大学高数试卷及标准答案
高等数学试题及答案完整版
高等数学试题一、单项选择题(本大题共5小题,每小题2分,共10分)1.设f(x)=lnx ,且函数ϕ(x)的反函数1ϕ-2(x+1)(x)=x-1,则[]ϕ=f (x)( ) ....A B C D x-2x+22-x x+2 ln ln ln ln x+2x-2x+22-x2.()002lim 1cos tt x x e e dt x -→+-=-⎰( )A .0B .1C .-1D .∞ 3.设00()()y f x x f x ∆=+∆-且函数()f x 在0x x =处可导,则必有( ).lim 0.0.0.x A y B y C dy D y dy ∆→∆=∆==∆= 4.设函数,131,1x x x ⎧≤⎨->⎩22x f(x)=,则f(x)在点x=1处( )A.不连续B.连续但左、右导数不存在C.连续但不可导D. 可导5.设C +⎰2-x xf(x)dx=e ,则f(x)=( )2222-x -x -x -x A.xe B.-xe C.2e D.-2e二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设函数f(x)在区间[0,1]上有定义,则函数f(x+14)+f(x-14)的定义域是__________. 7.()()2lim 1_________n n a aq aq aq q →∞++++<=8.arctan lim _________x x x→∞= 9.已知某产品产量为g 时,总成本是2g C(g)=9+800,则生产100件产品时的边际成本100__g ==MC 10.函数3()2f x x x =+在区间[0,1]上满足拉格朗日中值定理的点ξ是_________.11.函数3229129y x x x =-+-的单调减少区间是___________.12.微分方程3'1xy y x -=+的通解是___________.13.设2ln 2,6a a π==⎰则___________.14.设2cos x z y =则dz= _______. 15.设{}2(,)01,01y D D x y x y xedxdy -=≤≤≤≤=⎰⎰,则_____________.三、计算题(一)(本大题共5小题,每小题5分,共25分)16.设1x y x ⎛⎫= ⎪⎝⎭,求dy.17.求极限0ln cot lim ln x x x+→18.求不定积分.19.计算定积分I=0.⎰ 20.设方程2z x 2e 1y xz -+=确定隐函数z=z(x,y),求','x y z z 。
完整)高等数学考试题库(附答案)
完整)高等数学考试题库(附答案)高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分)。
1.下列各组函数中,是相同的函数的是()。
A)f(x)=ln(x^2)和g(x)=2lnxB)f(x)=|x|和g(x)=x^2C)f(x)=x和g(x)=x^2/xD)f(x)=2|x|和g(x)=1/x答案:A2.函数f(x)=ln(1+x)在x=0处连续,则a=()。
A)1B)0C)-1D)2答案:A3.曲线y=xlnx的平行于直线x-y+1=0的切线方程为()。
A)y=x-1B)y=-(x+1)C)y=(lnx-1)(x-1)D)y=x答案:C4.设函数f(x)=|x|,则函数在点x=0处()。
A)连续且可导B)连续且可微C)连续不可导D)不连续不可微答案:A5.点x=0是函数y=x的()。
A)驻点但非极值点B)拐点C)驻点且是拐点D)驻点且是极值点答案:A6.曲线y=4|x|/x的渐近线情况是()。
A)只有水平渐近线B)只有垂直渐近线C)既有水平渐近线又有垂直渐近线D)既无水平渐近线又无垂直渐近线答案:B7.∫f'(1/x^2)dx的结果是()。
A)f(1/x)+CB)-f(x)+CC)f(-1/x)+CD)-f(-x)+C答案:C8.∫ex+e^(-x)dx的结果是()。
A)arctan(e^x)+CB)arctan(e^(-x))+CC)ex-e^(-x)+CD)ln(ex+e^(-x))+C答案:D9.下列定积分为零的是()。
A)∫π/4^π/2 sinxdxB)∫0^π/2 xarcsinxdxC)∫-2^1 (4x+1)/(x^2+x+1)dxD)∫0^π (x^2+x)/(e^x+e^(-x))dx答案:A10.设f(x)为连续函数,则∫f'(2x)dx等于()。
A)f(1)-f(0)B)f(2)-f(0)C)f(1)-f(2)D)f(2)-f(1)答案:B二.填空题(每题4分,共20分)。
大一高等数学考卷及答案
专业课原理概述部分一、选择题(每题1分,共5分)1.若函数f(x)在x=a处可导,则f'(a)等于()A.f(a)B.f(a+h)-f(a)/h(h趋于0)C.lim(f(a+h)-f(a))/h(h趋于0)D.f(a+h)-f(a)2.下列函数中,在x=0处连续但不可导的是()A.y=|x|B.y=x^2C.y=x^3D.y=1/x3.若函数f(x)在区间I上单调递增,则f'(x)在I上()A.必大于0B.必小于0C.可以为0D.不存在4.设函数f(x)在区间(a,b)内可导,且f'(x)>0,则f(x)在(a,b)内()A.单调递增B.单调递减C.有极值点D.无极值点5.设函数f(x)在x=a处连续,且lim(f(x)-f(a))/(x-a)=L,则f(x)在x=a处()A.可导,f'(a)=LB.可导,f'(a)不存在C.不可导D.无法确定二、判断题(每题1分,共5分)1.若函数f(x)在x=a处可导,则f(x)在x=a处一定连续。
()2.若函数f(x)在区间I上单调递增,则f'(x)在I上一定大于0。
()3.若函数f(x)在区间I上有极值点,则f'(x)在I上一定存在零点。
()4.若函数f(x)在区间I上连续,则f(x)在I上一定可积。
()5.若函数f(x)在区间I上可导,则f(x)在I上一定连续。
()三、填空题(每题1分,共5分)1.函数f(x)=x^3-3x在x=1处的导数为______。
2.函数f(x)=e^x在x=0处的导数为______。
3.函数f(x)=lnx在x=1处的导数为______。
4.函数f(x)=sinx在x=π/2处的导数为______。
5.函数f(x)=cosx在x=0处的导数为______。
四、简答题(每题2分,共10分)1.简述导数的定义。
2.简述连续与可导的关系。
3.简述罗尔定理。
4.简述拉格朗日中值定理。
大一(第一学期)高数期末考试题及答案
页眉内容大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(l i m .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且)(0=⎰πx d x f ,cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)c o s ()()x ye y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:101233()2x f x dx xe dx x x dx---=+-⎰⎰⎰123()1(1)xxd e x dx--=-+--⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。
大二高等数学试卷及答案
专业课原理概述部分一、选择题(每题1分,共5分)1.若函数f(x)在区间(a,b)内连续,则其在(a,b)内一定可积的是:A.有界函数B.无界函数C.奇函数D.偶函数2.微分方程y''5y'+6y=0的通解为:A.y=C1e^x+C2e^3xB.y=C1e^2x+C2e^3xC.y=C1e^x+C2e^-6xD.y=C1e^2x+C2e^-3x3.级数∑n=1∞(n^2/n!)的收敛性是:A.绝对收敛B.条件收敛C.发散D.无法确定4.在空间直角坐标系中,曲面z=x^2+y^2的切平面方程在点(1,1,2)处为:A.z=2x+2y1B.z=x+y1C.z=2x+2y+1D.z=x+y+15.设矩阵A为对称矩阵,则A的特征值:A.一定全为实数B.一定全为正数C.一定互不相同D.一定存在复数特征值二、判断题(每题1分,共5分)1.若函数f(x)在点x=a处可导,则f(x)在点x=a处一定连续。
()2.若函数f(x)在区间(a,b)内单调增加,则其导数f'(x)在(a,b)内一定大于0。
()3.级数∑n=1∞1/n^2是发散的。
()4.多元函数的极值点一定是函数的驻点。
()5.若矩阵A和B可交换,即AB=BA,则A和B一定有共同的特征向量。
()三、填空题(每题1分,共5分)1.函数f(x)=x^33x在x=______处取得极小值。
2.微分方程y''+4y=0的通解为y=______。
3.级数∑n=1∞(-1)^(n-1)/n的值为______。
4.曲线x^2+y^2=1在点(√2/2,√2/2)处的切线方程为______。
5.若矩阵A的特征值为λ1,λ2,λ3,则矩阵A^3的特征值为______。
四、简答题(每题2分,共10分)1.简述罗尔定理及其应用。
2.解释什么是函数的泰勒展开。
3.什么是拉格朗日中值定理?给出一个应用实例。
4.简述多元函数的极值和最值的区别。
大一高数试题及答案解析
大一高数试题及答案一、填空题(每小题1分,共10分)________ 11.函数y=arcsin√1-x2+────── 的定义域为_________√1-x2_______________。
2.函数y=x+ex上点(0,1)处的切线方程是______________。
f(Xo+2h)-f(Xo-3h)3.设f(X)在Xo可导且f'(Xo)=A,则lim───────────────h→o h= _____________。
4.设曲线过(0,1),且其上任意点(X,Y)的切线斜率为2X,则该曲线的方程是____________。
x5.∫─────dx=_____________。
1-x416.limXsin───=___________。
x→∞ X7.设f(x,y)=sin(xy),则fx(x,y)=____________。
_______R √R2-x28.累次积分∫ dx∫ f(X2+Y2)dy化为极坐标下的累次积分为____________。
0 0d3y3d2y9.微分方程─── +──(─── )2的阶数为____________。
dx3xdx2∞ ∞10.设级数∑an发散,则级数∑an _______________。
n=1 n=1000二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的()内,1~10每小题1分,11~20每小题2分,共30分)(一)每小题1分,共10分11.设函数f(x)=── ,g(x)=1-x,则f[g(x)]=()x111①1-── ②1+── ③ ──── ④xxx1-x12.x→0 时,xsin──+1是()x①无穷大量②无穷小量③有界变量④无界变量3.下列说法正确的是()①若f( X )在 X=Xo连续,则f( X )在X=Xo可导②若f( X )在 X=Xo不可导,则f( X )在X=Xo不连续③若f( X )在 X=Xo不可微,则f( X )在X=Xo极限不存在④若f( X )在 X=Xo不连续,则f( X )在X=Xo不可导4.若在区间(a,b)内恒有f'(x)〈0,f"(x)〉0,则在(a,b)内曲线弧y=f(x)为()①上升的凸弧②下降的凸弧③上升的凹弧④下降的凹弧5.设F'(x) =G'(x),则()①F(X)+G(X) 为常数②F(X)-G(X) 为常数③F(X)-G(X) =0dd④ ──∫F(x)dx=──∫G(x)dxdxdx16.∫ │x│dx=()-1①0②1③2④37.方程2x+3y=1在空间表示的图形是()①平行于xoy面的平面②平行于oz轴的平面③过oz轴的平面④直线x8.设f(x,y)=x3+y3+x2ytg── ,则f(tx,ty)=()y①tf(x,y)②t2f(x,y)1③t3f(x,y)④ ──f(x,y)t2an+1∞9.设an≥0,且lim───── =p,则级数∑an()n→∞ a n=1①在p〉1时收敛,p〈1时发散②在p≥1时收敛,p〈1时发散③在p≤1时收敛,p〉1时发散④在p〈1时收敛,p〉1时发散10.方程y'+3xy=6x2y是()①一阶线性非齐次微分方程②齐次微分方程③可分离变量的微分方程④二阶微分方程(二)每小题2分,共20分11.下列函数中为偶函数的是()①y=ex②y=x3+1③y=x3cosx④y=ln│x│12.设f(x)在(a,b)可导,a〈x1〈x2〈b,则至少有一点ζ∈(a,b)使()①f(b)-f(a)=f'(ζ)(b-a)②f(b)-f(a)=f'(ζ)(x2-x1)③f(x2)-f(x1)=f'(ζ)(b-a)④f(x2)-f(x1)=f'(ζ)(x2-x1)13.设f(X)在 X=Xo 的左右导数存在且相等是f(X)在 X=Xo 可导的()①充分必要的条件②必要非充分的条件③必要且充分的条件④既非必要又非充分的条件d14.设2f(x)cosx=──[f(x)]2,则f(0)=1,则f(x)=()dx①cosx②2-cosx③1+sinx④1-sinx15.过点(1,2)且切线斜率为4x3的曲线方程为y=()①x4②x4+c③x4+1④x4-11 x16.lim─── ∫ 3tgt2dt=()x→0 x3 01①0②1③ ── ④ ∞3xy17.limxysin───── =()x→0 x2+y2y→0①0②1③ ∞ ④sin118.对微分方程y"=f(y,y'),降阶的方法是()①设y'=p,则y"=p'dp②设y'=p,则y"=───dydp③设y'=p,则y"=p───dy1dp④设y'=p,则y"=── ───pdy∞ ∞19.设幂级数∑anxn在xo(xo≠0)收敛,则∑anxn在│x│〈│xo│()n=o n=o①绝对收敛②条件收敛③发散④收敛性与an有关sinx20.设D域由y=x,y=x2所围成,则∫∫ ─────dσ=()D x1 1 sinx① ∫ dx∫ ───── dy0 x x__1 √y sinx② ∫ dy∫ ─────dx0 y x__1 √x sinx③ ∫ dx∫ ─────dy0 x x__1 √x sinx④ ∫ dy∫ ─────dx0 x x三、计算题(每小题5分,共45分)___________/x-11.设y=/────── 求y' 。
高数期末考试题及答案大全
高数期末考试题及答案大全试题一:极限的概念与计算问题:计算极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。
答案:根据洛必达法则,当分子分母同时趋向于0时,可以对分子分母同时求导,得到:\[\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cosx}{1} = \cos(0) = 1.\]试题二:导数的应用问题:设函数 \(f(x) = x^3 - 3x^2 + 2x\),求其在 \(x=1\) 处的切线方程。
答案:首先求导数 \(f'(x) = 3x^2 - 6x + 2\)。
在 \(x=1\) 处,导数值为 \(f'(1) = -1\),函数值为 \(f(1) = 0\)。
切线方程为 \(y - 0 = -1(x - 1)\),即 \(y = -x + 1\)。
试题三:不定积分的计算问题:计算不定积分 \(\int \frac{1}{x^2 + 1} dx\)。
答案:这是一个基本的三角换元积分问题,令 \(x = \tan(\theta)\),\(dx = \sec^2(\theta) d\theta\)。
则 \(\int \frac{1}{x^2 + 1} dx = \int \frac{1}{\tan^2(\theta) + 1} \sec^2(\theta) d\theta = \int \cos^2(\theta) d\theta\)。
利用二倍角公式,\(\cos^2(\theta) = \frac{1 +\cos(2\theta)}{2}\)。
积分变为 \(\int \frac{1}{2} d\theta + \frac{1}{2} \int\cos(2\theta) d\theta = \frac{\theta}{2} +\frac{\sin(2\theta)}{4} + C\)。
大学高数考试题及答案详解
大学高数考试题及答案详解# 大学高数考试题及答案详解一、选择题1. 题目:函数 \( f(x) = x^2 \) 在区间 \( [0, 1] \) 上的定积分是:- A. \( \frac{1}{3} \)- B. \( \frac{1}{2} \)- C. \( \frac{3}{4} \)- D. \( \frac{2}{3} \)答案: C详解:根据定积分的计算公式,\( \int_{0}^{1} x^2 dx =\left[\frac{x^3}{3}\right]_{0}^{1} = \frac{1^3}{3} -\frac{0^3}{3} = \frac{1}{3} \)。
因此,正确答案为 C。
2. 题目:极限 \( \lim_{x \to 0} \frac{\sin x}{x} \) 的值是: - A. 1- B. 0- C. \( \frac{1}{2} \)- D. \( \infty \)答案: A详解:利用极限的性质和三角函数的极限,我们有 \( \lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x}{1} = 1\)。
因此,正确答案为 A。
二、填空题1. 题目:如果 \( \int_{a}^{b} f(x) dx = 4 \),那么\( \int_{a}^{b} 2f(x) dx = \) ________。
答案: 8详解:根据定积分的性质,如果 \( c \) 是一个常数,那么\( \int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx \)。
因此,\( \int_{a}^{b} 2f(x) dx = 2 \int_{a}^{b} f(x) dx = 2 \times 4 = 8 \)。
2. 题目:函数 \( g(x) = e^x \) 的导数是 \( g'(x) = \)________。
2023高等数学考卷【答案详解】
2023高等数学考卷(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1. 函数f(x) = x^3 3x在x=0处的导数是()A. 3B. 0C. 3D. 无法确定2. 设函数f(x) = e^x,则f''(0)等于()A. eB. e^2C. 1D. 03. 下列级数中收敛的是()A. Σ(1/n)B. Σ(n)C. Σ(1/n^2)D. Σ(n^2)4. 若行列式|A|=6,则|3A|等于()A. 6B. 18C. 6D. 185. 设矩阵A为3阶方阵,且|A|=0,则A的秩r(A)()A. r(A)=0B. r(A)=1C. r(A)=2D. r(A)=3二、判断题(每题1分,共20分)6. 若函数f(x)在区间[a, b]上连续,则f(x)在该区间上必有最大值和最小值。
()7. 若函数f(x)在点x=a处可导,则f(x)在点x=a处必连续。
()8. 若向量组α1, α2, , αn线性相关,则其中至少有一个向量可以由其余向量线性表示。
()9. 若矩阵A为对称矩阵,则A的特征值必定为实数。
()10. 若f(x)为偶函数,则f'(x)为奇函数。
()三、填空题(每空1分,共10分)11. 设函数f(x) = x^2 2x + 1,则f'(x) = _______。
12. 设矩阵A = [[1, 2], [3, 4]],则|A| = _______。
13. 设向量α = (1, 2),则2α = _______。
14. 设函数f(x) = ln(x),则f'(x) = _______。
15. 设积分∫(1/x)dx = _______ + C。
四、简答题(每题10分,共10分)16. 简述罗尔定理的内容及其应用。
17. 简述泰勒公式的基本形式。
五、综合题(1和2两题7分,3和4两题8分,共30分)18. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的极值。
大学高数考试题及答案
大学高数考试题及答案一、选择题(每题5分,共20分)1. 函数f(x)=x^2在x=0处的导数为()。
A. 0B. 1C. 2D. 4答案:A2. 曲线y=x^3在点(1,1)处的切线斜率为()。
A. 1B. 3C. 9D. 27答案:C3. 极限lim(x→0) (sin x)/x的值为()。
A. 0B. 1C. 2D. 不存在答案:B4. 函数y=ln(x)的不定积分为()。
A. x^2B. 1/xC. x*ln(x)D. x*ln(x) + x答案:D二、填空题(每题5分,共20分)5. 函数f(x)=x^3-3x^2+2在x=1处的值为______。
答案:06. 曲线y=x^2-4x+3与x轴的交点坐标为______。
答案:(1,0), (3,0)7. 函数f(x)=x^2+2x+1的最小值为______。
答案:08. 定积分∫(0到1) x dx的值为______。
答案:1/2三、解答题(每题15分,共40分)9. 求函数f(x)=2x^3-6x^2+5x+1在区间[0,2]上的最大值和最小值。
答案:首先求导数f'(x)=6x^2-12x+5。
令f'(x)=0,解得x=1或x=5/6。
计算f(0)=1,f(1)=0,f(2)=9,f(5/6)=-1/24。
因此,最大值为9,最小值为-1/24。
10. 计算定积分∫(0到π/2) sin x dx。
答案:根据定积分的性质,我们有∫(0到π/2) sin x dx = [-cosx](0到π/2) = 1。
11. 求曲线y=x^2与直线y=2x在第一象限内的交点坐标。
答案:联立方程组x^2=2x,解得x=0或x=2。
因为要求第一象限内的交点,所以x=2,y=4。
交点坐标为(2,4)。
12. 计算级数∑(1到∞) (1/n^2)的和。
答案:这是一个p级数,其中p=2>1,因此级数收敛。
其和为π^2/6。
(完整版)大一高等数学期末考试试卷及答案详解
一、填空题(每小题3分,共18分)
1.设函数 ,则 是 的第类间断点.
2.函数 ,则 .
3. .
4.曲线 在点 处的切线方程为.
5.函数 在 上的最大值,最小值.
6. .
二、单项选择题(每小题4分,共20分)
1.数列 有界是它收敛的().
必要但非充分条件; 充分但非必要条件;
充分必要条件; 无关条件.
二.选择题(每小题4分,4题共16分):
1.设常数 ,则函数 在 内零点的个数为(B).
(A)3个;(B)2个;(C)1个;(D)0个.
2.微分方程 的特解形式为(C)
(A) ;(B) ;
(C) ;(D)
3.下列结论不一定成立的是(A)
(A)(A)若 ,则必有 ;
(B)(B)若 在 上可积,则 ;
(C)(C)若 是周期为 的连续函数,则对任意常数 都有 ;
2.下列各式正确的是().
; ;
; .
3.设 在 上, 且 ,则曲线 在 上.
沿 轴正向上升且为凹的; 沿 轴正向下降且为凹的;
沿 轴正向上升且为凸的; 沿 轴正向下降且为凸的.
4.设 ,则 在 处的导数().
等于 ; 等于 ;
等于 ; 不存在.
5.已知 ,以下结论正确的是().
函数在 处有定义且 ; 函数在 处的某去心邻域内有定义;
大一高等数学期末考试试卷
(一)
一、选择题(共12分)
1. (3分)若 为连续函数,则 的值为( ).
(A)1 (B)2 (C)3 (D)-1
2. (3分)已知 则 的值为( ).
(A)1 (B)3 (C)-1 (D)
3. (3分)定积分 的值为( ).
高等数学考试试卷及答案
则
(本题 2.0 分)
A、 B、 C、 D、 学生答案:A 标准答案:A 解析: 得分:2
22. ( 单选题 ) 无穷小量是(本题 2.0 分)
A、 比 0 稍大一点的一个数 B、 一个很小很小的数 C、 以 0 为极限的一个变量 D、 数 0 学生答案:C 标准答案:C
解析: 得分:2
学生答案:A,C 标准答案:BC 解析: 得分:0
38. ( 多选题 )
下列微分方程中为一阶线性微分方程是( )。
(本题 4.0 分)
A、 B、 C、 D、 学生答案:A 标准答案:BC 解析: 得分:0
39. ( 多选题 ) 函数
在区间
内二阶可
导, 且
则曲线
在
区间
内
(本题 4.0 分)
A、 曲线单调减少 B、 曲线单调增加 C、 曲线既不增、也不减 D、 曲线图形上凹(凹弧) E、 曲线图形下凹(凸弧) 学生答案:A,D 标准答案:AE
C、
D、 学生答案:D 标准答案:A 解析: 得分:0
29. ( 单选题 )
函数
的图形关于( )。
(本题 2.0 分) A、 x 轴(直线 y=0)对称 B、 y 轴(直线 x=0)对称 C、 直线 y=x 对称 D、 原点 对称
学生答案:C 标准答案:B 解析: 得分:0
30. ( 单选题 )
函数 f(x)=ln(x-5)的定义域为( )
5. ( 单选题 ) 设函数 f(x)=(x+1)Cosx,则 f(0)=( ).(本题 2.0 分)
A、 -1 B、 0 C、 1 D、 无定义 学生答案:C 标准答案:C 解析: 得分:2
6. ( 单选题 ) 分)
高等数学试题题库及答案
高等数学试题题库及答案一、单项选择题(每题2分,共10题)1. 函数f(x)=x^2+2x+1的导数是:A. 2x+2B. 2x+1C. x^2+2xD. 2x^2+2x+1答案:A2. 极限lim(x→0) (sin(x)/x)的值是:A. 0B. 1C. -1D. 不存在答案:B3. 若f(x)在x=a处连续,则下列哪个选项一定成立:A. f(a)存在B. f(a)=lim(x→a)f(x)C. f(a)=lim(x→a)f(x)且f(a)存在D. f(a)不存在答案:C4. 函数y=e^x的不定积分是:A. e^x + CB. e^xC. ln(e^x) + CD. ln(x) + C答案:A5. 曲线y=x^3-3x^2+2在点(1,0)处的切线斜率是:A. 0B. 1C. -2D. 2答案:C6. 以下哪个函数是奇函数:A. f(x)=x^2B. f(x)=x^3C. f(x)=x+1D. f(x)=x^2+1答案:B7. 二重积分∬(x^2+y^2)dxdy在区域D上,其中D是由x^2+y^2≤1定义的圆盘,其值是:A. πB. 2πC. π/2D. 4π答案:A8. 微分方程dy/dx=2x的通解是:A. y=x^2+CB. y=2x+CC. y=x^2D. y=2x^2+C答案:A9. 函数f(x)=x^3在x=0处的泰勒展开式是:A. x^3B. x^3+3x^2+3x+1C. x^3+3x^2+3xD. x^3+3x^2答案:C10. 以下哪个级数是收敛的:A. 1+1/2+1/4+1/8+...B. 1-1/2+1/3-1/4+...C. 1+1/2+1/3+1/4+...D. 1-1/2+1/3-1/4+1/5-...答案:A二、填空题(每题3分,共5题)11. 函数f(x)=x^2+3x+2的二阶导数是________。
答案:212. 极限lim(x→∞) (x^2-3x+2)/(x^3+x)的值是________。
高等数学试卷参考答案及评分标准
共3页第1页高数试卷(A )参考答案及评分标准一.填空题(本题共9小题,每小题4分,满分36分)1.曲面2cos()e 4xzx x y yz π-++=在点(0,1,2)处的法线方程是1222x y z -==-;2.设u =(1,2,0)14,,033u⎧⎫=⎨⎬⎩⎭grad ;3.已知{}{}2,1,2,1,3,2=--=-A B ,则A 在B方向的投影()=B A ;4.设闭曲线:1C x y +=,取逆时针方向,则曲线积分2d d Cy x x y -⎰ 的值是2-;5.设函数(,)F x y 具有一阶连续偏导数,则曲线积分(,)(d d )ABF x y y x x y +⎰与路径无关的充分必要条件是x y xF yF =;6.二重积分()2221ecos d d xx y y xy x y +≤+⎰⎰的值是0;7.设S 为球面:2222x y z R ++=,则曲面积分()222d Sx y z S ++⎰⎰的值是44R π;8.设C 是折线11(02)y x x =--≤≤,则曲线积分d Cy s ⎰9.取21ln n a n n =(注:答案不唯一),可使得级数2n n a ∞=∑收敛,且级数2ln n n a n ∞=∑发散.二.计算下列各题(本题共4小题,满分30分)10.(本小题满分7分)设((),)z f x y x y ϕ=-,其中f 具有连续的二阶偏导数,ϕ具有连续导数,计算2,z z x x y∂∂∂∂∂.解12z f f x ϕ∂=+∂,(3分)21111222()z f x f x f f x yϕϕϕϕϕ∂'''=++--∂∂(4分)11.(本小题满分7分)计算2(1)d d Dx xy x y ++⎰⎰,其中{}22(,)1,0D x y x y x =+≤≥.共3页第2页解21230013(1)d d 0d d 224Dx xy x y ππϕρρπ++=++=⎰⎰⎰⎰(1+1+3+2分)12.(本小题满分8分)计算二次积分11213021d e d xxyx y y-⎰⎰.解,1111111211133200222111d e d d e d e 1d e 2x x xy y y yx y y x y y y y ---⎛⎫==-=- ⎪ ⎪⎝⎭⎰⎰⎰⎰⎰(3+2+3分)13.(本小题满分8分)求密度均匀分布的立体{222(,,)2,x y z z x y z z z Ω=≥++≤≥的质心坐标.解0x y ==(1分))22cos 340122cos 240125d sin cos d d 25241812d sin d d 3r rz r rππθππθπϕθθθϕθθ==⎰⎰⎰⎰⎰⎰(1+1+2+2+1分)三(14).(本题满分7分)试求过点(3,1,2)A -且与z 轴相交,又与直线1:23L x y z ==垂直的直线方程.解设312x y z l m n-+-==为所求直线L 的方程,(1分)由于直线L 与z 轴相交,所以三个向量{},,l m n =s ,OA 及k 共面,从而312001l m n -=,即30l m --=(1),(2分)又由于L 与1L 互相垂直,得11023l m n ++=,即6320l m n ++=(2)(2分)联立(1),(2)解得3l m =-,152n m =,所求直线L 的方程为3126215x y z -+-==--(2分)四(15)。
《大一高等数学》试卷(十份)
《高等数学》试卷(一)一.选择题(将答案代号填入括号内,每题3分,共30分).1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =12.函数()()20ln 10x f x x a x ≠=+⎨⎪=⎩在0x =处连续,则a =( ).(A )0 (B )14(C )1 (D )23.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ).(A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微5.点0x =是函数4y x =的( ).(A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点6.曲线1||y x =的渐近线情况是( ).(A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211f dx x x ⎛⎫'⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭ (B )1f C x ⎛⎫--+ ⎪⎝⎭ (C )1f C x ⎛⎫+ ⎪⎝⎭ (D )1f C x⎛⎫-+⎪⎝⎭8.xxdx e e-+⎰的结果是( ).(A )arctan xe C + (B )arctan xe C -+ (C )x xe eC --+ (D )ln()x xe eC -++9.下列定积分为零的是( ).(A )424arctan 1x dx xππ-+⎰(B )44arcsin x x dx ππ-⎰(C )112x xe edx --+⎰(D )()121sin xx x dx -+⎰10.设()f x 为连续函数,则()12f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题(每题4分,共20分)1.设函数()2100x e x f x xa x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.21x y x =-的垂直渐近线有条.4.()21ln dx x x =+⎰.5.()422sin cos x x x dx ππ-+=⎰.三.计算(每小题5分,共30分) 1.求极限 ①21limxx x x →∞+⎛⎫ ⎪⎝⎭②()2sin 1limxx x x x e→--2.求方程()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分 ①()()13dxx x ++⎰②()0a >⎰③x xe dx -⎰四.应用题(每题10分,共20分) 1. 作出函数323y x x =-的图像.2.求曲线22y x =和直线4y x =-所围图形的面积.《高等数学》试卷(一)参考答案一.选择题1.B 2.B 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.C 二.填空题1.2- 2.3- 3. 2 4.arctan ln x c + 5.2三.计算题 1①2e ②162.11xy x y '=+-3. ①11ln ||23x C x +++ ②ln ||x C +③()1xex C--++四.应用题1.略 2.18S =《高数》试卷2(上)一.选择题(将答案代号填入括号内,每题3分,共30分)1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()g x =(B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x fx →=( ).(A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且0)(0>'x f , 则曲线()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ).(A) 12,ln 2⎛⎫ ⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C) 1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭5.函数2x y x e -=及图象在()1,2内是( ).(A)单调减少且是凸的 (B)单调增加且是凸的 (C)单调减少且是凹的 (D)单调增加且是凹的6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在.7.设函数()y f x =的一个原函数为12x x e ,则()f x =( ).(A) ()121x x e - (B) 12x x e - (C) ()121x x e + (D) 12x xe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫'⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯ 二.填空题(每题4分,共20分) 1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x .3.函数211x y x =+-的水平和垂直渐近线共有_______条.4.不定积分ln x xdx =⎰______________________.5. 定积分2121sin 11x x dx x-+=+⎰___________.三.计算题(每小题5分,共30分) 1.求下列极限:①()1lim 12x x x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1y y xe =-所确定的隐函数的导数x y '.3.求下列不定积分:①3tan sec x xdx ⎰②)0a>⎰③2xx e dx ⎰四.应用题(每题10分,共20分) 1.作出函数313y x x =-的图象.(要求列出表格)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》试卷2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π三.计算题:1. ①2e ②1 2.2yxey y '=-3.①3sec 3x c + ②)lnx c + ③()222xx x e c -++四.应用题:1.略 2.13S =《高等数学》试卷3(下)一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21MM ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x yx y 的定义域是( ).A.(){}21,22≤+≤y x y xB.(){}21,22<+<y x y xC.(){}21,22≤+<y x y x D (){}21,22<+≤y x y x4.两个向量a与b 垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1-6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz =( ).A.22 B.22-C.2D.2-7.若p 级数∑∞=11n pn收敛,则( ).A.p 1<B.1≤pC.1>pD.1≥p8.幂级数∑∞=1n nnx的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x-11 B.x-22 C.x-12 D.x-2110.微分方程0ln =-'y y y x 的通解为( ). A.x ce y = B.x e y = C.x cxe y = D.cxe y = 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z 2_____________________________.4.x+21的麦克劳林级数是___________________________.5.微分方程044=+'+''y y y 的通解为_________________________________.三.计算题(5分⨯6)1.设v e z u sin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin,其中22224:ππ≤+≤yx D .4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程x e y y 23=-'在00==x y 条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点⎪⎭⎫ ⎝⎛31,1,求此曲线方程 .试卷3参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()nn n nx ∑∞=+-0121.5.()x e x C C y 221-+= . 三.计算题 1.()()[]y x y x y exz xy+++=∂∂cos sin ,()()[]y x y x x eyz xy+++=∂∂cos sin .2.12,12+=∂∂+-=∂∂z yy z z x xz . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-.4.3316R .5.x x e e y 23-=. 四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷4(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21MM ( ).A.12B.13C.14D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6πB.4πC.3πD.2π3.函数()22arcsin y x z +=的定义域为( ).A.(){}10,22≤+≤y x y xB.(){}10,22<+<y x y xC.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.216.设223y xy x z ++=,则()=∂∂2,1xz ( ).A.6B.7C.8D.97.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r 8.幂级数()n n x n ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1-9.级数∑∞=14sin n nna 是( ).A.条件收敛B.绝对收敛C.发散D.不能确定 10.微分方程0ln =-'y y y x 的通解为( ). A.cxe y = B.x ce y = C.x e y = D.xcxe y = 二.填空题(4分⨯5) 1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y tx 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________. 3.曲面2242yx z -=在点()4,1,2处的切平面方程为_____________________________________. 4.211x+的麦克劳林级数是______________________.5.微分方程03=-ydx xdy 在11==x y 条件下的特解为______________________________.三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.5.求微分方程023=+'+''y y y 的通解. 四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.2.如图,以初速度0v 将质点铅直上抛,不计阻力,求质点的运动规律().t x x =(提示:g dtx d -=22.当0=t 时,有0x x =,0v dtdx =)试卷4参考答案一.选择题 CBABA CCDBA. 二.填空题 1.211212+=-=-z y x .2.()xdy ydx e xy +.3.488=--z y x .4.()∑∞=-021n n nx .5.x y =. 三.计算题1.k j i238+-.2.()()()yy xy y y y x yz y y y y x xz 3333223cossincos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ . 3.22,zxy xz yz zxy yz x z +-=∂∂+-=∂∂.4.⎪⎭⎫ ⎝⎛-3223323πa . 5.xxeC e C y --+=221.四.应用题1.316.2. 00221x t v gtx ++-=.《高数》试卷5(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x xa x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()x y f e =, 则____________.y '=5. 221lim_________________.25x x x x →∞+=+-6. 321421sin 1x x dx x x -+-⎰=______________.7.2_______________________.x td e dt dx-=⎰8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin xx e x →-; 2.; 233lim 9x x x →-- 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分) 1. 2x y x =+, 求(0)y '. 2. cos xy e=, 求dy .3. 设x y xy e +=, 求d y d x.四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120xe dx ⎰五、(8分)求曲线1cos x ty t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程xy y ex '+=满足初始条件()10y =的特解.《高数》试卷5参考答案一.1.(3,3)- 2.4a= 3.2x = 4.()x xe f e '5.126.07.22xxe- 8.二阶二.1.原式=0lim1x x x →=2.311lim36x x →=+3.原式=112221lim[(1)]2xx ex--→∞+=三.1.221,(0)(2)2y y x ''==+2.c o s sin xdy xedx =-3.两边对x 求写:(1)x y y xy e y +''+=+'x yx yeyxy y y x ex xy++--⇒==--四.1.原式=ln 2cos x x C -+2.原式=2221ln(1)()ln(1)[ln(1)]222x xx d x x d x +=+-+⎰⎰=222111ln(1)ln(1)(1)221221x xxx dx x x dxxx+-=+--+++⎰⎰=221ln(1)[ln(1)]222xxx x x C +--+++3.原式=12212111(2)(1)222xxe d x ee ==-⎰五.2sin ,1.,,122t dy dy t t x y dxdxπππ======且当时切线:1,1022y x x y ππ-=--+-=即法线:1(),1022y x x y ππ-=--+--=即六.1231014(1)()33Sx dx x x =+=+=⎰22211221(1)11()22V x dy y dy y y ππππ==-=-=⎰⎰七.特征方程:2312613032(cos 2sin 2)xr r r iy eC x C x -++=⇒=-±=+八.11()dxdxxx x y e e edx C -⎰⎰=+⎰1[(1)]xx e C x=-+由10,0x yC ==⇒=1xx y ex-∴=《高等数学》试卷6(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为( d )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( c ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( c ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( a )A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,225、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、zy zR x --, B 、zy zR x ---, C 、zy zR x ,--D 、zy zR x ,-6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π) A 、R 2A B 、2R 2A C 、3R 2A D 、A R 2217、级数∑∞=-1)1(n nnnx的收敛半径为( )A 、2B 、21 C 、1 D 、38、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n xnB 、∑∞=-1)1(n n)!2(2n xnC 、∑∞=-0)1(n n)!2(2n xnD 、∑∞=-0)1(n n)!12(12--n xn9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分)1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。
《大一高等数学》试卷(十份)
《高等数学试卷》一.选择题(3分⨯10)1.点1M ()1,3,2到点()4,7,22M 的距离=21M M ( ).A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有( ).A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是( ).A.(){}21,22≤+≤y x y x B.(){}21,22<+<y x y xC.(){}21,22≤+<y x y x D (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是( ).A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是( ). A.2 B.2- C.1 D.1-6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz =( ).A.22B.22-C.2D.2-7.若p 级数∑∞=11n p n 收敛,则( ). A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nnx 的收敛域为( ).A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是( ).A.x -11 B.x -22 C.x -12 D.x-21 10.微分方程0ln =-'y y y x 的通解为( ). A.x ce y = B.x e y = C.x cxe y = D.cx e y = 二.填空题(4分⨯5)1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z 2_____________________________.4.x+21的麦克劳林级数是___________________________. 5.微分方程044=+'+''y y y 的通解为_________________________________. 三.计算题(5分⨯6)1.设v e z usin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin,其中22224:ππ≤+≤y x D .4.如图,求两个半径相等的直交圆柱面所围成的立体的体积(R 为半径).5.求微分方程x e y y 23=-'在00==x y 条件下的特解.四.应用题(10分⨯2)1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省?2..曲线()x f y =上任何一点的切线斜率等于自原点到该切点的连线斜率的2倍,且曲线过点⎪⎭⎫ ⎝⎛31,1,求此曲线方程 .试卷3参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121.5.()xe x C C y 221-+= .三.计算题 1.()()[]y x y x y e x z xy +++=∂∂cos sin ,()()[]y x y x x e yz xy +++=∂∂cos sin . 2.12,12+=∂∂+-=∂∂z y y z z x x z . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-.4.3316R . 5.x xe ey 23-=.四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷4(下)一.选择题(3分⨯10)1.点()1,3,41M ,()2,1,72M 的距离=21M M ( ). A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为( ). A.6π B.4π C.3π D.2π 3.函数()22arcsin y x z +=的定义域为( ).A.(){}10,22≤+≤y x y xB.(){}10,22<+<y x y xC.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为( ). A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为( ). A.0 B.1 C.1- D.216.设223y xy x z ++=,则()=∂∂2,1xz ( ).A.6B.7C.8D.9 7.若几何级数∑∞=0n nar是收敛的,则( ).A.1≤rB. 1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为( ).A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是( ).A.条件收敛B.绝对收敛C.发散D.不能确定 10.微分方程0ln =-'y y y x 的通解为( ). A.cx e y = B.x ce y = C.x e y = D.x cxe y = 二.填空题(4分⨯5)1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________. 3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________. 4.211x+的麦克劳林级数是______________________. 5.微分方程03=-ydx xdy 在11==x y 条件下的特解为______________________________.三.计算题(5分⨯6)1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+(0>a )所围的几何体的体积.5.求微分方程023=+'+''y y y 的通解.四.应用题(10分⨯2) 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.2.如图,以初速度0v 将质点铅直上抛,不计阻力,求质点的运动规律().t x x =(提示:g dtxd -=22.当0=t 时,有0x x =,0v dt dx =)试卷4参考答案一.选择题 CBABA CCDBA.二.填空题 1.211212+=-=-z y x . 2.()xdy ydx exy+.3.488=--z y x .4.()∑∞=-021n n n x . 5.x y =. 三.计算题1.k j i238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ .3.22,z xy xzy z z xy yz x z +-=∂∂+-=∂∂. 4.⎪⎭⎫ ⎝⎛-3223323πa . 5.x x e C e C y --+=221. 四.应用题 1.316. 2. 00221x t v gt x ++-=.《高数》试卷5(上)一、 填空题(每小题3分, 共24分)1. 函数219y x=-的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.3. 函数221()32x f x x x -=-+的无穷型间断点为________________.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 6. 321421sin 1x xdx x x -+-⎰=______________. 7.20_______________________.x td e dt dx -=⎰ 8. 30y y y '''+-=是_______阶微分方程.二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2.; 233lim 9x x x →--3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2x y x =+, 求(0)y '. 2. cos xy e =, 求dy . 3. 设x y xy e +=, 求dydx.四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2. ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积. 七、(8分)求微分方程6130y y y '''++=的通解. 八、(7分)求微分方程x yy e x'+=满足初始条件()10y =的特解. 《高数》试卷5参考答案一.1.(3,3)- 2.4a = 3.2x = 4.()x xe f e '5.126.07.22x xe - 8.二阶 二.1.原式=0lim 1x x x→= 2.311lim36x x →=+3.原式=112221lim[(1)]2x x e x--→∞+=三.1.221,(0)(2)2y y x ''==+2.cos sin xdy xedx =-3.两边对x 求写:(1)x y y xy e y +''+=+'x y x y e y xy yy x e x xy ++--⇒==--四.1.原式=ln 2cos x x C -+2.原式=2221ln(1)()ln(1)[ln(1)]222x x x d x x d x +=+-+⎰⎰=222111ln(1)ln(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰ =221ln(1)[ln(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x xe d x e e ==-⎰ 五. 2sin , 1.,,122t dy dy t t x y dx dxπππ======且当时切线:1,1022y x x y ππ-=--+-=即法线:1(),1022y x x y ππ-=--+--=即六.1231014(1)()33S x dx x x =+=+=⎰22211221(1)11()22V x dy y dyy y ππππ==-=-=⎰⎰七.特征方程:2312613032(cos 2sin 2)x r r r iy e C x C x -++=⇒=-±=+八.11()dxdxx x x y ee edx C -⎰⎰=+⎰1[(1)]x x e C x=-+ 由10,0x yC ==⇒= 1xx y e x-∴=《高等数学》试卷6(下)一、选择题(本题共10小题,每题3分,共30分) 1、二阶行列式 2 -3 的值为( d )4 5A 、10B 、20C 、24D 、222、设a=i+2j-k,b=2j+3k ,则a 与b 的向量积为( c ) A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k3、点P (-1、-2、1)到平面x+2y-2z-5=0的距离为( c ) A 、2 B 、3 C 、4 D 、54、函数z=xsiny 在点(1,4π)处的两个偏导数分别为( a ) A 、,22 ,22 B 、,2222- C 、22- 22- D 、22- ,22 5、设x 2+y 2+z 2=2Rx ,则yzx z ∂∂∂∂,分别为( ) A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R ,面密度为22y x +=μ的薄板的质量为( )(面积A=2R π) A 、R 2A B 、2R 2A C 、3R 2A D 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为( )A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为( )A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n9、微分方程(y``)4+(y`)5+y`+2=0的阶数是( ) A 、一阶 B 、二阶 C 、三阶 D 、四阶 10、微分方程y``+3y`+2y=0的特征根为( ) A 、-2,-1 B 、2,1 C 、-2,1 D 、1,-2 二、填空题(本题共5小题,每题4分,共20分) 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________。
(完整)高等数学考试题库(附答案)
高等数学考试题库(附答案)1. 解析:求函数 f(x) = x^2 在区间 [0, 2] 上的定积分。
2. 解析:求函数 f(x) = e^x 在区间 [1, 1] 上的定积分。
3. 解析:求函数 f(x) = sin(x) 在区间[0, π] 上的定积分。
4. 解析:求函数 f(x) = cos(x) 在区间[0, π/2] 上的定积分。
5. 解析:求函数 f(x) = ln(x) 在区间 [1, e] 上的定积分。
6. 解析:求函数 f(x) = x^3 在区间 [1, 1] 上的定积分。
7. 解析:求函数f(x) = √x 在区间 [0, 4] 上的定积分。
8. 解析:求函数 f(x) = 1/x 在区间 [1, 2] 上的定积分。
9. 解析:求函数 f(x) = tan(x) 在区间[0, π/4] 上的定积分。
10. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [0, 1] 上的定积分。
11. 解析:求函数 f(x) = x^2 + 1 在区间 [0, 1] 上的定积分。
12. 解析:求函数 f(x) = e^(x) 在区间 [0, 2] 上的定积分。
13. 解析:求函数 f(x) = sin^2(x) 在区间[0, π] 上的定积分。
14. 解析:求函数 f(x) = cos^2(x) 在区间[0, π/2] 上的定积分。
15. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [1, 1] 上的定积分。
16. 解析:求函数f(x) = √(1 x^2) 在区间 [1, 1] 上的定积分。
17. 解析:求函数 f(x) = x^3 3x^2 + 2x 在区间 [0, 2] 上的定积分。
18. 解析:求函数 f(x) = e^(2x) 在区间 [1, 1] 上的定积分。
19. 解析:求函数 f(x) = ln(x) 在区间 [1, e^2] 上的定积分。
20. 解析:求函数 f(x) = sin(x)cos(x) 在区间[0, π/2] 上的定积分。
大三高等数学试卷及答案
专业课原理概述部分一、选择题(每题1分,共5分)1.设函数f(x)在区间(a,b)内连续,且a和b为f(x)的不连续点,则f(x)在(a,b)内是否有界?A.有界B.无界C.不能确定D.与a和b的值有关2.设数列{an}收敛于A,则下列哪个数列收敛于0?A.{anA}B.{Aan}C.{an+A}D.{1/an}3.设函数f(x)在区间I上可导,且f'(x)>0,则f(x)在I上:A.单调递增B.单调递减C.有极值点D.不能确定4.设函数f(x)在区间(a,b)内连续,且在(a,b)内f(x)>0,则下列哪个结论是正确的?A.∫(atob)f(x)dx>0B.∫(atob)f(x)dx<0C.∫(atob)f(x)dx=0D.不能确定5.设函数f(x)在区间(a,b)内可导,且f'(x)>0,则下列哪个结论是正确的?A.f(x)在(a,b)内单调递增B.f(x)在(a,b)内单调递减C.f(x)在(a,b)内有极值点D.不能确定二、判断题(每题1分,共5分)1.若函数f(x)在区间(a,b)内连续,则f(x)在(a,b)内一定可导。
()2.若函数f(x)在区间(a,b)内单调递增,则f'(x)>0。
()3.若函数f(x)在区间(a,b)内有界,则f(x)在(a,b)内一定可积。
()4.若函数f(x)在区间(a,b)内可导,则f(x)在(a,b)内一定连续。
()5.若函数f(x)在区间(a,b)内连续,则f(x)在(a,b)内一定存在原函数。
()三、填空题(每题1分,共5分)1.函数f(x)=x^33x在区间(-∞,+∞)内的单调递增区间是______。
2.函数f(x)=e^x的n阶导数是______。
3.设函数f(x)在区间(a,b)内可导,且f'(x)>0,则f(x)在(a,b)内______。
4.设函数f(x)在区间(a,b)内连续,且在(a,b)内f(x)>0,则∫(atob)f(x)dx______0。
大三高等数学考卷及答案
专业课原理概述部分一、选择题(每题1分,共5分)1.设函数f(x)在区间(a,b)内可导,且f'(x)>0,则f(x)在区间(a,b)内是()A.严格单调递增B.严格单调递减C.常数函数D.无法确定2.设函数f(x)=x^33x,则f(x)的极大值点为()A.x=-1B.x=0C.x=1D.x=33.设函数f(x)=e^x,则f(x)在x=0处的泰勒展开式为()A.1+x+x^2/2B.1+x+x^2/2+x^3/6C.1+x+x^2/2+x^3/6+D.1+x+x^2/2+x^3/6+x^4/244.设矩阵A为对称矩阵,则A的特征值()A.必为实数B.必为复数C.必为正数D.必为负数5.设向量组α1,α2,α3线性相关,则向量组2α13α2+α3,α1+α2α3,3α12α2+2α3也()A.线性相关B.线性无关C.必有一组线性相关D.必有一组线性无关二、判断题(每题1分,共5分)1.函数f(x)在点x0处可导,则f(x)在点x0处连续。
()2.若矩阵A可逆,则矩阵A的行列式必不为0。
()3.向量组α1,α2,α3线性相关,则向量组α1+α2,α2+α3,α3+α1也线性相关。
()4.函数f(x)在区间(a,b)内单调递增,则f'(x)>0。
()5.线性方程组Ax=b有唯一解的充分必要条件是矩阵A的秩等于矩阵A的列数。
()三、填空题(每题1分,共5分)1.函数f(x)=x^33x在x=0处的二阶导数为______。
2.矩阵A的行列式为______,则矩阵A可逆。
3.向量组α1,α2,α3线性相关的充分必要条件是______。
4.函数f(x)=e^x的泰勒展开式为______。
5.线性方程组Ax=b有唯一解的充分必要条件是______。
四、简答题(每题2分,共10分)1.简述泰勒公式的定义及意义。
2.简述矩阵的秩的定义及计算方法。
3.简述线性相关的定义及判定方法。
4.简述导数的定义及计算方法。
高等数学试题解析及答案
高等数学试题解析及答案一、选择题(每题4分,共20分)1. 极限的定义中,当变量趋近于某一点时,函数值趋近于某一个确定的数值,这个确定的数值称为该点的极限。
以下哪个选项正确描述了极限的定义?A. 函数值无限增大B. 函数值无限减小C. 函数值趋近于无穷大D. 函数值趋近于一个确定的数值答案:D2. 函数在某点的导数表示该点处函数的瞬时变化率。
以下哪个选项正确描述了导数的定义?A. 函数值的总变化量B. 函数值的平均变化率C. 函数值的瞬时变化率D. 函数值的变化趋势答案:C3. 定积分的几何意义是表示函数图像与x轴之间的有向面积。
以下哪个选项正确描述了定积分的定义?A. 函数值的总和B. 函数值的平均值C. 函数值的总变化量D. 函数图像与x轴之间的有向面积答案:D4. 函数的极值是函数在局部区域内取得的最大值或最小值。
以下哪个选项正确描述了极值的定义?A. 函数的最大值B. 函数的最小值C. 函数在局部区域内的最大值或最小值D. 函数的增减变化点答案:C5. 二重积分的几何意义是表示曲面在xy平面上的投影面积。
以下哪个选项正确描述了二重积分的定义?A. 曲面在xy平面上的投影面积B. 曲面在yz平面上的投影面积C. 曲面在xz平面上的投影面积D. 曲面在三维空间中的体积答案:A二、填空题(每题3分,共15分)1. 函数f(x)=x^2在x=0处的导数为______。
答案:02. 定积分∫₀¹x^2dx的值为______。
答案:1/33. 函数f(x)=sin(x)在x=π/2处的极小值为______。
答案:14. 函数f(x)=e^x在x=0处的导数为______。
答案:15. 二重积分∫₀¹∫₀¹xydxdy的值为______。
答案:1/8三、解答题(每题10分,共30分)1. 求函数f(x)=x^3-3x^2+2x的导数。
答案:f'(x)=3x^2-6x+22. 计算定积分∫₀²x^2dx。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学高数试卷及答案————————————————————————————————作者:————————————————————————————————日期:浙江农林大学 2016 - 2017 学年第 一 学期期中考试课程名称: 高等数学I 课程类别: 必修 考试方式: 闭卷注意事项:1、本试卷满分100分。
2、考试时间 120分钟。
一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的选项填在题后的括号内。
每小题3分,共21分)1.下列各式正确的是: ( )A. sin lim1x x x →+∞= B. 0sin lim 0x xx→=C. 1lim 1xx e x →+∞⎛⎫+=- ⎪⎝⎭ D. 1lim 1xx e x →+∞⎛⎫+= ⎪⎝⎭2. 当0x +→时,与x 等价的无穷小量是: ( )A. 11x +-B. 1ln 1x x +⎛⎫ ⎪-⎝⎭C. 1xe - D. 1cos x -3. 设()f x 在x a =的某邻域有定义,则它在该点处可导的一个充分条件是:( )A.1lim ()()h h f a f a h →+∞⎡⎤+-⎢⎥⎣⎦存在 B. 0(2)()lim h f a h f a h h →+-+存在 题号 一 二 三 四 五 六 七 八 得分 得分 评阅人学院: 专业班级: 姓名: 学号:装 订 线 内 不 要 答 题得分C. 0()()lim2h f a h f a h h →+--存在 D. 0()()lim h f a f a h h→--存在4. 函数33y x x =-在区间[0,1]上的最小值是:( ) A. 0B. 没有C. 2D. 29-5. 函数21y x =-在区间[1,1]-上应用罗尔定理时,所得到的中值ξ= ( ) A. 0B. 1C. 1-D. 26.设函数20()(1)0ax e x f x b x x ⎧≤=⎨->⎩处处可导,那么: ( ) A .1a b == B .2,1a b =-=- C .0,1a b == D .1,0a b ==7. 设x a =为函数()y f x =的极值点,则下列论述正确的是 ( )A .'()0f a =B .()0f a =C .''()0f a =D .以上都不对 二、填空题(每小题3分,共21分)1. 极限232)sin (1cos lim x x x x x +-+∞→= .2.极限222222lim 12n n n n n →∞⎛⎫+++ ⎪+++⎝⎭L =.3.设函数f (x )=2310222x x x x a x ⎧+-≠⎪-⎨⎪=⎩在点x =2处连续,则a = .4. 函数()sin xf x x=的间断点为 . 5. 函数22ln y x x =-的单调减区间为 . 6. 设函数ln tan y x =,则dy = .得分7.椭圆曲线cos sin x a t y b t =⎧⎨=⎩ 在4t π=相应的点处的切线方程为 .三、求下列极限(每小题6分, 共18分) 1. 求极限 11sin 1lim 2--+→x x e x x2. 求极限123lim 6x x x x +→+∞+⎛⎫⎪+⎝⎭3. 求极限)tan 11(lim 20xx x x -→ 得分四、计算下列导数或微分(每小题分6, 共18分)1. 设函数22(2)ln(1)xxy x e e =-+++, 求dydx与dy .2. 设()y f x =是由方程22arctan ln x x y y=+确定的隐函数,求22d d y x .3.计算函数()1xx y x=+的一阶导数.得分五、(本题6分)求函数325()2y x x =-的凹凸区间与拐点.六、(本题6分)设函数()f x 在(,)-∞+∞上二阶可导,函数20()()0ax bx c x g x f x x ⎧++>=⎨≤⎩ ,试确定常数,,a b c 的值,使得函数()g x 在0x =点二阶可导.得分得分七、(本题5分)证明:当0x>时,221ln(1)1x x x x+++>+.八、(本题5分)设函数()f x在[0,3]上连续,在(0,3)内可导,且(0)(1)(2)3f f f++=,(3)1f=.试证:必存在一点(0,3)ξ∈,使得'()0fξ=. 得分得分浙江农林大学 2016 - 2017 学年第 一 学期期中考试参考答案一、 单项选择题D B D D A C D二、填空题(每小题3分,共21分)1. 1 2.2; 3.7; 4.,0,1,2,k k π=±±L ;5.1(0,)2; 6.()csc 2x dx x; 7.20ay bx ab +-= 三、求下列极限(每小题6分, 共18分) 1. 求极限 11sin 1lim2--+→x x e x x解:原式= 20sin 2lim x x xx → ……… 3分0sin lim2x xx →= ……… 4分 12= ……… 6分 2. 求极限123lim 6x x x x +→+∞+⎛⎫⎪+⎝⎭解:原式=123lim 16x x x +→+∞⎛⎫- ⎪+⎝⎭……… 2分=6313623lim 16x x x x x +-+⋅⋅-+→+∞⎛⎫- ⎪+⎝⎭……… 5分313lim622x x xee →+∞-+-⋅+== ……… 6分3. 求极限)tan 11(lim 20xx x x -→ 解:原式=2300tan tan lim lim tan x x x x x xx x x→→--=……… 2分=222200sec 11cos lim lim 33x x x xx x →→--=……… 4分=02cos sin 1lim63x x x x →=……… 6分四、计算下列导数或微分(每小题分6, 共18分)1. 设函数22(2)ln(1)x xy x e e =-+++, 求dydx与dy . 解:22(2)1x xe y x e'=--++……… 4分2[2(2)]1x xe dy x dx e=--++……… 6分2. 设()y f x =是由方程22arctan ln x x y y=+确定的隐函数,求22d d y x .解:方程两边同时对变量x 求导并化简可得:''y xy x yy -=+ 从而得到:'y xy y x-=+ ,……… 2分 上式继续对变量x 求导可得: ''''''''1y y xy y y yy --=++……… 4分 化简上式并带入'y 可得:()22''32()x y y y x -+=+ ……… 6分3.计算函数()1xx y x=+的一阶导数.解:两边同时取对数得:ln ln()[ln ln(1)]1xy x x x x x ==-++………(2分)两边同时对x 求导得:'111[ln ln(1)][]ln 111y x x x x y x x x x =-++-=++++………(5分)从而得'11[ln]ln()[ln ]11111x x x y y x x x x x x =+=++++++ ………(6分) 五、(本题6分)求函数325()2y x x =-的凹凸区间与拐点.解:函数的定义域为(,)-∞+∞,35(1)3x y x -'=,3''45(21)9x y x+=''1,02x y =-=,''0,x y =不存在。
……… 2分''3111(,)(,0)0(0,)222013(,2)22x y y-∞---+∞-++⋂--⋃⋃……… 4分可知325()2y x x =-函数32(5)y x x =-在1(,0)2-和(0,)+∞上是凹的,在1(,)2-∞-内是凸的,拐点为313(,2)22--. ……… 6分六、(本题6分)设函数()f x 在(,)-∞+∞上二阶可导,函数20()()0ax bx c x g x f x x ⎧++>=⎨≤⎩ ,试确定常数,,a b c 的值,使得函数()g x 在0x =点二阶可导.解:因为()g x 在0x =点二阶可导,所以,()g x 在0x =点一阶可导、连续。
由()g x 在0x =点连续可得:0lim (0)(0)lim (0)x x g f g c -+→→===,从而(0)c f =……2分 由()g x 在0x =点可导可得:2'''0(0)(0)(0)(0)limx ax bx c f g f g b x +-+→++-====-,从而'(0)b f =……… 4分从而可知:''20()()0ax b x g x f x x +>⎧=⎨≤⎩又由()g x 在0x =点二阶可导可得:'''''''02(0)(0)(0)(0)lim 20x ax b f g f g a x +-+→+-====-,从而''2(0)a f =……… 6分七、(本题5分)证明:当0x >时,221ln(1)1x x x x +++>+. 证明:令22()1ln(1)1f x x x x x =+++-+,则(0)0f = ……1分因为'2()ln(1)0f x x x =++>,从而()f x 在0x >时单调递增,……… 3分 从而()(0)0f x f >=,从而221ln(1)1x x x x +++>+……… 5分八、(本题5分)设函数()f x 在[0,3]上连续,在(0,3)内可导,且(0)(1)(2)3f f f ++=,(3)1f =.试证:必存在一点(0,3)ξ∈,使得'()0f ξ=.证明:因为函数()f x 在[0,3]上连续,从而函数()f x 在[0,2]上连续, 故在[0,2]上有最大值和最小值,分别设为,m M , 于是(0)(1)(2)3f f f m M ++≤≤,……… 2分从而由介值定理可得,至少存在一点[0,2]c ∈, 使得(0)(1)(2)()13f f f f c ++==,……… 3分可验证()f x 在[,3]c 上满足罗尔定理的条件, 故存在[,3][0,3]c ξ∈⊂,使得'()0f ξ=.……… 5分。