最新初中数学代数式难题汇编附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新初中数学代数式难题汇编附答案
一、选择题
1.5. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )
A .(-10%)(+15%)万元
B .(1-10%)(1+15%)万元
C .(-10%+15%)万元
D .(1-10%+15%)万元
【答案】B
【解析】
列代数式.据3月份的产值是a 万元,用a 把4月份的产值表示出来a (1-10%),从而得出5月份产值列出式子a 1-10%)(1+15%).故选B .
2.下列计算正确的是( )
A .a 2+a 3=a 5
B .a 2•a 3=a 6
C .(a 2)3=a 6
D .(ab )2=ab 2
【答案】C
【解析】
试题解析:A.a 2与a 3不是同类项,故A 错误;
B.原式=a 5,故B 错误;
D.原式=a 2b 2,故D 错误;
故选C.
考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.
3.下列运算或变形正确的是( )
A .222()a b a b -+=-+
B .2224(2)a a a -+=-
C .2353412a a a ⋅=
D .()32626a a =
【答案】C
【解析】
【分析】
根据合并同类项,完全平方公式,同底数幂的乘法以及幂的乘方与积的乘方计算法则解答.
【详解】
A 、原式中的两项不是同类项,不能合并,故本选项错误;
B 、原式=(a-1)2+2,故本选项错误;
C 、原式=12a 5,故本选项正确;
D 、原式=8a 6,故本选项错误;
故选:C .
【点睛】
此题考查单项式的乘法,因式分解,解题关键在于熟记计算法则.
4.若352x y a b +与2425y x a b -是同类项.则( )
A .1,2x y =⎧⎨=⎩
B .2,1x y =⎧⎨=-⎩
C .0,2x y =⎧⎨=⎩
D .3,1x y =⎧⎨=⎩
【答案】B
【解析】
【分析】
根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.
【详解】
由同类项的定义,得:
32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩
:. 故选B .
【点睛】
同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.
5.观察等式:232222+=-;23422222++=-;2345222222+++=-⋅⋅⋅已知按一定规律排列的一组数:502、512、522、⋅⋅⋅、992、1002.若502a =,用含a 的式子表示这组数的和是( )
A .222a a -
B .2222a a --
C .22a a -
D .22a a +
【答案】C
【解析】
【分析】
根据题意,一组数:502、512、522、⋅⋅⋅、992、1002的和为250+251+252+…+299+2100==a +(2+22+…+250)a ,进而根据所给等式的规律,可以发现2+22+…+250=251-2,由此即可求得答案.
【详解】
250+251+252+…+299+2100
=a +2a +22a + (250)
=a +(2+22+…+250)a ,
∵232222+=-, 23422222++=-,
2345222222+++=-,
…,
∴2+22+…+250=251-2,
∴250+251+252+…+299+2100
=a +(2+22+…+250)a
=a +(251-2)a
=a+(2 a-2)a
=2a2-a ,
故选C.
【点睛】
本题考查了规律题——数字的变化类,仔细观察,发现其中哪些发生了变化,哪些没有发生变化,是按什么规律变化的是解题的关键.
6.观察下列图形:()
它们是按一定规律排列的,依照此规律,那么第7个图形中共有五角星的个数为() A.20B.21C.22D.23
【答案】C
【解析】
【分析】
设第n个图形共有a n(n为正整数)个五角星,根据各图形中五角星个数的变化可找出变化规律“a n=3n+1(n为正整数)”,再代入n=7即可得出结论.
【详解】
解:设第n个图形共有a n(n为正整数)个五角星,
∵a1=4=3×1+1,a2=7=3×2+1,a3=10=3×3+1,a4=13=3×4+1,…,
∴a n=3n+1(n为正整数),
∴a7=3×7+1=22.
故选:C.
【点睛】
本题考查了规律型:图形的变化类,根据各图形中五角星个数的变化,找出变化规律“a n=3n+1(n为正整数)”是解题的关键.
7.如图,两个连接在一起的菱形的边长都是1cm,一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm时停下,则它停的位置是()
A.点F B.点E C.点A D.点C
【答案】A
【解析】
分析:利用菱形的性质,电子甲虫从出发到第1次回到点A 共爬行了8cm (称第1回
合),而2014÷8=251……6,即电子甲虫要爬行251个回合,再爬行6cm ,所以它停的位置是F 点.
详解:一只电子甲虫从点A 开始按ABCDAEFGAB …的顺序沿菱形的边循环爬行,从出发到第1次回到点A 共爬行了8cm ,
而2014÷8=251……6,
所以当电子甲虫爬行2014cm 时停下,它停的位置是F 点.
故选A .
点睛:本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
8.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为6cm ,宽为5cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长之和等于( )
A .19cm
B .20cm
C .21cm
D .22cm
【答案】B
【解析】
【分析】 根据图示可知:设小长方形纸片的长为a 、宽为b ,有:26a b +=(cm),则阴影部分的周长为:2(62)2(52)2(6)2(5)-+-+-+-b b a a ,计算即可求得结果.
【详解】
解:设小长方形纸片的长为a 、宽为b ,由图可知:26a b +=(cm),
阴影部分的周长为:2(62)2(52)2(6)2(5)-+-+-+-b b a a ,
化简得:444(2)-+a b ,
代入26a b +=得:原式=44−4×6=44−24=20(cm),
故选:B .
【点睛】
本题主要考查整式加减的应用,关键分清图形②如何用小长方形纸片的长和宽表示.
9.若2m =5,4n =3,则43n ﹣m 的值是( )
A .910
B .2725
C .2
D .4
【答案】B
【解析】
【分析】
根据幂的乘方和同底数幂除法的运算法则求解.
【详解】
∵2m =5,4n =3,
∴43n ﹣m =344
n m =32(4)(2)n m =3235=2725 故选B.
【点睛】
本题考查幂的乘方和同底数幂除法,熟练掌握运算法则是解题关键.
10.如果(x 2+px +q )(x 2-5x +7)的展开式中不含x 2与x 3项,那么p 与q 的值是( ) A .p =5,q =18
B .p =-5,q =18
C .p =-5,q =-18
D .p =5,q =-18
【答案】A
【解析】
试题解析:∵(x 2+px+q )(x 2-5x+7)=x 4+(p-5)x 3+(7-5p+q )x 2+(7-5q )x+7q , 又∵展开式中不含x 2与x 3项,
∴p-5=0,7-5p+q=0,
解得p=5,q=18.
故选A .
11.下列运算正确的是( )
A .426x x x +=
B .236x x x ⋅=
C .236()x x =
D .222()x y x y -=-
【答案】C
【解析】
试题分析:4x 与2x 不是同类项,不能合并,A 错误; 235x x x ⋅=,B 错误;
236()x x =,C 正确;
22()()x y x y x y -=+-,D 错误.
故选C .
考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.
12.如图,是一块直径为2a +2b 的圆形钢板,从中挖去直径分别为2a 、2b 的两个圆,则剩下的钢板的面积为( )
A .ab π
B .2ab π
C .3ab π
D .4ab π
【答案】B
【解析】
【分析】
剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.
【详解】
解:S 剩下=S 大圆- 1S 小圆-2S 小圆 =2222a+2b 2a 2b --222
πππ()()() =()222a+b -a -b π⎡⎤⎣⎦
=2ab π, 故选:B
【点睛】
此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、 合并同类项法则,熟练掌握公式及法则是解本题的关键.
13.下列计算,正确的是( )
A .2a a a -=
B .236a a a =
C .933a a a ÷=
D .()236a a = 【答案】D
【解析】
A.2a 和a,和不能合并,故本选项错误;
B.2356a a a a ⋅=≠ ,故本选项错误;
C.9363a a a a ÷=≠,和不能合并,故本选项错误;
D.()236 a a =,故本选项正确;
故选D.
14.下列运算中正确的是( )
A .2235a a a +=
B .222(2)4a b a b +=+
C .236236a a a ⋅=
D .()()22
224a b a b a b -+=- 【答案】D
【解析】
【分析】
根据多项式乘以多项式的法则,分别进行计算,即可求出答案.
【详解】
A、2a+3a=5a,故本选项错误;
B、(2a+b)2=4a2+4ab+b2,故本选项错误;
C、2a2•3a3=6a5,故本选项错误;
D、(2a-b)(2a+b)=4a2-b2,故本选项正确.
故选D.
【点睛】
本题主要考查多项式乘以多项式.注意不要漏项,漏字母,有同类项的合并同类项.
15.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A,B的面积之和为()
A.7 B.12 C.13 D.25
【答案】C
【解析】
【分析】
设正方形A的边长为a,正方形B的边长为b,根据图形列式整理得a2+b2−2ab=1,2ab =12,求出a2+b2即可.
【详解】
解:设正方形A的边长为a,正方形B的边长为b,
由图甲得:a2−b2−2(a−b)b=1,即a2+b2−2ab=1,
由图乙得:(a+b)2−a2−b2=12,即2ab=12,
所以a2+b2=13,即正方形A,B的面积之和为13,
故选:C.
【点睛】
本题主要考查了完全平方公式在几何图形中的应用,解题的关键是根据图形列出算式.16.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是()
A .30
B .20
C .60
D .40
【答案】A
【解析】
【分析】 设大正方形的边长为x ,小正方形的边长为y ,表示出阴影部分的面积,结合大正方形与小正方形的面积之差是60即可求解.
【详解】
设大正方形的边长为x ,小正方形的边长为y ,
则22
60x y -=,
∵S 阴影=S △AEC +S △AED =
11()()22
x y x x y y -+-g g =1()()2
x y x y -+g =221()2x y - =
1602
⨯ =30.
故选A.
【点睛】 此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.
17.已知x=2y+3,则代数式9-8y+4x 的值是( )
A .3
B .21
C .5
D .-15
【答案】B
【解析】
【分析】
直接将已知变形进而代入原式求出答案.
【详解】
解:∵x=2y+3
∴x-2y=3
∴98494(2y x y x -+=--⨯)=9-4(-3)=21
故选:B
【点睛】
此题主要考查了整式的加减以及代数式求值,正确将原式变形是解题关键.
18.下面的图形都是由同样大小的棋子按照一定的规律组成,其中第①个图形有1颗棋子,第②个图形有6颗棋子,第③个图形有15颗棋子,第④个图中有28颗棋子,…,
则第6个图形中棋子的颗数为( )
A .63
B .64
C .65
D .66
【答案】D
【解析】
【分析】 根据图形中棋子的个数找到规律,从而利用规律解题.
【详解】
解:∵通过观察可以发现:
第1个图形中棋子的个数为()11211=⨯⨯-;
第2个图形中棋子的个数为()62221=⨯⨯-;
第3个图形中棋子的个数为()153231=⨯⨯-;
第4个图形中棋子的个数为()284241=⨯⨯-;
L L
第n 个图形中棋子的个数为()21n n -
∴第6个图形中棋子的个数为()626166⨯⨯-=.
故选:D
【点睛】
本题考查了图形变化规律的问题,能找出第n 个图形棋子的个数的表达式是解题的关键.
19.若x +y =2,x ﹣y =3﹣222x y -的值为( )
A .2
B .1
C .6
D .3﹣2
【答案】B
【解析】
【分析】
根据二次根式的性质解答.
【详解】
解:∵x+y =2,x ﹣y =3﹣2, 22()()(322)(322)x y x y x y -=+-=+-1.
故选:B.
【点睛】
本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.
20.若(x+1)(x+n)=x2+mx﹣2,则m的值为()
A.﹣1 B.1 C.﹣2 D.2
【答案】A
【解析】
【分析】
先将(x+1)(x+n)展开得出一个关于x的多项式,再将它与x2+mx-2作比较,即可分别求得m,n的值.
【详解】
解:∵(x+1)(x+n)=x2+(1+n)x+n,
∴x2+(1+n)x+n=x2+mx-2,

1
2
n m n
+=


=-


∴m=-1,n=-2.
故选A.
【点睛】
本题考查了多项式乘多项式的法则以及类比法在解题中的运用.。

相关文档
最新文档