呼吸机基本波形详解
呼吸机基本波形
– F
P-V环, 排除了气管插管所引起的阻力因素。
o
n • 测Ptrach另需用2mm的细导管经气管插管插至气管导
e
管外
n a
u s e C
静态压力容量环
o
n
d e n
a
– F o
n
e
n a
u s e o n
y
p
a
n
y C
流量-容量环
o
n
d e n
a
– F o
n
e
n a
u s e o n
u
s
e o
④ 吸气时间
n
y
p a n y C o n
d e
• 一次吸气过程中出现了病人吸气动作,通常在流量波
n
形上会出现切迹,此时病人不会得到所需的流量
a
– F o
n
e
n a
u s e o n
y
p
a
n
y C
按需流量补偿
o
n
d e n
a
– F o
n
e
n a
u s e o n
y
p
a n y
呼气流量波
y
p
a
n
y C
方波和递减波
o
n
d e n
a
– F o
n
e
n a
u s e o n
y
p
a
n
y C
压力-流量环
o
n
d e n
a
– F o
n
e
n a
u
s
e
o
n
呼吸机波形
平均气道压(mean Paw 或Pmean)
平均气道压(MAP)在正压通气时与肺泡充盈效果和心脏灌 注效果相关(即气体交换),在一定的时间间隔内计算N个压 力曲线下的区域面积而得, 直接受吸气时间影响. 气道峰 压, PEEP,吸/呼比和肺含水量均影响它的升降. 图中A-B为 吸气时间, B-C为呼气时间, PIP=吸气峰压,呼吸基线=0或 PEEP. 一般平均气道压=10-375pxH2O,不大于750pxH2O.
初步判断支气管情况和主动或被动呼气
图左侧图虚线反映气道阻力正常, 呼气峰流 速大,呼气时间稍短, 实线反映呼气阻力增加, 呼气峰流速稍小,呼气时延长. 右侧图虚线反映是病人的自然被动呼气, 而 实线反映了是患者主动用力呼气, 单纯从本 图较难判断它们之间差别和性质. 尚需结合 压力-时间曲线一起判断即可了解其性质.
PCV的压力-时间曲线(Fig.17)
虚线为VCV, 实线为PCV的压力曲线. 与VCV压力-时间曲线不同, PCV的气道压 力在吸气开始时从基线压力(0或PEEP) 增至预设水平呈平台样並保持恒定, 是 受预设压力上升时间控制. PCV的气体流量在预设吸气时间内均呈递减形. 在 呼气相, 压力下降和VCV一样回复至基线压力水平, 本图提示了在相同频率、 吸气时间、和潮气量情况下PCV的平台样压力比VCV吸气末平台压稍低. 呼吸 回路有泄漏时气道压将无法达到预置水平.
判断有无内源性呼气末正压(Auto-PEEP/PEEPi)的存在
图为三种不同的Auto-PEEP呼气流速波形 图12吸气流速选用方波,呼气流速波形在下一个吸气相开始之前呼气流速 突然回到0, 这是由于小气道在呼气时过早地关闭, 以致吸入的潮气量未完 全呼出,使部分气体阻滞在肺泡内产生正压而引起Auto-PEEP( PEEPi). 注意图 中的A,B和C, 其突然降至0时呼气流速高低不一, B最高,依次为A, C. 实测 Auto-PEEP压力大小也与波形相符合. Auto-PEEP在新生儿, 幼婴儿和45岁以上正常人平卧位时为3.0 cmH2O.呼气 时间设置不适当,反比通气, 肺部疾病(COPD)或肥胖者均可引起PEEPi. 临床上医源性PEEP= 所测PEEPi × 0.8. 如此即打开过早关闭的小气道而又不 增加肺容积.
呼吸机波形基础知
02
呼吸机波形解析
正常波形
正常波形特征
呼吸机波形呈规则的周期性变化 ,包括吸气峰、吸气谷、呼气峰 和呼气谷,各阶段过渡平滑。
正常波形意义
表明呼吸机工作正常,患者呼吸 功能基本正常,气流、压力等参 数处于稳定状态。
异常波形
异常波形特征
呼吸机波形出现异常变化,如波形不 规则、峰或谷异常升高或降低等。
异常波形意义
可能表明呼吸机工作异常或患者呼吸 功能出现障碍,需要进一步检查和干 预。
波形异常的原因及处理
原因1
呼吸道分泌物过多或呼吸道痉挛,导致气流 不畅。
处理1
及时清理呼吸道分泌物,保持呼吸道通畅;使 用解痉药物缓解呼吸道痉挛。
原因2
疗效评估
通过比较治疗前后呼吸机波形的变化,医生可以评估个体化治疗的效果,为后续治疗提供 依据。
患者管理
结合呼吸机波形监测和个体化治疗策略,医生可以更有效地管理患者的呼吸状况,提高机 械通气效果和患者生存率。
05
呼吸机波形监测的注意事 项
监测设备的选择与校准
监测设备的选择
选择符合国际和国内标准的呼吸机波形监测设备,确保其准 确性和可靠性。
呼吸机波形基础知
目录 CONTENT
• 呼吸机波形概述 • 呼吸机波形解析 • 呼吸机波形与疾病诊断 • 呼吸机波形与治疗策略 • 呼吸机波形监测的注意事项
01
呼吸机波形概述
呼吸机波形的定义
01
呼吸机波形是指呼吸机在提供通 气支持时,通过监测气流或压力 变化所形成的动态图形。
02
这些波形可以反映患者的呼吸力 学、气体交换和呼吸系统病理生 理变化等信息。
《呼吸机波形》课件
通过分析患者的呼吸波形,可以初步判断是否存在通气障碍、阻塞、呼
吸运动异常等情况,为进一步诊断提供依据。
02 03
常见疾病的呼吸波形特征
如慢性阻塞性肺疾病(COPD)患者的呼吸波形可能出现波幅过低、频 率加快等情况;哮喘患者的呼吸波形可能出现双峰波形、波幅过高、频 率过慢等情况。
呼吸波形与疾病治疗
根据患者的呼吸波形特征,可以制定针对性的治疗方案,如机械通气治 疗、药物治疗等,以改善患者的通气功能和症状。
03 呼吸机波形监测技术
监测技术介绍
呼吸机波形监测技术是一种用于监测呼吸机工作状态和患者呼吸生理参数的技术。
通过实时监测呼吸机的压力、流量、容积等波形,可以了解患者的呼吸状态和呼吸 机的性能。
该技术广泛应用于临床医学、重症监护、麻醉等领域,为医生提供重要的诊断和治 疗依据。
监测技术原理
基于传感器技术
正常呼吸波形表明呼吸系统功能正常 ,无通气障碍或阻塞。
正常呼吸波形产生机制
正常呼吸波形是由呼吸肌肉的收缩和 舒张,以及胸腔和肺组织的弹性回缩 共同作用的结果。
异常呼吸波形解读
异常呼吸波形特征
异常呼吸波形可表现为波形形态异常、波幅异常、频率异 常等,如出现双峰波形、波幅过低或过高、频率过快或过 慢等。
异常呼吸波形产生机制
异常呼吸波形可能是由于呼吸道狭窄、阻塞、顺应性降低 等原因引起的通气障碍,或者是由于中枢神经系统、肌肉 等病变引起的呼吸运动异常。
异常呼吸波形临床意义
异常呼吸波形可能提示着各种呼吸系统疾病或神经系统疾 病,需要根据具体波形特征和患者情况进行综合判断。
呼吸波形与疾病诊断
01
呼吸波形在疾病诊断中的应用
失败案例分析
1 2 3
呼吸机基本波形详解ppt课件
39
图6
呼气流速波
40
病人呼气阻力对呼气流速波 的细小影响会得到修正,而呼 气流速波的明显变化常体现了 病人顺应性的改变、气道阻力 明显变化或是病人烦躁动作用
41
呼气阻力增大(分泌物堆积甚 至气道阻塞)会降低呼气峰流 速并延长呼气时间(图7)
42
图7
呼气流速波——气道阻力增大
43
图8
呼气流速波——被动及主动呼气
44
压力测定
呼吸机上,测定压力的部位通常 在环路病人端Y形管处,也有在 环路吸气支和呼气支内部测知
45
尽管从环路内部测得的压力与 实际气道压不尽相同,但往往以 此作为参照,了解气道压的情况
46
压力感应器通常可以测知最高 150cmH2O 的压力,但会因环路内 积水、分泌物堵塞等影响准确性
16
• B 病人触发: 呼吸机检测到吸气流速到吸气终 止标准时即切換呼气(Esens)
17
机械通气支持时有四个基本参数
• 压力 • 容积 • 流速 • 时间
18
参数组合构成各种同波形
• 压力-时间曲线 • 容积-时间曲线 • 流速-时间曲线 • 压力-容积环 • 流速-容积环 • 压力-流速环
5
b. 无气压伤、容积伤或肺泡伤
6
• c. 患者呼吸不同步情况减低 到最少,减少镇静剂、肌 松弛剂的应用
7
•d. 患者呼吸肌得到适当 的休息和康复
8
1.呼吸机工作过程:
9
吸气控制
10
• A 时间控制 通过预设的吸气时间使吸气 终止, 如PCV的设置Ti或I:E
呼吸机波形分析
I -
E
Paw (cm H2O)
自主呼吸
+
顺应性改变的P-V环
顺应性改变
增高 正常 减低
Volume (mL)
Paw (cm H2O)
顺应性改变的P-V环
V
T
顺应性改变
增高 正常
减低
Volume (mL)
Paw (cm H2O)
单肺插管引起P-V环偏向横轴
反映肺过度膨胀部分 若在流速恒定的通气中,PV环的吸气肢在上部开始变成 越来越平坦,此可能是肺某些区域过度膨胀的提示。
流速
LPM
TIME
吸气相
呼气相
TCT
呼气流速曲线
呼气流速的形态一般是固定的,其振幅、持续时间、流速 形态是由肺顺应性、呼吸阻力和病人的体力等因素所决定。
流速波形在临床上的应用
(1)在定容型通气中可检测通气时呼吸流速的波形
流速
LPM
TIME
吸气相
呼气相
流速 LPM
TIME
吸气相 呼气相
方形波,递减波,递增波,正弦波(VCV)
呼气结束,压力再次回复到呼气末水平 (F=PEEP)。
2、压力—时间曲线在临床上应用 (1)区分呼吸类型 式:
通过压力—时间曲线可以鉴别出以下多种呼吸模
A
P
AW
cmH2O
TIME
压力曲线上升前(A)无反方向斜坡出现,说明该通气为 “呼吸机触发的指令通气”。
A
P
AW
cmH2O
TIME
压力曲线上升前即刻出现的压力下降,这说明由病人触发 的指令通气中病人的吸气能力大小。
压力-时间曲线(VCV流速恒定—方波)
在吸气开始时,A至B点的压力明显增加是由于从 呼吸机至肺整个系统的阻力所致,此压力即为克服 阻力的压力。
呼吸机波形分析入门
呼吸机波形分析入门引言:呼吸机波形是指通过呼吸机监护系统获得的呼吸机输出的波形图像。
波形图像是由时间作为横轴,压力、流量或体积作为纵轴所构成的图像。
通过对呼吸机波形进行分析可以了解患者的呼吸状况、通气情况以及呼吸机的设置是否合理等。
本文将介绍呼吸机波形的基本分析方法,以帮助初学者快速入门。
一、呼吸机波形的采集和显示常见的呼吸机波形包括压力波形、流量波形和体积波形。
压力波形显示了呼吸机输出的气道压力变化情况,流量波形显示了气体进出肺部的速度变化情况,体积波形显示了肺部的体积变化情况。
在呼吸机波形中,一般以吸气期为正,呼气期为负。
二、呼吸机波形的常见特征1.呼吸频率:通过计算波形上吸气峰值或呼气峰值的数量,可以得到呼吸频率。
常用的方法是计算每分钟的呼吸次数。
2.吸气时间和呼气时间:从吸气峰值到呼气峰值的时间间隔为一个完整的吸呼气周期。
通过计算吸气时间和呼气时间的长短,可以了解患者的通气情况。
3.吸气峰值压力和呼气峰值压力:波形中的压力峰值反映了肺的通气效果,通常情况下,吸气峰值压力应该较呼气峰值压力高。
4.呼气末正压(PEEP):波形中的底线或基线表示了呼气末正压。
PEEP是在呼气末保持气道压力的一种方式,能保持肺泡的开放性,增加氧合和通气效果。
5. 吸气延迟时间(inspiratory delay):吸气波形图中延迟时间指的是吸气流量波形开始上升直到达到吸气峰值的时间。
延迟时间过长可能表明存在气道阻力或机械问题。
三、呼吸机波形的分析方法1.波形形状:通过观察波形的形状可以判断患者的通气状态,如是否存在阻塞或排空障碍等。
正常的吸气波形应该是上升快、下降缓慢的斜坡状。
2.吸气和呼气峰值压力:通过分析吸气和呼气峰值压力的变化,可以判断患者的通气状态。
吸气峰值压力过高可能表明气道阻塞或气道峰压过高,呼气峰值压力过低可能表明肺容积不足。
3.吸气延迟时间:延迟时间过长可能表明存在气管插管位置不当、气道阻力增加或呼吸机设置不当等问题。
呼吸机基本波形详解
吸呼转换时间
指吸气相结束到呼气相开始所经过的时间,是呼吸机设置的 重要参数。
吸呼转换压力
指吸气相结束和呼气相开始时的压力水平,反映呼吸机的切 换性能。
03
呼吸机波形与临床应用
呼吸机波形在诊断中的应用
吸气峰压(Peak Inspirator…
用于评估患者吸气时的压力,判断是否存在气道阻力增加或肺顺应性 降低等情况。
过渡相时间过短
可能是由于潮气量设置过大、呼吸频 率过快等原因导致。处理方法包括调 整潮气量设置、适当减慢呼吸频率等。
感谢您的观看
THANKS
01
02
03
04
呼气峰压
表示呼气压力的峰值,用于评 估患者呼气时的阻力。
呼气时间
指呼气开始到呼气结束所经过 的时间,是呼吸机设置的重要
参数。
平均压
指呼吸机在整个呼气周期中维 持的压力水平,是评估通气效
果的重要指标。
内源性PEEP
指患者呼气时,呼吸道内产生 的正压,可能导致呼吸机撤离
困难。
过渡相波形
呼气峰压(Peak Expirator通气障碍或呼气性 通气障碍。
潮气量(Tidal Volume)
用于监测患者每分钟通气量,判断是否存在通气不足或通气过度。
吸气时间(Inspiratory Tim…
用于评估患者吸气时间,判断是否存在吸气时间延长或缩短。
呼吸机基本波形详解
目录 CONTENT
• 呼吸机基本波形概述 • 呼吸机基本波形详解 • 呼吸机波形与临床应用 • 呼吸机波形异常情况及处理方法
01
呼吸机基本波形概述
呼吸机波形的定义与分类
定义
呼吸机波形是呼吸机在工作过程 中产生的压力、流量和时间等参 数随时间变化的曲线。
最新呼吸机基本波形详解
呼吸机基本波形详解呼吸机基本波形详解流速测定流速通常在呼吸机环路(从进气口到呼气阀之间的管道)中测知,流量感应器根据设计类型不同而有些许差异,但大部分都可以测量一个较大的范围(-300—+150LPM),但会由于假呼吸运动、水气、呼吸道分泌物等而影响其准确性。
流速波有两个组成部分:吸气波和呼气波,它描述了流速大小、持续时间和机控呼吸下的流速释放方式(正压通气),或者病人自主呼吸下的流速大小,持续时间和流速需求。
我们先介绍机控呼吸的吸气波,然后是自主呼吸的,等掌握了基本原理,再来讨论呼气波形。
吸气流速波——机控呼吸图1是一个假设呼吸机给于恒定流速的一次机控呼吸的吸气流速波(方波),虚线部分是呼气波,我们会在后面介绍图1 吸气流速波——机控呼吸①呼吸机送气开始开始吸气取决于以下两点:1)到达了预设的呼吸周期时间,即“时间循环”2)病人吸气努力达到了触发辅助通气的阈值,通常是一个吸气负压或吸气流速增量,即“病人循环”。
前者常出现在控制呼吸模式,后者常出现于辅助呼吸模式②吸气峰流速在容控性呼吸机上,预设流速是很有必要的,流速设置也可以设置潮气量和吸气时间来间接得到。
假设设置了一个恒定流速的容控性呼吸机(如图一),峰流速就是设置值。
当流速不恒定,即流速波形是曲线波,流速在吸气时不同时间点上表现为不同的值。
此时中间流速或称平均流速通过下式计算:流速(LPM)=[潮气量(L)/时间(S)]X60③吸气末停止送气这个转换可能达到了预期的容量送气、流速、压力或吸气时间④吸气流速的持续时间常与吸气时间相应,容控呼吸机上,吸气时间常取决于预设的潮气量、峰流速和流速释放方式(波型:如递减波),有的也可以直接设置。
因此,吸气时间可以长于峰流速持续时间,尤其当应用吸气暂停时。
⑤整个呼吸周期时间(TCT)取决于预设的呼吸次数 TCT=60/Rate 图1的流速波型是方波,从吸气开始即达到峰值,直到吸气末都是一个恒定值,在实际应用当中,像图1那样“真正的”方波是不可能达到的,因为流速输送系统都有一个固定的延迟时间,在这段时间内,流速从0达到预设的峰流速。
机械通气波形分析
机械通气波形分析简介机械通气是指通过人工呼吸机向患者输送氧气和调节呼吸频率、潮气量等参数的治疗手段。
在机械通气过程中,呼吸机会生成一系列的波形,这些波形对于评估患者的呼吸状态和调整机械通气参数非常重要。
本文将对机械通气波形进行分析,并讨论其临床意义。
机械通气波形在机械通气过程中,常见的波形有压力波形、气流波形和容积波形。
压力波形压力波形是呼吸机输出的气道压力随时间变化的曲线。
通常以时间为横坐标,压力值为纵坐标。
压力波形呈现出的形态和特征可以提供有关气道阻力和顺应性的信息。
常见的压力波形包括:•呼气末正压(PEEP)波形:呼气末正压是机械通气中常用的一种参数,通过维持呼气末正压可以避免肺泡塌陷和改善氧合。
PEEP波形呈现出稳定的平台形状,在呼气末期保持一定的正压。
•峰压(Peak Pressure)波形:峰压是每次呼吸周期中最高的压力值,反映气道阻力和气道峰压的大小。
峰压波形通常呈现出尖峰状。
•平台压(Plateau Pressure)波形:平台压是在呼气末正压持续一段时间后,关闭气道压力释放阀,测量到的气道压力。
平台压波形呈现出一个稳定的平台形状,反映了肺的顺应性。
•呼气末压力(End-Expiratory Pressure)波形:呼气末压力是每个呼吸周期结束时测量到的气道压力。
呼气末压力波形通常在气道压力变化为零时出现。
气流波形是呼吸机输出的气流随时间变化的曲线。
通常以时间为横坐标,气流值为纵坐标。
气流波形能够反映患者的呼气流速和呼气时间。
常见的气流波形包括:•呼气流速(Expiratory Flow)波形:呼气流速波形呈现出一个由峰值到基线逐渐降低的典型形状。
呼气流速的减小可能与气道阻力增加、支气管痉挛等因素有关。
•吸气流速(Inspiratory Flow)波形:吸气流速波形通常呈现出一个由基线到峰值逐渐增加的形状,然后迅速回落到基线。
吸气流速的变化可以反映患者的吸气力量和呼吸功。
容积波形是呼吸机输出的潮气量随时间变化的曲线。
呼吸机基本波形
等。
流量波形分析
流量波形
显示呼吸机在吸气相和呼气相的气体 流量变化,反映气流速度和通气量。
吸气流量
表示呼吸机在吸气相提供的流量,与 患者吸气努力相关。
呼气流量
表示呼吸机在呼气相提供的流量,与 患者呼气努力相关。
流量波形分析的意义
处理方法
针对不同的压力波形异常,处理方法也不同。例如,对于管道脱落或呼吸道分泌物过多,需要重新连接 管道或清理呼吸道;对于气胸或肺顺应性降低,可能需要采取紧急排气、胸腔闭式引流等措施。
流量异常
要点一
流量异常
流量波形异常可能是由于呼吸机管道 堵塞、呼吸道阻力增加、患者自主呼 吸与呼吸机对抗等原因引起的。这些 异常可能导致呼吸机无法正常提供足 够的流量,影响患者的通气量。
Байду номын сангаас情况。
03
容积波形
容积波形反映了患者的肺容积变化情况,包括潮气量、分钟通气量等参
数。通过对容积波形的观察和分析,可以了解患者的通气功能和气体交
换情况。
02 呼吸机波形参数
压力参数
峰压(Peak Pressure)
指呼吸机送气过程中的最高压力。它反映了呼吸机送气的强度,是评估呼吸机性能的重要 参数。
通过对时间波形的分析,可以评估患者的 通气功能、呼吸频率和通气效率等。
04 呼吸机波形异常情况
压力异常
压力异常
压力波形异常可能是由于呼吸机管道脱落、呼吸道分泌物过多、气胸、肺顺应性降低等原因引起的。这些异常可能导 致呼吸机无法正常提供足够的氧气或压力,影响患者的呼吸功能。
压力波形异常的表现
压力波形异常表现为压力峰值过高或过低,压力波形不稳定,压力波形出现突然的跳变或波动等。这些表现可能伴随 患者呼吸困难、呼吸急促等症状。
呼吸机波形分析及临床应用
目录
• 呼吸机波形基础 • 常见呼吸机波形分析 • 呼吸机波形与临床应用 • 呼吸机波形分析的局限性 • 未来展望与研究方向
01
呼吸机波形基础
呼吸波形的形成与分类
呼吸波形是在呼吸机监测过程中,通过传感器将呼吸运动转 化为电信号,再经过处理形成的图形。根据呼吸运动的特点 ,波形可以分为压力型和流量型两类。
波形受多种因素影响
呼吸机波形受到多种因素的影响, 如患者病情、呼吸机设置、管道
泄漏等。
这些因素可能导致波形出现异常 或波动,干扰医生对病情的判断。
在分析波形时,医生需要综合考 虑各种因素,排除干扰因素对波
形的影响。
缺乏统一的解读标准
目前尚缺乏统一的呼吸机波形解 读标准,导致医生在解读波形时
缺乏依据。
流量波形分析
流量波形分析是呼吸机波形分析中的 重要环节,主要用来评估患者的通气 效果和呼吸机的性能。
流量波形分析包括峰值流量、平均流 量、流量波动等指标,这些指标可以 反映患者的通气需求和呼吸机的性能。
时间波形分析
时间波形分析是呼吸机波形分析中的重要环节,主要用来评估患者的通气效果和呼吸机的性能。
呼气峰压波形分析
01
呼气峰压是指呼吸机在呼气相产 生的最高压力,通常用来帮助患 者呼气。
02
呼气峰压波形分析包括峰值压力 、压力下降时间等指标,这些指 标可以反映患者的呼气状态和呼 吸机的性能。
平均压波形分析
平均压是指呼吸机在整个呼吸周期中产生的平均压力,通常用来评估患者的通气 效果和舒适度。
平均压波形分析包括平均压力、压力波动等指标,这些指标可以反映患者的通气 效果和呼吸机的性能。
02
常见呼吸机波形分析
、呼吸机波形--(1)
、呼吸机波形--(1)呼吸机波形是指在呼吸机治疗时,显示在呼吸机的显示屏上的呼吸波形图像。
呼吸机波形的形态和变化能够反映病人的呼吸情况,对临床医生进行肺机械通气治疗监测至关重要。
以下是呼吸机波形的相关内容。
一、呼气末正压波形呼气末正压(PEEP)是指在呼气结束时,气道压力保持正值,为肺泡提供持续的正压,有效维持肺泡的开放性,并防止肺塌陷。
呼气末正压波形是指呼吸机在PEEP状态下所显示的波形图像。
呼气末正压波形为一个平滑的水平基线,波形的跳动越小,说明呼吸机的雾化效果越好,PEEP的设置越合适。
二、呼吸机压力波形呼吸机压力波形是指呼吸机将气体注入病人气道内时的压力波形,包括吸气压力波形和呼气压力波形。
呼吸机压力波形的高度和宽度也反映了肺的通气情况。
低的呼吸机压力表示肺容量不足,高的值表示肺活量过大。
优秀的肺机械通气治疗需要医生对呼吸机压力波形的变化有敏锐的感知和正确的处理。
三、呼吸机流量波形呼吸机流量波形是指呼吸机向病人提供气体时的气体流速图像,流速的变化应该与时间成正比例关系。
流量波形的陡峭表示气体流速大,缓慢表示气体流速小。
如果气体流速变化太小,可能会导致患者呼吸时间不足,通气量不足。
四、呼吸机容积波形呼吸机容积波形是指呼吸机向病人提供气体时的每次吸入气体的容积。
患者通气次数高,但吸气时间短,可以增加容积。
呼吸机容积波形的峰值应该在一定范围内,否则会对病人造成一定的损害。
五、呼吸机频率波形呼吸机频率波形是指呼吸机向病人提供气体时,病人每分钟通气的次数。
呼吸机频率波形的变化和呼吸机容积波形同步显示,这种显示方式能够更好地反映患者的通气情况。
以上是呼吸机波形的相关内容,呼吸机波形是临床医生进行肺机械通气治疗监测时的重要依据,同时对于肺机械通气治疗过程的安全和有效起到了重要作用。
呼吸机基本波形详解课件
呼吸机基本波形的重要性
呼吸机基本波形是评估患者呼吸状况的重要依据,通过观察 波形可以了解患者的呼吸频率、潮气量、吸呼比等参数,从 而判断患者的通气功能和呼吸状态。
呼吸机基本波形也是调整呼吸机参数的重要参考,通过对波 形的分析,可以调整呼吸机的参数设置,以更好地适应患者 的需求,提高治疗效果。
呼吸机基本波形的分类
呼气相波形异常与处理
1 2
呼气峰流速过低
可能是由于患者肺顺应性降低或呼气阀故障导致 ,应检查患者肺功能和呼吸机设置。
呼气峰流速过高
可能是由于患者自主呼吸过快或呼吸机设置不当 引起,应调整患者自主呼吸或调整呼吸机参数。
3
呼气峰流速波形异常
可能是由于患者病理生理改变或呼吸机故障导致 ,应检查患者状态和呼吸机工作状态。
特殊波形与临床意义
窒息波形
当呼吸机无法提供有效通气时, 患者可能出现窒息波形,表现为
吸气和呼气相均无气流通过。
窒息通气波形
在窒息通气过程中,呼吸机呈现 间歇性通气波形,主要用于自主
呼吸较弱的患者。
反常呼吸波形
在反常呼吸波形中,吸气和呼气 相的气流速度方向相反,多见于
严重肺挫伤或气胸等情况。
CHAPTER 04
呼吸机基本波形详解课 件
CONTENTS 目录
• 呼吸机基本波形概述 • 呼吸机基本波形详解 • 呼吸机波形与临床意义 • 呼吸机波形异常与处理
CHAPTER 01
呼吸机基本波形概述
呼吸机基本波形的定义
• 呼吸机基本波形是指在呼吸机的使用过程中,通过监测和记录 呼吸过程中的各种参数,如气流、压力、容量等,形成的动态 图形。这些波形能够反映患者的呼吸状态和呼吸机的性能。
CHAPTER 02
呼吸机基本波形
吸气时间
指吸气开始到吸气峰压出 现的时间,反映呼吸机的 响应速度。
吸气流速
表示吸气过程中气体的流 速,反映患者的通气需求。
呼气相波形分析
呼气峰压
表示呼吸机提供的最大呼气压力, 用于对抗内源性PEEP(呼气末正
压)。
呼气时间
指呼气开始到呼气峰压出现的时间, 反映患者的呼气能力。
呼出潮气量
表示一次呼吸所呼出的气体量,反 映患者的通气效率。
03
呼吸机波形与患者病情
波形与患者呼吸状况
正常波形
当患者呼吸正常时,呼吸机波形 呈现规则的周期性波动,峰谷分 明,峰值正常。
异常波形
当患者呼吸出现异常,如呼吸暂 停、通气不足等,呼吸机波形可 能出现不规则、峰值异常或无峰 值的波形。
波形与患者病情变化
病情恶化
如果患者病情恶化,如出现呼吸衰竭 、心力衰竭等情况,呼吸机波形可能 出现异常,如波形不规则、峰值下降 或消失等。
同步间歇指令通气模式
压力支持模式
适用于具有一定自主呼吸能力的患者,呼 吸机会在设定的时间间隔内给予指令性通 气,同时允许患者自主呼吸。
适用于需要一定压力支持的患者,呼吸机 会在患者吸气时提供一定的压力支持,帮 助患者克服气道阻力。
根据波形评估呼吸治疗效果
血气分析
定期监测患者的血气分析指标, 如pH值、PaO2、PaCO2等,以 评估呼吸治疗效果和调整呼吸机
波形与呼吸力学
不同类型的呼吸波形会对患者的呼吸力学产生影响,如压力支持、容量控制等 模式。选择合适的波形可以降低患者的呼吸做功,提高舒适度。
波形与患者心理状态
波形与心理感受
呼吸波形不仅影响患者的生理感受,还可能影响其心理状态。例如,不稳定的波 形可能导致患者焦虑和恐慌,而平稳的波形则可能带来安全感。
呼吸机波形分析中文
Cdyn = Δvolume/Δpressure
Paw
cmH2O
PV曲线起点端和顶端的连线的斜率代表动态肺顺应性(Cdyn)
31
肺静态顺应性
VT
LITERS
切点
VT
P
TIME
Slope--Compliance
PEEP
PPlat PIP
tidal volume
C=
Pplat - PEEP
32
Paw
cmH2O
22
不同模式下的流速波形
Volume
Pressure
Paw
cmH2O
Time(sec) 达到相同的潮气量减速流速模式所需的气道峰压更低,优于恒定流速模式
Flow
L/min
Time(sec)
Constant flow
23
Decelerating flow
Auto-PEEP的流速波形
120
Flow
L/min
Decreased Compliance
常见于: 肺气肿, 表面活性剂治疗后
36
Paw
cmH2O
常见于: ARDS, CHF, 肺不张
Paw
cmH2O
VT
LITERS
漏气
Paw
cmH2O
PV环的呼气支曲线未回到基线水平提示漏气存在
37
VT
LITERS
Upper Inflection Point
PV曲线的拐点
VT
LITERS
定压模式的PV曲线
Paw (cm H2O)
Time(sec)
Paw
cmH2O
压力限制/控制/支持模式下吸气时压力受限或保持不变,PV近似为方形
《呼吸机波形》PPT
异常呼气末正压波形识别与处理
总结词
呼气末正压设置不当
详细描述
呼气末正压是在呼气末期呼吸机施加的正压力,用于保持肺泡开放和增加功能残气量。当呼气末正压设置过高时 ,可能导致气压伤;设置过低则可能影响氧合和通气效果。处理方法包括调整呼气末正压设置、监测患者体征和 观察呼吸机波形等。
异常潮气量波形识别与处理
《呼吸机波形》
汇报人:可编辑
2024-01-11
目录
CONTENTS
• 呼吸机波形概述 • 呼吸机波形与呼吸生理 • 常见呼吸机波形分析 • 异常呼吸机波形识别与处理 • 呼吸机波形在临床中的应用
01 呼吸机波形概述
CHAPTER
呼吸机波形概述
• 请输入您的内容
02 呼吸机波形与呼吸生理
CHAPTER
呼吸频率波形呈规则的周期性波动, 频率大小根据患者病情和呼吸机设置 调整。
04 异常呼吸机波形识别与处理
CHAPTER
异常吸气峰压波形识别与处理
总结词
吸气峰压过高或过低
详细描述
吸气峰压是呼吸机在吸气相产生的最大压力。当吸气峰压过高时,可能表示呼吸 道阻力增加或肺顺应性降低;吸气峰压过低则可能表示通气不足或呼吸道阻力过 低。处理方法包括调整呼吸机参数、检查呼吸道通畅度和肺功能等。
通过分析呼吸波形,可以了解患者的 通气/血流比例、弥散功能和通气/灌 注匹配等方面的信息,有助于评估患 者的氧合和通气状态。
呼吸波形与呼吸力学
呼吸波形可以反映呼吸力学参数,如气道阻力、肺顺应性和 内源性呼气末正压等。
通过分析呼吸波形,可以了解患者的呼吸力学特征和呼吸肌 功能,有助于评估患者的呼吸支持和治疗效果。
呼吸机波形在评估患者病情中的应用
基础呼吸机波形分析
压力-时间曲线临床意义
控制机械通气(CMV)和辅助机械通气(AMV)的压力-时间曲线
CMV(左侧)和AMV(右侧)的压力-时间曲线 图中基线压力未回复到0, 是由于使用了PEEP. 且患者触发呼吸机是使用了压力触发左侧图在基线 压力均无向下折返小波(A), 呼吸机完全控制患者呼吸, 为CMV模式. 右侧在吸气开始均有向下折返的压力小波, 这是患者吸气努力达到触发阈使呼吸机进行了一次辅 助通气, 为AMV模式. 若使用了流速触发, 则不论是CMV或AMV, 在基线压力可能无向下折返小波, 这 需视设置的流量触发值而定.
呼气流速波形和临床意义
呼气流速波形其形态基本是相似的,其差别在呼气波形的振幅和呼气流速持续时间时的长短, 它取决于肺顺应性,气道阻力(由病变情况而定)和病人是主动或被动地呼气 。
呼气流速波形 初步判断支气管情况和主动或被动呼气
左侧图虚线反映是病人的自然被动呼气, 而实线反映了是患者主动用力呼气, 单纯从本图较 难判断它们之间差别和性质.
E点开始是呼气开始, 依靠胸廓、肺弹性回缩力使肺内气体排出体外(被动呼气), 呼气结束气 道压力回复到基线压力的水平(0或PEEP). PEEP是呼气结束维持肺泡开放避免萎陷的压力.
压力-时间曲线 平均气道压(mean Paw 或Pmean)
平均气道压(MAP)在正压通气时与肺泡充盈效果和心脏灌注效果相关(即气体交换),在一定的 时间间隔内计算N个压力曲线下的区域面积而得, 直接受吸气时间影响. 气道峰压, PEEP, 吸/呼 比和 肺含水量均影响它的升降. 图中A-B为吸气时间, B-C为呼气时间, PIP=吸气峰压,呼吸基 线=0或PEEP. 一般平均气道压=10-15cmH2O, 不大于30cmH2O.
B点后呈直线状增加至C点为气道峰压(PIP),是气体流量打开肺泡时的压力, 在C点时通气机 输送预设潮气量的气道峰压.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
呼吸机基本波形详解流速测定流速通常在呼吸机环路(从进气口到呼气阀之间的管道)中测知,流量感应器根据设计类型不同而有些许差异,但大部分都可以测量一个较大的范围(-300—+150LPM),但会由于假呼吸运动、水气、呼吸道分泌物等而影响其准确性。
流速波有两个组成部分:吸气波和呼气波,它描述了流速大小、持续时间和机控呼吸下的流速释放方式(正压通气),或者病人自主呼吸下的流速大小,持续时间和流速需求。
我们先介绍机控呼吸的吸气波,然后是自主呼吸的,等掌握了基本原理,再来讨论呼气波形。
吸气流速波机控呼吸图1是一个假设呼吸机给于恒定流速的一次机控呼吸的吸气流速波(方波),虚线部分是呼气波,我们会在后面介绍图1 吸气流速波——机控呼吸①呼吸机送气开始开始吸气取决于以下两点:1)到达了预设的呼吸周期时间,即“时间循环”2)病人吸气努力达到了触发辅助通气的阈值,通常是一个吸气负压或吸气流速增量,即“病人循环”。
前者常出现在控制呼吸模式,后者常出现于辅助呼吸模式②吸气峰流速在容控性呼吸机上,预设流速是很有必要的,流速设置也可以设置潮气量和吸气时间来间接得到。
假设设置了一个恒定流速的容控性呼吸机(如图一),峰流速就是设置值。
当流速不恒定,即流速波形是曲线波,流速在吸气时不同时间点上表现为不同的值。
此时中间流速或称平均流速通过下式计算:流速(LPM)=[潮气量(L)/时间(S)]X60③吸气末停止送气这个转换可能达到了预期的容量送气、流速、压力或吸气时间④吸气流速的持续时间常与吸气时间相应,容控呼吸机上,吸气时间常取决于预设的潮气量、峰流速和流速释放方式(波型:如递减波),有的也可以直接设置。
因此,吸气时间可以长于峰流速持续时间,尤其当应用吸气暂停时。
⑤整个呼吸周期时间(TCT)取决于预设的呼吸次数TCT=60/Rate图1的流速波型是方波,从吸气开始即达到峰值,直到吸气末都是一个恒定值,在实际应用当中,像图1那样“真正的”方波是不可能达到的,因为流速输送系统都有一个固定的延迟时间,在这段时间内,流速从0达到预设的峰流速。
同样,在吸气末流速从峰值降至0也需要一段时间。
延迟时间效应会在吸气开始和吸气末使波形出现轻微的倾斜。
(图2)图2 恒流速波形——延迟时间效应在早期低驱动压高内部顺应性的呼吸机,气流输送受到环路回缩力的影响很大,新一代呼吸机设计了低内部顺应性和高驱动压力,使环路回缩力对送气的影响减少了。
在一个较高的吸气峰压下,峰流速逐步减小,会导致吸气时间的延长。
如图3,实线是受环路回缩力影响后的波形,虚线是“真正的”方波,两者包围的面积相同,即潮气量相同。
图3 恒流速波形——受环路回缩力的影响近来,越来越多的新一代容控型呼吸机具备了一些其他可选择的波型,包括递增波、递减波和正弦波(图4),在预设同一个峰流速下,不同的波形会导致吸气时间改变,而曲线包围的面积即潮气量是不变的。
图4 流速波形——可选择波型吸气流速波自主呼吸自主呼吸流速波形(图5)的特点通常取决于病人呼吸需求的特点。
就是说,波形大小、持续时间与病人的呼吸需求相对应。
此时由于没有预设值,系统响应时间对波形的影响非常小,通常波形类似于正弦波。
(没有使用压力支持等辅助手段)图5吸气流速波——自主呼吸①吸气开始②吸气流速大小③吸气结束④吸气流速持续时间(吸气时间)呼气流速波呼气,不论是机控或是自主呼吸,都是一个被动的过程。
呼气流速波的大小、持续时间、形状取决于顺应性,顺应性包括病人顺应性和呼吸机环路顺应性。
呼吸机环路顺应性受到环路长度、材质、型号(内径)的影响,并且,气流通过呼气阀时的阻力(容量测算系统)也是重要因素。
病人肺顺应性改变或呼气时动用呼吸肌,都会对波形产生影响。
图6是一个机控吸气动作(虚线)后的呼气流速波形。
在呼吸机测算中呼气流速在0基线以下。
图6 呼气流速波①呼气开始②呼气峰流速呼气峰流速在机控呼吸和自主呼吸时是不尽相同的,因为通常机控呼吸潮气量比自主呼吸的大,所以在正压通气下,机控呼吸的呼气峰流速比自主呼吸的要高。
③呼气结束在这个点上于下一个机控吸气相连接,这对于评定吸呼比(I:E)有重要意义,而且此时有产生气道陷闭的可能。
④呼气流速的持续时间与有效呼气时间不同⑤有效呼气时间即整个呼吸周期时间减去实际的吸气时间⑥TCT 整个呼吸周期时间病人呼气阻力对呼气流速波的细小影响会得到修正,而呼气流速波的明显变化常体现了病人顺应性的改变、气道阻力明显变化或是病人烦躁动作。
例如呼气阻力增大(分泌物堆积甚至气道阻塞)会降低呼气峰流速并延长呼气时间(图7)图7 呼气流速波——气道阻力增大了解呼气时间是否延长十分重要。
①阻力增大后,呼气时间超过正常,峰流速下降②呼气不完全,可能引起气道陷闭。
这在后面将进一步讨论而在图8可以发现,如果病人在呼气时动用呼吸肌,会增加呼气峰流速,缩短呼气时间。
观察呼气流速波可帮助确认病人的呼吸需求图8 呼气流速波——被动及主动呼气压力测定呼吸机上,测定压力的部位通常在环路病人端Y形管处,也有在环路吸气支和呼气支内部测知。
尽管从环路内部测得的压力与实际气道压不尽相同,但往往以此作为参照,了解气道压的情况。
压力感应器通常可以测知最高150cmH2O的压力,但会因环路内积水、分泌物堵塞等影响准确性。
自主呼吸和机控呼吸的压力波形是不同的,但他们的组成结构是一样的。
压力波形对评估呼吸周期结构(呼气相向吸气相转换点)、时间系数及病人与呼吸机的相互作用都有帮助。
压力波形观察压力波形,很容易判断病人到底是自主呼吸还是机控呼吸。
图9是一个典型的自主呼吸压力波形。
(未用压力支持等辅助)压力波形——自主呼吸①吸气时压力下降压力下降的幅度取决于病人吸气的峰流速大小,感应器触发灵敏度、以及气流传送系统的反应时间。
(ASSIST、SIMV中自主触发的呼吸或使用压力支持)②呼气时压力升高升高的幅度与呼气时的气流阻力有关,包括病人阻力和环路阻力。
压力大小随着呼气峰流速的变化而相应变化。
呼气时动用呼吸肌,呼气峰流速会增大,因此当病人烦躁或用力呼气时,压力会急剧增高。
此外,持续高流量送气也会导致呼气压力增高。
(图55)图10是一个典型的机控呼吸的压力波形(正压通气)图10 压力波形——机控呼吸①最大膨胀压或称吸气峰压。
它取决于病人及环路的顺应性、阻力,并和潮气量、吸气流速相关②吸气时间③正压持续时间“膨胀压”指达到一个固定潮气量时的压力。
膨胀压分两个部分——流速抵抗压和肺扩张压。
见图11,他表示了机控呼吸中的一次吸气暂停。
(吸气流速结束后,肺保持膨胀的动作)图11 肺膨胀压——吸气暂停①气道峰压受到流速和容量变化影响后,近口端气道的最大压力。
②气道平台压肺泡膨胀时(没有气流进出的情况下)的压力。
肺泡是最低一级的呼吸道单位,最大肺泡压是一个平台压,而不是峰压。
在一个固定的潮气量下,压力波形会随着流速大小、输送方式(方波、正弦波等)、气道阻力、肺顺应性的不同而相应改变。
图12显示在同一潮气量下,气道阻力增大;流速增大;肺顺应性下降时峰压和平台压的不同改变。
图12 压力波形——受阻力、流速、顺应性影响(固定潮气量)测定的“呼气压”其实是呼气是呼吸机环路内的压力,图9、图10分别描述了自主呼吸和机控呼吸的压力波形。
压力从0开始上升直至恢复到0基线,但如果应用了呼气末正压,压力曲线开始和结束都会在预设的PEEP值上。
(图13)也就是说,PEEP抬高了基线。
图13 呼气压基线抬高抬高呼气压基线可以通过调整PEEP或呼气阀实现,也可以由缩短呼气时间,使呼气不完全来达到,但是这样会引起内源性PEEP的产生,并会使呼气末压力逐渐增高。
图14是一个实例。
以后对相关内容会做进一步介绍。
要注意的是,大多数呼气压是在呼吸机环路内测定的,因而小气道动态塌陷引起的呼气末肺泡正压(内源性PEEP),在这种测量方法下是不能探知的。
图14 呼气压力抬高通过调整呼气阀来改变呼气末压力,通常是在呼气支末端加以一定的阻力,即通过限制呼出气流速来实现。
这种方法所得到的压力与呼气流速有关,与阻力阀的横截面积有关。
气流大阻力大,气流小阻力小。
并且会延长呼气时间,增加患者呼气功。
相比较以持续气流实现基线压抬高的方法,后者更为合理,且效果更好。
在ARDS和急性肺水肿的病人治疗中,这种差异尤为明显。
除了膨胀压和呼气压,平均气道压是另一个重要的测量数据。
平均气道压描述了气道平时的平均压力和正压通气对肺泡稳固性及心脏充盈的影响。
平均压受峰压和PEEP的影响,并与I:E有关。
在两种呼吸状况同时存在的情况下也可以测得。
平均压不能清楚地在压力波形上反映出来(图15)。
它通常由连续间隔很短时间测知的一系列压力所得,即将这些间隔测得的压力的总和,除以相应的数量。
PMEAN=(P1+P2+P3+…+PN)/N图15 平均压根据呼吸机设计不同,平均压的计算方法也不尽相同,有些呼吸机在连续测定一段压力数值之后,求其积分。
(即N为无穷大)是否是自主触发的辅助通气,可以从压力波形中看出。
非自主触发的机控呼吸的吸气开始是由时间循环触发的,压力从基线开始上升。
而自主触发的辅助通气,先有压力的下降,到达了预设的触发灵敏度随之呼吸机送气,压力升高。
图16是一次由病人触发的辅助通气。
注意压力持续下降至预设的触发灵敏度以下一段时间后,辅助通气才开始,压力上升,这一段时间即为响应时间。
图16 自主触发的辅助通气若触发灵敏度设置过大或病人呼吸极浅,只能看到压力下降而不能触发辅助通气,如图17。
相反的,灵敏度设置过小则易受外界因素影响。
(如环路内积水)图17 机控呼吸中——病人努力不够图17中,①和②都是病人的一次浅呼吸,但未达到预设的触发灵敏度,所以没有进行辅助通气,这种情况下,病人的吸气努力会a)从储气罐或持续气流中供气;b)按一定流速供给,以保持基线压平稳(漏气补偿);c)不供气③达到了一个机控呼吸的时间循环,呼吸机不管病人动作,予以一次强制通气,此时易出现对抗动作。
当呼吸过程中出现上述未能触发辅助通气的呼吸时,时间的测算也会受到影响。
此时测得的只有吸气时间和正压持续时间是准确的,而呼气时间、I:E等都会出现不符的情况。
图18 时间测算①机控呼吸的吸气时间②正压持续时间③机器测得的总呼吸循环的时间(TCT)④机器测得的呼气时间⑤病人实际的呼气时间①:④机器测得的I:E①:⑤病人实际的I:E在PCV和PSV模式中,压力是预设的,是一个独立可变量,而流速和潮气量是根据压力的预设值和病人状况而变化的非独立可变量。
相对的,在容控呼吸中,流速和潮气量是独立可变量,可以预设,而压力是非独立可变量。
图19压力测定——PCV、PSV图19中,PCV和PSV的压力波形相似,PSV吸气由病人触发,PCV既可以有病人触发也可以由时间循环触发。