新编文档-专题8第27讲分类与整合思想-精品文档
分类与整合
“分类与整合思想”专题及专项训练一、大纲解读分类与整合思想是数学中的一种重要思想,是历年高考考查的重点之一,此类试题具有明显的逻辑性、综合性、探索性的特点,在考试中的难度属中高档.高考对分类与整合思想的考查,主要有四个方面:一是考查有没有分类意识,遇到应该分类的情况,是否想到要分类,什么样的问题需要分类;二是如何分类,即要科学地分类,分类标准要统一,不重不漏;三是分类之后解题如何展开;四是如何整合.纵观近几年高考试题,通常是由参数的变化及变化过程需要一些条件限制而引起的分类讨论.归纳起来引起分类讨论的原因大致有五种:一是涉及的数学概念是分类定义的;二是运用的数学定理、公式或运算性质、法则是分类给出的;三是求解的数学问题的结论有多种可能性;四是数学问题中含有参变量,这些参变量的不同取值会导致不同的结果;五是对较复杂或非常规的数学问题,需要采取分类讨论的解题策略来解决.二、高考预测预计2009年高考对分类与整合思想的考查可能会呈现以下趋势:试题将会在求解函数、数列、不等式、解析几何、立体几何、排列组合、概率等数学问题中出现,在解决含参数问题、绝对值问题、导数问题、最值问题上运用较多,在高考中所占的比重较大,且对理科要求较高,而对文科在这方面的要求可能相对较低.三、重点剖析重点1 对等比数列公比q 的分类讨论;对n 奇偶性的讨论;解分式不等式时分类讨论各因式的符号;运用比较法时对式子符号的讨论等等.例1 设等比数列{}n a 的公比为q ,前n 项和),2,1( 0 =>n S n .(Ⅰ)求q 的取值范围; (Ⅱ)设1223++-=n n n a a b ,记{}n b 的前n 项和为n T ,试比较n S 与n T 的大小. 分析:由于涉及等比数列的前n 项和公式的应用,须分1q =和1q ≠讨论.欲比较n S 与n T 的大小,只须求出n S 与n T 后,再用作差法比较.解:(Ⅰ)因为}{n a 是等比数列,.0,0,011≠>=>q S a S n 可得当;0,11>==na S q n 时1(1)11,0,0,(1,2,)11n nn a q q q S n q q--≠=>>=-- 当时即 上式等价于不等式组:),2,1(,01,01 =⎩⎨⎧<-<-n q q n ① 或),2,1(,01,01 =⎩⎨⎧>->-n q q n ② 解①式得q >1;解②,由于n 可为奇数、可为偶数,得-1<q <1.综上,q 的取值范围是).,0()0,1(+∞⋃- (Ⅱ)由2132n a n b a a ++=-得.)23(),23(22n n n n S q q T q q a b -=-= 于是)123(2--=-q q S S T n n n ).2)(21(-+=q q S n 又∵n S >0且-1<q <0或q >0.①当112q -<<-或2q >时0n n T S ->即n n T S >; ②当122q -<<且q ≠0时,0n n T S -<即n n T S <; ③当12q =-或q =2时,0n n T S -=即n n T S =. 点评:该例中在使用等比数列的前n 项和公式n S ,须分1q =和1q ≠讨论,不要忽视1q =的情况.在第二小问中,抓住2132n a n b a a ++=-,利用等比数列的通项公式,巧妙的把n b 转化成.)23(),23(22n n n n S q q T q q a b -=-=最后,作差比较n S 与n T ,即)123(2--=-q q S S T n n n ).2)(21(-+=q q S n ,为确定差的符号,故对q 进行分类讨论. 重点2 指数函数(01)x y a a a =>≠且和对数函数log (0,1)a y x a a =>≠且的单调性研究时对底数进行分类讨论例2 如果函数22()(31)(01)x x f x a a a a a =-+>≠且在区间[)0+,∞上是增函数,那么实数a 的取值范围是( )A.203⎛⎤⎥⎝⎦, B.13⎫⎪⎪⎣⎭, C.(1 D.32⎡⎫+⎪⎢⎣⎭,∞ 分析:本题在用复合函数单调性判断时,需要对底数a 进行分类讨论. 解:令x u a =,则外层函数为22(31)y u a u =-+.①若a >1,则内层函数xu a =在[)0+,∞上是增函数,其值域是{|1}u u ≥, 要使函数22()(31)x x f x a a a =-+在区间[)0+,∞上是增函数,所以需要外层函数22(31)y u a u =-+在[1,)u ∈+∞上是增函数,所以对称轴23112a u +=≤,213a ∴≤,这与a >1矛盾;②若0<a <1,则xu a =在[)0+,∞上是减函数,其值域是{|01}u u <≤.要使函数22()(31)x x f x a a a =-+在区间[)0+,∞上是增函数,所以需要外层函数22(31)y u a u =-+在(0,1]u ∈上是减函数,所以对称轴23112a u +=≥,∴213a ≥,∴实数a 的取值范围是,选B . 点拔:复合函数单调性判断要注意四点:①内层函数x u a =的值域是外层函数22(31)y u a u =-+的定义域.②内层函数x u a =与复合函数22()(31)x x f x a a a =-+定义域相同,都是[)0+,∞;③分类与整合的思想方法的运用;④一元二次函数单调性要依其图象对称轴的位置来判断.重点3 对于含有参数函数问题,在研究导函数时往往要运用分类与整合的思想例3 求函数323()(1)3(1)2f x ax a x x a x R =+-->-∈,取极小值时x 的值. 分析:首先确定2'()33(1)3f x ax a x =+--是否为二次函数,故分0a =和0a ≠讨论,若0a ≠时,求f ′(x )=0的实根,进而划分其单调区间,确定极小值.解:2'()33(1)3f x ax a x =+--.(1)当0a =时,'()f x = 33x --.令'()f x =0,得1x =-,下面列出x ,'()f x ,()f x 的对应值表如下:(2)当0a ≠时,'()f x = 13(1)(1)3()(1)ax x a x x a -+=-+,令'()f x =0,得1x a=或1x =-,则 ①当a >0时,11>-,下面列出x ,'()f x ,f (x )的对应值表如下: 所以,函数f (x )在x a =处取得极小值()f a. ②当1-<a <0时,因11(1)0a a a+--=>, 所以1< —1,则下面列出x ,'()f x ,f (x )的对应值表如下: 此时,函数f (x )在x a =处取得极小值()f a. 综上所述:当a >0或1-<a <0时,函数f (x )在1x a =处取得极小值. 点拔:结合函数、导数内容考查分类与整合思想是近几年高考热点.本题首先弄清导函数是否为二次函数,分0a =与0a ≠讨论,做第一层面讨论;当0a ≠时,f ′(x )为二次函数,其图象为抛物线,但开口方向不确定,所以做第二层面的讨论;为了划分单调区间,应该比较'()f x =0的两根的大小.重点4 整体观察,化繁为简例4 (08年高考四川卷理11)设定义在R 上的函数()f x 满足()()213f x f x ⋅+=,若()12f =,则()99f =( )(A)13 (B)2 (C)132 (D)213解析:∵函数()f x 满()()213f x f x ⋅+=,∴ ()()1342=+⋅+x f x f , ∴()()()()1313242=+⋅+⋅+x f x f x f x f , ∴()()x f x f =+4, ∴函数()x f 为周期是4的周期函数.∴()()()21244197==⨯+=f f f , ∴()()139799=⋅f f ,故()21399=f . 点评:该题主要考察学生的整体观察能力,即不要()()213f x f x ⋅+=将割裂来求,否则加大了运算难度.如: ∵()()213f x f x ⋅+=且()12f =,∴()12f =,()()1313312f f ==,()()13523f f ==,()()1313752f f ==,()()13925f f ==, , ∴()221132n f n n ⎧⎪-=⎨⎪⎩为奇数为偶数 ,∴()()1399210012f f =⨯-= ,故选C. 重点5 整体构造(式或形),化难为易例5 (07年高考陕西卷理5)已知n S 是等比数列{}n a 的前n 项的和,且14,23==n n S S ,则n S 4=( ).A.80B.30C.26D.16解析:此题若考虑用求和公式,不仅计算量较大,而且对公比q 还要考虑1,1≠=q q 进行分类讨论,若注意到n S ,n S 2,n S 3,n S 4依次相差n 项,以此构造四个整体:n n n n n S S S S S 232,,--,n n S S 34-通过分析可知这三个数构成等比数列。
分类与整合思想例析
分类与整合思想例析1.分类与整合的思想的含义分类与整合的思想,就是当问题所给的对象因一些不确定的因素而不能进行统一研究时 (如不能用同一种标准,或同一种运算,或同一个类型,或同一个定理,或同一种方法去解决等),就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答.实质上,分类讨论是“化整为零,各个击破,再积零为整”的解题策略. 分类讨论既是一种重要的数学方法,也是一种重要的数学思想.由于有关分类讨论的数学问题具有明显的逻辑性、综合性、探索性,并能训练人的思维的条理性与概括性,因而在高考试题中往往占有较大的比重对问题实行分类与整合,确定分类标准后等于增加了一个已知条件,实现了有效增设,将大问题(或综合性问题)分解为小问题(或基础性问题),优化解题思路,降低问题难度.2.运用分类与整合思想解题的基本步骤:确定标准→合理分类→逐类讨论→归纳总结。
(1)明确讨论的对象:即对哪个参数进行讨论;(2)对所讨论的对象进行合理分类(分类时要做到不重复、不遗漏、标准要统一、分层不越级);(3)逐类讨论:即对各类问题详细讨论,逐步解决;(4)归纳总结:将各类情况总结归纳3.明确引起分类讨论的原因,有利于掌握分类整合的思想方法解决问题.分类讨论的主要原因有:(1)由数学概念引起的分类讨论:有些数学概念本身就是以分类形式定义的,如直线与平面所成的角、三角函数值所在象限的符号、绝对值等.有些数学概念本身也有一定的限制,如直线的斜率 ,二次曲线中又包括椭圆、双曲线及抛物线,如绝对值的定义、不等式的定义、二次函数的定义、直线与平面所成的角、直线的斜率与倾斜角、两条直线所成的角,指数函数,对数函数,空集,直线的截距式等.(2)由数学运算要求引起的分类讨论:如除法运算中除数不为零、偶次方根为非负、对数中真数与底数的要求、不等式中两边同乘以一个正数、负数对不等号方向的影响,三角函数的定义域,一元二次方程解的情况是按“∆”的正负给出的等;(3)由函数的性质、定理、公式的限制引起的分类讨论:有的数学性质、定理、公式是分类给出的,在不同的条件下有不同的结论,或者在一定的条件下才成立,这时要小心,应根据题目条件确定是否分类讨论。
分类与整合思想
分类与整合思想、转化与化归思想一、概念、定理分类整合概念、定理分类整合即利用数学中的基本概念、定理对研究对象进行分类,如绝对值的定义、不等式的转化、等比数列{a n }的前n 项和公式等,然后分别对每类问题进行解决.解决此问题可以分解为三个步骤:分类转化、依次求解、汇总结论.汇总结论就是对分类讨论的结果进行整合.1.若一条直线过点(5,2),且在x 轴,y 轴上截距相等,则这条直线的方程为( ) A .x +y -7=0 B .2x -5y =0C .x +y -7=0或2x -5y =0D .x +y +7=0或2y -5x =02.已知S n 为数列{a n }的前n 项和,且S n =2a n -2,则S 5-S 4的值为( ) A .8 B .10 C .16D .323.已知集合A =⎩⎨⎧⎭⎬⎫-1,12,B ={x |mx -1=0,m ∈R },若A ∩B =B ,则所有符合条件的实 数m 组成的集合是( ) A .{0,-1,2} B.⎩⎨⎧⎭⎬⎫-12,0,1 C .{-1,2}D.⎩⎨⎧⎭⎬⎫-1,0,124.已知函数f (x )=x |x -a |-a ,a ∈R ,若对任意x ∈[3,5],f (x )≥0恒成立,则实数a 的取值 范围是________.二、图形位置、形状分类整合图形位置、形状分类整合是指由几何图形的不确定性而引起的分类讨论,这种方法适用于几何图形中点、线、面的位置关系的研究以及解析几何中直线与圆锥曲线的位置关系.5.已知正三棱柱的侧面展开图是边长分别为6和4的矩形,则它的体积为( ) A.833B .4 3 C.239D .43或8336.已知变量x ,y 满足的不等式组⎩⎪⎨⎪⎧x ≥0,y ≥2x ,kx -y +1≥0表示的是一个直角三角形围成的平面区域,则实数k 等于( ) A .-12B.12 C .0D .0或-127.已知双曲线的离心率为233,则其渐近线方程为______.8.抛物线y 2=4px (p >0)的焦点为F ,P 为其上的一点,O 为坐标原点,若△OPF 为等腰三 角形,则这样的点P 的个数为________.9.已知实数a ,x ,a >0且a ≠1,则“a x >1”的充要条件为( ) A .0<a <1,x <0 B .a >1,x >0 C .(a -1)x >0D .x ≠010.若函数f (x )=ax 2+4x -3在[0,2]上有最大值f (2),则实数a 的取值范围为( ) A .(-∞,-1] B .[-1,+∞) C .(-∞,0)D .(0,+∞)11.设函数f (x )=x 2-ax +a +3,g (x )=ax -2a ,若存在x 0∈R ,使得f (x 0)<0和g (x 0)<0同时 成立,则实数a 的取值范围为( ) A .(7,+∞) B .(-∞,-2)∪(6,+∞) C .(-∞,-2)D .(-∞,-2)∪(7,+∞)一、特殊与一般的转化一般问题特殊化,使问题处理变得直接、简单,也可以通过一般问题的特殊情形找到一般思路;特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果;对于某些选择题、填空题,可以把题中变化的量用特殊值代替,得到问题答案或者思路.1.据统计某超市两种蔬菜A ,B 连续n 天价格分别为a 1,a 2,a 3,…,a n 和b 1,b 2,b 3,…, b n ,令M ={m |a m <b m ,m =1,2,…,n },若M 中元素个数大于34n ,则称蔬菜A 在这n 天的价格低于蔬菜B 的价格,记作:A <B ,现有三种蔬菜A ,B ,C ,下列说法正确的是( ) A .若A <B ,B <C ,则A <CB .若A <B ,B <C 同时不成立,则A <C 不成立C .A <B ,B <A 可同时不成立D .A <B ,B <A 可同时成立2.过抛物线y =ax 2(a >0)的焦点F ,作一直线交抛物线于P ,Q 两点.若线段PF 与FQ 的长度分别为p ,q ,则1p +1q 等于( )A .2a B.12a C .4a D.4a3.已知函数f (x )=(a -3)x -ax 3在[-1,1]上的最小值为-3,则实数a 的取值范围是( ) A .(-∞,-1] B .[12,+∞) C .[-1,12] D.⎣⎡⎦⎤-32,12 4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c 成等差数列,则cos A +cos C1+cos A cos C=________.5.若对于任意t ∈[1,2],函数g (x )=x 3+⎝⎛⎭⎫m 2+2x 2-2x 在区间(t,3)上总不为单调函数,则实 数m 的取值范围是________.6.如图所示,已知三棱锥P -ABC ,P A =BC =234,PB =AC =10,PC =AB =241,则三 棱锥P -ABC 的体积为( )A .40B .80C .160D .2407.对于满足0≤p ≤4的所有实数p ,使不等式x 2+px >4x +p -3成立的x 的取值范围是 ________________.8.如果实数x ,y 满足等式(x -2)2+y 2=1,那么y +3x -1的取值范围是________.9.已知偶函数f (x )在[0,+∞)上单调递减,f (2)=0,若f (x -1)>0,则x 的取值范围为________. 10.在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上,若P A →·PB →≤20, 则点P 的横坐标的取值范围是________.11.已知函数f (x )=x 3+3ax -1,g (x )=f ′(x )-ax -5,其中f ′(x )是f (x )的导函数.对满足 -1≤a ≤1的一切a 的值,都有g (x )<0,则实数x 的取值范围为________.12.已知函数f (x )=ln x .若不等式mf (x )≥a +x 对所有m ∈[0,1],x ∈⎣⎡⎦⎤1e ,e 2都成立,则实数 a 的取值范围为________.1.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,那么( )A .a 1a 8>a 4a 5B .a 1a 8<a 4a 5C .a 1+a 8>a 4+a 5D .a 1a 8=a 4a 52.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于( ) A .-1 B .1 C .2D .-23.过双曲线x 2-y 22=1的右焦点F 作直线l 交双曲线于A ,B 两点,若|AB |=4,则这样的直线l 有( ) A .1条 B .2条 C .3条D .4条4.已知数列{a n }的前n 项和S n =p n -1(p 是常数),则数列{a n }是( ) A .等差数列B .等比数列C .等差数列或等比数列D .以上都不对5.如图,在棱长为5的正方体ABCD —A 1B 1C 1D 1中,EF 是棱AB 上的一条线段,且EF =2,点Q 是A 1D 1的中点,点P 是棱C 1D 1上的动点,则四面体PQEF 的体积( )A .是变量且有最大值B .是变量且有最小值C .是变量且有最大值和最小值D .是常数6.设点P (x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -y +1≥0,x ≥1,y ≥1,则y x -xy的取值范围是( ) A.⎣⎡⎭⎫32,+∞ B.⎣⎡⎦⎤-32,32 C.⎣⎡⎦⎤-32,1 D .[-1,1]7.已知函数f (x )=⎩⎪⎨⎪⎧ln x ,x >0,m x ,x <0,若f (x )-f (-x )=0有四个不同的实根,则m 的取值范围是()A .(0,2e)B .(0,e)C .(0,1)D.⎝⎛⎭⎫0,1e 8.已知函数f (x )=x (e x -e -x )-cos x 的定义域为[-3,3],则不等式f (x 2+1)>f (-2)的解集为( )A .[-2,-1]B .[-2,2]C .[-2,-1)∪(1,2]D .(-2,-1)∪(1,2)9.在等比数列{a n }中,已知a 3=32,S 3=92,则a 1=________.10.设F 1,F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点.已知P ,F 1,F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,则|PF 1||PF 2|的值为________.11.(2017·浙江)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________, 最大值是________.12.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点分别为F 1,F 2,若椭圆上存在点P 使得∠F 1PF 2=120°,则椭圆C 离心率的取值范围是______________.。
分类与整合的思想
分类与整合的思想【知识归纳】所谓分类讨论,就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答.实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略. 有关分类讨论的数学命题在高考试题中占有重要位置. 分类讨论是一种重要的数学思想方法,引起分类讨论的原因大致可归纳为如下几种: (1)由数学概念引起的分类讨论,如绝对值、直线斜率、指数函数、对数函数等.(2)由性质、定理、公式的限制引起的分类讨论,如等比数列的前n 项和公式、函数的单调性等. (3)由数学运算引起的分类讨论,如除法运算中除数不为零、偶次方根为非负、对数运算中真数和底数的要求等.(4)由图形的不确定性引起的分类讨论,如角的终边所在象限、点、线、面的位置关系等. (5)由参数的变化引起的分类讨论,如含参数的方程不等式等.⑹较复杂或非常规的数学问题,需要采取分类讨论的解题策略来解决的.2.分类方法:(1)概念和性质是分类的依据(2)按区域(定义域或值域)进行分类是基本方法(3)不定因素(条件或结论不唯一,数值大小的不确定,图形位置的不确定)是分类的突破口(4)二分发是分类讨论的利器(4)层次分明是分类讨论的基本要求;3.简化和避免分类讨论的优化策略:(1)直接回避.如运用反证法、求补法、消参法等方法有时可以避开烦琐讨论;(2)变更主元.如分离参数、变参置换,构造以讨论对象为变量的函数得便感形式解题时可避开讨论;(3)合理运算.如利用函数奇偶性、变量的对称轮换以及公式的合理选用等有时可以简化甚至避开讨论;(4)数形结合.利用函数图象、几何图形的直观性和对称特点有时可以简化甚至避开讨论.【基础演练】1. 已知集合A ={1.3.},B ={1,m} ,A B =A ,则m= .解析:因为A B A = ,所以A B ⊆,所以3=m 或m m =.若3=m ,则}3,1{},3,3,1{==B A ,满足A B A = .若m m =,解得0=m 或1=m .若0=m ,则}0,3,1{},0,3,1{==B A ,满足A B A = .若1=m ,}1,1{},1,3,1{==B A 显然不成立,综上0=m 或3=m .2. 已知圆x 2+y 2=4,则经过点P (2,4),且与圆相切的直线方程为 .解析:由22+42>4得点P 在圆x 2+y 2=4外,由几何性质分析知过点P 且与圆相切的直线有两条,设直线斜率为k ,则切线方程为y -4=k (x -2),由圆心到切线的距离为2,解得k =34.由此可知斜率不存在时也满足题意,解得切线方程为3x -4y +10=0或x =2.3.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:①当1-a <1,即a >0时,此时a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,计算得a =-32(舍去);②当1-a >1,即a <0时,此时a +1<1,由f (1-a )=f (1+a ),得2(1+a )+a =-(1-a )-2a ,计算得a =-34,符合题意.综上所述,a =-34.4. 若椭圆x 25+y 2m =1的离心率e =105,则m 的值是________.解析:当m >5时,105=m -5m,解得m =253; 当m <5时,105=5-m 5,解得m =3.答案:3或253 5. 一个均匀的正四面体上分别有1,2,3,4四个数字,现随机投掷两次,正四面体面朝下的数字分别为b ,c . 若方程x 2-bx -c =0至少有一根x ∈{1,2,3,4},就称该方程为“漂亮方程”,则方程为“漂亮方程”的概率是 ▲ .①若方程一根为x =1,则1-b -c =0,即b +c =1,不成立.②若方程一根为x =2,则4-2b -c =0,即2b +c =4,所以⎩⎪⎨⎪⎧b =1,c =2.③若方程一根为x =3,则9-3b -c =0,即3b +c =9.所以⎩⎪⎨⎪⎧b =2,c =3.④若方程一根为x =4,则16-4b -c =0,即4b +c =16,所以⎩⎪⎨⎪⎧b =3,c =4.综合①②③④知,(b ,c )的所有可能取值为(1,2),(2,3),(3,4),所以,“漂亮方程”共有3个,方程为“漂亮方程”的概率为P =316. 6. 已知平面单位向量a ,b ,c 夹角两两相等,则|a +b +c |=________.解析:由题意知夹角为2π3或0.当夹角为2π3时,a +b =-c ,|a +b +c |=0;当夹角为0时,|a +b +c |=3|a |=3. 答案:0或3【考点例析】例题1(南京市、盐城市2013届高三期末)对于定义在区间D 上的函数()f x , 若任给0x D ∈, 均有0()f x D ∈, 则称函数()f x 在区间D 上封闭.(1)试判断()1f x x =-在区间[2,1]-上是否封闭, 并说明理由; (2)若函数3()1x ag x x +=+在区间[3,10]上封闭, 求实数a 的取值范围; (3)若函数3()3h x x x =-在区间[,](,)a b a b Z ∈上封闭, 求,a b 的值.解: (1)()1f x x =-在区间[2,1]-上单调递增,所以()f x 的值域为[-3,0]………2分 而[-1,0][2,1]⊄-,所以()f x 在区间[2,1]-上不是封闭的……………… 4分(2)因为,①当3a =时,函数()g x 的值域为{}3[3,10]⊆,适合题意……………5分 ②当3a >时,函数()g x 在区间[3,10]上单调递减,故它的值域为309[,]114a a++, 由309[,]114a a ++[3,10]⊆,得303119104aa +⎧≥⎪⎪⎨+⎪≤⎪⎩,解得,故331a <≤……………………7分③当3a <时,在区间[3,10]上有33()3311x a a g x x x +-==+<++,显然不合题意 …………………8分 综上所述, 实数a 的取值范围是331a ≤≤……………………………9分(3)因为3()3h x x x =-,所以2()333(1)(1)h x x x x '=-=+-,所以()h x 在(,1)-∞-上单调递增,在(1,1)-上递减,在(1,)+∞上递增.①当1a b <≤-时,()h x 在区间[,]a b 上递增,所以,此时无解………10分②当111a b ≤--<≤且时,因max ()(1)2h x h b =-=>,矛盾,不合题意…………11分③当11a b ≤->且时,因为(1)2,(1)2h h -==-都在函数的值域内,故22a b ≤-⎧⎨≥⎩, 又33()3()3a h a a a b h b b b⎧≤=-⎨≥=-⎩,解得202202a a b b -≤≤≥⎧⎨≤≤≤⎩或或,从而22a b =-⎧⎨=⎩ ………12分 ④当11a b -≤<≤时,()h x 在区间[,]a b 上递减,()()h b ah a b ≥⎧⎨≤⎩(*),而,a b Z ∈,经检验,均不合(*)式……………………………13分⑤当111a b -<≤≥且时,因min ()(1)2h x h a ==-<,矛盾,不合题意…………14分⑥当1b a >≥时,()h x 在区间[,]a b 上递增,所以()()h a ah b b ≥⎧⎨≤⎩,此时无解 ……………15分综上所述,所求整数,a b 的值为2,2a b =-=…………………16分变式题:设函数f (x )=ax 3-3x +1(x ∈R ),若对于任意的x ∈[-1,1],都有f (x )≥0成立,则实数a 的值为________.解析:若x =0,则不论a 取何值,f (x )=1≥0显然成立;当x >0即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x 3,设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4,g (x )在区间⎝⎛⎦⎤0,12上单调递增,在区间⎣⎡⎦⎤12,1上单调递减,因此g (x )max =g ⎝⎛⎭⎫12=4,从而a ≥4; 当x <0即x ∈[-1,0)时,f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x 3,g ′(x )=3(1-2x )x 4>0,g (x )在区间[-1,0)上单调递增,因此g (x )min =g (-1)=4,从而a ≤4.综上a =4.例题2 已知数列{a n }的前n 项和S n =n 2+1,数列{b n }是首项为1,公比为b 的等比数列.(1)求数列{a n }的通项公式;331 a≤≤ 33 ()3 11xaa gx xx +-==+++ () () haa hbb ≥ ⎧ ⎨≤ ⎩(2)求数列{a n b n }的前n 项和T n . 解:(1)当n =1时,a 1=S 1=2;当n ≥2时,a n =S n -S n -1=n 2+1-(n -1)2-1=2n -1.所以a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.(2)当b =1时,a n b n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.此时T n =2+3+5+…+(2n -1)=n 2+1;当b ≠1时,a n b n =⎩⎪⎨⎪⎧2,n =1,(2n -1)b n -1,n ≥2. 此时T n =2+3b +5b 2+…+(2n -1)b n -1, ①两端同时乘以b 得,bT n =2b +3b 2+5b 3+…+(2n -1)b n . ②①-②得,(1-b )T n =2+b +2b 2+2b 3+…+2b n -1-(2n -1)b n=2(1+b +b 2+b 3+…+b n -1)-(2n -1)b n-b =2(1-b n )1-b-(2n -1)b n -b ,所以T n =2(1-b n )(1-b )2-(2n -1)b n 1-b -b1-b. 所以T n =⎩⎪⎨⎪⎧n 2+1,b =1,2(1-b n )(1-b )2-(2n -1)b n 1-b -b1-b ,b ≠1.变式题:三个互不相等的实数成等差数列,适当交换这三个数的位置后,变成一个等比数列,则此等比数列的公比是________.解析:设这三个数分别为a -d ,a ,a +d (d ≠0),由于d ≠0,所以a -d ,a ,a +d 或a +d ,a ,a -d 不可能成等比数列;若a -d ,a +d ,a 或a ,a +d ,a -d 成等比数列,则(a +d )2=a (a -d ),即d =-3a ,此时q =a a -3a =-12或q =a -3a a =-2;若a ,a -d ,a +d 或a +d ,a -d ,a 成等比数列,则(a -d )2=a (a+d ),即d =3a ,此时q =a -3a a =-2或q =a -3a a +3a=-12.故q =-2或-12.例题3 已知函数f (x )=12ax 2-2x sin 2α和函数g (x )=ln x ,记F (x )=f (x )+g (x ).(1)当α=π3时,若f (x )在[1,2]上的最大值是f (2),求实数a 的取值范围;(2)当a =1时,判断F (x )在其定义域内是否有极值,并予以证明;(3)对任意的α∈⎝⎛⎭⎫π6,23π,若F (x )在其定义域内既有极大值又有极小值,试求实数a 的取值范围. 解:(1)α=π3时,f (x )=12ax 2-32x .①当a =0时,f (x )=-32x ,不合题意;②当a <0时,f (x )=12ax 2-32x 在⎝⎛⎦⎤-∞,32a 上递增,在⎣⎡⎭⎫32a ,+∞上递减,而[1,2]⊆⎣⎡⎭⎫32a ,+∞,故不合题意;③当a >0时,f (x )=12ax 2-32x 在⎝⎛⎦⎤-∞,32a 上递减,在⎣⎡⎭⎫32a ,+∞上递增,f (x )在[1,2]上的最大值是max{f (1),f (2)}=f (2),所以f (1)≤f (2),即12a -32≤2a -3,所以a ≥1.综上所述,实数a 的取值范围是[1,+∞).(2)a =1时,F (x )=12x 2-2x sin 2α+ln x 的定义域为(0,+∞),F ′(x )=x +1x-2sin 2α≥2-2sin 2α=2cos 2 α≥0.①当cos α≠0时,F ′(x )>0,F (x )在(0,+∞)上单调递增,从而F (x )在其定义域内没有极值; ②当cos α=0时,F ′(x )=x +1x -2=(x -1)2x ,令F ′(x )=0,有x =1,但是x ∈(0,1)时,F ′(x )>0,F (x )单调递增,x ∈(1,+∞)时,F ′(x )>0,F (x )也单调递增,所以F (x )在其定义域内也没有极值.综上,F (x )在其定义域内没有极值.(3)据题意可知,令F ′(x )=ax +1x-2sin 2α=0,即方程ax 2-2x sin 2α+1=0在(0,+∞)上恒有两个不相等的实数根.即⎩⎪⎨⎪⎧Δ=4sin 4α-4a >0,a >0恒成立,因为α∈⎣⎡⎭⎫π6,23π,sin α∈⎣⎡⎦⎤12,1,所以0<a <116. 所以a 的取值范围为⎝⎛⎭⎫0,116 变式题:已知F (x )=F (x )=x 2-mx +1-m 2,若|F (x )|在[0,1]上单调递增,则实数m 的取值范围是 ▲ .[解] 由题设得F (x )=x 2-mx +1-m 2,对称轴方程为x =m 2,Δ=m 2-4()1-m 2=5m 2-4.由于|F (x )|在[0,1]上单调递增,则有①当Δ≤0即-255≤m ≤255时,有⎩⎨⎧m2≤0,-255≤m ≤255,解得-255≤m ≤0.②当Δ>0即m <-255或m >255时,设方程F (x )=0的根为x 1,x 2(x 1<x 2),(ⅰ)若m >255,则m 2>55,有⎩⎪⎨⎪⎧m 2≥1,x 1<0⇔F (0)=1-m 2<0.解得m ≥2;(ⅱ)若m <-255,即m 2<-55,有x 1<0,x 2≤0;∴⎩⎪⎨⎪⎧x 1+x 2<0⇒m <0,x 1x 2≥0⇒1-m 2≥0⇒-1≤m ≤1,m <-255,解得-1≤m <-255.由(ⅰ)(ⅱ)得-1≤m <-255或m ≥2.综合①②有-1≤m ≤0或m ≥2.例题4已知动直线l 与椭圆C: 22132x y +=交于P ()11,x y 、Q ()22,x y 两不同点,且△OPQ 的面积OPQ S ∆其中O 为坐标原点.(Ⅰ)证明2212x x +和2212y y +均为定值;(Ⅱ)设线段PQ 的中点为M ,求||||OM PQ ⋅的最大值; (I )解:(1)当直线l 的斜率不存在时,P ,Q 两点关于x 轴对称,所以2121,.x x y y ==-因为11(,)P x y 在椭圆上,因此2211132x y +=①又因为OPQ S ∆=所以11||||x y ⋅=②由①、②得11||| 1.x y ==此时222212123,2,x x y y +=+= (2)当直线l 的斜率存在时,设直线l 的方程为,y kx m =+由题意知m 0≠,将其代入22132x y +=,得222(23)63(2)0k x kmx m +++-=,其中22223612(23)(2)0,k m k m ∆=-+->即2232k m +>…………(*)又212122263(2),,2323km m x x x x k k-+=-=++所以||PQ ==因为点O 到直线l 的距离为d = 所以1||2OPQ S PQ d ∆=⋅==又OPQ S ∆=整理得22322,k m +=且符合(*)式,此时222221212122263(2)()2()23,2323km m x x x x x x k k-+=+-=--⨯=++ 222222121212222(3)(3)4() 2.333y y x x x x +=-+-=-+=综上所述,222212123;2,x x y y +=+=结论成立.(II )解法一:(1)当直线l 的斜率不存在时,由(I )知11|||||2||2,OM x PQ y ====因此||||22OM PQ ⋅== (2)当直线l 的斜率存在时,由(I )知123,22x x km+= 22212122222212122222222222222332(),2222916211||()()(3),2244224(32)2(21)1||(1)2(2),(23)y y x x k k m k m m m m mx x y y k m OM m m m m k m m PQ k k m m ++-+1=+=-+==++-=+=+==-+-+=+==++所以2222111||||(3)2(2)2OM PQ m m ⋅=⨯-⨯⨯+2222211(3)(2)113225().24m mm m =-+-++≤= 所以5||||2OM PQ ⋅≤,当且仅当221132,m m m-=+=即. 综合(1)(2)得|OM|·|PQ|的最大值为5.2解法二:因为222222121221214||||()()()()OM PQ x x y y x x y y +=++++-+-222212122[()()]10.x x y y =+++=所以224||||102|||| 5.25OM PQ OM PQ +⋅≤==即5||||,2OM PQ⋅≤当且仅当2||||OM PQ == |OM|·|PQ|的最大值为5.2点评:处理直线与圆锥曲线的位置关系时,待定直线方程需要考虑斜率不存在这种情况,需分类讨论.【方法技巧】分类讨论是一种重要的数学思想,也是一种重要的解题策略,它可以将整体化为局部,将复杂问题化为单一问题,以便于“各个击破”.但由于分类讨论一般过程较为冗长,叙述较为烦琐,且极易在完备上造成失误,因此它并非一定是解决问题的上策或良策,我们提倡在熟悉和掌握分类思想的同时,要注意克服思维定势,处理好“分”与“合”,“局部”与“整体”之间的辨证统一关系,充分挖掘求解问题中潜在的特殊性与简单性,尽可能地简化或避免分类讨论.简化分类讨论的常用策略通常有:消去参数、整体换元、反客为主、补集分析、整体变形、借助图解.【专题训练】一、填空题1. 不等式(a -2)x 2+2(a -2)x -4< 0对于x ∈R 恒成立,那么a 的取值范围是____________.(-2,2]2. 在△ABC 中,已知A =30°,a =8,b =83,则S △ABC =__________.323或16 33. 设一双曲线的两条渐近线方程为2x -y =0,2x +y =0,则双曲线的离心率是________.5或524. 正三棱柱的侧面展开图是边长分别为6和4的矩形,则它的体积为____________.43或8335. 设常数a >0,椭圆x 2-a 2+a 2y 2=0的长轴长是短轴长的2倍,则a =________.12或26. 已知等比数列{a n }的前n 项和为S n ,若a 3=32,S 3=92,则a 1的值为__________.32或67. 若函数y =mx 2+x +5在[-2,+∞)上是增函数,则m 的取值范围是__________.⎣⎡⎦⎤0,14 8. 若函数f (x )=a |x -b |+2在[0,+∞)上为增函数,则实数a 、b 的取值范围为__________.a >0且b ≤0 9. 设圆锥曲线C 的两个焦点分别为F 1,F 2.若曲线Γ上存在点P 满足|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线C 的离心率等于________.由题意可设:|PF 1|=4m ,|F 1F 2|=3m ,|PF 2|=2m ,当圆锥曲线是椭圆时,长轴长为2a =|PF 1|+|PF 2|=4m +2m =6m ,焦距为2c =|F 1F 2|=3m , 所以离心率e =c a =2c 2a =3m 6m =12;当圆锥曲线是双曲线时,实轴长为2a =|PF 1|-|PF 2|=4m -2m =2m ,焦距为2c =|F 1F 2|=3m ,所以离心率e =c a =2c 2a =3m 2m =32.10. 函数f (x )=x 2+ax +3-a ,对于任意的x ∈[-2,2]总有f (x )≥0成立,则a 的取值范围是 .[解] 法一:设f (x )的最小值为g (a ),则只需要g (a )≥0.(1)当-a 2<-2,即a >4时,g (a )=f (-2)=7-3a ≥0,得a ≤73,又a >4,故不存在;(2)当-a 2∈[-2,2],即-4≤a ≤4时,g (a )=f ⎝⎛⎭⎫-a 2=3-a -a 24≥0,得-6≤a ≤2,又-4≤a ≤4,故-4≤a ≤2;(3)当-a2>2,即a <-4,g (a )=f (2)=7+a ≥0,得a ≥-7,又a <-4,故-7≤a <-4. 综上所述a 的取值范围为[-7,2].法二:原题可等价转化为x 2+3≥(1-x )a 对于任意的x ∈[-2,2]恒成立. (1)若1-x =0即x =1时,显然成立,此时a ∈R .(2)若1-x >0即-2≤x <1,不等式a ≤x 2+31-x 恒成立,设g (x )=x 2+31-x ,利用求导的方法得到g (x )min =2,得到a ≤2,(3)若1-x <0即1<x ≤2,不等式a ≥x 2+31-x 恒成立,设g (x )=x 2+31-x ,利用求导的方法得到g (x )max =-7,得到a ≥-7.综上所述a 的取值范围为[-7,2]. 二、解答题11. 已知函数f (x )=x 2+2ax +1(a ∈R ),f ′(x )是f (x )的导函数.(1)若x ∈[-2,-1],不等式f (x )≤f ′(x )恒成立,求a 的取值范围;(2)解关于x 的方程f (x )=|f ′(x )|;(3)设函数g (x )=⎩⎪⎨⎪⎧f ′(x ),f (x )≥f ′(x )f (x ),f (x )<f ′(x ),求g (x )在x ∈[2,4]时的最小值.解:(1)因为f (x )≤f ′(x ),所以x 2-2x +1≤2a (1-x ).又因为-2≤x ≤-1,所以a ≥x 2-2x +12(1-x )在x ∈[-2,-1]时恒成立.因为x 2-2x +12(1-x )=1-x 2≤32,所以a ≥32.(2)因为f (x )=|f ′(x )|,所以x 2+2ax +1=2|x +a |,所以(x +a )2-2|x +a |+1-a 2=0, 则|x +a |=1+a 或|x +a |=1-a .①当a <-1时,|x +a |=1-a ,所以x =-1或x =1-2a ; ②当-1≤a ≤1时,|x +a |=1-a 或|x +a |=1+a , 所以x =±1或x =1-2a 或x =-(1+2a );③当a >1时,|x +a |=1+a ,所以x =1或x =-(1+2a ).(3)因为f (x )-f ′(x )=(x -1)[x -(1-2a )],g (x )=⎩⎪⎨⎪⎧f ′(x ),f (x )≥f ′(x ),f (x ),f (x )<f ′(x ).①若a ≥-12,则x ∈[2,4]时,f (x )≥f ′(x ),所以g (x )=f ′(x )=2x +2a .从而g (x )的最小值为g (2)=2a +4;②若a <-32,则x ∈[2,4]时,f (x )<f ′(x ),所以g (x )=f (x )=x 2+2ax +1,当-2≤a <-32时,g (x )的最小值为g (2)=4a +5;当-4<a <-2时,g (x )的最小值为g (-a )=1-a 2; 当a ≤-4时,g (x )的最小值为g (4)=8a +17.③若-32≤a <-12,则x ∈[2,4]时,g (x )=⎩⎪⎨⎪⎧x 2+2ax +1,x ∈[2,1-2a ),2x +2a ,x ∈[1-2a ,4],当x ∈[2,1-2a )时,g (x )最小值为g (2)=4a +5; 当x ∈[1-2a,4]时,g (x )最小值为g (1-2a )=2-2a .因为-32≤a <-12,(4a +5)-(2-2a )=6a +3<0,所以g (x )最小值为4a +5.综上所述,[g (x )]min=⎩⎪⎨⎪⎧8a +17,a ≤-4,1-a 2,-4<a <-2,4a +5,-2≤a <-12,2a +4,a ≥-12.12. 已知函数f (x )=2a sin 2x -2 3a sin x cos x +a +b (a ≠0)的定义域是⎣⎡⎦⎤0,π2,值域是[-5,1],求常数a ,b 的值.解 f (x )=2a ·12(1-cos 2x )- 3a sin 2x +a +b=-2a ⎝⎛⎭⎫12cos 2x +32sin 2x +2a +b =-2a sin ⎝⎛⎫2x +π6+2a +b , 又∵0≤x ≤π2,∴π6≤2x +π6≤76π,∴-12≤sin ⎝⎛⎭⎫2x +π6≤1. 因此,由f (x )的值域为[-5,1]可得⎩⎪⎨⎪⎧a >0,-2a ×(-12)+2a +b =1,-2a ×1+2a +b =-5,或⎩⎪⎨⎪⎧a <0,-2a ×1+2a +b =1,-2a ×(-12)+2a +b =-5,解得⎩⎪⎨⎪⎧ a =2b =-5或⎩⎪⎨⎪⎧a =-2b =1.13. 已知椭圆C 的离心率e =22,一条准线方程为x =4,P 为准线上一动点,直线PF 1、PF 2分别与以原点为圆心、椭圆的焦距F 1F 2为直径的圆O 交于点M 、N . (1)求椭圆的标准方程;(2)探究是否存在一定点恒在直线MN 上?若存在,求出该点坐标;若不存在,请说明理由. 解:(1)由题意得c a =22,a 2c =4,解得c =2,a =22,则b 2=a 2-c 2=4,所以椭圆的标准方程为x 28+y 24=1.(2)由(1)易知F 1F 2=4,所以圆O 的方程为x 2+y 2=4.设P (4,t ),则直线PF 1方程为y =t6(x +2),由⎩⎪⎨⎪⎧x 2+y 2=4,y =t 6(x +2),得(t 2+36)x 2+4t 2x +4(t 2-36)=0, 解得x 1=-2,x 2=-2(t 2-36)t 2+36,所以M ⎝ ⎛⎭⎪⎫-2(t 2-36)t 2+36,24t t 2+36,同理可得N ⎝ ⎛⎭⎪⎫2(t 2-4)t 2+4,-8t t 2+4.①若MN ⊥x 轴,则-2(t 2-36)t 2+36=2(t 2-4)t 2+4,解得t 2=12,此时点M ,N 的横坐标都为1,故直线MN 过定点(1,0);②若MN 与x 轴不垂直,即t 2≠12,此时k MN =-8t t 2+4-24tt 2+362(t 2-4)t 2+4+2(t 2-36)t 2+36=-8tt 2-12, 所以直线MN 的方程为y --8t t 2+4=-8t t 2-12⎝ ⎛⎭⎪⎫x -2(t 2-4)t 2+4,即y =-8tt 2-12(x -1),所以直线MN 过定点(1,0).综上,直线MN 过定点(1,0).14. 已知函数f (x )=|ax 2-2x +1|,0≤x ≤4.(1)a <0时,求f (x )≥12的解集;(2)求f (x )的最大值.解:(1)a <0时,f (x )草图如下,由f (0)=1,f (4)=7-16a >1, 可令⎩⎪⎨⎪⎧ax 2-2x +1=12,x >0,解得x 1=2-4-2a2a.又令⎩⎪⎨⎪⎧ax 2-2x +1=-12,x >0,解得x 2=2-4-6a2a,由图可知f (x )≥12的解集为⎣⎢⎡⎦⎥⎤0,2-4-2a 2a ∪⎣⎢⎡⎦⎥⎤2-4-6a 2a ,4. (2)a <0时,f (x )=|ax 2-2x +1|,记g (x )=ax 2-2x +1,0≤x ≤4, g (x )图象对称轴x =1a ,1a <0,∴g (x )在[0,4]上单调递减.∴f (x )max =max{f (0),f (4)}=max{1,|16a -7|}=7-16a ; a =0时,f (x )=|-2x +1|,f (x )max =7; a >0时,如果0<1a ≤4,即a ≥14时,f (x )max =max ⎩⎨⎧⎭⎬⎫f (0),f ⎝⎛⎭⎫1a ,f (4)=max ⎩⎨⎧⎭⎬⎫1,⎪⎪⎪⎪1a -1,|16a -7|, ①14≤a ≤716,即167≤1a≤4时, f (x )max =max ⎩⎨⎧⎭⎬⎫1,1a -1,7-16a =max ⎩⎨⎧⎭⎬⎫1a -1,7-16a ,由于⎝⎛⎭⎫1a -1-(7-16a )=1a +16a -8≥0, ∴f (x )max =1a -1.②716<a ≤1时,f (x )max =max ⎩⎨⎧⎭⎬⎫1,1a -1,16a -7, 12<a ≤1时,⎝⎛⎭⎫1a -1-1=1a -2=1-2a a<0, (16a -7)-1=16a -8=8(2a -1)>0,∴f (x )max =16a -7. 716<a ≤12时,⎝⎛⎭⎫1a -1-1=1a -2=1-2a a ≥0, (16a -7)-1=16a -8=8(2a -1)≤0,∴f (x )max =1a -1.③a >1时,f (x )max =max ⎩⎨⎧⎭⎬⎫1,1-1a ,16a -7=16a -7,又0<a <14时,1a>4,f (x )max ={f (0),f (4)}={1,|16a -7|}=7-16a .综上所述f (x )max=⎩⎪⎨⎪⎧7-16a ,a ≤14,1a -1,14<a ≤12,16a -7,a >12.。
【原创】《分类与整合思想》教学设计
【原创】《分类与整合思想》教学设计【思想介绍】在解题时,我们常常遇到这样一种情况:解到某一步之后,不能再继续统一研究。
因为这时被研究的问题包含了多种情况。
这时我们可以将所研究的对象按照一定的标准,分为几类分别研究,再把每一类的结果综合起来,得到整个问题的解答。
这种解决问题的方法就是分类与整合的思想方法.实质上,分类与整合是“化整为零,各个击破,再积零为整”的数学解题策略。
在求解一些头绪繁多的问题时有独特的功效。
应用分类讨论的思想对问题求解,首先要明确讨论对象,确定对象的全体;其次是确定分类标准,分层次,不重复,不遗漏;最后还要反思其过程,从中发现“分”与“合”,“局部”与“整体”之间的辨证统一关系,充分挖掘求解问题中潜在的特殊性与简单性,尽可能地简化或避免分类讨论;使解题思想得到进一步升华,使解题的途径更加合理简捷。
一.学习目标1. 通过本堂课的学习,学生能体会分类与整合的思想的意义;2. 通过本堂课的学习,学生能理解分类讨论的步骤以及分类讨论法解题必须遵循的原则;3. 通过本堂课的学习,学生能学会灵活运用分类与整合的思想解决一些问题.二.学情分析高三学生经过第一轮的复习,完成了对各章节的初步梳理和整合,对分类与整合思想方法也有一定的认识和理解,但是仍然不够深刻全面的理解和灵活的应用。
学生不能很好地理解:什么问题需要分类讨论、为什么要分类、怎样分类、每一类怎样研究、最后怎样整合答案。
所以在第二轮复习中我们系统的介绍分类与整合的思想方法,从两个较基础的题目入手,让学生感知分类与整合思想,再利用常见的但较难的导数题让学生发现分类与整合思想方法的优点。
最后通过练习,力求使学生加强对分类与整合思想的理解和运用。
三.重、难点重点:进行分类讨论时要遵循的原则和解答分类讨论问题的基本步骤;难点:分类讨论的标准要求统一、不重不漏.四.主干知识1. 引起分类讨论的主要原因有哪些?(1)由数学概念引起的分类讨论;(2)由数学运算引起的分类讨论;(3)由性质、定理、公式的限制引起的分类讨论;(4)由图形的不确定性引起的分类讨论;(5)由参数的变化引起的分类讨论;(6)由实际意义引起的分类讨论.2. 用分类与整合思想解决基本步骤是什么?确定讨论的对象及范围探寻分类的标准逐类分级讨论归纳整合得出结论五.典例剖析例1.已知集合A={x| |x|<4,x R},B={x| |x-3|<t,t R },求t的取值范围.学生1解答:师生互动:组织学生讨论以上学生1这样解答,对不对?有没有缺漏?学生2:不对,因为当B为空集时,也满足题意,应分B空和B 不空两种情况学生2解答:点评:本题讨论的关键就是由“空集”的概念引发的.空集是一种特殊的集合,研究集合之间的包含关系时,应考虑子集以及的情况.应重视空集在集合关系与集合运算问题中的作用。
分类与整合思想例析
分类与整合思想例析1.分类与整合的思想的含义分类与整合的思想,就是当问题所给的对象因一些不确定的因素而不能进行统一研究时 (如不能用同一种标准,或同一种运算,或同一个类型,或同一个定理,或同一种方法去解决等),就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答.实质上,分类讨论是“化整为零,各个击破,再积零为整”的解题策略. 分类讨论既是一种重要的数学方法,也是一种重要的数学思想.由于有关分类讨论的数学问题具有明显的逻辑性、综合性、探索性,并能训练人的思维的条理性与概括性,因而在高考试题中往往占有较大的比重对问题实行分类与整合,确定分类标准后等于增加了一个已知条件,实现了有效增设,将大问题(或综合性问题)分解为小问题(或基础性问题),优化解题思路,降低问题难度.2.运用分类与整合思想解题的基本步骤:确定标准→合理分类→逐类讨论→归纳总结。
(1)明确讨论的对象:即对哪个参数进行讨论;(2)对所讨论的对象进行合理分类(分类时要做到不重复、不遗漏、标准要统一、分层不越级);(3)逐类讨论:即对各类问题详细讨论,逐步解决;(4)归纳总结:将各类情况总结归纳3.明确引起分类讨论的原因,有利于掌握分类整合的思想方法解决问题.分类讨论的主要原因有:(1)由数学概念引起的分类讨论:有些数学概念本身就是以分类形式定义的,如直线与平面所成的角、三角函数值所在象限的符号、绝对值等.有些数学概念本身也有一定的限制,如直线的斜率 ,二次曲线中又包括椭圆、双曲线及抛物线,如绝对值的定义、不等式的定义、二次函数的定义、直线与平面所成的角、直线的斜率与倾斜角、两条直线所成的角,指数函数,对数函数,空集,直线的截距式等.(2)由数学运算要求引起的分类讨论:如除法运算中除数不为零、偶次方根为非负、对数中真数与底数的要求、不等式中两边同乘以一个正数、负数对不等号方向的影响,三角函数的定义域,一元二次方程解的情况是按“∆”的正负给出的等;(3)由函数的性质、定理、公式的限制引起的分类讨论:有的数学性质、定理、公式是分类给出的,在不同的条件下有不同的结论,或者在一定的条件下才成立,这时要小心,应根据题目条件确定是否分类讨论。
1.3 分类与整合的思想
1.3 分类与整合的思想在解题时,我们常常遇到这样一种情况,解到某一步之后,不能再以统一的方法,统一的式子继续进行了,因为这时被研究的问题包含了多种情况,这就必须在条件所给出的总区域内,正确划分若干个子区域,然后分别在多个子区域内进行解题,这里集中体现的是由大化小,由整体化为部分,由一般化为特殊的解决问题的方法,其研究方向基本是“分”,但分类解决问题问题之后,还必须把它们总合在一起,这种“合-分-合”的解决问题的过程,就是分类与整合的思想方法.分类与整合的思想是以概念的划分,集合的分类为基础的思想方法,对分类与整合的思想的考查,有以下几个方面。
一是考查有没有分类意识,遇到应该分类的情况,是否想到要分类,什么样的问题需要分类?例如(1)有些概念就是分类定义的,如绝对值的概念,又如整数分为奇数、偶数,把三角形分为锐角三角形,直角三角形,钝角三角形等等;(2)有的运算法则和定理,公式是分类给出的,例如等比数列的求和公式就分为1=q 和1≠q 两种情况;对数函数的单调性就分为a >1,a <1两种情况;求一元二次不等式的解又分为0,0<>a a 及00,0<∆=∆>∆,共六种情况;直线方程分为斜率存在与不存在等等;(3)图形位置的相对变化也会引起分类,例如两点在同一平面的同侧,异侧,二次函数图像的对称轴相对于定义域的不同位置等;(4)对于一些题目如排列组合的计数问题,概率问题又要按题目的特殊要求,分成若干情况研究;(5)整数的同余类,如把整数分成奇数和偶数等。
二是如何分类,即要会科学地分类,分类要标准统一,不重不漏;三是分类之后如何研究;四是如何整合.【分析及解】 本题的关键问题是甲、乙两人不去巴黎游览这一要求,因此,就要针对甲,乙是否被挑选上,甲,乙去何处游览进行研究. 对甲,乙是否被挑选上可分为4类.(1) 有甲有乙:这时有72222324=A A C 种;(2) 有甲无乙:这时有72331334=A A C 种;(3) 无甲有乙:这时有72331334=A A C 种;(4) 无甲无乙:这时有2444=A 种由以上,不同的选择方案共有24024723=+⨯种,因此选(B ).【分析及解】(Ⅰ)将31=x ,42=x 代入方程()012=+-x x f 得⎪⎩⎪⎨⎧-=+-=+.8416,939ba b a 解得⎩⎨⎧=-=.2,1b a ()()222≠-=∴x x x x f (Ⅱ)不等式可化为<-xx 22()x k x k --+21, 进而有()0212<-++-x k x k x . 这等价于()()(),012>---k x x x解到这里就要针对k 与2,1的大小关系进行分类:(1) 当21<<k 时,解集为()()1,2,x k ∈+∞;(2) 当2=k 时, 解集为()()1,22,;x ∈+∞(3) 当2>k 时, 解集为()()1,2,x k ∈+∞.【分析及解】本题是浙江文科卷的压轴题,主要考查函数图象的对称,二次函数的基本性质与不等式的应用等基础知识,分类讨论的数学思想以及综合运用所学知识分析和解决问题的能力。
分类与整合的思想——数学思想方法系列讲座(4)
,
顺应核心 素养发展
从文 化基础
,
、
自
主 发 展 、 社 会 参 与 三 方 面 造 就 全 “ 面 发 展 的
人” 。
二 是采 取鼓 励 、 表 扬 和 赞美 为 主 的 交 互
方 式 努 力 培 养 人 的 积 极 心 态 、 进 取精 神 以 及 ,
博雅 情怀 。 三 是 发挥 教 师的 榜样 力 量 , 增 强 教
其 次 “ 颂歌教 学 法 ” 在实 践上 具有 突 出 的 ,
操作 性 特征 。 它 迎 合 当 下 人才 培 养 ห้องสมุดไป่ตู้ 价值 追
求 , 遵 循有 效 实施 的 基本 原 则 , 同 时 也 需要 处 理好教育 过 程 中 的几 对 关 系 。
明
确
三点价值追求
:
是 一
立
足学生
的
独 立
担当 能力
时 眼 中 只 有 个 体 , 而 无全 牛 ( 目 无 全牛 ) 。 这 个 故 事 告
诉我 们 :
当我们掌握事物
的规 律后
,
办起事 来就 会得心
应 手 , 运 用 自 如 。 “ 目 无 全牛 ” 对 数 学 学 习 的 启 示 是 当 我 们 对 一 个
,
问 题 的 整 体无法 下 手 时 , 可 以 通 过 研究 问 题 的组 成结
师 的 教学 能 力 真 正 实现高 品 质 的 公 民教 育 。 ,
坚 持 四 个 基 本 原 则 : 一 是 专 注 性 , 即 要 求
主体 对课堂 的热 情 参 与 和 高 度专 注 , 让教师 和
学生 沉浸其中 。
二 是 诱导 性 即 要 求 发 挥教 师 ,
分类与整合的思想
分类与整合的思想作者:来源:《湖北教育·教育教学》2019年第05期先说说庖丁解牛的故事。
有一个名叫庖丁的厨师替梁惠王宰牛,手所接触的地方,肩所靠着的地方,脚所踩着的地方,膝所顶着的地方,都发出皮骨相离声,刀子刺进去时响声更大,这些声音竟然同《桑林》《经首》两首乐曲伴奏的舞蹈节奏合拍。
为什么会这样呢?因为庖丁对牛的肌理结构掌握得十分准确,解剖时眼中只有个体,而无全牛(目无全牛)。
这个故事告诉我们:当我们掌握事物的规律后,办起事来就会得心应手,运用自如。
“目无全牛”对数学学习的启示是,当我们对一个问题的整体无法下手时,可以通过研究问题的组成结构,化整为零,逐个突破。
它体现了一种重要的数学思想方法:分类与整合的思想。
从数学的角度讲,什么是分类与整合的思想?在解题时,我们常常遇到这样一种情况,解到某一步之后,就不能再以统一的方法、统一的公式继续进行了,因为这时被研究的问题包含了多种情况,必须在条件所给出的总区域内,正确划分若干个子区域,然后分别在多个子区域内进行解题。
这其中体现的是由大化小、由整体化部分、由一般化特殊的解决问题的方法。
其研究方向基本是“分”,但分类解决问题之后,还必须把它们总合在一起,这种“合—分—合”的解决问题的过程,就是分类与整合的思想方法。
分类是自然科学乃至社会科学研究的基本逻辑方法,是研究数学问题时经常使用的思想方法。
要正确地对事物进行分类,通常应从所研究的具体问题出发,选取恰当的分类标准,然后根据对象的属性,把它们划分为若干个类别。
要科学的分类,要标准统一,二要是不重不漏。
划分只是手段,分类研究才是目的。
因此,还需要在分好的类别下对分事物进行研究。
研究的基本方向是“分”,但“分”与“合”既是矛盾的对立面,又是矛盾的统一体,有“分”必然有“合”,当分类解决完这个问题之后,还必须把它们综合到一起,因为我们研究的毕竟是这个问题的全体。
有“分”有“合”,先“分”后“合”,不仅是分类与整合思想解决数学问题的主要过程,也是分类与整合思想的本质属性。
高考数学二轮复习 攻略二 分类与整合思想、化归与转化思想
【高考解码】(新课标)2015届高考数学二轮复习 攻略二 分类与整合思想、化归与转化思想一、分类与整合思想分类与整合思想又叫分类讨论思想.分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论思想覆盖面广,利于考查学生的逻辑思维能力,同时方式多样,具有较高的逻辑性及很强的综合性,应用分类讨论思想,应注重理解和掌握分类的原则、方法与技巧,做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏地分析讨论”.在高考中必定考查分类讨论,特别是这几年的压轴题.预测在2015年的高考题中:继续与函数综合考查,结合函数与方程思想以及等价转化思想,考查学生分析问题、解决问题的能力.分类讨论思想解题的步骤为:(1)确定分类讨论的对象:即对哪个参数进行讨论;(2)对所讨论的对象进行合理的分类(分类时要做到不重复、不遗漏、标准要统一、分层不越级);(3)逐类讨论:即对各类问题详细讨论,逐步解决:(4)归纳总结:将各类情况归纳与总结.1.由概念、法则、公式引起的分类讨论(1)由数学概念而引起的分类讨论:如绝对值的定义、不等式的定义、二次函数的定义、直线与平面所成的角、直线的倾斜角、两条异面直线所成的角等.(2)由数学运算要求而引起的分类讨论:如除法运算中除数不为零,偶次方根为非负数,对数运算中真数与底数的要求,指数运算中底数的要求,不等式中两边同乘以一个正数、负数,三角函数的定义域,等比数列{a n }的前n 项和S n 公式等.(3)由函数的性质,定理,公式的限制而引起的分类讨论:如函数的单调性,基本不等式等.【例1】 (1)已知圆x 2+y 2=4,则经过点P (2,4),且与圆相切的直线方程为________.(2)若log a 23<1,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,23B.⎝ ⎛⎭⎪⎫23,1 C.⎝ ⎛⎭⎪⎫0,23∪(1,+∞) D.⎝ ⎛⎭⎪⎫23,+∞ (3)等比数列{a n }中,a 3=7,前3项之和S 3=21,则公比q 的值是( )A .1B .-12C .1或-12D .-1或12【解析】 (1)当直线的斜率不存在时,x =2与圆相切,合题意.当直线的斜率存在时,设直线方程为y -4=k (x -2),即kx -y -2k +4=0.由题意得|-2k +4|k 2+1=2.即k =34,所以直线方程为x =2或3x -4y +10=0. (2)由log a 23<1得log a 23<log a a .当a >1时,a >23,所以a >1;当0<a <1时,a <23,所以0<a <23.所以a 的取值范围是(0,23)∪(1,+∞).故选C. (3)当q =1时,S 3=3a 3=21,∴合题意.当q ≠1时,S 3=a 1-a 3q 1-q =21,且a 3=7,∴q =-12,故选C. 【答案】 (1)x =2或3x -4y +10=0 (2)C (3)C2.由变量或参数引起的分类讨论由参数的变化而引起的分类讨论:如某些含有参数的问题,由于参数的取值不同会导致所得的结果不同,或者由于对不同的参数值要运用不同的求解或证明方法等.所以对分类复杂的参数讨论题,必须科学的选定分类标准,使分类有条不紊,解答自然流畅. 【例2】 已知a ∈R ,求函数f (x )=x 2|x -a |在区间[1,2]上的最小值.【解】 设函数f (x )=x 2|x -a |在区间[1,2]上的最小值为m .①当a ≤1时,在区间[1,2]上,f (x )=x 3-ax 2,因为f ′(x )=3x 2-2ax =3x ⎝ ⎛⎭⎪⎫x -23x >0,x ∈(1,2), 则f (x )是区间[1,2]上的增函数,所以m =f (1)=1-a .②当1<a ≤2时,在区间[1,2]上,f (x )=x 2|x -a |≥0,由f (a )=0,知m =f (a )=0.③当a >2时,在区间[1,2]上,f (x )=ax 2-x 3,f ′(x )=2ax -3x 2=3x ⎝ ⎛⎭⎪⎫23a -x . 若a ≤3,在区间(1,2)上,f ′(x )>0,则f (x )是区间[1,2]上的增函数,所以m =f (1)=a -1;若2<a <3,则1<23a <2, 当1<x <23a 时,f ′(x )>0,则f (x )是区间⎣⎢⎡⎦⎥⎤1,23a 上的增函数, 当23a <x <2时,f ′(x )<0,则f (x )是区间⎣⎢⎡⎦⎥⎤23a ,2上的减函数, 因此当2<a <3时,m =f (1)=a -1或m =f (2)=4(a -2).当2<a ≤73时,4(a -2)≤a -1,故m =f (2)=4(a -2), 当72<a <3时,4(a -2)>a -1,故m =f (1)=a -1. 综上所述,函数的最小值m =⎩⎪⎨⎪⎧ 1-a ,a ≤1,0,1<a ≤2,4a -2,2<a ≤73,a -1,a >73.3.由图形位置或形状引起的分类讨论几类常见的由图形的位置或形状变化引起的分类讨论(1)二次函数对称轴的变化;(2)函数问题中区间的变化;(3)函数图象形状的变化;(4)直线由斜率引起的位置变化;(5)圆锥曲线由焦点引起的位置变化或由离心率引起的形状变化;(6)立体几何中点、线、面的位置变化等.【例3】 (1)(2014·河南三市联考)若椭圆x 2m +y 28=1的焦距为2,则m 的值为( ) A .9 B .9或16 C .7 D .9或7(2)已知k ∈Z ,AB →=(k,1),AC →=(2,4),若|AB →|≤4,则△ABC 是直角三角形的概率为( )A.17B.27C.37D.47【解析】 (1)当焦点在x 轴上时,2m -8=2,∴m =9.当焦点在y 轴上时,28-m =2,∴m =7.故选D.(2)由AB →=(k,1),且|AB →|≤4得k 2+1≤4,∴k 2≤15,∴k =-3,-2,-1,0,1,2,3.当∠A 是直角时,AB →·AC →=0,∴2k +4=0,∴k =-2,合题意.当∠B 是直角时,BA →=(-k ,-1),BC →=BA →+AC →=(-k +2,3),由BA →·BC →=0得(-k )(-k +2)+(-1)×3=0,∴k 2-2k -3=0,∴k =3或k =-1,合题意.当∠C 是直角时,CA →=(-2,-4),CB →=CA →+AB →=(k-2,-3),由CA →·CB →=0得(-2)(k -2)+(-4)(-3)=0,∴k =8,不合题意.故△ABC 是直角三角形的概率为37. 【答案】 (1)D (2)C二、化归与转化思想高中阶段,几乎每一个题目都要用到这一思想方法,而重视对化归与转化思想的考查,已是高考数学命题多年来所坚持的方向,并以各种不同的层次融入试题中,通过对转化与化归思想方法的运用,对考生的数学能力进行区分.转化与化归思想方法用在研究、解决数学问题时思维受阻或寻求简单方法,从一种状况转化为另一种情形,也就是转化到另一种情境,使问题得到解决,这种转化是解决问题的有效策略.同时也是成功的思维方式.1.由等与不等引起的化归与转化函数、方程与不等式就像“一胞三兄弟”,解决方程、不等式的问题需要函数帮助,解决函数的问题需要方程、不等式的帮助,因此借助于函数、方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等式关系转化为最值(值域)问题,从而求出参变量的范围.【例4】 (1)设x ,y 为正实数,若4x 2+y 2+xy =1,则2x +y 的最大值是________.(2)若关于x 的方程9x +(4+a )·3x +4=0有解,则实数a 的取值范围是________.【解析】 (1)∵4x 2+y 2+xy =1,∴(2x +y )2=3xy +1=32×2xy +1≤32×(2x +y 2)2+1, ∴(2x +y )2≤85, ∴2x +y 的最大值为2105. (2)设t =3x ,则原命题等价于关于t 的方程t 2+(4+a )t +4=0有正解.分离变量a ,得a +4=-(t +4t), ∵t >0,∴-(t +4t)≤-4, ∴a ≤-8,即实数a 的取值范围是(-∞,-8].【答案】 (1)2105(2)(-∞,-8] 2.由特殊与一般引起的化归与转化特殊与一般转化法是在解决问题过程中将某些一般问题进行特殊化处理或将某些特殊问题进行一般化处理的方法.这类转化法一般的解题步骤是:第一步:确立需转化的目标问题:一般将要解决的问题作为转化目标.第二步:寻找“特殊元素”与“一般元素”:把一般问题转化为特殊问题时,寻找“特殊元素”把特殊问题转化为一般问题时,寻找“一般元素”.第三步:确立新目标问题:根据新确立的“特殊元素”或者“一般元素”明确其与需要解决问题的关系,确立新的需要解决的问题.第四步:解决新目标问题:在新的板块知识背景下用特定的知识解决新目标问题. 第五步:回归目标问题.第六步:回顾反思:常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.对于选择题,当题设在普通条件下都成立时,用特殊值进行探求,可快捷地得到答案;对于填空题,当填空题的结论唯一或题设条件提供的信息暗示答案是一个定值时,可以把题中变化的量用特殊值代替,即可得到答案.【例5】 若椭圆C 的方程为x 25+y 2m=1,焦点在x 轴上,与直线y =kx +1总有公共点,那么m 的取值范围为________.【解析】 x 25+y 2m=1的焦点在x 轴上,∴0<m <5. 又直线与椭圆总有公共点,直线恒过点(0,1),则定点(0,1)必在椭圆内部或边界上.则025+12m≤1,即m ≥1. 故m 的取值范围为[1,5).【答案】 [1,5)3.由正与反引起的化归与转化正难则反,利用补集求得其解,这就是补集思想,一种充分体现对立统一、相互转化的思想方法.一般地,题目若出现多种成立的情形,则不成立的情形相对很少,从反面考虑较简单,因此,间接法多用于含有“至多”“至少”情形的问题中.【例6】 若对于任意t ∈[1,2],函数g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是________.【解析】 g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t,3)上总为单调函数,则①g ′(x )≥0在(t,3)上恒成立,或②g ′(x )≤0在(t,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x ,当x ∈(t,3)时恒成立,∴m +4≥2x-3x 恒成立,∴m +4≥-1,∴m ≥-5.由②得3x 2+(m +4)x -2≤0,即m +4≤2x-3x ,当x ∈(t,3)时恒成立,∴m +4≤23-9,m ≤-373. ∴函数g (x )在区间(t,3)上总不为单调函数的m 的取值范围为-373<m <-5. 【答案】 ⎝ ⎛⎭⎪⎫-373,-5。
分类整合思想、划归与转化思想41页PPT
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
高中数学 分类与整合思想
第三讲 分类与整合思想知识整合一、分类与整合思想的含义分类与整合思想就是当问题所给的对象不能进行统一研究时,需要把研究对象按某个标准分类,然后对每一类分别研究得出结论,最后综合各类结果得到整个问题的解答.实质上,分类与整合是“化整为零,各个击破,再积零为整”的解题策略.二、分类与整合的常见类型有关分类与整合的数学问题需要运用分类与整合思想来解决,引起分类与整合的原因大致可归纳为如下几种:1.由数学概念引起的分类与整合:有的概念本身是分类的,如绝对值、直线斜率、指数函数、对数函数等.2.由性质、定理、公式的限制引起的分类与整合:有的数学定理、公式、性质是分类给出的,在不同的条件下结论不一致,如等比数列的前n 项和公式、函数的单调性等.3.由数学运算要求引起的分类与整合:如除法运算中除数不为零,偶次方根被开方数非负,对数真数与底数的要求,指数运算中底数的要求,不等式两边同乘以一个正数、负数,三角函数的定义域等.4.由图形的不确定性引起的分类与整合:有的图形类型、位置需要分类,如角的终边所在的象限,点、线、面的位置关系等.5.由参数的变化引起的分类与整合:某些含有参数的问题,如含参数的方程、不等式,由于参数的取值不同会导致所得结果不同,或对于不同的参数值要运用不同的求解或证明方法.6.由实际意义引起的讨论:此类问题常常出现在应用题中.1.由概念、法则、公式引起的分类与整合典题例析例1 (1)已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =-32.[解析] 当a >1时,函数f (x )=a x +b 在[-1,0]上为增函数,由题意得⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0,无解.当0<a <1时,函数f (x )=a x +b 在[-1,0]上为减函数,由题意得⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =12,b =-2,所以a +b =-32.(2)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3,若sin C +sin(B-A )=2sin2A ,则A = π2或π6.[解析] 在△ABC 中,由sin C +sin(B -A )=2sin2A 可得sin(A +B )+sin(B -A )=2sin2A ,即sin A cos B +cos A sin B +cos A sin B -sin A cos B =4sin A cos A ,∴cos A sin B =2sin A cos A ,即cos A (sin B -2sin A )=0,即cos A =0或sin B =2sin A , ①当cos A =0时,A =π2;②当sin B =2sin A 时,根据正弦定理得b =2a ,由余弦定理c 2=b 2+a 2-2ab cos C ,结合c =2,C =π3,得a 2+b 2-ab =4,∴a =233,b =433,∴b 2=a 2+c 2,∴B =π2,∴A =π6.综上可得,A =π2或π6.规律总结“四步”解决由概念、法则、公式引起的分类与整合问题第一步:确定分类对象:一般把需要用到概念、法则、公式解决问题的对象作为分类目标.第二步:确定分类标准:运用概念、法则、公式对分类对象进行区分. 第三步:分类解决“分目标”:对分类出来的“分目标”分别进行处理. 第四步:汇总“分目标”:将“分目标”问题进行汇总,并作进一步处理.1.(2019·广东联考)设函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x <0,-x 2,x ≥0,若f [f (a )]≤3,则实数a 的取值范围是( D )A .(-∞,-3]B .[-3,+∞)C .[-3,3]D .(-∞,3][解析] 令f (a )=t ,则f (t )≤3⇔⎩⎪⎨⎪⎧ t <0,t 2+2t ≤3或⎩⎪⎨⎪⎧t ≥0,-t 2≤3,解得t ≥-3,则f (a )≥-3⇔⎩⎪⎨⎪⎧ a <0,a 2+2a ≥-3或⎩⎪⎨⎪⎧a ≥0,-a 2≥-3,解得a <0或0≤a ≤3,则实数a 的取值范围是(-∞,3],故选D.2.已知锐角△ABC 的三个内角A ,B ,C 所对的边分别是a ,b ,c ,若b 是12,2的等比中项,c 是1,5的等差中项,则a 的取值范围是 (22,10) .[解析] 因为b 是12,2的等比中项,所以b =12×2=1; 因为c 是1,5的等差中项,所以c =1+52=3.因为△ABC 为锐角三角形,①当a 为最大边时,有⎩⎪⎨⎪⎧ 12+32-a 2>0,a ≥3,1+3>a ,解得3≤a <10;②当c 为最大边时,有⎩⎪⎨⎪⎧12+a 2-32>0,a +1>3,a ≤3,解得22<a ≤3.由①②得22<a <10,所以实数a 的取值范围是(22,10).2.由图形位置或形状引起的分类与整合 典题例析例2 (1)在约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,y +x ≤s ,y +2x ≤4下,当3≤s ≤5时,z =3x +2y 的最大值的变化范围是( D )A .[6,15]B .[7,15]C .[6,8]D .[7,8][解析] 由⎩⎪⎨⎪⎧x +y =s ,y +2x =4⇒⎩⎪⎨⎪⎧x =4-s ,y =2s -4,取点A (2,0),B (4-s,2s -4),C (0,s ),C ′(0,4).①当3≤s <4时,可行域是四边形OABC ,如图1所示,此时,7≤z <8.②当4≤s ≤5时,此时可行域是△OAC ′,如图2阴影部分所示,z max =8. 综上可知,z =3x +2y 最大值的变化范围是[7,8].(2)设圆锥曲线T 的两个焦点分别为F 1,F 2,若曲线T 上存在点P 满足|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线T 的离心率为 12或32.[解析] 不妨设|PF 1|=4t ,|F 1F 2|=3t ,|PF 2|=2t , 若该圆锥曲线为椭圆,则有|PF 1|+|PF 2|=6t =2a , |F 1F 2|=3t =2c ,e =c a =2c 2a =3t 6t =12;若该圆锥曲线是双曲线,则有|PF 1|-|PF 2|=2t =2a , |F 1F 2|=3t =2c ,e =c a =3t 2t =32,所以圆锥曲线T 的离心率为12或32.规律总结图形位置或形状的变化中常见的分类圆锥曲线形状不确定时,常按椭圆、双曲线来分类讨论,求圆锥曲线的方程时,常按焦点的位置不同来分类讨论;相关计算中,涉及图形问题时,也常按图形的位置不同、大小差异等来分类讨论.1.设F 1,F 2为椭圆x 29+y 24=1的两个焦点,P 为椭圆上一点.已知P ,F 1,F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,则|PF 1||PF 2|的值为 72或2 . [解析] 若∠PF 2F 1=90°,则|PF 1|2=|PF 2|2+|F 1F 2|2. 又因为|PF 1|+|PF 2|=6,|F 1F 2|=25, 解得|PF 1|=143,|PF 2|=43, 所以|PF 1||PF 2|=72.若∠F 1PF 2=90°,则|F 1F 2|2=|PF 1|2+|PF 2|2, 所以|PF 1|2+(6-|PF 1|)2=20,所以|PF 1|=4,|PF 2|=2,所以|PF 1||PF 2|=2.综上可知,|PF 1||PF 2|=72或2.2.如图,M ,N 是焦点为F 的抛物线y 2=4x 上的两个不同的点,且线段MN 的中点A 的横坐标为3,直线MN 与x 轴交于B 点,则点B 的横坐标的取值范围是( A )A .(-3,3]B .(-∞,3]C .(-6,-3)D .(-6,-3)∪(-3,3][解析] ①若直线MN 的斜率不存在,则点B 的坐标为(3,0).②若直线MN 的斜率存在,设A (3,t )(t ≠0),M (x 1,y 1),N (x 2,y 2),则由⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,得y 21-y 22=4(x 1-x 2),∴y 1-y 2x 1-x 2(y 1+y 2)=4,即k MN =2t ,∴直线MN 的方程为y -t =2t(x -3),∴点B 的横坐标x B =3-t 22,由⎩⎪⎨⎪⎧y -t =2t (x -3),y 2=4x ,消去x ,得y 2-2ty +2t 2-12=0,由Δ>0得t 2<12,又t ≠0,∴x B =3-t 22∈(-3,3).综上,点B 的横坐标的取值范围为(-3,3].3.由变量或参数引起的分类与整合 典题例析(文) 例3 设函数f (x )=x 3-ax -b ,x ∈R ,其中a ,b ∈R .求f (x )的单调区间. [思路探究] 看到求f (x )=x 3-ax -b 的单调区间,想到对参数a 进行分类整合,分为a ≤0和a >0两种情况.[解析] 由f (x )=x 3-ax -b ,可得f ′(x )=3x 2-a . 下面分两种情况讨论:①当a ≤0时,f ′(x )=3x 2-a ≥0恒成立, 所以f (x )的单调递增区间为(-∞,+∞).②当a>0时,令f′(x)=0,解得x=3a3或x=-3a3.当x变化时,f′(x),f(x)的变化如下表:所以f(x)的单调递减区间为(-3a3,3a3),单调递增区间为(-∞,-3a3),(3a3,+∞).规律总结几种常见的由参数变化引起的分类与整合(1)含有参数的不等式的求解.(2)含有参数的方程的求解.(3)对于解析式系数是参数的函数,求最值与单调性问题.(4)二元二次方程表示曲线类型的判定等.(5)直线与圆锥曲线位置关系的分类.典题例析(理) 例3已知函数g(x)=axx+1(a∈R),f(x)=ln(x+1)+g(x).(1)若函数g(x)过点(1,1),求函数f(x)的图象在x=0处的切线方程;(2)判断函数f(x)的单调性.[解析](1)因为函数g(x)过点(1,1),所以1=a1+1,解得a=2,所以f(x)=ln(x+1)+2xx+1.所以f′(x)=1x+1+2(x+1)2=x+3(x+1)2.所以f′(0)=3.所以所求的切线的斜率为3.又f(0)=0,所以切点为(0,0).故所求的切线方程为y=3x.(2)因为f(x)=ln(x+1)+axx+1(x>-1),所以f′(x)=1x+1+a(x+1)-ax(x+1)2=x+1+a(x+1)2.①当a≥0时,因为x>-1,所以f′(x)>0.②当a <0时,由⎩⎪⎨⎪⎧f ′(x )<0,x >-1,得-1<x <-1-a ;由⎩⎪⎨⎪⎧f ′(x )>0,x >-1,得x >-1-a . 综上可知,当a ≥0时,函数f (x )在(-1,+∞)内单调递增;当a <0时,函数f (x )在(-1,-1-a )内单调递减,在(-1-a ,+∞)内单调递增.规律总结1.几种常见的由参数变化引起的分类讨论 (1)含有参数的不等式的求解. (2)含有参数的方程的求解.(3)对于解析式系数是参数的函数,求最值与单调性问题. (4)二元一次方程表示曲线类型的判定等. 2.利用分类讨论思想的注意点(1)分类讨论要标准统一,层次分明,分类要做到“不重不漏”.(2)分类讨论时要根据题设条件确定讨论的级别,再确定每级讨论的对象与标准,每级讨论中所分类别应做到与前面所述不重不漏.(3)讨论结果归类合并,最后整合时要注意是取交集、并集,还是既不取交集也不取并集只是分条列出.当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,ax +y ≤4恒成立,则实数a 的取值范围是 (-∞,32] .[解析] 由约束条件作可行域如图中阴影部分,联立⎩⎪⎨⎪⎧x =1,x +2y -4=0,解得C (1,32).联立⎩⎪⎨⎪⎧x -y -1=0,x +2y -4=0,解得B (2,1).在x -y -1=0中取y =0,得A (1,0). 由ax +y ≤4得y ≤-ax +4, 要使ax +y ≤4恒成立,则平面区域在直线y =-ax +4的下方.若a =0,则不等式等价于y ≤4,此时满足条件;若-a >0,即a <0,平面区域满足条件;若-a <0,即a >0时,要使平面区域在直线y =-ax +4的下方,则只要B 在直线上或直线下方即可,即2a +1≤4,得0<a ≤32.综上可知a ≤32,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 求 q的取值范围;
3 2 设 bn an 2 an 1,记 bn 的前 n项和为 Tn, 2 试比较 S n 与 Tn的大小.
【 分 析 】 1 根 据 条 件 列 出 关 于 q 的 不 等 式 , 注 意 分 类 讨 论 . 2 能 否 判 断 b 为 特 殊 数 列 进 而 求 n 和 作 差 、 作 商 比 较 大 小 .
【点评】有关几何问题,由于几何元素的 形状、位置变化的不确定性,需要根据 图形的特征进行分类讨论,如按圆锥曲 线的类型进行分类讨论,按各类定义中 的角的范围进行讨论等.
二、由运算策略确定分类标准 例 2 1 若 x 0且 x 1 , 则 函 数 y lg x log x 10的 值 域 为( ) A.R C.( , 2] B.[2 , ) D.( , 2] [ 2 , )
专题八 专题一 数学思想与方法 函数与导数
第28讲 分类与整合思想
1. 分 类 与 整 合 的 思 想 分类是自然科学乃至社会科学研究中的基本逻 辑方法,是研究数学问题时经常使用的数学思 想方法.要正确的对事物进行分类,通常应从 所研究的具体问题出发,选取恰当的分类标准, 然后根据对象的属性,把它们不重不漏地划分 为若干个类别.科学的分类,一个是标准的统 一,一个是不重不漏.划分只是手段,分类研 究才是目的.因此分类与整合思想方法,在这 其中体现的是由大化小,由整体化部分,由一 般化特殊的解决问题的思想方法.
2 由 x
0 且 2 s in x x 2 . 1 2 s in x 2 2 s in x 2 或 1 x 2 x 2
0 2 s in x 1 故有 或 0 x 1 x [ 0 , ] [1, ]. 6 2
2.在解题过程中分类讨论的一般步骤是:
1明确讨论对象,确定对象的范围; 2 认清为什么要分类,确定分类标准,进行
合理分类,注意做到不重不漏;
3 逐类讨论,获得阶段性结果; 4 整合讨论.
一、由几何特征确定分类标准 x2 y2 例 1 1 设 F1, F 2 为 椭 圆 1的 两 个 焦 点 , P 9 4 为 椭 圆 上 一 点 . 已 知 P , F1, F 2 是 一 个 直 角 三 角 形 | P F1 | 的 三 个 顶 点 , 且 P F1 P F 2 , 则 的 值 为 ____ . | P F2 | A B k ,1 , A C 2 , 4 , 若 | A B | 4 , 2 已 知 k Z , 则 ABC 是 直 角 三 角 形 的 概 率 是 ( ) 1 2 3 4 A. B. C. D. 7 7 7 7
【 点 评 】 依 题 设 情 境 , 问 题 的 研 究 需 要 进 行 某 种 推 理 或 变 形 , 而 在 不 同 情 况 下 推 理 或 变 形 的 方 法 有 所 不 同 , 此 时 , 则 由 运 算 策 略 确 定 分 类 标 准 和 类 别 .
三、由参变量取值确定分类 标 准 例 3设等比数列 an 的公 比为 q,前 n项和 S n>0 ( n 1, 2,3 , ).
k 2 15, 又 k Z,
由 ABC为 直 角 三 角 形 , 则 ① B A C 9 0 时 , 有 A B A C k ,1 2, 4 0 k 2. ② 若 A C B 9 0 时 , 有 A C B C 2, 4 2 k , 3 0 k 8( 舍 去 ). ③ 若 A B C 9 0 时 , 有 A B B C k ,1 2 k , 3 0 k 1 或 3. 所 以 k 2, 1, 3 时 , A B C 为 直 角 三 角 形 , 3 故 所 求 概 率 P .选 C . 7
解 析 : 若 P F 2 F 1 9 0 , 则 P F 1
2
P F 2 | F1 F 2 | 2 ,
2
ቤተ መጻሕፍቲ ባይዱ
因 为 P F1 P F 2 6 , | F1 F 2 | 2 5, 14 4 | P F1 | 7 解 得 P F1 ,P F 2 , 所 以 . 3 3 | P F2 | 2 若 F 1 P F 2 9 0 , 则 | F1 F 2
2 对 于 实 数 x 0, 定 义 符 号 x 表 示 不 超 过 x的 最 大 整 数 , 则 方 程 2sin x x 的 解 集 是
( x以 弧 度 为 单 位 ) ___ _______ .
1 解析: 1 当 x 1时 , y lg x lo g x 1 0 lg x lg x 1 2 lg x 2; lg x 1 当 0 x 1时 , y lg x lo g x 1 0 [ lg x ( )] 2 , lg x 所 以 函 数 的 值 域 为 ( , 2] [ 2, ). 故 选 D .
2
P F1 2 P F 2
2
P F 1 2 ( 6 P F 1 |) 2 ,
| P F1 | 所 以 P F 1 4 ,P F 2 2 , 所 以 2. | P F2 | | P F1 | 7 综上知, 或 2. | P F2 | 2
2 由 | A B | 4
解析: 1 因 为 a n 是 等 比 数 列 , S n> 0, 可 得 a 1 S 1> 0 , q 0 ; 当 q 1 时 , S n n a 1> 0 ; a 1 1 q n 当 q 1时 , Sn > 0, 1 q 1 qn 即 > 0 ( n 1, 2 , ), 1 q 1 q 0 1 q 0 则有 ,①或 .② n n 1 q 0 1 q 0 由 ① 得 1 < q < 1 , 由 ② 得 q > 1. 故 q 的 取 值 范 围 是 1, 0 0 , ).