离心式压缩机培训
离心-往复压缩机培训课件
Variable Speed Coupling - Type SVTL
1 23
47
Simplified
longitudinal
section
1 Primary wheel
2 Secondary wheel
3 Shell
4 Scoop tube
housing
5 Oil sump
6
6 Oil pump
7 Scoop tube
压缩机的缸: 单一机壳所包含的压缩机的级,或段。
沈阳鼓风机(集团)有限公司研究开发部
SHENYANG BLOWER (GROUP) CO. , LTD
压缩机基本级
沈阳鼓风机(集团)有限公司研究开发部
SHENYANG BLOWER (GROUP) CO. , LTD
机壳的形式 垂直剖分BCL:介质气体的氢气分压力≥1.38 MPa.G
调节流量
沈阳鼓风机(集团)有机限调公节司流研量究开发部
SHENYANG BLOWER (GROUP) CO. , LTD
2. 压缩机主要零部件
转子:叶轮、主轴、轴套、平衡盘、(联轴器)
压缩机本体
机壳
定子
隔板 迷宫密封
平衡盘密封 沈阳鼓风机(集团)有限公司研究开发部
SHENYANG BLOWER (GROUP) CO. , LTD
• 2:表示2段,背靠背布置 • 3:表示段间有抽加气。(side stream) • D(DMCL):双吸入式(Double)
• B:表示机壳是垂直剖分结构(Barrel、Bell) • M:表示机壳是水平剖分结构 • P:表示管线用压缩机(Pipe Line)
• CL:表示离心压缩机及无叶扩压器
离心式压缩机详细培训资料
离心式压缩机的结构、原理
转轴的临界转速往往不止一个。
n<nc1 n>nc1 刚性轴 挠性轴
离心式压缩机的结构、原理
大多数公司的压缩机设计采用的是 基本级设计技术。
基本级类似积木,可以任意组合,完成 功能要求。 基本级是由叶轮、扩压器、弯道、回流 器等组成
离心式压缩机的结构、原理
基本级组成示意图
离心式压缩机的结构、原理
(2)在压缩机入口安装流量、温度监侧 仪表,出口安装压力监侧仪表,该监侧 系统与报警、调节和停机联锁,一旦进 入喘振能自动报警、调节和停机。 (3)通过降低压缩机转速使流量减少而 不至于发生喘振。
离心式压缩机的结构、原理
(4)在压缩机出入口设置返飞动线,此 方法使压缩机出口流量部分返回入口, 增加压缩机入口流量,机组消耗功率但 不发生喘振。 (5)操作者应了解压缩机的性能曲线, 熟悉各监测系统和控制调节系统的管理 和操作,尽量使压缩机不进入喘振状态。
离心式压缩机性能曲线及喘振现象 1、离心压缩机的特性曲线 在一定的转速和进口条件下表示压力比与流量,效 率与流量的关系曲线称压缩机的特性曲线(或性能曲 线)。曲线上某一点即为压缩机的某一运行工作状态, 所以该特性曲线也即压缩机的变工况性能曲线。这种 曲线表达了压缩机的工作特性,使用非常方便。由于 设计时只能确定一个工况点的流量、压力比和效率。 非设计工况下压缩机内的流动更为复杂,损失有所增 加,尚不能准确的计算出非设计流量下的压力比和效 率,故压缩机的特性曲线只有通过实验得出。
离心式压缩机的结构、原理
(3)结构紧凑——机组重量和占地面积 比同一流量的往复式压缩机小得多。 (4)运行可靠——离心式压缩机运转平 稳一般可连续一至三年不需停机检修, 亦可不用备机。排气均匀稳定,故运转 可靠,维修简单,操作费用低。
《离心式压缩机培训》课件
离心式压缩机被用于车辆制动系统、空调系统和气泵等交通运输设备中。
离心式压缩机的发展趋势
技术的创新
离心式压缩机将继续进行技术创新,提高效率和可靠性。
设备的智能化
智能控制系统将被应用于离心式压缩机,提高操作和维护的便利性。
发展前景的展望
离心式压缩机在未来将继续广泛应用于各个领域,为人们的生活和工作提供便利。
立即处理的维护
对于发现的紧急问题,需 要立即采取措施进行处理, 避免压缩机的故障扩大。
其他维护方法
包括润滑油更换、清洁叶 轮和滤芯等,以确保压缩 机的工作效率和寿命。
离心式压缩机的应用
1 制冷空调系统
离心式压缩机广泛应用于商业和家庭的制冷空调设备中。
2 工业用途
离心式压缩机在工业生产过程中用于提供压缩空气和气体输送等。
结论
离心式压缩机的优点
离心式压缩机具有紧凑、 高效、可靠等优点,适用 于多种应用场景。
离心式压缩机的局限 性
离心式压缩机对介质和工 况要求严格,需要进行合 理的选择和使用。
离心式压缩机的适用 范围
离式压缩机适用于制冷、 空调、工业和交通运输行 业等各个领域。
《离心式压缩机培训》 PPT课件
欢迎来到《离心式压缩机培训》PPT课件,本课程将为您介绍离心式压缩机 的定义、分类、工作原理、性能参数、维护、应用以及发展趋势。
介绍离心式压缩机
定义
离心式压缩机是一种将气 体压缩并提高其压力的装 置。
分类
离心式压缩机可按照流体 传动方式分为离心式压缩 机和轴流式压缩机。
1 制冷量
2 输入功率
制冷量是离心式压缩机在单位时间内能够 提供的制冷量。
输入功率是驱动离心式压缩机所需要的电 力或机械功率。
离心压缩机培训教材
级内气体流动的能量损失分析
级内气体流动的能量损失分析 (一)能的定义:度量物质运动的一种物质量,一般解释为物质作功的能力。能
的根本类型有势能、动能、热能、电能、磁能、光能、化学能、原子能等。 一种能可以转化为另一种能。能的单位和功的单位相同。能也叫能量。 (二)级内气体流动的能量损失分析 压缩机组实际运行中,通过叶轮向气体传递能量,即叶轮通过叶片对气体作 功消耗的功和功率外,还存在着叶轮的轮盘、轮盖的外侧面及轮缘与周围气 体的摩擦产生的轮阻损失,还存在着工作轮出口气体通过轮盖气封漏回到工 作轮进口低压低压端的漏气损失。都要消耗功。这些损失在级内都是不可防 止的,只有在设计中精心选择参数,再制造中按要求加工,在操作中精心操 作使其尽量到达设计工况,来减少这些损失。另外,还存在流动损失以及动 能损失以及在级内在非工况时产生冲击损失。冲击损失增大将引起压缩机效 率很快降低。还有高压轴端,如果密封不好,向外界漏气,引起压出的有用 流量减少。故此,我们有必要研究这些损失的原因,以便在设计、安装、操 作中尽量减少损失,维持压缩机在高效率区域运行,节省能耗。 1、流动损失:定义:就是气流在叶轮内和级的固定元件中流动时的能量损失。 产生的原因:主要由于气体有粘性,在流动中引起摩擦损失,这些损失又变 成热量使气体温度升高,在流动中产生旋涡,加剧摩擦损耗和流动能量损失, 因旋涡的产生就要消耗能量;在工作轮中还有轴向涡流等第二次流动产生, 引起流量损失。在叶轮出口由于出口叶片厚度影响产生尾迹损失。弯道和回 流器的摩擦阻力和局部阻力损失等。
离心压缩机本体结构介绍
MCL1006压缩机的叶轮均为顺排布置、机壳水平剖分结构,叶轮名 义直径为φ1000mm,共六级,工艺气体依次进入各级叶轮进行压缩, 一直压缩至出口状态。没有中间气体冷却器。
压缩机培训资料-离心机
离心机离心式制冷压缩机是一种回转式速度型压缩机,最适宜于压缩大容量的气体或蒸汽。
在七十多年的发展历程里,离心式制冷压缩机历经本世纪三十年代氟利昂制冷剂的诞生、冶金工业的的发展所带来的高强度叶轮材料、日益迫切的环境问题引入的R134a和R123环保工质的应用等阶段,正广泛应用于宾馆、医院、剧场、机关、船舰等民用场合,工业上则满足纺织、精密机械加工、感光胶片、电视显象管及液晶板生产车间等工艺空调制冷需要。
一、工作原理通过吸气室将要压缩的气体引入到叶轮;叶轮吸入的气体在叶轮叶片的作用下跟着叶轮做高速旋转,气体由于受离心力的作用以及在叶轮里的扩压流动而提高其压力和速度后引出叶轮周边,导入扩压器;气体从叶轮流出后,具有较高的流速,为充分转化这部分速度能,在叶轮后面设置了流通截面逐渐扩大,把速度能转化为压力能,以提高气体的压力;扩压后的气体在蜗壳里汇集起来后被引出机外。
以上这一过程就是离心机的压缩原理。
压缩机的分类主要有:1.按压缩机的型式分:1)开启式:该形式是将压缩机、增速器和电机各自独立分开布置,或压缩机与增速器一起,而电机单独布置,它们之间通过联轴节来连接。
这种型式由于轴的外伸而存在泄露问题。
2)半封闭式:该形式是将压缩机、增速器和电机封闭在同一个壳体内,但各部分之间用螺钉连接,可以拆卸。
这种形式对电机要求能耐氟。
2.按压缩机的级别分:1)单级压缩:只有一级叶轮的压缩方式。
2)双级压缩:有两级叶轮的压缩方式。
3)多级压缩:指三级及三级以上的压缩方式。
二、离心式制冷压缩机主要技术特点离心式制冷压缩机的结构组成:压缩机的形式不一样,各种压缩机的结构会有所不同,现以双级压缩带齿轮增速的半封闭形式为例:1.压缩部分:主要由吸气室、叶轮、扩压器、弯道与回流器、二级叶轮、扩压器、蜗壳组成。
1)吸气室:用以把气体由进气管均匀地引导到叶轮。
一般设计成收口的锥体状。
2)叶轮:通过叶轮的高速旋转,而使气体获得很高的速度,同时也起到扩压的作用。
离心式压缩机培训讲义
活 柱 隔 塞 塞 膜 式 式 式
按气流运动方向分类 1. 离心式—气体在压缩机中的流动方 向大致与旋转轴相垂直。 2. 轴流式—气体在压缩机中的流动方 向大致与旋转轴相平行。 3. 斜流式—气体在压缩机中的流动方 向介于离心式和轴流式之间,流动方向与 旋转轴成某一夹角。 4. 复合式—在同一台压缩机内,同时 具有轴流式与离心式(斜流式)工作叶轮, 一般轴流在前,离心在后。
1、 介质:压缩机输送的气体及成份。 2、流量:又称风量,指单位时间内流经压缩机的 气体量,通常用容积流量和质量流量来表示。 容积流量—指单位时间内流经压缩机的气体容积 量。用Q表示,常用单位m3/min。(应注明是进口还 是出口,不注明,一般按进口法兰处容积流量考虑。) 质量流量—指单位时间内流经压缩机的气体质量。 用G表示,常用单位kg/sec, 如果忽略外泄量,压缩机 进口与出口处质量流量是相等的。 标准状态容积流量—又称标态流量,指标准状态 下(压力为10.1325 kPa,温度为0℃)的容积流量,用QN 表示,常用单位Nm3/min。
末级 末级由叶轮、扩压器、蜗室等组成。 气体经过这一级增压后将排出机外。流到冷却器进行 冷却,或送往排气管道输出。
对于这两种级的结构型式来说,叶轮是这两种级所共 同具有的,只是在固定元件上有所不同。 对于末级来说,它是以蜗室取代中间级的弯道和回流器, 有时还取代了级中的扩压器。
三、离心式压缩机结构
平衡盘就是利用它的两边气体压力差来平衡轴向力的零件。 它位于高压端,它的一侧压力可以认为是末级叶轮轮盘侧 的间隙中 的气体压力(高压)。另一侧通向大气或进气管,它的压力是大气压 或进气压力(低压)。 由于平衡盘也是用热套法套在主 轴上。上述两侧压力差就使转子受到一个与轴向力反向的力。其大 小决定于平衡盘的受力面积。通常,平衡盘只平衡一部分轴向力。 剩余的轴向力由止推盘(止推轴承)承受。 平衡盘的外缘安装气封,可以减少气体泄漏。
《离心式压缩机培训》课件
密封和润滑系统
密封
防止气体在压缩机内部泄漏,确保压缩机的效率和安全性。
润滑系统
为轴承和密封提供润滑油,减少摩擦和磨损。
控制系统
控制柜
集成控制压缩机运行的所有电器元件 ,如电机、启动器、保护装置等。
传感器和执行器
用于监测和控制压缩机的运行状态和 参数,如温度、压力、流量等。
03
离心式压缩机的操作与 维护
统,更换轴承等部件。
振动过大
可能是转子不平衡、地脚螺栓 松动等原因导致。应检查转子 平衡状况,紧固地脚螺栓等。
泄漏
可能是密封件老化或损坏等原 因导致。应更换密封件,检查 密封腔等。
流量不足
可能是进气或排气管道堵塞等 原因导致。应检查管道通畅状
况,清理堵塞物等。
04
离心式压缩机的安全与 环保
安全操作规程
气的压缩。
制冷行业
离心式压缩机在制冷行业中用 于冷媒气体的压缩。
石油和天然气工业
离心式压缩机用于石油和天然 气开采、输送过程中的气体压
缩。
离心式压缩机的优缺点
优点
离心式压缩机具有效率高、结构简单、易损件少、运行稳定 等优点。此外,其适应性强,可在多种工况下运行,且易于 实现自动化控制。
缺点
离心式压缩机的缺点主要包括启动电流大、不适合低压力比 的应用以及高速旋转的叶轮对气体进行加速时会产生较大的 噪音和振动。
排放标准
了解并遵守国家和地方的环保排 放标准,确保离心式压缩机排放 的废气、废水和噪声等符合相关
规定。
废气处理
根据需要配置废气处理设施,如除 尘器、脱硫脱硝装置等,以降低废 气对环境的影响。
废水处理
对离心式压缩机产生的废水进行妥 善处理,确保达到排放标准后再进 行排放。
离心压缩机基础知识
子产生过大的轴向窜动,在设计平衡盘时,不要将转 子上的轴向力完全平衡掉,而保持10kN左右的残留轴 向力,由轴向推力轴承承受,使转子得到轴向定位。
离心压缩机的轴承结构及润滑系统
径向轴承(支承轴承)
作用 承受转子的重力和由于振动等原因引起的附加径向载 荷,以保持转子的转动中心和气缸中心一致,并使其 在一定转速下正常运行。
➢ 压缩功
H pol
pd ps
vdp
m m
1
RTs
pd ps
m1
m
1
mR m 1
Td
Ts
➢ 多变压缩过程方程
pvm psvsm pd vd m const
m
pd ps
Td Ts
m1
离心压缩机的工作原理
级效率
pol
H pol
Htot
Cd 2
2
Cs2
压缩功 可用能头
离心压缩机的工作原理
离心压缩机的性能曲线及操作调节
➢ 性能曲线
一般情况,压缩机的 特性曲线由进口流 量、进气压力、进 气温度及工作转速 等四个独立变量决 定。
离心压缩机的性能曲线及操作调节
✓ 喘振工况:当压缩机进口流量减小到某一值(称为最小流 量)时,离心压缩机就产生强烈的振动及噪音,无法稳定 工作。出现喘振的根本原因是压缩机的流量过小,小于压 缩机的最小流量导致机内出现严重的气体旋转脱离;外因 是管网的压力高于压缩机所提供的排压,造成气体倒流, 并产生大幅度的气流脉动。
然后送往二段转化炉,使甲烷氧化得到氢气。 (3)氮氢合成气压缩机:一是把新鲜的氮氢合成气由2.6MPa压
缩到合成气压力;二是将从合成它反映出来的并经过冷却的 循环气增压到合成气压力。合成反应的压力视工艺而定,低 压流程为15MPa,中压流程为24MPa,高压流程为32MPa。 (4)氨压缩机:以氨作为制冷剂,经压缩机压缩到1.7MPa左右, 送往冷凝器中液化。 (5)二氧化碳压缩机:将合成氨车间脱硫工段来的常压CO2气, 加压到尿素合成压力(15MPa左右),然后送到尿素车间的 气提塔进行反应,生成尿素。
第四讲_离心式压缩机_第4节_多级压缩
(2)分段与中间冷却以减少耗功
应当指出,分段与中间冷却不能仅考虑省功,还要 考虑下列因素:
1)被压缩介质的特性属于易燃、易爆则段出口的 温度低一些,对于某些化工气体,因在高温下气体发生 不必要的分解或化合变化,或会产生并加速对机器材料 的腐蚀,这样的压缩机冷却次数必需多一些。
2)用户要求排出的气体温度高,以利于化学反应(由 氮、氢化合为氮)或燃烧,则不必采用中间冷却,或尽量 减少冷却次数。
压缩不同气体时所需压缩功和级数的比较表
气体 氟里昂-11
分子量 μ/[J/(kg·K)]
绝热指数k
136.3
1.10
密度 ρ/(kg/m3)
6.15
多方压缩功 圆周速度 Hpol(kJ/kg) u2/(m/s)
16.97
186
级数j 1
空气
28.97
1.40
1.293
92.2142802焦炉煤 Nhomakorabea 11.78
第四讲 离心式压缩机
第四节 多级压缩
4.4 多级压缩
(1) 采用多级串联和多缸串联的必要性 (2) 分段与中间冷却以减少耗功 (3) 级数与叶轮圆周速度和气体分子量的关系
(1)采用多级串联和多缸串联的必要性
离心压缩机的压力比一般都在3以上,有的高达 150,甚至更高。
离心压缩机的单级压力比,较活塞式的低,所以 一般离心压缩机多为多级串联式的结构。
H th
c2uu2
2uu22
1 2rctg2A
Z
sin
2A
u22
可知,叶轮对气体做功的大小与圆周速度的平方成正比,如能尽
量提高u2就可减少级数。但是提高叶轮圆周速度u2 ,却受到以下
几种因素的限制。 叶轮材料强度的限制;气流马赫数的限制;叶轮相对宽度的限制。
离心式压缩机基础知识
离心式压缩机基础知识第四节离心式压缩机组的开停车一、压缩机组运行前的准备与检查1、驱动机及齿轮变速器应进行单独试车和串联试车,并经验收合格达到完好备用状态。
装好驱动机、齿轮变速器和压缩机之间的联轴器,并复测转子之间的对中,使之完全符合要求。
2、机组油系统清洗调整已合格,油质化验合乎要求,储油量适中。
检查主油箱、油过滤器、油冷却器,油箱油位不足则应加油。
检查油温若低于24℃,则应使用加热器,使油温达到24℃以上。
(油温低了会怎样?)油冷却器和油过滤器也应充满油,放出空气,油冷却器与过滤器的切换位置应切换到需要投用的一侧。
检查主油泵和辅助油泵,确认工作正常,转向正确。
油温度计、压力表应当齐全,量程合格,工作正常。
用干燥的氮气充入蓄压器中,使蓄压器内气体压力保持在规定数值之内。
调整油路系统各处油压,达到设计要求。
检查油系统各种联锁装置运行正常,确保机组的安全。
3、压缩机各入口滤网应干净无损坏,入口过滤器滤件已换新,过滤器合格。
4、压缩机缸体及管道排液阀门已打开,排尽冷凝后关小,待充气后关闭。
5、压缩机各段中间冷却器引水建立冷却水循环,排尽空气并投入运行。
6、工艺管道系统应完好,盲板已全部拆除并已复位,不允许由于管路的膨胀收缩和振动以后重量影响到气缸本体。
7、将工艺气体管道上的阀门按起动要求调到一定的位置,一般压缩机的进出口阀门应关闭,防喘振用的回流阀或放空阀应全开,工艺系统的出口阀也应全闭。
各类阀门的开关应灵活准确,无卡涩。
8、确认压缩机管道及附属设备上的安全阀和防爆板已装备齐全,安全阀调校整定,符合要求,防爆板规格符合要求。
9、压缩机及其附属机械上的仪表装设齐全,量程、温度、压力及精确度等级均符合要求,重要仪表应有校验合格证明书。
检查电气线路和仪表空气系统是否完好。
仪表阀门应灵活准确,自动控制保安系统经检验合格,确保动作准确无误。
10、机组所有联锁已进行试验调整,各整定值皆已符合要求。
防喘振保护控制系统已调校试验合格,各放空阀、防喘回流阀应开关迅速,无卡涩。
离心式压缩机培训教程
运行中的监控与调整
监控
在运行过程中,应密切监控离心式压缩机的各项参数,如压力、温度、振动、润滑油位等,确保其处于正常范围 内。
调整
根据监控结果,适时调整离心式压缩机的运行参数,如转速、流量等,以保持其高效稳定运行。
日常维护与保养
日常维护
每天进行例行检查,包括检查润滑系统 、冷却系统、密封件等,确保其正常工 作。
操作过程中应严格遵守安全操作规程,确 保设备正常运行和人员安全。
定期对离心式压缩机进行维护保养,确保 设备处于良好状态。
环保排放要求
01
离心式压缩机应符合国家及地方 环保排放标准,确保排放的废气 、废水和噪声等达到规定的控制 指标。
02
操作人员应了解环保排放要求, 掌握相应的处理技术和方法,确 保设备运行过程中产生的废弃物 得到妥善处理。
利用压缩机的余热进行回收利用,降 低能耗。
变频控制技术
采用变频器控制电机转速,实现能源 的合理利用。
可靠性增强策略
01
02
03
定期维护保养
按照规定进行定期维护保 养,确保压缩机正常运行 。
故障诊断与预防
采用先进的故障诊断技术 ,预防性维护,降低故障 率。
高品质材料
选用高品质的材料和零部 件,提高压缩机的可靠性 和寿命。
氧气、氮气等。
工业气体
离心式压缩机在工业气体 领域中用于生产氢气、氮 气、氧气等,以及用于气
体的输送和增压。
离心式压缩机的分类与特点
分类
离心式压缩机按结构可分为单级 离心式压缩机和多级离心式压缩 机;按工作原理可分为单轴离心 式压缩机和双轴离心式压缩机。
特点
离心式压缩机具有处理气体量大 、效率高、易损件少、操作稳定 等优点,但也存在压力比低、不 适合处理高粘度气体等局限性。
第十章+离心式制冷压缩机
第二节 工作原理与结构
《制冷流体机械》 授课:陈礼 余华明 压缩机总述 制冷流体机械》
第二节 工作原理与结构
2.总体及零部件结构 离心式制冷压缩机可分为开启式和封闭式两大类型。 离心式制冷压缩机可分为开启式和封闭式两大类型。
内部结构
《制冷流体机械》 授课:陈礼 余华明 压缩机总述 制冷流体机械》
第二节 工作原理与结构
1.离心式制冷压缩机的工作原理 1.离心式制冷压缩机的工作原理 离心式制冷压缩机的工作原理 与容积式压缩机不同, 与容积式压缩机不同,它是依 靠动能的变化来提高气体的压 力的。 力的。它由转子与定子等部分 组成。当带叶片的转子( 组成。当带叶片的转子(即工作 转动时, 轮)转动时,叶片带动气体转动 把功传递给气体, ,把功传递给气体,使气体获 得动能。 得动能。定子部分则包括扩压 弯道、回流器、蜗壳等, 器、弯道、回流器、蜗壳等, 它们是用来改变气流的运动方 向以及把速度能转变为压力能 的部件。 的部件。制冷剂蒸气由轴向吸 沿半径方向甩出, 入,沿半径方向甩出,故称离 心式压缩机( 心式压缩机(centrifugal compressor)。 compressor)。
《制冷流体机械》 授课:陈礼 余华明 压缩机总述 制冷流体机械》
第三节 特性及调节
《制冷流体机械》 授课:陈礼 余华明 压缩机总述 制冷流体机械》
第三节 特性及调节
用汽轮机或可变 转速的电动机拖动 时,可改变压缩机 的转速进行调节, 的转速进行调节, 这种调节方法最经 济。
每个压缩机转速n (n1>n2>n3)有不同的 温度曲线工作点将随之 改变, 改变,从而达到调节机 组能量的目的。 组能量的目的。
离心式压缩机培训教程
培训大纲
1、压缩机 的分类 2、离心式压缩机的结构与原理 3、BCL406压缩机的结构与原理 4、重要部件检修技术 5、常见故障及处理 6、压缩机试运要求及完好标准。
B:垂直剖分,CL,离心压缩机和无叶扩压器,40:名义 直径,6:表示6级
一、压缩机的分类 按其原理可分为:
离心式压缩机
2、隔板:隔板是形成固定元件的气体
通道,根据隔板在压缩机所处的位置, 隔板可分为4种类型:进口隔板、中间隔 板、段间隔板、排气隔板。进气隔板和 气缸形成进气室,将气体导流到第一级 叶轮入口,对于采用可调和欲旋的压缩 机,在进气隔板上还可装上可调叶片, 以改变气流的方向。中间的隔板用处有2 个,一是形成扩压室,使气体流出后具 有的动能减少,转变成压强的增高:二 是形成弯到流向中心,流到下级叶轮入 口。段间隔板的作用是指在段间对排的 2MCL、2BCL型压缩机中分隔两段排气 口。排气隔板除了与末级叶轮前隔板形 成末级扩压式之外,还要形成排气室.
往复式(活塞式)压缩机、离心回转式(旋转式)压缩机 (涡轮式、水环式、透平)压缩机,轴流式压缩机,喷射 式压缩机及螺杆压缩机等各种型式。
按压缩机的气缸位置(气缸中心线)可分为: (1)卧式压缩机,气缸均为横卧的(气缸中心线成水平方
向)。 (2)立式压缩机气缸均为竖立布置的(直立压缩机)。 (3)角式压缩机,气缸布置成L型、V型、W型和星型等不
度的曲轴两侧,布置成H型,其惯性力基本能平衡。(大 型活塞的压缩动作可分为: (1)单作用压缩机:气体只在活塞的一侧进行压缩又称单动压缩机。 (2)双作用压缩机:气体在活塞的两侧均能进行压缩又称复动或多动压
缩机。 (3 )多缸单作用压缩机:利用活塞的一面进行压缩,而有多个气缸的压
concepts nrec软件培训系列之离心式压缩机设计与加工
Concepts NREC软件培训系列之离心式压缩机设计与加工简介离心式压缩机是一种常见的动力传动设备,广泛应用于空调、制冷、石油化工等领域。
本文将介绍离心式压缩机的设计与加工流程,并结合Concepts NREC软件,为读者提供一种高效、精确的设计和加工方案。
离心式压缩机设计离心式压缩机的设计主要涉及到叶轮、蜗壳和转子的几何形状和尺寸。
常见的设计要求包括压力比、流量、效率和噪声等。
Concepts NREC软件是一款专业的离心式压缩机设计软件,可以帮助工程师进行精确的叶轮设计和性能分析。
叶轮设计叶轮是离心式压缩机的关键部件,其设计直接影响到系统的性能和效率。
Concepts NREC软件通过使用先进的流体动力学理论和优化算法,可以快速生成高效的叶轮设计。
在设计过程中,工程师需要输入相关的参数和限制条件,例如入口流速、出口压力等。
软件会根据这些输入自动生成叶轮的几何形状,并进行性能分析和优化。
蜗壳设计蜗壳是离心式压缩机中负责将气体转化为压力能的重要部分。
Concepts NREC软件可以根据叶轮的几何形状和性能要求,自动生成与之匹配的蜗壳设计。
工程师可以通过软件的界面进行参数的调整和优化,以获得最佳的性能。
转子设计转子是离心式压缩机中的旋转部件,其设计要求结构强度好、转子动平衡性能好。
Concepts NREC软件可以帮助工程师进行转子的设计和优化。
软件会根据用户指定的输入条件,自动生成转子的几何形状,并进行力学分析和动平衡校核。
离心式压缩机加工离心式压缩机的加工也是一个重要的环节,直接影响到产品的精度和性能。
现代加工技术可以大大提高离心式压缩机的加工效率和精度,而Concepts NREC软件可以与加工设备进行无缝集成,实现智能化的加工过程。
数控加工数控加工是一种常用的离心式压缩机加工技术,可以实现对复杂曲面的精确加工。
Concepts NREC软件可以将设计好的叶轮、蜗壳和转子几何模型导出为数控加工程序,直接控制数控机床进行加工。