计算方法课后习题答案
计算方法——第二章——课后习题答案刘师少
2.1 用二分法求方程013=--x x 在[1, 2]的近似根,要求误差不超过31021-⨯至少要二分多少? 解:给定误差限ε=0.5×10-3,使用二分法时,误差限为)(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211a b k 即可,亦即 96678.912lg 10lg 35.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =10.2.3 证明方程1 -x –sin x =0 在区间[0, 1]内有一个根,使用二分法求误差不超过0.5×10-4的根要二分多少次?证明 令f (x )=1-x -sin x ,∵ f (0)=1>0,f (1)=-sin1<0∴ f (x )=1-x -sin x =0在[0,1]有根.又f '(x )=-1-c os x<0 (x ∈[0.1]),故f (x ) 在[0,1]单调减少,所以f (x ) 在区间[0,1]内有唯一实根.给定误差限ε=0.5×10-4,使用二分法时,误差限为)(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211a b k 即可,亦即 7287.1312lg 10lg 45.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =14.2.4 方程0123=--x x 在x =1.5附近有根,把方程写成四种不同的等价形式,并建立相应的迭代公式:(1)211x x +=,迭代公式2111kk x x +=+ (2)231x x +=,迭代公式3211k k x x +=+ (3)112-=x x ,迭代公式111-=+k k x x (4)13-=x x ,迭代公式131-=+k k x x 试分析每种迭代公式的收敛性,并选取一种收敛迭代公式求出具有四位有效数字的近似根。
计算方法-刘师少版第一章课后习题完整答案
9000 m=1
9000.00
解 (1)∵ 2.0004=0.20004×10 ,
x − x ∗ = x − 0.20004 ≤ 0.000049 ≤ 0.5 × 10 −4
m-n=-4,m=1 则 n=5,故 x=2.0004 有 5 位有效数字
x1 =2,相对误差限 ε r =
1 1 × 10 −( n −1) = × 101−5 = 0.000025 2 × x1 2× 2
-2
(2)∵ -0.00200= -0.2×10 ,
m=-2
x − x ∗ = x − (−0.00200) ≤ 0.0000049 ≤ 0.5 × 10 −5
m-n=-5, m=-2 则 n=3,故 x=-0.00200 有 3 位有效数字
x1 =2,相对误差限 ε r =
4
1 × 101−3 =0.0025 2× 2
4 3 4 πR − π ( R * ) 3 3 ε r* (V ) = 3 4 3 πR 3 R 3 − (R* )3 ( R − R * )( R 2 + RR * + R * ) = = R3 R3 R − R * R 2 + RR * + R * R − R * R 2 + RR * + RR * = ⋅ ≈ ⋅ R R R2 R2
可以得到计算积分的递推公式:
I n = 1 − nI n −1
1 0
n = 1,2, L
1 0
I 0 = ∫ e x −1 dx = e x −1
则准确的理论递推式 实际运算的递推式 两式相减有
* *
= 1 − e −1
I n = 1 − nI n −1
* * In = 1 − nI n −1 * * * In − In = −n( I n −1 − I n −1 ) = − ne( I n −1 ) *
数值计算方法课后习题答案
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
数值计算方法课后习题答案(李庆扬等) (修复的)
,。
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
计算方法课后习题集规范标准答案
习 题 一3.已知函数y =4, 6.25,9x x x ===处的函数值,试通过一个二次插值函解:0120124, 6.25,9;2, 2.5,3y x x x y y y =======由题意 (1) 采用Lagrange插值多项式220()()j j j y L x l x y ==≈=∑27020112012010*********()|()()()()()()()()()()()()(7 6.25)(79)(74)(79)(74)(7 6.25)2 2.532.255 2.25 2.75 2.7552.6484848x y L x x x x x x x x x x x x x y y y x x x x x x x x x x x x ==≈------=++------------=⨯+⨯+⨯⨯-⨯⨯= 其误差为(3)25(3)25(3)2[4,9]2()(7)(74)(7 6.25)(79)3!3()83max |()|40.0117281|(7)|(4.5)(0.01172)0.008796f R f x x f x R ξ--=---==<∴<=又则(2)采用Newton插值多项式2()y N x =≈ 根据题意作差商表:224(7)2(74)()(74)(7 6.25) 2.64848489495N =+⨯-+-⨯-⨯-≈4. 设()()0,1,...,k f x x k n ==,试列出()f x 关于互异节点()0,1,...,i x i n =的Lagrange 插值多项式。
注意到:若1n +个节点()0,1,...,i x i n =互异,则对任意次数n ≤的多项式()f x ,它关于节点()0,1,...,i x i n =满足条件(),0,1,...,i i P x y i n ==的插值多项式()P x 就是它本身。
可见,当k n ≤时幂函数()(0,1,...,)kf x x k n ==关于1n +个节点()0,1,...,i x i n =的插值多项式就是它本身,故依Lagrange 公式有()00(),0,1,...,nn n k kk i j j j j j i j ii jx x x l x x x k n x x ===≠-=≡=-∑∑∏特别地,当0k =时,有()0001nn n ij j j i j ii jx x l x x x ===≠-=≡-∑∑∏而当1k =时有()000nnn ij j j j j i j ii jx x x l x x x x x ===≠⎛⎫- ⎪=≡ ⎪- ⎪⎝⎭∑∑∏ 5.依据下列函数表分别建立次数不超过3的Lagrange 插值多项式和Newton 插值多项式,并验证插值多项式的唯一性。
计算方法答案王能超
计算方法答案王能超【篇一:计算方法习题集及实验指导书】s=txt>计算机科学与技术系檀明2008-02-10课程性质及目的要求(一)课程性质自计算机问世以来,科学计算一直是计算机应用的一个重要领域,数值计算方法是解决各种复杂的科学计算问题的理论与技术的基础。
《计算方法》课程讨论用于科学计算中的一些最基本、最常用的算法,不但具有数学的抽象性与严密的科学性的特点,而且具有应用的高度技术性的特点。
它对于培养从事计算机应用的科技人才有着重要的作用,是计算机应用专业(本科段)的一门重要的技术基础课程。
(二)目的要求通过本课程的学习和上机实验,了解用计算机解决科学计算问题的方法特点,掌握计算方法中的一些基本概念、基本公式和相应的算法流程,提高根据算法描述设计高级语言程序并进行验证的技能。
在学习过程中,应注重理解和应用,在搞清基本原理和基本概念的基础上,通过习题、编程和上机等环节,巩固和加深已学的内容,掌握重要的算法及其应用。
注重理论与算法的学习和应用相结合,强调编程及上机计算的技能培养,是本课程不同于一般数学课程的重要特点。
(三)学习方法指导1.循序渐进逐章学习本课程从第二章开始,每章都讨论一个大类的算法。
虽然各算法是相对独立的,但是也存在相互联系与前后继承的关系。
前面的概念和算法学好了,后面的内容也就容易学,越学越感到容易。
前面的内容没有学好,后面就会感到难学,甚至会出现越来越感到困难、失去学习信心的情况。
2.稳扎稳打融会贯通学习要扎实、要讲求实效。
每一个重要的概念和公式,都会搞清楚,做到融会贯通。
只有这样,才能取得学习的学习效果。
3.多学练勤做习题教材及本习题集中的每一章都附有适量的习题,可以帮助考生巩固和加深理解所学的知识,提高解题能力。
因此,在学习过程中,应当适合习题进行思考,应当尽可能多做习题,遇到某些不会做的题,应三思之后再请老师给予提示。
4.抓住特点前后联系本课程只讲了五大类算法。
每类算法都是针对一类特定的计算问题,都有其自身的特点。
计算方法的课后答案
《计算方法》习题答案第一章 数值计算中的误差1.什么是计算方法?(狭义解释)答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。
2.一个实际问题利用计算机解决所采取的五个步骤是什么?答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果 4.利用秦九韶算法计算多项式4)(53-+-=x x x x P 在3-=x 处的值,并编程获得解。
解:400)(2345-+⋅+-⋅+=x x x x x x P ,从而 1 0 -1 0 1 -4 -3 -3 9 -24 72 -2191-38-2473-223所以,多项式4)(53-+-=x x x x P 在3-=x 处的值223)3(-=-P 。
5.叙述误差的种类及来源。
答:误差的种类及来源有如下四个方面:(1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。
(2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。
(3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。
(4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。
这样引起的误差称为舍入误差。
6.掌握绝对误差(限)和相对误差(限)的定义公式。
数值计算方法课后习题答案(李庆扬等) (修复的)
,。
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
计算方法课后习题答案第四章作业
(五)课后习题4.1 对于积分⎰-aadx x f )(,以a x x a x ==-=210,0,为节点,构造形如⎰-++≈aax f A x f A x f A dx x f )()()()(221100的插值型求积公式,并讨论所得公式的代数精度。
解答:⎰⎰--=------=----=aa a a a dx a a a a x x dx x x x x x x x x A 31))(0())(0())(())((2010210⎰⎰--=-+-+=----=aa a a a dx a a a x a x dx x x x x x x x x A 34)0)(0())(())(())((2101201⎰⎰--=-+-+=----=aa a a a dx a a a x a x dx x x x x x x x x A 31)0)(()0)(())(())((1202102易知为Simpson 公式,因此代数精度为34.2 确定 下列求积公式中的待定参数,使其代数精度尽量高,并指出所得公式的代数精度。
(1)⎰++≈2210)2()1()0()(f A f A f A dx x f(2)⎰-⋅++≈hh f f h h f f hdx x f 0''2)]()0([)]()0([2)(α解答:(1)令2,,1)(x x x f =,假定求积公式均准确成立,从而有: ⎰++==202102A A A dx 21022102⋅+⋅+⋅==⎰A A A xdx22212022210038⋅+⋅+⋅⋅==⎰A A A dx x 解以上三元线性方程组从得:34,31120===A A A ,显然仍为Simpson 公式,因此代数精度为3(2)求积公式中只含一个待定参数α,当x x f ,1)(=时,有 ⎰++=hh dx 00]11[2,⎰-++=h h h hxdx 02)11(]0[2α故令2)(x x f =时求积公式准确成立,即⎰-⨯++=hh h h h dx x 0222]202[]0[2α,解得121=α将3)(x x f =代入上述确定的求积公式,有:⎰-++=hh h h h dx x 02233]30[12]0[2,这说明求积公式至少有3次代数精度,再令 4)(x x f =,代入求积公式时有:⎰-++≠hh h h h dx x 03244]40[12]0[2故所建求积公式为⎰-++≈hh f f h h f f h dx x f 0''2)]()0([2)]()0([2)(4.3 对于xxx f sin )(=,利用下表数据,计算8,4=n 时的复合梯形公式84,T T ,以及4=n 复合Simpson 公式4S 的值。
数值计算方法课后习题答案(李庆扬等)
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
数值计算方法课后习题答案(李庆扬等)
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
计算方法 课后习题答案
计算方法课后习题答案计算方法课后习题答案计算方法是一门重要的学科,它涉及到数值计算、算法设计和数据处理等方面的内容。
在学习计算方法的过程中,课后习题是不可或缺的一部分。
通过解答习题,我们可以巩固所学的知识,提高自己的计算能力。
下面是一些计算方法课后习题的答案,希望对大家的学习有所帮助。
1. 矩阵的转置矩阵的转置是将矩阵的行和列互换得到的新矩阵。
对于一个m×n的矩阵A,它的转置记作A^T。
转置后的矩阵A^T的行数和列数分别为原矩阵A的列数和行数。
例如,对于一个3×2的矩阵A,它的转置A^T是一个2×3的矩阵。
2. 矩阵的加法和减法矩阵的加法和减法是对应位置上的元素进行相加或相减得到的新矩阵。
对于两个相同大小的矩阵A和B,它们的和记作A+B,差记作A-B。
加法和减法的运算规则是相同位置上的元素进行相应的运算。
3. 矩阵的乘法矩阵的乘法是指将两个矩阵相乘得到一个新矩阵的运算。
对于两个矩阵A和B,它们的乘积记作AB。
矩阵乘法的运算规则是矩阵A的行与矩阵B的列进行相乘,并将结果相加得到新矩阵的对应位置上的元素。
4. 矩阵的逆矩阵的逆是指对于一个可逆矩阵A,存在一个矩阵B,使得AB=BA=I,其中I是单位矩阵。
如果一个矩阵A存在逆矩阵,则称其为可逆矩阵或非奇异矩阵。
求解矩阵的逆可以使用伴随矩阵和行列式的方法。
5. 线性方程组的求解线性方程组是指由一组线性方程组成的方程组。
求解线性方程组的方法有很多,包括高斯消元法、LU分解法、迭代法等。
其中,高斯消元法是一种常用的求解线性方程组的方法,它通过消元和回代的过程,将线性方程组转化为上三角形矩阵或对角矩阵,从而求解出方程组的解。
6. 数值积分的方法数值积分是指通过数值计算的方法来求解定积分的近似值。
常用的数值积分方法包括梯形法则、辛普森法则和龙贝格法则等。
这些方法都是基于将定积分转化为离散求和的形式,通过计算离散点上的函数值来估计定积分的近似值。
计算方法课后习题答案
计算方法课后习题答案在计算方法课程中,学生通常会接触到各种数学问题的求解方法,包括但不限于数值分析、线性代数、微分方程等。
以下是一些课后习题的解答示例:习题一:求解线性方程组设线性方程组为:\[ \begin{align*}a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1, \\a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2, \\\vdots \quad \quad & \ \vdots \\a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m,\end{align*} \]解答:使用高斯消元法或矩阵分解法求解上述方程组。
首先将系数矩阵转换为行简化阶梯形式,然后回代求解未知数 \( x_1, x_2,\ldots, x_n \)。
习题二:数值积分给定函数 \( f(x) \),需要在区间 \( [a, b] \) 上进行数值积分。
解答:可以使用梯形法、辛普森法等数值积分方法。
例如,使用梯形法的公式为:\[ \int_a^b f(x)dx \approx \frac{h}{2} \left( f(a) + 2f(a+h) + 2f(a+2h) + \cdots + 2f(b-h) + f(b) \right), \]其中 \( h = \frac{b-a}{n} \) 是区间的等分宽度,\( n \) 是等分数。
习题三:常微分方程的数值解给定一个常微分方程 \( y' = f(x, y) \),初始条件为 \( y(x_0) = y_0 \)。
解答:使用欧拉法或龙格-库塔法求解。
以欧拉法为例,其迭代公式为:\[ y_{n+1} = y_n + h f(x_n, y_n), \]其中 \( h \) 是步长,\( x_{n+1} = x_n + h \)。
最优化计算方法课后习题集答案解析
解:取 , 时,DFP法的第一步与最速下降法相同
, ,
,
以下作第二次迭代
,
其中,
,
所以
令 , 利用 ,求得
所以 ,
以下作第三次迭代
,
,
所以
令 , 利用 ,求得
所以 , 因为 ,于是停止
即为最优解。
习题四
包括题目: P95页 3;4;8;9(1);12选做;13选做
3题解如下
3.考虑问题 ,其中
X1,x2,x3≥0 (3)
求出点(1,1,0)处的一个下降可行方向.
解:首先检查在点(1,1,0)处哪些约束为有效约束。检查易知(1),X3≥0为有效约束。设所求可行方向d=(d1,d2,d3)T。根据可行方向d的定义,应存在a>0,使对∀t∈(0,a)能有
X+td=(1+td1,1+td2,0+td3)T
(1)
s.t.
(2)
s.t.
(1)解:非线性规划的K-T条件如下:
(1)
(2)
(3)
再加上约束条件 (4)
为求出满足(1)~(4)式的解,分情况考虑:
①若(4)式等号不成立,即 ,那么由(2)式得 ,将 代入(1)式解得 , ,所得值不满足 的条件,故舍去。
②若(4)式等号成立,由(1)式可以解得 , ,代入(4)式有:
JBi
1
2
3
4
5
6
7
8
9
di0
1
1
0
-5/6
-1/6
1
10/6
4
0
0
38/6
2
0
1
-9/6
数值计算方法》习题答案
《数值计算方法》课后题答案详解吉 林 大 学第一章 习 题 答 案1. 已知(1)2,(1)1,(2)1f f f −===,求()f x 的Lagrange 插值多项式。
解:由题意知:()01201212001020211012012202121,1,2;2,1,1()()(1)(2)()()6()()(1)(2)()()2()()(1)(1)()()3(1)(2)(1)(2)()2162nj j j x x x y y y x x x x x x l x x x x x x x x x x l x x x x x x x x x x l x x x x x x x x L x y l x ==−=====−−−−==−−−−+−==−−−−−+−==−−−−+−==×+×−∴∑()2(1)(1)131386x x x x +−+×=−+2. 取节点01210,1,,2x x x ===对x y e −=建立Lagrange 型二次插值函数,并估计差。
解11201201210,1,;1,,2x x x y y e y e −−======1)由题意知:则根据二次Lagrange插值公式得:02011201201021012202110.510.520.51()()()()()()()()()()()()()2(1)(0.5)2(0.5)4(1)(224)(43)1x x x x x x x x x x x x L x y y y x x x x x x x x x x x x x x x x e x x e e e x e e x −−−−−−−−−−−−=++−−−−−−=−−+−−−=+−+−−+22)Lagrange 根据余项定理,其误差为(3)2210122()1|()||()||(1)(0.5)|3!61max |(1)(0.5)|,(0,1)6()(1)(0.5),()330.5030.2113()61()0.2113(0.21131)(0.21130.5)0.008026x f R x x e x x x x x x t x x x x t x x x x t x R x ξξωξ−+≤≤==−−≤−−∈′=−−=−+=−==≤××−×−=∴取 并令 可知当时,有极大值3. 已知函数y =在4, 6.25,9x x x ===处的函数值,试通过一个二次插值函数求的近似值,并估计其误差。
计算方法_课后习题答案
(4.5)(0.01172)
0.00879
(2)采用 Newton 插值多项式 y x N2(x) 根据题意作差商表:
i
xi
0
4
1
6.25
f (xi ) 2 2.5
一阶差商 2 9
2
9
3
2 11
二阶差商 4 495
N2 (7) 2 29 (7 4) ( 4 495) (7 4) (7 6.25) 2.6484848
1
e2
则根据二次Lagrange插值公式得:
L2 (x)
(x ( x0
x1)(x x2 ) x1)(x0 x2 )
y0
(x ( x1
x0 )(x x2 ) x0 )(x1 x2 )
y1
(x ( x2
x0 )(x x1) x0 )(x2 x1)
y2
2(x 1)(x 0.5) 2x(x 0.5)e1 4x(x 1)e0.5
8. 求作 f x xn1 关于节点 xi i 0,1, , n 的 Lagrange 插值多项式,并利用
插值余项定理证明
n
n
xin1li 0 1n xi
i0
i0
式中 li x 为关于节点 xi i 0,1, , n 的 Lagrange 插值基函数。
2 02 12 4 23 4 04 14 2 3
1 x2 3x 2 x 4 3x x2 6x 8 23 x x2 5x 4 1 x x2 3x 2
8
4
8
计算方法课后习题答案第一章作业
1.1 指出下列经四舍五入得的有效数字位数,及其绝对误差限和相对误差限。
2.000 4 -0.002 00 9 000 9 000.00解: 因为x 1=2.000 4=0.200 04×101, 它的绝对误差限0.000 05=0.5×101―5,即m =1,n =5,故x =2.000 4有5位有效数字. a 1=2,相对误差限025000.01021511=⨯⨯=-a r ε x 2=-0.002 00,绝对误差限0.000 005,因为m =-2,n =3,x 2=-0.002 00有3位有效数字. a 1=2,相对误差限εr =3110221-⨯⨯=0.002 5 x 3=9 000,绝对误差限为0.5×100,因为m =4, n =4, x 3=9 000有4位有效数字,a =9,相对误差限εr =4110921-⨯⨯=0.000 056 x 4=9 000.00,绝对误差限0.005,因为m =4,n =6,x 4=9 000.00有6位有效数字,相对误差限为εr =6110921-⨯⨯=0.000 000 56 由x 3与x 4可以看到小数点之后的0,不是可有可无的,它是有实际意义的。
(简易解法):凡由准确值经四舍五入而得的近似值,其每一个均为有效数字,且绝对误差限不超过末位数字的半个单位。
注:相对误差限也可用定义:绝对误差限除以近似值来求,如4310556.090005.0)(-⨯==x r ε 1.2 设 3149541.2=x ,取5位有效数字,则所得的近似值=*x _________.解: 2.3150(四舍五入结果)1.3 近似数234.1*=x ,有3位有效数字,求其相对误差限r δ。
讲解:r r a x δε=⨯=⨯≤--2311105.01021)(或3,1,101234.01*==⨯=n m x ,由有效数字定义知δ==⨯≤--005.0102131*x x ,从而004052.0234.1005.0*≈==xr δδ 1.4 对准确值 1000=x 和它的两个近似值为9.999*1=x 和1.1000*2=x 分别计算它们的有效数位及绝对误差限,根据结果判断以下结论是否正确:对准确值x 的两个近似值21,x x ,则有效数位n 大的则其绝对误差限就越小?答案:错误 解答:n m x x x -⨯≤-=ε1021)(*,n 越大,通常..绝对误差限越小.......,但绝对误差限也与m 有关 ,因此上述结论并不总是正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习 题 一3.已知函数y =4, 6.25,9x x x ===处的函数值,试通过一个二次插解:0120124, 6.25,9;2, 2.5,3y x x x y y y =======由题意(1) 采用Lagrange插值多项式220()()j j j y L x l x y ==≈=∑27020112012010*********()|()()()()()()()()()()()()(7 6.25)(79)(74)(79)(74)(7 6.25)2 2.532.255 2.25 2.75 2.7552.6484848x y L x x x x x x x x x x x x x y y y x x x x x x x x x x x x ==≈------=++------------=⨯+⨯+⨯⨯-⨯⨯=其误差为(3)25(3)25(3)2[4,9]2()(7)(74)(7 6.25)(79)3!3()83max |()|40.0117281|(7)|(4.5)(0.01172)0.008796f R f x x f x R ξ--=---==<∴<=又则(2)采用Newton插值多项式2()y N x =≈224(7)2(74)()(74)(7 6.25) 2.64848489495N =+⨯-+-⨯-⨯-≈4. 设()()0,1,...,k f x x k n ==,试列出()f x 关于互异节点()0,1,...,ix i n =的Lagrange 插值多项式。
注意到:若1n +个节点()0,1,...,ix i n =互异,则对任意次数n ≤的多项式()f x ,它关于节点()0,1,...,ix i n =满足条件(),0,1,...,iiP x y i n ==的插值多项式()P x 就是它本身。
可见,当k n ≤时幂函数()(0,1,...,)kf x x k n ==关于1n +个节点()0,1,...,ix i n =的插值多项式就是它本身,故依Lagrange 公式有()000(),0,1,...,nnn k k kij jjj j i j ii jx xx l x x x k n x x ===≠-=≡=-∑∑∏特别地,当0k =时,有()0001nnnij j j i jii jx x l x x x ===≠-=≡-∑∑∏而当1k =时有()000nnni j j j j j i j ii jx x x l x x x x x ===≠⎛⎫- ⎪=≡ ⎪- ⎪⎝⎭∑∑∏5.依据下列函数表分别建立次数不超过3的Lagrange 插值多项式和Newton 插值多项式,并验证插值多项式的唯一性。
解:(1) Lagrange 插值多项式330()()j j j L x l x y ==∑ 30,()jiii ji jx xl x x x=≠-=-∏3120010203124()010204x x x x x x x x x l x x x x x x x ------=••=••------=3271488x x x -+--0321101213024()101214x x x x x x x x x l x x x x x x x ------=••=••------=32683x x x-+ 0312202123014()202124x x x x x x x x x l x x x x x x x ------=••=••------=32544x x x -+-0123303132012()404142x x x x x x x x x l x x x x x x x ------=••=••------=323224x x x-+()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()32222321240241901020410121401401223320212440414212313243685432848114511442x x x x x x L x x x x x x x x x x x x x x x x x x x x x x ------=⨯+⨯+------------⨯+⨯------=--+-+-+--++-+=-+-+(2) Newton 插值多项式31121()()(,)()(,,)()()N x f x f x x x x f x x x x x x x =+-+--0123012(,,,)()()()f x x x x x x x x x x +---1118(0)3(0)(1)(0)(1)(2)4x x x x x x =+-+------ 32114511442x x x =-+-+由求解结果可知:33()()L x N x =说明插值问题的解存在且唯一。
7. 设()4f x x =,试利用Lagrange 余项定理给出()f x 以1,0,1,2-为节点的插值多项式()3L x 。
解:由Lagrange 余项定理(1)1()()()()()(1)!n n n n f R x f x L x x n ξω++=-=+ [,]a b ξ∈可知:当3n =时,(1)(4)()()4!n x f f x ξξ+===301234!()()()()()()(31)!L x f x x x x x x x x x =-----+4(1)(0)(1)(2)x x x x x =-+---3222x x x=+-8.设[]2(),f x C a b ∈且()()0f a f b ==,求证21max ()()max ()8a x b a x b f x b a f x ≤≤≤≤''≤-证明:以,a b 为节点进行线性插值,得()()()x b x aL x f a f b a b b a--=+--1 由于()()0f a f b ==,故1()0L x =。
于是由''1()()()()(),2!f f x L x x a x b ξ-=-- a b ξ<<有''()()()()2f f x x a x b ξ=--,令()()() [,]t x x a x b x a b =--∈ ()2()0()2t x x a b a b x t x '=-+=+=∴时有极大值21max()=max ()max ()()21max ()()()2221=()max ()8a xb a x ba xb a x b a x b f x f x x a x b a b a b f x a b b a f x ≤≤≤≤≤≤≤≤≤≤''•--++''=•--''-∴13.设节点()0,1,,ix i n =L 与点a 互异,试对()1f x a x=-证明()011,,,,0,1,,kki if x x x k n a x===-∏L L 并给出()f x 的Newton 插值多项式。
解 依差商的定义 001()f x a x =-,100110101010()()1111(,)()()()f x f x f x x x x x x a x a x a x a x -==-=------一般地,设01011(,,,)()()kk ki i ii f x x x a x a x ==⋅⋅⋅==--∏∏则1210101110110101101010(,,,)(,,,)(,,,)111()11111k k k k k ki i k i iki i k k k i if x x x f x x x f x x x x x x x a x a x a x x x a x a x a x ++++==+=+++=⋅⋅⋅-⋅⋅⋅⋅⋅⋅=-=----⎛⎫=- ⎪----⎝⎭=-∏∏∏∏故()1f x a x=-的Newton 插值多项式为001001011001100101100()()(,)()(,,,)()()()()()()1()()()()()1n n n n n k ni k i ki N x f x f x x x x f x x x x x x x x x x x x x x x x x a x a x a x a x a x a x x x a x a x ---===+-+⋅⋅⋅+⋅⋅⋅--⋅⋅⋅----⋅⋅⋅-=++⋅⋅⋅+-----⋅⋅⋅-⎛⎫-=⎪--⎝⎭∑∏16 . 求作满足条件1(0)1,(0),(1)2,(1) 2.2H H H H ''====的插值多项式()P x 。
解法1:根据三次Hermite 插值多项式:22001130101011010220100110110()(12)()(12)()()()()()x x x x x x x x H x y y x x x x x x x x x x x x x x y x x y x x x x ----=-+-------''+-+---并依条件1(0)1,(0),(1)2,(1) 2.2H H H H ''====,得2222331()(12)(1)2(32)(1)2(1)211122H x x x x x x x x x x x =+-+-+-+-=++解法2:由于010,1x x ==,故可直接由书中()式,得()()()()()()()()()()''3001100112222311211232112211122H x A x y A x y B x y B x y x x x x x x x x x x =+++=-+⨯+-+⨯+-⨯+-⨯=++18.求作满足条件()()()()333301,12,29,13H H H H '====的插值多项式()3H x ,并估计其误差。
解法1:由已知条件用基函数方法构造(3x H 。
令()()()()()300112211x A x y A x y A x y B x y H '=+++ 其中,()()()()0121,,,A x A x A x B x 均为三次多项式,且满足条件0000A A A A A A A A A B B B B A A A 111111112222(0) =1 (1)=(1)=(2)=0'(1) =1 (0)=(1)=(2)=0'(1) =1 (0)= (1)=(2)=0'(2) =1 (0)=(1) =(1) =0'依条件可设()()()2012x C x x A =--,由 ()00=1,A 可得:()()()2011C= -,1222x x x A =---同理,()()()()()()()212112,1,122x x x x x x x x x x A A B =--=-=---()()()()()()231121221232x x x x x x x x H =---⨯--⨯---⨯∴ ()21192x x +-⨯31x =+ 误差为:()()()()()()()4233124!f x f x H x x x x R ξ=-=-- 解法2:用承袭性构造()3x H由条件()()()33301,12,29H H H ===先构造一个二次多项式2()N x 作差商表:于是有:22()11(0)3(0)(1)321N x x x x x x =+⨯-+--=-+令所求插值多项式()32012()()()()x N x c x x x x x x H =+--- 利用剩下的一个插值条件()313H '=,得 ()21101231()()()N x c x x x x f x ''+--=由此解出()()()3121112()341()()1012f x N x c x x x x ''--===---- 故有32()()(1)(2)1P x N x x x x x =+--=+19.求作满足条件()()()()()()()()33000,1,1,2k k i i H x f x i H x f x k ====的插值多项式()P x 。