1.1.1集合的含义及其表示(2)

合集下载

1.1.1 集合的含义与表示(第2课时)集合的表示(课件)

1.1.1 集合的含义与表示(第2课时)集合的表示(课件)

[解] (1)不大于 10 的非负偶数有 0,2,4,6,8,10,所以 A={0,2,4,6,8,10}. (2)小于 8 的质数有 2,3,5,7, 所以 B={2,3,5,7}. (3)方程 2x2-x-3=0 的实数根为-1,32.所以 C=-1,32. (4)由yy= =-x+23x, +6, 得xy= =14, . 所以一次函数 y=x+3 与 y=-2x+6 的交点为(1,4), 所以 D={(1,4)}.
[规律方法] 用列举法表示集合的个步骤 求出集合的元素 把元素一一列举出来,且相同元素只能列举一次 用花括号括起来 提醒:二元方程组的解集,函数的图象点形成的集合都是点的集合,一定要写 成实数对的形式,元素与元素之间用“,”隔开.如{2,3,5,-1}.
[跟踪训练] 1.用列举法表示下列集合: (1)方程组xx-+yy==02, 的解集; (2)A={(x,y)|x+y=3,x∈N,y∈N}.
2.(变条件)本例若将条件“只有一个元素”改为“至少有一个元素”,其他条 件不变,求实数 k 的取值范围. [解] 由题意可知,方程 kx22-8x+16=0 至少有一个实数根. ①当 k=0 时,由-8x+16=0 得 x=2,合题意; ②当 k≠0 时,要使方程 kx22-8x+16=0 至少有一个实数根,则 Δ=64-64k≤0, 即 k≥1. 综合①②可知,实数 k 的取值集合为{k|k=0 或 k≥1}.
[解] (1)解方程组23xx- +32yy= =18,4, 得xy= =-4,2, 故解集为{(4,-2)}. (2)集合用描述法表示为{x|x 是正方形},简写为{正方形}. (3)集合用描述法表示为{(x,y)|y=x2}.
“ THANKS ”
【解答】解:解集合A方程,x2-x-2=0得到x=2,x=-1, ∵y∈A,即:y=2,y=-1, ∴集合B|x|=y+2,y∈A, 得:|x|=y+2=4,|x|=y+2=1, 故:x=±4,x=±1, ∴集合B={-4,-1,1,4} 故选:B.

1.1.1集合的含义与表示

1.1.1集合的含义与表示

小题狂做
1、若以集合A={-1,1},B={0,2},则集合 {z︱z=x+y,x A,y B} 中的元素个数为( ) 。 A. 5 B. 4 C. 3 D. 2
2 、若以集合S={a,b,c}( a,b,c R)中三个元素为边可 构成三角形,那么此三角形不可能是( ) 。 A.锐角三角形 C. 钝角三角形 B. 等腰三角形 D.直角三角形
【分析】集合相等当且仅当集合中元素全部相同。且同一集合中的元素互异。
【解析】由A=B,即A与B的元素一样,则
a+d=aq (Ⅰ)a+2d=aq2
Hale Waihona Puke (Ⅱ)2a+d= aq2 a+2d= aq
由(Ⅰ)消去d,得aq
-2aq+a=0.
根据已知条件,显然a 0, d 0,解得q=1. 但当q=1时,a=aq=aq2 ,这与集合中元素的互异性矛 盾,故q=1舍去.
05 集合的分类
集合通常可分为有限集、无限集、空集.
(1)有限集 含有有限个元素的集合叫做有限集. (2) 无限集 含有无限个元素的集合叫做无限集. 如{所有的等腰三角形} (3)空集 不含任何元素的集合叫做空集.
你学到了什么?
1、元素与集合的概念 2、常用数集的符号 3、集合中元素的三个特征 :确定性,互异性, 无序性 4、集合的表示方法:列举法,描述法,图示法 5、集合的分类:有限集,无限集,空集
例题
(2)用描述法表示所有奇数的集合。
解: 任何一个奇数都可以表示为x=2k+1(k z)的形式, 所以我们可以把所有奇数的集合表示为 E={ x Z︱x=2k+1,k z}.
例题
(3)分别用列举法和描述法表示 x2-2=0的所有实数根组成的集合。 方程

【数学】1.1.1集合的含义与表示

【数学】1.1.1集合的含义与表示

3、元素与集合的关系
关系 元 素 与 集 合 的 关 系 概念 记法 读法
如果a是集合A中的 于 属于 元素,就说a属于集 a∈A 集合 合A 如果a不是集合A中 不 的元素,就说a不属 a∉A 属于 于集合A
a属 A a不 A
属于 集合
4、常用的数集及记法 名称 意义 记法 非负整数集 全体非负整数组成的 N (自然数集) 集合 所有正整数组成的集 * 正整数集 N 或N+ 合 整数集 有理数集 实数集 全体整数组成的集合 全体有理数组成的集 合 全体实数组成的集合 Z Q R
练习2:已知集合A={a+2,(a+1)2,a2+3a +3},若1∈A,求实数a的值.
解:若a+2=1,则a=-1,所以A={1,0,1}, 与集合中元素的互异性矛盾,应舍去; 若(a+1)2=1,则a=0或a=-2, 当a=0时,A={2,1,3},满足题意. 当 a =- 2 时, A = {0,1,1} ,与集合中元素的互 异性矛盾,舍去; 若a2+3a+3=1,则a=-1或a=-2(均舍去). 综上可知,a=0.
例4
用适当的方法表示下列集合.
* *
(1)A={(x,y)|x+y=4,x∈N ,y∈N };
6 ; ∈ Z| x ∈ N (2)B= 1+x
(3)方程 x +y -4x+6y+13=0 的解集; (4)平面直角坐标系中所有第二象限的点.
先明确集合中元素的特点,再选择 适当的方法来表示.
(4)我国古代四大发明; (5)抛物线y=x2上的点.
知识梳理: 1、定 义 一般地, 指定的某些对象的全体称 为集合. 集合中每个对象叫做这个集合的元素.
2、集合与元素 (1)、元素:一般地,我们把研究对象统 称为元素,元素常用小写拉丁字母 a , b , c„表示. (2)、集合:把一些元素组成的总体叫做 集合 ( 简称集 ) ,集合通常用大写拉丁字 母A,B,C,„表示. (3)、集合元素的三个特性:确定性、互 异性、无序性.

高中数学 111集合的含义和表示(二)课件 湘教版必修1

高中数学 111集合的含义和表示(二)课件 湘教版必修1

( ).
• A.5
B.6
C.7
D.8
• 解析 {x|1≤x≤6,x∈N}={1,2,3,4,5,6}.
• 答案 B
2.
3. • 将集合{x|2≤x≤8}表示成区间为____________.
• 答案 [2,8]
• 能被3整除的正整数的集合,用描述法可表示为 4. ________.
• 答案 {x|x=3n,n∈N+}
名师点睛
1. • 在用列举法表示集合时应注意以下四点: • (1)元素间用“,”分隔; • (2)元素不重复; • (3)不考虑元素顺序; • (4)对于含有较多元素的集合,如果构成该集合的元素 有明显规律,可用列举法,但是必须把元素间的规律显 示清楚后方能用省略号.
2. • 使用描述法时应注意以下四点: • (1)写清楚该集合中元素的一般属性或形式(字母或用字 母表示的元素符号); • (2)说明该集合中元素的特征; • (3)不能出现未被说明的字母; • (4)用于描述的语句力求简明、确切.
(2)使 y=x2+1x-6有意义的实数 x 的集合; (3)在坐标平面中第一、三象限上点的集合.
解 (1){x∈R|x2-2=0}.
(2)要使 y=x2+1x-6有意义,须 x2+x-6≠0,即 x≠2 且 x ≠-3,故可表示成{x|x≠2 且 x≠-3,x∈R}. • (3)第一、三象限上的点的特征是纵横坐标符号相同,
• 提示 集合①{x|y=x2+1}的代表元素是x, • 满足条件y=x2+1中的x∈R, • ∴实质上{x|y=x2+1}=R. • 集合②{y|y=x2+1}的代表元素是y, • 满足条件y=x2+1中的y的取值范围是y≥1, • ∴实质上{y|y=x2+1}={y|y≥1}. • 集合③{(x,y)|y=x2+1}的代表元素是(x,y), • 满足条件y=x2+1的(x,y)的集合是抛物线, • ∴实质上{(x,y)|y=x2+1}={P|P是抛物线y=x2+1上的点}. • 由以上可知它们不是相同的集合.

人教版高中数学必修一第一章知识点

人教版高中数学必修一第一章知识点

第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.(8)交集、并集、补集【1.1.3】集合的基本运算名称记号意义性质示意图交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U A{|,}x x U x A∈∉且1()UA A=∅2()UA A U=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a>||,||(0)ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解(2)一元二次不等式的解法判别式24b ac∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O 一元二次方程20(0)ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0)ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R()()()U U UA B A B=()()()U U UA B A B=〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yxox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()ug x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、,)a +∞上为增函数,分别在[,0)a 、]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。

1.1.1集合的含义与表示

1.1.1集合的含义与表示
例题9
设 是集合A上的一个运算,若对任意a,b ,有a b ,则称A对运算 封闭,若集合A是由正整数的平方组成的集合,即A={1,4,9,16,25,…}.若 分别是;①加法,②减法③乘法,④除法,则A对运算 封闭的序号有.
10.求参数的取值范围
(1)已知集合元素个数求参数问题的解题策略:已知集合中元素的个数,求参数的值或取值范围时,关键是对集合的表示方法灵活掌握,弄清其实质,即集合中的元素是什么.
高考水平突破:
1、由a,-a,|a|, 构成的集合中,最多含有元素的个数是().
A. 1个B. 2个C. 3个D. 4个
2、含有三个实数的集合可表示为{a, ,1},也可表示为{a2,a+b,0},则a2013+b2014=()
A. 0B. 1 C.-1 D. 2
3、已知x,y都是非零实数,z= + + 可能的取值组成集合A,则().
(2)集合问题方程化的思想:对于一些已知某个集合(此集合中涉及方程)中的元素个数,求参数的问题,常把此集合的问题转化为方程的解的问题.
(3)集合与方程的综合问题,一般要求对方程中最高次项的系数的取值进行分类讨论,确定方程的根的情况,进而求得结果.需特别关注判别式在一元二次方程的实数根个数的讨论中的作用.
集合中的元素,必须具备确定性、互异性、无序性。反过来,一组元素若不具备这三个特性,则这组对象也就不能构成集合。故集合中元素的这三个特性是判断指定对象是否构成集合的元素。
例题2判断下列说法是否正确,并说明理由。
(1)全体高个子的中国人构成一个集合;
(2)由1, , ,|- |, 组成的集合有五个元素;
D.上海的所有高楼
2、已知A={x|3-3x>0},则有().

编号7 §1.1.1 集合的含义与表示 第二课时 (2)

编号7  §1.1.1 集合的含义与表示 第二课时 (2)

(3)列举法:把集合的元素一一列举出来,并用 花括号“{ }”括起来表示集合的方法叫做列举 法. 注意:元素间要用逗号隔开; (4)描述法:在花括号内先写上表示这个集合元 素的一般符号及取值(或变化)范围,再画一条 竖线,在竖线后写出这个集合中元素所具有的 共同特征.这种用集合所含元素的共同特征表 示集合的方法叫做描述法. 说明:1.取值范围为R省略的可不写 2.数集和点集在以后的学习中时常用到, 其一般格式为:数集:{x|p(x)}, 点集:{(x,y)|p(x,y)}.
解:(1)由于三个集合的代表元素互不相同,故它们是互不相同的 集合.
(2)集合A={x|y=x2+1}的代表元素是x,表示y=x2+1的自变量 的取值范围,所以x∈R,所以{x|y=x2+1}=R,即A=R;
集合B={y|y=x2+1}的代表元素是y,表示满足y=x2+1的函数 值的取值范围,所以y≥1,所以B={y|y=x2+1}={y|y≥1}. 集合C={(x,y)|y=x2+1}的代表元素是(x,y),是满足y=x2+1 的数对.可以认为集合C是坐标平面内满足y=x2+1的点(x,y)构 成的集合,也就是抛物线y=x2+1的图象.集合D={y=x2+1}表 示只有一个式子y=x2+1的集合。
5、图示法: (Venn图) 韦恩图 我们常常画一条封闭的曲线,用它的 内部表示一个集合。 例如,图1-1表示任意一个集合A; 图1-2表示集合{1,2,3,4,5} .
A
图1-1
1,2,3, 5, 4.
图1-2
6 数轴法:对于某些数集,我们经常用数轴直观明了地表示 出来.如集合 A={x|x>1,x∈R}和 B={x|x≤-2,x∈R}用 数轴分别表示如下:
大于向右, 小于向左; 有“=”画“· ”, 无“=”画“。 ”.

1.1.1集合的含义及表示方法(2课时)解析

1.1.1集合的含义及表示方法(2课时)解析
集合的含义与表示
第一课时
集合论是德国数学家康托 尔在19世纪末创立的,现在已 成为现代数学的重要基础之一, 集合语言是现代数学的基本语 言,学好本章集合内容对今后 的数学学习具有奠基作用。
请同学们阅读教材P2——P5内容,并提炼新知识提纲。
一、集合的定义
我们把研究对象统称为元素 把一些元素组成的总体叫做集合
二、集合的三大特性
确定性:所研究对象必须是明确的 互异性:同一个集合内的任何两个元素都必
须是不相同的。 无序性:在一个集合中,不考虑元素之间的顺序
集合相等:两个集合中的元素相同。
三、集合与元素的关系
集合:大写字母A,B,C…表示 元素:小写字母a,b,c…表示
如果a是集合A的元素,就说a属于集
合A,记作 a A
(1){ 1,5 } , (3){ 2,4,6 } ,
(2){ x|x2+x-1=0 }, (4){ x∈N | 3<x<7 }
2、下列集合是同一集合吗?
(1){ 1,2} , { 2,1} (2) { (1,2)} , { (2,1)} (3){ y|y=x2 } , { x|y=x2 } , { (x,y)|y=x2 } .
如果a不是集合A的元素,就说a不属于集
a A 合A,记作
四、常用的数集及其符号:
▲全体非负整数的集合简称非负整数集 (自然数集),记作 N ▲非负整数集内排除0的集称为正整数集,记 作 N*或N+ ▲全体整数的集合简称整数集,记作 Z ▲全体有理数的集合简称有理数集,记作 Q
▲全体实数的集合简称实数集,记作 R
练习1:判断下列语句的对错
(1)大于3小于11的偶数能够组成集合 对
(2)“咱班的帅哥”可以构成集合

1.1.1集合的概念及其表示(第二课时)

1.1.1集合的概念及其表示(第二课时)

2、描述法 、
考察下列集合: 考察下列集合: 的解组成的集合; (1)不等式 2x−7 < 3 的解组成的集合; 绝对值小于2的实数组成的集合. (2)绝对值小于2的实数组成的集合. 思考1:这两个集合能否用列举法表示? 思考1 这两个集合能否用列举法表示? 思考2:如何用数学式子描述上述两个集合的元素特征? 思考2 如何用数学式子描述上述两个集合的元素特征?
{( x, y ) | x 2 + y 2 = 1}
(3)所有奇数组成的集合; 所有奇数组成的集合; {x | x = 2k − 1, k ∈ Z }
本节小结
(思考)本节课主要学研究哪些基本内容?集合 的三种表示方法各有怎样的优点?用其表示 集合各应注意什么?
列举法, 突出元素, 注意元素图像法, 比较直观, 一目了然
(1) x ∈ R, 且x < 5 (1) { x ∈ R x < 5 }
(2) x ∈ R, 且 x < 2 (2) { x ∈ R x < 2 }
: 思考3:上述两个集合可分别怎样表示? 思考3 上述两个集合可分别怎样表示?
思考4 这种表示集合的方法叫什么名称? 思考4:这种表示集合的方法叫什么名称? 描述法 思考5 描述法表示集合的基本模式是什么? 思考5:描述法表示集合的基本模式是什么? 元素的一般符号及取值范围|元素所具有的性质} {元素的一般符号及取值范围|元素所具有的性质}
y = x2
x
o
用适当的方法表示下列集合: 例2、 用适当的方法表示下列集合: 绝对值小于3的所有整数组成的集合; (1)绝对值小于3的所有整数组成的集合; {-2,-1,0,1,2}或 {x ∈ Z || x |< 3} 2}或 (2)在平面直角坐标系中以原点为圆心,1为半径的圆 在平面直角坐标系中以原点为圆心, 周上的点组成的集合; 周上的点组成的集合;

1.1.1集合的含义及表示

1.1.1集合的含义及表示

考点:元素与集合的关系
一、用合适的符号填空 1、已知A表示大于1且小于10的 所有质数,则 1___A; 2___A;4___A;5___A 2、用P表示我国的直辖市,则 广州___P;重庆___P;北京___P
四、常用数集的符号表示(熟记)
N 正整数集: 或N
整数集:Z 自然数集:N

有理数集:Q
{, 12 }与{, 21 }是相同的集合√ { }与{ 是相同的集合 3.14 }
×
二、集合的概念和性质
3、集合相等:两个集合中的元素 完全相同
{, 12 }与{, 21 }是相同的集合 {1 2 , {, }= 2 1 }
三、元素与集合的关系
1、元素与集合的表示 元素:用a,b,c…表示 集合:用A,B,C…表示 2、元素与集合的关系: 属于,不属于 符号表示:a A, a A
一、接触过的集合的概念
垂直平分线:到线段两端点的距 离相等的点的集合
角平分线:到角两边的距离相等的 点的集合 圆:到定点的距离等于定长的点 的集合
学过的数集: 自然数集→ 整数集 →有理数集→ 实数集 → Z → Q → R N
注: 1、正整数集与自然数集的区别 2、研究的每一个对象称为元素; 这些元素的全体则构成一个集合
实数集:R
五、分析与研究
1、给出下列四个关系:
3 R,0.7 Q,0 {0},0 N
其中正确的个数是_______ A、1 B、2 C、3 D、4
2、下列四个命题:
(1)集合N中最小的元素是1
若 (2) a N , 则
小值是2
a N
(3)若a N , b N ,则a+b中的最 (4) x 4 4 x 的解集是{2,2}

高中数学知识点总结第一章

高中数学知识点总结第一章

高中数学 知识点总结第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念 集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法 N 表示自然数集,N* 或N + 表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. (3)集合与元素间的关系 对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x|x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集B {x A A =∅=∅B A ⊆ B B ⊆B {x A A = A ∅=B A ⊇ B B ⊇A ð{x ()U A =∅ð ()U A U =ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法()()()U U A B A B =痧?()()()U U A B A B =痧?(2)一元二次不等式的解法〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由yxo于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)a f xx a x=+>的图象与性质()f x 分别在(,-∞、)+∞上为增函数,分别在[0)、上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈, 都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性②若函数()f x 为奇函数,且在处有定义,则.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图: ①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位 0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换 01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸 ③对称变换 ()()x y f x y f x =−−−→=-轴 ()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点 1()()y x y f x y f x -==−−−−→=直线()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。

1.1.1集合的含义与表示

1.1.1集合的含义与表示
解 : (1)设方程x 2 − 2 = 0的实数根为x, 并且满足条 件x 2 − 2 = 0, 因此, 用描述法表示为 A = {x ∈ R | x 2 − 2 = 0}. 方程 x − 2 = 0有两个实数根 2 ,− 2 , 因此,
2
用列举法表示为A = { 2 ,− 2}.
(2)设大于 小于20的整数为 , 它满足条件 ∈ Z 10 x x 且10 < x < 20,因此, 用描述法表示为 B = {x ∈ Z | 10 < x < 20}. 大于 小于20的整数有 ,12,13,14,15,16,17,18, 10 11 19,因此, 用列举法表示为 B = {11,12,13,14,15,16,17,18,19}.
我们以前已经接触过的集合: 我们以前已经接触过的集合
自然数集合,正分数集合,有理数集合; 自然数集合,正分数集合,有理数集合; 到角的两边的距离相等的所有点的集合; 到角的两边的距离相等的所有点的集合;
是角平分线
到线段的两个端点距离相等的所有点的集合; 到线段的两个端点距离相等的所有点的集合;
是线段垂直平分线
1.1.1 集合的含义与表示
1、集合的含义: 、集合的含义:
把研究对象统称为元素, 把研究对象统称为元素,把一些 元素 元素组成的总体叫做集合 简称集)。 集合( 元素组成的总体叫做集合(简称集)。 用大写字母A, , 表示集合, 用大写字母 ,B,C…表示集合,用 表示集合 小写字母a,b, 小写字母 ,c …表示集合中的元素 表示集合中的元素
2、 若方程x2-5x+6=0和方程 若方程x 5x+6=0和方程 x2-x-2=0的解为元素的集合 则 2=0的解为元素的集合M,则 的解为元素的集合 M中元素的个数为 ( C) 中元素的个数为 A.1 . B.2 . 3、已知集合 、 C.3 . D.4 .

集合1.1.1

集合1.1.1

1.1.1 集合的含义与表示1.集合的含义(1)元素与集合的定义一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集).通常用大写拉丁字母A,B,C,…表示集合,用小写拉丁字母a,b,c,…表示集合中的元素.示例:小于5的自然数组成集合,可以记为B,它的元素是0,1,2,3,4;方程x2-x=0的实数解组成集合,可以记为A,它的元素是0,1.谈重点对集合的理解(1)集合的概念是一种描述性说明,因为集合是数学中最原始的、不加定义的概念,这与我们初中学过的点、直线等概念一样,都是用描述性语言表述的.(2)注意组成集合的对象的广泛性,凡是看得见的、摸得着的、想得到的任何事物都可以作为组成集合的对象.(3)集合是一个整体,已暗含“所有”“全部”“全体”的含义.因此一些对象一旦组成了集合,那么这个集合就是这些对象的全体,而非个别对象.(2)集合,其关键是看该组对象是否满足确定性.如果该组对象满足确定性,就可以组成集合;否则,就不能组成集合.【例1-1】下列所给的对象能构成集合的是__________.(1)所有正三角形;(2)新课标人教A版数学必修1课本上的所有难题;(3)比较接近1的正整数全体;(4)某校高一年级的16岁以下的学生;(5)平面直角坐标系内到原点的距离等于1的点的集合;(6)参加伦敦奥运会的年轻运动员;(7)a,b,a,c.点技巧 一组对象能否构成集合的判断技巧 判断一组对象能否构成集合的关键在于看是否有明确的...判断标准,使给定的对象是“确定无疑”的还是“模棱两可”的.如果是“确定无疑”的,就可以构成集合;如果是“模棱两可”的,就不能构成集合.(3)∈∉(1)由集合中元素的确定性可知,对任意的元素a 与集合A ,在“a ∈A ”与“a ∉A ”这两种情况中必有一种且只有一种成立.(2)符号“∈”和“∉”只表示元素与集合之间的关系,而不能用于表示其他关系.(3)“∈”和“∉”具有方向性...,左边是元素,右边是集合. 【例1-2】设不等式3-2x <0的解集为M ,下列关系中正确的是( )A .0∈M,2∈MB .0∉M,2∈MC .0∈M,2∉MD .0∉M,2∉M解析:本题是判断0和2与集合M 间的关系,因此只需判断0和2是否是不等式3-2x <0的解即可,当x=0时,3-2x=3>0,所以0∉M;当x=2时,3-2x=-1<0,所以2∈M.答案:B(4)相等集合只要构成两个集合的元素是一样的,也就是说它们的元素是完全相同的,我们就称这两个集合是相等的.【例1-3】若方程(x-1)2(x+1)=0的解集为A,方程x2-1=0的解集为B,那么A与B是否相等?解:由题意知集合A中的元素为1,-1;集合B中的元素为1,-1.由定义可知A=B.2.常用数集谈重点+)不包括元素0.(2)通常情况下,大写英文字母N,N*,Z,Q,R不再表示其他的集合,否则会引起“混乱”;虽然正整数集有两种字母表示:N*或N+,但是本书中主要用N*表示正整数集.【例2】用符号∈或∉填空:(1)3____N;3____Z;3____N*;3____Q;3____R.(2)3.1____N;3.1____Z;3.1____N*;3.1____Q;3.1____R.解析:观察空白处横线的两边,可看出本题是判断数与常用数集之间的关系,依据这些字母所表示集合的意义来判断.(1)因为3是自然数,也是整数,也是正整数,也是有理数,也是实数,所以有:3∈N;3∈Z;3∈N*;3∈Q;3∈R.(2)因为3.1不是自然数,也不是整数,也不是正整数,是有理数,也是实数,所以有:3.1∉N;3.1∉Z;3.1∉N*;3.1∈Q;3.1∈R.答案:(1)∈∈∈∈∈(2)∉∉∉∈∈3.集合的表示法(1)自然语言法用文字叙述的形式描述集合的方法.使用此方法要注意叙述清楚,如由所有正方形构成的集合,就是自然语言表示的,不能叙述成“正方形”.(2)列举法(1)当集合的元素较少时,可以采用列举法表示;(2)元素间用“,”分隔开;(3)元素不能重复,不考虑顺序;(4)集合元素个数较多或无限时(无限集),一般不采用列举法,但如果构成集合的元素有明显的规律时,可以采用列举法,但必须把元素间的规律表示清楚后才能用省略号,如正整数集可表示为{1,2,3,4,…}.【例3-1】用列举法表示下列集合:(1)15以内质数的集合;(2)方程x(x2-1)=0的所有实数根组成的集合;(3)一次函数y=x与y=2x-1的图象的交点组成的集合.分析:(1)质数又称素数,指在一个大于1的自然数中,除了1和此数自身外,不能被其他自然数整除的数;(2)中要明确方程x(x2-1)=0的实数根有哪些;(3)中要明确一次函数y=x与y=2x-1的图象的交点有哪些,应怎样表示.解:(1){2,3,5,7,11, 13};(2)解方程x(x2-1)=0,得x1=-1,x2=0,x3=1,故方程x(x2-1)=0的所有实数根组成的集合为{-1,0,1};(3)解方程组,21,y xy x=⎧⎨=-⎩得1,1,xy=⎧⎨=⎩因此一次函数y=x与y=2x-1的图象的交点为(1,1),故所求的集合为{(1,1)}.(3)谈重点用描述法表示集合应注意的问题(1)写清楚该集合中的代表元素,即代表元素是什么:是数,还是有序实数对(点),还是集合,或是其他形式;(2)准确说明集合中元素的共同特征;(3)所有描述的内容都要写在集合符号内,并且不能出现未被说明的符号;(4)用于描述的语句力求简明、准确,多层描述时,应准确使用“且”“或”等表示描述语句之间的关系;(5)在不致混淆的情况下,可以省去竖线及左边部分,如:{直角三角形},{正方形}等.【例3-2】用描述法表示下列集合:(1)所有的偶数组成的集合;(2)不等式2x-4>0的解集.解:(1)偶数是能被2整除的数,即2的倍数,所以所有偶数组成的集合用描述法表示为{x|x=2n,n∈Z}.(2)设不等式2x-4>0的解集记为A,x为集合A中元素的代表符号,其共同特征是2x-4>0,则A={x|2x-4>0};解不等式2x-4>0,得x>2,则也可以表示为A={x|x>2}.【例3-3】试分别用列举法和描述法表示下列集合:(1)方程x2-x-2=0的解集;(2)大于-1且小于7的所有整数组成的集合.解:(1)方程x2-x-2=0的根可以用x表示,它满足的条件是x2-x-2=0,因此,用描述法表示为{x∈R|x2-x-2=0};方程x2-x-2=0的根是-1,2,因此,用列举法表示为{-1,2}.(2)大于-1且小于7的整数可以用x表示,它满足的条件是x∈Z且-1<x<7,因此,用描述法表示为{x∈Z|-1<x<7};大于-1且小于7的整数有0,1,2,3,4,5,6,因此,用列举法表示为{0,1,2,3,4,5,6}.4.集合元素的特征的应用(1)集合元素的确定性是指给定一个集合,集合中的元素就确定了,即给定一个集合,任一元素要么在这个集合中,要么不在这个集合中,二者必居其一.考查一组对象的全体能否构成一个集合,需看这组对象是否具有确定无疑的具体特征(或标准).(2)集合元素的互异性是指集合中的元素互不相同,也就是说集合中的元素是不能重复出现的,相同的元素在一个集合中只能算作一个元素.例如:方程x 2=0的两个根x 1=x 2=0,用集合记为{0},而不能记为{0,0}.【例4】下列说法正确的是( )A .数学成绩较好的同学可以组成一个集合B .所有绝对值接近于零的数组成一个集合C .集合{1,2,3}与集合{3,2,1}表示同一个集合D .1,0.5,12,23,46组成一个含有5个元素的集合解析:对于A 项,“成绩较好”没有标准,不符合元素的确定性,故不正确;对于B 项,“绝对值接近于零的数”标准不明确,不构成集合,故不正确;对于C 项,集合{1,2,3}与{3,2,1}元素相同,是相等集合,因此正确;对于D 项,1,0.5,12,23,46组成一个含有3个元素的集合121,,23⎧⎫⎨⎬⎩⎭,故不正确. 答案:C5.元素与集合的关系及应用元素与集合的关系仅有两种:属于和不属于.用列举法给出的集合,判断元素与集合的关系时,观察即得元素与集合的关系. 例如,集合A ={1,9,12},则0∉A,9∈A .用描述法给出的集合,判断元素与集合的关系时相对比较复杂.此时,首先明确该集合中元素的一般符号是什么,是实数?是方程?……其次要清楚元素的共同特征是什么;最后往往利用解方程的方法判断所给元素是否满足集合中元素的特征,即可确定所给元素与集合的关系.描述法表示的集合形式为{x |x ∈P (x )},其中P (x )为该集合元素的共同特征.例如,集合B ={x |x =3n -1,n ∈Z },则该集合元素的一般符号是x ,其共同特征是x =3n -1,n ∈Z ,即集合B 中的元素是整数,并且这个整数等于3的整数倍减去1,因此判断某个元素与集合B 的关系时,只需判断所给的元素是否等于3的整数倍减去1即可.设3n -1=16,解得n =173,则16不能等于3的整数倍减去1,所以16∉B .设3n -1=17,解得n =6,则17等于3的6倍减去1,所以17∈B .【例5-1】设集合6|2B x x ⎧⎫=∈∈⎨⎬+⎩⎭N N . (1)试判断元素1,2与集合B 的关系;(2)用列举法表示集合B .分析:判断集合B 与元素1,2的关系,只要代入验证即可.解:(1)当x =1时,621+=2∈N . 当x =2时,62+2=63222=∈+N .因此1∈B,2∉B . (2)∵62x+∈N ,x ∈N ,∴2+x 只能取2,3,6. ∴x 只能取0,1,4.∴B ={0,1,4}.【例5-2】若集合A ={a -3,2a -1,a 2-4}且-3∈A ,求实数a 的值.错解:若a -3=-3,则a =0;若2a -1=-3,则a =-1;若a 2-4=-3,则a =±1.综上可知,a =0或a =±1.错因分析:由于-3∈A ,故应分a -3=-3,2a -1=-3,a 2-4=-3三种情况讨论,这是正确的,但求出a 值后,应验证其是否满足集合的互异性,错解在于没有验证,导致出现增解.正解:(1)若a -3=-3,则a =0,此时A ={-3,-1,-4},满足题意;(2)若2a -1=-3,则a =-1,此时A ={-4,-3,-3},不满足题意;(3)若a 2-4=-3,则a =±1,当a =1时,A ={-2,1,-3},满足题意,当a =-1时,由(2)知,不满足题意.综上可知,a =0或a =1.6.集合的表示方法及应用(1)用列举法表示集合时,既要注意将自然语言与集合语言描述的集合中的元素一一确定出来,又要善于把列举法表示的集合用自然语言表述出来.如方程x 2=1组成的集合是{-1,1},而该集合可描述为x 2=1的解集,或绝对值为1的数等.(2)使用描述法时,需注意以下几点:①写清楚该集合中的代表元素.例如,集合{x ∈R |x <1}不能写成{x <1}.②集合与它的代表元素所采用的字母无关,只与集合中元素的共同特征有关.例如,集合{x ∈R |x <1}也可以写成{y ∈R |y <1}.③所有描述的内容都要写在集合符号内.例如,{x ∈Z |x =2k },k ∈Z ,这种表述方式不符合要求,需将k ∈Z 也写进大括号内,即{x ∈Z |x =2k ,k ∈Z }.④在不致引起混淆的情况下,所有的非负数组成的集合可记为{x |x ≥0}.当集合是数集时,在没有标明x 范围的前提下,我们认为x 的值是使式子有意义的所有值.如⎭⎬⎫⎩⎨⎧=x y y 1,此时我们认为x ∈R 且x ≠0.由反比例函数的性质,可知该集合可化为{y |y ∈R ,且y ≠0}.当用文字语言来描述集合中元素的特征或性质时,分隔号及前面的部分常常省去,如“所有四边形组成的集合”记为{x |x 是四边形}.在不致混淆的情况下,可以省去“|”及其左边的部分,直接写成{四边形}.“所有四边形组成的集合”不能写成{所有四边形},因为花括号本身就有全部的意思,故用文字描述集合时,应去掉含有“整体”“全部”等意义的词.(3)对某一个具体的集合而言,其表示方法并不是唯一的,如{x |x 是自然数中三个最小的完全平方数},还可以表示为{0,1,4}.方法的选择要因题而异.【例6(1)绝对值不大于2的所有整数;(2)方程组1,1x y x y +=⎧⎨-=-⎩的解. 解:(1)由于|x |≤2且x ∈Z ,所以x 值为-2,-1,0,1,2.故绝对值不大于2的所有整数组成的集合为{-2,-1,0,1,2}.另外本题用描述法可表示为{x ∈Z ||x |≤2}.(2)解方程组1,1x y x y +=⎧⎨-=-⎩得0,1.x y =⎧⎨=⎩因此用列举法表示方程组1,1x y x y +=⎧⎨-=-⎩的解集为{(0,1)}. 【例6-2】用描述法表示下列图象中阴影部分(含边界)的点的集合.分析:由于是坐标平面内的点集,所以代表元素可以用有序实数对(x ,y ),x ,y 的范围可结合图形写出.解:(1)设阴影部分的所有点构成集合A ,则集合A 中的元素是点,设为(x ,y ).由图形知-1≤x ≤1,-1≤y ≤1,所以A ={(x ,y )|-1≤x ≤1,-1≤y ≤1}.(2)设阴影部分的所有点构成集合B ,则集合B 中的元素是点,设为(x ,y ).由图形知:-1≤x ≤1,y ∈R ,所以B ={(x ,y )|-1≤x ≤1,y ∈R }.【例6-3】下面三个集合:①{x |y =x 2+1};②{y |y =x 2+1};③{(x ,y )|y =x 2+1}.(1)它们是不是相同的集合?(2)它们各自的含义是什么?分析:对于用描述法给出的集合,首先要清楚集合中的代表元素是什么,元素满足什么条件.解:(1)它们是互不相同的集合.(2)∵集合①{x |y =x 2+1}的代表元素是x ,满足条件y =x 2+1中的x ∈R ,∴{x |y =x 2+1}=R ;∵集合②{y |y =x 2+1}的代表元素是y ,满足条件y =x 2+1的y 的取值范围是y ≥1,∴{y |y =x 2+1}={y |y ≥1};∵集合③{(x ,y )|y =x 2+1}的代表元素是(x ,y ),可以认为是满足y =x 2+1的数对(x ,y )的集合,也可以认为是坐标平面内的点(x ,y )构成的集合,且这些点的坐标满足y =x 2+1,∴{(x ,y )|y =x 2+1}={P |P 是抛物线y =x 2+1上的点}.点技巧 对用描述法表示的集合的理解 用描述法表示的集合,一要看集合的代表元素是什么,它反映了集合元素的形式;二要看元素满足什么条件.数集和点集常常会混淆.7.集合相等的应用两个集合相等,是指构成这两个集合的元素完全相同.也就是说,若两个集合相等,则这两个集合中的元素个数相同,并且对于其中一个集合中的任一元素,在另一个集合中都能找到这个元素.例如:若集合A ={-1,3},集合B ={x |x 2+ax +b =0},且A =B ,求实数a ,b . 解:因为A =B ,所以方程x 2+ax +b =0的解集是{-1,3},那么-1,3是方程x 2+ax +b =0的根,则13,13,a b -+=-⎧⎨-⨯=⎩解得2,3.a b =-⎧⎨=-⎩【例7】若含有三个实数的集合可表示为,,1ba a ⎧⎫⎨⎬⎩⎭,也可表示为{a 2,a +b,0},求a 2 012+b 2 013的值.分析:由题意知,集合,,1ba a ⎧⎫⎨⎬⎩⎭与集合{a 2,a +b,0}相等,由集合相等的定义,列出关于a ,b 的方程组,解出a ,b ,进而求a 2 012+b 2 013的值.解:由已知集合可表示为,,1ba a ⎧⎫⎨⎬⎩⎭,得a ≠1且a ≠0. 由题意得21,,0a a a b b a ⎧⎪=⎪=+⎨⎪⎪=⎩或21,,0,a b a a b a⎧⎪+=⎪=⎨⎪⎪=⎩解得1,0a b =-⎧⎨=⎩或1,0.a b =⎧⎨=⎩ 经检验知1,0,a b =⎧⎨=⎩不满足集合中元素的互异性,应舍去. 因此1,0a b =-⎧⎨=⎩故a 2 012+b 2 013=1. 点技巧 由集合相等求参数的技巧 应从集合相等的定义入手,寻找元素之间的关系,若集合中的未知元素不止一个,则需分类讨论....,同时要注意利用集合中元素的互异性...对求得的结果进行检验....8.方程、不等式等知识与集合交会问题的处理集合语言是表述数学问题的重要语言,以集合为载体的方程、不等式的问题是本节的常见问题之一,解决此类问题应注意:(1)首先是准确理解集合中的元素,明确元素的共同特征,如果不理解集合中的元素,那么就会出现思维受阻的现象,感到无从下手.例如,集合A ={x |ax -1<0}的元素是关于x 的不等式ax -1<0的解,当a =0时,这个不等式化为-1<0,此时不等式的解集为实数集R ,当a ≠0时,这个不等式是关于x 的一元一次不等式.如果忽视a =0,那么就会导致出现错解.(2)解题时还应注意方程、不等式等知识以及数学思想(转化思想、分类讨论思想)的综合应用.【例8】已知集合A ={x |ax 2-3x +2=0}.(1)若A 是单元素集合,求集合A ;(2)若A 中至少有一个元素,求a 的取值范围.分析:本题将集合中元素个数问题转化为方程根的问题.(1)A 是单元素集合,说明方程有唯一根或有两个相等的实数根.(2)A 中至少有一个元素,说明方程有一根或两根.解:(1)当a =0时,23A ⎧⎫=⎨⎬⎩⎭,符合题意; 当a ≠0时,方程ax 2-3x +2=0应有两个相等的实数根,则Δ=0,即9-8a =0,解得98a =,此时43A ⎧⎫=⎨⎬⎩⎭,符合题意.综上所述,当a =0时,23A ⎧⎫=⎨⎬⎩⎭,当a ≠0时,43A ⎧⎫=⎨⎬⎩⎭. (2)由(1)知,当a =0时,23A ⎧⎫=⎨⎬⎩⎭,符合题意; 当a ≠0时,方程ax 2-3x +2=0应有实数根,则Δ≥0,即9-8a ≥0,解得a ≤98.综上所述,若A 中至少有一个元素,则a ≤98.辨误区 对方程ax 2+bx +c =0的错误认识 “a =0”这种情况容易被忽视,如“方程ax 2-3x +2=0”有两种情况:一是“a =0”,即它是一元一次方程;二是“a ≠0”,即它是一元二次方程,只有在一元二次方程这种情况下,才能用判别式Δ来解决.因此解决二次项系数含参数........的方程或不等式问题时,应分二次项系数为......0.和.不为..0.两种情况进行讨论. 9.与集合有关的创新题(1)能选择自然语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用是新课标对本节课的要求.因此高考更多地将集合作为一种语言来考查.其中不乏一些创新题.(2)与集合有关的创新题主要以集合的表示法和元素与集合的关系为背景,常常是给出新的定义,依据新背景或新定义,借助于集合的含义与表示和元素与集合的关系来解决问题.(3)解决这类问题时,要紧扣所给的新背景或新定义.其所用到的集合知识往往是比较基础的,主要是集合的含义和表示法、集合的性质、元素与集合的关系等.【例9-1】定义集合运算A B ={z |z =xy (x +y ),x ∈A ,y ∈B },设集合A ={0,1},B ={2,3},则集合A B 的所有元素之和为( )A .0B .6C .12D .18解析:根据A B 的定义,当x =0时z =0;当x =1时,若y =2,则z =6,若y =3,则z =12.因此集合A B 的所有元素和为18. 答案:D【例9-2】已知集合A 中的元素均为整数,对于k ∈A ,如果k -1∉A 且k +1∉A ,那么称k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.解析:先分析“孤立元”的含义,再根据不含“孤立元”的条件写出所有不含“孤立元”的集合,最后确定个数.依题意可知,所谓不含“孤立元”的集合就是集合中的3个元素必须是3个相邻的正整数,故所求的集合包括:{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6个,应填6. 答案:6。

集合练习题1

集合练习题1

1. 1.1 集合的含义及其表示方法(1)1、一般地,指定的某些对象的全体称为集合,标记:A ,B ,C ,D ,… 集合中的每个对象叫做这个集合的元素,标记:a ,b ,c ,d ,…2、元素与集合的关系a 是集合A 的元素,就说a 属于集合A , 记作 a ∈A , a 不是集合A 的元素,就说a 不属于集合A , 记作 a ∉A 3、集合的中元素的三个特性:(1).元素的确定性:对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2.)元素的互异性:任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

比如:book 中的字母构成的集合(3).元素的无序性:集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

集合元素的三个特性使集合本身具有了确定性和整体性。

常见数集的专用符号.N :非负整数集(或自然数集)(全体非负整数的集合); N *或N +:正整数集(非负整数集N 内排除0的集合); Z:整数集(全体整数的集合);Q:有理数集(全体有理数的集合); R:实数集(全体实数的集合). 三、 例题例题1.下列各组对象不能组成集合的是( )A.大于6的所有整数B.高中数学的所有难题C.被3除余2的所有整数D.函数y=x1图象上所有的点 分析:学生先思考、讨论集合元素的性质,教师指导学生此类选择题要逐项判断.判断一组对象能否构成集合,关键是看是否满足集合元素的确定性.在选项A 、C 、D 中的元素符合集合的确定性;而选项B 中,难题没有标准,不符合集合元素的确定性,不能构成集合.答案:B 变式训练11.下列条件能形成集合的是( D )A.充分小的负数全体B.爱好足球的人C.中国的富翁D.某公司的全体员工 例题2.下列结论中,不正确的是( )A.若a ∈N ,则-a ∉NB.若a ∈Z ,则a 2∈ZC.若a ∈Q ,则|a |∈QD.若a ∈R ,则R a ∈3分析:(1)元素与集合的关系及其符号表示;(2)特殊集合的表示方法; 答案:A变式训练2判断下面说法是否正确、正确的在( )内填“√”,错误的填“×”(1)所有在N中的元素都在N*中(×)(2)所有在N中的元素都在Z中( √)(3)所有不在N*中的数都不在Z中(×)(4)所有不在Q中的实数都在R中(√)(5)由既在R中又在N*中的数组成的集合中一定包含数0(×)(6)不在N中的数不能使方程4x=8成立(√)四、课堂小结1、集合的概念2、集合元素的三个特征,其中“集合中的元素必须是确定的”应理解为:对于一个给定的集合,它的元素的意义是明确的.“集合中的元素必须是互异的”应理解为:对于给定的集合,它的任何两个元素都是不同的.3、常见数集的专用符号.1.1.1 集合的含义及其表示方法(1)课前预习学案一、预习目标:初步理解集合的含义,了解属于关系的意义,知道常用数集及其记法二、预习内容:阅读教材填空:1 、集合:一般地,把一些能够对象看成一个整体,就说这个整体是由这些对象的全体构成的(或)。

1.1.1集合的含义及表示(二)

1.1.1集合的含义及表示(二)

• • • • •
例2:用描述法表示下列集合. (1)正奇数集; (2)大于3且小于10的整数组成的集合; (3)方程x2+ax+b=0的解集; (4)平面直角坐标系中第一象限的点集.
分析:首先搞清楚集合的元素是什么,然后用描述法表示集合.
• • • • •
解:(1){正奇数}={x|x=2k+1,k∈N}; (2){大于3且小于10的整数} ={x∈Z|3<x<10}; (3){x|x2+ax+b=0}; (4){(x,y)|x>0且y>0}.
三、集合的分类
• 有限集——含有有限个元素的集合。 • 无限集——含有无限个元素的集合。 空集:不含任何元素的集合。记作 , 2 { 如: x R | x 1 0} 下列选项中正确的个数有( ) ① 0 ; ② ; ④ a 。 A.1 B.2 C.3 D.4 ③0
0 ;
补充练习
x y 2 1.方程组 的解集用列举法表示 x y 5 为________;用描述法表示为 .
2. 用列举法表示为
{( x, y) | x y 6, x N , y N}
.
二、集合的表示方法
1.列举法
在用列举法表示集合时应注意以下四点:
(1)元素间用分隔号“,”;
(2)元素不重复; (3)不考虑元素顺序; (4)对于含有较多元素的集合,如果构成该集合的元 素有明 显规律,可用列举法,但是必须把元素间的 规律显示清楚后 方能用省略号.
如“中国的直辖市”构成了一个
集合,用列举法表示为{北
所具有的属性描述出来,如﹛自然数﹜ (2)符号描述法——用符号把元素所具有 的属性描述出来,即{x| P(x)}或{x∈A| P (x)}等。 含义:在集合A中满足条件P(x)的x的集合。

1.1.1 集合的含义与表示

1.1.1 集合的含义与表示
或B={11,12,13,14,15,16,17,18,19 } (3)由所有非负偶数组成的集合
C={x | x=2n,n N }
四、集合的表示
(3)描述法:用集合所含元素的共同特征表示集合的 方法称为描述法。
A={x R | x<10 } B={x R | x2 -2=0 } C={x Z | 10<x<20 }
(4)若C { x N | 1 x 10}, 8 ____ C, 9.1____C
五、巩固练习
(1)所有偶数组成的集合:
{x | x 2k,k Z }
数集
(2)不等式2 x 3 0的解集: { x | 2 x-3<0}
不等式的解集
(3)函数y x 1的自变量的值组成的集合:

② 高一级身高160cm以上的同学,能否构成集合? 能 ③ 2, 4, 2 这三个数能否组成一个集合? 否
②互异性:集合中的元素是互异的。即集合元素是没 有重复现象的。 (互不相同)
二、集合中元素的特征
① 高一级身高较高的同学,能否构成集合?

② 高一级身高160cm以上的同学,能否构成集合? 能
常见的数集及其记法:
自然数集 N 整数集 Z
正整数集 N*或N 有理数集 Q
实数集 R
一、集合的含义
一般地,我们把研究的对象统称为元素,把一些 元素组成的总体叫做集合(简称为集).
通常用大写的拉丁字母 A,B,C,…表示集合, 小写的拉丁字母 a,b,c ,…表示集合中的元素.
问题:如何理解“把一些元素组成的总体叫做 集合”,这些集合里的元素必须具备什么特征?
高一级所有的同学组成的集合记为A, a是高一(7)班 的同学,b是高二(7)班的同学,那么a与A,b与A之 间各自有什么关系?

1.1.1集合的含义与表示 第2课时 课件(人教A版必修1)

1.1.1集合的含义与表示 第2课时  课件(人教A版必修1)

高一 · 数学
2.过程与方法 (1)教学时不仅要关注集合的基本知识的学习,同时还要关注 学生抽象概括能力的培养; (2)教学过程中应努力培养学生的思维能力,提高学生理解掌 握概念的能力,训练学生分析问题和处理问题的能力. 3.情感、态度与价值观 培养数学的特有文化——简洁精练,体会从感性到理性的思 维过程.
2x+y=0, 其中能正确表示方程组 x-y+3=0
的解集的是________ ,
(把所有正确的序号都填在横线上)
教学教法分析 课前自主导学 课堂互动探究 思想方法技巧 当堂双基达标 课后知能检测 教师备课资源
高一 · 数学
【解析】
2x+y=0, ∵方程组 x-y+3=0
2 A=x|x≥3;
(2)B={x|x=2k,k∈Z}; (3){(x,y)|x>0,y>0,且 x,y∈R}.
教学教法分析 课前自主导学 课堂互动探究 思想方法技巧 当堂双基达标 课后知能检测 教师备课资源
高一 · 数学
1.用描述法表示集合,首先应弄清楚集合的属性,是数集、 点集还是其他的类型.一般地,数集用一个字母代表其元素,而 点集则用一个有序实数对来代表其元素. 2.若描述部分出现元素记号以外的字母时,要对新字母说明 其含义或指出其取值范围,如本例(2).
教学教法分析 课前自主导学 课堂互动探究 思想方法技巧 当堂双基达标 课后知能检测 教师备课资源
高一 · 数学
1.使不等式 x>2 成立的实数 x 的集合可表示为( A.{x>2} C.{3,4,5,„}
高一 · 数学
1.定义: 用集合所含元素的 共同特征 表示集合的方法叫描述 法. 2.具体方法:在花括号内先写上表示这个集合元素的一般符

1.1.1集合的含义与表示

1.1.1集合的含义与表示

D
)
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
9.若 x∈R,则{3,x,x2-2x}中的元素 x 应满足的条件是__________.
3≠x, 2 解析:由集合中元素的互异性知3≠x -2x, x≠x2-2x,
解之得 x≠-1,且 x≠0,且 x≠3.
答案:x≠-1,且 x≠0,且 x≠3
首页
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
10.已知集合 A={x|ax2+2x+1=0,a∈R,x∈R}. (1)若 A 中只有一个元素,求 a 的值;(2)若 A 中至多有一个元素,求 a 的取值范围.
要点突破
典例精析
演练广场
4.设 P、Q 为两个非空实数集合,定义集合 P+Q={a+b|a∈P,b∈Q},若 P={0,2,5}, Q={1,2,6},则 P+Q 中元素的个数是( B ) (A)9 (B)8 (C)7 (D)6
解析:集合 P+Q 的含义就是 P、Q 集合中各取一个因素之和的不同值的个数,有 0+ 1,0+2,0+6,2+1,2+2,2+6,5+2,5+6,共 8 个,故选 B.
上一页
下一页
末页
瞻前顾后
要点突破
典例精析
演练广场
|a| |b| 6.设 a,b 是非零实数,那么 + 可能取的值组成的集合是______. a b
解析:当 a、b 同正时值为 2,当 a、b 同负时值为-2,当 a、b 异号时值为 0,故组成 的集合是:{-2,0,2}.
答案:{-2,0,2}
首页
要点突破
典例精析

1.1.1 集合的含义和表示(第2课时)表示集合的方法 学案(含答案)

1.1.1 集合的含义和表示(第2课时)表示集合的方法 学案(含答案)

1.1.1 集合的含义和表示(第2课时)表示集合的方法学案(含答案)第2课时表示集合的方法学习目标1.掌握集合的两种表示方法列举法.描述法.2.能够运用集合的两种表示方法表示一些简单集合.3.能记住各类区间的含义及其符号,会用区间表示集合知识链接1质数又称素数,指在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数不包括0整除的数2函数yx22x1的图象与x轴有2个交点,函数yx22x1的图象与x轴有1个交点,函数yx2x1的图象与x轴没有交点预习导引1列举法1把集合中的元素一个一个地写出来表示集合的方法,叫作列举法2用列举法表示集合,通用的格式是在一个大括号里写出每个元素的名字,相邻的名字用逗号分隔2描述法1把集合中元素共有的,也只有该集合中元素才有的属性描述出来,以确定这个集合,叫作描述法2用描述法表示集合,通用的格式是在一个大括号里写出集合中元素的共有属性;也可以在大括号里先写出其中元素的一般属性或形式,再写出特写的符号竖线,然后在符号后面列出这些元素要满足的其他条件3区间设a,b是两个实数,且ab,区间的含义及表示如下表名称定义符号数轴表示闭区间x|axba,b开区间x|axba,b左闭右开区间x|axba,b左开右闭区间x|axba,b无穷区间x|xa,a无穷区间x|xa,a无穷区间x|xaa,无穷区间x|xaa,题型一用列举法表示集合例1用列举法表示下列集合1小于10的所有自然数组成的集合;2方程x2x的所有实数根组成的集合;3由120以内的所有质数组成的集合解1设小于10的所有自然数组成的集合为A,那么A0,1,2,3,4,5,6,7,8,92设方程x2x的所有实数根组成的集合为B,那么B0,13设由120以内的所有质数组成的集合为C,那么C2,3,5,7,11,13,17,19规律方法对于元素个数较少的集合或元素个数不确定但元素间存在明显规律的集合,可采用列举法应用列举法时要注意元素之间用“,”而不是用“.”隔开;元素不能重复跟踪演练1用列举法表示下列集合1我国现有的所有直辖市;2绝对值小于3的整数集合;3一次函数yx1与yx的图象交点组成的集合解1北京,上海,天津,重庆;22,1,0,1,2;3方程组的解是所求集合为.题型二用描述法表示集合例2用描述法表示下列集合1正偶数集;2被3除余2的正整数的集合;3平面直角坐标系中坐标轴上的点组成的集合解1偶数可用式子x2n,nZ表示,但此题要求为正偶数,故限定nN,所以正偶数集可表示为x|x2n,nN2设被3除余2的数为x,则x3n2,nZ,但元素为正整数,故x3n2,nN,所以被3除余2的正整数集合可表示为x|x3n2,nN3坐标轴上的点x,y的特点是横.纵坐标中至少有一个为0,即xy0,故坐标轴上的点的集合可表示为x,y|xy0规律方法用描述法表示集合时应注意“竖线”前面的xR可简记为x;“竖线”不可省略;px可以是文字语言,也可以是数学符号语言,能用数学符号表示的尽量用数学符号表示;同一个集合,描述法表示可以不唯一跟踪演练2用描述法表示下列集合1所有被5整除的数;2方程6x25x10的实数解集;3集合2,1,0,1,2解1x|x5n,nZ;2x|6x25x10;3xZ||x|2题型三列举法与描述法的综合运用例3集合Ax|kx28x160,若集合A只有一个元素,试求实数k的值,并用列举法表示集合A.解1当k0时,原方程为168x0.x2,此时A22当k0时,由集合A中只有一个元素,方程kx28x160有两个相等实根则6464k0,即k1.从而x1x24,集合A4综上所述,实数k的值为0或1.当k0时,A2;当k1时,A4规律方法1.1本题在求解过程中,常因忽略讨论k是否为0而漏解2因kx28x160是否为一元二次方程而分k0和k0而展开讨论,从而做到不重不漏2解答与描述法有关的问题时,明确集合中代表元素及其共同特征是解题的切入点跟踪演练3把例3中条件“有一个元素”改为“有两个元素”,求实数k取值范围的集合解由题意可知方程kx28x160有两个实根解得k1,且k0.k取值范围的集合为k|k1,且k0.课堂达标1集合xN|x32用列举法可表示为A0,1,2,3,4B1,2,3,4C0,1,2,3,4,5D1,2,3,4,5答案B解析xN|x32xN|x51,2,3,42已知集合AxN|x,则A1AB0AC.AD2A答案B解析0N且0,0A.3用描述法表示方程xx3的解集为________答案x|x解析xx3,x.解集为x|x4已知xN,则方程x2x20的解集用列举法可表示为________答案1解析由x2x20,得x2或x1.又xN,x1.51全体非负实数组成的集合用区间表示为________2既是不等式x20的解又是不等式3x0的解组成的集合用区间表示为________3若有区间m1,2m3,则m的取值范围是________答案10,22,334,课堂小结1.表示集合的要求1根据要表示的集合元素的特点,选择适当方法表示集合,一般要符合最简原则2一般情况下,元素个数无限的集合不宜用列举法表示,描述法既可以表示元素个数无限的集合,也可以表示元素个数有限的集合2在用描述法表示集合时应注意1弄清元素所具有的形式即代表元素是什么,是数.还是有序实数对点.还是集合或其他形式2元素具有怎样的属性当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.1.1集合的含义与表示( 2)
年级:高一学科:数学内容:集合课型:新授
时间:12年9月11日
学习目标:了解集合的含义,体会元素与集合的“属于”关系;能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用数集及其记法、集合元素的三个特征 .
学习重点:集合的表示方法
学习难点:集合的表示方法及其应用
一、学前准备:
1、预习教材 P4— P5,找出疑惑之处。

2、复习一般地,指定的某些对象的全体称为 . 其中的每个对象叫
作 . 集合中的元素具有、、
特征. 集合与元素的关系有、 .
3、集合A ={x2+2x +1} 的元素是,若 1∈A 则 x= .
4、集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分别是什么?四个集合有何关系?
5.预习疑难摘要:
.通过预习,你能回答下面的问题吗?
(1)请系统归纳集合有哪些表示方法?哪些特征?
(2)给出一个具体的集合你能用适当的方法把它表示出来吗?
(3)你是否能用集合的知识去解决有关的问题?
二、探究活动:
1、独立思考·解决问题
①用自然语言描述集合 {2,4,6,8}
②你能用列举法表示不等式x −1<3的解集吗?
探究:比较如下表示法① {方程x22 −1=0 的根};② { -1,1};③ {x ∈R | x2−1=0} .
新知:
称为描述法。

一般形式为A={x∣p},其中竖线前x叫做此集合的代表元素;p叫做元素x所具有的公共属性;A={x∣p}表示集合A是由所有具有性质P的那些元素x组成的,即若x具有性质p,
则x ∈A ;若x ∈A,则x 具有性质p 。

2、师生探究·合作交流
练一练:1、试分别用列举法和描述法表示下列集合:
(1)由方程2
(23)0
x x x --=的所有实数根组成的集合;
(2)大于2且小于7的整数.
例2、试选择适当的方法表示下列集合: (1)一次函数3
y x =+与
26
y x =-+的图象的交点组成的集合;
(2)二次函数
2
4
y x =-的函数值组成的集合;
(3)反比例函数
2
y x =
的自变量的值组成的集合. 解:
点评:以上代表元素,分别是点、函数值、自变量. 在解题中不能把点的坐标混淆为{1,4},也注意对比(2)与(3)中的两个集合,自变量的范围和函数值的范围,有着本质
上不同,分析时一定要细心.
★例3、若221{10},2{0}x x ax b x x ax b ∈+++=∈+-=,求,a b 的值并用列举法表示集合2{0}x x ax b +-=
三、体会与小结:
1、 体会
本节课你有哪些收获?(集合概念及表示方法、化归数学分类讨论思想的理解和应用) 2、 小结
(1). 集合的三种表示方法(自然语言、列举法、描述 法); (2). 会用适当的方法表示集合; 注意:
(1). 描述法表示时代表元素十分重要 . 例如:
所有直角三角形的集合可以表示为: {x | x 是角三角形 },也可以写成: {直角三角形 };
(2)集合 {(x,y )| y = x 2
+1} 与集合{y | y = x 2
+1} 是 同一个集合吗? (3)我们还可以用一条封闭的曲线的内部来表示一 个集合,即:文氏图,或称 Venn 图.
四、自我测试:(20分)
1. 设 A ={x ∈N |1 ≤ x <6} ,则下列正确的是 ( )
A. 6∈A
B. 0∈A
C. 3∉A
D. 3.5∉A
2、给出下列关系:①
12R
∈; Q ;③ *3N ∈;④0Z ∈. 其中正确的个数是( ).
A. 1
B. 2
C. 3
D. 4 3、有下列说法:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程2(1)(2)0x x --=的所有解的集合可表示为{1,1,2};(4)集合{45}x x <<是有限集. 其中正确的说法是( ).
A. 只有(1)和(4)
B. 只有(2)和(3)
C. 只有(2)
D. 以上四种说法都不对
4、平方后仍等于原数的数集为 .
★5、已知x R ∈,则集合2{3,,2}x x x -中元素x 所应满足的条件为 .
五、应用与拓展:
1、 下列叙述正确的是


A. 集合},3|{N x x x ∈<中只有两个元素
B. }1{}012|{2
==+-x x x
C. 整数集可表示为}{Z
D. 有理数集表示为{x x |为有理数集}
2、 方程组⎩⎨
⎧-=-=+1
1y x y x 的解集是 ( )
A. {0,1}
B. (0,1)
C. {(x,y)|x=0,或y=1}
D. {(0,1)}
3、 下列叙述错误的是
( )
A. }02|{2
=-x x 表示方程022
=-x 的解集
B. {1∉小于10 的质数}
C. 所有正偶数组成的集合表示为},2|{N n n x x ∈=
D. 集合},,{c b a 与集合},,{b c a 表示相同的集合
4、 不等式052<-x 的正整数解的集合用描述法表示为 ,用列举法
表示为 .
5. 已知-3是集合}4,12,3{2---a a a 的一个元素,则实数a 的值为 .
6. 试用列举法表示集合},,8|{2N y N x y x x ∈∈+-=。

7. 已知集合},012|{2R x x ax x ∈=++至多有一个元素,求实数a 的取值范围.
(选做题)(1)用列举法表示集合⎭
⎬⎫
⎩⎨⎧
∈∈-N x N x x ,36
(2)已知},12|{},,2|{Z n n x x B Z n n x x A ∈+==∈==,},14|{Z n n x x C ∈+==,若B b A a ∈∈,,试分别指出b a +与集合A 、B 、C 的关系。

相关文档
最新文档