调每台1500元;(2)由题意可得,所获利润y(元)与甲种空调x(台)之间的函数关系式是:y=x+(20﹣x)=200x+6000,∵2000x+1500(20﹣x)≤36000,解得,x≤12,∴当x=12时,y取得最大值,此时y=200x+6000=8400,答:所获利润y(元)与甲种空调x(台)之间的函数关系式是y=200x+6000,所获的最大利润是8400元.28.已知抛物线y=﹣ax2+2ax+b与x轴的一个交点为A(﹣1,0),与y轴的正半轴交于点C.(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;(2)当点C在以AB为直径的⊙P上时,求抛物线的解析式;(3)坐标平面内是否存在点M,使得以点M和(2)中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)抛物线y=﹣ax2+2ax+b的对称轴,可以根据公式直接求出,抛物线与x轴的另一交点与A关于对称轴对称,因而交点就可以求出.(2)AB的长度可以求出,连接PC,在直角三角形OCP中,根据勾股定理就可以求出C点的坐标,把这点的坐标代入抛物线的解析式,就可以求出解析式.(3)本题应分AC或BC为对角线和以AB为对角线三种情况进行讨论,当以AC或BC为对角线时,点M在x轴上方,此时CM∥AB,且CM=AB.就可以求出点M的坐标.当以AB为对角线时,点M在x轴下方易证△AOC≌△BNM,可以求出点M的坐标.【解答】解:(1)对称轴是直线:x=1,点B的坐标是(3,0).说明:每写对1个给,“直线”两字没写不扣分.(2)如图,连接PC,∵点A、B的坐标分别是A(﹣1,0)、B(3,0),∴AB=4.∴PC=AB=×4=2在Rt△POC中,∵OP=PA﹣OA=2﹣1=1,∴OC=,∴b=当x=﹣1,y=0时,﹣a﹣2a+=0∴a=∴y=﹣x2+x+.(3)存在.理由:如图,连接AC、BC.设点M的坐标为M(x,y).①当以AC或BC为对角线时,点M在x轴上方,此时CM∥AB,且CM=AB.由(2)知,AB=4,∴|x|=4,y=OC=.∴x=±4.∴点M的坐标为M(4,)或(﹣4,).说明:少求一个点的坐标扣.②当以AB为对角线时,点M在x轴下方.过M作MN⊥AB于N,则∠MNB=∠AOC=90度.∵四边形AMBC是平行四边形,∴AC=MB,且AC∥MB.∴∠CAO=∠MBN.∴△AOC≌△BNM.∴BN=AO=1,MN=CO=.∵OB=3,∴0N=3﹣1=2.∴点M的坐标为M(2,﹣).综上所述,坐标平面内存在点M,使得以点A、B、C、M为顶点的四边形是平行四边形.其坐标为M1(4,),M2(﹣4,),M3(2,﹣).说明:①综上所述不写不扣分;②如果开头“存在”二字没写,但最后解答全部正确,不扣分。

2017年大庆市中考数学模拟试题

2017年大庆市中考数学模拟试题

2017年大庆市中考数学模拟试题一.选择题(共10小题)1.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是()A.6.75×103吨 B.67.5×103吨 C.6.75×104吨 D.6.75×105吨2.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙B.丙丁C.甲丙D.乙丁3.下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形4.关于x的不等式x﹣b≥0恰有两个负整数解,则b的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2 5.一个不透明的袋中装有除颜色外其余都相同的1个白球和2个黑球.先从袋中摸出一个球后不再放回,第二次再从袋中摸出一个,那么两次都摸到黑球的概率是()A.B.C.D.6.下面所给几何体的俯视图是()A.B.C.D.7.下列图标中是轴对称图形的是()A.B.C.D.8.下列命题:①对顶角相等;②同位角相等,两直线平行;③若a=b,则|a|=|b|;④若x=0,则x2﹣2x=0它们的逆命题一定成立的有()A.①②③④B.①④C.②④D.②9.已知A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上的两个点,当x1<x2<0时,y1>y2,那么一次函数y=kx﹣k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限10.定义运算:a⋆b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b⋆b﹣a⋆a的值为()A.0 B.1 C.2 D.与m有关二.填空题(共8小题)11.函数y=的自变量x的取值范围是.12.已知a+b=8,a2b2=4,则﹣ab=.13.甲乙两位运动员在一次射击训练中各打五发,成绩的平均环数相同,甲的方差为1.6;乙的成绩(环)为:7,8,10,6,9,那么这两位运动员中的成绩较稳定.14.如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD=度.15.如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短的直角边长为a,较长的直角边长为b,那么(a+b)2的值为.16.如图,在△ABC中,∠C=90°,AC=3,BC=2,边AB的垂直平分线交AC边于点D,交AB边于点E,联结DB,那么tan∠DBC的值是.17.如图,△ABC是等边三角形,AB=2,分别以A,B,C为圆心,以2为半径作弧,则图中阴影部分的面积是.18.如图,四边形OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为.三.解答题(共10小题)19.计算:|﹣2|+(﹣1)2017×(π﹣3)0﹣+()﹣2.20.如果单项式5mx a y与﹣5nx2a﹣3y是关于x、y的单项式,且它们是同类项.求(1)(7a﹣22)2013的值;(2)若5mx a y﹣5nx2a﹣3y=0,且xy≠0,求(5m﹣5n)2014的值.21.解不等式组,并写出该不等式组的最大整数解.22.2016年“母亲节”前夕,宜宾某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?23.为了解本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?24.已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F 在边AB上,连接CF交线段BE于点G,CG2=GE•GD.(1)求证:∠ACF=∠ABD;(2)连接EF,求证:EF•CG=EG•CB.25.如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求PA+PB的最小值.26.某厂家在甲、乙两家商场销售同一商品所获利润分别为y甲,y乙(单位:元),y甲,y乙与销售数量x(单位:件)的函数关系如图所示,请根据图象解决下列问题;(1)分别求出y甲,y乙与x的函数关系式;(2)现厂家分配该商品800件给甲商场,400件给乙商场,当甲、乙商场售完这批商品,厂家可获得总利润是多少元?27.如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M作MN∥OB交CD于N.(1)求证:MN是⊙O的切线;(2)当OB=6cm,OC=8cm时,求⊙O的半径及MN的长.28.如图,二次函数y=ax2﹣x+2(a≠0)的图象与x轴交于A、B两点,与y 轴交于点C,已知点A(﹣4,0).(1)求抛物线与直线AC的函数解析式;(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.2017年大庆市中考数学模拟试题参考答案与试题解析一.选择题(共10小题)1.(2016•眉山)我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是()A.6.75×103吨 B.67.5×103吨 C.6.75×104吨 D.6.75×105吨【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于67500有5位,所以可以确定n=5﹣1=4.【解答】解:67 500=6.75×104.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.2.(2016•河北)点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙B.丙丁C.甲丙D.乙丁【分析】根据有理数的加法法则判断两数的和、差及积的符号,用两个负数比较大小的方法判断.【解答】解:甲:由数轴有,0<a<3,b<﹣3,∴b﹣a<0,甲的说法正确,乙:∵0<a<3,b<﹣3,∴a+b<0乙的说法错误,丙:∵0<a<3,b<﹣3,∴|a|<|b|,丙的说法正确,丁:∵0<a<3,b<﹣3,∴<0,丁的说法错误.故选C【点评】此题考查了绝对值意义,比较两个负数大小的方法,有理数的运算,解本题的关键是掌握有理数的运算.3.(2016•大庆)下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形【分析】直接利用菱形的判定定理、矩形的性质与平行四边形的判定定理求解即可求得答案.【解答】解:A、对角线互相垂直且平分的四边形是菱形;故本选项错误;B、矩形的对角线相等,菱形的对角线互相垂直;故本选项错误;C、两组对边分别平行的四边形是平行四边形;故本选项错误;D、四边相等的四边形是菱形;故本选项正确.故选D.【点评】此题考查了矩形的性质、菱形的判定以及平行四边形的判定.注意掌握各特殊平行四边形对角线的性质是解此题的关键.4.(2017•兴化市校级一模)关于x的不等式x﹣b≥0恰有两个负整数解,则b 的取值范围是()A.﹣3<b<﹣2 B.﹣3<b≤﹣2 C.﹣3≤b≤﹣2 D.﹣3≤b<﹣2【分析】解不等式可得x≥b,根据不等式的两个负整数解为﹣1、﹣2即可得b 的范围.【解答】解:解不等式x﹣b≥0得x≥b,∵不等式x﹣b≥0恰有两个负整数解,∴不等式的两个负整数解为﹣1、﹣2,∴﹣3<b≤﹣2,故选:B.【点评】本题考查了不等式的正整数解,解题的关键是注意能根据整数解的具体数值,找出不等式解集的具体取值范围.5.(2017•莒县模拟)一个不透明的袋中装有除颜色外其余都相同的1个白球和2个黑球.先从袋中摸出一个球后不再放回,第二次再从袋中摸出一个,那么两次都摸到黑球的概率是()A.B.C.D.【分析】根据题意列出树状图,看两次都摸到黑球的情况数占总情况数的多少即可.【解答】解:根据题意画图如下:因为一共有6种情况,两次都摸到黑球的有2种情况,所以两次都摸到黑球的概率是=.故选B.【点评】主要考查了事件的分类和概率的求法.用到的知识点为:可能发生,也可能不发生的事件叫做随机事件;概率=所求情况数与总情况数之比.6.(2016•昆明)下面所给几何体的俯视图是()A.B.C.D.【分析】直接利用俯视图的观察角度从上往下观察得出答案.【解答】解:由几何体可得:圆锥的俯视图是圆,且有圆心.故选:B.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.7.(2016•恩施州)下列图标中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确;故选D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.(2016•梧州)下列命题:①对顶角相等;②同位角相等,两直线平行;③若a=b,则|a|=|b|;④若x=0,则x2﹣2x=0它们的逆命题一定成立的有()A.①②③④B.①④C.②④D.②【分析】把一个命题的条件和结论互换就得到它的逆命题,再根据课本中的性质定理进行判断,即可得出答案.【解答】解:①对顶角相等的逆命题是相等的角是对顶角,错误;②同位角相等,两直线平行的逆命题是两直线平行,同位角相等,成立;③若a=b,则|a|=|b|的逆命题是如果|a|=|b,|则a=b,错误;④若x=0,则x2﹣2x=0的逆命题是如果x2﹣2x=0,则x=0或x=2,错误;故选D.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.9.(2016•新疆)已知A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上的两个点,当x1<x2<0时,y1>y2,那么一次函数y=kx﹣k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】首先根据x1<x2<0时,y1>y2,确定反比例函数y=(k≠0)中k的符号,然后再确定一次函数y=kx﹣k的图象所在象限.【解答】解:∵当x1<x2<0时,y1>y2,∴k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象经过第一、三、四象限,∴不经过第二象限,故选:B.【点评】此题主要考查了反比例函数图象上点的坐标特征以及一次函数图象与系数的关系,解决此题的关键是确定k的符号.10.(2016•广州)定义运算:a⋆b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b⋆b﹣a⋆a的值为()A.0 B.1 C.2 D.与m有关【分析】(方法一)由根与系数的关系可找出a+b=1,根据新运算找出b⋆b﹣a⋆a=b (1﹣b)﹣a(1﹣a),将其中的1替换成a+b,即可得出结论.(方法二)由根与系数的关系可找出a+b=1,根据新运算找出b⋆b﹣a⋆a=(a﹣b)(a+b﹣1),代入a+b=1即可得出结论.(方法三)由一元二次方程的解可得出a2﹣a=﹣m、b2﹣b=﹣m,根据新运算找出b⋆b﹣a⋆a=﹣(b2﹣b)+(a2﹣a),代入后即可得出结论.【解答】解:(方法一)∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a+b=1,∴b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=b(a+b﹣b)﹣a(a+b﹣a)=ab﹣ab=0.(方法二)∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a+b=1.∵b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=b﹣b2﹣a+a2=(a2﹣b2)+(b﹣a)=(a+b)(a﹣b)﹣(a﹣b)=(a﹣b)(a+b﹣1),a+b=1,∴b⋆b﹣a⋆a=(a﹣b)(a+b﹣1)=0.(方法三)∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a2﹣a=﹣m,b2﹣b=﹣m,∴b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=﹣(b2﹣b)+(a2﹣a)=m﹣m=0.故选A.【点评】本题考查了根与系数的关系,解题的关键是找出a+b=1.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之积与两根之和是关键.二.填空题(共8小题)11.(2017•河北一模)函数y=的自变量x的取值范围是x≤0.5且x≠﹣1.【分析】根据二次根式的性质和分式的意义,让被开方数大于等于0,分母不等于0,就可以求解.【解答】解:由题意得:1﹣2x≥0,1+x≠0,解得:x≤0.5且x≠﹣1.故答案为:x≤0.5且x≠﹣1.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.12.(2016•雅安)已知a+b=8,a2b2=4,则﹣ab=28或36.【分析】根据条件求出ab,然后化简﹣ab=﹣2ab,最后代值即可.【解答】解:﹣ab=﹣ab=﹣ab﹣ab=﹣2ab ∵a2b2=4,∴ab=±2,①当a+b=8,ab=2时,﹣ab=﹣2ab=﹣2×2=28,②当a+b=8,ab=﹣2时,﹣ab=﹣2ab=﹣2×(﹣2)=36,故答案为28或36.【点评】此题是完全平方公式,主要考查了完全平方公式的计算,平方根的意义,解本题的关键是化简原式,难点是求出ab.13.(2016•静安区二模)甲乙两位运动员在一次射击训练中各打五发,成绩的平均环数相同,甲的方差为1.6;乙的成绩(环)为:7,8,10,6,9,那么这两位运动员中甲的成绩较稳定.【分析】利用方差的公式求得乙的方差,与甲的方差比较,方差较小的成绩稳定.【解答】解:乙的平均成绩为(7+8+10+6+9)÷5=8,方差为:[(7﹣8)2+(8﹣8)2+(10﹣8)2+(6﹣8)2+(9﹣8)2]=2,∵甲的方差为1.6,∴甲的方差较小,∴成绩较稳定的是甲,故答案为:甲.【点评】本题考查了方差的知识,解题的关键是了解方程的意义并牢记方差的计算公式,难度不大.14.(2016•遵义)如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD=35度.【分析】由已知条件和等腰三角形的性质可得∠A=∠C=35°,再由线段垂直平分线的性质可求出∠ABD=∠A,问题得解.【解答】解:∵在△ABC中,AB=BC,∠ABC=110°,∴∠A=∠C=35°,∵AB的垂直平分线DE交AC于点D,∴AD=BD,∴∠ABD=∠A=35°,故答案为:35.【点评】此题主要考查了线段垂直平分线的性质以及等腰三角形的性质,熟记垂直平分线的性质是解题关键.15.(2016•黄冈校级自主招生)如图,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短的直角边长为a,较长的直角边长为b,那么(a+b)2的值为25.【分析】根据勾股定理可以求得a2+b2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab的值,然后根据(a+b)2=a2+2ab+b2即可求解.【解答】解:根据勾股定理可得a2+b2=13,四个直角三角形的面积是:ab×4=13﹣1=12,即:2ab=12则(a+b)2=a2+2ab+b2=13+12=25.故答案是:25.【点评】本题考查勾股定理,以及完全平方式,正确根据图形的关系求得a2+b2和ab的值是关键.16.(2017•青浦区一模)如图,在△ABC中,∠C=90°,AC=3,BC=2,边AB的垂直平分线交AC边于点D,交AB边于点E,联结DB,那么tan∠DBC的值是.【分析】由DE垂直平分AB,得到AD=BD,设CD=x,则有BD=AD=3﹣x,在直角三角形BCD中,利用勾股定理求出x的值,确定出CD的长,利用锐角三角函数定义求出所求即可.【解答】解:∵边AB的垂直平分线交AC边于点D,交AB边于点E,∴AD=BD,设CD=x,则有BD=AD=AC﹣CD=3﹣x,在Rt△BCD中,根据勾股定理得:(3﹣x)2=x2+22,解得:x=,则tan∠DBC==,故答案为:【点评】此题考查了解直角三角形,以及线段垂直平分线性质,熟练掌握性质及定理是解本题的关键.17.(2016•滨州)如图,△ABC是等边三角形,AB=2,分别以A,B,C为圆心,以2为半径作弧,则图中阴影部分的面积是2π﹣3.【分析】根据等边三角形的面积公式求出正△ABC的面积,根据扇形的面积公式S=求出扇形的面积,求差得到答案.【解答】解:∵正△ABC的边长为2,∴△ABC的面积为×2×=,扇形ABC的面积为=π,则图中阴影部分的面积=3×(π﹣)=2π﹣3,故答案为:2π﹣3.【点评】本题考查的是等边三角形的性质和扇形的面积计算,掌握扇形的面积公式S=是解题的关键.18.(2016•余干县三模)如图,四边形OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为﹣.【分析】连接OB,根据正方形的对角线平分一组对角线可得∠BOC=45°,过点B 作BD⊥x轴于D,然后求出∠BOD=30°,根据直角三角形30°角所对的直角边等于斜边的一半可得BD=OB,再利用勾股定理列式求出OD,从而得到点B的坐标,再把点B的坐标代入抛物线解析式求解即可.【解答】解:如图,连接OB,∵四边形OABC是边长为1的正方形,∴∠BOC=45°,OB=1×=,过点B作BD⊥x轴于D,∵OC与x轴正半轴的夹角为15°,∴∠BOD=45°﹣15°=30°,∴BD=OB=,OD==,∴点B的坐标为(,﹣),∵点B在抛物线y=ax2(a<0)的图象上,∴a()2=﹣,解得a=﹣.故答案为:﹣.【点评】本题是二次函数综合题型,主要利用了正方形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理的应用,二次函数图象上点的坐标特征,熟记正方形性质并求出OB与x轴的夹角为30°,然后求出点B的坐标是解题的关键.三.解答题(共10小题)19.(2017•曲靖一模)计算:|﹣2|+(﹣1)2017×(π﹣3)0﹣+()﹣2.【分析】先计算|﹣2|、(﹣1)2017、(π﹣3)0、()﹣2的值,再计算最后的结果.【解答】解:|﹣2|+(﹣1)2017×(π﹣3)0﹣+()﹣2=2+(﹣1)×1﹣2+4=2﹣1﹣2+4=5﹣2.【点评】本题考查了0指数幂、负整数指数幂及实数的运算.实数的运算顺序是先乘方,再乘除最后加减.20.(2016•邯山区一模)如果单项式5mx a y与﹣5nx2a﹣3y是关于x、y的单项式,且它们是同类项.求(1)(7a﹣22)2013的值;(2)若5mx a y﹣5nx2a﹣3y=0,且xy≠0,求(5m﹣5n)2014的值.【分析】(1)根据同类项是字母相同且相同字母的指数也相同,可得关于a的方程,解方程,可得答案;(2)根据合并同类项,系数相加字母部分不变,可得m、n的关系,根据0的任何整数次幂都得零,可得答案.【解答】解:(1)由单项式5mx a y与﹣5nx2a﹣3y是关于x、y的单项式,且它们是同类项,得a=2a﹣3,解得a=3,(7a﹣22)2013=(7×3﹣22)2013=(﹣1)2013=﹣1;(2)由5mx a y﹣5nx2a﹣3y=0,且xy≠0,得5m﹣5n=0,解得m=n,(5m﹣5n)2014=02014=0.【点评】本题考查了同类项,利用了同类项的定义,负数的奇数次幂是负数,零的任何正数次幂都得零.21.(2016•扬州)解不等式组,并写出该不等式组的最大整数解.【分析】先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.【解答】解:解不等式①得,x≥﹣2,解不等式②得,x<1,∴不等式组的解集为﹣2≤x<1.∴不等式组的最大整数解为x=0,【点评】此题是一元一次不等式组的整数解题,主要考查了不等式得解法和不等式组的解集的确定及整数解的确定,解本题的关键是不等式的解法运用.22.(2016•宜宾)2016年“母亲节”前夕,宜宾某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?【分析】设第一批花每束的进价是x元/束,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×1.5可得方程.【解答】解:设第一批花每束的进价是x元/束,依题意得:×1.5=,解得x=20.经检验x=20是原方程的解,且符合题意.答:第一批花每束的进价是20元/束.【点评】本题考查了分式方程的应用.关键是根据等量关系:第二批进的数量=第一批进的数量×1.5列方程.23.(2017•海宁市校级模拟)为了解本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?【分析】(1)根据C等级的人数和所占的百分比求出这次随机抽取的学生数;(2)用抽取的总人数乘以B等级所占的百分比,从而补全统计图;(3)用该校九年级的总人数乘以优秀的人数所占的百分比,即可得出答案.【解答】解:(1)这次随机抽取的学生共有:20÷50%=40(人);(2)B等级的人数是:40×27.5%=11人,如图:(3)根据题意得:×1200=480(人),答:这次九年级学生期末数学考试成绩为优秀的学生人数大约有480人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.24.(2017•青浦区一模)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F在边AB上,连接CF交线段BE于点G,CG2=GE•GD.(1)求证:∠ACF=∠ABD;(2)连接EF,求证:EF•CG=EG•CB.【分析】(1)先根据CG2=GE•GD得出,再由∠CGD=∠EGC可知△GCD∽△GEC,∠GDC=∠GCE.根据AB∥CD得出∠ABD=∠BDC,故可得出结论;(2)先根据∠ABD=∠ACF,∠BGF=∠CGE得出△BGF∽△CGE,故.再由∠FGE=∠BGC得出△FGE∽△BGC,进而可得出结论.【解答】证明:(1)∵CG2=GE•GD,∴.又∵∠CGD=∠EGC,∴△GCD∽△GEC.∴∠GDC=∠GCE.∵AB∥CD,∴∠ABD=∠BDC.∴∠ACF=∠ABD.(2)∵∠ABD=∠ACF,∠BGF=∠CGE,∴△BGF∽△CGE.∴.又∵∠FGE=∠BGC,∴△FGE∽△BGC.∴.∴FE•CG=EG•CB.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的判定定理是解答此题的关键.25.(2017•禹州市一模)如图,一次函数y=﹣x+4的图象与反比例y=(k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求PA+PB的最小值.【分析】(1)把点A(1,a)代入一次函数y=﹣x+4,即可得出a,再把点A坐标代入反比例函数y=,即可得出k,两个函数解析式联立求得点B坐标;(2)作点B作关于x轴的对称点D,连接AD,交x轴于点P,此时PA+PB=PA+PD=AD 的值最小,然后根据勾股定理即可求得.【解答】解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,解得a=3,∴A(1,3),点A(1,3)代入反比例函数y=,得k=3,∴反比例函数的表达式y=,两个函数解析式联立列方程组得,解得x1=1,x2=3,∴点B坐标(3,1);(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB=PA+PD=AD的值最小,∴D(3,﹣1),∵A(1,3),∴AD==2,∴PA+PB的最小值为2.【点评】本题考查了一次函数和反比例函数相交的有关问题;轴对称﹣最短路线问题;解题关键在于点的坐标的灵活运用.26.(2016•龙岩)某厂家在甲、乙两家商场销售同一商品所获利润分别为y 甲,y 乙(单位:元),y 甲,y 乙与销售数量x (单位:件)的函数关系如图所示,请根据图象解决下列问题;(1)分别求出y 甲,y 乙与x 的函数关系式;(2)现厂家分配该商品800件给甲商场,400件给乙商场,当甲、乙商场售完这批商品,厂家可获得总利润是多少元?【分析】(1)设y 甲=k 1x (k 1≠0),把x=600,y 甲=480代入即可;当0≤x ≤200时,设y 乙=k 2x (k 2≠0),把x=200,y 乙=400代入即可;当x >200时,设y 乙=k 3x +b (k 3≠0),把x=200,y 乙=400和x=600,y 乙=480代入即可;(2)当x=800时求出y 甲,当x=400时求出y 乙,即可求出答案.【解答】解:(1)设y 甲=k 1x (k 1≠0),由图象可知:当x=600时,y 甲=480,代入得:480=600k 1,解得:k 1=0.8,所以y 甲=0.8x ;当0≤x ≤200时,设y 乙=k 2x (k 2≠0),由图象可知:当x=200时,y 乙=400,代入得:400=200k 2,解得:k 2=2,所以y 乙=2x ;当x >200时,设y 乙=k 3x +b (k 3≠0),由图象可知:由图象可知:当x=200时,y=400,乙=480,当x=600时,y乙代入得:,解得:k3=0.2,b=360,所以y=0.2x+360;乙即y=;乙=0.8×800=640;(2)∵当x=800时,y甲=0.2×400+360=440,当x=400时,y乙∴640+440=1080,答:厂家可获得总利润是1080元.【点评】本题考查了一次函数图象和性质,用待定系数法求一次函数的解析式的应用,能正确用待定系数法求出函数解析式是解此题的关键.27.(2016•天水)如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M作MN∥OB交CD于N.(1)求证:MN是⊙O的切线;(2)当OB=6cm,OC=8cm时,求⊙O的半径及MN的长.【分析】(1)求证:MN是⊙O的切线,就可以证明∠NMC=90°(2)连接OF,则OF⊥BC,根据勾股定理就可以求出BC的长,然后根据△BOC 的面积就可以求出⊙O的半径,根据△NMC∽△BOC就可以求出MN的长.【解答】(1)证明:∵AB、BC、CD分别与⊙O切于点E、F、G∴∠OBC=∠ABC,∠DCB=2∠DCM(1分)∵AB∥CD∴∠ABC+∠DCB=180°∴∠OBC+∠OCB=(∠ABC+∠DCB)=×180°=90°∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣90°=90°(2分)∵MN∥OB∴∠NMC=∠BOC=90°即MN⊥MC 且MO是⊙O的半径∴MN是⊙O的切线(4分)(2)解:连接OF,则OF⊥BC(5分)由(1)知,△BOC是直角三角形,∴BC===10,∵S=•OB•OC=•BC•OF△BOC∴6×8=10×OF∴0F=4.8cm∴⊙O的半径为4.8cm(6分)由(1)知,∠NCM=∠BCO,∠NMC=∠BOC=90°∴△NMC∽△BOC(7分)∴,即=,∴MN=9.6(cm).(8分)【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.28.(2017•宝山区一模)如图,二次函数y=ax2﹣x+2(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).(1)求抛物线与直线AC的函数解析式;(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.【分析】(1)把点A的坐标代入抛物线的解析式,就可求得抛物线的解析式,根据A,C两点的坐标,可求得直线AC的函数解析式;(2)先过点D作DH⊥x轴于点H,运用割补法即可得到:四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,据此列式计算化简就可求得S关于m的函数关系;(3)由于AC确定,可分AC是平行四边形的边和对角线两种情况讨论,得到点E与点C的纵坐标之间的关系,然后代入抛物线的解析式,就可得到满足条件的所有点E的坐标.【解答】解:(1)∵A(﹣4,0)在二次函数y=ax2﹣x+2(a≠0)的图象上,∴0=16a+6+2,解得a=﹣,∴抛物线的函数解析式为y=﹣x2﹣x+2;∴点C的坐标为(0,2),设直线AC的解析式为y=kx+b,则,解得,∴直线AC的函数解析式为:;(2)∵点D(m,n)是抛物线在第二象限的部分上的一动点,∴D(m,﹣m2﹣m+2),过点D作DH⊥x轴于点H,则DH=﹣m2﹣m+2,AH=m+4,HO=﹣m,∵四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,∴S=(m+4)×(﹣m2﹣m+2)+(﹣m2﹣m+2+2)×(﹣m),化简,得S=﹣m2﹣4m+4(﹣4<m<0);(3)①若AC为平行四边形的一边,则C、E到AF的距离相等,∴|y E|=|y C|=2,∴y E=±2.当y E=2时,解方程﹣x2﹣x+2=2得,x1=0,x2=﹣3,∴点E的坐标为(﹣3,2);当y E=﹣2时,解方程﹣x2﹣x+2=﹣2得,x1=,x2=,∴点E的坐标为(,﹣2)或(,﹣2);②若AC为平行四边形的一条对角线,则CE∥AF,∴y E=y C=2,∴点E的坐标为(﹣3,2).综上所述,满足条件的点E的坐标为(﹣3,2)、(,﹣2)、(,﹣2).【点评】本题属于二次函数综合题,主要考查了运用待定系数法求出直线及抛物线的解析式、抛物线上点的坐标特征、解一元二次方程、平行四边形的性质、抛物线的性质等知识的综合应用,运用割补法及配方法是解决问题的关键,解题时注意运用分类讨论的思想.。

2017年大庆市中考数学试卷

2017年大庆市中考数学试卷

2017年大庆市初中升学统一考试数学试题一、选择题:1.若a的相反数是-3,则a的值为()A.1B.2C.3D.42.数字150000用科学记数法表示为()A.1.5⨯104B.0.15⨯106C.15⨯104D.1.5⨯105 3.下列说法中,正确的是()A.若a≠b,则a2≠b2B.若a>|b|,则a>bC.若|a|=|b|,则a=b D.若|a|>|b|,则a>b4.对于函数y=2x-1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>05.在∆ABC中,∠A,∠B,∠C的度数之比为2:3:4,则∠B的度数为()A.1200B.800C.600D.4006.将一枚质地均匀的硬币先后抛掷两次,则至少出现一次正面向上的概率为()A.1132B. C.D.42437.由若干个相同的正方体组成的几何体,如图(1)所示,其左视图如图(2)所示,则这个几何体的俯视图为()8.如图,∆ABD是以BD为斜边的等腰直角三角形,∆BCD中,∠DBC=900,∠BCD=600,DC中A.2点为E,AD与BE的延长线交于点F,则∠AFB的度数为()A.300B.150C.450D.2509.若实数3是不等式2x-a-2<0的一个解,则a可取的最小正整数为()A.2B.3 C.4D.510.如图,AD//BC,AD⊥AB,点A,B在y轴上,CD与x轴交于点E(2,0),且AD=DE,BC=2CE,则BD与x轴交点F的横坐标为()345B. C.D.3456二、填空题11.2sin600=.12.分解因式:x3-4x=.13.已知一组数据:3,5,x,7,9的平均数为6,则x=.14.∆ABC中,∠C为直角,AB=2,则这个三角形的外接圆半径为.15.若点M(3,a-2),N(b,a)关于原点对称,则a+b=.16.如图,点M,N在半圆的直径AB上,点P,Q在AB上,四边形MNPQ为正方形,若半圆的半径为5,则正方形的边长为.17.圆锥的底面半径为1,它的侧面展开图的圆心角为1800,则这个圆锥的侧面积为.18.如图,已知一条东西走向的河流,在河流对岸有一点A,小明在岸边点B处测得点A在点B的北偏东300方向上,小明沿河岸向东走80m后到达点C,测得点A在点C的北偏西600方向上,则点A到河岸BC 的距离为.三、解答题19.计算:(-1)2017+tan450+327+|3-π|.20.解方程:x1+=1x+2x21.已知非零实数a,b满足a+b=3,113+=,求代数式a2b+ab2的值.a b222.某快递公司的每位“快递小哥”日收入与每日的派送量成一次函数关系,如图所示.(1)求每位“快递小哥”的日收入y(元)与日派送量x(件)之间的函数关系式;(2)已知某“快递小哥”的日收入不少于110元,则他至少要派送多少件?23.某校为了解学生平均每天课外阅读的时间,随机调查了该校部分学生一周内平均每天课外阅读的时间(以分钟为单位,并取整数),将有关数据统计整理并绘制成尚未完成的频率分布表和频数分布直方图.请你根据图表中所提供的信息,解答下列问题.注:这里的15~25表示大于等于15同时小于25.(1)求被调查的学生人数;(2)直接写出频率分布表中的a和b的值,并补全频数分布直方图;(3)若该校共有学生500名,则平均每天课外阅读的时间不少于35分钟的学生大约有多少名?24.如图,以BC为底边的等腰∆ABC,点D,E,G分别在BC,AB,AC上,且EG//BC,DE//AC,延长GE至点F,使得BE=BF.AE GB D C(1)求证:四边形BDEF为平行四边形;(2)当∠C=450,BD=2时,求D,F两点间的距离.25.如图,反比例函数y=k的图象与一次函数y=x+b的图象交于A,B两点,点A和点B的横坐标分别x为1和-2,这两点的纵坐标之和为1.(1)求反比例函数的表达式与一次函数的表达式;(2)当点C的坐标为(0,-1)时,求∆ABC的面积.26.已知二次函数的表达式为y=x2+mx+n.(1)若这个二次函数的图象与x轴交于点A(1,0),点B(3,0),求实数m,n的值;(2)若∆ABC是有一个内角为300的直角三角形,∠C为直角,s in A,cos B是方程x2+mx+n=0的两个根,求实数m,n的值.27.如图,四边形ABCD内接于圆O,∠BAD=900,AC为直径,过点A作圆O的切线交CB的延长线于点E,过AC的三等分点F(靠近点C)作CE的平行线交AB于点G,连结CG.(1)求证:AB=CD;(2)求证:C D2=BE⋅BC;(3)当C G=3,BE=92时,求CD的长.28.如图,直角∆ABC中,∠A为直角,AB=6,AC=8.点P,Q,R分别在AB,BC,C A边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,在运动过程中:(1)求证:∆APR,∆BPQ,∆CQR的面积相等;(2)求∆PQR面积的最小值;(3)用t(秒)(0≤t≤2)表示运动时间,是否存在t,使∠PQR=900,若存在,请直接写出t的值;若不存在,请说明理由.。

黑龙江省大庆市2017届九年级数学下学期第三次模拟试题(答案不全)

黑龙江省大庆市2017届九年级数学下学期第三次模拟试题(答案不全)

黑龙江省大庆市2017届九年级数学下学期第三次模拟试题温馨提示: 1、考试时间120分钟;试题满分120分;2、将试题答案写在答题卡上;3、请同学们仔细审题,认真作答,取得满意成绩。

一、选择题(每小题3分,共30分) 1.下列计算正确的是( )A. 2a+3b=5abB. (﹣2a 2b)3=﹣6a 6b3C.2328=+D. (a+b)2=a 2+b 22.如图,所给图形中是中心对称图形但不是轴对称图形的是( )A .B .C .D .3. 若顺次连接四边形ABCD 四边的中点,得到的图形是一个矩形,则四边形 ABCD 一定是( )A .矩形B .菱形C .对角线相等的四边形D .对角线互相垂直的四边形4.从长度分别为1、3、5、7的四条线段中任选三条作边 ,能构成三角形的概率为( ) A .21 B .31 C . 41 D .515.如图,点D (0,3),O (0,0),C (4,0)在⊙A 上,BD 是⊙A 的一条弦,则sin∠OBD=( ) A. B. C. D.6.将一个矩形纸片沿一条直线剪成两个多边形,那么这两个多边形内角和之和不可能是( ) A.360 º B.540 º C.720 º D.900 º7.如图,已知直线y =﹣x +2分别与x 轴、y 轴交于A 、B 两点,与双曲线y =kx交于E 、F 两点.若AB =2EF ,则k 的值是( )A.﹣1B.1C.12 D.348.二次函数y=ax 2+bx+c (a ≠0)的图象如图,则反比例函数xay -=与一次函数y=bx ﹣c 在同一坐标系内的图象大致是( )9.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A .84 B .336 C .510 D .132610.如图1,点E 为长方形ABCD 边AD 上一点,点P 、点Q 同时从点B 出发,点P 沿BE →ED →DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们运动的速度都是1cm/s ,设P 、Q 出发t 秒时,△BPQ 的面积为y cm 2,已知y 与t 的函数关系的图象如图2(曲线OM 为抛物线的一部分),则下列结论:①AD =BE =5cm ;②0<t ≤5时,y =25t 2;③直线NH 的解析式为y =﹣25t +27;④若△ABE 与△QBP 相似,则t =294秒.其中正确的结论个数为( ) A. 4 B. 3 C. 2 D. 1二、填空题(每小题3分,共24分)11.要使代数式xx 1+有意义,则x 的取值范围是 . 12.据报载,2016年我国发展固定宽带接入新用户260000000户,其中260000000用科学记数法表示为______________________.13.已知12x y =⎧⎨=⎩是二元一次方程组81mx ny nx my +=⎧⎨-=-⎩的解,则2n -m 的平方根是______.14.对于任意实数m 、n ,定义一种运运算m ※n=mn ﹣m ﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a <2※x <7,且解集中有两个整数解,则a 的取值范围是 . 15.已知关于x 的分式方程2111a x x+=--的解是非负数,则a 的取值范围是_________. 16.如图,将矩形ABCD 沿GH 对折,点C 落在点Q 处,点D 落在点E 处,EQ 与BC 相交点F ,若AD=8cm ,AB=6cm ,AE=4cm ,则△EBF 的周长是 .17. 如图,在△ABC 中,∠ACB =90°,∠ABC =30°,BC =2.将△ABC 绕点C 逆时针旋转α角后得到△A ,B ,C ,当点A 的对应点A' 落在AB 边上时,旋转角α的度数是 度,阴影部分的面积为 .18.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点,若青蛙从4这点开始跳,则经2017次跳后它停在数 对应的点上. 三、解答题:(共66分)19. (4分) 计算sin 60︒+20.(6分)先化简,再求值:12)11(22222+--÷---x x xx x x x x , 其中x 是方程3x 2﹣x ﹣1=0的根.21.(8分)如图△ABC 三个顶点的坐标分别为A (2,4),B (1,1),C (4,3). (1)请画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1的坐标;(2)请画出△ABC 绕点B 逆时针旋转90°后的△A 2BC 2 ,并写出点A 2、C 2的坐标。

2017年黑龙江省大庆市中考数学试题及解析

2017年黑龙江省大庆市中考数学试题及解析

2017年黑龙江省大庆市中考数学试卷一、选择题(共10小题,每小题3分,满分30分) B25.(3分)(2017•大庆)某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总6.(3分)(2017•大庆)在⊙O 中,圆心O 到弦AB 的距离为AB 长度的一半,则弦AB 所..D8.(3分)(2017•大庆)某射击小组有20人,教练根据他们某次射击的数据绘制如图所示的统计图,则这组数据的众数和中位数分别是( )9.(3分)(2017•大庆)已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x210.(3分)(2017•大庆)已知点A(﹣2,0),B为直线x=﹣1上一个动点,P为直线AB与双曲线y=的交点,且AP=2AB,则满足条件的点P的个数是()二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2017•大庆)函数y=的自变量x的取值范围是.12.(3分)(2017•大庆)已知=,则的值为.13.(3分)(2017•大庆)底面直径和高都是1的圆柱侧面积为.14.(3分)(2017•大庆)边长为1的正三角形的内切圆半径为.15.(3分)(2017•大庆)用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱(写出所有正确结果的序号).16.(3分)(2017•大庆)方程3(x﹣5)2=2(x﹣5)的根是.17.(3分)(2017•大庆)若a2n=5,b2n=16,则(ab)n=.18.(3分)(2017•大庆)在Rt△ABC中,∠C=90°,AC=BC=1,将其放入平面直角坐标系,使A点与原点重合,AB在x轴上,△ABC沿x轴顺时针无滑动的滚动,点A再次落在x 轴时停止滚动,则点A经过的路线与x轴围成图形的面积为.三、解答题(共10小题,满分66分)19.(4分)(2017•大庆)求值:+()2+(﹣1)2017.20.(4分)(2017•大庆)解关于x的不等式:ax﹣x﹣2>0.21.(5分)(2017•大庆)已知实数a,b是方程x2﹣x﹣1=0的两根,求+的值.22.(6分)(2017•大庆)已知一组数据x1,x2,…x6的平均数为1,方差为(1)求:x12+x22+ (x62)(2)若在这组数据中加入另一个数据x7,重新计算,平均数无变化,求这7个数据的方差(结果用分数表示)23.(7分)(2017•大庆)某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.24.(7分)(2017•大庆)小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知小敏的眼睛与地面距离为1.5m,求这栋建筑物CD的高度(参考数据:≈1.732,≈1.414.结果保留整数)25.(7分)(2017•大庆)如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,联结DE,F在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.26.(8分)(2017•大庆)如图,一次函数y=kx+b的图象与反比例函数y=﹣的图象交于A(﹣1,m)、B(n,﹣1)两点(1)求一次函数的解析式;(2)求△AOB的面积.27.(9分)(2017•大庆)如图,四边形ABCD内接于⊙O,AD∥BC,P为BD上一点,∠APB=∠BAD.(1)证明:AB=CD;(2)证明:DP•BD=AD•BC;(2)证明:BD2=AB2+AD•BC.28.(9分)(2017•大庆)已知二次函数y=x2+bx﹣4的图象与y轴的交点为C,与x轴正半轴的交点为A,且tan∠ACO=(1)求二次函数的解析式;(2)P为二次函数图象的顶点,Q为其对称轴上的一点,QC平分∠PQO,求Q点坐标;(3)是否存在实数x1、x2(x1<x2),当x1≤x≤x2时,y的取值范围为≤y≤?若存在,直接写在x1,x2的值;若不存在,说明理由.2017年黑龙江省大庆市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)B2=|a|=55.(3分)(2017•大庆)某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总6.(3分)(2017•大庆)在⊙O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所..D8.(3分)(2017•大庆)某射击小组有20人,教练根据他们某次射击的数据绘制如图所示的统计图,则这组数据的众数和中位数分别是( )=7.59.(3分)(2017•大庆)已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x210.(3分)(2017•大庆)已知点A(﹣2,0),B为直线x=﹣1上一个动点,P为直线AB与双曲线y=的交点,且AP=2AB,则满足条件的点P的个数是()),于是得到这样的点,﹣,=,=)二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2017•大庆)函数y=的自变量x的取值范围是x>0.12.(3分)(2017•大庆)已知=,则的值为﹣.=,=﹣.13.(3分)(2017•大庆)底面直径和高都是1的圆柱侧面积为π.14.(3分)(2017•大庆)边长为1的正三角形的内切圆半径为.,BOD==OD=故答案为:15.(3分)(2017•大庆)用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱①③④(写出所有正确结果的序号).16.(3分)(2017•大庆)方程3(x﹣5)2=2(x﹣5)的根是x1=5,x2=..17.(3分)(2017•大庆)若a2n=5,b2n=16,则(ab)n=.故答案为:18.(3分)(2017•大庆)在Rt△ABC中,∠C=90°,AC=BC=1,将其放入平面直角坐标系,使A点与原点重合,AB在x轴上,△ABC沿x轴顺时针无滑动的滚动,点A再次落在x轴时停止滚动,则点A经过的路线与x轴围成图形的面积为π+.的扇形,加上=;△,半径为+=;.三、解答题(共10小题,满分66分)19.(4分)(2017•大庆)求值:+()2+(﹣1)2017.+.20.(4分)(2017•大庆)解关于x的不等式:ax﹣x﹣2>0.><21.(5分)(2017•大庆)已知实数a,b是方程x2﹣x﹣1=0的两根,求+的值.+=+=﹣22.(6分)(2017•大庆)已知一组数据x1,x2,…x6的平均数为1,方差为(1)求:x12+x22+ (x62)(2)若在这组数据中加入另一个数据x7,重新计算,平均数无变化,求这7个数据的方差(结果用分数表示)再根据方差为,利用完全平方公式求出,进而求解即可;;再根据[又∵方差为,[[x((,[=[[10+.=﹣))23.(7分)(2017•大庆)某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元(1)若他选择转动转盘1,则他能得到优惠的概率为多少?(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.=能获得的优惠为:=25×=2024.(7分)(2017•大庆)小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(BFD在同一直线上).已知小敏的眼睛与地面距离为1.5m,求这栋建筑物CD的高度(参考数据:≈1.732,≈1.414.结果保留整数)AG=xm+125.(7分)(2017•大庆)如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,联结DE,F在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.26.(8分)(2017•大庆)如图,一次函数y=kx+b的图象与反比例函数y=﹣的图象交于A(﹣1,m)、B(n,﹣1)两点(1)求一次函数的解析式;(2)求△AOB的面积.,得:坐标代入一次函数解析式得:=8d==3AB27.(9分)(2017•大庆)如图,四边形ABCD内接于⊙O,AD∥BC,P为BD上一点,∠APB=∠BAD.(1)证明:AB=CD;(2)证明:DP•BD=AD•BC;(2)证明:BD2=AB2+AD•BC.)利用平行线的性质结合圆周角定理得出====28.(9分)(2017•大庆)已知二次函数y=x2+bx﹣4的图象与y轴的交点为C,与x轴正半轴的交点为A,且tan∠ACO=(1)求二次函数的解析式;(2)P为二次函数图象的顶点,Q为其对称轴上的一点,QC平分∠PQO,求Q点坐标;(3)是否存在实数x1、x2(x1<x2),当x1≤x≤x2时,y的取值范围为≤y≤?若存在,直接写在x1,x2的值;若不存在,说明理由.ACO=,求出的坐标为(﹣,﹣≤当﹣≤即可.,ACO=,﹣的坐标为(﹣,±,)或(﹣,﹣﹣的取值范围为4=4=,﹣Ⅰ、当﹣的取值范围为,可得<,Ⅱ、当﹣的取值范围为=<的取值范围为,,≤.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年黑龙江省大庆市中考数学模拟试卷(三)一、选择题(共10小题,每小题3分,满分30分)1.(3分)某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣82.(3分)实数a,b在数轴上的对应点的位置如图所示,则结论正确的是()A.a>﹣2 B.a<﹣3 C.﹣a<b D.a<﹣b3.(3分)下列说法中,错误的是()A.平行四边形的对角线互相平分B.五边形的内角和是540°C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形4.(3分)若0<x<1,则x,x2,x3的大小关系是()A.x<x2<x3B.x<x3<x2C.x3<x2<x D.x2<x3<x5.(3分)小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.6.(3分)由若干个形状大小相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数至少有()A.4个 B.5个 C.6个 D.7个7.(3分)下列轴对称图形中,对称轴条数是四条的图形是()A.B.C.D.8.(3分)已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论不正确的是()A.DF⊥AB B.CG=2GAC.CG=DF+GE D.S四边形BFGC=﹣19.(3分)已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=的图象上.下列结论中正确的是()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y110.(3分)定义运算:a⋆b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b⋆b﹣a⋆a的值为()A.0 B.1 C.2 D.与m有关二、填空题(共8小题,每小题3分,满分24分)11.(3分)在函数y=中,自变量x的取值范围是.12.(3分)若a x+y=6,a y=3,则a2x=.13.(3分)已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是.14.(3分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC 于点D,则∠DBC=度.15.(3分)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”,例如:3=22﹣12,3就是一个智慧数,在正整数中,从1开始,第2017个智慧数是.16.(3分)如图,某广告牌竖直矗立在水平地面上,经测量,得到如下相关数据:CD=2m,∠CAB=30°,∠DBF=45°,AB=10m,则广告牌的高EF=m.(结果保留根号)17.(3分)如图,点C在以AB为直径的半圆弧上,∠ABC=30°,沿直线CB将半圆折叠,点A落在点A′处,A′B和交于点D,已知AB=6,则图中阴影部分的面积为.18.(3分)如图,在第一象限内作与x轴的夹角为30°的射线OC,在射线OC上取点A,过点A作AH⊥x轴于点H,在抛物线y=x2(x>0)上取一点P,在y轴上取一点Q,使得P,O,Q为顶点的三角形与△AOH全等,则符合条件的点A 有个.三、解答题(共10小题,满分66分)19.(4分)计算:(π﹣2017)0++|﹣2|+()﹣1.20.(4分)已知(m﹣n)2=8,(m+n)2=2,求m2+n2的值.21.(5分)(1)解不等式3(2x+5)>2(4x+3)并将其解集在数轴上表示出来.(2)写出一个一元一次不等式,使它和(1)中的不等式组的解集为x≤2,这个不等式可以是.22.(6分)楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么月需售出多少辆汽车?(注:销售利润=销售价﹣进价)23.(7分)近年来,各地“广场舞”噪音干扰的问题备受关注,相关人员对本地区15﹣65岁年龄段的500名市民进行了随机调查,在调查过程中对“广场舞”噪音干扰的态度有以下五种:A:没影响;B:影响不大;C:有影响,建议做无声运动,D:影响很大,建议取缔;E:不关心这个问题,将调查结果绘统计整理并绘制成如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)填空m=,态度为C所对应的圆心角的度数为;(2)补全条形统计图;(3)若全区15﹣65岁年龄段有20万人,估计该地区对“广场舞”噪音干扰的态度为B的市民人数;(4)若在这次调查的市民中,从态度为A的市民中抽取一人的年龄恰好在年龄段15﹣35岁的概率是多少?24.(7分)如图所示,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,AD=3,求AE和BF的长.25.(7分)如图,在平面直角坐标系xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求正比例函数和反比例函数的解析式;(2)将直线OA向上平移3个单位长度后与y轴相交于点B,与反比例函数的图象在第四象限内的交点为C,连接AB,AC.①求点C的坐标;②求△ABC的面积.26.(8分)某通讯公司推出A、B两种手机话费套餐,这两种套餐每月都有一定的固定费用和免费通话时间,超过免费通话时间的部分收费标准为:A套餐a元/分,B套餐b元/分,使用A、B两种套餐的通话费用y(元)与通话时间x(分)之间的函数图象如图所示.(1)当手机通话时间为50分钟时,写出A、B两种套餐的通话费用.(2)求a,b的值.(3)当选择B种套餐比A种套餐更合算时,求通话时间x的取值范围.27.(9分)如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,,求PA的长.(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.28.(9分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.2017年黑龙江省大庆市中考数学模拟试卷(三)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣8【解答】解:0.00000095=9.5×10﹣7,故选:A.2.(3分)实数a,b在数轴上的对应点的位置如图所示,则结论正确的是()A.a>﹣2 B.a<﹣3 C.﹣a<b D.a<﹣b【解答】解:由点的坐标,得A、0>a>﹣3,故本选项错误;B、a<b﹣3故本选项错误;C、﹣a<b,故本选项错误;D、a<﹣b,故本选项正确;故选:D.3.(3分)下列说法中,错误的是()A.平行四边形的对角线互相平分B.五边形的内角和是540°C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形【解答】解:∵平行四边形的对角线互相平分,∴A选项正确;∵五边形内角和=(5﹣2)×180°=540°,∴B选项正确;∵菱形的对角线互相垂直,∴C选项正确;∵只有对角线互相垂直且平分的四边形才是菱形,∴D选项错误;∴错误的是D,故选D.4.(3分)若0<x<1,则x,x2,x3的大小关系是()A.x<x2<x3B.x<x3<x2C.x3<x2<x D.x2<x3<x【解答】解:∵0<x<1,∴假设x=,则x=,x2=,x3=,∵<<,∴x3<x2<x.故选C.5.(3分)小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.【解答】解:共4种情况,有1种情况每个路口都是绿灯,所以概率为.故选:A.6.(3分)由若干个形状大小相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数至少有()A.4个 B.5个 C.6个 D.7个【解答】解:由俯视图易得最底层有4个正方体,由主视图第二层最多有2个正方体,最少有1个正方体,那么最少有4+1=5个立方体.故选:B.7.(3分)下列轴对称图形中,对称轴条数是四条的图形是()A.B.C.D.【解答】解:A、有4条对称轴,故此选项正确;B、有无数条对称轴,故此选项错误;C、有2条对称轴,故此选项错误;D、有6条对称轴,故此选项错误.故选:A.8.(3分)已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论不正确的是()A.DF⊥AB B.CG=2GAC.CG=DF+GE D.S四边形BFGC=﹣1【解答】解:∵四边形ABCD是菱形,∴∠FAG=∠EAG,∠1=∠GAD,AB=AD,∵∠1=∠2,∴∠GAD=∠2,∴AG=GD,∵GE⊥AD,∴GE垂直平分AD,∴AE=ED,∵F为边AB的中点,∴AF=AE,在△AFG和△AEG中,,∴△AFG≌△AEG(SAS),∴∠AFG=∠AEG=90°,∴DF⊥AB,∴A正确;∵DF⊥AB,F为边AB的中点,∴AF=AB=1,AD=BD,∵AB=AD,∴AD=BD=AB,∴△ABD为等边三角形,∴∠BAD=∠BCD=60°,∴∠BAC=∠1=∠2=30°,∴AC=2AB•cos∠BAC=2×2×=2,AG===,∴CG=AC﹣AG=2﹣=,∴CG=2GA,∴B正确;∵GE垂直平分AD,∴ED=AD=1,由勾股定理得:DF===,GE=tan∠2•ED=tan30°×1=,∴DF+GE=+==CG,∴C正确;∵∠BAC=∠1=30°,∴△ABC的边AC上的高等于AB的一半,即为1,FG=AG=,S四边形BFGC=S△ABC﹣S△AGF=×2×1﹣×1×=﹣=,∴D不正确;故选:D.9.(3分)已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=的图象上.下列结论中正确的是()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y1【解答】解:∵k2≥0,∴﹣k2≤0,﹣k2﹣1<0,∴反比例函数y=的图象在二、四象限,∵点(﹣1,y1)的横坐标为﹣1<0,∴此点在第二象限,y1>0;∵(2,y2),(3,y3)的横坐标3>2>0,∴两点均在第四象限y2<0,y3<0,∵在第四象限内y随x的增大而增大,∴0>y3>y2,∴y1>y3>y2.故选:B.10.(3分)定义运算:a⋆b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b⋆b﹣a⋆a的值为()A.0 B.1 C.2 D.与m有关【解答】解:(方法一)∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a+b=1,∴b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=b(a+b﹣b)﹣a(a+b﹣a)=ab﹣ab=0.(方法二)∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a+b=1.∵b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=b﹣b2﹣a+a2=(a2﹣b2)+(b﹣a)=(a+b)(a﹣b)﹣(a﹣b)=(a﹣b)(a+b﹣1),a+b=1,∴b⋆b﹣a⋆a=(a﹣b)(a+b﹣1)=0.(方法三)∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a2﹣a=﹣m,b2﹣b=﹣m,∴b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=﹣(b2﹣b)+(a2﹣a)=m﹣m=0.故选A.二、填空题(共8小题,每小题3分,满分24分)11.(3分)在函数y=中,自变量x的取值范围是x≥0且x≠3.【解答】解:由题意,得x≥0且x﹣3≠0,解得x≥0且x≠3,故答案为:x≥0且x≠3.12.(3分)若a x+y=6,a y=3,则a2x=4.【解答】解:∵a x+y=6,a y=3,∴a x•a y=6,∴a x=2,∴a2x=(a x)2=22=4,故答案为:4.13.(3分)已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是2.8.【解答】解:因为一组数据10,8,9,x,5的众数是8,所以x=8.于是这组数据为10,8,9,8,5.该组数据的平均数为:(10+8+9+8+5)=8,方差S2=[(10﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(5﹣8)2]=2.8.故答案为:2.8.14.(3分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC 于点D,则∠DBC=30度.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=(180°﹣∠A)=×(180°﹣40°)=70°,∵MN垂直平分线AB,∴AD=BD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故答案为:30.15.(3分)如果一个正整数能表示为两个正整数的平方差,那么称这个正整数为“智慧数”,例如:3=22﹣12,3就是一个智慧数,在正整数中,从1开始,第2017个智慧数是2692.【解答】解:1不能表示为两个正整数的平方差,所以1不是“智慧数”.对于大于1的奇正整数2k+1,有2k+1=(k+1)2﹣k2(k=1,2,…).所以大于1的奇正整数都是“智慧数”.对于被4整除的偶数4k,有4k=(k+1)2﹣(k﹣1)2(k=2,3,…).即大于4的被4整除的数都是“智慧数”,而4不能表示为两个正整数平方差,所以4不是“智慧数”.对于被4除余2的数4k+2(k=0,1,2,3,…),设4k+2=x2﹣y2=(x+y)(x﹣y),其中x,y为正整数,当x,y奇偶性相同时,(x+y)(x﹣y)被4整除,而4k+2不被4整除;当x,y奇偶性相异时,(x+y)(x﹣y)为奇数,而4k+2为偶数,总得矛盾.所以不存在自然数x,y使得x2﹣y2=4k+2.即形如4k+2的数均不为“智慧数”.因此,在正整数列中前四个正整数只有3为“智慧数”,此后,每连续四个数中有三个“智慧数”.因为2017=(1+3×672),4×(672+1)=2692,所以2692是第2017个“智慧数”,故答案为:2692.16.(3分)如图,某广告牌竖直矗立在水平地面上,经测量,得到如下相关数据:CD=2m,∠CAB=30°,∠DBF=45°,AB=10m,则广告牌的高EF=(4+4)m.(结果保留根号)【解答】解:如图,过点D作DG⊥AF于点G,设DG=xm,则CG=(x+2)m,在Rt△BGD中,∵∠BGD=90°,∠DBG=45°,∴BG=DG=xm,∴AG=BG+AB=(x+10)m.在Rt△AGC中,∵∠AGC=90°,∠CAG=30°,∴tan30°=,∴=,∴x=4+2,∴EF=CG=CD+DG=2+4+2=4+4(m)答:广告牌的高EF=(4+4)m.故答案为(4+4).17.(3分)如图,点C在以AB为直径的半圆弧上,∠ABC=30°,沿直线CB将半圆折叠,点A落在点A′处,A′B和交于点D,已知AB=6,则图中阴影部分的面积为π.【解答】解:连接AD,CD,∵沿直线CB将半圆折叠,点A落在点A′处,∴∠ABC=∠CBA′=30°,AB=A′B=6,∴∠ABD=60°,∵AB是半圆的直径,∴∠ADB=90°,∴∠BAD=30°,∴==,BD=AB=A′B,∴CD=BD=A′B,∠A′DC=60°,∴图中阴影部分的面积==π,故答案为:π.18.(3分)如图,在第一象限内作与x轴的夹角为30°的射线OC,在射线OC上取点A,过点A作AH⊥x轴于点H,在抛物线y=x2(x>0)上取一点P,在y轴上取一点Q,使得P,O,Q为顶点的三角形与△AOH全等,则符合条件的点A 有4个.【解答】解:①当∠POQ=∠OAH=60°,若以P,O,Q为顶点的三角形与△AOH 全等,那么A、P重合;由于∠AOH=30°,设A坐标为(a,b),在直角三角形OAH中,tan∠AOH=tan30°==,设直线OA的方程为y=kx,把A的坐标代入得k==,所以直线OA:y=x,联立抛物线的解析式,得:,解得,;故A(,);②当∠POQ=∠AOH=30°,此时△POQ≌△AOH;易知∠POH=60°,则直线OP:y=x,联立抛物线的解析式,得:,解得,;故P(,3),那么A(3,);③当∠OPQ=90°,∠POQ=∠AOH=30°时,此时△QOP≌△AOH;易知∠POH=60°,则直线OP:y=x,联立抛物线的解析式,得:,解得、,故P(,3),∴OP=2,QP=2,∴OH=OP=2,AH=QP=2,故A(2,2);④当∠OPQ=90°,∠POQ=∠OAH=60°,此时△OQP≌△AOH;此时直线OP:y=x,联立抛物线的解析式,得:,解得、,∴P(,),∴QP=,OP=,∴OH=QPQP=,AH=OP=,故A(,).综上可知:符合条件的点A有四个,且坐标为:(,)或(3,)或(2,2)或(,).故答案为:4.三、解答题(共10小题,满分66分)19.(4分)计算:(π﹣2017)0++|﹣2|+()﹣1.【解答】解:(π﹣2017)0++|﹣2|+()﹣1=1+2+2﹣+2=5+20.(4分)已知(m﹣n)2=8,(m+n)2=2,求m2+n2的值.【解答】解:∵(m﹣n)2+(m+n)2=m2+n2﹣2mn+m2+n2+2mn=2(m2+n2)=8+2=10,∴m2+n2=10÷2=5.21.(5分)(1)解不等式3(2x+5)>2(4x+3)并将其解集在数轴上表示出来.(2)写出一个一元一次不等式,使它和(1)中的不等式组的解集为x≤2,这个不等式可以是x﹣1≤1(答案不唯一).【解答】解:(1)去括号得,6x+15>8x+6,移项得,6x﹣8x>6﹣15,合并同类项得,﹣2x>﹣9,把x的系数化为1得,x<4.5;(2)x﹣1≤1.故答案为:x﹣1≤1(答案不唯一).22.(6分)楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么月需售出多少辆汽车?(注:销售利润=销售价﹣进价)【解答】解:设月需售出x辆汽车,当0<x≤5时,(32﹣30)×5=10<25,不符合题意;当5<x≤30时,x{32﹣[30﹣0.1(x﹣5)]}=25,解得:x1=﹣25(舍去),x2=10.答:该月需售出10辆汽车.23.(7分)近年来,各地“广场舞”噪音干扰的问题备受关注,相关人员对本地区15﹣65岁年龄段的500名市民进行了随机调查,在调查过程中对“广场舞”噪音干扰的态度有以下五种:A:没影响;B:影响不大;C:有影响,建议做无声运动,D:影响很大,建议取缔;E:不关心这个问题,将调查结果绘统计整理并绘制成如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)填空m=32,态度为C所对应的圆心角的度数为115.2°;(2)补全条形统计图;(3)若全区15﹣65岁年龄段有20万人,估计该地区对“广场舞”噪音干扰的态度为B的市民人数;(4)若在这次调查的市民中,从态度为A的市民中抽取一人的年龄恰好在年龄段15﹣35岁的概率是多少?【解答】解:(1)m=100﹣10﹣5﹣20﹣33=32;态度为C所对应的圆心角的度数为:32%×360=115.2°;故答案为:32,115.2°;(2)500×20%﹣15﹣35﹣20﹣5=25,补全条形统计图;(3)估计该地区对“广场舞”噪音干扰的态度为B的市民人数为:20×33%=6.6(万人);(4)从态度为A的市民中抽取一人的年龄恰好在年龄段15﹣35岁的概率是:=.24.(7分)如图所示,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,AD=3,求AE和BF的长.【解答】(1)证明:∵AD∥BC,∴∠C+∠ADE=180°,∵∠BFE=∠C,∴∠AFB=∠EDA,∵AB∥DC,∴∠BAE=∠AED,∴△ABF∽△EAD;(2)解:∵AB∥CD,BE⊥CD,∴∠ABE=90°,∵AB=4,∠BAE=30°,∴AE=2BE,由勾股定理可求得AE=,∵△ABF∽△EAD,∴,即,∴BF=.25.(7分)如图,在平面直角坐标系xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求正比例函数和反比例函数的解析式;(2)将直线OA向上平移3个单位长度后与y轴相交于点B,与反比例函数的图象在第四象限内的交点为C,连接AB,AC.①求点C的坐标;②求△ABC的面积.【解答】解:(1)根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,解得:k=﹣1,∴正比例函数的解析式为:y=﹣x,将点A(2,﹣2)代入y=,得:﹣2=,解得:m=﹣4;∴反比例函数的解析式为:y=﹣;(2)①直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,则点B的坐标为(0,3),联立两函数解析式,解得:或,∴第四象限内的交点C的坐标为(4,﹣1),②∵OA∥BC,∴S=S△OBC=×BO×x C=×3×4=6.△ABC26.(8分)某通讯公司推出A、B两种手机话费套餐,这两种套餐每月都有一定的固定费用和免费通话时间,超过免费通话时间的部分收费标准为:A套餐a元/分,B套餐b元/分,使用A、B两种套餐的通话费用y(元)与通话时间x(分)之间的函数图象如图所示.(1)当手机通话时间为50分钟时,写出A、B两种套餐的通话费用.(2)求a,b的值.(3)当选择B种套餐比A种套餐更合算时,求通话时间x的取值范围.【解答】解:(1)由图象可知,当手机通话时间为50分钟时,A、B两种套餐的通话费用分别为10元、20元;(2)a==0.2,b==0.18,所以,a,b的值分别是0.2,0.18;(3)A种套餐超过免费时间y与x的函数关系式为y=0.2x﹣5(x>75),由图象可知,当75<x<150时,若A、B两种套餐的通话费相同,则0.2x﹣5=20,解得x=125,∴当x>125时,选择B种套餐更合算.27.(9分)如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,,求PA的长.(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.【解答】(1)解:直线PD为⊙O的切线证明:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD∵∠PDA=∠PBD,∴∠BDO=∠PDA∴∠ADO+∠PDA=90°,即PD⊥OD∵点D在⊙O上,∴直线PD为⊙O的切线.(2)解:∵BE是⊙O的切线,∴∠EBA=90°∵∠BED=60°,∴∠P=30°∵PD为⊙O的切线,∴∠PDO=90°在Rt△PDO中,∠P=30°,∴,解得OD=1∴∴PA=PO﹣AO=2﹣1=1(3)(方法一)证明:如图2,依题意得:∠ADF=∠PDA,∠PAD=∠DAF ∵∠PDA=∠PBD∠ADF=∠ABF∴∠ADF=∠PDA=∠PBD=∠ABF∵AB是圆O的直径∴∠ADB=90°设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°∵四边形AFBD内接于⊙O,∴∠DAF+∠DBF=180°即90°+x+2x=180°,解得x=30°∴∠ADF=∠PDA=∠PBD=∠ABF=30°∵BE、ED是⊙O的切线,∴DE=BE,∠EBA=90°∴∠DBE=60°,∴△BDE是等边三角形.∴BD=DE=BE又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°∴△BDF是等边三角形.∴BD=DF=BF∴DE=BE=DF=BF,∴四边形DFBE为菱形(方法二)证明:如图3,依题意得:∠ADF=∠PDA,∠APD=∠AFD,∵∠PDA=∠PBD,∠ADF=∠ABF,∠PAD=∠DAF,∴∠ADF=∠AFD=∠BPD=∠ABF∴AD=AF,BF∥PD∴DF⊥PB∵BE为切线∴BE⊥PB∴DF∥BE∴四边形DFBE为平行四边形∵PE、BE为切线∴BE=DE∴四边形DFBE为菱形28.(9分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.【解答】解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,∴抛物线的解析式为y=x2﹣x﹣1;(2)令y=0,则x﹣1=0,解得x=,∴点A的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴当t=2时,p有最大值;(3)∵△AOB绕点M沿逆时针方向旋转90°,∴A1O1∥y轴时,B1O1∥x轴,设点A1的横坐标为x,①如图1,点O1、B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1,解得x=,②如图2,点A1、B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1的纵坐标大,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1+,解得x=﹣,综上所述,点A1的横坐标为或﹣.。

相关文档
最新文档