中考专题1-----有理数专题 (1)

合集下载

中考数学 专题01 有理数考点总动员(解析版)

中考数学 专题01 有理数考点总动员(解析版)

专题01 有理数考点总动员专题01 有理数考点总动员 (1)【考纲要求】 (2)一、聚焦考点 (2)知识点1 相反意义的量 (2)知识点2 有理数的分类 (2)知识点3 数轴 (2)知识点4 相反数 (3)知识点5 绝对值 (3)知识点6 有理数的加减法 (3)知识点7 有理数的乘除法 (3)知识点8 有理数的乘方 (4)二、名师点睛 (5)题型1 有理数的运算 (5)题型2 有理数的意义 (5)题型3 运用有理数解决实际问题 (6)题型4 找规律 (7)三、能力提升 (9)【考纲要求】要求1.有理数的意义—理解要求2.有理数的运算—掌握要求3.运用有理数的运算解决简单的实际问题一、聚焦考点知识点1 相反意义的量①大于零的数叫做: 正数 ,小于零的数叫做: 负数 。

② 零 是正数和负数的分界线,既不是正数,也不是负数。

③相反意义的量需要注意3点:a.相反意义的量是成对出现的;b.相意义的量必须是同类量;c.用正负表示相反意义量时,一定要说明数量和单位知识点2 有理数的分类①正数和分数统称为: 有理数②有限小数,无限循环小数都可以转化为分数,都可以划分在 分数 类。

③无限不循环小数不能转化为分数,不是有理数,是无理数。

④有理数的分类: a.按照整数、分数分类有理数{整数{( 正整数 )( 0 )( 负整数 )分数{( 正分数 )( 负分数 )b.按照数的正负性分类有理数{正有理数{( 正整数 )( 正分数 )( 0 )负有理数{( 负整数 )( 负分数 )知识点3 数轴①数轴三要素: 原点、正方向、单位长度 。

②数轴特点:数轴左边的点表示的数比右边的点表示的数要 小 ,越向右,数越 大 ③数轴与有理数的关系:1)数轴上的点并不是都是有理数2)正方向可以不按照常规方向选取3)a>0,与原点的距离是a ,在数轴上可以是±a (存在多解的情况)知识点4 相反数①只有符号不同的数互为 相反数 。

中考数学 第1章 有理数复习题 试题

中考数学 第1章 有理数复习题 试题

卜人入州八九几市潮王学校第1篇代数篇第1章有理数1.1有理数的概念★1.1.1 a 、b 在数轴上的位置如下列图,那么在a +b ,b -2a ,a b -,b -a 中负数的个数是().(A )1(B )2(C )3(D )4★1.1.2设有理数a 、b 、c 在数轴上的对应点如下列图,那么代数式b a -+a c -+c b -=____. ★1.1.3a 、b 是有理数,有以下三式: ①a b +<a b -;②a 2+b 2+a +b +1<0;③a 2+b 2-2a -2b +1<0.其中一定不成立的是(填写上序号)★1.1.4在a 、b 、c 三个数中,有如下三个结论:甲:假设至少有两个数互为相反数,那么a +b +c =0;乙:假设至少有两个数互为相反数,那么(a +b )2+(b +c )2+(c -0)2=0; 丙:假设至少有两个数互为相反数,那么(a +b )(b +c )(c +0)=0.其中正确结论的个数是().(A )0(B )1(C )2(D )3★1.1.5数轴上有A 和B 两点,A 、B 之间的间隔为1,点A 与原点O 的间隔为3,那么所有满足条件的点B 与原点O 的间隔之和等于★★1.1.62()1a b -++(a +b -2)2=1,x +ay =1,bx -y =3,那么2(x )1y -++(x +y -2)2 =★★1.1.7求2x --10x +的最小值.★★1.1.8求1x -+2x -+3x -的最小值.★★1.1.9abcde 是一个五位数,其中a ,b ,c ,d ,e 为阿拉伯数字,且a <b <c <d ,那么a b -+b c -+c d -+d e -的最大值是★★1.1.10设x 、y 、a 都是实数,并且x =1-a ,y =(1-a )(a -1-a 2),试求x +y +a 3+1的值. ★★1.1.11数轴上有一动点a ,从原点出发沿着数轴挪动,每次只允许挪动1个单位.经过10次挪动,a 点挪动到间隔原点6个单位处,问:a 点的挪动方法有多少种?★★1.1.12圆周上有和为94的n 个整数(n >3),每个数都等于它后面(按顺时针方向)的两个数的差的绝对值.问:n 的所有可能值是多少?★★★1.1.13如下列图,数轴上标有2n +1个点,它们对应的整数是-n ,-(n -1),…,-2,-1,0,1,2,…,(n -1),n ,它们称为整点,为了确保从这些整点中可以取出2021个,使其中任意两个点之间的间隔不等于4,问:n 的最小值是多少1.2有理数的大小比较★1.2.1假设有理数a 、b 在数轴上的位置如下列图,那么以下各式中错误的选项是().(A )-ab <2(B )1b >-1a (C )a +b <-12(D )a b<一1 ★1.2.2P =999999,Q =990119,那么P 、Q 的大小关系是(). (A )P >Q (B )P =Q (C )P <Q (D )无法确定★1.2.3假设实数a 、b 、c 满足abc >0,a +b +c =0,a <-b <c ,那么a 、b 、c 的大小为().(A )a >0,b >0,c >0(B )a >0,b <0,c >0(C )a <0,b <0,c >0(D )a <0,b >0,c <0★1.2.4有四个数:a =3.852.57-,b =15341023-,c =-487325,d =-267178,它们的大小关系是(). A .d <c <b <aB .d <b <c <aC .b <c <a <dD .d <a <c <b★1.2.5假设a = 3.143.13-÷3.12,b =2.142.13-÷2.12,c =1.141.13÷(-1.12),那么a 、b 、c 的大小顺序是().(A)a>b>c(B)a>c>b(C)b>c>a(D)c>b>a★★1.2.6比较2234和5100的大小,并说明理由.1.3有理数的运算★1.3.1以下说法中,正确的个数是().(1)n个有理数相乘,当因数有奇数个时,积为负;(2)n个有理数相乘,当正因数有奇数个时,积为负;(3)n个有理数相乘,当负因数有奇数个时,积为负;(4)n个有理数相乘,当积为负数时,负因数有奇数个.(A)1(B)2(C)3(D)4★1.3.2计算:-4012×(114+109144)÷(-0.5)÷34×43-13×[(-2)2-22]=____.★1.3.3计算:(-313)2-413×(-6.5)+(-2)4÷(-6).★1.3.4计算:(-2)5÷(-6)-417×(-8.5)-(-313)2.★1.3.5设a=1÷2÷3÷4,b=1÷(2÷3÷4),c=1÷(2÷3)÷4,d=1÷2÷(3÷4),那么(b÷a)÷(c÷d)=____.★1.3.6某地区2021年2月21-28日的平均气温为-1℃,2月22-29日的平均气温为-0.5℃,2月21日的平均气温为-3C,那么2月29日的平均气温为.★★1.3.7计算:(1+111+113+117)×(111+113+117+119)-(1+111+113+117+119)×(111+113+117)=().(A)111(B)113(C)117(D)119★1.3.8计算:1+2+3+ (100)★1.3.9计算:-1+3-5+7-9+11-…-1993+1995-1997=().(A)999(B)-998(C)998(D)-999★1.3.10计算:-1-(-1)1-(-1)2-(-1)3-…-(-1)99-(-1)100.★★1.3.11计算:(12+32+52+…+992)-(22+42+62+…+1002) ★★1.3.12代数和-1×2021+2×2021-3×2021+4×2021+…-1003×1006+1004×1005的个位数字是 ★★1.3.13计算:11+(21-12)+(31-22+13)+(41-32+23-14)+…+(91-82+73-64+…+19) ★★1.3.14计算:(13-712+920-1130+1342-1556)×23×21. ★1.3.15计算:112⨯+123⨯+134⨯+…+120082009⨯. ★1.3.16求证:113⨯+124⨯+135⨯+146⨯+…+1(n 1)n +=34-232(n 1)(n 2)n +++ ★★1.3.17计算:1+112++1123+++…+11232010++++ ★★1.3.18计算:1-11(12)⨯+-1(12)(123)+⨯++-1(123)(1234)++⨯+++ ★★1.3.19计算:2-22-23-24-…-218-219+220=____. ★★1.3.20S =12-24+38-416+…+(-1)k -12k k +…+200520052-200620062,那么小于S 的最大整数是____. ★★1.3.21计算:1+3+32+33+…+32021.★★★1.3.22计算:12+22+…+n 2. ★★1.3.23比较12+24+38+416+…+2n n 与2的大小. ★★1.3.24计算:(1-2111)×(1-2112)×(1-2113)×…×(1-211994)=. ★★1.3.25m ,n 都是正整数,并且A =(1-12)×(1+12)×(1-13)×(1+13)×…×(1-1m )×(1+1m ), B =(1-12)×(1+12)×(1-13)×(1+13)×…×(1-1n )×(1+1n) (1)证明:A =12m m +,B =12n n+ (2)假设A -B =126,求m 和n 的值. ★★1.3.26算式(1+113⨯)×(1+124⨯)×(1+135⨯)×(1+146⨯)×…×(1+198100⨯)×(1+199101⨯)的整数局部为()(A )1(B )2(C )3(D )4★1.3.27按一定规律排列的一串数11,-13,23,-33,15,-25,35,-45,55,123,,,777--…中,第98个数是____________________. 1.3.28运算*按下表定义,例如3*2=1,那么(2*4)*(1*3)=()A .1B .2C .3D .41.3.29现定义两种运算“⊕〞,“⊗〞,定义,对于任意两个整数a 、b ,1a b a b ⊕=+-,1a b ab ⊗=-, 求4[(68)(35)]⊗⊕⊕⊗.。

2019年中考数学复习讲义:专题(一)有理数与数轴的数形结合

2019年中考数学复习讲义:专题(一)有理数与数轴的数形结合

专题一 有理数与数轴的数形结合要点归纳1.像2,31,0.25,π,30%等这样大于零的数叫做________;像-20,-32,-0.25,-30%等这样在正数前面加上负“-”的数叫做________.2.用正、负数可以表示具有相反意义的量,若一个相反意义的量中一个“意义”规定用“+”表示,则另一个“意义”必定用“_______”表示.3.有理数按性质可分为_______、_______、______;整数和_______统称为有理数.4.我们把规定了_______、_______、______的直线叫数轴,这条直线上的任意数轴一个点表示一个数,原点左边的数都是______数,原点右边的数都是______数,在实际问题中,一个单位长度可表示一定的数量,如1米,1千米,400千克等.5.数轴上的点与有理数之间的关系:所有的______都可以用数轴上的点来表示,但是数轴上的点不都表示有理数.典例讲解经典再现一、正、负数的识别及应用例1 下列各数中,哪些是正数?哪些是负数?+0.007,-200,53,-45,0.666…,-9,20.5,0,-32 【思路点拨】由正、负数的定义进行判断.解:整数:+0.007,53,0.666…,20.5;负数:-200,-45,-9,-32. 【方法规律】正数前面可以加“+”号,也可以不加“+”号;负数前面的“-”号不可以省略.判断一个数是不是负数,要看它是不是在正数的前面加“-”号,而不是看它是不是带有“-”号,特别注意 ,“-a ”不一定是负数,如-(-5)数不是负数.例2 课桌的高度比标准高度高2cm 记作+2cm ,那么比标准高度低3cm 记作什么?现有5 张课桌,小明测量了它们的高度,记录如下:+1cm ,0cm ,-1cm ,+3cm ,-1.5cm .若规定课桌的高度与标准高度相差最多不能超过2cm ,问上述5张课桌有几张合格?【思路点拨】具有相反意义的量可以分别用“+”、“-”数来表示,与标准高相差2cm ,是指可以高2cm ,也可以低2cm .解:比标准高度低3cm 记作-3cm ,这5张课桌中,合格的有:比标准高度:+1cm 、0cm 、-1cm 、-1.5cm ,共4张.【方法规律】如果超过标准高度记为“+”,那么不是(或低于)标准高度记为“-”,在判断几张桌子合格的问题中,我们不管超过还是低于标准高度,不看数前面的“+”、“-”号,只看符号后面数是否小于或等于0.二、有理数的相关概念(1)整数:正整数、0、负整数的统称;(2)分数:正分数、负分数的统称;(3)有理数:整数和分数的统称;(4)有理数包括有限小数和无限循环小数.例3 下列说法中,正确的是( )A .正有理数和负有理数统称为有理数B .正整数和负整数统称为整数C .整数和分数统称为有理数D .非正整数就是指零、负整数和所有分数【思路点拨】A 选项中,有理数应包括正有理数、0和负有理数;B 选项中也漏掉了0;D 选项中,非正整数是指负整数和0.解:C三、有理数的分类例4 把下列各数填在相应的横线上.-25,3.14,48,-32,-0.40,0,+34,-3.5,1,41 (1)⎩⎨⎧________________________________分数:整数:有理数 (2)⎪⎩⎪⎨⎧____________________________________________负有理数:零:正有理数:有理数【思路点拨】此题考察有理数的两种分类方式,注意0是整数.解:(1)⎪⎩⎪⎨⎧-+---41,5.3,34,40.0,32,14.31,0,48,25:分数:整数有理数 (2)⎪⎪⎩⎪⎪⎨⎧----+5.3,40.0,32,25041,1,34,48,14.3负有理数:零:正有理数:有理数 【方法规律】对有理数进行分类时,必须按照同一标准,不能将两种分类方式混在一起,小数(有限小数、无限循环小数)都是分数.例5 下面四个结论中,正确的结论是( )A .两个不同的整数之间必有一个正分数B .两个不同的整数之间必有一个整数C .两个不同的整数之间必有一个有理数D .两个不同的整数之间必有一个负数【思路点拨】对于A ,如果是两个负整数,那么中间就没有正分数;对于B ,如果是两个连续的整数,中间就再没有整数;对于D ,如果两个整数是正整数,中间就没有负数;只有C ,不论是怎样的两个不同的整数,中间必有有理数,如2和3中间有25,-2,-3之间有-25. 解:选C【方法规律】如果一个说法(结论)不正确,可举反例说明.四、数轴上的点和数例6 指出下面数轴上A 、B 、C 、D 、O 各点分别表示什么数?【思路点拨】数的性质A 点、B 点在原点的左侧,表示的是负数;C 点、D 点在原点的右侧,表示的数是整数,0点在原点;其次,还要确定每个点到原点的距离.解:点A 表示-5,点B 表示-1,点C 表示2,点D 表示5,点O 表示0.【方法规律】本题一个单位长度表示2,而不是1,容易看错,确定数轴上的点表示的数,一定性质,二定距离.例7 数轴上表示到3的点的距离是5的点表示的数是__________.【思维点拨】数轴上与表示3的点相距5个单位长度的点有两个,一个表示3的点的右侧且相距5个单位长度,另一个表示3的点的左侧且相距5个单位长度.解:8或-2【方法规律】距离是一个长度,在数轴上表示与某个点的距离为a (a >0)的点时,用分类讨论思想时要考虑在这个点左侧且距此点a 个单位长度有一个点;在这个点右侧且距此点a 个单位长度也有一个点.五、画数轴画数轴时,一定要体现出数轴的三要素:原点、正方向、单位长度,画数轴的步骤可归纳为:一画、二定、三选、四统一、五标数,即画直线、定原点、选取正方向,统一单位长度,确定要表示的数的对应点的位置.例8 如图,数轴上有A 、B 、C 、D 、E 、F 六个点,每两个相邻的点的距离相等,那么下列说法中错误的是( )A .表示原点的数在C 、D 之间B .有三个点表示的数是负数C .这六个数中没有表示整数的点D .C 点与原点最接近【思维点拨】A 点到F 点的距离是436,且相邻的点之间的距离相等,所以每两个相邻点间距离为427÷5=2027,原点在C 、D 之间,213>413,因此原点靠近D 点,A 、B 、C 三点表示的数是负数,B 点表示的数是分数.解:D拓展研究一、正、负数应用在一些实际生产和生活的问题中,并没有出现常见的意义相反的量,而是把其中某一个量规定为“0”这个量作为正、负数的界限,解决问题时,要按题目的要求正确理解整数、负数所代表的实际的量的真正意义,把实际的量进行转化.例1 图中这个游戏叫做(井底之蛙),一个人或几个人玩,每人投一次骰子(可以是一粒或二粒),按点数井底之蛙开始往上爬,爬到哪一格,就按那一格的数字再往上升或往下降,只有升到井上或回到井底,才轮到第二个人.例如,投得3,往上爬三格,得“+1”,再升一格,又得“-4”,降四格回到井底,于是轮到第二个人投骰子.现在轮到你投骰子,请你简要分析一下,如果你投到哪些数,就可以把青蛙送到井上,不再坐井观天.【思路点拨】读懂题意,将每个数按题意上升或下降这些格,看是否送到井上,是否仍回井底. 解:投到8~12时,可以把青蛙送到井上;投到1~7时,青蛙回到井底.【方法规律】理解正、负数的意义是解题的关键.二、有理数分类中0的位置0既不是正数也不是负数,它是正数与负数的分界,是唯一的中性数.例2 下列说法正确的有( )①一个有理数不是正数就是分数; ②一个有理数不是正数就是负数;③一个整数不是正数就是负数; ④一个分数不是正数就是负数.A .1个B .2个C .3个D .4个【思路点拨】一个有理数可能是正数、负数或0,整数也包括零,其中①④是正确的. 解:B【方法规律】在有关有理数概念的考察中,0最容易被忽视,要防止“一个有理数非正即负”和“一个整数非正即负”的错误出现.三、利用正、负数探究数字的排列规律例3 观察下列依次排列的两列数,它们的排列有什么规律?你能说出这两列数的第48个数,第101个数,第2019个数分别是什么吗?(1)-1,21,-3,41,-5,61,-7,81,…; (2)21,0,-21,0,21,0,-21,0,…. 【思路点拨】(1)这列数从数的性质看正、负交替出现,再考虑分子、分母的变化规律;(2)这列数是0、21交替出现,再考虑性质符号的变化规律. 解:(1)这列数的排列规律是:对于第n 个数,n 为奇数时,此数是-n ,n 为偶数时,此数是n 1,因此,第48个数为481,第101个数为-101,第2019个数为-2019. (2)这列数的排列规律是:21,0,-21,0,…,从前往后奇数位上数是21或-21,偶数位上是0,位数除4余1的是21,位数除4余3的是-21,所以,第48个数是0,第101个数是21,第2019个数是-21. 【方法规律】从数的性质和除性质外的数的大小两方面寻找规律.四、有理数分类中小数的划分例4 下列各数中,哪些是有理数,哪些不是有理数?722,-3.0 ,-31,0.121121112…,0.676767…,π,-π,0.4. 【思路点拨】722,-31是分数,-3.0 ,0.676767…是循环小数,可以化为分数,0.4是有限小数,也可以化为分数,所以都是有理数.0.121121112…,π,-π都是无限不循环小数,不能化为分数,所以不是有理数.解:有理数:722,-3.0 ,-31,0.676767…,0.4; 不是有理数:0.121121112…,π,-π.【方法规律】小数有三类:有限小数,无限循环小数和无限不循环小数,其中有限小数与无限小数都可以化为分数,故都是有理数,无限不循环小数不是有理数,分数可化为有限小数或无限循环小数.五、数轴上的数形结合例5 如图,数轴上有A 、B 、C 三个点,请回答下列问题:(1)将B 点在数轴上移动3个单位长度后,所表示的数是什么?(2)怎样在数轴上移点C ,使移动后的C 点(不与B 点重合)与A 点的距离等于B 点与A 点的距离?此时C 点表示的数是什么?【思维点拨】(1)B 点在数轴的移动可向正方向,也可向负方向,有两个结果;(2)A 、B 两点间的距离是2,C 点向左移动,可在A 点左边,也可在A 点右边距离为2,但A 点右边距离为2的点与B 点重合,应排除.解:(1)-5或1(2)将C 点向左移动9个单位长度,此时C 点表示的数是-6.【方法规律】到数轴上某点的距离为a (a >0)的点有两个,在该点左、右两边各有一个点.六、数轴的实际应用利用数轴解决实际问题的关键是把实际问题转化为数学模型,确定好原点、正方向和单位长度,将实际问题在数轴上表示出来,再根据要求求解.例5 某人从A 地向东走10米到达B 地,然后向西走4米到达C 地,又向东走7米到达D 地,问此人现在在A 地的哪个方向?距A 地多远?【思路点拨】本题可借助数轴来解决,按照此人行走的方向和距离找出他三次行走后的位置.解:设A 地是原点,向东为正方向,以1米为一个单位长度,由图可知D 在A 地的正东方向,距A 地13米.【方法规律】本题运用数形结合思想解决问题,根据已知条件画出一条数轴,在数轴上讲三次运动过程表示出来,便能顺利解决问题.实战演练A 链接中考1.孔子出生于公元前551年,如果用-551表示,那么下列中国历史文化名人的出生年代表示为:①司马迁出生于公元前145年:__________;②李白出生于公元701年:_______.2.林艳在东西向的路上,先向东走30米,又向西走30米,她一共走了______米,她最后的位置是在_________.3.已知在数轴上有A、B两点,点A、B之间的距离为1,点A与原点的距离为3,那么点B表示的数是__________.4.数轴上的点A、B位置如图所示,则线段AB的长度为_______.5.点A为数轴上距原点距离4个单位长度的点,A点表示的数是_______.6.下列各组量具有相反意义的是()A.收入3000元与增加5000元 B.向东走5km与向南走3.5kmC.温度上升12℃与水位下降 D.七(5)班在比赛中胜3场与负3场7.下列说法中正确的有()①小数都是有理数;②存在最小的自然数;③-0.001是分数,也是有理数A.0个 B.1个 C.2个 D.3个8.如图,数轴上的点A表示的数可能是()A.2.4 B.-2.4 C.-1.6 D.-1.49.点A在数轴上表示-2的点所在的位置,当点A沿数轴移动5个单位长度到达点B时,点B表示的有理数是()A.3 B.-7 C.3或-7 D.无法确定B 冲刺中考10.下列说法中,正确的个数有()①0℃表示没有温度;②0是最小的整数;③0是偶数,也是自然数;④不带负号的数都是整数;⑤带负号的数不一定是负数A.0个 B.1个 C.2个 D.3个11.下列说法中错误的是( )A.正整数一定是自然数 B.自然数一定是正整数C.一个有理数不是整数就是分数 D.任何有理数都可以表示为分数12.下列说法正确的是( )A.规定了原点、正方向的直线是数轴 B.数轴上原点及原点右边的点表示的数是非正数C.有理数如11000-在数轴上无法表示 D.任何一个有理数都可以在数轴上找到13. 一次月考中,新欣所在班级平均分为95分,把高出平均分的部分记作正数,新欣105分,记为____,兰慧记-12分,她实际得分为分.14.下列四个判断中,错误的是( )A.存在着最小的自然数 B.存在最小的正有理数C.不存在最大的正有理数 D.不存在最大的负有理数15. -a 一定是( )A.正数 B.负数 C.正数或负数 D.正数或零或负数16.下列说法错误的是( )A.数轴上原点右边的点表示的数是正数 B.数轴上原点及原点左边的点表示的数是非正数C.所有的有理数都可以用数轴上的点表示 D.数轴上距离原点3个单位长度的点所表示的数是3 17.已知数轴上的点A到原点的距离为2个单位长度,那么数轴上到点A的距离是3个单位长度的点所表示的数是( )A.5 B.±5 C.±1 D.±1或±518.若b为正数,利用“<“号连接a,a-b,a+b为____.19.写出5个数(不能重复),同时满足下列三个条件:①其中三个数是非正数;②其中三个数非负数;③五个数都是有理数,这五个数可以是.20.数轴上点A表示3,点B表示-4.5,点C表示-2,则点A和点B中,距离点C较远的点是___ _.21.点A在数轴上距原点3个单位长度,且位于原点的右侧,若将点A向左移动4个单位长度,此时点A 所表示的数是____,若点B表示的数是点A开始时所表示的数的相反数,作同样的移动以后,点B所表示的数是____.22.点A、B、C、D、E在数轴上的位置如图所示,其中,B、C、E分别为相邻整数点的中点,请回答下列问题:(1)点A、B、C、D、E各表示什么数?(2)点A、B之间的距离是多少?点B、E之间的距离是多少?(3)现在把数轴的原点取在点C处,其余都不变,那么点A、B、C、D、E又分别表示什么数?23.观察下列各数12345,,,,23456---,…(1)写出第10个数;(2)写出第2019个数.24.检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A地出发,到收工时,行走记录为(单位:千米):+8,-9,+4,+7,-2,-10,+18,-3,+7,+5(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.4升,问从A地出发到收工时,共耗油多少升?25.如图,数轴上A、B两点对应的有理数都是整数,若A、B对应的有理数a、b满足b- 2a=5,那么请指出数轴上原点的位置.C决战中考26.将111111,,,,,,23456---…按一定规律排列如下:第1行 1第2行12-13第3行14-1516-第4行1718-19110-第5行111112-113114-115则第20行从左到右第10个数是 .27.在数轴任取一条长度为201913个单位长度的线段,则此线段在数轴上最多能盖住的整数点个数为( )A. 2019B.2019C.2019D.201928.小明家、学校、邮局、图书馆坐标落在一条东西走向的大街上,依次记为A、B、C、D,学校位于小明家西150米,邮局位于小明家东100米,图书馆位于小明家西400米.(1)用数轴表示A、B、C、D的位置(建议以小明家为原点);(2)一天,小明从家里先去邮局寄信后,以每分钟50米的速度往图书馆方向走了约8分钟,试问这时小明约在什么位置?距图书馆和学校各约多少米?29.如图,一条笔直的流水线上,依次有5个卡通人,它们站立的位置在数轴上依次用点M1、M2、M3、M4、M5表示.(1)点M2和M5所表示的有理数是什么?(2)点M1和M4之间的距离为多少?(3)怎样将点M3移动,使它先到达M2,再到达M5,请说明;(4)若原点是一休息游乐所,那么5个卡通人到游乐所休息的总路程为多少?2019-2020学年数学中考模拟试卷一、选择题1.如图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为2540m , 求道路的宽.如果设小路宽为x ,根据题意,所列方程正确的是( )A .(20-x )(32-x )=540B .(20-x )(32-x )=100C .(20+x )(32+x )=540D .(20+x )(32-x )=5402.16的算术平方根是( ) A .4B .﹣4C .2D .±23.在Rt ABC 中,90,C B α∠=∠=o,若BC m =,则AB 的长为( ) A.cos mαB.cos m αgC.sin m αgD.tan m αg4.一个几何体的三视图如图所示,则这个几何体是( )A. B. C. D.5.如图,已知四边形ABCO 的边AO 在x 轴上,//,BC AO AB AO ⊥,过点C 的双曲线()0ky k x=≠交OB 于D ,且:1:2OD DB =,若OBC ∆的面积等于3,则k 的值等于( )A .2B .34C .65D .2456.如图,点,D E 分别在ABC ∆的,AB AC 边上,下列条件:①AED B ∠=∠;②AE DE AB BC=;③,AD AEAC AB =其中能使ADE ∆与ACB ∆相似的是( )A .①②B .②C .①③D .②③7.如图,四边形AOBC 和四边形CDEF 都是正方形,边OA 在x 轴上,边OB 在y 轴上,点D 在边CB 上,反比例函数8y x=,在第二象限的图像经过点E ,则正方形AOBC 与正方形CDEF 的面积之差为( )A.6B.8C.10D.128.在质地和颜色都相同的三张卡片的正面分别写有-2,-1,1,将三张卡片背面朝上洗匀,从中抽出一张,并记为x ,然后从余下的两张中再抽出一张,记为y ,则点(x ,y )在直线y=-x-1上的概率为( ) A.12B.13C.23D.19.下列各式中不能用公式法分解因式的是 A .x 2-6x+9B .-x 2+y 2C .x 2+2x+4D .-x 2+2xy-y 210.如图,在平面直角坐标系中,四边形OABC 是菱形,点C 的坐标为(4,0),60AOC ∠=︒,垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度向右平移,设直线l 与菱形OABC 的两边分别交于点M ,N(点M 在点N 的上方),若OMN ∆的面积为S ,直线l 的运动时间为t 秒(04)t ≤≤,则能大致反映S 与t 的函数关系的图象是( )A. B.C. D.11.如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D,则CD的长为()A .2212a-B .212a+C .2aD .124a⎛⎫-⎪⎝⎭12.将两个等腰Rt△ADE、Rt△ABC如图放置在一起,其中∠DAE=∠ABC=90°.点E在AB上,AC与DE 交于点H,连接BH、CE,且∠BCE=15°,下列结论:①AC垂直平分DE;②△CDE为等边三角形;③tan∠BCD=ABBE;④EBCEHC33SS=;正确的个数是()A.1B.2C.3D.4二、填空题13.如图,已知tanα=12,如果F(4,y)是射线OA上的点,那么F点的坐标是______.14.抛物线y=(2x﹣1)2+t与x轴的两个交点之间的距离为4,则t的值是_____.15.世界文化遗产长城总长约为6700000m,将6700000用科学记数法表示应为_____.16.如图,在反比例函数y=2x(x>0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为1,2,3,4.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,则S1+S2+S3=___________.17.方程21=1x-的根是____.18.以下四个命题:①每一条对角线都平分一组对角的平行四边形是菱形. ②当m >0时,y =﹣mx+1与y =x两个函数都是y 随着x 的增大而减小. ③甲、乙两射击运动员分别射击10次,他们射击成绩的方差分别为S 2甲=4,S 2乙=9,这个过程中乙发挥比甲更稳定.④在一个不透明的袋子中装有标号为1,2,3,4的四个完全相同的小球,从袋中随机摸取一个然后放回,再从袋中随机地摸取一个,则两次取到的小球标号的和等于4的概率为18. 其中正确的命题是_____(只需填正确命题的序号) 三、解答题19.一服装经销商计划购进某品牌的A 型、B 型、C 型三款服装共60套,每款服装至少要购进8套,且恰好用完购服装款61000元.设购进A 型服装x 套,B 型服装y 套,三款服装的进价和预售价如下表: 服装型号 A 型 B 型 C 型 进价(元/套) 900 1200 1100 预售价(元/套)120016001300(1)如果所购进的A 型服装与B 型服装的费用不超过39000元,购进B 型服装与C 型服装的费用不超过34000元,那么购进三款服装各多少套?(2)假设所购进服装全部售出,综合考虑各种因素,该服装经销商在购进这批服装过程中需另外支出各种费用共1500元.①求出预估利润P (元)与x (套)的函数关系式;(注:预估利润P =预售总额﹣购服装款﹣各种费用) ②求出预估利润的最大值,并写出此时购进三款服装各多少套.20.已知:△AOB 和△COD 均为等腰直角三角形,∠AOB =∠COD =90°,AO =4,CO =2,接连接AD ,BC 、点H 为BC 中点,连接OH . (1)如图1所示,求证:OH =12AD 且OH ⊥AD ; (2)将△COD 绕点O 旋转到图2所示位置时,线段OH 与AD 又有怎样的关系,证明你的结论; (3)请直接写出线段OH 的取值范围.21.已知锐角△ABC ,∠ABC =45°,AD ⊥BC 于D ,BE ⊥AC 于E ,交AD 于F . (1)求证:△BDF ≌△ADC ;(2)若BD =4,DC =3,求线段BE 的长度.22.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系;(2)如果规定每天漆器笔筒的销售量不低于260件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3490元,试确定该漆器笔筒销售单价的范围.23.为了增强学生的环保意识,某校团委组织了一次“环保知识”考试,考题共10题考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)“答对10题”所对应扇形的心角为_____;(2)通过计算补全条形统计图;(3)若该校共有2000名学生参加这次“环保知识”考试,请你估计该校答对不少于8题的学生人数.24.(1)△ABC和△CDE是两个等腰直角三角形,如图1,其中∠ACB=∠DCE=90°,连结AD、BE,求证:△ACD≌△BCE.(2)△ABC和△CDE是两个含30°的直角三角形,其中∠ACB=∠DCE=90°,∠CAB=∠CDE=30°,CD <AC,△CDE从边CD与AC重合开始绕点C逆时针旋转一定角度α(0°<α<180°);①如图2,DE与BC交于点F,与AB交于点G,连结AD,若四边形ADEC为平行四边形,求BGAG的值;②若AB=10,DE=8,连结BD、BE,当以点B、D、E为顶点的三角形是直角三角形时,求BE的长.25.甲、乙两车分别从A、B两地同时出发,相向而行.甲车中途因故停车一段时间,之后以原速维续行驶到达目的地B,此时乙车同时到达目的地A,如图,是甲、乙两车离各自出发地的路程y(km)与时间x (h)的函数图象.(1)甲车的速度是km/h,a的值为;(2)求甲车在整个过程中,y与x的函数关系式;(3)直接写出甲、乙两车在途中相遇时x的值.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 A C A C B C B B C A B D二、填空题13.(4,2)14.-1615.7×10716.3 217.x=±2.18.①三、解答题19.(1)购进A型服装30套,B型服装10套,则C型服装为20套;(2)①P=500x+500;②最大值为17500元,此时购进A型服装34套,B型服装18套,C型服装8套.【解析】【分析】(1)首先设购进A型服装x套,B型服装y套,则C型服装为(60-x-y)套;根据题意可得()()900120039000120011006034000900120011006061000x y y x y x y x y ⎧+≤⎪+--≤⎨⎪++--⎩①②=③,求解不等式组即可求得答案; (2)①根据由预估利润P=预售总额-购机款-各种费用,即可求得利润P (元)与x (套)的函数关系式为:P=1200x+1600y+1300(60-x-y )-61000-1500,整理即可求得答案;②根据题意列出不等式组:8250811038x x x ≥⎧⎪-≥⎨⎪-≥⎩,解此不等式组求得x 的取值范围,然后根据①中一次函数的增减性,即可答案. 【详解】解:(1)设购进A 型服装x 套,B 型服装y 套,则C 型服装为(60﹣x ﹣y )套;由题意,得()()900120039000120011006034000900120011006061000x y y x y x y x y ⎧+≤⎪+--≤⎨⎪++--⎩①②=③,整理得:3413011320250x y y x y x +≤⎧⎪-≤-⎨⎪-⎩=,∴可得不等式组:()()3425013025011320x x x x ⎧+-≤⎪⎨--≤-⎪⎩,解得:x =30,y =10,∴购进A 型服装30套,B 型服装10套,则C 型服装为20套;(2)①由题意,得P =1200x+1600y+1300(60﹣x ﹣y )﹣61000﹣1500, 整理得:P =500x+500,∴利润P (元)与x (套)的函数关系式为:P =500x+500; ②由(1)得:y =2x ﹣50,∴购进C 型服装套数为:60﹣x ﹣y =110﹣3x ,根据题意列不等式组,得:8250811038x x x ≥⎧⎪-≥⎨⎪-≥⎩,解得29≤x≤34,∴x 范围为29≤x≤34,且x 为整数. ∵P 是x 的一次函数,k =500>0, ∴P 随x 的增大而增大.∴当x 取最大值34时,P 有最大值,最大值为17500元. 此时购进A 型服装34套,B 型服装18套,C 型服装8套. 【点睛】此题考查了一次函数与不等式组的实际应用问题.此题难度较大,解题的关键是结合图表,理解题意,求得不等式组与一次函数,然后根据函数的性质求解,注意函数思想的应用.20.(1)见解析;(2)结论:OH=12AD,OH⊥AD.理由见解析;(3)1≤OH≤3.【解析】【分析】(1)只要证明△AOD≌△BOC,即可解决问题;(2)延长HO交AD于K.延长OH到M,使得HM=OH,连接BM,CM.。

完整版)有理数专题训练

完整版)有理数专题训练

完整版)有理数专题训练专题一有理数的概念及其应用例1:已知a,b互为相反数,c,d互为倒数,x的绝对值是2,求(a+b+c*d)*m-cd的值。

解:根据题意可得a=-b,c=1/d,|x|=2,代入原式得:a+b+c*d)*m-cd=(0+c*d)*m-cd=cd*(m-1)练:已知a,b互为相反数,c,d互为倒数,|x|=3,求代数式a+b-cdx+x/3的值。

解:根据题意可得a=-b,c=1/d,|x|=3,代入原式得:a+b-cdx+x/3=-2b-cd*x+x/3=-2b-cd*3+x/3=-2b-3c+x/3巩固:已知a,b互为相反数,c,d互为倒数,x的平方等于4,试求x^2-cd*x+(a+b)*2010-cd*2009的值。

解:根据题意可得a=-b,c=1/d,x^2=4,代入原式得:x^2-cd*x+(a+b)*2010-cd*2009=4-cd*x-2b+2010c-2009cd=2010c-2b-3cd专题二非负数的性质例2:若x+1+(y-2)^2=0,求xy的值。

解:由非负数的性质可知,(y-2)^2>=0,所以x+1<=0,即x<=-1.又因为x+1+(y-2)^2=0,所以(y-2)^2=-(x+1)<=0,所以y=2.因此,xy=-2.练:已知有理数满足a-1+b+3+3c-1=0,求(a*b*c)^(1/7)*2011的值。

解:整理得a+b+3c=1,代入原式得:a*b*c)^(1/7)*2011=(a*b*c)^(1/7)*(a+b+3c)^2011=(a*b*c)^(1/7)巩固:若x-1与(y+2)^2互为相反数,求x^2015+y^3的值。

解:由非负数的性质可知,(y+2)^2>=0,所以x-1<=0,即x<=1.又因为x-1=-(y+2)^2,所以(y+2)^2=1-x<=2,所以y<=sqrt(2)-2.因此,x^2015+y^3<=1+(sqrt(2)-2)^3,具体值需要进一步计算。

中考数学专题训练第1讲有理数(知识点梳理)

中考数学专题训练第1讲有理数(知识点梳理)

有理数知识点梳理考点01 正数和负数1.正数:像1,2,3,4,0.1等这样大于0的数叫作正数。

正数的前面的“+”可以省略不写。

2.负数:像-0.2.-2.-6这样在正数前面加上符号“-”(负号)的数叫作负数。

3.注意事项:(1)0既不是正数也不是负数.0是正数和负数的分界线;(2)对于正数和负数.不能简单地理解为带“+”号的数就是正数.带负号的数就是负数.要根据正负数的含义.看其是符合正数的定义还是符合负数的定义。

4.正负习惯:习惯上把零上、增加、前进、海平面以上、收入、向南、盈利、上升等记为正.把与它们意义相反的量记为负。

考点02 有理数与数轴1.有理数定义:正整数、0、负整数统称整数.正分数、负分数统称分数.整数和分数统称有理数。

2.有理数的分类3.注意:(1)整数可以看成是分母为1的分数.所以有理数都可以写成分数的形式;有限小数和无限循环小数都可以写成分数形式.所以有限小数和无限循环小数都是有理数。

(2)正数和零统称为非负数;负数和零统称为非正数。

4.零的作用(1)表示数的性质.例如0是自然数;(2)表示没有.例如有5个本子.用+5表示.没有本子用0表示;(3)表示正数与负数的分界。

5.数轴定义:规定了原点、正方向和单位长度的直线叫作数轴。

数轴的三要素即原点、正方向和单位长度。

6.数轴上的点与有理数有理数都可以用数轴上的点来表示.任何一个有理数都能在数轴上找到与它对应的点.而且是唯一的点.但数轴上的点不一定都是有理数。

考点03 相反数和绝对值1.相反数的代数意义:只有符号不同的两个数叫作互为相反数.把其中一个数叫作另一个数的相反数。

0的相反数是0.2.相反数的几何意义:两个互为相反数的数在数轴上所表示的点在原点的两侧且到原点的距离相等;这两点关于原点对称。

3.多重符号的化简:数字前面的“-”号的个数若有偶数个.化简结果为正;有奇数个时.花间结果为负。

4.相反数的性质:如果b a 、互为相反数.那么0=+b a 或b a -=或a b -=;反过来.如果0=+b a .那么b a 、互为相反数。

中考数学试题分类汇编 七上 第2章《有理数》(1)有理数的有关概念 北师大版

中考数学试题分类汇编 七上 第2章《有理数》(1)有理数的有关概念 北师大版

北师版数学七年级上册第2章《有理数》(1)有理数的有关概念考点一:有理数1.(xx∙葫芦岛)如果温度上升10℃记作+10℃,那么温度下降5℃记作()A.+10℃ B.﹣10℃C.+5℃ D.﹣5℃【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负,直接得出结论即可.【解答】解:如果温度上升10℃记作+10℃,那么下降5℃记作﹣5℃;故选:D.2.(xx∙绍兴)如果向东走2m记为+2m,则向西走3m可记为()A.+3m B.+2m C.﹣3m D.﹣2m【分析】根据正数和负数表示相反意义的量,向东走记为正,可得向西走的表示方法.【解答】解:若向东走2m记作+2m,则向西走3m记作﹣3m,故选:C.3.(xx∙遵义)如果电梯上升5层记为+5.那么电梯下降2层应记为()A.+2 B.﹣2 C.+5 D.﹣5【分析】直接利用电梯上升5层记为+5,则电梯下降记为负数,进而得出答案.【解答】解:∵电梯上升5层记为+5,∴电梯下降2层应记为:﹣2.故选:B.4.(xx∙重庆)下列四个数中,是正整数的是()A.﹣1 B.0 C. D.1【分析】正整数是指既是正数还是整数,由此即可判定求解.【解答】解:A、﹣1是负整数,故选项错误;B、0是非正整数,故选项错误;C、是分数,不是整数,错误;D、1是正整数,故选项正确.故选:D.5.(xx∙曲靖)如果水位升高2m时,水位的变化记为+2m,那么水位下降3m时,水位的变化情况是.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵水位升高2m时水位变化记作+2m,∴水位下降3m时水位变化记作﹣3m.故答案是:﹣3m.考点二:数轴6.(xx∙乐山)如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为.【分析】先根据已知条件可以确定线段AB的长度,然后根据点B、点C关于点A对称,设设点C所表示的数为x,列出方程即可解决.【解答】解:设点C所表示的数为x,∵数轴上A、B两点表示的数分别为﹣1和4,点B关于点A 的对称点是点C,∴AB=4﹣(﹣1),AC=﹣1﹣x,根据题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6.故答案为:﹣6.考点三:相反数7.(xx∙连云港)﹣8的相反数是()A.﹣8 B. C.8 D.﹣【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣8的相反数是8,故选:C.8.(xx∙泰州)﹣(﹣2)等于()A.﹣2 B.2 C. D.±2【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣(﹣2)=2,故选:B.9.(xx∙徐州)4的相反数是()A. B.﹣ C.4 D.﹣4【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:4的相反数是﹣4,故选:D.10.(xx∙临安区)如果a与﹣2互为相反数,那么a等于()A.﹣2 B.2 C.﹣ D.【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣2的相反数是2,那么a等于2.故选:B.11.(xx∙河南)﹣的相反数是()A.﹣ B. C.﹣ D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:B.12.(xx∙海南)xx的相反数是()A.﹣xx B.2018 C.﹣ D.【分析】直接利用相反数的定义分析得出答案.【解答】解:xx的相反数是:﹣xx.故选:A.13.(xx∙无锡)﹣2的相反数的值等于.【分析】根据相反数的定义作答.【解答】解:﹣2的相反数的值等于 2.故答案是:2.考点四:绝对值14.(xx∙青岛)如图,点A所表示的数的绝对值是()A.3 B.﹣3 C. D.﹣【分析】根据负数的绝对值是其相反数解答即可.【解答】解:|﹣3|=3,故选:A.15.(xx∙杭州)|﹣3|=()A.3 B.﹣3 C. D.﹣【分析】根据绝对值的定义,负数的绝对值是其相反数.【解答】解:|﹣3|=3.故选:A.16.(xx∙哈尔滨)﹣的绝对值是()A. B. C.﹣ D.﹣【分析】计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:|﹣|=,故选:A.17.(xx∙镇江)﹣8的绝对值是.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣8的绝对值是8.18.(xx∙云南)﹣1的绝对值是.【分析】第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣1|=1,∴﹣1的绝对值是1.19.(xx∙南京)写出一个数,使这个数的绝对值等于它的相反数:.【分析】根据绝对值的意义求解.【解答】解:一个数的绝对值等于它的相反数,那么这个数0或负数.故答案为:0或任意一个负数考点五:有理数大小比较20.(xx∙山西)下面有理数比较大小,正确的是()A.0<﹣2 B.﹣5<3 C.﹣2<﹣3 D.1<﹣4【分析】直接利用有理数比较大小的方法分别比较得出答案.【解答】解:A、0>﹣2,故此选项错误;B、﹣5<3,正确;C、﹣2>﹣3,故此选项错误;D、1>﹣4,故此选项错误;故选:B.21.(xx∙宁波)在﹣3,﹣1,0,1这四个数中,最小的数是()A.﹣3 B.﹣1 C.0 D.1【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得﹣3<﹣1<0<1,最小的数是﹣3,故选:A.22.(xx∙重庆模拟)在﹣7,5,0,﹣3这四个数中,最大的数是()A.﹣7 B.5 C.0 D.﹣3【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣7<﹣3<0<5,即在﹣7,5,0,﹣3这四个数中,最大的数是:5.故选:B.23.(xx∙桂林)比较大小:﹣3 0.(填“<”,“=”,“>”)【分析】根据负数小于0可得答案.【解答】解:﹣3<0,故答案为:<.。

中考数学专题复习1实数的运算(原卷版)

中考数学专题复习1实数的运算(原卷版)

实数的运算复习考点攻略考点01 有理数1.整数和分数统称为有理数。

(有限小数与无限循环小数都是有理数。

)2.正整数、0、负整数统称为整数。

正分数、负分数统称分数。

3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

4.正数和负数表示相反意义的量。

【注意】0既不是正数,也不是负数。

【例1】.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升【例2】已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克收2元。

圆圆在该快递公司寄一件8千克的物品,需要付费( )。

A.17元B.19元C.21元D.23元考点02 数轴1.数轴的三要素:原点、正方向、单位长度。

数轴是一条直线。

2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。

【例3】如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB的中点,则点C 表示的数是()A.﹣0.5B.﹣1.5C.0D.0.5考点03 相反数、绝对值和倒数1.在数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:a。

2.一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.即(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩3. 乘积为1的两个数互为倒数。

正数的倒数为正数,负数的倒数为负数,0没 有倒数。

倒数是本身的只有1和-1。

4. 倒数性质:(1)若a 与b 互为倒数,则a·b=1;反之,若a·b=1,则a 与b 互为倒数。

(2)若a 与b 互为负倒数,则a·b=-1;反之,若a·b= -1则a 与b 互为倒数。

中考数学一轮复习 专题01 有理数(基础训练)(原卷版)

中考数学一轮复习 专题01 有理数(基础训练)(原卷版)

专题01 有理数【基础训练】一、单选题1.(2021·西宁市教育科学研究院中考真题)中国人最先使用负数,魏晋时期的数学家刘徽在其著作《九章算术注》中,用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正,黑色为负).如图1表示的是(+2)+(-2),根据这种表示法,可推算出图2所表示的算式是( )A .()()36+++B .()()36++-C .()()36-++D .()(36)-+-2.(2021·山东滨州市·中考真题)在数轴上,点A 表示-2.若从点A 出发,沿数轴的正方向移动4个单位长度到达点B ,则点B 表示的数是( )A .-6B .-4C .2D .4 3.(2021·广西百色市·中考真题)﹣2022的相反数是( )A .﹣2022B .2022C .±2022D .2021 4.(2021·广西桂林市·中考真题)有理数3,1,﹣2,4中,小于0的数是( ) A .3 B .1 C .﹣2 D .4 5.(2021·湖北荆门市·中考真题)2021的相反数的倒数是( ).A .2021-B .2021C .12021-D .12021 6.(2021·内蒙古呼和浩特市·中考真题)几种气体的液化温度(标准大气压)如表:A .氦气B .氮气C .氢气D .氧气 7.(2021·湖北襄阳市·中考真题)下列各数中最大的是( )A .3-B .2-C .0D .18.(2021·山东济宁市·中考真题)若盈余2万元记作2+万元,则2-万元表示( ) A .盈余2万元 B .亏损2万元 C .亏损2-万元 D .不盈余也不亏损 9.(2021·广东深圳市·中考真题)计算|1tan 60|-︒的值为( )A .1B .0C 1D .1 10.(2021·湖北鄂州市·中考真题)实数6的相反数等于( )A .6-B .6C .6±D .1611.(2021·湖北恩施土家族苗族自治州·中考真题)-6的相反数是( )A .-6B .6C .6±D .1612.(2021·黑龙江齐齐哈尔市·中考真题)五张不透明的卡片,正面分别写有实数1-,115 5.06006000600006……(相邻两个6之间0的个数依次加1).这五张卡片除正面的数不同外其余都相同,将它们背面朝上混合均匀后任取一张卡片,取到的卡片正面的数是无理数的概率是( )A .15B .25C .35D .4513.(2021·广东广州市·中考真题)如图,在数轴上,点A 、B 分别表示a 、b ,且0a b +=,若6AB =,则点A 表示的数为( )A .3-B .0C .3D .6-14.(2021·广东广州市·中考真题)下列运算正确的是( )A .()22--=-B .3=C .()22346a b a b =D .(a -2)2=a 2-415.(2021·贵州安顺市·中考真题)如图,已知数轴上,A B 两点表示的数分别是,a b ,则计算b a -正确的是( )A .b a -B .-a bC .a b +D .a b --16.(2021·内蒙古中考真题)下列运算结果中,绝对值最大的是( )A .1(4)+-B .4(1)-C .1(5)-- D17.(2021·黑龙江大庆市·中考真题)下列说法正确的是( )A .||x x <B .若|1|2x -+取最小值,则0x =C .若11x y >>>-,则||||x y <D .若|1|0x +≤,则1x =-18.(2021·河北中考真题)如图,将数轴上-6与6两点间的线段六等分,这五个等分点所对应数依次为1a ,2a ,3a ,4a ,5a ,则下列正确的是( )A .30a >B .14a a =C .123450a a a a a ++++=D .250a a +<19.(2021·湖南邵阳市·中考真题)如图,若数轴上两点M ,N 所对应的实数分别为m ,n ,则m n +的值可能是( )A .2B .1C .1-D .2-20.(2021·河北中考真题)能与3645⎛⎫-- ⎪⎝⎭相加得0的是( ) A .3645-- B .6354+ C .6354-+ D .3645-+ 21.(2021·四川达州市·中考真题)﹣23的相反数是( ) A .﹣32 B .﹣23 C .23 D .3222.(2021·浙江宁波市·中考真题)在﹣3,﹣1,0,2这四个数中,最小的数是( ) A .﹣3 B .﹣1 C .0 D .223.(2021·安徽中考真题)9-的绝对值是( )A .9B .9-C .19D .19- 24.(2021·四川南充市·中考真题)数轴上表示数m 和2m +的点到原点的距离相等,则m 为( )A .2-B .2C .1D .1-25.(2021·山东枣庄市·中考真题)如图,数轴上有三个点A﹣B﹣C ,若点A﹣B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .4二、填空题 26.(2021·辽宁盘锦市·2________27.(2021·江苏常州市·中考真题)数轴上的点A 、B 分别表示3-、2,则点__________离原点的距离较近(填“A ”或“B ”).28.(2021·湖北随州市·()012021π+-=______.29.(2021·湖北鄂州市·中考真题)已知实数a 、b30b +=,若关于x 的一元二次方程20x ax b -+=的两个实数根分别为1x 、2x ,则1211x x +=_____________. 30.(2021·甘肃兰州市·中考真题)《九章算术》中注有“今两算得失相反,要令正负以名之”大意为:今有两数若其意义相反,则分别叫做正数与负数.若水位上升1m 记作1m +,则下降2m 记作______m .三、解答题31.(2021·广西桂林市·中考真题)计算:|﹣3|+(﹣2)2.32.(2021·河北中考真题)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进m 本甲种书和n 本乙种书,共付款Q 元.(1)用含m ,n 的代数式表示Q ;(2)若共购进4510⨯本甲种书及3310⨯本乙种书,用科学记数法表示Q 的值.33.(2021·西宁市教育科学研究院中考真题)计算: 121(2)|3|2-⎛⎫-+-- ⎪⎝⎭. 34.(2021·山西中考真题)(1)计算:()()24311822⎛⎫-⨯-+-⨯ ⎪⎝⎭. (2)下面是小明同学解不等式的过程,请认真阅读并完成相应任务.2132132x x -->- 解:()()2213326x x ->--第一步42966x x ->--第二步49662x x ->--+第三步510x ->-第四步2x >第五步任务一:填空:﹣以上解题过程中,第二步是依据______________(运算律)进行变形的;﹣第__________步开始出现错误,这一步错误的原因是________________;任务二:请直接写出该不等式的正确解集.35.(2021·浙江台州市·中考真题)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.。

中考数学 有理数解答题(附答案)(1)

中考数学 有理数解答题(附答案)(1)

中考数学有理数解答题(附答案)(1)一、解答题1.如图,在数轴上,点为原点,点表示的数为,点表示的数为,且满足(1)A、B两点对应的数分别为 ________, ________;(2)若将数轴折叠,使得点与点重合,则原点与数________表示的点重合.(3)若点A、B分别以4个单位/秒和2个单位/秒的速度相向而行,则几秒后A、B两点相距2个单位长度?(4)若点A、B以(3)中的速度同时向右运动,点从原点以7个单位/秒的速度向右运动,设运动时间为秒,请问:在运动过程中,的值是否会发生变化?若变化,请用表示这个值;若不变,请求出这个定值.2.如图,在数轴上点A表示的有理数为,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度由运动,同时,点Q从点B出发以每秒1个单位长度的速度由运动,当点Q到达点A时P、Q两点停止运动,设运动时间为单位:秒.(1)求时,求点P和点Q表示的有理数;(2)求点P与点Q第一次重合时的t值;(3)当t的值为多少时,点P表示的有理数与点Q表示的有理数距离是3个单位长度?3.已知数轴上的两点A、B所表示的数分别是a和b,O为数轴上的原点,如果有理数a,b 满足(1)求a和b的值;(2)若点P是一个动点,以每秒5个单位长度的速度从点A出发,沿数轴向右运动,请问经过多长时间,点P恰巧到达线段AB的三等分点?(3)若点C是线段AB的中点,点M以每秒3个单位长度的速度从点C开始向右运动,同时点P以每秒5个单位长度的速度从点A出发向右运动,点N以每秒4个单位长度的速度从点B开始向左运动,点P与点M之间的距离表示为PM,点P与点N之间的距离表示为PN,是否存在某一时刻使得PM+PN=12?若存在,请求出此时点P表示的数;若不存在,请说明理由.4.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,求a-b=________,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当a=﹣4,b=8,点M在A,B之间,且AM=3BM时,求m的值.②当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值.5.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=________.(2)找出所有符合条件的整数x,使得|x+5|+|x-2|=7这样的整数是________.(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有写出最小值,如果没有说明理由.6.在数轴上有A、B、C、D四个点,分别对应的数为a,b,c,d,且满足a,b到点-7的距离为1 (a<b),且(c﹣12)2与|d﹣16|互为相反数.(1)填空:a=________、b=________、c=________、d=________;(2)若线段AB以3个单位/秒的速度向右匀速运动,同时线段CD以1单位长度/秒向左匀速运动,并设运动时间为t秒,A、B两点都运动在CD上(不与C,D两个端点重合),若BD=2AC,求t得值;(3)在(2)的条件下,线段AB,线段CD继续运动,当点B运动到点D的右侧时,问是否存在时间t,使BC=3AD?若存在,求t得值;若不存在,说明理由.7.(1)阅读下面材料:点、在数轴上分别表示实数,,、两点之间的距高表示为当、两点中有一点在原点时,不妨设点在原点,如图1,;当、都不在原点时,①如图2,点、都在原点的右侧,;②如图3,点、都在原点的左侧,;③如图4,点、在原点的两侧,;(1)回答下列问题:①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;③当代数式取最小值时,相应的的取值范围是________;④求的最小值,提示:.8.阅读材料:如图①,若点B把线段分成两条长度相等的线段AB和BC,则点B叫做线段AC的中点.回答问题:(1)如图②,在数轴上,点A所表示的数是﹣2,点B所表示的数是0,点C所表示的数是3.①若A是线段DB的中点,则点D表示的数是________;②若E是线段AC的中点,求点E表示的数________.(2)在数轴上,若点M表示的数是m,点N所表示的数是n,点P是线段MN的中点.①若点P表示的数是1,则m、n可能的值是________(填写符合要求的序号);(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5;(iv)m=﹣1,n=2②直接用含m、n的代数式表示点P表示的数________.9.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是(A,B)的好点(点C在线段AB上).例如,如图1,点A表示的数为-1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的好点,但点D是(B,A)的好点.知识运用:如图2,M、N为数轴上两点,点M所表示的数为-2,点N所表示的数为4.(1)数________所表示的点是(M,N)的好点;(2)如图3,A、B为数轴上两点,点A所表示的数为-20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的好点?10.已知a是最大的负整数,b、c满足,且a,b,c分别是点A,B,C在数轴上对应的数.(1)求a,b,c的值,并在数轴上标出点A,B,C;(2)若动点P从C出发沿数轴正方向运动,点P的速度是每秒2个单位长度,运动几秒后,点P到达B点?(3)在数轴上找一点M,使点M到A,B,C三点的距离之和等于13,请直接写出所有点M对应的数.(不必说明理由)11.观察下列等式:第1个等式:a1=,第2个等式:a2=,第3个等式:a3=,…请解答下列问题:(1)按以上规律列出第5个等式:a5=________=________;(2)用含有n的代数式表示第n个等式:a n=________=________(n为正整数);(3)求a1+a2+a3+…+a2019的值.12.操作探究:小聪在一张长条形的纸面上画了一条数轴(如图所示),(1)操作一:折叠纸面,使1表示的点与−1的点重合,则−3的点与________表示的点重合;(2)操作二:折叠纸面,使−2表示的点与6表示的点重合,请你回答以下问题:① −5表示的点与数()表示的点重合;② 若数轴上A、B两点之间距离为20,其中A在B的左侧,且A、B两点经折叠后重合,求A、B两点表示的数各是多少③ 已知在数轴上点M表示的数是m,点M到第②题中的A、B两点的距离之和为30,求m的值。

2023年中考数学专题复习 专题01 有理数的运算(教师版含解析)

2023年中考数学专题复习 专题01 有理数的运算(教师版含解析)

专题01有理数的运算一、有理数的概念1.有理数的概念:整数和分数统称有理数⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

2.有理数大小的比较(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.二、有理数的运算1.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).2.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).3.有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.4.有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac .5.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a. 6.有理数乘方的法则: (1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数; 注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b -a)n ,当n 为正偶数时: (-a)n =a n 或 (a -b)n =(b -a)n . 7.有理数混合运算法则:先乘方,后乘除,最后加减. 三、相反数、绝对值和倒数的概念 1.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 2.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;3.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么a 的倒数是a1; 若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 四、乘方 1.乘方的定义(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;2.科学记数法:把一个大于10的数记成a×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.3.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.4.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.【例题1】(2020•新疆)下列各数中,是负数的为( ) A .﹣1 B .0 C .0.2D .12【答案】A【解析】利用正数与负数的定义判断即可.﹣1是负数;0既不是正数也不是负数;0.2是正数;12是正数. 【对点练习】下列各数中,不是负数的是( ) A .−2 B .3 C . −58 D .−0.10【答案】B【解析】利用负数的定义判断即可得到结果. A.−2是负数,故本选项不符合题意; B.3是正数,不是负数,故本选项符合题意;是负数,故本选项不符合题意; D.−0.10是负数,故本选项不符合题意。

专题1有理数及其运算

专题1有理数及其运算

●题型三 有理数的大小比较 【典例 3】 把 32,(-2)3,0,-12,-(2-5),+(-1)表示在数轴上, 并将它们按从小到大的顺序排列(用“<”连接). 解:32=9,(-2)3=-8,-12=12,-(2-5)=3,+(-1)=-1. 在数轴上表示如答图所示:
按从小到大的顺序排列为(-2)3<+(-1)<0<-12<-(2-5)<32.
【变式5】 一件商品的原售价为2 000元,销售时先提价10%,再降价
10%,则现在的售价与原售价相比( B )
A. 提高了20元
B. 减少了20元
C. 提高了10元
D. 没有变化
【解析】 2 000×(1+10%)(1-10%)-2 000=-20(元),即现在的售价
与原售价相比减少了20元.来自题型六 近似数与科学记数法
【变式3-1】 a,b是有理数,它们在数轴上的对应点的位置如图所示.
把a,-a,b,-b按照由小到大的顺序排列,正确的是( B )
A.-b<-a<b<a B.-a<b<-b<a C.-a<-b<b<a D.-b<-a<a<b 【解析】 ∵由数轴得,b<0<a,|b|<|a|, ∴0<-b<a,-a<b<0, ∴-a<b<-b<a.
(3)-32×31×(-5)2×-35-240÷(-4)×14. 解:原式=-9×13×(-15+15)=0. 【点悟】 有理数的混合运算,要注意明确运算顺序:先算乘方,再算乘 除,最后算加减;同级运算,应按从左到右的顺序进行;如有括号,先 进行括号里的运算.

【变式 4-1】
用分配律计算41-38-112×-34,去括号后正确的是(
【典例6】 某自动控制器的芯片可植入2 020 000 000 粒晶体管,

专题01 有理数重难点题型分类(解析版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版)

专题01 有理数重难点题型分类(解析版)-初中数学七年级上学期重难点题型分类高分必刷题(人教版)

专题01 高分必刷题-有理数重难点题型分类(解析版)题型一有理数概念与分类1.下列语句中,正确的是()A.平方等于它本身的数只有1B.倒数等于它本身的数只有1C.相反数等于它本身的数只有0D.绝对值等于它的本身的数只有0【解答】解:A、平方等于它本身的数只有0和1,故本选项错误;B、倒数等于它本身的数只有1和﹣1,故本选项错误;C、相反数等于它本身的数只有0,故本选项正确;D、绝对值等于它的本身的数是0和正数,故本选项错误.故选:C.2.下列说法中正确的是()A.0是最小的数B.最大的负有理数是﹣1C.绝对值等于它本身的数是正数D.互为相反数的两个数和为0【解答】解:∵负数比0小,∴答案A错误;∵没有最大的负有理数,∴答案B错误;∵绝对值等于它本身的数是非负数,∴答案C错误;而互为相反数的两个数和为0是正确的故选:D.3.下列说法错误的有()①最大的负整数是﹣1;②绝对值是本身的数是正数;③有理数分为正有理数和负有理数;④数轴上表示﹣a的点一定在原点的左边;⑤在数轴上7与9之间的有理数是8.A.1个B.2个C.3个D.4个【解答】解:①最大的负整数是﹣1,故①正确;②绝对值是它本身的数是非负数,故②错误;③有理数分为正有理数、0、负有理数,故③错误;④a<0时,﹣a在原点的右边,故④错误;⑤在数轴上7与9之间的有理数有无数个,故⑤错误;故选:D.4.7,﹣9,﹣301,31.7,﹣3.05,+2004,0解:负数有:{};分数有:{};非负整数有:{}.【解答】解:负数有:{﹣9,﹣301,﹣3.05…};分数有:{31.7,﹣3.05…};非负整数有:{7,+2004,0…}.故答案为:﹣9,﹣301,﹣3.05…;31.7,﹣3.05…;7,+2004,0….5.把下列各数分别填入相应的大括号里:﹣7,3.5,﹣3.1415,π,0,2317,0.03,﹣3.5,10,﹣0.,﹣2.5.自然数集合{…};整数集合{…};正分数集合{…};非正数集合{…};有理数集合{…}.【解答】解:自然数集合{ 0,10};整数集合{﹣7,0,10};正分数集合{ 3.5,,0.03};非正数集合{﹣7,﹣3.1415,0,﹣,﹣0.,﹣};有理数集合{﹣7,3.5,﹣3.1415,0,,0.03,﹣3,10,﹣0.,﹣}.题型二相反数与倒数6.下列说法:①若a、b互为相反数,则a+b=0;①若a+b=0,则a、b互为相反数;①若a、b互为相反数,则ab=﹣1;①若ab=﹣1,则a、b互为相反数.其中正确的结论有()A.1个B.2个C.3个D.4个【解答】解:①∵只有符号不同的两个数叫做互为相反数,∴若a、b互为相反数,则a+b =0,故本小题正确;②∵a+b=0,∴a=﹣b,∴a、b互为相反数,故本小题正确;③∵0的相反数是0,∴若a=b=0时,﹣无意义,故本小题错误;④∵=﹣1,∴a=﹣b,∴a、b互为相反数,故本小题正确.故选:C.7.一个数的倒数的相反数是135,则这个数是.【解答】解:3的相反数是﹣3, 所以这个数是1÷(﹣3)=﹣,故答案为:﹣.8.13-的倒数是 ,相反数等于本身的数是 ,倒数等于本身的数是 . 【解答】解:﹣的倒数是:﹣3, 相反数等于本身的数是:0; 倒数等于本身的数是:±1. 故答案为:﹣3;0;±1.9.已知a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是5,n 是最大的负整数,求代数式2019(a +b )﹣4cd +2mn 的值.【解答】解:∵a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是5,n 是最大的负整数, ∴a +b =0,cd =1,m =±5,n =﹣1,当m =5时,2019(a +b )﹣4cd +2mn =2019×0﹣4×1+2×5×(﹣1)=0﹣4+(﹣10)=﹣14;当m =﹣5时,2019(a +b )﹣4cd +2mn =2019×0﹣4×1+2×(﹣5)×(﹣1)=0﹣4+10=6;由上可得,代数式2019(a +b )﹣4cd +2mn 的值是﹣14或6. 10.已知2a 与b 互为倒数,c 与2d 互为相反数,|x |=2,求4ab +2c +d +2x的值. 【解答】解:∵2a 与b 互为倒数,∴2ab =1,∴4ab =2;∵c 与互为相反数,∴c +=0,∴2c +d =0;∵|x |=2,x =±2,∴当x =2时,4ab +2c +d +=2×1+0+1=3; 当x =﹣2时,4ab +2c +d +=2×1+0﹣1=1.11.已知:a ,b 互为相反数,c ,d 互为倒数,x 的绝对值是2 (1)a +b = ,cd = ,x = ; (2)求代数式2x 2﹣(a +b )+x cd ﹣22a b cd+的值. 【解答】解:(1)∵a ,b 互为相反数,c ,d 互为倒数,x 的绝对值是2,∴a +b =0、cd =1,x =±2; (2)原式=2×(±2)2+﹣=2×4+2﹣0=8+2=10.12.已知a ,b 为互为倒数,c ,d 为互为相反数,x 的绝对值为3,n 是最小的正整数,m 是最大的负整数,试求ab +4c dn++x ﹣m 2014的值. 【解答】解:根据题意得ab =1,c +d =0,|x |=3,n =1,m =﹣1,所以原式=1++x﹣(﹣1)2014=1+0+x ﹣1=x ,当x =3时,原式=3.当x =﹣3时,原式=﹣3.题型三 绝对值的概念及化简13.(1)绝对值不大于3的所有整数是 ; (2)已知|x |=2,则x = .【解答】解:(1)不大于3的绝对值整数有0,1,2,3,因为互为相反数的两个数的绝对值相等,所以绝对值不大于3的整数是0,±1,±2,±3,共7个;故答案为:0,±1,±2,±3; (2)∵|x |=2,∴x =±2,故答案为:±2.14.若|a |=3,|b |=2,且a ﹣b <0,则a +b 的值等于 .【解答】解:∵|a |=3,|b |=2,∴a =±3,b =±2,∵a ﹣b <0,∴a <b ,∴a =﹣3,b =±2,∴a +b =﹣3+2=﹣1,或a +b =﹣3+(﹣2)=﹣5,综上所述,a +b 的值等于﹣1或﹣5. 故答案为:﹣1或﹣5.15.已知|a ﹣2|+2(b 3)+=0,则a+b 的值等于 .【解答】解:∵(b +3)2≥0,|a ﹣2|≥0,而|a ﹣2|+(b +3)2=0,∴b +3=0,a ﹣2=0, ∴b =﹣3且a =2.∴a +b =2+(﹣3)=﹣1.故答案为:﹣1. 16.若a ,b 为有理数,下列结论正确的是( ) A .如果a >b ,那么|a |>|b | B .如果|a |≠|b |,那么a ≠bC .如果a >b ,则a 2>b 2D .如果a 2>b 2,则a >b【解答】解:A 、当a =1,b =﹣3时,|a |=1,|b |=3,此时|a |<|b |,故本选项错误; B 、∵|a |≠|b |,∴①a ≠b ,②a ≠﹣b ,故本选项正确;C 、当a =1,b =﹣3时,a 2=1,b 2=9,此时a 2<b 2,故本选项错误;D 、当a =﹣3,b =1时,a 2=9,b 2=1,此时a 2>b 2,但a <b ,故本选项错误; 故选:B .17.有理数a,b,c表示的点在数轴上的位置如图所示,则|a+c|﹣|c﹣b|﹣2|b+a|=()A.3a﹣b B.﹣a﹣b C.a+3b﹣2c D.a﹣b﹣2c【解答】解:∵a<b<0,c>0,|a|>|b|>|c|,∴a+c<0,c﹣b>0,a+b<0,∴原式=﹣(a+c)﹣(c﹣b)+2(b+a)=﹣a﹣c﹣c+b+2b+2a=a+3b﹣2c.故选:C.18.若1<x<2,则2121x x xx x x---+--的值是()A.﹣3B.﹣1C.2D.1【解答】解:∵1<x<2,∴x﹣2<0,x﹣1>0,x>0,∴原式=﹣1+1+1=1,故选:D.19.已知|a|=3,|b|=2,且ab<0,求a+b的值.【解答】解:∵|a|=3,|b|=2,∴a=±3,b=±2,∵ab<0,∴当a=3时,b=﹣2,则a+b=1,当a=﹣3时,b=2,则a+b=﹣1.20.已知:|a|=5,|b|=3,(1)求a+b的值.(2)若|a+b|=a+b,求a﹣b的值.【解答】解:(1)∵|a|=5,|b|=3,∴a=±5,b=±3,当a=5,b=3时,a+b=8;当a=5,b=﹣3时,a+b=2;当a=﹣5,b=3时,a+b=﹣2;当a=﹣5,b=﹣3时,a+b =﹣8.(2)由|a+b|=a+b可得,a=5,b=3或a=5,b=﹣3.当a=5,b=3时,a﹣b=2,当a=5,b=﹣3时,a﹣b=8.21.已知有理数ab<0,a+b>0,且|a|=2,|b|=3,求|a﹣2|+2b的值.【解答】解:∵|a|=2,|b|=3,∴a=±2,b=±3.∵ab<0,∴a=﹣2,b=3,或a=2,b =﹣3.又∵a+b>0,∴a=﹣2,b=3,∴|a﹣2|+2b=4+6=10.22.已知有理数a,b,c在数轴上的位置如图所示,且|a|=|b|.(1)a+b=,ab=;(2)判断b+c,a﹣c,(b+c)(a﹣b)的符号;(3)求a b ac aba a ac ab+-+的值.【解答】解:(1)由题意可得:a >0,b <0,|a |=|b |,∴a +b =0,=﹣1;故答案为:0,﹣1;(2)由数轴可得:c <b <0<a ,∴b +c <0,a ﹣c >0,∵a ﹣b >0,∴(b +c )(a ﹣b )<0; (3)∵c <b <0<a ,|a |=|b |,∴+﹣+=1+1﹣(﹣1)+(﹣1)=2.23.有理数a ,b ,c 在数轴上的位置如图所示,且表示数a 的点、数b 的点与原点的距离相等.(1)用“>”“<”或“=”填空:b 0,a +b 0,a ﹣c 0,b ﹣c 0; (2)|b ﹣1|+|a ﹣1|= ; (3)化简|a +b |+|a ﹣c |﹣|b |+|b ﹣c |.【解答】解:∵b <﹣1<c <0<1<a ,|a |=|b |,∴(1)b <0,a +b =0,a ﹣c >0,b ﹣c <0;(2)|b ﹣1|+|a ﹣1|=﹣b +1+a ﹣1=a ﹣b ;(3)|a +b |+|a ﹣c |﹣|b |+|b ﹣c |=0+(a ﹣c )+b ﹣(b ﹣c )=0+a ﹣c +b ﹣b +c =a . 故答案为:<,=,>,<;a ﹣b . 24.有理数x ,y 在数轴上对应点如图所示:(1)在数轴上表示﹣x ,|y |;(2)试把x ,y ,0,﹣x ,|y |这五个数从小到大用“<”号连接,(3)化简:|x +y |﹣|y ﹣x |+|y |.【解答】解:(1)如图,;(2)根据图象,﹣x <y <0<|y |<x ;(3)根据图象,x >0,y <0,且|x |>|y |,∴x +y >0,y ﹣x <0,∴|x +y |﹣|y ﹣x |+|y |=x +y +y ﹣x ﹣y =y .25.阅读下列材料:,00,0,0x x x x x x >⎧⎪==⎨⎪-<⎩,即当x >0时,1x x x x ==;当x <0时,1x x x x -==-.用这个结论可以解决下面问题:(1)已知a、b是有理数,当ab≠0时,求a ba b+的值.(2)已知a、b是有理数,当abc≠0时,求a b ca b c++的值.(3)已知a、b、c是有理数,a+b+c=0,abc<0,求b c a c a ba b c+++++的值.【解答】解:(1)已知a,b是有理数,当ab≠0时,①a<0,b<0,=﹣1﹣1=﹣2;②a>0,b>0,=1+1=2;③a、b异号,=0.故=±2或0;(2)已知a,b,c是有理数,当abc≠0时,①a<0,b<0,c<0,+=﹣1﹣1﹣1=﹣3;②a>0,b>0,c>0,+=1+1+1=3;③a、b、c两负一正,+=﹣1﹣1+1=﹣1;④a、b、c两正一负,+=﹣1+1+1=1.故+=±1或±3;(3)已知a,b,c是有理数,a+b+c=0,abc<0,则b+c=﹣a,a+c=﹣b,a+b=﹣c,a、b、c两正一负,则═﹣﹣﹣=1﹣1﹣1=﹣1.故答案为:±2或0;±1或±3;﹣1.题型四有理数运算26.计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13;(2)﹣22+[14﹣(﹣3)×2]÷4.【解答】解:(1)原式=﹣20﹣14+18﹣13=﹣20﹣14﹣13+18=﹣47+18=﹣29;(2)原式=﹣22+(14+6)÷4=﹣22+20÷4=﹣22+5=﹣17.27.计算(1)(﹣6)﹣5+(﹣4)﹣(﹣18); (2)﹣10﹣4÷(2293-); (3)﹣22﹣|﹣7|+3﹣2×(﹣12); (4)(111462+-)÷(﹣112). 【解答】解:(1)原式=﹣6﹣5﹣4+18=﹣15+18=3; (2)原式=﹣10﹣4÷(﹣94)=﹣10﹣4×(﹣49)=﹣10+9=1-; (3)原式=﹣4﹣7+3+1=﹣11+4=﹣7; (4)原式=(+﹣)×(﹣12)=﹣×(﹣12)=128.计算题:(1)(﹣2)﹣(+5)﹣(﹣3)+4 (2)﹣5﹣2+5﹣11+2 (3)(﹣3)×2+20÷(﹣5) (4)315()(24)468--⨯- 【解答】解:(1)原式=﹣2﹣5+3+4=﹣7+7=0; (2)原式=﹣18+7=﹣11; (3)原式=﹣6﹣4=﹣10; (4)原式=﹣18+4+15=1; 29.计算:(1)(+12)﹣(﹣18)+(﹣7)﹣(+15); (2)94(81)(16)49-÷⨯÷-; (3)157()(18)369-+⨯-; (4)﹣14+|2﹣3|﹣2×(﹣1)2014. 【解答】解:(1)原式=12+18﹣7﹣15=30﹣22=8; (2)原式=81×××=1;(3)原式=×(﹣18)﹣×(﹣18)+×(﹣18)=﹣6+15﹣14=﹣5; (4)原式=﹣1+1﹣2×1=0﹣2=﹣2. 30.计算:(1)(﹣12)﹣(+20)+(﹣8)﹣15 (2)94(81)(16)49-÷⨯÷- (3)2111()()941836-+÷- (4) 【解答】解:(1)原式=﹣12﹣20﹣8﹣15=﹣55; (2)原式=81×××=1;(3)原式=(﹣+)×(﹣36)=﹣8+9﹣2=﹣1;(4)原式=﹣9﹣6+6=﹣9;题型五应用题31.某市交警大队一辆警车每天在一段东西方向的公路上巡逻执法.一天上午从A地出发,中午到达B地,规定向东行驶的里程为正,向西行驶的里程为负,这天行驶的里程数记录如下(单位:km);﹣25,+10,+15,﹣10,+16,﹣18,+10,﹣21.(1)问B地在A地的东面还是西面?A,B两地相距多少千米?(2)若该警车每千米耗油0.2升,警车出发时,油箱中有油10升,请问中途有没有给警车加过油?若有,至少加了多少升油?请说明理由.【解答】解:(1)﹣25+10+15﹣10+16﹣18+10﹣21=(10+15+16)﹣(25+18+21)+(10﹣10)=41﹣64=﹣23即B地在A地的西方,距A地23千米.(2)因为(25+10+15+10+16+18+10+21)×0.2=125×0.2=25(L).25﹣10=15(L).所以途中至少加油15L.答:途中警车需加油,至少需加油15L.32.第66路公交车沿东西方向行驶,如果把车站的起点记为0,向东行驶记为正,向西行驶记为负,其中一辆车从车站出发以后行驶的路程如下表(单位:km):(2)该辆车离开出发点最远是多少千米?(3)若每千米耗油0.2升,每升油价是7.5元,则从出发到收工时油费是多少元?【解答】解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10=5+10+12﹣3﹣8﹣6﹣10=27﹣27=0,∴回到了车站;(2)5﹣3=2;2+10=12;12﹣8=4;4﹣6=﹣2;﹣2+12=10;10﹣10=0;∴离开出发点最远是12km;(3)|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|=5+3+10+8+6+12+10,=54(km).54×0.2×7.5=81(元).∴从O地出发到收工时油费是81元.33.某儿童服装店用400元购买了8套儿童服装,准备以一定价格出售,如果以每套55元的价格为标准,超出的记作正数,不足的记作负数,记录如下(单位:元):+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2.(1)该服装店卖完这八套儿童服装后,是盈利还是亏损?(2)盈利(或亏损)了多少?【解答】解:根据题意,得:(1)2﹣3+2+1﹣2﹣1+0﹣2=﹣3(元),55×8+(﹣3)=437(元),∵437>400,∴卖完后是盈利;(2)437﹣400=37(元).故盈利37元.34.某食品厂上周日生产100袋食品,下表是这周的生产情况(注:用正数记生产袋数比前一日上升数,用负数记生产袋数比前一日下降数):(2)根据记录的数据可知该厂本周内生产袋数最高是多少袋?最低是多少袋?(3)已知这周生产的所有食品成本3000元,现规定本周食品售价为每袋5元,在卖出所有袋数时,需收取成交额10%的交易税,则食品厂这周的收益情况如何?【解答】解:(1)由题意可得,该厂星期三生产食品是:100+5﹣1﹣7=97(袋),即该厂星期三生产食品是97袋;(2)由表格可知,星期一生产食品是袋数:100+5=105袋;星期二生产食品是袋数:105﹣1=104袋;星期三生产食品是袋数:104﹣7=97袋;星期四生产食品是袋数:97+11=108袋;星期五生产食品是袋数:108﹣9=99袋;星期六生产食品是袋数:99+5=104袋;星期日生产食品是袋数:104+9=113袋;故产量最高的一天是星期日,是113袋,最低的一天是星期三,是97袋;(3)由题意可得,该厂本周实际共生产食品的数量是:7×100+(5+4﹣3+8﹣1+4+13)=730袋,∴这周的收益:730×5×(1﹣10%)﹣3000=285元.35.当温度每上升1℃时,某种金属丝伸长0.002mm;反之,当温度下降1℃时,金属丝就缩短0.002mm.把15℃的这种金属丝加热到60℃,再使它冷却降温到5℃,金属丝的长度经历了怎么样的变化?金属丝最后的长度比原来的长度伸长多少?【解答】解:金属丝的长度先伸长,再缩短;设15℃时金属丝的长度为lmm,根据题意得:金属丝最后的长度=l+(60﹣15)×0.002﹣(60﹣5)×0.002=(l﹣0.02)mm.金属丝最后的长度﹣原来的长度=(l﹣0.02)﹣l=﹣0.02(mm).即金属丝最后的长度比原来的长度伸长﹣0.02mm,也即是缩短了0.02mm.36.20筐白菜,以每筐15千克为标准,超过或不足的千克数分别用正、负数来表示.记录如下:千克.(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价1.8元,则出售这20筐白菜可卖多少元?【解答】解:(1)最重的一筐超过2.5千克,最轻的差3.5千克,2.5﹣(﹣3.5)=6(千克),故最重的一筐比最轻的一筐重6千克.故答案为:6;(2)2×(﹣3.5)+4×(﹣2)+2×(﹣1.5)+1×0+3×1+8×2.5=﹣7﹣8﹣3+0+3+20=5(千克).故20筐白菜总计超过5千克;(3)1.8×(15×20+5)=1.8×305=549(元).故出售这20筐白菜可卖549元.题型六新定义37.若规定运算:a⊕b=2ab,aΘb=,a⊗b=a﹣b2,则(1⊕2)⊗(6Θ3)=.【解答】解:∵a⊕b=2ab,aΘb=,a⊗b=a﹣b2,∴(1⊕2)⊗(6Θ3)=(2×1×2)⊗=4⊗=4﹣()2=4﹣=故答案为:.38.在学习完《有理数》后,小奇对运算产生了浓厚的兴趣.借助有理数的运算,定义了一种新运算“⊕”,规则如下:a⊕b=a×b+2×a.(1)求2⊕(﹣1)的值;(2)求﹣3⊕(﹣4⊕12)的值;(3)试用学习有理数的经验和方法来探究这种新运算“⊕”是否具有交换律?请写出你的探究过程.【解答】解:(1)2⊕(﹣1)=2×(﹣1)+2×2=﹣2+4=2;(2)﹣3⊕(﹣4⊕)=﹣3⊕[﹣4×+2×(﹣4)]=﹣3⊕(﹣2﹣8)=﹣3⊕(﹣10)=(﹣3)×(﹣10)+2×(﹣3)=30﹣6=24;(3)不具有交换律,例如:2⊕(﹣1)=2×(﹣1)+2×2=﹣2+4=2;(﹣1)⊕2=(﹣1)×2+2×(﹣1)=﹣2﹣2=﹣4,∴2⊕(﹣1)≠(﹣1)⊕2,∴不具有交换律.39.对于一个数x,我们用(x]表示小于x的最大整数,例如:(2.6]=2,(﹣3]=﹣4.(1)填空:(10]=.(﹣2019]=,(17]=;(2)若a,b都是整数,且(a]和(b]互为相反数,求代数式a﹣(a+b)×3+b的值;(3)若|(x]|+|(x﹣2]|=6,求x的取值范围.【解答】解:(1)根据(x]表示的意义得,(10]=9,(﹣2019]=﹣2020,(]=0,故答案为:9,﹣2020,0;(2)∵a,b都是整数,∴(a]=a﹣1,(b]=b﹣1,而(a]和(b]互为相反数,∴a﹣1+b﹣1=0,即a+b=2,因此a﹣(a+b)×3+b=a﹣3a﹣3b+b=﹣2(a+b)=﹣4,答:代数式a﹣(a+b)×3+b的值为﹣4;(3)当原点在大数的右侧时,有(x]=﹣2,此时,﹣2<x≤﹣1,当原点在小数的左侧时,有(x]=4,此时,4<x≤5,故x的取值范围为﹣2<x≤﹣1或4<x≤5.题型七绝对值的几何意义40.(1)阅读下面材料:点A、B在数轴上分别表示实数a,b,A、B两点这间的距离表示为|AB|,当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时,①如图2,点A、B都在原点的右边|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3,点A、B都在原点的左边|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图4,点A、B在原点的两边|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|.综上,数轴上A、B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是.④由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,求出最小值和相应的x的值;如果没有,说明理由.【解答】解:①数轴上表示2和5的两点之间的距离是|2﹣5|=3,数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3.数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4;故答案为:3,3,4;②数轴上表示x和﹣1的两点A和B之间的距离是|x﹣(﹣1)|=|x+1|,如果|AB|=2,那么x为1或﹣3;故答案为:|x+1|,1或﹣3;③∵|x+3|+|x﹣1|=4,∴x+3﹣(x﹣1)=4,∴x+3≥0,x﹣1≤0,则﹣3≤x≤1.则这样的整数是:﹣3,﹣2,﹣1,0,1.故答案为:﹣3,﹣2,﹣1,0,1;④|x﹣3|+|x﹣6|有最小值,最小值是3,理由:当x>6时,|x﹣3|+|x﹣6|=x﹣3+x﹣6=2x﹣9>3,当3≤x≤6时,|x﹣3|+|x﹣6|=x﹣3+6﹣x=3,当x<3时,|x﹣3|+|x﹣6|=3﹣x+6﹣x=9﹣2x>3,故|x﹣3|+|x﹣6|有最小值,最小值是3.41.同学们都知道,|2﹣(﹣1)|表示2与﹣1的差的绝对值,实际上位可理解为在数轴上正数2对应的点与负数﹣1对应的点之间的距离,试探索:(1)|2﹣(﹣1)|=;如果|x﹣1|=2,则x=.(2)求|x﹣2|+|x﹣4|的最小值,并求此时x的取值范围;(3)由以上探索已知(|x﹣2|+|x+4|)+(|y﹣1|+|y﹣6|)=20,则求x+y的最大值与最小值;(4)由以上探索及猜想,计算|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2017|+|x﹣2018|的最小值.【解答】解:(1)|2﹣(﹣1)|=|2+1|=3,|x﹣1|=2,x﹣1=2或x﹣1=﹣2,x=3或﹣1故答案为:3,3或﹣1;(2)∵|x﹣2|+|x﹣4|理解为:在数轴上表示x到4与2的距离之和,∴当x在2与4之间的线段上(即2≤x≤4)时,|x﹣2|+|x﹣4|的值有最小值,最小值为4﹣2=2,此时x的取值范围为:2≤x≤4.(3)因为x﹣2=0,x+4=0时,x=2或﹣4,y﹣1=0,y﹣6=0时,y=1或6.当x<﹣4时,|x﹣2|+|x+4|=2﹣x﹣x﹣4=﹣2x﹣2;当﹣4≤x≤2时,|x﹣2|+|x+4|=2﹣x+x+4=6;当x>2时,|x﹣2|+|x+4|=x﹣2+x+4=2x+2;当y<1时,|y﹣1|+|y﹣6|=1﹣y+6﹣y=﹣2y+7;当1≤y≤6时,|y﹣1|+|y﹣6|=y﹣1+6﹣y=5;当y>6时,|y﹣1|+|y﹣6|=y﹣1+y﹣6=2y﹣7;当x<﹣4,y<1时,x+y取最小值,此时(﹣2x﹣2)+(﹣2y+7)=20,x+y=﹣,当x>2,y>6时,x+y取最大值,此时(2x+2)+(2y﹣7)=20,x+y=所以x+y的最大值是,最小值是﹣.(4)由已知条件可知,|x﹣a|表示x到a的距离,只有当x到1的距离等于x到2018的距离时,式子取得最小值.∴当x==1009.5时,式子取得最小值,此时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2017|+|x﹣2018|=|1009.5﹣1|+|1009.5﹣2|+|1009.5﹣3|+…+|1009.5﹣2016|+|1009.5﹣2017|+|1009.5﹣2018|=2(1008.5+1007.5+…+2.5+1.5+0.5)=2×[0.5×1009+(1+2+3…+1008)]=2×(504.5+)=1018081.题型八 动点问题类压轴题42.已知数轴上,点A 和点B 分别位于原点O 两侧,点A 对应的数为a ,点B 对应的数为b ,且15-=a b . (1)若6=-b ,则a 的值为________;(2)若2=OA OB ,求a 的值;(3)点C 为数轴上一点,对应的数为c ,若A 点在原点的左侧,O 为AC 的中点,3=OB BC ,请画出图形并求出满足条件的C 的值.【解答】解:(1)6b =-,||15a b -=,|6|15a ∴+=,615a ∴+=或15-,9a ∴=或21-, 点A 和点B 分别位于原点O 两侧,6b =-,0a ∴>,9a ∴=,故答案为:9;(2)2OA OB =,|||2|a b ∴=,点A 和点B 分别位于原点O 两侧,点A 对应的数为a ,点B 对应的数为b ,12b a ∴=-,||15a b -=,1||152a a ∴+=,10a ∴=±; (3)满足条件的C 两种情况:①如图,设BC x =,则2OC OA x ==,则有2215x x x ++=,解得:3x =,C ∴对应6 ②如图,设BC x =,则3OB x =,4OA OC x ==,则有3415x x +=,解得,157x =,则C 对应607, 综上所得:C 点对应6或607.43.已知a 、b 满足()25|1|0a b -++=.请回管问题:(1)请直接写出a 、b 的值,a =______,b =_______.(2)当x 的取值范围是_________时,||||x a x b -+-有最小值,这个最小值是_____.(3)数轴a 、b 上两个数所对应的分别为A 、B ,AB 的中点为点C ,点A 、B 、C 同时开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,点B 和点C 分别以每秒1个单位长度和3个单位长度的速度向右运动,当A 、B 两点重合时,运动停止. ①经过2秒后,求出点A 与点B 之间的距离AB .②经过t 秒后,请问:BC AB + 的值是否随着时间t 的变化而变化?若变化,请说明理由;若不变,请求其值.【解答】解:()15,1- ()215x -≤≤ 6()3:5213,1211312A B AB -⨯==-+⨯==-=①()()5,1,51323223115A t B t C t t BC AB t t t t =-=-+-=+=++=+--++-+--② =3+226t t +- ,A B 重合时,()()51113t =+÷+=,A B 重合时,运动停止03,t ∴≤≤ 3+20,260.t t ∴-≤>32(26)9BC AB t t +=+--=-;6【解析】(1)8。

(完整版)中考复习第1讲有理数(含答案),推荐文档

(完整版)中考复习第1讲有理数(含答案),推荐文档
第一讲 有理数
考点综述:
有理数是初中数学的基础内容,中考试题中是必考内容之一,主要题型以填空、选择、 计算为主,主要考查有理数及其相关概念,如:相反数、绝对值、倒数,会用数轴比较大 小,有理数的混合运算,科学记数法的意义以及表示方法,近似数和有效数字的意义,还 有会按照题目要求取近似数。
典型例题:
1
18.(2007 湖南邵阳)观察下列等式
1 1 1 , 1 1 1 , 1 1 1 , 1 2 2 23 2 3 3 4 3 4
将以上三个等式两边分别相加得:
1 1 1 1 1 1 1 1 1 1 1 3 . 1 2 23 3 4 2 2 3 3 4 4 4
(单位:万元),正确的是( )
A:3.12×104 B:3.13×104 C:31.2×103 D:31.3×103
解:B
例 3:(2007 怀化)2008 年 8 月第 29 届奥运会将在北京开幕,5 个城市的国标标准时间
(单位:时)在数轴上表示如图所示,那么北京时间 2008 年 8 月 8 日 20 时应是(
少的数?是

15.(2008 扬州)2008 年 5 月 26 日下午,奥运圣火扬州站的传递在一路“中国加油”声中 胜利结束,全程 11.8 千米,11.8 千米用科学记数法表示是____________米。
16.(2008 泉州)计算: 1 20080 22
17.(2008 益阳)计算: 2 ( 3)0 (1) 2 (1) 2008 3
例 1:(2008 常州)-3 的相反数是_______,- 的绝对值是________,2-1=______.
2 11
解:3, ,
22
例 2:(2007 永州)2006 年 9 月在长沙市举行的“中国中部投资贸易博览会”中,永州市

中考数学专题训练第1讲有理数(解析版)

中考数学专题训练第1讲有理数(解析版)

有理数易错点梳理易错点01 误把0当成正数0既不是正数也不是负数.0是正数与负数的分界点。

易错点02 误以为带“+”号的数就是正数.带“-”号的数就是负数不能简单地理解为带“+”号的数就是正数.带“-”号的数就是负数。

例如:当0>a 时.a 表示正数.a -表示负数;当0=a 时.a 与a -都表示0;当0<a 时.a 表示负数.a -表示正数。

易错点03 误把无限循环小数看成无理数有限小数和无限循环小数都可以写成分数形式.所以有限小数和无限循环小数都是有理数;无限不循环小数是无理数。

易错点04 误把数轴当成线段数轴是规定了原点、正方向和单位长度的直线。

易错点05 混淆“单位长度”和“长度单位”单位长度是指具体的时间内具体的长度为1;长度单位是指毫米、厘米、分米、米、千米等。

它们是完全不同的概念。

易错点06 误认为0的倒数是00的相反数是0,0的绝对值为0,0没有倒数。

易错点07 混淆na -与na )(-的意义n a -表示n a 的相反数.n a )(-表示n 个a -相乘。

易错点08 运用加法交换律时弄错符号运用加法交换律时.在交换各加数的位置时.要连同它前面的符号一起交换.不能漏掉符号。

易错点09 运用分配律时易漏乘运用分配律时.括号内的每一项都要乘以括号外的数.不要漏乘。

考向01 正负数的概念易错点梳理例题分析例题1:(2021·青海西宁·中考真题)中国人最先使用负数.魏晋时期的数学家刘徽在其著作《九章算术注》中.用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正.黑色为负).如图1表示的是(+2)+(-2).根据这种表示法.可推算出图2所表示的算式是( )A .()()36+++B .()()36++-C .()()36-++D .()(36)-+-【答案】B【思路分析】根据题意图2中.红色的有三根.黑色的有六根可得答案.【解析】解:由题知. 图2红色的有三根.黑色的有六根.故图2表示的算式是(+3)+ (-6) .故选:B .【点拨】本题主要考查正负数的含义.解题的关键是理解正负数的含义.考向02 数轴的概念例题2:(2021·广东广州·中考真题)如图.在数轴上.点A 、B 分别表示a 、b .且0a b +=.若6AB =.则点A 表示的数为( )A .3-B .0C .3D .6-【答案】A【思路分析】由AB 的长度结合A 、B 表示的数互为相反数.即可得出A .B 表示的数 【解析】解:∵0a b += ∴A .B 两点对应的数互为相反数.∴可设A 表示的数为a .则B 表示的数为a -. ∵6AB = ∴6a a --=. 解得:3a =-.∴点A 表示的数为-3.故选:A .【点拨】本题考查了绝对值.相反数的应用.关键是能根据题意得出方程6a a --=.考向03 相反数的概念例题3:(2021·湖南永州·中考真题)1||202--的相反数为( ) A .2021- B .2021C .12021-D .12021【答案】B【思路分析】根据绝对值、相反数的概念求解即可.【解析】解:由题意可知:||=22110202-.故1||202--的相反数为2021.故选:B . 【点拨】本题考查相反数、绝对值的概念.属于基础题.熟练掌握概念是解决本题的关键.考向04 绝对值和概念和非负性例题4:(2021·黑龙江大庆·中考真题)下列说法正确的是( ) A .||x x <B .若|1|2x -+取最小值.则0x =C .若11x y >>>-.则||||x y <D .若|1|0x +≤.则1x =-【答案】D【思路分析】根据绝对值的定义和绝对值的非负性逐一分析判定即可.【解析】解:A .当0x =时.||=x x .故该项错误;B .∵10x -≥.∴当1x =时|1|2x -+取最小值.故该项错误;C .∵11x y >>>-.∴1x >.1y <.∴||||x y .故该项错误;D .∵|1|0x +≤且|1|0x +≥.∴|1|0x +=.∴1x =-.故该项正确;故选:D .【点拨】本题考查绝对值.掌握绝对值的定义和绝对值的非负性是解题的关键.考向05 有理数大小的比较例题5:(2021·四川巴中·中考真题)下列各式的值最小的是( ) A .20 B .|﹣2| C .2﹣1 D .﹣(﹣2)【答案】C【思路分析】直接利用零指数幂的性质以及负整数指数幂的性质、绝对值的性质、相反数分别化简得出答案.【解析】解:20=1.|-2|=2.2-1=12.-(-2)=2. ∵12<1<2. ∴最小的是2-1. 故选:C .【点拨】此题主要考查了零指数幂的性质以及负整数指数幂的性质、绝对值的性质、相反数.正确化简各数是解题关键.考向06 有理数加减法的运算例题6:(2021·四川广元·中考真题)计算()32---的最后结果是( ) A .1B .1-C .5D .5-【答案】C【思路分析】先计算绝对值.再将减法转化为加法运算即可得到最后结果. 【解析】解:原式325=+=.故选:C .【点拨】本题考查了绝对值化简和有理数的加减法运算.解决本题的关键是牢记绝对值定义与有理数运算法则.本题较基础.考查了学生对概念的理解与应用.考向07 科学计数法例题7:(2021·山东青岛·中考真题)2021年3月5 日.李克强总理在政府工作报告中指出.我国脱贫攻坚成果举世瞩目.5575万农村贫困人口实现脱贫.5575万=55750000.用科学记数法将55750000表示为( ) A .4557510⨯ B .555.7510⨯C .75.57510⨯D .80.557510⨯【答案】C【思路分析】根据科学记数法的定义“把一个大于10的数表示成10n a ⨯的形式(其中a 是整数位只有一位的数.即a 大于或等于1且小于10.n 是正整数).这样的记数方法叫做科学记数法”进行解答即可得.【解析】解:755750000 5.57510=⨯.故选C .【点拨】本题考查了科学记数法.解题的关键是熟记科学记数法的定义.一、单选题1.(2021·湖南·长沙市开福区青竹湖湘一外国语学校三模)-2021的绝对值是( ) A .2021- B .12021-C .2021D .12020【答案】C【解析】-2021的绝对值是2021.故选:C2.(2021·浙江·温州市教育教学研究院一模)2的相反数是( ) A .2 B .12C .2-D .4-【答案】C【解析】解:2的相反数是-2.故选C .3.(2021·安徽·合肥一六八中学模拟预测)下列是有理数的是( ) A .tan 45︒ B .sin 45︒C .cos45︒D .sin 60︒【答案】A微练习【解析】解:A 、tan 451︒=.是有理数.符合题意;B 、2sin 452=°.不是有理数.不符合题意;C 、2cos 452=°.不是有理数.不符合题意;D 、3sin 602︒=.不是有理数.不符合题意;故选:A .4.(2021·陕西·交大附中分校模拟预测)如图.数轴上点A 表示的数为( )A .﹣2B .﹣1C .0D .1【答案】B【解析】解:由图可知:点A 在﹣1的位置.表示的数为﹣1.故选:B .5.(2021·广东·佛山市华英学校一模)在2. 1.5-.0.23-这四个数中最小的数是( )A .2B . 1.5-C .0D .23-【答案】B【解析】解:∵2>0.0>﹣1.5.0>﹣23.又∵|﹣1.5|=32.|﹣23|=23.∴32>23.∴﹣1.5<﹣23.综上所述.﹣1.5<﹣23<0<2.故选:B .6.(2021·浙江·翠苑中学二模)计算42=( ) A .8 B .18C .16D .116【答案】C【解析】解:24=2×2×2×2=16.故选:C . 7.(2021·内蒙古东胜·二模)截止2021年4月17日.全国接种新冠病毒疫苗达到81.89810⨯剂次.则数据81.89810⨯表示的原数是( ) A .1898000 B .18980000 C .189800000 D .1898000000【答案】C【解析】解:81.89810⨯=189800000. 故选C .8.(2021·安徽·安庆市第四中学二模)计算:2﹣(﹣2)等于( ) A .﹣4 B .4 C .0 D .1【答案】B【解析】解:2﹣(﹣2)=2+2=4.故选择B . 二、填空题9.(2021·福建·泉州五中模拟预测)计算:1012(3)2--+-=_______.【答案】0 【解析】原式111022=-+=.故答案为:0. 10.(2021·福建·厦门双十中学思明分校二模)实数a 与b 在数轴上对应点的位置如图所示.a <c <﹣b .且c 为整数.则实数c 的值为________.【答案】3 【解析】解:如图由a <c <﹣b .且c 为整数.故实数c 的值为3.故答案为:3.11.(2021·广东·执信中学模拟预测)()0222cos4512 3.14π--+︒-+--=____________【答案】314【解析】解:()0222cos4512 3.14π--+︒---122(21)14=-++122114=-+314=.故答案为:314.12.(2021·福建·重庆实验外国语学校模拟预测)新华社北京5月11日电11日发布的第七次全国人口普查结果显示.全国人口共141178万人.与2010年第六次全国人口普查数据相比.增加7206万人.增长5.38%.年平均增长率为0.53%.数据表明.我国人口10年来继续保持低速增长态势.用科学记数法将数据“7206万”表示为 __. 【答案】77.20610⨯【解析】解:7206万77.20610=⨯故答案为:77.20610⨯. 三、解答题13.(2021·广西·南宁十四中三模)计算:()()3425284+-⨯--÷. 【答案】29-【解析】()()3425284+-⨯--÷485(7)=-⨯--1140=- 29=-14.(2021·云南昭通·二模)计算:1020211(1)|2|3-⎛⎫+-+--- ⎪⎝⎭(-2021). 【答案】-5【解析】原式1(1)(3)2=+-+--5=-.15.(2021·黑龙江·二模)计算: 120201(1)3-⎛⎫-+ ⎪⎝⎭【答案】2.【解析】原式132=+-2=.16.(2021·吉林长春·二模)计算:()()2111323π--+---+⎛⎫⎪⎝⎭【答案】3【解析】解:原式11233=+-+=.。

专题训练(一)一线串起有理数

专题训练(一)一线串起有理数

专题训练(一)一线串起有理数▶ 类型一 有理数与数轴1.若有理数m>n ,在数轴上点M 表示数m ,点N 表示数n ,则下列说法正确的是 ( ) A .点M 在点N 的右边 B .点M 在点N 的左边C .点M 在原点的右边,点N 在原点的左边D .点M 和点N 都在原点的右边2.一只蚂蚁沿数轴从点A 向右爬行5个单位长度到达点B ,点B 表示的数为-2,则点A 表示的数为 ( ) A .5B .3C .-3D .-73.画出数轴,在数轴上表示下列各数,然后用“<”号把这些数连接起来. -94,1,3,-2.5,-32.4.在如图1-ZT -1所示的数轴上用字母A ,B ,C ,D ,E 分别表示出以下各数:2.5,4,-3,-112,0,并回答问题:在这5个点中,表示最大数与最小数的两点之间相距多少个单位长度?图1-ZT -15.如图1-ZT -2所示,圆的周长为4个单位长度,在圆的四等分点处标上字母A ,B ,C ,D ,先将圆周上的字母A 对应的点与数轴上的数1所对应的点重合.图1-ZT -2(1)若将圆沿着数轴向右滚动,则数轴上的数2020所对应的点将与圆周上的哪个字母所对应的点重合?(2)若将圆沿着数轴向左滚动,则数轴上的数-2021所对应的点将与圆周上的哪个字母所对应的点重合?▶类型二相反数与数轴6.如图1-ZT-3,数轴上有A,B,C,D四个点,其中表示互为相反数的两个数的点是()图1-ZT-3A.点A与点DB.点A与点CC.点B与点DD.点B与点C7.已知a,b为有理数,且a>0,b<0,a<|b|,则a,b,-a,-b的大小关系是()A.b<-a<a<-bB.-a<a<b<-bC.-a<b<a<-bD.-b<-a<a<b8.在数轴上点A,B表示的数都是整数,点A,B在原点的两侧,且点A在点B的左侧,如图1-ZT-4所示.若点A与点B的距离为4,则点A表示的数的相反数不可能为()图1-ZT-4A.5B.3C.2D.19.已知数轴上点A和点B分别表示互为相反数的两个数a,b(a<b),并且A,B两点间的距离是,则a,b这两个数分别为.41410.在数轴上有A,B,C三点,如图1-ZT-5.(1)将点B向左移动3个单位长度后三个点中哪个点所表示的数最小?(2)求A,B,C三点所表示的数的相反数,并用“<”号将这三个数连接起来.图1-ZT-511.如图1-ZT-6,图中数轴的单位长度为1.(1)如果点A,B表示的数互为相反数,请标出原点O的位置,并指出点C表示的数是多少;(2)如果点D,B表示的数互为相反数,请标出原点O的位置,并指出点C,D表示的数分别是多少.图1-ZT-6▶类型三绝对值与数轴12.已知a,b是不为0的有理数,且|a|=-a,|b|=b,|a|>|b|,那么用数轴上的点来表示a,b,正确的是()图1-ZT-713.小亮把中山路表示成一条数轴,如图1-ZT-8,把路边的几座建筑的位置用数轴上的点表示出来,其中火车站的位置记为原点,正东方向为数轴正方向,公交车的一站地为一个单位长度(假设每两站之间距离相同).回答下列问题:(1)到火车站的距离等于2站地的是和;(2)到劝业场的距离等于2站地的是和;(3)在数轴上,到表示1的点的距离等于2的点有个,表示的数是;(4)如果用a表示图中数轴上的点表示的数,那么|a|表示该点到火车站的距离,当|a|=2时,a=2或-2.请你结合图形解释等式|a-1|=2表达的几何意义,并求出当|a-1|=2时a的值.图1-ZT-8▶类型四利用数轴探究问题14.数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这条数轴上随意画出一条长2020厘米的线段AB,则线段AB盖住的整点个数是()A.2018或2019B.2019或2020C.2020或2021D.2021或2022教师详解详析1.A2.D3.解:如图.-2.5<-94<-32<1<3.4.解:在数轴上用字母表示各数如图所示:由图可知,在这5个点中,表示最大数与最小数的两点之间相距7个单位长度.5.解:(1)因为2020÷4=505,所以将圆沿着数轴向右滚动,数轴上的数2020所对应的点将与圆周上的字母B 所对应的点重合.(2)因为2021÷4=505……1,所以将圆沿着数轴向左滚动,数轴上的数-2021所对应的点将与圆周上的字母C 所对应的点重合. 6.A7.A [解析] 利用数轴表示相关数据,问题就很好解决了,如下图:8.A [解析] 由题意得点A 到原点的距离小于4,且点A 表示的数为负数.设点A 表示的数为a ,则表示a 的相反数的点到原点的距离小于4,且a 的相反数为正数.所以a 的相反数为1或2或3,即点A 表示的数的相反数为1或2或3.9.-218,218 [解析] 在数轴上,表示一对相反数的两个点同时具备两个条件:(1)到原点的距离相等;(2)分别位于原点的左、右两侧(原点除外).10.解:(1)由数轴,得点A 表示的数是-4,点B 表示的数是-2,点C 表示的数是3.将点B 向左移动3个单位长度后,表示的数是-5,则将点B 向左移动3个单位长度后三个点中点B 所表示的数最小.(2)A ,B ,C 三点所表示的数的相反数分别为4,2,-3,用“<”号连接为-3<2<4. 11.解:(1)原点O 的位置如图所示.点C 表示的数是-1.(2)原点O的位置如图所示.点C表示的数是0.5,点D表示的数是-4.5.12.C[解析] 因为a,b是不为0的有理数,且|a|=-a,|b|=b,所以a<0,b>0.因为|a|>|b|,所以表示a的点到原点的距离大于表示b的点到原点的距离,所以C正确.13.解:(1)北国商城烈士陵园(2)博物馆人民商场(3)两3和-1(4)等式|a-1|=2表达的几何意义是在数轴上表示a的点与表示1的点之间的距离等于2.当|a-1|=2时,a的值是3或-1.14.C[解析] 若线段AB的端点与整点重合,则线段AB盖住2021个整点;若端点不与整点重合,则线段AB盖住2020个整点.。

1-1-1有理数基本概念[1].题库教师版

1-1-1有理数基本概念[1].题库教师版

内容 基本要求略高要求较高要求有理数 理解有理数的意义会比较有理数的大小 数轴能用数轴上的点表示有理数;知道实数与数轴上的点的对应关系 会借助数轴比较有理数的大小相反数 会用有理数表示具有相反意义的量,借助数轴理解相反数的意义,会求实数的相反数掌握相反数的性质绝对值 借助数轴理解绝对值的意义,会求实数的绝对值会利用绝对值的知识解决简单的化简问题板块一、正数、负数、有理数随着同学们视野的拓展,小学学过的自然数、分数和小数已经不能满足认知需要了.譬如一些具有相反意义的量,收入300元和支出200元,向东50米和向西30米,零上6C ︒和零下4C ︒等等,它们不但意义相反,而且表示一定的数量,怎么表示它们呢?我们把一种意义的量规定为正的,把另一种和它意义相反的量规定为负的,这样就产生了正数和负数.正数:像3、1、0.33+等的数,叫做正数.在小学学过的数,除0外都是正数.正数都大于0.负数:像1-、 3.12-、175-、2008-等在正数前加上“-”(读作负)号的数,叫做负数.负数都小于0. 0既不是正数,也不是负数.一个数字前面的“+”,“-”号叫做它的符号.正数前面的“+”可以省略,注意3与3+表示是同一个正数.例题精讲中考要求有理数基本概念及运算用正、负数表示相反意义的量:如果正数表示某种意义,那么负数表示它的相反的意义,反之亦然.譬如:用正数表示向南,那么向北3km可以用负数表示为3km-.“相反意义的量”包括两个方面的含意:一是相反意义;二是相反意义的基础上要有量. 有理数:按定义整数与分数统称有理数.()⎧⎧⎫⎪⎬⎪⎨⎭⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数自然数整数零有理数按定义分类负整数正分数分数负分数()()⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数有理数按符号分类零零既不是正数,也不是负数负整数负有理数负分数注:⑴正数和零统称为非负数;⑵负数和零统称为非正数;⑶正整数和零统称为非负整数;⑷负整数和零统称为非正整数.【例1】⑴(2级)如果收入2000元,可以记作2000+元,那么支出5000元,记为.⑵(2级)高于海平面300米的高度记为海拔300+米,则海拔高度为600-米表示.⑶(2级)某地区5月平均温度为20C︒,记录表上有5月份5天的记录分别为 2.7+,0, 1.4+,3-,4.7-,那么这5项记录表示的实际温度分别是.⑷(2级)向南走200-米,表示.【解析】⑴5000-元;⑵低于海平面600米的高度;⑶22.7C︒,20C︒,21.4C︒,17C︒,15.3C︒;⑷向北走200米.【例2】(2级)珠穆朗玛峰海拔高度为8848米,吐鲁番盆地海拔高度为155-米,则海平面为【解析】0米【巩固】(2级)学而思饮料公司生产的一种瓶装饮料外包装上印有“60030±(mL)”字样,请问“30mL±”是什么含义?质检局对该产品抽查5瓶,容量分别为603mL,611mL,589mL,573mL,627mL,问抽查产品的容量是否合格?【解析】“60030±(mL)”表示:若每瓶饮料容量记为a,则570630a≤≤.抽查的5瓶容均是合格的.【例3】(2级)下列个数中:1330.70125---,,,,,中负分数有个;负整数有个;自然数有个【例4】 (2级)下列数中,哪些属于负数?哪些属于非正数?属于正分数?哪些属于非负有理数?4.5-,6,0,2.4g ,π,12-,0.313-g g ,3.14,11-【解析】 属于负数的有: 4.5-,12-,0.313-g g ,11-;属于非正数的有:0, 4.5-,12-,0.313-g g ,11-;属于正分数的有:2.4g,3.14;属于非负有理数的有:6,0,2.4g,3.14【巩固】【解析】【例5】 (4级)(第16届希望杯培训试题)下列说法中正确的个数是( )①当一个数由小变大时,它的绝对值也由小变大; ②没有最大的非负数,也没有最小的非负数; ③不相等的两个数,它们的绝对值一定也不相等; ④只有负数的绝对值等于它的相反数. A .0 B .1 C .2 D .3【解析】 4个全错,选择A ;【例6】 (2级)若a -是负数,则a【解析】 因为0a -<,则0a >【巩固】 (四中)(2级)在下列各数:(2)--,2(2)--,2--,2(2)-,2(2)--中,负数的个数为 个.(三帆)(2级)①10a -;②21a --;③a -;④2(1)a -+一定是负数的是 (填序号).(理工)(2级)下列说法正确的个数是( )①互为相反数的两个数一定是一正一负 ②0没有倒数 ③如果a 是有理数,那么a +一定是正数,a -一定是负数 ④一个数的相反数一定比原数小 ⑤a 一定不是负数 ⑥有最小的正数,没有最小的负数A .0个B .1个C .2个D .4个(人大附)(2级)下列说法正确的是( )A .a -表示负有理数B .一个数的绝对值一定不是负数C .两个数的和一定大于每个加数D .绝对值相等的两个有理数相等(三帆)(2级)两数相加,其和小于其中一个加数而大于另一个加数,那么( )A .这两个加数的符号都是正的B .这两个加数的符号都是负的C .这两个加数的符号不能相同D .这两个加数的符号不能确定【解析】 2;②;C ;B ;C .板块二、倒数【例7】 (2级)(2010朝阳二模)6的倒数是A .6-B .16± C .61- D .61【解析】 D【例8】 (2级)(2010东城二模)5-的倒数是A .-5B .5C .15-D . 15【解析】 C【例9】 (2级)(2010房山二模)4-的倒数是 A. 4 B. -4 C. 14-D. 14【解析】 C【例10】 (2级)(2010宣武二模)7-的倒数为A.7B.17C.17- D.7-【解析】 C【例11】 (2级)(2010顺义二模)5的倒数是A .5-B .15C D .5 【解析】 B【例12】 (2级)(2010西城二模)2010-的倒数是 A. 2010 B. 20101-C. 20101D. -2010 【解析】 B【例13】 (2级)(金牌奥赛训练教程)一个数的倒数是它本身,则这个数一定是 【解析】 1或1-【例14】 (4级)有理数a 等于它的倒数,有理数b 等于它的相反数,则20022003a b += 【解析】 1【例15】 (6级)若0a b +=,c 和d 互为倒数,m 的绝对值为2,求代数式2a bm cd a b c++-+-的值【解析】 根据题意可得:214cd m ==,,则原式等于3【例16】 (6级)在一列数123...a a a ,,中,已知112a =-,从第二个数起,每个数都等于“1与它前面的那个数的差的倒数” ⑴ 求234a a a ,,的值⑵ 根据以上计算结果,求202007a a ,的值【解析】 ⑴直接根据计算得23421332a a a ===-,,⑵因为1412a a ==-,所以这一列数以⑴中所得的三个数为一组循环出现,依次为12121233 3...232323---,,,,,,,,因为20被3除余2,所以2023a =,20073a =板块三 数轴数轴:规定了原点、正方向和单位长度的直线.注意:⑴原点、正方向、单位长度称为数轴的三要素,三者缺一不可.⑵单位长度和长度单位是两个不同的概念,前者指所取度量单位的长度,后者指所取度量单位的名称,即单位长度是一条人为规定的代表“1’的线段,这条线段可长可短,按实际情况来规定,同一数轴上的单位长度一旦确定,则不能再改变.⑶数轴的画法及常见错误分析 ①画一条水平的直线;②在这条直线上适当位置取一实心点作为原点: ③确定向右的方向为正方向,用箭头表示;④选取适当的长度作单位长度,用细短线画出,并对应标注各数,同时要注意同一数轴的单位长度要一致.有理数与数轴的关系:一切有理数都可以用数轴上的点表示出来.在数轴上,右边的点所对应的数总比左边的点所对应的数大. 正数都大于0,负数都小于0,正数大于一切负数. 注意:数轴上的点不都代表有理数,如π. 利用数轴比较有理数的大小:数轴上右边的数总大于左边的数.因此,正数总大于零,负数总小于零,正数大于负数.【例17】 ⑴(2级)在数轴上表示下列各数,再按大小顺序用“<”号连接起来.4-,0, 4.5-,112-,2,3.5,1,122⑵(2级)(2006年乌鲁木齐中考题)如右图所示,数轴的一部分被墨水污染了,被污染的部分内含有的 整数为_________.【解析】 ⑴先画出数轴,在数轴上方标注所求数(如图下所示),根据数轴上的大小顺序,按从左到右依次用“<”号连接起来.-11210212即:114.5410122 3.522-<-<-<<<<<⑵1-,0,1,2.【例18】 (2级)数轴上有一点A 它表示的有理数是3-,将点A 向左移动3个单位得到点B ,再向右移动8个单位,得到点C ,则点B 表示的数是 ,点C 表示的数是 . 【解析】 62-+,【巩固】 (2级)如右图所示,数轴上的点M 和N 分别对应有理数m 、n ,那么以下结论正确的是( )MA .0m <,0n <,m n >B .0m <,0n >,m n >C .0m >,0n >,m n <D .0m <,0n >,m n <【解析】 利用数轴上表示的数,右边的数总比左边的数大,判断可得出结论.选D .【例19】 (2级)数a b c d ,,,所对应的点A B C D ,,,在数轴上的位置如图所示,那么a c +与b d +的大小关系为( )A.a c b d +<+B.a c b d +=+C.a c b d +>+D.不确定的【解析】 A【巩固】 (8级)如图,数轴上标出若干个点,每相邻两点相距1个单位,点A B C D ,,,对应的数分别为整数a b c d ,,,,并且29b a -=,那么数轴的原点对应点为( ) A.A 点 B.B 点 C.C 点 D.D 点【解析】 C【巩固】(2级)在数轴上,下面说法中不正确的是( ).A.两个正数,小的离原点B.两个有理数,大数对应的点在右边C.两个负数,较大的数对应的点离原点近D.两个有理数,大的离原点较远【解析】选D.【巩固】(2级)数轴上有一点到原点的距离是5.5,那么这个点表示的数是_________.【解析】 5.5±.【巩固】(4级)数轴上的一个点表示一个数,当这个点表示的是整数时,我们称它是整数点.如果有一条数轴的单位长度是1厘米时,有一条2米长的线段放在数轴上它可以盖住多少个整数点?【解析】200【巩固】(6级)(广西竞赛题)已知数轴上有A B,之间的距离为1,点A与原点O的距离为3,,两点,A B那么点B所对应的数为【解析】4或2或2-或4-【例20】(4级)一辆货车从超市出发,向东走了3km到达小彬家,继续向前走了1.5km到达小颖家,然后向西走了9.5km到达小明家,最后回到超市⑴以超市为原点,向东作为正方向,用1个单位长度表示1km,在数轴上表示出小明,小彬,小颖家的位置⑵小明家距离小彬家多远?⑶货车一共行驶了多少千米?【解析】⑴如图所示:小明家超市小彬家小颖家东3⑵小明距离小彬家8km⑶货车共行驶了3 1.59.5519km+++=【例21】(4级)初一(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A队:-50分;B队:150分;C队:-300分;D队:0分;E队:100分.⑴将5个队按由低分到高分的顺序排序;⑵把每个队的得分标在数轴上,并将代表该队的字母标上;⑶从数轴上看A队与B队相差多少分?C队与E队呢?【解析】 ⑴C 队 A 队 D 队 E 队 B 队;⑵如图所示:E D CBA⑶A 队与B 队相差200分,C 队与E 队相差400分.【巩固】 (6级)在数轴上,点A 和点B 都在与154-对应的点上,若点A 以每秒3个单位长度的速度向右运动,点B 以每秒2个单位长度的速度向左运动,则7秒之后,点A 和点B 所处的位置对应的数是什么?这时线段AB 的长度是多少?【解析】 点A 对应的数是694,点B 对应的数是714-,线段AB 的长度是35.【例22】 (8级)(2005年重庆市竞赛试题)在数轴上任取一条长度为119999的线段,则此线段在这条数轴上最多能盖住的整数点的个数为 【解析】 2000【巩固】 (6级)数轴上表示整数的点称为整点。

中考数学一轮复习基础考点专题01有理数(含解析)

中考数学一轮复习基础考点专题01有理数(含解析)

中考数学一轮复习基础考点专题01有理数(含解析)中考数学一轮复习基础考点专题01有理数(含解析)专题01 有理数[思维导图][知识要点]知识点一有理数基础概念正数:大于0的数叫做正数。

负数:正数前面加上符号“-”的数叫负数。

有理数的分类(两种)(见思维导图)数轴规定了原点、正方向、单位长度的直线叫做数轴。

数轴的三要素:原点、正方向、单位长度(重点)任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。

是正数.[注意]数轴是一条直线,可向两段无限延伸。

在数轴上原点,正方向,单位长度的选取需根据实际情况而定。

相反数只有符号不同的两个数叫做互为相反数.(绝对值相等,符号不同的两个数叫做互为相反数)绝对值绝对值的概念:一班数轴上表示a的数与原点之间的距离叫做数a的绝对值。

绝对值的意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

(互为相反数的两个数的绝对值相等。

)比较大小1)数轴上两个点表示的数,右边的总比左边的大。

2)正数大于0,负数小于0,正数大于负数。

3)两个负数比较,绝对值大的反而小。

4)两个正数比较,绝对值大的反而大。

常用方法:数轴比较法、差值比较法、商值比较法、绝对值比较法等。

1.(·海南琼山中学中考模拟)下列各组数中,互为相反数的是( ) A.|+2|与|-2| B.-|+2|与+(-2) C.-(-2)与+(+2) D.|-(-3) |与-|-3| [详解]解:A、|+2|=2,|-2|=2,故这两个数相等,故此选项错误;B、-|+2|=-2,+(-2)=-2,故这两个数相等,故此选项错误;C、-(-2)=2与+(+2)=2,这两个数相等,故此选项错误;D、|-(-3)|=3,-|-3|=-3,3+(-3)=0,这两个数互为相反数,故此选项正确.故选:D.2.(·四川中考真题)一定是A.正数 B.负数 C. D.以上选项都不正确[详解]∵a可正、可负、也可能是0∴选D.3.(·内蒙古中考模拟)如图,在数轴上表示互为相反数的两数的点是()A.点A和点C B.点B和点C C.点A和点B D.点B和点D[详解]A、B、C、D所表示的数分别是2,1,-2,-3,因为2和-2互为相反数,故选A.4.(2013·江苏中考真题)如图,数轴上的点A、B分别对应实数a、b,下列结论中正确的是()[详解]根据数轴,a<0,b>0,且|a|<|b|,A、应为a<b,故本选项错误;B、应为|a|<|b|,故本选项错误;C、∵a<0,b>0,且|a|<|b|,∴a+b>0,∴﹣a<b正确,故本选项正确;D、应该是a+b>0,故本选项错误.故选C.A.-3 B.-1 C.-1或-3 D.1或-3 [详解]∵ ,是2的相反数,∴ 或,,当时,;当时,;综上,的值为-1或-3,考察题型一绝对值非负性应用1.(·山东中考真题)当1A.-1 B.1 C.3 D.-3[详解]解:当1<a<2时,|a﹣2|+|1﹣a|=2﹣a+a﹣1=1.故选B.2.(·山东中考模拟)表示实数a,b的点在数轴上的位置如图所示,化简的结果是( )A.2a-b B.b C.-b D.-2a+b[详解]根据数轴可以判断出,则,,所以所以选C.3.(·广西中考模拟)若,那么的值是()A.2或12 B.2或-12 C.-2或12 D.-2或-12[详解]由可得x=±7,由可得y=±5,则,故选:A4.(·浙江中考模拟)如果|a|≥0,那么()A.a>0 B.a<0 C.a≠0 D.a为任意数[详解]解:∵∴a为任意数,故选:D.5.(·湖北中考模拟)若|x﹣2|+|y+2|=0,求x﹣y的相反数.[详解]∵|x﹣2|+|y+2|=0,∴x﹣2=0,y+2=0,解得x=2,y=﹣2,∴x﹣y=2﹣(﹣2)=4,∴x﹣y的相反数是﹣4.6.(·广东中考模拟)已知|a+3|+|b﹣5|=0,求:(1)a+b的值;(2)|a|+|b|的值.[详解](1)由题意得,a+3=0,b﹣5=0,解得a=﹣3,b=5,所以,a+b=﹣3+5=2;(2)|a|+|b|=|﹣3|+|5|=3+5=8.考查题型二有理数比较大小1.(·山东中考模拟)如果a+b+c=0,且|a|>|b|>|c|.则下列说法中可能成立的是()A.b为正数,c为负数 B.c为正数,b为负数C.c为正数,a为负数 D.c为负数,a为负数[解析]由题目答案可知a,b,c三数中只有两正一负或两负一正两种情况,如果假设两负一正情况合理,要使a+b+c=0成立,则必是b<0、c<0、a>0,否则a+b+c≠0,但题中并无此答案,则假设不成立,D被否定,于是应在两正一负的答案中寻找正确答案,若a,b为正数,c为负数时,则:|a|+|b|>|c|,∴a+b+c≠0,∴A被否定,若a,c为正数,b为负数时,则:|a|+|c|>|b|,∴a+b+c≠0,∴B被否定,只有C符合题意.故选:C.2.(·北京中考模拟)实数a,b,c在数轴上的对应点的位置如图所示,如果a+b =0,那么下列结论正确的是()A.|a|>|c| B.a+c<0 C.abc<0 D.[详解]∵a+b=0,∴原点在a,b的中间,如图,由图可得:|a|<|c|,a+c>0,abc<0,=-1,故选C.12.(·山东滨州市滨城区东城中学中考模拟)有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是( )①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①② B.①④ C.②③ D.③④[解析]由图知,b|a|,故②错误,因为ba+b,所以④正确.故选:B.4.(·湖北中考真题)在0,﹣1,0.5,(﹣1)2四个数中,最小的数是()A.0 B.﹣1 C.0.5 D.(﹣1)2[详解]根据有理数比较大小的方法,可得﹣1<0<0.5<(﹣1)2,∴在0,﹣1,0.5,(﹣1)2四个数中,最小的数是﹣1.故选B.5.(·山东中考真题)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0[详解]从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.知识点二有理数四则运算有理数的加法(重点)有理数的加法法则:(先确定符号,再算绝对值)1.同号两数相加,取相同的符号,并把绝对值相加;2.异号两数相加,绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;3.互为相反数的两个数相加得0;(如果两个数的和为0,那么这两个数互为相反数)4.一个数同0相加,仍得这个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考专题1-----有理数专题
一、选择题(本大题共15小题,共30.0分)
1.在有理数-3,|-3|,(-3)2,(-3)3中,负数的个数有()
A.1个
B.2个
C.3个
D.4个
2.下列各式:①-(-2);②-|-2|;③-22;④-(-2)2,计算结果为负数
的个数有()
A.4个
B.3个
C.2个
D.1个
3.在-2、+、-3、-(-2)、0、4、5、|-1|中,负数有()
A.1个
B.2个
C.3个
D.4个
4.在下列各数中,绝对值最大的数是()
A.-2
B.1
C.
D.
5.下列各式中,计算结果为正的是()
A.(-7)+4
B.2.7+(-3.5)
C.-4+9
D.0+(-2)
6.计算-1÷3×的结果是()
A.-1
B.1
C.-
D.
7.下列运算正确的是()
A.-(-1)=-1
B.|-3|=-3
C.-22=4
D.(-3)÷(-)=9
8.把一张厚度为0.1mm的纸对折8次后厚度接近于()
A.0.8mm
B.2.6cm
C.2.6mm
D.0.18mm
9.计算(-1)2007-(-1)2008的结果是()
A.-2
B.-1
C.0
D.2
10.如果x2=4,那么x的值为()
A.2
B.-2
C.±2
D.±16
11.下列运算正确的是()
A.-22=4
B.(-2)3=-6
C.
D.
12.(-)×(-)×(-)×(-)表述正确的是()
A.-
B.-
C.-()4
D.(-)4
13.下列各对数中,数值相等的是()
A.-27与(-2)7
B.-32与(-3)2
C.3×23与32×2
D.-(-3)2与(-2)3
14.在0,-(-1),(-3)2,-32,-|-3|,,a2中,正数的个数为()
A.1个
B.2个
C.3个
D.4个
15.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()
A.()5m
B.[1-()5]m
C.()5m
D.[1-()5]m
二、填空题(本大题共18小题,共54.0分)
16.-4.5的相反数是 ______ .
17.某水文观测站的记录员将高于平均水位1.5m的水位记了下+1.5m,若该站的平均水位为51.3m,那么记录上-1.12m的实际水位为 ______ .
18.数轴上点A表示的数是-1,点B到点A的距离为2个单位,则B点表示的数是 ______ .
19.已知有理数a、b在数轴上的位置如图,则比较a、b、-a、-b的大小为 ______ .
20.已知x是整数,且5.5<|x|<7,则x= ______ .
21.化简:-(-5)= ______ ,-|-5|= ______ .
22.绝对值大于2.1而小于5.4的整数的积为 ______ .
23.在数轴上分别画出表示-4、3、-2.5的点A、B、C,然后填空:
(1)点A、B、C到原点的距离分别是 ______ 、 ______ 、 ______ ;
(2)4、3、-2.5的绝对值分别是 ______ 、 ______ 、 ______ .
24.-1.2的绝对值是 ______ ,它的倒数是 ______ .
25.比较大小:- ______ -(填“<”、“=”、“>”).
26.大于-2且不大于2的整数是 ______ .
27.大于-5且小于3的所有整数的和是 ______ .
28.计算:(-2)×(-)= ______ .
29.计算(-1)6+(-1)7= ______ .
30.若|x-3|+(y-2)2=0,则y-x= ______ .
31.近似数6.30×104精确到位;
32.把8.5046用四舍五入法精确到0.01后所得到的近似数是.
33.用四舍五入法取近似数,18042000≈ ______ (精确到万位)
三、解答题(本大题共1小题,共10分)
34.(1)用数轴上的点表示下列各数:
-5,2.5,3,-,0,-|-3|,3.
(2)用“<”号把各数从小到大连起来.
四.近几年安徽中考题(共12分)
1.(2013•安徽)﹣2的倒数是 ( )
A 、—21
B 、2
1 C 、
2 D 、—2 2.((2014•安徽)(—2)×3的结果是( )
A 、—5
B 、1
C 、—6
D 、6
3.(2015•安徽)在-4,2,-1,3这四个数中,比-2小的数是( )
A .-4
B .2
C .-1
D .3
4.(2016•安徽)-2的绝对值是( )
A .-2
B .2
C .2
D .2
1。

相关文档
最新文档