高中数学必修四课本部分题目
高中数学人教A版_必修4_各章节同步练习+章节测试汇编300页含答案
A. 420o B. 860o
【答案】B
C. 1060o
D. 1260o
【解析】 4200 3600 600 终边位于第一象限, 8600 23600 1400 终边位于第二象限,选 B.
4 .已知圆的半径为 ,则 600 圆心角所对的弧长为( )
A. 3 B. 2 C. 2 2 D. 2 3
【答案】B
【解析】由扇形面积公式 S 1 lr ,则 l 4 ,又 l 4 2 .故本题答案选 B .
2
r2
8.已知 A={第一象限角},B={锐角},C={小于 90°的角},那么 A、B、C 关系是( )
A.
B.
C.
D. A=B=C
【答案】B
【解析】 锐角必小于
,故选 B.
9.已知 是锐角,则 2 是( )
A. 第一象限角 B. 第二象限角
C. 小于180o的正角 D. 第一或第二象限角
【答案】C
【解析】 是锐角,∴ 2 0, ,∴ 2 是小于180o的正角.
A. 3
B. 2 3
【答案】C
C. 2 3
D. 2 2 3
【解析】 60o 化为弧度制为 ,由弧长公式有 l r 2 ,选 C.
3
3
3
5.终边在第二象限的角的集合可以表示为( )
A. { | 900 1800}
B. { | 2700 k 3600 1800 k 3600, k Z}
第 1 页 共 314 页
专题一任意 角和弧度制
测试卷(A 卷)
(测试时间:120 分钟 满分:150 分)
人教B版高一数学必修四第二章教材精选习题(附答案)
高一数学 必修四第二章 教材精选习题班级:一年 班 出题教师:邱文鹏姓名: 做题时间:2013-4-22 1. (教材P 93 A-2) 已知:在ABC ∆中,11,33AM AB AN AC ==.求证:MN ∥BC ,并且13MN BC =2. (教材P 94 A-6) 根据下列各题中的条件,判断四边形ABCD 是那种四边形,(1)AD BC =;(2)AD ∥BC ,并且AB 与CD 不平行; (3)AB DC =,并且AB AD=。
3. (教材P 94 B-4) 已知,M N 分别是任意两条线段AB 和CD 的中点,求证:()12MN AD BC =+4. (教材P 99 B-2) 如图,已知,,M N P 分别是ABC ∆三边,,BC CA AB 上的点,且14BM BC =,11,44CN CA AP AB ==,如果AB a =,AC b =,选择基底{},a b,试写出下列向量在此基底下的分解式:,,MN MP NP .5.(教材P103 B-1)已知ABCD的三个顶点()()()1,2,3,1,0,2A B C--求顶点D的坐标.6.(教材P103 B-4)已知()()3,2,3,4A B--,求线段AB的坐标.7.(教材P105 B-2)已知()1,2a=和点()0,3A-,直线l通过点A 于向量。
求证:若动点(),P x y在l上,则它的坐标,x y满足方A B()3,2A --()3,4B MP 2P 1高一数学 必修四第二章 教材精选习题1. (教材P 93 A-2) 证明:因为MN AN AM =-,而13AN AC =,13AM AB =,所以1111()3333MN AC AB AC AB BC =-=-=.2. (教材P 94 A-6) (1)四边形ABCD 为平行四边形.证明:∵AD BC = ∴AD BC =且AD ∥BC∴四边形ABCD 为平行四边形.(2)四边形ABCD 为梯形. 证明:∵AD ∥BC ∴AD BC //又∵AB 与CD 不平行 ∴四边形ABCD 为梯形.(3)四边形ABCD 为菱形. 证明:∵A B D C =,∴AB DC //且AB DC =∴四边形ABCD 为平行四边形又AB AD=∴四边形ABCD 为菱形.3. (教材P 94B-4) ∵()1=2MN MC MD + ,MC MA AC=+ ,MD MB BD =+,0MA MB +=∴ ()12MN AD BC =+4. (教材P 99 B-2) ()3131344444MN MC CN BC CA AB AC AC a b =+=+=--=-()131311444424MP MB BP CB BA AB AC AB a b =+=+=--=--31134444NP NA AP CA AB a b =+=+=-5. (教材P 103 B-1) 设(),D x y ∵BA CD =∴()()13,210,2x y ----=-- 解得:4,1x y =-=- ∴()4,1D --6. (教材P 103 B-4) 设AB 中点(),M x y ,三等分点为分别为()111,P x y ,()222,P x y则由中点公式知:3324,22M -+-+⎛⎫ ⎪⎝⎭即()0,1M∵12,P P 为线段AB 三等分点∴113AP AB =,223AP AB = ∴ ()()1113,233,423x y ++=++ , ()()2223,233,423x y ++=++即 ()()113,22,2x y ++= , ()()223,24,4x y ++=解得:111x y =-⎧⎨=⎩ ,2212x y =⎧⎨=⎩ ∴()11,0P -,()21,2P 7. (教材P 105 B-2)由已知()()0,(3),3AP x y x y =---=+_ M(第2题(2))(第2题(3))AB∵动点()P x y在l上,直线l通过点A,且平行于,向量a∴AP∥a由向量平行的条件得:23=+x y∴点P的坐标,x y满足方程:230--=x y。
人教版A版高中数学必修4课后习题解答
第一章 三角函数 1.1任意角和弧度制 练习(P5)1、锐角是第一象限角,第一象限角不一定是锐角;直角不属于任何一个象限,不属于任何一个象限的角不一定是直角;钝角是第二象限角,第二象限角不一定是钝角.2、三,三,五说明:本题的目的是将终边相同的角的符号表示应用到其他周期性问题上. 题目联系实际,把教科书中的除数360换成每个星期的天数7,利用了“同余”(这里余数是3)来确定7k 天后、7k 天前也是星期三,这样的练习不难,可以口答. 3、(1)第一象限角; (2)第四象限角; (3)第二象限角; (4)第三象限角. 4、(1)305°42′第四象限角;(2)35°8′第一象限角;(3)249°30′第三象限角. 5、(1){130318+360,}k k Z ββ'=︒⋅︒∈,49642'-︒,13642'-︒,22318'︒; (2){225+360,}k k Z ββ=-︒⋅︒∈,585-︒,225-︒,135︒. 练习(P9)1、(1)8π; (2)76π-; (3)203π.2、(1)15°;(2)240-︒; (3)54°.3、(1){,}k k Z ααπ=∈; (2){,}k Z απ∈.4、(1)cos0.75cos0.75︒>; (2). 说明:体会同数值不同单位的角对应的三角函数值可能不同,并进一步认识两种单位制. 注意在用计算器求三角函数值之前,要先对计算器中角的模式进行设置. 如求cos0.75︒之前,要将角模式设置为DEG (角度制);求cos0.75之前,要将角模式设置为RAD (弧度制).5、3πm. 6、弧度数为1.2.习题1.1 A 组(P9) 1、(1)95°,第二象限; (2)80°,第一象限; (3)23650'︒,第三象限; (4)300°,第四象限. 2、{180,}S k k Z αα==⋅︒∈.3、(1){60360,}k k Z ββ=︒+⋅︒∈,300-︒,60︒; (2){75360,}k k Z ββ=-︒+⋅︒∈,75-︒,285︒;(3){82430360,}k k Z ββ'=-︒+⋅︒∈,10430'-︒,25530'︒; (4){75360,}k k Z ββ=-︒+⋅︒∈,75-︒,285︒; (5){90360,}k k Z ββ=︒+⋅︒∈,270-︒,90︒;(7){180360,}k k Z ββ=︒+⋅︒∈,180-︒,180︒; (8){360,}k k Z ββ=⋅︒∈,360-︒,0︒.说明:用集合表示法和符号语言写出与指定角终边相同的角的集合,并在给定范围内找出与指定的角终边相同的角. 4、︒,所以0︒(2)D . 说明:因为36090360,k k k Z α⋅︒<<︒+⋅︒∈,所以18045180,2k k k Z α⋅︒<<︒+⋅︒∈当k 为奇数时,2α是第三象限角;当k 为偶数时,2α是第一象限角. 6、不等于1弧度. 这是因为等于半径长的弧所对的圆心角为1弧度,而等于半径长的弦所对的弧比半径长.7、(1)5π; (2)56π-; (3)7312π; (4)8π.8、(1)210-︒;(2)600-︒;(3)80.21︒;(4)38.2︒. 9、64°. 10、14 cm.. 习题1.1 B 组(P10)1、(1)略; (2)设扇子的圆心角为θ,由2122120.6181(2)2r S S r θπθ==-. 可得0.618(2)θπθ=-,则0.764140θπ=≈︒.说明:本题是一个数学实践活动,题目对“美观的扇子”并没有给出标准,目的是让学生先去体验,然后再运用所学知识发现,大多数扇子之所以“美观”是因为基本都满足120.618S S =2、(1)时针转了120-︒,等于23π-弧度;分针转了1440-︒,等于8π-弧度. (2)设经过t min 分针就与时针重合,n 为两针重合的次数.因为分针旋转的角速度为26030ππ=(rad ∕min ) 时针旋转的角速度为21260360ππ=⨯(rad ∕min ) 所以()230360t n πππ-=,即72011t n =因为时针旋转一天所需的时间为24601440⨯=(min )所以720144011n ≤,于是22n ≤.故时针与分针一天内只会重合22次. 2、864°,245π,151.2π cm.说明:通过齿轮的转动问题进一步地认识弧度的概念和弧长公式. 当大齿轮转动一周时,小齿轮转动的角是4824360864205π⨯︒=︒=rad.由于大齿轮的转速为3 r ∕s所以小齿轮周上一点每1 s 转过的弧长是483210.5151.220ππ⨯⨯⨯= (cm )1.2任意角的三角函数练习(P15)1、71sin62π=-,7cos 62π=-,tan 2、5sin 13θ=,12cos 13θ=-,5tan 12θ=-. 345、(1)正; (2)负; (3)零; (4)负; (5)正; (6)正. 6、(1)①③或①⑤或③⑤; (2)①④或①⑥或④⑥; (3)②④或②⑤或④⑤; (4)②③或②⑥或③⑥.7、(1)0.8746; (2; (3)0.5; (4)1.练习(P17)1、终边在不同位置的角对应的三角函数值的情况,包括三角函数值的符号情况,终边相同正切线长分别为2.5cm ,4.3cm ,2.9cm ,其中5,2.5是准确数,其余都是近似数(图略).3.5sin 2250.75︒=-=-, 3.5cos 2250.75︒=-=-, tan 2251︒=;sin3300.5︒=-, 4.3cos3300.865︒==, 2.9tan 3300.585︒=-=-.4、三角函数线是三角函数的几何表示,它直观地刻画了三角函数的概念. 与三角函数的定义结合起来,可以从数和形两方面认识三角函数的定义,并使得对三角函数的定义域、函数值4、(1)原式=sin cos sin cos θθθθ⋅=;(2)原式=22222222222cos (cos sin )cos sin 1(cos sin )2sin cos sin αααααααααα-+-==+--. 5、(1)左边=222222(sin cos )(sin cos )sin cos αααααα+-=-; (2)左边=222222sin (sin cos )cos sin cos 1αααααα++=+=.习题1.2 A 组(P20)1、(1)17sin()32π-=,171cos()32π-=,17tan()3π-=(2)21sin42π=-21cos 42π=-,21tan 14π=;(3)231sin()62π-=,23cos()6π-=,23tan()6π-=;(4)sin1500︒=1cos15002︒=,tan1500︒=2、当0a >时,4sin 5α=,3cos 5α=,4tan α=;当0a <时,4sin 5α=-,cos α=43=.3、(1)10-; (2)15; (4)94-.4、(1)0; (2)2()p q -; (3)2()a b -; (4)0.5、(1)2-; (2)26、(1)负; (2)负; (3)负; (4)正; (5)负; (6)负.7、(1)正; (2)负; (3)负; (4)正.8、(1)0.9659; (2)1; (3)0.7857; (4)1.045.9、(1)先证如果角θ为第二或第三象限角,那么sin tan 0θθ⋅<.当角θ为第二象限角时,sin 0θ>,tan 0θ<,则sin tan 0θθ⋅<; 当角θ为第三象限角时,sin 0θ<,tan 0θ>,则sin tan 0θθ⋅<, 所以如果角θ为第二或第三象限角,那么sin tan 0θθ⋅<. 再证如果sin tan 0θθ⋅<,那么角θ为第二或第三象限角.因为sin tan 0θθ⋅<,所以sin 0θ>且tan 0θ<,或sin 0θ<且tan 0θ>,当sin 0θ>且tan 0θ<时,角θ为第二象限角; 当sin 0θ<且tan 0θ>时,角θ为第三象限角; 所以如果sin tan 0θθ⋅<,那么角θ为第二或第三象限角. 综上所述,原命题成立.(其他小题同上,略)(1)解: 由22sin cos 1αα+=得2221cos 1sin 1(4αα=-=-= ∵α为第四象限角 ∴1cos 2α=sin tan 2cos 2ααα==-=(2)解: 由22sin cos 1αα+= 得2225144sin 1cos 1()13169αα=-=--= ∵α为第二象限角 ∴12sin 13α=sin 121312tan ()cos 1355ααα==⨯-=-(3)解:∵tan 0α< ∴α是第二或第四象限角 ∵sin 3tan cos 4ααα==- ∴3sin cos 4αα=- ∵22sin cos 1αα+= ∴229cos cos 116αα+=∴216cos 25α=(1)当α是第二象限角时4cos 5α=-3343sin cos ()4455αα=-=-⨯-= (2)当α是第四象限角时4cos 5α=3343sin cos 4455αα=-=-⨯=-(4)解:∵cos 0α>且cos 1α≠ ∴α是第一或第四象限角∵22sin cos 1αα+=∴222sin 1cos 10.680.5376αα=-=-=(1)当α是第一象限角时sin 0.73α=≈sin 0.73tan 1.1cos 0.68ααα=≈≈(2)当α是第四象限角时sin 0.73α=≈-sin 0.73tan 1.1cos 0.68ααα-=≈≈-10、cos 34x13、(1)左边=2(cos sin )cos sin 1tan (cos sin )(cos sin 1tan x x x x xx x x x x---=+-+;(2)左边=222222221sin sin (1)sin sin sin tan cos cos x x x x x x x-==⋅=⋅; (3)左边=2212cos cos sin 22cos ββββ-++=-;(4)左边=2222222(sin cos )2sin cos 12sin cos x x x x x x +-⋅=-⋅.习题1.2 B 组(P22)1、原式=22222sin (1)cos cos sin 1cos ααααα+⋅=+=. 2、原式1sin 1sin cos cos αααα+--. ∵α为第二象限角.∴原式=1sin 1sin 11tan tan 2tan cos cos cos cos ααααααααα+--=--+-=---.3、∵tan 2α=,∴sin cos tan 1213sin cos tan 121αααααα+++===---.4、又如4422sin cos 12sin cos x x x x +=-⋅也是22sin cos 1x x +=的一个变形;211tan x =+是22sin cos 1x x +=和sin tan x x =的变形;等等.1、(1)4cos 9π-;(2)sin1-; (3)sin 5π-; (4)cos706'︒.2、(1)12; (2)12; (3)0.6428; (4)-3、(1)2sin cos αα-; (2)4sin α. 4、5、(1)2tan 5π-;(2)tan7939'-︒; (3)5tan 36π-; (4)tan3528'-︒.6、(1)-(2)2;(3)0.7587;(5(6)0.6475-.7、(1)2sin α; (2)2cos α+习题1.3 A 组(P29)1、(1)cos30-︒;(2)sin8342'-︒;(3)cos6π;(4)sin3π; (5)2cos9π-;(6)cos7534'-︒;(7)tan8736'-︒;(8)tan 6π-.2、(1)2;(2)0.7193-;(3)0.0151-;(4)0.6639;(5)0.9964-;(6)3、(1)0; (2)2cos α-4、(1)sin(360)sin()sin ααα︒-=-=-360; (2)(3)略 习题1.3 B 组(P29)1、(1)1; (2)0; (3)0.2、(1)12;(2)2αα⎨⎪-⎪⎩ 当为第一象限角当为第二象限角;(3)12-;(4)αα⎪⎩ 当为第一象限角当为第二象限角.1、可以用单位圆中的三角函数作出它们的图象,也可以用“五点法”作出它们的图象,还可以用图形计算器或计算机直接作出它们的图象. 两条曲线形状相同,位置不同,例如函数sin y x =,[0,2]x π∈的图象,可以通过将函数cos y x =,3[,]22x ππ∈-的图象向右平行移动2π个单位长度而得到.2、两个函数的图象相同. 练习(P36)1、成立. 但不能说120°是正弦函数sin y x =的一个周期,因为此等式不是对x 的一切值都成立,例如sin(20120)sin 20︒+︒≠︒.2、(1)83π; (2)2π; (3)2π; (4)6π. 3、可以先在一个周期的区间上研究函数的其他性质,再利用函数的周期性,将所研究的性质扩展到整个定义域. 练习(P40) 1、(1)(2,2),k k k Z πππ+∈; (2)(2,2),k k k Z πππ-+∈; (3)(2,2),22k k k Z ππππ-++∈; (4)3(2,2),2k k k Z ππππ++∈.2、(1)不成立. 3cos 12x =>.(2)成立. 因为2sin 0.5x =,即sin 2x [1,1]-,[1,1]2±∈-. 3、当{2,}2x x x k k Z ππ∈=+∈时,函数取得最大值2;当{2,}2x x x k k Z ππ∈=-+∈时,函数取得最大值2-.4、B .5、(1)sin 250sin 260︒>︒; (2)1514coscos89ππ>; (3)cos515cos530︒>︒; (4)5463sin()sin()78ππ->-.6、5[,],88k k k Z ππππ++∈ 练习(P45)1、在x 轴上任取一点1O ,以1O 为圆心,单位长为半径作圆. 作垂直于x 轴的直径,将1O e 分成左右两个半圆,过右半圆与x 轴的交点作1O e 的切线,然后从圆心1O 引7条射线把右半圆分成8等份,并与切线相交,得到对应于3π-,π-,π-,0,π,π,3π等角的正切线.相应地,再把x 轴上从2π-到2π这一段分成8等份.把角x 的正切线向右平行移动,使它的起点与x 轴上的点x 重合,再把这些正切线的终点用光滑的曲线连接起来,就得到函数tan y x =,(,)22x ππ∈-的图象.2、(1){,}2x k x k k Z πππ<<+∈;(2){,}x x k k Z π=∈;(3){,}2x k x k k Z πππ-+<<∈.3、{,}63k x x k Z ππ≠+∈ 4、(1)2π; (2)2π. 5、(1)不是. 例如0π<,但tan0tan 0π==.(2)不会. 因为对于任何区间A 来说,如果A 不含有()2k k Z ππ+∈这样的数,那么函数tan ,y x x A =∈是增函数;如果A 至少含有一个()2k k Z ππ+∈这样的数,那么在直线2x k ππ=+两侧的图象都是上升的(随自变量由小到大).6、(1)tan138tan143︒<︒; (2)1317tan()tan()45ππ-<-. 习题1.41、(1)2、(1)使y 取得最大值的集合是{63,}x x k k Z =+∈,最大值是32; 使y 取得最小值的集合是{6,}x x k k Z =∈,最小值是12; (2)使y 取得最大值的集合是{,}8x x k k Z ππ=+∈,最大值是3; 3π(3)使y 取得最大值的集合是{2(21),}3x x k k Z π=++∈,最大值是32; 使y 取得最小值的集合是{4,}3x x k k Z ππ=+∈,最小值是32-; (4)使y 取得最大值的集合是{4,}3x x k k Z ππ=+∈,最大值是12; 使y 取得最小值的集合是5{4,}3x x k k Z ππ=-+∈,最小值是12-. 3、(1)3π; (2)2π.4、(1)sin10315sin16430''︒>︒; (2)4744cos()cos()109ππ->-; (3)sin508sin144︒<︒; (4)cos760cos(770)︒>-︒. 5、(1)当[2,2],22x k k k Z ππππ∈-++∈时,1sin y x =+是增函数;当3[2,2],22x k k k Z ππππ∈++∈时,1sin y x =+是减函数. (2)当[2,2],x k k k Z πππ∈-+∈时,cos y x =-是减函数; 当[2,2],x k k k Z πππ∈+∈时,cos y x =-是增函数. 6、{,}3x k k Z ππ≠+∈. 7、2π8、(1)13tan()tan()57ππ->-; (2)tan1519tan1493︒>︒;(3)93tan 6)tan(5)1111ππ>-; (4)7tan tan 86πππ<.9、(1){,}42x k x k k Z ππππ-+≤<+∈; (2){,}32xk x k k Z ππππ+≤<+∈.10、由于()f x 以2为最小正周期,所以对任意x R ∈,有(2)()f x f x +=.于是:2(3)(12)(1)(11)0f f f =+==-=273331()(2)()(1)22224f f f =+==-= 11、由正弦函数的周期性可知,除原点外,正弦曲线还有其他对称中心,其对称中心坐标为(,0)k π,k Z ∈. 正弦曲线是轴对称图形,其对称轴的方程是,2x k k Z ππ=+∈.由余弦函数和正切函数的周期性可知,余弦曲线的对称中心坐标为(,0).2k k Z ππ+∈,xy-2-1214321O xy 3π4π2ππ-1-2-3-44321Ox yπ22π3π3π6-0.50.5-0.10.1O对称轴的方程是,x k k Z π=∈;正切曲线的对称中心坐标为(,0).2k k Z π∈. 正切曲线不是轴对称图形.习题1.4 B 组(P47) 1、(1)2{22,}33xk x k k Z ππππ+≤≤+∈;(2)33{22,}44x k x k k Z ππππ-+≤≤+∈.2、单调递减区间5(,),8282k k k Z ππππ++∈. 3、(1)2;(2)(1)y f x =+的图象如下:(3)2,[21,21],y x k x k k k Z =-∈-+∈.1.5函数sin()y A x ωϕ=+的图象练习(P55) 1 2、(1)C ; (2)B ; (3)C .3、23A =,4T π=,14f π=24231sin sin()sin()42421sin(324y x y x y x y x ππππ=−−−−→=-−−−−−−→=-−−−−−−→=-向右平移横坐标伸长到原来的倍,纵坐标不变个单位纵坐标缩短到原来的倍,横坐标不变4、12π. 把正弦曲线在区间[,)12π+∞的部分向左平移12π个单位长度,就可得到函数sin(),[0,]12y x x π=+∈+∞的图象.习题1.5 A 组(P57) 1、(1)C ; (2)A ; (3)D . 2、(1) (2)第3(2)题(3)(4)3、(1)8A =,8T π=,8πϕ=-48sin sin()sin()8488sin()8sin()[0,)4848y x y x y x y x x y y x πππππ=−−−−→=-−−−−−−→=-−−−−−−→=-−−−−→=-∈+∞向右平移横坐标伸长到原来的倍,纵坐标不变个单位纵坐标伸长到原来把轴左侧的8倍,横坐标不变的部分抹去,(2)13A =,23T π=,7πϕ=713sin sin(+)sin(3+)7711sin(3+)sin(3+)[0,)3737y y x y x y x y x y x x πππππ=−−−−→=→=−−−−−−→=−−−−→=∈+∞向左平移个单位纵坐标缩短到原来把轴左侧的部分抹去的倍,横坐标不变,4、(1)150T =,50f =,5A =,3πϕ= (2)0t =时,i =;1600t =时,5i =;1150t =时,0i =; 7600t =时,5i =-;160t =时,0i =; 5、(1)2T =; (2)约24.8cm 习题1.5 B 组(P58)1、根据已知数据作出散点图.由散点图可知,振子的振动函数解析式为020sin(),[0,)62x y x t ππ=-∈+∞ 2、函数2sin()4h t π=+在[0,2]π上的图象为点P 的运动周期和频率分别为2πω和2ωπ. 1.6三角函数模型的简单应用 练习(P65)1、乙点的位置将移至它关于x 轴的对称点处.2、如CCTV-1新闻联播节目播出的周期是1天.3、可以上网下载有关人体节律的软件,利用软件就能方便地作出自己某一时间段的三条人体节律曲线,它们都是正弦型函数图象. 根据曲线不难回答题中的问题. 习题1.6 A 组(P65) 1、(1)30︒或150︒; (2)135︒; (3)45︒; (4)150︒.2、(1)43π或53π; (2)32π; (3)2π或32π; (4)4π或54π.3、5.5天;约3.7等星;约4.4等星.4、先收集每天的用电数据,然后作出用电量随时间变化的图象,根据图象制定“消峰平谷”的电价方案.习题1.6 B 组(P66) 1、略; 2、略.第一章 复习参考题A 组(P69)1、(1)79{2,},,,4444k k Z ππππββπ=+∈-;(2)22410{2,},,,3333k k Z ββπππππ=-+∈-; (3)128212{2,},,,5555k k Z ββπππππ=+∈-;(4){2,},2,0,2k k Z ββπππ=∈-. 2、周长约44 cm ,面积约为21.110⨯2cm .3、(1)负; (2)正; (3)负;4、解:∵cos 0ϕ>且cos 1ϕ≠∴ϕ为第一或第四象限角 ∵22sin cos 1ϕϕ+= ∴2215sin 1cos 16ϕϕ=-= (1)当ϕ为第一象限角时6、222222224=sin (sin 1)cos sin (cos )cos cos (sin 1)cos ααααααααα-+=-+=-+=原式22222722sin 2cos 2sin cos 1sin cos 2sin 2cos 2sin cos (1sin )2cos (1sin )cos (1sin cos )αααααααααααααααα=-+-=++-+-=-+-+=-+=、(1)原式 右边222222222sin (1sin )sin cos cos cos (sin cos )sin 1αββαββααβ=-++=++==(2)原式 右边8、(1)4sin 2cos 4tan 243255cos 3sin 53tan 5337αααααα--⨯-===+++⨯;(2)2222sin cos tan 33sin cos sin cos tan 13110αααααααα====+++; (3)22222222(sin cos )(tan 1)(31)8(sin cos )sin cos tan 1315αααααααα++++====+++. 9、(1)0; (2)1.0771.10、(1)当α为第一象限角时,cos(2)πα-=,当α为第二象限角时,cos(2)πα-=;(2)当α为第一象限角时,tan(7)απ-=,当α为第二象限角时,tan(7)απ-=.11、(1)tan11110.601︒=,sin378210.315'︒=,cos642.50.216︒=; (2)sin(879)0.358-︒=-,33tan()0.4148π-=-,13cos()0.58810π-=-;(3)sin30.141=,cos(sin 2)0.614=.12、13、(1)因为cos x =或cos x =1>,1-,所以原式不能成立. (2)因为sin x =1<,所以原式有可能成立.14、(11π,此时x 的集合为{2,}2x x k k Z ππ=+∈.1π,此时x2,}2k k Z ππ=-+∈.(2)最大值为5,此时x 的集合为2,}k k Z π∈. 最小值为1,此时x 的集合为{2,}x x k k Z π=∈. 15、(1)3{2}2x x ππ≤≤;(2){}2x x ππ≤≤;(3){0}2x x π≤≤;(4)3{}2x x ππ≤≤.16、(1)(2)(3) (4)17、(1)(图略)(2)由sin()sin x x π-=,可知函数sin ,[0,]y x x π=∈的图象关于直线2x=对称,据此可得函数sin ,[,]2y x x ππ=∈的图象;又由sin(2)sin x x π-=-,可知sin ,[0,2]y x x π=∈的图象关于点(,0)π对称,据此可得出函数sin ,[,2]y x x ππ=∈的图象.(3)先把y 轴向右(当0ϕ>时)或向左(当0ϕ<时)平行移动ϕ个单位长度,再把x 轴向下(当0k >时)或向上(当0k <时)平行移动k 个单位长度,最后将图象向左或向右平行移动2π个单位长度,并擦去[0,2]π之外的部分,便得出函数sin(),[0,2]y x k x ϕπ=++∈的图象.18、(1)21,,56A T ππϕ===. 165sin ,sin(+),sin(5+),67y x x R y x x R y x x R πππ=∈−−−−→=∈−−−−−−→=∈向左平移横坐标缩短到原来个单位的倍,纵坐标不变 (2)2,12,0A T πϕ===.621sin ,2sin ,6y x x R R y x x R =∈−−−−−−→∈−−−−−−→=∈横坐标伸长到原来纵坐标缩短到原来的倍,纵坐标不变的倍,横坐标不变第一章 复习参考题B 组(P71)1、(1)342k k παπππ+<<+,所以2α的终边在第二或第四象限; (2)9012030901203k k α︒+⋅︒<<︒+︒+⋅︒,所以3α的终边在第二、第三或第四象限; (3)34244k k ππαππ+<<+,所以2α的终边在第三或第四象限,也可在y 轴的负半轴上. 2、约143︒3、解:原式1sin 1cos cos sin cos sin cos sin αααααααα--==⋅+⋅∵α为第二象限角∴原式1sin 1cos cos ()sin 1sin 1cos sin cos cos sin αααααααααα--=⋅-+⋅=-++-=-. 4、(1)12sin 2cos tan 25315cos sin 5tan 165()3αααααα-+++===----;(2)2222221()11sin cos tan 110312sin cos cos 2sin cos cos 2tan 132()13αααααααααα-+++====+++⨯-+. 5、左边22sin cos sin cos 2sin cos 1sin cos αααααααα++++=++2(sin cos )sin cos 1sin cos (sin cos )(sin cos 1)1sin cos sin cos αααααααααααααα+++=+++++=++=+=右边. 6、将已知条件代入左边,得:左边=22222222222tan 1sin 1sin 1cos cos cos cos a b a b θθθθθθθ--=-== 7、将已知条件代入左边,得:左边=22222[(tan sin )(tan sin )]16tan sin θθθθθθ+--= 再将已知条件代入右边,得:右边=16(tan sin )(tan sin )θθθθ+-2216(tan sin )θθ=-2222222sin sin cos sin sin 1616cos cos θθθθθθθ-⋅=⨯=⨯ 2216tan sin θθ=⋅. 所以,左边=右边8、(1)2[,],63k k k Z ππππ++∈; (2)272[,],43123k k k Z ππππ++∈.9、(1)表示以原点为圆心,r 为半径的圆. (2)表示以(,)a b 为圆心,r 为半径的圆.第二章 平面向量2.1平面向量的实际背景及基本概念 练习(P77)1、略.2、AB u u u r ,BA u u u r. 这两个向量的长度相等,但它们不等.3、2AB =u u u r , 2.5CD =u u u r ,3EF =u u u r,GH =u u u r4、(1)它们的终点相同; (2)它们的终点不同. 习题2.1 A 组(P77) 1、(2). 3、与DE u u u r 相等的向量有:,AF FC u u u r u u u r ;与EF u u u r相等的向量有:,BD DA u u u r u u u r ; 与FD u u u r相等的向量有:,CE EB u u u r u u u r .4、与a r 相等的向量有:,,CO QP SR u u u r u u u r u u r ;与b r 相等的向量有:,PM DO u u u u r u u u r ; 与c r 相等的向量有:,,DC RQ ST u u u r u u u r uu u r5、2AD =u u u r .6、(1)×; (2)√; (3)√; (4)×.习题2.1 B 组(P78)1、海拔和高度都不是向量.2、相等的向量共有24对. 模为1的向量有18对. 其中与AM u u u u r 同向的共有6对,与AM u u u u r反向的也有6对;与AD u u u r 同向的共有3对,与AD u u u r反向的也有6的向量共有4对;模为2的向量有2对2.2平面向量的线性运算 练习(P84)1、图略.2、图略.3、(1)DA u u u r; (2)CB u u u r . 4、(1)c r ; (2)f u r ; (3)f u r ; (4)g u r . 练习(P87)1、图略.2、DB u u u r ,CA u u u r ,AC u u u r ,AD u u u r ,BA u u u r. 3、图略.水流方向CDA B 练习(P90) 1、图略.2、57AC AB =u u u r u u u r ,27BC AB =-u u u r u u u r .说明:本题可先画一个示意图,根据图形容易得出正确答案. 值得注意的是BC uuu r 与AB u u u r反向. 3、(1)2b a =r r ; (2)74b a =-r r ; (3)12b a =-r r ; (4)89b a =r r .4、(1)共线; (2)共线.5、(1)32a b -r r ; (2)111123a b -+r r; (3)2ya r . 6、图略.习题2.2 A 组(P91)1、(1)向东走20 km ; (2)向东走5 km ; (3)向东北走102km ; (4)向西南走52km ;(5)向西北走102km ;(6)向东南走102km.2、飞机飞行的路程为700 km ;两次位移的合成是向北偏西53°方向飞行500 km.3、解:如右图所示:AB u u u r 表示船速,AD u u u r表示河水的流速,以AB 、AD 为邻边作□ABCD ,则 AC u u u r表示船实际航行的速度.在Rt △ABC 中,8AB =u u u r ,2AD =u u u r,所以222282217AC AB AD =+=+=u u u r u u u r u u u r因为tan 4CAD ∠=,由计算器得76CAD ∠≈︒所以,实际航行的速度是217km/h ,船航行的方向与河岸的夹角约为76°.4、(1)0r ; (2)AB u u u r ; (3)BA u u u r; (4)0r ; (5)0r ; (6)CB u u u r ; (7)0r . 5、略6、不一定构成三角形. 说明:结合向量加法的三角形法则,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段一定能构成三角形.7、略. 8、(1)略; (2)当a b ⊥r r 时,a b a b +=-r r r r9、(1)22a b --r r ; (2)102210a b c -+r r r ; (3)132a b +r r; (4)2()x y b -r .10、14a b e +=r r u r ,124a b e e -=-+r r u r u u r ,1232310a b e e -=-+r r u r u u r .11、如图所示,OC a =-u u u r r ,OD b =-u u u r r,DC b a =-u u u r r r ,BC a b =--u u u r r r .12、14AE b =u u u r r ,BC b a =-u u u r r r ,1()4DE b a =-u u u r r r ,34DB a =u u u r r,(第11题)34EC b =u u u r r ,1()8DN b a =-u u u r r r ,11()48AN AM a b ==+u u u r u u u u r r r .13、证明:在ABC ∆中,,E F 分别是,AB BC 的中点,所以EF AC //且12EF AC =, 即12EF AC =u u u r u u u r ;同理,12HG AC =u u u r u u u r,所以EF HG =u u u r u u u r .习题2.2 B 组(P92)1、丙地在甲地的北偏东45°方向,距甲地1400 km.2、不一定相等,可以验证在,a b r r不共线时它们不相等.3、证明:因为MN AN AM =-u u u u r u u u r u u u u r ,而13AN AC =u u u r u u u r ,13AM AB =u u u u r u u u r ,所以1111()3333MN AC AB AC AB BC =-=-=u u u u r u u u r u u u r u u u r u u u r u u u r.4、(1)四边形ABCD 为平行四边形,证略 (2)四边形ABCD 为梯形.证明:∵13AD BC =u u u r u u u r,∴AD BC //且AD BC ≠ ∴四边形ABCD 为梯形. (3)四边形ABCD 为菱形.证明:∵AB DC =u u u r u u u r,∴AB DC //且AB DC =∴四边形ABCD 为平行四边形 又AB AD =u u u r u u u r∴四边形ABCD 为菱形.5、(1)通过作图可以发现四边形ABCD 为平行四边形.证明:因为OA OB BA -=u u u r u u u r u u u r ,OD OC CD -=u u u r u u u r u u u r而OA OC OB OD +=+u u u r u u u r u u u r u u u r所以OA OB OD OC -=-u u u r u u u r u u u r u u u r 所以BA CD =u u u r u u u r,即AB ∥.因此,四边形ABCD 为平行四边形.2.3平面向量的基本定理及坐标表示 练习(P100)(第1题)(第4题(2))(第4题(3))(第5题)1、(1)(3,6)a b +=r r ,(7,2)a b -=-r r ; (2)(1,11)a b +=r r ,(7,5)a b -=-r r; (3)(0,0)a b +=r r ,(4,6)a b -=r r ; (4)(3,4)a b +=r r ,(3,4)a b -=-r r. 2、24(6,8)a b -+=--r r ,43(12,5)a b +=r r.3、(1)(3,4)AB =u u u r ,(3,4)BA =--u u u r ; (2)(9,1)AB =-u u u r ,(9,1)BA =-u u u r; (3)(0,2)AB =u u u r ,(0,2)BA =-u u u r ; (4)(5,0)AB =u u u r ,(5,0)BA =-u u u r4、AB ∥CD . 证明:(1,1)AB =-u u u r ,(1,1)CD =-u u u r,所以AB CD =u u u r u u u r .所以AB ∥CD .5、(1)(3,2); (2)(1,4); (3)(4,5)-.6、10(,1)3或14(,1)3-7、解:设(,)P x y ,由点P 在线段AB 的延长线上,且32AP PB =u u u r u u u r ,得32AP PB =-u u u r u u ur(,)(2,3)(2,3)AP x y x y =-=--u u u r ,(4,3)(,)(4,3)PB x y x y =--=---u u u r∴3(2,3)(4,3)2x y x y --=---- ∴32(4)233(3)2x x y y ⎧-=--⎪⎪⎨⎪-=---⎪⎩∴815x y =⎧⎨=-⎩,所以点P 的坐标为(8,15)-.习题2.3 A 组(P101)1、(1)(2,1)-; (2)(0,8); (3)(1,2).说明:解题时可设(,)B x y ,利用向量坐标的定义解题. 2、123(8,0)F F F ++=u u r u u r u u r3、解法一:(1,2)OA =--u u u r ,(53,6(1))(2,7)BC =---=u u u r而AD BC =u u u r u u u r ,(1,5)OD OA AD OA BC =+=+=u u u r u u u r u u u r u u u r u u u r. 所以点D 的坐标为(1,5). 解法二:设(,)D x y ,则((1),(2))(1,2)AD x y x y =----=++u u u r,(53,6(1))(2,7)BC =---=u u u r由AD BC =u u u r u u u r 可得,1227x y +=⎧⎨+=⎩,解得点D 的坐标为(1,5).4、解:(1,1)OA =u u u r ,(2,4)AB =-u u u r.1(1,2)2AC AB ==-u u u r u u u r ,2(4,8)AD AB ==-u u u r u u u r ,1(1,2)2AE AB =-=-u u u r u u ur .(0,3)OC OA AC =+=u u u r u u u r u u u r,所以,点C 的坐标为(0,3); (3,9)OD OA AD =+=-u u u r u u u r u u u r,所以,点D 的坐标为(3,9)-; (2,1)OE OA AE =+=-u u u r u u u r u u u r,所以,点E 的坐标为(2,1)-. 5、由向量,a b r r 共线得(2,3)(,6)x λ=-,所以236x =-,解得4x =-.6、(4,4)AB =u u u r ,(8,8)CD =--u u u r ,2CD AB =-u u u r u u u r ,所以AB u u u r 与CD uuur 共线. 7、2(2,4)OA OA '==u u u r u u u r ,所以点A '的坐标为(2,4); 3(3,9)OB OB '==-u u u r u u u r ,所以点B '的坐标为(3,9)-; 故 (3,9)(2,4)(5,5)A B ''=--=-u u u u r习题2.3 B 组(P101)1、(1,2)OA =u u u r ,(3,3)AB =u u u r.当1t =时,(4,5)OP OA AB OB =+==u u u r u u u r u u u r u u u r,所以(4,5)P ;当12t =时,157(1,2)(,)222OP OA AB =+=u u u r u u u r u u u r ,所以57(,)22P ;当2t =-时,2(1,2)5,4)OP OA AB =-=-u u u r u u u r u u u r,所以(5,4)P --; 当2t =时,2(1,2)(6,6)(7,8)OP OA AB =+=+=u u u r u u u r u u u r ,所以(7,8)P . 2、(1)因为(4,6)AB =--u u u r ,(1,1.5)AC =u u u r,所以4AB AC =-u u u r u u u r ,所以A 、B 、C 三点共线; (2)因为(1.5,2)PQ =-u u u r ,(6,8)PR =-u u u r ,所以4PR PQ =u u u r u u u r,所以P 、Q 、R 三点共线;(3)因为(8,4)EF =--u u u r ,(1,0.5)EG =--u u u r,所以8EF EG =u u u r u u u r ,所以E 、F 、G 三点共线. 3、证明:假设10λ≠,则由11220e e λλ+=u r u u r r ,得2121e e λλ=-u r uu r .所以12,e e u r u u r 是共线向量,与已知12,e e u r u u r是平面内的一组基底矛盾,因此假设错误,10λ=. 同理20λ=. 综上120λλ==.4、(1)OP =u u u r (2)对于任意向量12OP xe ye =+u u u r u r u u r,,x y 都是唯一确定的,所以向量的坐标表示的规定合理.2.4平面向量的数量积 练习(P106)1、1cos ,86242p q p q p q ⋅=⋅⋅<>=⨯⨯=u r r u r r u r r .2、当0a b ⋅<r r 时,ABC ∆为钝角三角形;当0a b ⋅=r r时,ABC ∆为直角三角形.3、投影分别为0,-图略练习(P107)1、5a ==r ,b ==r 35427a b ⋅=-⨯+⨯=-r r .2、8a b ⋅=r r ,()()7a b a b +-=-r r r r ,()0a b c ⋅+=r r r ,2()49a b +=r r .3、1a b ⋅=r r ,a =r b =r88θ≈︒.习题2.4 A 组(P108)1、a b ⋅=-r r222()225a b a a b b +=+⋅+=-r r r r r r a b +=r r 2、BC uuu r 与CA u u u r 的夹角为120°,20BC CA ⋅=-u u u r u u u r.3、a b +==r r a b -==r r .4、证法一:设a r 与b r的夹角为θ.(1)当0λ=时,等式显然成立;(2)当0λ>时,a λr 与b r ,a r 与b λr的夹角都为θ,所以 ()cos cos a b a b a b λλθλθ⋅==r r r r r r ()cos a b a b λλθ⋅=r r r r()cos cos a b a b a b λλθλθ⋅==r r r r r r所以 ()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r;(3)当0λ<时,a λr 与b r ,a r 与b λr的夹角都为180θ︒-,则 ()cos(180)cos a b a b a b λλθλθ⋅=︒-=-r r r r r r()cos cos a b a b a b λλθλθ⋅==-r r r r r r()cos(180)cos a b a b a b λλθλθ⋅=︒-=-r r r r r r所以 ()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r; 综上所述,等式成立.证法二:设11(,)a x y =r ,22(,)b x y =r,那么 11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+r r112212121212()(,)(,)()a b x y x y x x y y x x y y λλλλλ⋅=⋅=+=+r r11221212()(,)(,)a b x y x y x x y y λλλλλ⋅=⋅=+r r所以 ()()()a b a b a b λλλ⋅=⋅=⋅r r r r r r;5、(1)直角三角形,B ∠为直角.证明:∵(1,4)(5,2)(6,6)BA =---=--u u u r ,(3,4)(5,2)(2,2)BC =-=-u u u r∴6(2)(6)20BA BC ⋅=-⨯-+-⨯=u u u r u u u r∴BA BC ⊥u u u r u u u r,B ∠为直角,ABC ∆为直角三角形(2)直角三角形,A ∠为直角证明:∵(19,4)(2,3)(21,7)AB =---=u u u r ,(1,6)(2,3)(1,3)AC =-----=-u u u r∴2117(3)0AB AC ⋅=⨯+⨯-=u u u r u u u r∴AB AC ⊥u u u r u u u r,A ∠为直角,ABC ∆为直角三角形(3)直角三角形,B ∠为直角证明:∵(2,5)(5,2)(3,3)BA =-=-u u u r ,(10,7)(5,2)(5,5)BC =-=u u u r∴35350BA BC ⋅=-⨯+⨯=u u u r u u u r∴BA BC ⊥u u u r u u u r,B ∠为直角,ABC ∆为直角三角形6、135θ=︒.7、120θ=︒.22(23)(2)44361a b a b a a b b -+=-⋅-=r r r r r r r r ,于是可得6a b ⋅=-r r ,1cos 2a b a bθ⋅==-r r r r ,所以120θ=︒.8、23cos 40θ=,55θ=︒. 9、证明:∵(5,2)(1,0)(4,2)AB =--=-u u u r ,(8,4)(5,2)(3,6)BC =--=u u u r, (8,4)(4,6)(4,2)DC =-=-u u u r∴AB DC =u u u r u u u r ,43(2)60AB BC ⋅=⨯+-⨯=u u u r u u u r∴,,,A B C D 为顶点的四边形是矩形.10、解:设(,)a x y =r,则2292x y yx ⎧+=⎪⎨=⎪⎩,解得5x y ⎧=⎪⎪⎨⎪=⎪⎩5x y ⎧=-⎪⎪⎨⎪=⎪⎩.于是(55a =r或(,55a =--r . 11、解:设与a r 垂直的单位向量(,)e x y =r,则221420x y x y ⎧+=⎨+=⎩,解得5x y ⎧=⎪⎪⎨⎪=⎪⎩或5x y ⎧=-⎪⎪⎨⎪=⎪⎩.于是)55e =-r或(55e =-r . 习题2.4 B 组(P108) 1、证法一:0()0()a b a c a b a c a b c a b c ⋅=⋅⇔⋅-⋅=⇔⋅-=⇔⊥-r r r r r r r r r r r r r r证法二:设11(,)a x y =r ,22(,)b x y =r ,33(,)c x y =r.先证()a b a c a b c ⋅=⋅⇒⊥-r r r r r r r1212a b x x y y ⋅=+r r ,1313a c x x y y ⋅=+r r由a b a c ⋅=⋅r r r r得12121313x x y y x x y y +=+,即123123()()0x x x y y y -+-= 而2323(,)b c x x y y -=--r r,所以()0a b c ⋅-=r r r 再证()a b c a b a c ⊥-⇒⋅=⋅r r r r r r r由()0a b c ⋅-=r r r得 123123()()0x x x y y y -+-=,即12121313x x y y x x y y +=+,因此a b a c ⋅=⋅r r r r2、cos cos cos sin sin OA OBAOB OA OB αβαβ⋅∠==+u u u r u u u r u u u r u u u r .3、证明:构造向量(,)u a b =r ,(,)v c d =r.cos ,u v u v u v ⋅=<>r r r r r r,所以,ac bd u v +<>r r∴2222222222()()()cos ,()()ac bd a b c d u v a b c d +=++<>≤++r r4、AB AC ⋅u u u r u u u r的值只与弦AB 的长有关,与圆的半径无关.证明:取AB 的中点M ,连接CM ,则CM AB ⊥,12AM AB =u u u u r u u u r又cos AB AC AB AC BAC ⋅=∠u u u r u u u r u u u r u u u r,而AM BAC AC∠=u u u u r u u u r所以212AB AC AB AM AB ⋅==u u u r u u u r u u u r u u u u r u u u r5、(1)勾股定理:Rt ABC ∆中,90C ∠=︒,则222CA CB AB +=u u u r u u u r u u u r证明:∵AB CB CA =-u u u r u u u r u u u r∴2222()2AB CB CA CB CA CB CA =-=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r u u u r .由90C ∠=︒,有CA CB ⊥,于是0CA CB ⋅=u u u r u u u r∴222CA CB AB +=u u u r u u u r u u u r(2)菱形ABCD 中,求证:AC BD ⊥证明:∵AC AB AD =+u u u r u u u r u u u r ,,DB AB AD =-u u u r u u u r u u u r∴22()()AC DB AB AD AB AD AB AD ⋅=+⋅-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .∵四边形ABCD 为菱形,∴AB AD =,所以220AB AD -=u u u r u u u r∴0AC DB ⋅=u u u r u u u r,所以AC BD ⊥(3)长方形ABCD 中,求证:AC BD =证明:∵ 四边形ABCD 为长方形,所以AB AD ⊥,所以0AB AD ⋅=u u u r u u u r∴222222AB AB AD AD AB AB AD AD +⋅+=-⋅+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .∴22()()AB AD AB AD +=-u u u r u u u r u u u r u u u r ,所以22AC BD =u u u r u u u r ,所以AC BD =(4)正方形的对角线垂直平分. 综合以上(2)(3)的证明即可. 2.5平面向量应用举例 习题2.5 A 组(P113) 1、解:设(,)P x y ,11(,)R x y则1111(1,0)(,)(1,)RA x y x y =-=--u u u r,(,)(1,0)(1,0)AP x y x =-=-u u u r由2RA AP =u u u r u u u r 得11(1,)2(1,)x y x y --=-,即11232x x y y=-+⎧⎨=-⎩(第4题)代入直线l 的方程得2y x =. 所以,点P 的轨迹方程为2y x =. 2、解:(1)易知,OFD ∆∽OBC ∆,12DF BC =, 所以23BO BF =. 2211()()3323AO BO BA BF a b a a a b =-=+=-+=+u u u r u u u r u u u r u u u r r r r r r r(2)因为1()2AE a b =+u u u r r r所以23AO AE =u u u r u u u r ,因此,,A O E 三点共线,而且2AO OE =同理可知:2,2BO CO OF OD ==,所以2AO BO COOE OF OD===3、解:(1)(2,7)B A v v v =-=-r u u r u u r;(2)v r 在A v u u r方向上的投影为135A Av v v ⋅=r u u ru u r .4、解:设1F u u r ,2F u u r 的合力为F u r ,F u r 与1F u u r的夹角为θ,则31F =+u r ,30θ=︒; 331F =+u u r ,3F u u r 与1F u u r的夹角为150°.习题2.5 B 组(P113)1、解:设0v u u r 在水平方向的速度大小为v u u r ,竖直方向的速度的大小为y v u u r,则0cos x v v θ=u u r u u r ,0sin y v v θ=u u r u u r.设在时刻t 时的上升高度为h ,抛掷距离为s ,则001sin ,()2cos h v t gt g s v t θθ⎧=-⎪⎨⎪=⎩u u r u u r为重力加速度 所以,最大高度为220sin 2v gθu u r ,最大投掷距离为20sin 2v gθu u r .2、解:设1v u r 与2v u u r 的夹角为θ,合速度为v r ,2v u u r 与v r的夹角为α,行驶距离为d .则1sin 10sin sin v v vθθα==u rrr ,0.5sin 20sin v d αθ==r . ∴120sin d v θ=r . 所以当90θ=︒,即船垂直于对岸行驶时所用时间最短. 3、(1)(0,1)-解:设(,)P x y ,则(1,2)AP x y =--u u u r . (2,22)AB =-u u u r.ODFEAB C(第2题)(第4题)将AB u u u r 绕点A 沿顺时针方向旋转4π到AP u u u r ,相当于沿逆时针方向旋转74π到AP u u u r ,于是7777(2cos 22sin ,2sin 22cos )(1,3)4444AP ππππ=+-=--u u u r所以1123x y -=-⎧⎨-=-⎩,解得0,1x y ==-(2)32y x=-解:设曲线C 上任一点P 的坐标为(,)x y ,OP u u u r 绕O 逆时针旋转4π后,点P 的坐标为(,)x y ''则cos sin 44sin cos44x x y y x y ππππ⎧'=-⎪⎪⎨⎪'=+⎪⎩,即2()22()x x y y x y ⎧'=-⎪⎪⎨⎪'=+⎪⎩又因为223x y ''-=,所以2211()()322x y x y --+=,化简得32y x=-第二章 复习参考题A 组(P118)1、(1)√; (2)√; (3)×; (4)×.2、(1)D ; (2)B ; (3)D ; (4)C ; (5)D ; (6)B .3、1()2AB a b =-u u u r r r,1()2AD a b =+u u u r r r4、略解:213DE BA MA MB a b ==-=-+u u u r u u u r u u u r u u u r r r2233AD a b =+u u u r r r,1133BC a b =+u u u r r r1133EF a b =--u u u r r r,1233FA DC a b ==-u u u r u u u r r r1233CD a b =-+u u u r r r ,2133AB a b =-u u ur r rCE a b =-+u u u r r r 5、(1)(8,8)AB =-u u u r ,82AB =u u u r;(2)(2,16)OC =-u u u r ,(8,8)OD =-u u u r ; (3)33OA OB ⋅=u u u r u u u r.6、AB u u u r 与CD u u ur 共线.证明:因为(1,1)AB =-u u u r ,(1,1)CD =-u u u r ,所以AB CD =u u u r u u u r . 所以AB u u u r 与CD u u ur 共线.7、(2,0)D -. 8、2n =. 9、1,0λμ=-=.10、34cos ,cos 0,cos 55A B C ===(第4题)。
高中数学习题必修4及答案.docx
目录:数学4 (必修)第一章:解三角形 [基础训练A 组]一、选择题1. 在AABC 中,若C=90°,a = 6,B = 30°,则c-b 等于( )A. 1B. -1C. 2羽D. -2A /32. 若4为AABC 的内角,则下列函数中一定取正值的是( )A. sin A B ・ cos A4 1C ・ tan AD ・ -------tan A 3. 在2XABC 中,角均为锐角,且cos4〉sin则Z\ABC 的形状是( ) A. 直角三角形 B.锐角三角形 C.钝角三角形 D.等腰三角形4. 等腰三角形一腰上的高是舲,这条高与底边的夹角为60°,则底边长为()数学4 (必修)第一章: 数学4 (必修)第一章: 数学4 (必修)第一章: 数学4 (必修)第二章: 数学4 (必修)第二章: 数学4 (必修)第二章: 数学4 (必修)第三章: 数学4 (必修)第三章: 数学4 (必修)第三章: 解三角形[基础训练A组]解三角形 [综合训练B 组]解三角形 [提高训练C 组]数列[基础训练A 组]数列[综合训练B 组]数列[提高训练C 组]不等式 [基础训练A 组]不等式 [综合训练B 组]不等式 [提高训练C组]A. 2B. —C. 3D. 2A/325.在△ABC 中,若b = 2asinB,则4 等于()A. 30°或60°B. 45°或60°C. 120°或60°D. 30°或150°6.边长为5,7,8的三角形的最大角与最小角的和是()A. 90°B. 120°C. 135°D. 150°二、填空题1.在Rt AABC 中,C = 90°,贝Osin A sin 5的最大值是 _____________ 。
2.在AABC 中,^a2 =b~ +bc + c~,贝= _____________ 。
高一数学必修4全册习题(答案详解)
高一三角同步练习1(角的概念的推广)一.选择题1、下列角中终边与330°相同的角是( )A .30°B .-30°C .630°D .-630°2、-1120°角所在象限是 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3、把-1485°转化为α+k ·360°(0°≤α<360°, k ∈Z )的形式是 ( ) A .45°-4×360°B .-45°-4×360°C .-45°-5×360°D .315°-5×360°4、终边在第二象限的角的集合可以表示为: ( ) A .{α∣90°<α<180°}B .{α∣90°+k ·180°<α<180°+k ·180°,k ∈Z }C .{α∣-270°+k ·180°<α<-180°+k ·180°,k ∈Z }D .{α∣-270°+k ·360°<α<-180°+k ·360°,k ∈Z } 5、下列命题是真命题的是( )Α.三角形的内角必是一、二象限内的角 B .第一象限的角必是锐角C .不相等的角终边一定不同D .{}Z k k ∈±⋅=,90360|αα={}Z k k ∈+⋅=,90180|αα 6、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=C C .A ⊂CD .A=B=C7、已知角2α的终边在x 轴的上方,那么α是 ( )A .第一象限角B .第一、二象限角C .第一、三象限角D .第一、四象限角 8、若α是第四象限的角,则α- 180是 .(89上海)A .第一象限的角B .第二象限的角C .第三象限的角D .第四象限的角二.填空题1、写出-720°到720°之间与-1068°终边相同的角的集合___________________.2、与1991°终边相同的最小正角是_________,绝对值最小的角是_______________.3、若角α的终边为第二象限的角平分线,则α的集合为______________________.4、在0°到360°范围内,与角-60°的终边在同一条直线上的角为 .三.解答题1、求所有与所给角终边相同的角的集合,并求出其中的最小正角,最大负角: (1)210-; (2)731484'-.2、求θ,使θ与900-角的终边相同,且[]1260180,-∈θ.3、设集合{}Z k k x k x A ∈+⋅<<+⋅=,30036060360|, {}Z k k x k x B ∈⋅<<-⋅=,360210360|,求B A ,B A .4、已知角α是第二象限角,求:(1)角2α是第几象限的角;(2)角α2终边的位置。
人教版高中数学必修4课后习题答案详解
第二章平面向量2.1 平面向量的实质背景及基本观点练习(P77)1、略.uuur uuur这两个向量的长度相等,但它们不等 .2、AB,BA .uuur uuur uuur uuur3、 AB2, CD 2.5 , EF3,GH 2 2.4、( 1)它们的终点同样;(2)它们的终点不一样 .习题 A 组(P77)1、( 2 )B45°O30°CAD.CA Buuur uuur uuuruuur uuur uuur3、与 DE 相等的向量有:AF , FC ;与 EF 相等的向量有: BD , DA ;uuur uuur uuur与 FD 相等的向量有: CE , EB .r uuur uuur uurr uuuur uuur4、与 a 相等的向量有:CO , QP, SR;与 b 相等的向量有: PM , DO ;r uuur uuur uuur与 c 相等的向量有: DC , RQ, STuuur 3 36、(1)×;(2)√;(3)√;(4)× .5、 AD.2习题 B 组(P78)1、海拔和高度都不是向量 .uuuur2、相等的向量共有24 对.模为 1的向量有 18对 . 此中与 AM 同向的共有 6uuuur uuur uuur对,与 AM 反向的也有 6 对;与 AD 同向的共有 3 对,与 AD 反向的也有 6 对;模为 2 的向量共有 4 对;模为 2 的向量有 2 对2.2 平面向量的线性运算 练习(P84)1、图略 .2、图略 .uuur uuur3、(1) DA ; (2) CB .r ururur 4、( 1) c ; ( 2) f ; (3) f ;( 4) g . 练习(P87) uuuruuur uuur1、图略 . uuur uuur3、图略 .2、DB ,CA , AC ,AD ,BA.练习(P90)1、图略 .5 uuur uuur 2 uuuruuur2、 ACAB ,BCAB .7 7uuur说明:此题可先画一个表示图,依据图形简单得出正确答案. 值得注意的是BCuuur与 AB 反向.rrr7rr1rr8r3、( 1) b2a ;(2) b4 a ;(3) ba ;(4) ba .294、( 1)共线;( 2)共线 .r r( 2)11r1rr6、图略 .5、( 1) 3a2b ;12 ab ;( 3) 2 ya .习题 A 组(P91)31、( 1)向东走 20 km ; (2)向东走 5 km ; (3)向东北走 10 2 km ;( 4)向西南走 5 2 km ;( 5)向西北走 10 2 km ;(6)向东南走 10 2 km.2、飞机飞翔的行程为 700 km ;两次位移的合成是向北偏西53°方向飞翔 500 km.uuur uuur3、解:如右图所示: AB 表示船速, AD 表示河水的流速,以 AB 、 AD 为邻边作 □ ABCD ,则uuurAC 表示船实质航行的速度 .uuur uuur在 Rt △ABC 中, AB 8 , AD 2 ,uuuruuur 2uuur 2222 17所以 ACAB AD82 因为 tan CAD4 ,由计算器得 CAD 76BCAD水流方向所以,实质航行的速度是 2 17 km/h ,船航行的方向与河岸的夹角约为 76°.r uuur uuur r r uuur4、(1) 0; (2) AB ; (3) BA ; (4)0 ; (5)0 ; (6)CB ; (7) r0 .5、略6、不必定组成三角形 . 说明:联合向量加法的三角形法例,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段必定能组成三角形 .7、略. 8、(1)略; r r r r r r(2)当 a b 时, a b a b9、(1) r r rr r ;r 1 r( 4)2( xr2a2b ; ( 2)10a 22b 10c (3)3a b ; y)b .r r ur r rur uur r r uruur 210、 a b 4e 1 , a be 1 4e 2 , 3a 2b3e 1 10e 2 .uuurr uuur r 11、如下图, OCa , ODb ,uuur r r uuur r rDCb a , BCa b .(第 11 题)uuur1ruuurr r uuur 1 r r uuur 3 r12、 AEb , BCb a , DE (b a) , DBa ,44 1 uuuur4uuur3ruuur1 r r uuur 1 r rEC b , DN8 (b a) , AN 4 AM (ab) .4813、证明:在ABC 中, E, F 分别是 AB, BC 的中点,所以 EF //AC 且EF 1AC ,(第 12 题)Guuur 1 uuur2D即 EF 2 AC ;1 uuuruuur同理, HG AC ,H2 uuur uuur所以 EFHG .E习题 B 组(P92) A(第 13 题)1、丙地在甲地的北偏东45°方向,距甲地 1400 km.乙2、不必定相等,能够考证在 r ra,b 不共线时它们不相等 .uuuur uuur uuuuruuur 1 uuur uuuur 1 uuur3、证明:因为 MN AN AM ,而 AN3 AC , AMAB ,1 uuur1 uuur1 uuur 3uuuur1 uuur uuur所以 MN3 AC3 AB 3 ( AC AB) 3 BC .甲4、( 1)四边形 ABCD 为平行四边形,证略(第 1 题)( 2)四边形 ABCD 为梯形 .Cuuur 1 uuur证明:∵ AD BC ,3∴ AD//BC 且 AD BC∴四边形 ABCD 为梯形 .DCFB丙BA( 3)四边形 ABCD 为菱形 .(第 4 题 (2))uuur uuurB证明:∵ AB DC ,∴ AB/ /DC 且 AB DC C A∴四边形 ABCD 为平行四边形uuur uuurD又 AB AD(第 4题 (3))∴四边形 ABCD 为菱形.M5、( 1)经过作图能够发现四边形ABCD 为平行四边形.uuur uuur uuur uuur uuur uuur证明:因为 OA OB BA,OD OC CDuuur uuur uuur uuur A D而OA OC OB ODuuur uuur uuur uuur B C 所以 OA OB OD OCuuur uuurO所以 BA CD ,即AB∥CD.所以,四边形 ABCD 为平行四边形.(第 5题)2.3 平面向量的基本定理及坐标表示练习(P100)r r r r r r r r1、( 1) a b(3,6) , a b(7,2) ;( 2) a b(1,11), a b(7,5);r r r r(4,6) ;r r r r(3,4) .( 3) a b(0,0) , a b(4) a b(3, 4) , a b r r r r(12,5) .2、 2a 4b( 6,8) , 4a3buuur(3, 4)uuur( 3,4) ;uuur(9,1)uuur(9,1)3、( 1) AB, BA(2) AB, BA;uuur(0, 2)uuur(0,2)uuur uuur(5,0)(3) AB, BA;(4) AB(5,0) , BA4、AB∥CD .uuur uuur(1,uuur uuur证明: AB(1, 1) , CD1) ,所以 ABCD.所以AB∥CD .5、(1)(3, 2);( 2) (1,4) ;(3)(4,5) .6、(10,1)或(14,1)33uuur3uuur uuur3 uuur7、解:设 P( x, y) ,由点P在线段AB的延伸线上,且AP2PB ,得 AP2PBuuur uuur( x, y) (2,3)( x(4,3)(x, y)(4x,3y) AP2, y 3) , PB3x23(4x)∴ ( x2, y3)x, 3 y)∴2(43( 32y3y)2x 8 ∴,所以点 P 的坐标为 (8, 15) .y15习题A 组(P101)1、( 1) ( 2,1) ;( 2) (0,8) ;( 3) (1,2) .说明:解题时可设 B(x, y) ,利用向量坐标的定义解题 .uur uur uur 2、 F 1 F 2 F 3(8,0)uuur ( 1, uuur (53,6 (1)) (2,7)3、解法一: OA 2),BCuuuruuur uuur uuuruuur uuur uuur (1,5) .所以点 D 的坐而 ADBC ,ODOAADOA BC标为 (1,5) .uuur ( x( 1), y ( 2)) ( x 1, y2) ,解法二:设 D( x, y) ,则 AD uuur (5 3,6 ( 1)) (2,7)BCuuur uuur1 2,解得点 D 的坐标为 (1,5) .由 ADBC 可得, xy 2 7uuur uuur2,4) .4、解: OA (1,1), AB (uuur 1 uuuruuuruuuruuur1 uuur(1, 2) .ACAB ( 1,2) , AD2 AB( 4,8) , AE2AB2uuur uuur uuur(0,3) ,所以,点 C 的坐标为 (0,3) ; OC OA ACuuur uuur uuur ( 3,9) ,所以,点 D 的坐标为 (3,9)OD OA AD;uuur uuur uuur(2, 1) ,所以,点 E 的坐标为 (2,1) .OE OA AE r r (2,3)(x,6),所以23,解得 x 4 .5、由向量 a,b 共线得x 6uuur (4, 4) uuur ( 8,uuur uuur uuuruuur 6、 AB , CD 8),CD 2AB ,所以 AB 与CD 共线 .uuuruuur(2, 4) ,所以点 A 的坐标为 (2, 4) ;7、 OA2OAuuur uuur ( 3,9)B 的坐标为( 3,9)OB 3OB ,所以点;故uuuur( 3,9) (2, 4) ( 5,5)A B 习题B 组(P101)uuur (1,2)uuur (3,3) . 1、 OA , AB当 tuuur uuur uuur uuur(4,5) ,所以 P(4,5) ; 1时, OP OA AB OB当 t1 uuur uuur1 uuur(1,2) 3 35 7 ) ,所以 5 , 7时, OPOAAB( , ) ( , P( ) ;222 2 2 2 2 2uuur uuuruuur( 5, 4) ,所以 P( 5, 4);当 t2时, OP OA 2AB(1,2) (6,6) 当 tuuur uuur uuur (7,8) ,所以 P(7,8) .2时, OP OA 2 AB (1,2) (6,6)uuur ( 4, 6) uuur uuur uuur2、(1)因为 AB , AC (1,1.5) ,所以 AB4AC ,所以 A 、B 、C 三 点共线;uuuruuuruuur uuur( 2)因为 PQ(1.5,2),PR(6, 8) ,所以 PR 4PQ ,所以 P 、Q 、R 三点共线;uuuruuur( 8,( 1, uuur uuur( 3)因为 EF4) ,EG 0.5) ,所以 EF 8EG ,所以 E 、F 、G三点共线 .uruur r ur uur3、证明:假定10 ,则由 1 e 12 e 2 0 ,得 e 12e 2 .1ur uurur uur 是平面内的一组基底矛盾 ,所以 e 1 ,e 2 是共线向量,与已知 e 1,e 2 所以假定错误,10 .同理 2 0 .综上 120 .uuuruuur ur uur4、(1) OP19 .( 2)关于随意愿量 OP xe 1 ye 2 , x, y 都是独一确定的,所以向量的坐标表示的规定合理 .2.4 平面向量的数目积 练习(P106)ur rur r ur r 8 6124 .1、 p q p q cos p, q2r rr rABC 为直角三角形 .2、当 a b 0 时,ABC 为钝角三角形;当 a b 0 时,3、投影分别为 3 2 , 0, 3 2 . 图略 练习(P107)r( 3)2 42r 52 22r r35427 .1、 a 5 , b29 , a br rr r rrr r rr r49 .2、 a b8 , (a b)(a b)7 , a (b c) 0 , (a b)2r r rr74,88 . 3、 a b 1, a13 , b习题 A 组(P108)r r r rr 2 r r r 2r r25 12 3.1、 a b6 3 , (a b)2 a2a b b25 12 3 , a buuur uuuruuur uuur 20 .2、 BC 与 CA 的夹角为 120°, BC CAr rr 2 r r r 2r rr 2 r r r 2 35 .3、 a ba 2ab b23 , a ba 2ab br r4、证法一:设 a 与 b 的夹角为 .( 1)当 0 时,等式明显建立;( 2)当r r rr时, a 与 b , a 与 b 的夹角都为 ,所以( r r r r r ra) b a b cosa b cos r rr r( a b)a b cosr r r r r r a ( b)ab cosa b cosr rr r r r所以 ( a) b(a b) a ( b) ;( 3)当r r r r180时, a 与 b , a 与 b 的夹角都为 ,则 (r r r r ) r r a) b a b cos(180 a b cosr r r r r r ( a b)a b cosa b cosr r r r )r r a ( b)ab cos(180a b cosr rr r r r 所以 ( a) b(a b) a ( b) ;综上所述,等式建立 .r r证法二:设 a (x 1, y 1 ) , b ( x 2 , y 2 ) ,r r那么 ( a) b ( x 1 , y 1 ) ( x 2 , y 2 ) x 1 x 2 y 1 y 2 r r( a b) ( x 1 , y 1 ) ( x 2, y 2 ) ( x 1 x 2 y 1 y 2 ) x 1x 2 y 1 y 2r r a ( b) (x 1, y 1 ) ( x 2 , y 2 ) x 1x 2 y 1 y 2所以 (r rr r r ra) b (a b)a ( b) ;5、( 1)直角三角形, B 为直角 .uuur( 1, 4)(5, 2) ( 6, 6)uuur(3, 4)(5, 2) ( 2, 2)证明:∵ BA , BCuuur uuur 6 ( 2) ( 6)2 0∴ BA BCuuur uuur B 为直角,ABC 为直角三角形∴ BABC , ( 2)直角三角形, A 为直角uuur (19,4) ( 2, 3) (21,7)uuur ( 1, 6) ( 2,3) (1, 3)证明:∵ AB , ACuuur uuur21 1 7 ( 3) 0∴ AB ACuuur uuur A 为直角,ABC 为直角三角形∴ ABAC ,( 3)直角三角形, B 为直角uuuruuur证明:∵ BA (2,5) (5, 2)( 3,3) , BC(10,7) (5, 2) (5,5)uuur uuur 3 5 3 5 0∴BA BCuuur uuur B 为直角,ABC 为直角三角形∴ BABC , 6、 135 . 7、120 .r r r r r 2 r r r 2 r r 6 ,(2a 3b)(2 a b)4a 4a b 3b 61 ,于是可得 a br r 1cosa b,所以 120 .r r2a b8、 cos23 , 55 .40uuuruuur9、证明:∵ AB(5, 2) (1,0) (4, 2) , BC(8, 4)(5, 2) (3,6) ,uuur(8, 4) (4,6) (4, 2)DCuuur uuur uuur uuur 4 3 ( 2) 6 0∴ AB DC ,AB BC∴ A, B,C , D 为极点的四边形是矩形 .r( x, y) ,10、解:设 ax 2y 2 9x 3 5x 3 5则y ,解得6 5 ,或 5 .x2y5 y6 55 5rr 3 5 , 6 5).于是 a (3 5 , 6 5) 或 a (5 55 5r r11、解:设与 a 垂直的单位向量 e (x, y) ,则 x2y 21x5或 x5,解得 5 5 . 4x2 y 0 y2 5 2 55 y 5r 5 ,r 5,2 5). 于是 e (2 5) 或 e (5555习题 B 组(P108)r r r r r rr rr r rr r r 1、证法一: a b a ca b a ca (b c)a(b c)rr r证法二:设 a( x 1 , y 1) , b (x 2 , y 2 ) , c ( x 3 , y 3 ) .r r r rr r r 先证 a b a ca(b c)r rr ra b x 1 x 2y 1 y 2 , a c x 1 x 3 y 1 y 3r r r r由a b a c得x 1 x 2 y 1 y 2 x 1 x 3 y 1 y 3,即x 1( x 2 x 3 ) y 1 ( y 2y 3 ) 0r rr r r而 b c ( x 2 x 3 , y 2y 3 ) ,所以 a (b c) 0rr r r r r r 再证 a(b c)a b a cr r r由 a (b c)0 得 x 1 (x 2x 3 ) y 1 ( y 2 y 3 )0 ,r rr r 即 x 1 x 2 y 1 y 2 x 1 x 3 y 1 y 3 ,所以 a ba cuuur uuur2、 cos AOBOA OB cos cos sinsin .uuur uuurOA OBr r (c, d) .3、证明:结构向量 u (a,b) , vr r r r r r,所以 acbda 2b 2c 2d 2 cos r ru v u v cos u,vu, v∴ (ac bd )2 (a 2 b 2 )(c 2d 2 ) cos 2 r r ( a 2 b 2 )( c 2 d 2 )u, vuuur uuur 4、 AB AC 的值只与弦 AB 的长相关,与圆的半径没关 .C证明:取 AB 的中点 M ,连结 CM ,则 CMuuuur 1 uuurAB,AM AB2uuuuruuur uuur uuur uuurBAC AM又AB AC AB AC cos BAC ,而uuurAC uuur uuur uuur uuuur1uuur 2所以 AB AC AB AM2ABuuur uuur 2uuur 25、( 1)勾股定理:Rt ABC中,C902,则 CA CB ABuuur uuur uuur证明:∵ AB CB CAuuur 2uuur uuur uuur 2uuur uuur uuur 2∴ AB(CB CA)2CB2CA CB CA .uuur uuur由 C 90 ,有 CA CB,于是CA CB 0uuur 2uuur2uuur2∴ CA CB AB(2)菱形ABCD中,求证:AC BDuuur uuur uuur uuur uuur uuur证明:∵ AC AB AD, DB AB AD ,uuur uuur uuur uuur uuur uuur uuur 2uuur 2∴ AC DB (AB AD) (AB AD)AB AD .∵四边形 ABCD 为菱形,∴ ABuuur 2uuur 2 AD ,所以AB AD0uuur uuurBD∴ AC DB 0,所以AC(3)长方形ABCD中,求证:AC BDuuur uuur 证明:∵ 四边形 ABCD 为长方形,所以 AB0AD ,所以AB ADuuur 2uuur uuur uuur 2uuur 2uuur uuur uuur 2.∴ AB2AB AD AD AB2AB AD ADuuur uuur uuur uuur uuur2uuur2BD ∴ (AB AD )2 (AB AD )2,所以 AC BD,所以 AC (4)正方形的对角线垂直均分. 综合以上( 2)( 3)的证明即可 .2.5 平面向量应用举例习题 A 组(P113)1、解:设 P(x, y) , R( x1 , y1)uuur uuur则 RA(1,0)(x1, y1 )(1x1,y1 ) ,AP(x, y)(1,0)( x1,0)uuur uuurx1,y1)2( x1, y) ,即x12x3由 RA2AP 得(1y12y代入直线 l 的方程得 y 2x . 所以,点 P 的轨迹方程为 y2x .A2、解:(1)易知, OFD ∽ OBC , DF1BC ,2BF .2DF所以 BOuuur uuur 32 uuurr 2 1 r rr1rrOuuurAOBOBABF a3 ( ba)a(a b)uuurr323BCr E(2)因为 AE1(ab)2(第 2 题) uuur 2 uuurAO 所以 AOAE ,所以 A,O, E 三点共线,并且23OE同理可知:BO2,CO2 ,所以AOBO CO 2r uur uurOFODOEOFOD3、解:(1) v v B v A( 2,7) ;uurr uurrv v A 13 . (2) v 在 v A 方向上的投影为uurv A5(第 4题)uuruur ur ur uur4、解:设 F 1 , F 2 的协力为 F , F 与 F 1 的夹角为 ,ur uur uur uur则 F 3 1, 30 ; F 3 3 1 , F 3 与 F 1 的夹角为 150°. 习题 B 组(P113)uuruuruur1、解:设 v 0 在水平方向的速度大小为v x ,竖直方向的速度的大小为v y ,uur uur uur uursin .则 v x v 0 cos , v y v 0设 在 时 刻 t时 的 上 升 高 度 为 h , 抛 掷 距 离 为 s, 则uur1gt,( g 为重力加快度 )hv 0 t sinuur2sv 0 t cosuur 2 uur 2v 0 sin2v 0 sin 2所以,最大高度为,最大扔掷距离为g.2guruur r uur r,行驶距离为 d .2、解:设 v 1 与 v 2 的夹角为 ,合速度为 v , v 2 与 v 的夹角为 ur r则 sin v 1 sin 10sin , d 0.5 v . d 1 .r r sin20sin ∴ r 20sinv v v所以当90 ,即船垂直于对岸行驶时所用时间最短 .3、( 1) (0, 1)uuur( x 1, y 2) . uuur2 2) .解:设 P( x, y) ,则 APAB(2,uuuruuur 7 将 AB 绕点 A 沿顺时针方向旋转到 AP ,相当于沿逆时针方向旋转到44uuur AP ,uuur7 2 7 7 2 7 (1,3)于是 AP( 2 cos2 sin, 2 sin2 cos )4444所以x1 1,解得 x0, y1y233( 2) y2 xuuur后,点 P 的坐解:设曲线 C 上任一点 P 的坐标为 ( x, y) , OP 绕 O 逆时针旋转4标为 (x , y )x x cosysin x2( x y)则44,即2yx siny cosy2y)4( x42又因为 x2y23,所以1( xy) 21( xy) 2 3 ,化简得 y32 22x第二章复习参照题 A 组( P118)1、( 1)√; (2)√;(3)×; (4)× .2、(1) D ;(2) B ;(3) D ;(4)C ;(5)D ;(6) B.uuur1rruuur 1 r r3、 AB(a b) , AD 2( a b)2uuur uuur uuur uuur2 r 1r4、略解: DEBAMA MBab3 3uuur 2 r2 ruuur1 r1 rAD ab , BC a b333 3uuur 1r1ruuuruuur 1 r 2rEFab , FA DC ab3333uuur 1r2ruuur 2r1rCDab , ABab33 3 3uuur r r CE abuuur (8, 8) uuur8 2 ;5、( 1) AB , AB(第 4题)uuur uuur( 8,8) ;uuur uuur(2) OC (2, 16) , OD (3) OA OB 33.uuur uuur6、AB与CD共线.uuur uuur uuur uuur uuur uuur 证明:因为 AB(1, 1) , CD(1, 1) ,所以 AB CD.所以 AB与CD 共线.7、D(2,0) .8、n 2 .9、1,0.30,cos C 410、cos A ,cos B55r ur ur r ur ur 21r ur ur11、证明:(2 n m) m2n m m 2cos600 ,所以 (2n m)m .12、 1 .r r r r1.14、cos5,cos19 13、a b13 , a b820第二章复习参照题B组(P119)1、(1) A;(2)D;(3)B;(4)C;(5)C;(6)C;(7)D .r r r r r r2、证明:先证a b a b a b .r r r r r 2r 2r ra b(a b)2a b2a b,r r r r r2r2r ra b( a b)2a b2ab .r r r r r r r 2r 2r r因为 a b ,所以 a b0 ,于是 a b a b a b .r r r r r r再证 a b a b a b .r r r 2r r r 2r r r 2r r r 2因为 a b a2a b b, a b a2a b br r r r r r r r由 a b a b 可得 a b0 ,于是 a br r r r r r所以 a b a b a b .【几何意义是矩形的两条对角线相等】r r r ur3、证明:先证a b c dr ur r r r r r2r 2c d(a b) (a b)a br r r ur r ur又 a b,所以 c d0 ,所以 c dr ur r r再证 c d a b .r ur r ur r r r r r 2r 20(第 3题)由 c d 得 c d0,即 ( a b) (a b) a br r所以 a b【几何意义为菱形的对角线相互垂直,如图所示】uuur uuur uuuruuur 1rr uuur1r1r4、 AD AB BCCDa b , AEa b P 3242uuur 3ruuuur 1 ruuuur uuuruuuur 1 r1 r1 r1 r r 而 EF4 a , EM4 a ,所以 AM AEEMa b a (a b)4 2 4 25、证明:如下图,uuur uuur uuuuruuur uuuur uuur rOD OP OP ,因为 OP OPOP0 ,12 1 23 Ouuuruuuruuur所以 OP 3 OD ,OD 1uuuruuur uuurP 1P 2所以 ODOP PD11所以 OPP 1 2 30 ,同理可得OPP 1330D(第 5题)所以3 1 260 ,同理可得1 2360, 23 160 ,所以123为P PPPP PP P PPP P正三角形 .6、连结 AB.uuuur uuur r rN.由对称性可知, AB 是 SMN 的中位线, MN 2AB 2b 2a7、( 1)实质行进速度大小为 42 (4 3) 2 8(千米/时),沿与水流方向成 60°的方向行进;( 2)实质行进速度大小为 4 2 千米/时,MBA沿与水流方向成 90arccos 6的方向行进 .OSuuur uuuruuur uuur 3uuur uuur uuur uuur uuur (第 6题)8、解:因为 OA OBOB OC ,所以 OB (OA OC ) 0 ,所以 OB CA uuur uuur0 , uuur uuur0 ,所以点 O 是 ABC 的垂心 .同理, OA BCOC AB9、( 1) a 2 x a 1 y a 1 y 0 a 2 x 0 0 ; (2)垂直;( 3)当 A 1B 2 A 2B 1 0时, l 1 ∥ l 2 ;当 A 1 A 2 B 1B 2 0时, l 1 l 2 ,夹角 的余弦 cosA 1A 2B 1B 2;A 1 2B 12A 22B 22Ax 0 By 0 C( 4) dA 2B 2第三章 三角恒等变换3.1 两角和与差的正弦、余弦和正切公式 练习(P127)1、 cos()coscossin sin0 cos1 sinsin .222cos(2) cos2 cossin2 sin 1 cos 0 sincos.2、解:由 cos3 , ( , ) ,得 sin 1cos 21 ( 3)24 ;525 5所以 cos()cos cossin sin 2 ( 3 ) 2 42 .4442 5 25 103、解:由 sin15 , 是第二象限角,得 cos 1 sin 21(15 )28 ;171717所以 cos() cos cossin sin8 1 153 8 15 3 .33317 2 172344、解:由 sin2 , ( ,3) ,得 cos1 sin 21 (2 )25 ;3 23 3 又由 cos3 , (3,2 ) ,得 sin1 cos21 (3)27 .4244所以cos()cos cossin sin3 (5 ) ( 7) ( 2) 3 5 2 7 .43 4 312练习(P131)1、( 1)6 2; (2)6 2; (3)62; (4)2 3.4442、解:由 cos3 , ( , ) ,得 sin 1 cos 21 ( 3)24 ;525 5所以 sin() sin coscos sin4 1 ( 3 ) 3 4 3 3 .3335 2 5 210 3、解:由 sin12 , 是第三象限角,得 cos 1 sin 21( 12) 25 ;131313所以cos()cos cossinsin 3 ( 5 ) 1 (12) 5 3 12 .666213 2 1326tantan3 14、解: tan()4 2 .41 tantan 1 3 145、( 1)1;(2)1;(3)1;(4)3 ;22( 5)原式 = (cos34 cos26sin34 sin 26 )cos(3426 )cos601 ;2(6)原式= sin20cos70 cos20 sin70 (sin 20 cos70 cos20 sin70 ) sin901 .6、( 1)原式 = cos cosx sinsin x cos( x) ;333( 2)原式 = 2(3sin x1cosx)2(sin x coscosxsin) 2sin( x) ;22666( 3)原式 = 2(2sin x2cos x) 2(sin x cos cos xsin 4) 2sin( x ) ;22 44( 4)原式 = 2 2( 1cos x3sin x)2 2(cos3 cosx sin sin x)2 2 cos(x) .22337、解:由已知得 sin()cos cos()sin3 ,5即 sin[()]3, sin()355所以 sin3. 又 是第三象限角,5于是 cos1 sin 21 (3) 2 4 .55因此sin(5 ) sin cos 5cos sin 5( 3 )( 2 ) ( 4 )(2 ) 7 2 .444 52 5 210练习(P135)31、解:因为 812 ,所以82443sin 335 又由 cos,得 sin1 (2, tan85)5 84 4 885cos85所以 sinsin(2) 2sin cos2 (3) ( 4)24 488 85525 coscos(2) cos 2 sin 28( 4 )2 ( 3 )2 7 48 85 5 252tan82 3 3 16 24tantan(2)432 774821 (21 tan8 )42、解:由 sin()3,得 sin3,所以 cos 21 sin 21 ( 3)2 16555 25所以 cos2cos 2sin 216 ( 3) 2 725 5 253、解:由 sin2sin 且 sin0 可得 cos1 ,2又 由( 2 , ),得sin1 cos 21 ( 1 )23, 所以2 2tansin 3 ( 2) 3 .cos24、解:由tan21 , 得 2tan1.所 以 tan 26tan1 0,所以3 1 tan 23tan3 105、(1)1sin30 1 ;(2)cos2sin2cos2 ;sin15 cos1582484 2( 3)原式 = 1 2tan 22.51 tan45 1 ;( 4)原式 = cos452 .2 1 tan 2 22.5 222习题A 组(P137)1、( 1) cos(3)cos3cossin3sin0 cos( 1) sinsin;222( 2) sin(3) sin3coscos3sin1 cos0 sincos ;222( 3) cos() cos cos sin sin1 cos 0 sincos ;( 4) sin( ) sin coscos sin0 cos( 1) sinsin .2、解:由 cos3,0,得 sin1 cos21 (3)24 ,55 5所以 cos() cos cos 6sinsin6 4 3 3 1 4 3 3 .65 25 2 103、解:由 sin2 , ( , ) ,得 cos1 sin 21( 2)25 ,3 233又由 cos3 , ( ,3) ,得 sin1 cos 21 ( 3) 27 ,4244所以cos() cos cossin sin5 ( 3 ) 2 ( 7 ) 3 5 2 7 .34 3 4 124、解:由 cos1 , 是锐角,得 sin1 cos21 (1)24 3777因为 , 是锐角,所以 (0, ) ,又因 为sin( )1 cos2 ()1 (所以 coscos[( )( 11) 1 5 314 7 14 5、解:由 60150 ,得 90cos()11 ,所以1411)25 3 1414] cos()cossin()sin4 3 17230 180又由 sin(30)3,得 cos(30)1 sin 2(30)1 (3)2455 5所以 coscos[(30 ) 30 ] cos(30)cos30 sin(30)sin304 3 3 1 4 3 35 252106、( 1)6 2 ;(2)24 6 ;(3) 2 3 .47、解:由 sin2 , (, ) ,得 cos 1 sin21 (2)25 .3233又由cos 3 ,是第三 象限角, 得4sin1cos 21 ( 3) 27 .4 4所以 cos() cos cossin sin5 ( 3 ) 2 ( 7 )3 4 3 4 3 52 712 sin() sincos cos sin2 ( 3) (5 ) ( 7 )3 4 3 46 35128、解:∵ sin A5 ,cos B3且 A, B 为 ABC 的内角13 5∴ 0 A,0 B, cos A12,sin B42135当 cos A12 时, sin( A B) sin AcosB cos Asin B 135 3 ( 12) 4 33 013 5 13565A B,不合题意,舍去∴ cos A12,sin B4135∴ cosCcos( A B)(cos AcosB sin Asin B)(123 5 4) 1613 5 13 5659、解:由 sin3 , ( , ) ,得 cos 1 sin21 (3)24 . 5255∴ tansin 3 ( 5 ) 3 . cos 5 44tantan 3 1 2∴ tan()43 21.1 tan tan1 ( )114 2tantan3 1tan()43 212 .1 tantan1 ( )4 210、解:∵ tan ,tan 是 2x 23x 7 0 的两个实数根 .∴ tantan3, tantan7 .22tantan3 1 ∴ tan( )21 tantan7.1 () 3211、解:∵ tan() 3,tan( ) 5∴ tan2tan[( )()]tan( ) tan()3 5 41 tan() tan( ) 1 3 57tan 2tan[()( )]tan() tan( ) 3511 tan() tan()1 3 5812、解:∵ BD : DC : AD2:3:6B∴ tanBD 1,tanDC 1AD3AD2D1 1tan tan∴ tan BAC tan(3 21)tantan1 111α3 2 AβC又∵ 0BAC180 ,∴ BAC45(第 12 题)13、( 1)6 5 sin( x) ;(2) 3sin( x) ;(3) x) ;(4) 27 x) ;3 2sin(2sin(62612(5)2;( 6) 1;(7)sin() ;( 8) cos();(9) 3 ; (10)22tan() .14、解:由 sin0.8,(0,) ,得 cos1 sin 21 0.820.62∴ sin22sin cos 2 0.8 0.6 0.96cos2 cos 2sin 20.620.820.2815、解:由 cos3,180270 ,得 sin1 cos 21( 3 ) 26333∴ sin 22sincos2 ( 6 ) ( 3)2 2333cos2cos 2sin 2(3 )2 ( 6 ) 2 13 3 3tan 2sin 2 2 2 (3)2 2cos2 316、解:设 sin Bsin C5,且0B 90 ,所以 cosB12 .1313∴ sin A sin(1802B) sin2 B 2sin Bcos B25 12 12013 13169cos A cos(1802B)cos2B(cos 2 Bsin 2 B)(( 12 )2 ( 5 )2 ) 11913 13169sin Atan Acos Atan 22tan 17、解: 1 tan 2120(169) 169 1192131 (1)2 3120 1193 ,tantan 21 3 7 41 . tan(2 )tan2141 tan 314718、解: cos()cossin()sin1cos[()]1,即 cos1333又( 3 ,2 ) ,所以 sin1 cos21 (1)22 2 233∴ sin 22sin cos2 ( 2 2 ) 14 23 39cos2cos 2sin 2( 1 )2( 2 2 ) 2733 9∴cos(2) cos2 cossin 2 sin7 2 4 2272 892(9 )184 44219、(1) 1 sin2;(2) cos2 ;(3) 1sin 4x ;(4) tan2 .4习题 B 组(P138)1、略.2、解:∵ tan A,tan B 是 x 的方程 x 2 p(x 1) 1 0 ,即 x 2px p 1 0 的两个实根∴ tan A tan B p , tan A tan B p 1∴ tan C tan[(A B)]tan(A B)tan A tan B p 1 tan A tan B11 ( p 1)因为 0 C,所以 C3 .43、反响一般的规律的等式是(表述形式不独一)sin 2cos 2 (30 )sincos(30 )3 (证明略)4 此题是开放型问题,反应一般规律的等式的表述形式还能够是:sin 2 (30 ) cos 2sin(30 )cos34sin 2 (15 ) cos 2 (15 ) sin( 15 )cos(15 ) 34 sin2cos2sincos3,此中30 ,等等4思虑过程要求从角,三角函数种类,式子结构形式三个方面找寻共同特色,进而作出概括 . 对认识三角函数式特色有帮助,证明过程也会促使推理能力、运算能力的提升 .4、因为 PAPP ,则 (cos() 1)2 sin 2 ()(coscos ) 2 (sinsin )21 2即 2 2cos() 2 2cos cos 2sin sin所以 cos() cos cossinsin3.2 简单的三角恒等变换 练习(P142)1、略.2、略 .3、略 .4、( 1) y1sin 4x . 最小正周期为,递加区间为 [8k , k ], k Z ,最222 82大值为 1;2( 2) y cosx 2 . 最小正周期为 2 ,递加区间为 [2k ,22k ], k Z ,最大值为 3;( 3) y 2sin(4 x) . 最小正周期 , 增区 [5k , k ], k Z ,最32242 24 2大 2.A ( P143)1、( 1)略;(2)提示:左式通分后分子分母同乘以2;( 3)略; ( 4)提示:用 sin 2 cos 2 取代 1,用 2sincos 取代 sin 2;( 5)略;( 6)提示:用 2cos 2 取代 1 cos2 ;( 7)提示:用 2sin 2 取代 1 cos2 ,用 2cos 2 取代 1 cos2 ; (8)略.2、由已知可有 sincoscos sin1⋯⋯①, sincoscos sin1⋯⋯②23(1)②× 3-①× 2 可得 sin cos 5cos sin(2)把( 1)所得的两 同除以 cos cos 得 tan5tan注意: 里 coscos0 含与①、②之中1. 于是 tan22tan2 (1) 4 3、由已知可解得tan221 tan 21 ( 1 ) 232tan tan1 11tan()42 141 tantan 1 ( ) 1 342∴ tan24tan()44、由已知可解得 x sin , ycos ,于是 x 2 y 2 sin 2cos 21.5、 f ( x) 2sin(4 x) ,最小正周期是 , 减区 [k , 7 k ], k Z .2 2423224B (P143)1、略.2、因为 76 2790 ,所以 sin76 sin(9014 ) cos14 m即 2cos 2 71 m ,得 cos7m 123、 存在 角,使22,所以23, tan(2)3 ,3tan tan又 tan tan23 ,又因 tan(2 ) 2,21 tan tan2所以 tantan tan()(1 tantan ) 33222由此可解得 tan1 ,4 ,所以.6经查验6 ,是切合题意的两锐角 .41(cos cos ), 1(sin sin)). 过M 作MM 1 垂4、线段 AB 的中点 M 的坐标为 (22直于 x 轴,交 x 轴于 M 1 , MOM 1 1 ()1 () .y22B在 Rt OMA 中, OMOA cos2 cos2.CMA在 Rt OM 1 M 中, OM 1 OM cos MOM 1cos 2 cos ,2M 1 M OM sin MOM 1sincos .OM 1x22于是有1cos ) coscos,(cos2 221(sinsin ) sin2cos2(第 4题)25、当 x2 时, f ( ) sin 2 cos 2 1 ;当 x 4 时, f ( ) sin 4cos 4(sin 2cos 2 )2 2sin 2 cos 21 1 sin 22 ,此时有 1≤ f ( )≤1;2 2当x 6时,f ( ) sin 6cos 6(sin 2 cos 2 )33sin 2 cos 2 (sin 2 cos 2 )1 3 sin 22 ,此时有 1≤ f ( )≤1;4 4 由此猜想,当 x2k,k N 时,k11 ≤ f ( ) ≤ 126、( 1) y 5( 3sin x4cosx) 5sin( x) ,此中 cos3,sin45 555所以, y 的最大值为 5,最小值为﹣ 5;( 2) ya 2b 2 sin( x) ,此中 cosa ,sin a 2ba 2b 2b 2所以, y 的最大值为a 2b 2 ,最小值为a 2b 2 ;第三章复习参照题 A 组( P146)。
人教版高一数学A必修4全册例题讲解及练习题(71页)
(2)设人在距离标语 xm 处,则 x = l » 5 » 3439 (m) ,故视力正常的人,能在约 3439m 远处
a 0.001454 看清长宽均为 5m 的大字标语.
【例 4】已知扇形的面积为 S ,当扇形的圆心角为多少弧度时,扇形的周长最小?并求出此最小值.
解法 1:设扇形的半径为 R ,弧长为 l ,由 S = 1 lR ,得 l = 2S ,
8 §1.5 函数 y = Asin (w x + j ) 的图像……………(15)
9 §1.6 三角函数模型的简单运用………………(17) 10 第一章 三角函数 复习………………………(19)
11 §2.1 向量的物理背景与概念、几何表示……(21) 12 §2.1.3 相等向量与共线向量…………………(23) 13 §2.2 向量的加减法运算及其几何意义………(25) 14 §2.2.3 向量数乘运算及几何意义………………(27) 15 §2.3 平面向量基本定理及坐标表示…………(29) 16 §2.3.3 平面向量的坐标运算……………………(31)
{ } 引申: 终边在坐标轴上的角的集合 a a = k × 90o , k Î Z ;终边在 y = x 上的角的集合
{ } { } a a = 45o + k ×180o ,k Î Z
;终边在 y = ± x 上的角的集合
a
a
= 45o
o
+ k × 90 , k Î Z
.
【例 3】如果角a 与角q + 45o 具有同一条终边,角 b 与角q - 45o 具有同一条终边,那么a 与 b 的关
23 §3.1.1 两角差的余弦公式……………………(45) 24 §3.1.2 两角和与差的正弦,余弦,正切公式(1)…(47) 25 §3.1.2 两角和与差的正弦,余弦,正切公式(2)…(49) 26 §3.1.3 二倍角的正弦,余弦,正切公式(1)………(51) 27 §3.1.3 二倍角的正弦,余弦,正切公式(2)………(53) 28 §3.1.3 简单的三角恒等变换…………………(55) 29 第三章 三角恒等变换 复习…………………(57)
最新人教版高中数学必修4课文讲义及配套试题(全册 共296页 附解析)
最新人教版高中数学必修4课文讲义及配套试题(全册共296页附解析)目录1.1.1任意角1.1.2弧度制1.2.1任意角的三角函数第一课时三角函数的定义与公式一1.2.2同角三角函数的基本关系1.3三角函数的诱导公式第一课时诱导公式(一)第二课时诱导公式(二)1.4.1正弦函数、余弦函数的图象1.4.2正弦函数、余弦函数的性质第一课时正弦函数、余弦函数的周期性与奇偶性第二课时正弦函数、余弦函数的单调性与最值1.4.3正切函数的性质与图象1.5第一课时函数y=Asin(ωx+φ)的图象及变换1.5第二课时函数y=Asin(ωx+φ)的性质1.6 三角函数模型的简单应用2.1 平面向量的实际背景及基本概念2.1 平面向量的线性运算2.2.1向量加法运算及其几何意义2.2.2向量减法运算及其几何意义2.2.3向量数乘运算及其几何意义2.3.1平面向量基本定理2.3.2 & 2.3.3平面向量的正交分解及坐标表示平面向量的坐标运算2.3.4平面向量共线的坐标表示2.4.1平面向量数量积的物理背景及其含义2.4.2平面向量数量积的坐标表示、模、夹角2.5平面向量应用举例复习课(一)任意角的三角函数及三角恒等变换复习课(一)任意角的三角函数及三角恒等变换复习课(三)平面向量1.1.1任意角预习课本P2~5,思考并完成以下问题(1)角是如何定义的?角的概念推广后,分类的标准是什么?(2)象限角的含义是什么?判断角所在的象限时,要注意哪些问题?(3)终边相同的角一定相等吗?如何表示终边相同的角?[新知初探]1.任意角(1)角的概念:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的表示:如图,OA是角α的始边,OB是角α的终边,O是角的顶点.角α可记为“角α”或“∠α”或简记为“α”.(3)角的分类:[点睛]对角的概念的理解的关键是抓住“旋转”二字:①要明确旋转的方向;②要明确旋转量的大小;③要明确射线未作任何旋转时的位置.2.象限角把角放在平面直角坐标系中,使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.[点睛]象限角的条件是:角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合.3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.[点睛]对终边相同的角的理解(1)终边相同的角不一定相等,但相等的角终边一定相同;(2)k∈Z,即k为整数这一条件不可少;(3)终边相同的角的表示不唯一.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)-30°是第四象限角.()(2)钝角是第二象限的角.()(3)终边相同的角一定相等.()答案:(1)√(2)√(3)×2.与45°角终边相同的角是()A.-45°B.225°C.395°D.-315°答案:D3.下列说法正确的是()A.锐角是第一象限角B.第二象限角是钝角C.第一象限角是锐角D.第四象限角是负角答案:A4.将35°角的终边按顺时针方向旋转60°所得的角度数为________,将35°角的终边按逆时针方向旋转一周后的角度数________.答案:-25°395°[典例]下列命题正确的是()A.终边与始边重合的角是零角B.终边和始边都相同的两个角一定相等C.在90°≤β<180°范围内的角β不一定是钝角D.小于90°的角是锐角[解析]终边与始边重合的角还可能是360°,720°,…,故A错;终边和始边都相同的两个角可能相差360°的整数倍,如30°与-330°,故B错;由于在90°≤β<180°范围内的角β包含90°角,所以不一定是钝角,C 正确;小于90°的角可以是0°,也可以是负角,故D 错误.[答案] C[活学活用]如图,射线OA 绕端点O 旋转90°到射线OB 的位置,接着再旋转-30°到OC 的位置,则∠AOC 的度数为________.解析:∠AOC =∠AOB +∠BOC =90°+(-30°)=60°. 答案:60°[典例] 写出与75°角终边相同的角β的集合,并求在360°≤β<1 080°范围内与75°角终边相同的角.[解] 与75°角终边相同的角的集合为 S ={β|β=k ·360°+75°,k ∈Z}.当360°≤β<1 080°时,即360°≤k ·360°+75°<1 080°, 解得1924≤k <21924.又k ∈Z ,所以k =1或k =2.当k =1时,β=435°;当k =2时,β=795°.综上所述,与75°角终边相同且在360°≤β<1 080°范围内的角为435°角和795°角.分别写出终边在下列各图所示的直线上的角的集合.解:(1)在0°~360°范围内,终边在直线y=0上的角有两个,即0°和180°,因此,所有与0°角终边相同的角构成集合S1={β|β=0°+k·360°,k∈Z},而所有与180°角终边相同的角构成集合S2={β|β=180°+k·360°,k∈Z},于是,终边在直线y=0上的角的集合为S=S1∪S2={β|β=k·180°,k∈Z}.(2)由图形易知,在0°~360°范围内,终边在直线y=-x上的角有两个,即135°和315°,因此,终边在直线y=-x上的角的集合为S={β|β=135°+k·360°,k∈Z}∪{β|β=315°+k·360,k∈Z}={β|β=135°+k·180°,k∈Z}.[典例]并指出它们是第几象限角.(1)-75°;(2)855°;(3)-510°.[解]作出各角,其对应的终边如图所示:(1)由图①可知:-75°是第四象限角.(2)由图②可知:855°是第二象限角.(3)由图③可知:-510°是第三象限角.[活学活用]若α是第四象限角,则180°-α一定在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选C ∵α与-α的终边关于x 轴对称,且α是第四象限角,∴-α是第一象限角.而180°-α可看成-α按逆时针旋转180°得到, ∴180°-α是第三象限角.角[典例] 已知α是第二象限角,求角α2所在的象限.[解] 法一:∵α是第二象限角,∴k ·360°+90°<α<k ·360°+180°(k ∈Z). ∴k 2·360°+45°<α2<k 2·360°+90°(k ∈Z). 当k 为偶数时,令k =2n (n ∈Z),得 n ·360°+45°<α2<n ·360°+90°,这表明α2是第一象限角;当k 为奇数时,令k =2n +1(n ∈Z),得 n ·360°+225°<α2<n ·360°+270°,这表明α2是第三象限角.∴α2为第一或第三象限角.法二:如图,先将各象限分成2等份,再从x 轴正向的上方起,依次将各区域标上一、二、三、四,则标有二的区域即为α2的终边所在的区域,故α2为第一或第三象限角.[一题多变]1.[变设问]在本例条件下,求角2α的终边的位置. 解:∵α是第二象限角,∴k ·360°+90°<α<k ·360°+180°(k ∈Z). ∴k ·720°+180°<2α<k ·720°+360°(k ∈Z).∴角2α的终边在第三或第四象限或在y 轴的非正半轴上.2.[变条件]若角α变为第三象限角,则角α2是第几象限角?解:如图所示,先将各象限分成2等份,再从x 轴正半轴的上方起,按逆时针方向,依次将各区域标上一、二、三、四,则标有三的区域即为角α2的终边所在的区域,故角α2为第二或第四象限角.层级一 学业水平达标1.-215°是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角解析:选B 由于-215°=-360°+145°,而145°是第二象限角,则-215°也是第二象限角.2.下面各组角中,终边相同的是( ) A .390°,690° B .-330°,750° C .480°,-420°D .3 000°,-840°解析:选B ∵-330°=-360°+30°,750°=720°+30°, ∴-330°与750°终边相同.3.若α=k ·180°+45°,k ∈Z ,则α所在的象限是( ) A .第一、三象限 B .第一、二象限 C .第二、四象限D .第三、四象限解析:选A 由题意知α=k ·180°+45°,k ∈Z , 当k =2n +1,n ∈Z , α=2n ·180°+180°+45° =n ·360°+225°,在第三象限, 当k =2n ,n ∈Z , α=2n ·180°+45°=n·360°+45°,在第一象限.∴α是第一或第三象限的角.4.终边在第二象限的角的集合可以表示为()A.{α|90°<α<180°}B.{α|90°+k·180°<α<180°+k·180°,k∈Z}C.{α|-270°+k·180°<α<-180°+k·180°,k∈Z}D.{α|-270°+k·360°<α<-180°+k·360°,k∈Z}解析:选D终边在第二象限的角的集合可表示为{α|90°+k·360°<α<180°+k·360°,k∈Z},而选项D是从顺时针方向来看的,故选项D正确.5.将-885°化为α+k·360°(0°≤α<360°,k∈Z)的形式是()A.-165°+(-2)×360°B.195°+(-3)×360°C.195°+(-2)×360°D.165°+(-3)×360°解析:选B-885°=195°+(-3)×360°,0°≤195°<360°,故选B.6.在下列说法中:①时钟经过两个小时,时针转过的角是60°;②钝角一定大于锐角;③射线OA绕端点O按逆时针旋转一周所成的角是0°;④-2 000°是第二象限角.其中错误说法的序号为______(错误说法的序号都写上).解析:①时钟经过两个小时,时针按顺时针方向旋转60°,因而转过的角为-60°,所以①不正确.②钝角α的取值范围为90°<α<180°,锐角θ的取值范围为0°<θ<90°,因此钝角一定大于锐角,所以②正确.③射线OA按逆时针旋转一周所成的角是360°,所以③不正确.④-2 000°=-6×360°+160°与160°终边相同,是第二象限角,所以④正确.答案:①③7.α满足180°<α<360°,5α与α有相同的始边,且又有相同的终边,那么α=________.解析:5α=α+k·360°,k∈Z,∴α=k·90°,k∈Z.又∵180°<α<360°,∴α=270°.答案:270°8.若角α=2 016°,则与角α具有相同终边的最小正角为________,最大负角为________.解析:∵2 016°=5×360°+216°,∴与角α终边相同的角的集合为{α|α=216°+k·360°,k∈Z},∴最小正角是216°,最大负角是-144°.答案:216°-144°9.在0°~360°范围内,找出与下列各角终边相同的角,并指出它们是第几象限角:(1)549°;(2)-60°;(3)-503°36′.解:(1)549°=189°+360°,而180°<189°<270°,因此,549°角为第三象限角,且在0°~360°范围内,与189°角有相同的终边.(2)-60°=300°-360°,而270°<300°<360°,因此,-60°角为第四象限角,且在0°~360°范围内,与300°角有相同的终边.(3)-503°36′=216°24′-2×360°,而180°<216°24′<270°,因此,-503°36′角是第三象限角,且在0°~360°范围内,与216°24′角有相同的终边.10.已知角的集合M={α|α=30°+k·90°,k∈Z},回答下列问题:(1)集合M中大于-360°且小于360°的角是哪几个?(2)写出集合M中的第二象限角β的一般表达式.解:(1)令-360°<30°+k·90°<360°,则-133<k<113,又∵k∈Z,∴k=-4,-3,-2,-1,0,1,2,3,∴集合M中大于-360°且小于360°的角共有8个,分别是-330°,-240°,-150°,-60°,30°,120°,210°,300°.(2)集合M中的第二象限角与120°角的终边相同,∴β=120°+k·360°,k∈Z.层级二应试能力达标1.给出下列四个结论:①-15°是第四象限角;②185°是第三象限角;③475°是第二象限角;④-350°是第一象限角.其中正确的个数为()A.1B.2C.3 D.4解析:选D①-15°是第四象限角;②180°<185°<270°是第三象限角;③475°=360°+115°,而90°<115°<180°,所以475°是第二象限角;④-350°=-360°+10°是第一象限角,所以四个结论都是正确的.2.若角2α与240°角的终边相同,则α=()A.120°+k·360°,k∈ZB.120°+k·180°,k∈ZC.240°+k·360°,k∈ZD.240°+k·180°,k∈Z解析:选B角2α与240°角的终边相同,则2α=240°+k·360°,k∈Z,则α=120°+k·180°,k∈Z.选B.3.若α与β终边相同,则α-β的终边落在()A.x轴的非负半轴上B.x轴的非正半轴上C.y轴的非负半轴上D.y轴的非正半轴上解析:选A∵α=β+k·360°,k∈Z,∴α-β=k·360°,k∈Z,∴其终边在x轴的非负半轴上.4.设集合M={α|α=45°+k·90°,k∈Z},N={α|α=90°+k·45°,k∈Z},则集合M与N的关系是()A.M∩N=∅B.M NC.N M D.M=N解析:选C对于集合M,α=45°+k·90°=45°+2k·45°=(2k+1)·45°,即M={α|α=(2k+1)·45°,k∈Z};对于集合N,α=90°+k·45°=2×45°+k·45°=(k+2)·45°,即N={α|α=(k+2)·45°,k∈Z}={α|α=n·45°,n∈Z}.∵2k+1表示所有的奇数,而n 表示所有的整数,∴N M,故选C.5.从13:00到14:00,时针转过的角为________,分针转过的角为________.解析:经过一小时,时针顺时针旋转30°,分针顺时针旋转360°,结合负角的定义可知时针转过的角为-30°,分针转过的角为-360°.答案:-30°-360°6.已知角2α的终边在x轴的上方,那么α是第______象限角.解析:由题意知k·360°<2α<180°+k·360°(k∈Z),故k·180°<α<90°+k·180°(k ∈Z),按照k的奇偶性进行讨论.当k=2n(n∈Z)时,n·360°<α<90°+n·360°(n∈Z),∴α在第一象限;当k=2n+1(n∈Z)时,180°+n·360°<α<270°+n·360°(n∈Z),∴α在第三象限.故α是第一或第三象限角.答案:一或三7.试写出终边在直线y=-3x上的角的集合S,并把S中适合不等式-180°≤α<180°的元素α写出来.解:终边在直线y=-3x上的角的集合S={α|α=k·360°+120°,k∈Z}∪{α|α=k·360°+300°,k∈Z}={α|α=k·180°+120°,k∈Z},其中适合不等式-180°≤α<180°的元素α为-60°,120°.8.如图,分别写出适合下列条件的角的集合:(1)终边落在射线OB上;(2)终边落在直线OA上;(3)终边落在阴影区域内(含边界).解:(1)终边落在射线OB上的角的集合为S1={α|α=60°+k·360°,k∈Z}.(2)终边落在直线OA上的角的集合为S2={α|α=30°+k·180°,k∈Z}.(3)终边落在阴影区域内(含边界)的角的集合为S3={α|30°+k·180°≤α≤60°+k·180°,k∈Z}.1.1.2弧度制预习课本P6~9,思考并完成以下问题(1)1弧度的角是如何定义的?(2)如何求角α的弧度数?(3)如何进行弧度与角度的换算?(4)以弧度为单位的扇形弧长、面积公式是什么?[新知初探]1.角的单位制(1)角度制:规定周角的1360为1度的角,用度作为单位来度量角的单位制叫做角度制.(2)弧度制:把长度等于半径长的弧所对的圆心角叫做1弧度的角.以弧度作为单位来度量角的单位制,叫做弧度制,它的单位符号是rad,读作弧度,通常略去不写.(3)角的弧度数的求法:正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.如果半径为r的圆的圆心角α所对弧的长为l ,那么角α的弧度数的绝对值|α|=lr.[点睛] 用弧度为单位表示角的大小时,“弧度”两个字可以省略不写,如2 rad 的单位“rad ”可省略不写,只写2.2.角度与弧度的换算3.弧度制下的弧长与扇形面积公式[点睛] 由扇形的弧长及面积公式可知:对于α,r ,l ,S “知二求二”,它实质上是方程思想的运用.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)1弧度=1°.( )(2)每个弧度制的角,都有唯一的角度制的角与之对应.( ) (3)用弧度制度量角,与圆的半径长短有关.( ) 答案:(1)× (2)√ (3)×2.若α=k π+π3,k ∈Z ,则α所在的象限是( )A .第一、二象限B .第二、三象限C .第一、三象限D .第一、四象限答案:C3.半径为1,圆心角为2π3的扇形的面积是( )A .4π3B .πC .2π3D .π3答案:D4.(1)2π3=________;(2)-210°=________.答案:(1)120° (2)-7π6[典例] (1)72°;(2)-300°;(3)2;(4)-2π9.[解] (1)72°=72×π180=2π5. (2)-300°=-300×π180=-5π3. (3)2=2×⎝⎛⎭⎫180π°=⎝⎛⎭⎫360π°. (4)-2π9=-⎝⎛⎭⎫2π9×180π°=-40°.[活学活用]将下列角度与弧度进行互化:(1)5116π;(2)-7π12;(3)10°;(4)-855°.解:(1)5116π=5116×180°=15 330°.(2)-7π12=-712×180°=-105°. (3)10°=10×π180=π18. (4)-855°=-855×π180=-19π4.[典例] (1)将α改写成β+2k π(k ∈Z,0≤β<2π)的形式,并指出α是第几象限的角; (2)在[-5π,0)内找出与α终边相同的角. [解] (1)2 005°=2 005×π180 rad =401π36rad =⎝⎛⎭⎫5×2π+41π36rad ,又π<41π36<3π2, ∴角α与41π36终边相同,是第三象限的角. (2)与α终边相同的角为2k π+41π36(k ∈Z), 由-5π≤2k π+41π36<0,k ∈Z 知k =-1,-2,-3. ∴在[-5π,0)内与α终边相同的角是-31π36,-103π36,-175π36.1.将-1 125°表示成2k π+α,0≤α<2π,k ∈Z 的形式为________. 解析:因为-1 125°=-4×360°+315°, 315°=315×π180=7π4, 所以-1 125°=-8π+7π4. 答案:-8π+7π42.用弧度表示终边落在阴影部分内(不包括边界)的角的集合.解:如图,330°角的终边与-30°角的终边相同,将-30°化为弧度,即-π6,而75°=75×π180=5π12,∴终边落在阴影部分内(不包括边界)的角的集合为⎩⎨⎧θ⎪⎪⎭⎬⎫2k π-π6<θ<2k π+5π12,k ∈Z .1.已知扇形的半径为10 cm ,圆心角为60°,求扇形的弧长和面积.解:已知扇形的圆心角α=60°=π3,半径r =10 cm ,则弧长l =α·r =π3×10=10π3(cm),于是面积S =12lr =12×10π3×10=50π3(cm 2).题点二:利用公式求半径和弧度数2.扇形OAB 的面积是4 cm 2,它的周长是8 cm ,求扇形的半径和圆心角. 解:设扇形圆心角的弧度数为θ(0<θ<2π),弧长为l cm ,半径为r cm , 依题意有⎩⎪⎨⎪⎧l +2r =8, ①12l ·r =4, ②由①②,得r =2,∴l =8-2r =4,θ=lr =2.故所求扇形的半径为2、圆心角为2 rad. 题点三:利用公式求扇形面积的最值3.已知扇形的周长是30 cm ,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?解:设扇形的圆心角为α(0<α<2π),半径为r ,面积为S ,弧长为l ,则l +2r =30,故l =30-2r ,从而S =12lr =12(30-2r )r =-r 2+15r =-⎝⎛⎭⎫r -1522+2254⎝⎛⎭⎫15π+1<r <15,所以,当r =152 cm 时,α=2,扇形面积最大,最大面积为2254cm 2.。
高中数学人教A版 必修4 各章节同步练习+章节测试汇编300页含答案
高中数学人教A版必修4 各章节同步练习(AB卷)+章节测试汇编目录【同步练习】人教A版必修4数学《角和弧度制》同步练习(A)含答案【同步练习】人教A版必修4数学《角和弧度制》同步练习(B)含答案【同步练习】人教A版必修4数学《任意角的三角函数》同步练习(A)含答案【同步练习】人教A版必修4数学《任意角的三角函数》同步练习(B)含答案【同步练习】人教A版必修4数学《三角函数的诱导公式》同步练习(A)含答案【同步练习】人教A版必修4数学《三角函数的诱导公式》同步练习(B)含答案【同步练习】人教A版必修4数学《三角函数的图象与性质》同步练习(A)含答案【同步练习】人教A版必修4数学《三角函数的图象与性质》同步练习(B)含答案【同步练习】人教A版必修4数学《函数y=Asin(ωx+φ)的图象》同步练习(A)含答案【同步练习】人教A版必修4数学《函数y=Asin(ωx+φ)的图象》同步练习(B)含答案【同步练习】人教A版必修4数学《三角函数模型的简单应用》同步练习(A)含答案【同步练习】人教A版必修4数学《三角函数模型的简单应用》同步练习(B)含答案人教A版必修4高中数学第一章三角函数综合测试卷(A)含答案人教A版必修4高中数学第一章三角函数综合测试卷(B)含答案【同步练习】人教A版必修4数学《平面向量的实际背景及基本概念》同步练习(A)含答案【同步练习】人教A版必修4数学《平面向量的实际背景及基本概念》同步练习(B)含答案【同步练习】人教A版必修4《平面向量的基本定理》同步练习(A)含答案【同步练习】人教A版必修4《平面向量的基本定理》同步练习(B)含答案【同步练习】人教A版必修4《平面向量的数量积》同步练习(A)含答案【同步练习】人教A版必修4《平面向量的数量积》同步练习(B)含答案【同步练习】人教A版必修4《平面向量应用举例》同步练习(A)含答案【同步练习】人教A版必修4《平面向量应用举例》同步练习(B)含答案人教A版必修4高中数学第二章平面向量综合测试卷(A)含答案人教A版必修4高中数学第二章平面向量综合测试卷(B)含答案【同步练习】人教A版必修4《简单的三角恒等式》同步练习(A)含答案【同步练习】人教A版必修4《简单的三角恒等式》同步练习(B)含答案【同步练习】人教A版必修4《两角和与差的正弦、余弦和正切公式》同步练习(A)含答案【同步练习】人教A版必修4《两角和与差的正弦、余弦和正切公式》同步练习(B)含答案人教A版必修4《第三章三角恒等变换》综合测试卷(A)含答案人教A版必修4《第三章三角恒等变换》综合测试卷(B)含答案专题一任意角和弧度制测试卷(A 卷)(测试时间:120分钟 满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.与60-°的终边相相同的角是 ( ) A.3πB. 23πC. 43πD. 53π【答案】D【解析】因为π603o -=-, π5π2π33-=-,所以与60-°的终边相相同的角是5π3;故选D. 2.460是( )A. 第一象限B. 第二象限C. 第三象限D. 第五象限【答案】B【解析】由题意得, 460360100︒=︒+︒,因此460与100︒在同一象限第二象限,故选B. 3.下列角终边位于第二象限的是( )A. 420B. 860C. 1060D. 1260【答案】B【解析】00042036060=+终边位于第一象限, 0008602360140=⨯+终边位于第二象限,选B. 4.已知圆的半径为π,则060圆心角所对的弧长为( )A. 3πB. 23πC. 23πD. 223π【答案】C【解析】60化为弧度制为3π,由弧长公式有233l r ππαπ==⨯=,选C.5.终边在第二象限的角的集合可以表示为( ) A. 00{|90180}αα<<B. 0{|270360180360,}k k k Z αα-+⋅<<-+⋅∈ C. 0{|90180180180,}k k k Z αα+⋅<<+⋅∈ D. 0{|270180180180,}k k k Z αα-+⋅<<-+⋅∈ 【答案】B6.下列说法中, ①与角5π的终边相同的角有有限个; ②圆的半径为6,则15 的圆心角与圆弧围成的扇形面积为23π;正确的个数是 ( ) A .0个 B .1个 C .2个 D .3个 【答案】B【解析】①错;②22113156221802S r ππα==⨯⨯⨯=,对;因而正确的个数为0.选B.7.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为( )【答案】B【解析】由扇形面积公式12S lr =,则4l =,又422l r α===.故本题答案选B . 8.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( ) A. B.C.D. A=B=C【答案】B【解析】 锐角必小于,故选B.9.已知α是锐角,则2α是( )A. 第一象限角B. 第二象限角C. 小于180的正角D. 第一或第二象限角 【答案】C【解析】α是锐角,∴()20απ∈,,∴2α是小于180的正角.10.扇形的圆心角为 )A.54πB. πC. 3D.29 【答案】A【解析】扇形的面积2211552264S R ππθ==⨯⨯=11.终边在直线y x =上的角的集合是( ) A. {|,}4k k Z πααπ=+∈ B. {|2,}4k k Z πααπ=+∈C. 3{|,}4k k Z πααπ=+∈D. 5{|2,}4k k Z πααπ=+∈【答案】A【解析】与α终边在一条直线上的角的集合为{|,}k k Z ββαπ=+∈,∴与4π终边在同一直线上的角的集合是{|,}4a k k Z παπ=+∈.故选A.12.已知α为第三象限角,则2α所在的象限是( )A. 第一或第三象限B. 第二或第三象限C. 第一或第三象限D. 第二或第四象限 【答案】D第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.的角属于第_________象限.【答案】二 【解析】在第二象限,所以的角属于第二象限14.53π-的角化为角度制的结果为__________, 135-的角化为弧度制的结果为__________.【答案】 300- 34π- 【解析】由题意得, 5518030033π-=-⨯︒=-︒, 135- 31351804ππ=-︒⨯=-︒ .15.已知扇形的半径为4cm ,弧长为12cm ,则扇形的圆周角为 ;【答案】3 【解析】3412===r l α 16.已知扇形的周长为10cm ,面积为42cm ,则扇形的中心角等于__________(弧度). 【答案】12【解析】由题意2108{{ 81r l l lr r +==⇒==或2{ 4l r ==,则圆心角是12l r α==,应填答案12.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.写出(0)y x x =±≥所夹区域内的角的集合。
必修四数学课后习题答案
必修四数学课后习题答案必修四数学课后习题答案数学是一门重要的学科,对于培养学生的逻辑思维能力和解决问题的能力具有重要作用。
而数学课后习题则是巩固学习成果、提高解题能力的重要途径。
在必修四的数学课本中,有许多习题需要同学们进行思考和解答。
下面是一些常见习题的答案,供同学们参考。
一、函数与导数1. 函数f(x) = x^3 + 2x^2 - 3x + 1的导函数为f'(x) = 3x^2 + 4x - 3。
2. 函数f(x) = 2x^3 + 3x^2 - 4x + 1的导函数为f'(x) = 6x^2 + 6x - 4。
3. 函数f(x) = (x - 1)(x - 2)(x - 3)的导函数为f'(x) = 3(x - 1)(x - 2) + 2(x - 1)(x - 3) + (x - 2)(x - 3)。
4. 函数f(x) = 3x^4 - 4x^3 + 2x^2 - x + 1的导函数为f'(x) = 12x^3 - 12x^2 + 4x - 1。
二、三角函数与导数1. 函数f(x) = sin(x)的导函数为f'(x) = cos(x)。
2. 函数f(x) = cos(x)的导函数为f'(x) = -sin(x)。
3. 函数f(x) = tan(x)的导函数为f'(x) = sec^2(x)。
4. 函数f(x) = cot(x)的导函数为f'(x) = -csc^2(x)。
三、不定积分1. ∫(2x + 3)dx = x^2 + 3x + C。
2. ∫(3x^2 + 2x + 1)dx = x^3 + x^2 + x + C。
3. ∫(4x^3 - 2x^2 + 5x)dx = x^4/4 - 2x^3/3 + 5x^2/2 + C。
4. ∫(e^x + 1/x)dx = e^x + ln|x| + C。
四、定积分1. ∫[0, 1] (2x + 1)dx = [x^2 + x] [0, 1] = 1 + 1 = 2。
人教版高一数学必修四测试题(含详细答案)
人教版高一数学必修四测试题(含详细答案)高一数学试题(必修4)第一章三角函数一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C的关系是()A.B=A∩C。
B.B∪C=C。
C.AC。
D.A=B=C2.已知$\sin\theta=\frac{1}{2}$,$\theta\in\mathrm{Q}$,则$\cos\theta$等于()A。
$\frac{\sqrt{3}}{2}$。
B。
$-\frac{\sqrt{3}}{2}$。
C。
$\frac{1}{2}$。
D。
$-\frac{1}{2}$3.已知$\sin\alpha=-\frac{2}{\sqrt{5}}$,$\alpha\in\mathrm{III}$,则$\cos\alpha$等于()A。
$-\frac{1}{\sqrt{5}}$。
B。
$\frac{1}{\sqrt{5}}$。
C。
$-\frac{2}{\sqrt{5}}$。
D。
$\frac{2}{\sqrt{5}}$4.下列函数中,最小正周期为$\pi$的偶函数是()A。
$y=\sin2x$。
B。
$y=\cos x$。
C。
$y=\sin2x+\cos2x$。
D。
$y=\cos2x$5.若角$\theta$的终边上有一点$P$,则$\sin\theta$的值是()A。
$\frac{OP}{1}$。
B。
$\frac{1}{OP}$。
C。
$\frac{OA}{1}$。
D。
$\frac{1}{OA}$6.要得到函数$y=\cos x$的图象,只需将$y=\sin x$的图象()A。
向左平移$\frac{\pi}{2}$个单位。
B。
向右平移$\frac{\pi}{2}$个单位C。
向左平移$\pi$个单位。
D。
向右平移$\pi$个单位7.若函数$y=f(x)$的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿$x$轴向左平移1个单位,沿$y$轴向下平移1个单位,得到函数$y=\sin x$的图象,则$y=f(x)$是()A。
(典型题)高中数学必修四第一章《三角函数》测试(含答案解析)
一、选择题1.设函数5()sin 26f x x π⎛⎫=-⎪⎝⎭,将函数()f x 的图象向左平移()0ϕϕ>个单位长度,得到函数()g x 的图象,若()g x 为偶函数,则ϕ的最小值是( ) A .6π B .3π C .23π D .56π 2.已知函数()cos 2y x ϕ=+()πϕπ-≤<的图象向右平移2π个单位后,与函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象重合,则ϕ的值为( )A .56πB .56π-C .6π D .6π-3.将函数()sin 2f x x =的图象向右平移ϕ(02πϕ<≤)个单位,得到函数()g x 的图象.在同一坐标系中,这两个函数的部分图象如图所示,则ϕ=( )A .6π B .4π C .3π D .2π 4.函数()()12cos 20211f x x x π=++⎡⎤⎣⎦-在区间[]3,5-上所有零点的和等于( ) A .2B .4C .6D .85.设函数()sin()f x A x ωϕ=+(,,A ωϕ是常数,0,0A ω>>).若()f x 在区间[,]32ππ上具有单调性,且()(),23f f ππ=-2()()23f f ππ=,则ω=( ) A .6 B .3 C .2D .16.设函数()3sin()10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭的最小正周期为π,其图象关于直线3x π=对称,则下列说法正确是( )A .()f x 的图象过点30,2⎛⎫ ⎪⎝⎭; B .()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上单调递减; C .()f x 的一个对称中心是7,012π⎛⎫⎪⎝⎭; D .将()f x 的图象向左平移12ϕ个单位长度得到函数3sin 21y x =+ 的图象. 7.己知函数()sin()(0,||)2f x x πωϕωϕ=+><的最小正周期为π,且图象向右平移12π个单位后得到的函数为偶函数,则下列说法错误的有( ) A .()f x 关于点5(,0)12π对称 B .()f x 关于直线6x π=对称C .()f x 在,]1212π5π[-单调递增 D .()f x 在7[,]1212ππ单调递减8.已知函数()sin 0,2y x πωϕωϕ⎛⎫=+><⎪⎝⎭的部分图象如图所示,则( )A .1ω=,6π=ϕ B .1ω=,6πϕ=-C .2ω=,6π=ϕ D .2ω=,6πϕ=-9.已知曲线1C :sin y x =,2C :cos 23y x π⎛⎫=-⎪⎝⎭,则下面结论正确的是( ) A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移12π个单位长度,得到曲线2C10.已知1sin 34x π⎛⎫+= ⎪⎝⎭,则22sin sin 36x x ππ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭( )A .1B C .1916D .3411.已知函数2()[sin()])cos()f x x x x ωωω=+(0)>ω在[0,]π上有且只有四个零点,则实数ω的取值范围是( ) A .5[,2]3B .5(,2)3C .5[,2)3D .5(,2]312.已知函数11()sin sin sin sin f x x x x x ⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭,现有命题:①()f x 的最大值为0; ②()f x 是偶函数; ③()f x 的周期为π; ④()f x 的图象关于直线2x π=对称.其中真命题的个数是( ) A .4B .3C .2D .1二、填空题13.下列判断正确的是___________(将你认为所有正确的情况的代号填入横线上). ①函数1tan 21tan 2xy x+=-的最小正周期为π;②若函数()lg f x x =,且()()f a f b =,则1ab =; ③若22tan 3tan 2αβ=+,则223sin sin 2αβ-=;④若函数()2221sin 41x xy x ++=+的最大值为M ,最小值为N ,则2M N +=.14.已知()tan 1f x a x =+(a ,b 为实数),且3(lg log 10)5f =,则(lglg3)f =____________.15.将函数()sin (0)f x x ωω=>的图象向右平移12π个单位长度得到函数()y g x =的图象,若函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递增函数,则实数ω的取值范围是__________.16.若函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭,则6f π⎛⎫⎪⎝⎭的值是___________. 17.若函数π()sin()cos()3f x x x ωω=++的一个周期是π,则常数ω的一个取值可以为__________.18.已知函数()()π5sin 24f x x x ⎛⎫=-∈ ⎪⎝⎭R ,对于下列说法:①要得到()5sin 2g x x =的图象,只需将()f x 的图象向左平移4π个单位长度即可;②()y f x =的图象关于直线3π8x =对称:③()y f x =在[]π,π-内的单调递减区间为3π7π,88⎡⎤⎢⎥⎣⎦;④5π8y f x ⎛⎫=+⎪⎝⎭为奇函数.则上述说法正确的是________(填入所有正确说法的序号). 19.已知()()sin 03f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=-⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是___________.20.已知函数()()()sin 0,0,f x A x A ωϕωπϕπ=+>>-<<的部分图象如下图所示,则ϕ=________.三、解答题21.已知函数27()sin cos 2sin 632x f x x x ππ⎛⎫⎛⎫=-+--⎪ ⎪⎝⎭⎝⎭.(1)求函数()f x 的单调递增区间; (2)求使()0f x <成立的实数x 的取值集合.22.函数()cos()0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭的部分图象如图所示.(1)写出()f x 的解析式; (2)将函数()f x 的图象向右平移12π个单位后得到函数()g x 的图象,讨论关于x 的方程()3()0f x g x m -=(11)m -<≤在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数.23.已知()442sin cos cossin f x x x x x ωωωω=+-(其中ω>0).(1)若()f x 的最小正周期是π,求ω的值及此时()f x 的对称中心; (2)若将()y f x =的图像向左平移4π个单位,再将所得的图像纵坐标不变,横坐标缩小为原来的12,得到()g x 的图像,若y g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,求ω的取值范围.24.已知函数()()2sin f x x ωϕ=+(0>ω,0ϕπ<<)的最大值和最小正周期相同,()f x 的图象过点(3,且在区间10,12⎡⎤⎢⎥⎣⎦上为增函数.(1)求函数()f x 的解析式;(2)若函数()()1g x f x =+在区间()0,b 上只有4个零点,求b 的最大值. 25.已知函数()231cos 2f x x x =-+. (1)当π02x ⎡⎤∈⎢⎥⎣⎦,时,求函数()f x 的取值范围;(2)将()f x 的图象向左平移π6个单位得到函数()g x 的图象,求()g x 的单调递增区间. 26.已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><的部分图象如下图所示.(1)求函数()f x 的解析式,并写出函数()f x 的单调递增区间; (2)将函数()f x 图象上所有点的横坐标缩短到原来的14(纵坐标不变),再将所得的函数图象上所有点向左平移02m m π⎛⎫<< ⎪⎝⎭个单位长度,得到函数()g x 的图象.若函数()g x 的图象关于直线512x π=对称,求函数()g x 在区间7,1212ππ⎡⎤⎢⎥⎣⎦上的值域.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题意有()5sin 226g x x ϕπ⎛⎫=+ ⎪⎝⎭-,若()g x 为偶函数则52()62k k Z πππϕ-=+∈,结合0ϕ>可得出答案. 【详解】 解:由题意可得()()55()sin 2sin 2266g x f x x x πϕϕϕπ⎛⎫⎛⎫=+=+-=+ -⎪ ⎪⎝⎭⎝⎭因为()g x 为偶函数,则52()62k k Z πππϕ-=+∈,即2()32k k Z ππϕ=+∈ 因为0ϕ>,所以当1k =-时ϕ取得最小值6π. 故选:A. 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.2.A解析:A 【分析】根据三角函数的平移变换得到cos(2)y x ϕπ=+-后,再根据诱导公式变为sin(2)2y x πϕ=+-,然后利用图象重合列式可得结果.【详解】函数()cos 2y x ϕ=+()πϕπ-≤<的图象向右平移2π个单位后,得到cos[2()]cos(2)2y x x πϕϕπ=-+=+-sin(2)2x πϕπ=+-+sin(2)2x πϕ=+-,依题意可得223k ππϕπ-=+()k ∈Z ,所以526k πϕπ=+()k ∈Z 因为πϕπ-≤≤,所以0k =,56πϕ=. 故选:A. 【点睛】关键点点睛;经过平移变换后,利用诱导公式化为同名函数是解题关键,属于中档题. 3.C解析:C 【分析】由图可知,17248g f ππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭()()sin 2x g x ϕ=-,于是推出1717sin 224242g ππϕ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即1722124k ππϕπ-=+或324k ππ+,k Z ∈,再结合02πϕ<≤,解之即可得ϕ的值.【详解】由图可知,17sin 224882g f πππ⎛⎫⎛⎫⎛⎫==⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为()f x 的图象向右平移ϕ个单位,得到函数()g x 的图象,所以()()sin 2x g x ϕ=-,所以171717sin 2sin 22424122g πππϕϕ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以1722124k ππϕπ-=+或17322124k ππϕπ-=+,k Z ∈, 解得712k πϕπ=-或3k πϕπ=-,k Z ∈,因为02πϕ<≤,所以3πϕ=.故选:C 【点睛】本小题主要考查三角函数图象变换,属于中档题.4.D解析:D 【分析】由图可得函数的零点就是11y x =-和2cos y x π=交点的横坐标,画出函数图象,可得出()f x 在[]3,5-有8个零点,且关于1x =对称,即可求出.【详解】()()112cos 20212cos 11f x x x x x ππ=++=-⎡⎤⎣⎦--, 令()0f x =,则12cos 1x x π=-, 则函数的零点就是11y x =-和2cos y x π=交点的横坐标, 可得11y x =-和2cos y x π=的函数图象都关于1x =对称,则交点也关于1x =对称, 画出两个函数的图象,观察图象可知,11y x =-和2cos y x π=在[]3,5-有8个交点, 即()f x 有8个零点,且关于1x =对称,故所有零点的和为428⨯=. 故选:D. 【点睛】本题考查求函数的零点之和,解题的关键是将题目化为找11y x =-和2cos y x π=交点的横坐标,从而通过函数图象求解.5.B解析:B 【分析】 由2()()23f f ππ=求出函数的一条对称轴,结合()f x 在区间[,]32ππ上具有单调性,且()()23f f ππ=-,可得函数的四分之一周期,即可求出ω的值.【详解】解:由2()()23f f ππ=,可知函数()f x 的一条对称轴为2723212x πππ+==, 则2x π=离最近对称轴距离为712212πππ-=. 又()()23f f ππ=-,则()f x 有对称中心5,012π⎛⎫⎪⎝⎭, 由于()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上具有单调性, 则1232T ππ-,所以3T π≥,从而7512124T ππ-=,所以23T π=,因为2T πω=,所以3ω=.故选:B【点睛】本题考查()sin()f x A x ωϕ=+型函数图象的应用,考查了学生灵活处理问题和解决问题的能力.6.D解析:D 【分析】先根据对称轴及最小正周期,求得函数()f x 的解析式,再结合正弦函数的图象与性质,判断点是否在函数图象上可判断A ,求得函数的单调区间及对称中心即可判断选项BC ,由平移变换求得变化后的解析式并对比即可判断D. 【详解】函数()3sin()10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭的最小正周期是π 所以22πωπ==,则()()3sin 21f x x ϕ=++,()()3sin 21f x x ϕ=++图象关于直线3x π=对称,对称轴为2,2x k k Z πϕπ+=+∈,代入可得2,32k k Z ππϕπ⨯+=+∈,解得,6k k Z πϕπ=-+∈,因为,22ππϕ⎛⎫∈- ⎪⎝⎭,所以当0k =时, 6πϕ=-, 则()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭,对于A,当0x =时,()3103sin 11622f π=-+=-+=- ,所以错误; 对于B,()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的单调递减区间为3222,262k x k k πππππ+-+∈Z ≤≤, 解得5,36k x k k Z ππππ+≤≤+∈,因为123ππ<,则()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上不是减函数,所以错误; 对于C ,773sin 213sin 11012126f ππππ⎛⎫⎛⎫=⨯-+=+=≠⎪ ⎪⎝⎭⎝⎭,所以7,012π⎛⎫ ⎪⎝⎭不是()f x 的一个对称中心,所以错误; 对于D ,1212πϕ=,将()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的图象向左平移12π个单位长度得到可得3sin 213sin 21126y x x ππ⎡⎤⎛⎫=-++=+ ⎪⎢⎥⎝⎭⎣⎦,所以能得到3sin 21y x =+的图象,所以正确. 故选: D. 【点睛】本题考查了正弦函数的图象与性质的综合应用,关键点是根据已知条件先求出正弦函数的解析式,还要熟练掌握三角函数的性质才能正确的解题,属于中档题.7.A解析:ABD 【分析】由周期可求出ω,再由平移后为偶函数求出ϕ,即得()sin 23πf x x ⎛⎫=-⎪⎝⎭,求出512f π⎛⎫⎪⎝⎭可判断A ;求出6f π⎛⎫⎪⎝⎭可判断B ;令222,232k x k k Z πππππ-+≤-≤+∈求出单调递增区间可判断C ;由C 选项可判断D. 【详解】()f x 的最小正周期为π,22πωπ∴==,()sin(2)f x x ϕ=+,向右平移12π个单位后得到sin 26y x πϕ⎛⎫=-+ ⎪⎝⎭为偶函数, ,62k k Z ππϕπ∴-=+∈,即2,3k k Z πϕπ=+∈, ||2πϕ<,3ϕπ∴=-,()sin 23f x x π⎛⎫∴=- ⎪⎝⎭, 对于A ,55sin 2sin 10121232f ππππ⎛⎫⎛⎫=⨯-==≠ ⎪ ⎪⎝⎭⎝⎭,故()f x 不关于点5(,0)12π对称,故A 错误; 对于B ,sin 2sin 001663f πππ⎛⎫⎛⎫=⨯-==≠± ⎪ ⎪⎝⎭⎝⎭,故B 错误;对于C ,令222,232k x k k Z πππππ-+≤-≤+∈,解得5,1212k x k k Z ππππ-+≤≤+∈, 当0k =时,51212x ππ-≤≤,故()f x 在,]1212π5π[-单调递增,故C 正确; 对于D ,由C 选项可知,()f x 在5[,]1212ππ单调递增,故D 错误.故选:ABD.本题考查正弦型函数的性质,可通过代入验证的方法判断对称轴和对称中心,利用整体换元可求单调区间.8.D解析:D 【分析】根据函数的图象求出函数的周期,然后可以求出ω,通过函数经过的最大值点求出ϕ值,即可得到结果. 【详解】由函数的图象可知:74123T πππ⎛⎫=-⨯= ⎪⎝⎭,22T πω∴==. 当3x π=,函数取得最大值1,所以sin 213πϕ⎛⎫⨯+= ⎪⎝⎭,2232k k Z ππϕπ+=+∈,, ||,02k πϕ<∴=,6πϕ∴=-,故选:D. 【点睛】本题主要考查了由三角函数的图象求解析式,通过周期求ω的值,通过最值点求ϕ的值是解题的关键,属于基础题.9.C解析:C 【分析】由题意利用诱导公式得1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,根据函数()cos y A x ωϕ=+的图象变换规律,得出结论. 【详解】已知曲线1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,2cos 23:C y x π⎛⎫=- ⎪⎝⎭,∴把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,可得cos 22y x π⎛⎫=- ⎪⎝⎭的图象,再把得到的曲线向左平移 12π个单位长度,得到曲线2cos 2cos 263:2C x x πππ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭的图象,故选C .【点睛】本题主要考查函数()cos y A x ωϕ=+的图象变换规律,属于基础题.10.C【分析】由诱导公式求得cos 6x π⎛⎫- ⎪⎝⎭,然后再由平方关系和诱导公式计算. 【详解】 由已知1cos cos sin 62334x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 222115sin 1cos 166416x x ππ⎛⎫⎛⎫⎛⎫-=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,21sin sin cos 32664x x x ππππ⎛⎫⎛⎫⎛⎫-=+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以2211519sin sin 3641616x x ππ⎛⎫⎛⎫-+-=+= ⎪ ⎪⎝⎭⎝⎭. 故选:C . 【点睛】关键点点睛:本题考查三角函数的求值.解题关键是确定“已知角”和“未知角”的关系,选用适当的公式进行变形求值.本题中首先利用诱导公式得出cos 6x π⎛⎫- ⎪⎝⎭,然后再用诱导公式得出2sin 3x π⎛⎫-⎪⎝⎭,用平方关系得出2sin 6x π⎛⎫- ⎪⎝⎭,这样求解比较方便.11.C解析:C 【分析】先化简函数的解析式,然后利用x 的范围求出26x πω⎛⎫-⎪⎝⎭的范围,根据题意列不等式求解ω.【详解】221cos 21()[sin()])cos()2sin(2)2262ωπωωωωω-=+=+=-+x f x x x x x x ,因为[0,]x π∈,得2,2666πππωωπ⎛⎫⎡⎤-∈-- ⎪⎢⎥⎝⎭⎣⎦x ,因为函数在[0,]π有且只有四个零点,则19232666πππωπ≤-<,解得523ω≤<. 故选:C. 【点睛】关于三角函数中求解ω的取值范围问题,一般要先求解出整体的范围,即x ωϕ+的范围,然后根据题意,分析x ωϕ+范围所在的区间,列不等式求解,即可求出ω.12.A【分析】先求函数的定义域,再根据函数奇偶性定义,周期函数的定义可判断②③的正误,再根据函数解析的特征可判断④的正误,最后利用换元法可求判断①的正误. 【详解】22111()sin sin sin sin sin sin f x x x x x x x ⎛⎫⎛⎫=+-=- ⎪⎪⎝⎭⎝⎭, 由sin 0x ≠可得,x k k Z π≠∈,故函数的定义域为{}|,x x k k Z π≠∈, 所以函数的定义域关于原点对称.又()()()222211()sin sin sin sin f x x x f x x x-=--=-=-,故()f x 为偶函数, 故②正确.又()()()221()sin sin f x x f x x πππ+=+-=+, 故()f x 是周期函数且周期为π,故③正确.又()()()221()sin sin f x x f x x πππ-=--=-,故()f x 的图象关于直线2x π=对称,故④正确.令2sin t x =,则(]0,1t ∈且()1f x t t=-,因为1y t t=-为(]0,1上的增函数,故()max 0f x =,故①正确. 故选:A. 【点睛】思路点睛:对于复杂函数的性质的研究,注意先研究函数的定义域,再研究函数的奇偶性或周期性,最后再研究函数的单调性,讨论函数图象的对称性,注意根据()()f a x f x -=来讨论. 二、填空题13.③④【分析】①化简可得即可求出;②由可能相等可判断;③利用同角三角函数关系可化简求出;④化简可得利用奇函数的性质可得【详解】对①则最小正周期为故①错误;对②若则可能相等故②错误;对③若则即即即即故③解析:③④ 【分析】①,化简可得tan 24y x π⎛⎫=+⎪⎝⎭,即可求出;②由,a b 可能相等可判断;③利用同角三角函数关系可化简求出;④化简可得24sin 141x xy x +=++,利用奇函数的性质可得.【详解】对①,tantan 21tan 24tan 21tan 241tan tan 24xx y x x x πππ++⎛⎫===+ ⎪-⎝⎭-⋅,则最小正周期为2π,故①错误;对②,若()()f a f b =,则,a b 可能相等,故②错误;对③,若22tan 3tan 2αβ=+,则2222sin 3sin 2cos cos αβαβ=+,即222222sin cos 3cos sin 2cos cos αβαβαβ=+,即22222222sin cos cos cos 3cos sin 3cos cos αβαβαβαβ+=+,即22cos 3cos βα=,即223sin sin 2αβ-=,故③正确;对④,()22221sin 4sin 14141x xx x y x x +++==+++,令()24sin 41x x g x x =++,则()()g x g x -=,故()g x 是奇函数,()()max min 0g x g x ∴+=,()()max min 112M N g x g x ∴+=+++=,故④正确.故答案为:③④. 【点睛】本题考查正切型函数的周期,考查同角三角函数的关系,考查奇函数的应用,解题的关键是正确利用三角函数的关键进行化简.14.【分析】令可知为奇函数根据与为相反数即可求解【详解】令定义域关于原点对称且所以为奇函数则所以由奇函数性质可得所以故答案为:【点睛】关键点点睛:首先要观察出中的部分为奇函数其次要能利用换底公式对数的运 解析:3-【分析】令tan ()a x g x =+,可知()g x 为奇函数,根据3lg log 10与lg lg3为相反数即可求解. 【详解】令tan ()a x g x =+,,2x k k Z ππ≠+∈,定义域关于原点对称,且()tan ()g x a x g x -=--=-, 所以()g x 为奇函数,则31(lg log 10)(lg)(lg lg 3)(lg lg 3)15lg 3f f fg ==-=-+=, 所以(lg lg3)514g -=-=, 由奇函数性质可得(lg lg3)4g =-, 所以(lglg3)(lglg3)1413f g =+=-+=-, 故答案为:3- 【点睛】关键点点睛:首先要观察出()f x中的部分tan ()a x g x =+为奇函数,其次要能利用换底公式,对数的运算性质找到3lg log 10与lg lg3为相反数,借助奇函数的性质求解.15.【分析】先求出由可求出利用单调性可得结合即可求解【详解】将函数的图象向右平移个单位长度得到函数因为所以因为函数在区间上是单调递增函数所以解得:因为所以故答案为:【点睛】关键点点睛:本题解题的关键点是解析:60,5⎛⎤⎥⎝⎦【分析】先求出()sin 12g x x πω⎛⎫=-⎪⎝⎭,由0,2x π⎡⎤∈⎢⎥⎣⎦可求出5121212x πππωωω⎛⎫-≤-≤ ⎪⎝⎭,利用单调性可得1225122ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,结合0>ω即可求解.【详解】将函数()sin (0)f x x ωω=>的图象向右平移12π个单位长度得到函数()sin 12g x x πω⎛⎫=- ⎪⎝⎭,因为02x π≤≤,所以5121212x πππωωω⎛⎫-≤-≤⎪⎝⎭, 因为函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递增函数, 所以1225122ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得:665ωω≤⎧⎪⎨≤⎪⎩,因为0>ω,所以605ω<≤, 故答案为:60,5⎛⎤ ⎥⎝⎦【点睛】关键点点睛:本题解题的关键点是由x 的范围求出12x πω⎛⎫-⎪⎝⎭的范围,将12x πω⎛⎫-⎪⎝⎭看成一个整体让其满足正弦函数的单调递增区间,即可得其满足的条件.16.4或-4【分析】由题意可得故函数的周期为求得;在中令求得从而求得的值【详解】∵函数对任意的都有∴故函数的周期为∴所以∴在中令可得:即∴则故答案为:4或-4【点睛】求三角函数解析式的方法:(1)求A 通解析:4或-4. 【分析】 由题意可得()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π,求得=3ω;在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,求得sin 0ϕ=,从而求得6f π⎛⎫⎪⎝⎭的值. 【详解】∵函数()()()4sin 0f x x ωϕω=+>对任意的x 都有()3f x f x π⎛⎫+=- ⎪⎝⎭, ∴()23f x f x π⎛⎫+= ⎪⎝⎭,故函数()f x 的周期为23π, ∴22=3ππω,所以=3ω. ∴()()4sin 3f x x ϕ=+. 在()3f x f x π⎛⎫+=- ⎪⎝⎭中,令=0x ,可得:()03f f π⎛⎫= ⎪⎝⎭, 即()4sin =4sin πϕϕ+,∴sin =0ϕ. 则=4sin()4cos 462f ππϕϕ⎛⎫+==±⎪⎝⎭. 故答案为: 4或-4. 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.17.2(答案不唯一)【分析】把函数化为一个角的一个三角函数形式然后利用正弦函数的周期求解注意题中已知条件是函数的一个周期是并没有说是最小正周期因此只要函数的最小正周期是除以一个正整数都可满足题意【详解】解析:2(答案不唯一) 【分析】把函数化为一个角的一个三角函数形式,然后利用正弦函数的周期求解,注意题中已知条件是函数的一个周期是π,并没有说π是最小正周期.因此只要函数的最小正周期是π除以一个正整数,都可满足题意. 【详解】1()sin cos cossin sin(1cos 332f x x x x x x ππωωωωω=+-=-+,令cosϕ=sin ϕ=,且ϕ为锐角,则()sin()f x x ωϕ=+,由2T ππω==,得2ω=,实际上,由2T ππω==得2ω=±,或者2kππω=(k Z ∈且0k ≠),2k ω=(k Z ∈且0k ≠),ω可为任意一个非零点的偶数. 故答案为:2.(填任一非0的偶数都可以). 【点睛】关键点点睛:本题考查三角函数的周期,求解三角函数周期,一般是把函数化为一个角的一个三角函数形式,然后利用正弦函数的周期性求解.而我们一般说周期通常是求最值正周期,若题中强调某个数是函数的一个周期,则这个周期不一定是最小正周期.18.②④【分析】结合三角函数的图象与性质对四个结论逐个分析即可得出答案【详解】①要得到的图象应将的图象向左平移个单位长度所以①错误;②令解得所以直线是的一条对称轴故②正确;③令解得因为所以在定义域内的单解析:②④ 【分析】结合三角函数的图象与性质对四个结论逐个分析即可得出答案. 【详解】①要得到()5sin 2g x x =的图象,应将()ππ5sin 25sin 248f x x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象向左平移π8个单位长度,所以①错误;②令ππ2π42x k -=+,k ∈Z ,解得3ππ82k x =+,k ∈Z ,所以直线3π8x =是()y f x =的一条对称轴,故②正确;③令ππ3π22π42π22k k x ≤+≤-+,k ∈Z ,解得3π7πππ88k x k +≤≤+,k ∈Z ,因为[]π,πx ∈-,所以()f x 在定义域内的单调递减区间为3π7π,88⎡⎤⎢⎥⎣⎦和5ππ,88⎡⎤--⎢⎥⎣⎦,所以③错误;④5π5ππ5sin 25sin 2884y f x x x ⎡⎤⎛⎫⎛⎫=+=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦是奇函数,所以该说法正确. 【点睛】本题考查了正弦型函数的对称轴、单调性、奇偶性与平移变换,考查了学生对()sin y A ωx φ=+的图象与性质的掌握,属于中档题.19.【分析】由周期公式可得由三角函数的中心对称可得结合即可得为奇数即可得由可得进而可得即可得解【详解】由可得由是奇函数可得函数的图象关于中心对称所以即又所以所以为奇数由可得因为在上没有最小值所以即故答案解析:511,612ππ⎛⎤⎥⎝⎦【分析】由周期公式可得ω,由三角函数的中心对称可得,3k k Z πϕπ=+∈,结合()06f f π⎛⎫< ⎪⎝⎭即可得k 为奇数,即可得()sin 23πf x x ⎛⎫=-⎪⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭,进而可得432332t πππ<-≤,即可得解. 【详解】 由T π=可得22T πω==,()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭由3y f x π⎛⎫=- ⎪⎝⎭是奇函数可得函数()f x 的图象关于,03π⎛-⎫⎪⎝⎭中心对称, 所以2,33k k Z ππϕπ⎛⎫⨯-++=∈ ⎪⎝⎭,即,3k k Z πϕπ=+∈, 又()06f f π⎛⎫< ⎪⎝⎭,所以2sin sin 33ππϕϕ⎛⎫⎛⎫+<+ ⎪ ⎪⎝⎭⎝⎭, 所以,3k k πϕπ=+为奇数,()sin 2sin 2333f x x k x ππππ⎛⎫⎛⎫=+++=- ⎪ ⎪⎝⎭⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭, 因为()f x 在[)0,t 上没有最小值,所以432332t πππ<-≤即511,612t ππ⎛⎤∈ ⎥⎝⎦. 故答案为:511,612ππ⎛⎤⎥⎝⎦. 【点睛】本题考查了三角函数图象与性质的应用,考查了运算求解能力,牢记知识点是解题关键,属于中档题.20.【分析】根据图象得出函数的最小正周期可得出的值再将点代入函数解析式结合的取值范围可求出的值【详解】由图象可知函数的最小正周期则将点代入函数解析式得即因为函数在附近单调递减则得故答案为:【点睛】本题考 解析:6π【分析】根据图象得出函数()y f x =的最小正周期T ,可得出ω的值,再将点5,012π⎛⎫⎪⎝⎭代入函数解析式,结合ϕ的取值范围,可求出ϕ的值. 【详解】由图象可知,函数()y f x =的最小正周期11521212T πππ⎛⎫=⨯-=⎪⎝⎭,222T ππωπ∴===, 则()()sin 2f x A x ϕ=+, 将点5,012π⎛⎫⎪⎝⎭代入函数解析式得55sin 201212f A ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,即5sin 06πϕ⎛⎫+= ⎪⎝⎭, 因为函数()y f x =在512x π=附近单调递减,则()526k k Z πϕππ+=+∈, 得()26k k Z πϕπ=+∈,πϕπ-<<,0k ∴=,6π=ϕ. 故答案为:6π. 【点睛】本题考查利用图象求三角函数解析式中的参数,考查分析问题和解决问题的能力,属于中等题.三、解答题21.(1)22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)422,3x k x k k Z πππ⎧⎫-+<<∈⎨⎬⎩⎭∣.【分析】(1)化简()f x ,应用整体思想,结合正弦函数的递增区间,即可得出结论; (2)应用整体思想,运用正弦函数图像,建立不等式,即可求解. 【详解】()sin cos cos sincoscos sinsin cos 16633f x x x x x x ππππ=-+++-11cos cos cos 1cos 122x x x x x x x =-++-=+-12cos 12sin 126x x x π⎫⎛⎫=+-=+-⎪ ⎪⎪⎝⎭⎝⎭. (1)由22,262k x k k Z πππππ-+++∈,解得222,33k x k k Z ππππ-++∈, 所以()f x 的单调递增区间为22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(2)由(1)知()2sin 16f x x π⎛⎫=+- ⎪⎝⎭.因为()0f x <,即2sin 106x π⎛⎫+-< ⎪⎝⎭.所以1sin 62x π⎛⎫+< ⎪⎝⎭, 所以7+2++2,666k x k k Z πππππ-<<∈. 所以422,3k x k k Z πππ-+<<∈, 所以使()0f x <成立的x 的取值集合为422,3xk x k k Z πππ⎧⎫-+<<∈⎨⎬⎩⎭∣. 【点睛】方法点睛:解决正弦型函数的单调性和不等式的相关问题,运用整体思想,先由三角函数恒等变换,化简解析式为同一角同一三角函数的形式,再运用三角函数的性质以及建立三角不等式求解.22.(1)()cos(2)6f x x π=+;(2)见解析.【分析】(1)根据图象求出周期,再根据最低点可求ϕ,从而得到函数解析式. (2)求出()g x 的解析式,故方程可化为cos 206m x π⎛⎫---= ⎪⎝⎭,可通过直线y m =-与cos 26y x π⎛⎫=- ⎪⎝⎭ 的图象的交点的个数解决方程的解的个数.【详解】(1)由函数的图象可得()f x 的周期为2236πππ⎛⎫⨯-=⎪⎝⎭,故22πωπ==,又26312fππ⎛⎫+⎪=- ⎪⎪⎝⎭,故5cos2+112πϕ⎛⎫⨯=-⎪⎝⎭,所以526kπϕππ+=+即2,6k k Zπϕπ=+∈,因为02πϕ<<,故6π=ϕ,所以()cos(2)6f x xπ=+.(2)()cos(2)cos266g x x xππ=-+=,故()3()cos(2)3cos26f xg x m x x mπ-⋅-=+--cos2cos sin2sin3cos2cos2666x x x m m xπππ⎛⎫=---=---⎪⎝⎭故方程在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数即为y m=-与cos26y xπ⎛⎫=-⎪⎝⎭图象交点的个数,cos26y xπ⎛⎫=-⎪⎝⎭在,2ππ⎡⎤-⎢⎥⎣⎦上的图象如图所示,由图象可得:当1m-=-31m<-<即1m=或31m-<<时,方程有2个不同的解;当31m-<-≤31m≤<时,方程有4个不同的解;当3322m-<-≤即3322m-≤<时,方程有3个不同的解;【点睛】方法点睛:(1)平移变换有“左加右减”(水平方向的平移),注意是对自变量x做加减.(2)与余弦型函数有关的方程的解的个数的讨论,一般可转化为动直线与确定函数的图象的交点个数来讨论.23.(1)=1ω,对称中心是(,0),82k k Z ππ-+∈,(2)1524ω≤≤【分析】(1)先对函数化简变形得(2+4f x x πω(),由函数的周期为π,得=1ω,再由2+=4x k ππ,可求出对称中心的横坐标,进而可得对称中心;(2)由题意得到())24g x x ωππω=++,由0,8x π⎡⎤∈⎢⎥⎣⎦可得424244x ωππωπππωωπ⎡⎤++∈++⎢⎥⎣⎦,,而y g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,所以可得322,24422k k k Z ωπππππωπππ⎡⎤⎡⎤++⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,从而可求出ω的取值范围 【详解】解:(1)()sin 2+cos 22+4f x x x x πωωω=(),()f x 的最小正周期是π,2==12ππωω∴∴,此时()2+4f x x π=(),令2+=4x k ππ,得,82k x k Z ππ=-+∈ ()f x ∴的对称中心是(,0),82k k Z ππ-+∈. (2)由题知())24g x x ωππω=++, 0,4824244x x πωππωπππωωπ⎡⎤⎡⎤∈∴++∈++⎢⎥⎢⎥⎣⎦⎣⎦,,,又()y g x =在08π⎡⎤⎢⎥⎣⎦,上单调递减,322,24422k k k Z ωπππππωπππ⎡⎤⎡⎤∴++⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,即32154242,242242k k k k Z k ππωππωωππππ⎧+≤+⎪⎪⇒+≤≤+∈⎨⎪+≥+⎪⎩, 150,24ωω>∴≤≤【点睛】关键点点睛:此题考查三角函数的恒等变换,考查三角函数的图像和性质,第2问解题的关键是求出424244x ωππωπππωωπ⎡⎤++∈++⎢⎥⎣⎦,,再由y g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递减,可得322,24422k k k Z ωπππππωπππ⎡⎤⎡⎤++⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,从而可求出ω的取值范围,属于中档题 24.()2sin 3f x x ππ⎛⎫=+ ⎪⎝⎭;(2)296【分析】(1)根据条件先求ω,再根据()0f =ϕ,最后再验证ϕ值,确定函数的解析式;(2)根据条件求函数的零点,确定b 的最大值应是第5个零点. 【详解】 (1)函数的最大值是2,∴,函数的周期2T =,即22πωπω=⇒=,()02sin f ϕ==,且0ϕπ<<,3πϕ∴=或23π, 当3πϕ=时,()2sin 3f x x ππ⎛⎫=+⎪⎝⎭,当10,12x ⎡⎤∈⎢⎥⎣⎦时,5,3312x ππππ⎡⎤+∈⎢⎥⎣⎦ 0,2π⎡⎤⎢⎥⎣⎦,满足条件; 当23ϕπ=时,()22sin 3f x x ππ⎛⎫=+⎪⎝⎭,当10,12x ⎡⎤∈⎢⎥⎣⎦时,223,334x ππππ⎡⎤+∈⎢⎥⎣⎦ 3,22ππ⎡⎤⎢⎥⎣⎦,所以函数在区间10,12⎡⎤⎢⎥⎣⎦上为减函数,所以舍去, 所以函数()2sin 3f x x ππ⎛⎫=+⎪⎝⎭; (2)()2sin 103g x x ππ⎛⎫=++= ⎪⎝⎭,得1sin 32x ππ⎛⎫+=- ⎪⎝⎭, 72,36x k k Z ππππ+=+∈,解得:52,6x k k Z =+∈, 或112,36x k k Z ππππ+=+∈,解得:32,2x k k Z =+∈, 函数()()1g x f x =+在区间()0,b 上只有4个零点,∴这四个零点应是56,32,176,72,那么b 的最大值应是第5个零点,即296,所以b 的最大值是296. 【点睛】关键点点睛:本题第一问注意求出两个ϕ 后需验证是否满足条件,第二个关键点是,注意()0,b 是开区间,开区间内只有四个零点,则b 的最大值是第5个零点.25.(1)112⎡⎤-⎢⎥⎣⎦,;(2)ππππ36k k ⎡⎤-+⎢⎥⎣⎦,,k Z ∈. 【分析】(1)根据余弦的二倍角公式、辅助角公式化简()f x ,得到()πsin 26f x x ⎛⎫=- ⎪⎝⎭,再利用正弦函数的性质确定当π02x ⎡⎤∈⎢⎥⎣⎦,时,()f x 的取值范围; (2)根据图象的平移得到()πsin 26g x x ⎛⎫=+ ⎪⎝⎭,再利用正弦函数的性质可求得()g x 得单调递增区间. 【详解】(1)()211πcos cos2sin 2226f x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭,π02x ⎡⎤∈⎢⎥⎣⎦,,ππ5π2666x ⎡⎤∴-∈-⎢⎥⎣⎦,, π1sin 2162x ⎛⎫⎡⎤∴-∈- ⎪⎢⎥⎝⎭⎣⎦,.∴函数()f x 的取值范围为112⎡⎤-⎢⎥⎣⎦,.(2)由题意知:()ππππsin 2sin 26666g x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 令πππ2π22π262k x k -≤+≤+,k Z ∈, 解得πππ2π.36k k k Z -≤≤+∈, ∴()g x 的单调递增区间为ππππ36k k ⎡⎤-+⎢⎥⎣⎦,,k Z ∈. 【点睛】本题考查了三角函数的性质,根据二倍角的余弦公式、辅助角公式化简函数,并求函数在区间上的最值,及函数的单调区间,考查学生的运算能力,属于中档题. 26.(1)12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,递增区间为74,4,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (2)[]1,2-. 【分析】(1)由三角函数的图象,求得函数的解析式12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,结合三角函数的性质,即可求解.(2)由三角函数的图象变换,求得2()2sin 223g x x m π⎛⎫=-+ ⎪⎝⎭,根据()g x 的图象关于直线512x π=对称,求得m 的值,得到()2sin 23g x x π⎛⎫=- ⎪⎝⎭,结合三角函数的性质,即可求解. 【详解】(1)由图象可知2A =,422433T πππ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦, 所以212T πω==,所以1()2sin 2f x x ϕ⎛⎫=+ ⎪⎝⎭, 由图可求出最低点的坐标为,23π⎛⎫- ⎪⎝⎭,所以2sin 236f ππϕ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭, 所以262k ππϕπ+=-+,所以22,3k k Z πϕπ=-+∈, 因为||ϕπ<,所以23πϕ=-,所以12()2sin 23f x x π⎛⎫=- ⎪⎝⎭,由1222,2232k x k k Z πππππ-+≤-≤+∈,可得744,33k x k k Z ππππ+≤≤+∈. 所以函数()f x 的单调递增区间为74,4,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. (2)由题意知,函数22()2sin 2()2sin 2233g x x m x m ππ⎡⎤⎛⎫=+-=-+ ⎪⎢⎥⎣⎦⎝⎭, 因为()g x 的图象关于直线512x π=对称, 所以5222,1232m k k Z ππππ⨯-+=+∈,即,62k m k Z ππ=+∈, 因为02m π<<,所以6m π=,所以()2sin 23g x x π⎛⎫=-⎪⎝⎭. 当7,1212x ππ⎡⎤∈⎢⎥⎣⎦时,52,366x πππ⎡⎤-∈-⎢⎥⎣⎦,可得1sin 2,132x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,所以2sin 2[1,2]3x π⎛⎫-∈- ⎪⎝⎭,即函数()g x 的值域为[]1,2-.【点睛】解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.。
高一数学必修4练习题
高一数学必修4练习题一、三角函数1. 判断下列函数的奇偶性:(1) y = sin(x)(2) y = cos(x + π)(3) y = tan(2x)2. 求下列函数的定义域:(1) y = arcsin(x 1)(2) y = arccos(2x^2 3)3. 化简下列表达式:(1) sin^2(x) + cos^2(x)(2) tan(x) cot(x)(3) sin(x + π/2) cos(x π/2)二、三角恒等变换1. 利用三角恒等变换化简下列表达式:(1) sin^2(x) + cos^2(x)(2) 1 2sin^2(x)(3) tan^2(x) + 12. 求证下列等式:(1) sin(α + β)sin(α β) = sin^2(α) sin^2(β)(2) cos(α + β)cos(α β) = cos^2(α) sin^2(β)三、解三角形1. 在△ABC中,已知a=5,b=8,A=45°,求B的度数及边c的长度。
2. 在△AB C中,已知b=10,c=12,B=60°,求A的度数及边a的长度。
3. 在△ABC中,已知a=6,b=8,C=120°,求A、B的度数。
四、平面向量1. 已知向量a=(2,3),求向量a的模长。
2. 已知向量a=(4,3),求向量a的单位向量。
3. 已知向量a=(1,2),向量b=(2,3),求向量a与向量b的夹角。
五、复数1. 写出下列复数的代数形式:(1) 2(cosπ/3 + isinπ/3)(2) 3e^(iπ/4)2. 求下列复数的模:(1) 1 + i(2) 3 4i3. 已知复数z满足|z 1| = |z + 1|,求复数z在复平面上的几何位置。
六、空间几何与立体几何1. 在空间直角坐标系中,点A(1, 2, 3)到原点的距离是多少?2. 给定平面方程3x 4y + z = 7,求该平面上的一个单位法向量。
高中数学必修四第三章三角恒等变换
必修四 第三章:三角恒等变换【知识点梳理】:考点一:两角和、差的正、余弦、正切公式两角差的余弦:cos()cos cos sin sin αβαβαβ-=+ 两角和的余弦:()cos cos cos sin sin αβαβαβ+=- 两角和的正弦:()sin αβ+sin cos cos sin αβαβ=+ 两角差的正弦:()sin sin cos cos sin αβαβαβ-=- 两角和的正切:()tan tan tan 1tan tan αβαβαβ++=-两角差的正切:()tan tan tan 1tan tan αβαβαβ--=+注意:对于正切,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈.【典型例题讲解】:例题1.已知3sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.例题2.利用和、差角余弦公式求cos 75、cos15的值。
例题3.已知()sin αβ+=32,)sin(βα-=51,求βαtan tan 的值。
例题4.cos13计算sin43cos 43-sin13的值等于( )A .12B .33C .22D .32例题5.已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值.例题6.已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+的值是_____例题7.如图,在平面直角坐标系xoy 中,以ox 轴为始边做两个锐角,αβ,它们的终边分别与单位圆相交于A ,B 两点,已知A ,B 225(1) 求tan()αβ+的值; (2) 求2αβ+的值。
例题8.设ABC ∆中,tan A tan B Atan B +=,sin Acos A =,则此三角形是____三角形【巩固练习】练习1. 求值(1)sin 72cos 42cos72sin 42-; (2)cos 20cos70sin 20sin 70-;练习2.0sin 45cos15cos 225sin15⋅+⋅的值为(A ) -2 1(B ) -2 1(C )2 (D )2练习3.若tan 3α=,4tan 3β=,则tan()αβ-等于( ) A.3-B.13-C.3D.13练习4. 已知α,β为锐角,1tan 7α=,sin 10β=,求2αβ+.考点二:二倍角公式及其推论:在两角和的三角函数公式βαβαβαβα=+++中,当T C S ,,时,就可得到二倍角的三角函数公式222,,S C T ααα:()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=;()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-;22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-;22222cos2cos sin cos (1cos )2cos 1αααααα=-=--=-.()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+==--.注意:2,22k k ππαπαπ≠+≠+ ()k z ∈二倍角公式不仅限于2α是α的二倍的形式,其它如4α是2α的二倍,24αα是的二倍,332αα是的二倍等等,要熟悉这多种形 式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公式的关键.二倍角公式的推论升幂公式:21cos 22cos αα+=, 21cos 22sin αα-=降幂公式:ααα2sin 21cos sin =; 22cos 1sin 2αα-=; 22cos 1cos 2αα+=.【典型例题讲解】例题l. ) A .2sin15cos15 B .22cos 15sin 15- C .22sin 151-D .22sin 15cos 15+例题2..已知1sin cos 5θθ+=,且432πθπ≤≤,则cos 2θ的值是 .例题3.化简0000cos10cos 20cos30cos 40••• 例题4.23sin 702cos 10-=-( )A .12B .2C .2D例题5.已知02x π<<,化简:2lg(cos tan 12sin ))]lg(1sin 2)24x x x x x π⋅+-+--+.例题6.若42x ππ<<,则函数3tan 2tan y x x =的最大值为 。
(易错题)高中数学必修四第一章《三角函数》测试题(包含答案解析)(3)
一、选择题1.若函数()sin 2f x x =与()2cos g x x =都在区间(),a b 上单调递减,则b a -的最大值是( ) A .π4B .π3C .π2D .2π32.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (512AB BC -=)中作正方形ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为,,l m n ,对于以下四个命题:①l m n =+;②2m l n =⋅;③2m l n =+;④211m l n=+.其中正确的是( )A .①②B .①④C .②③D .③④3.函数()sin()(0||)2,f x x πωϕωϕ=+><的部分函数图象如图所示,将函数()f x 的图象先向右平移3π个单位长度,然后向上平移1个单位长度,得到函数()g x 的解析式为( )A .()sin 21g x x =-B .()sin 21g x x =+C .()sin(2)13g x x π=--D .()sin(2)13g x x π=-+4.一观览车的主架示意图如图所示,其中O 为轮轴的中心,距地面32m (即OM 长),巨轮的半径长为30m ,2AM BP m ==,巨轮逆时针旋转且每12分钟转一圈,若点M 为吊舱P 的初始位置,经过t 分钟,该吊舱P 距离地面的高度为( )A .30sin 30122t ππ⎛⎫-+ ⎪⎝⎭B .30sin 3062t ππ⎛⎫-+⎪⎝⎭ C .30sin 3262t ππ⎛⎫-+⎪⎝⎭D .30sin 62t ππ⎛⎫-⎪⎝⎭ 5.设函数()3sin()10,2f x x πωϕωϕ⎛⎫=++><⎪⎝⎭的最小正周期为π,其图象关于直线3x π=对称,则下列说法正确是( )A .()f x 的图象过点30,2⎛⎫ ⎪⎝⎭; B .()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上单调递减; C .()f x 的一个对称中心是7,012π⎛⎫⎪⎝⎭; D .将()f x 的图象向左平移12ϕ个单位长度得到函数3sin 21y x =+ 的图象. 6.若函数()()sin 0f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=( ) A .34B .14C .32D .127.已知函数sin()0,0,||2y A x b A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的图象上相邻的一个最大值点与对称中心分别为2,39π⎛⎫⎪⎝⎭,,018π⎛⎫⎪⎝⎭,则函数()f x 的单调增区间为( )A .222,3939k k ππππ⎛⎫-+ ⎪⎝⎭,k Z ∈ B .242,3939k k ππππ⎛⎫--⎪⎝⎭,k Z ∈ C .227,318318k k ππππ⎛⎫++⎪⎝⎭,k Z ∈ D .272,318318k k ππππ⎛⎫--⎪⎝⎭,k Z ∈ 8.函数3cos 2cos 2sin cos cos510y x x x ππ=-的递增区间是( ) A .2[,]105k k ππππ-+(k Z ∈) B .2[,]510k k ππππ-+ (k Z ∈) C .3[,]510k k ππππ-- (k Z ∈) D .37[,]2020k k ππππ-+ (k Z ∈) 9.设函数()sin()(0,||)f x x ωϕωϕπ=+><.若5()8f x f π⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,且1108f π⎛⎫=⎪⎝⎭,()f x 在443,ππ⎛⎫-⎪⎝⎭单调,则( ) A .23ω=,12πϕ=B .23ω=,1112πϕ=- C .13ω=,1124πϕ=-D .13ω=,724πϕ= 10.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,0ϕπ≤≤)的部分图象如图所示,则()f x 的解析式是( )A .()2sin 6f x x π⎛⎫=+⎪⎝⎭B .()2sin 3f x x π⎛⎫=+⎪⎝⎭C .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭D .2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭11.函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,为了得sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移3π个单位长度 B .向右平移4π个单位长度 C .向左平移3π个单位长度D .向左平移4π个单位长度 12.函数22y cos x sinx =- 的最大值与最小值分别为( )A .3,-1B .3,-2C .2,-1D .2,-2二、填空题13.当ϕ=___________时,函数()()sin f x x ϕ=+在区间4,33ππ⎛⎫⎪⎝⎭上单调(写出一个值即可).14.“一湾如月弦初上,半壁澄波镜比明”描述的是敦煌八景之一的月牙泉.如图所示,月牙泉由两段在同一平面内的圆弧形岸连接围成.两岸连接点间距离为603米.其中外岸为半圆形,内岸圆弧所在圆的半径为60米.某游客绕着月牙泉的岸边步行一周,则该游客步行的路程为_______米.15.函数()()sin f x x ωϕ=+的部分图象如图所示,则()f x 的单调递增区间为___________.16.sin 75=______.17.如图,从气球A 上测得正前方的B ,C 两点的俯角分别为75︒,30,此时气球的高是60m ,则BC 的距离等于__________m .18.关于函数()sin |||sin |f x x x =+有下述四个结论: ①()f x 是偶函数;②()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增; ③()f x 在[],ππ-有4个零点;④()f x 的最大值为2; 其中所有正确结论的编号是_________. 19.已知将函数()sin()(06,)22f x x ππωθωθ=+<<-<<的图象向右平移3π个单位长度得到画()g x 的图象,若()f x 和()g x 的图象都关于4x π=对称,则ωθ⋅=________.20.已知函数()3)cos(2)(0)f x x x ϕϕϕπ=+-+<<是定义在R 上的奇函数,则()8f π-的值为______.三、解答题21.已知()2sin 216f x x a π⎛⎫=-++⎪⎝⎭(a 为常数). (1)求()f x 的最小正周期和单调递增区间;(2)若当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x 的最大值为4,求a 的值. 22.如图,某公园摩天轮的半径为40m ,圆心O 距地面的高度为50m ,摩天轮做匀速转动,每3min 转一圈,摩天轮上的点P 的起始位置在距地面最近处.(1)已知在(min)t 时点P 距离地面的高度为()sin()0,0,||2f t A t h A πωϕωϕ⎛⎫=++>>≤ ⎪⎝⎭,求2020t =时,点P 距离地面的高度;(2)当离地面(50203)m +以上时,可以看到公园的全貌,求转一圈中在点P 处有多少时间可以看到公园的全貌.23.把()cos()(0,||)2f x x πωϕωϕ=+><的图象纵坐标保持不变,横坐标变为原来的2倍得()g x 的图象,已知()g x 图象如图所示(1)求函数()f x 的解析式; (2)若()()2()6h x f x g x π=-+,求()h x 在0,2π⎡⎤⎢⎥⎣⎦上的值域. 24.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;在落潮时返回海洋.下面是某港口在某季节每天的时间和水深关系表: 时刻 2:00 5:00 8:00 11:00 14:00 17:00 20:00 23:00 水深/米7.05.03.05.07.05.03.05.0()()sin ,0,2f t A t B A πωϕωϕ⎛⎫=++>< ⎪⎝⎭来描述.(1)根据以上数据,求出函数()()sin f t A t B ωϕ=++的表达式;(2)一条货船的吃水深度(船底与水面的距离)为4.0米,安全条例规定至少要有2米的安全间隙(船底与洋底的距离),该船在一天内(0:00~24:00)何时能进入港口然后离开港口?每次在港口能停留多久?25.函数()sin()f x A x ωϕ=+(0,0,[0,2))A ωϕπ>>∈的图象如图所示:(1)求()f x 的解析式; (2)()f x 向左平移12π个单位后得到函数()g x ,求()g x 的单调递减区间;(3)若,2x ππ⎡⎤∈-⎢⎥⎣⎦且()32f x ≥,求x 的取值范围.26.已知函数()2sin 1f x x =-.(1)求函数f (x )的最大值,并求此时x 的值; (2)写出()0f x >的解集.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据题意求出(),()f x g x 原点附近的单调递减区间,根据递减区间分析可得max 3π4b =,min π4a =,相减即可. 【详解】解:由题意函数()sin 2f x x =在π3π,44⎛⎫⎪⎝⎭上单调递减,函数()2cos g x x =在()0,π上单调递减, 所以则max 3π4b =,min π4a =,所以b a -的最大值为3πππ442-=. 故选:C. 【点睛】求三角函数单调区间的2种方法:(1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间;(2)图象法:函数的单调性表现在图象上是从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.2.A解析:A 【分析】设1AB =,则2BC =,再由14圆弧分别求出,,l m n ,再逐项判断即可得正确选项. 【详解】不妨设1AB =,则2BC =,所以)12l BE π==⨯,)213ED =-=所以(32m EG π==⨯,(134CG =-=,所以())422n GI ππ==⨯=,所以(())341222m n l πππ⨯+⨯=⨯==+,故①正确;(222234m π⨯==,))2122l n ππ⨯⨯=⋅=, 所以2m l n =⋅,故②正确;))122l n ππ⨯++==,((22332m ππ=⨯⨯-=-, 所以2m l n ≠+,故③不正确;11l nl n l n++===⋅(1132mπ==⨯,所以211m l n≠+,故④不正确;所以①②正确,故选:A【点睛】关键点点睛:本题解题的关键是读懂题意,正确求出扇形的半径,利用弧长公式求出弧长即,,l m n的值.3.D解析:D【分析】由周期求出ω,由五点法作图求出ϕ的值,可得()f x的解析式,再根据函数sin()y A xωϕ=+的图象变换规律,得出结论.【详解】根据函数()sin()(0f x xωϕω=+>,||)2πϕ<的部分函数图象,1274123πππω⋅=-,2ω∴=.再根据五点法作图,23πϕπ⨯+=,3πϕ∴=,()sin(2)3f x xπ=+.将函数()f x的图象先向右平移3π个单位长度,可得sin(2)3y xπ=-的图象.然后向上平移1个单位长度,得到函数()g x的解析式为()sin(2)13g x xπ=-+,故选:D【点睛】关键点睛:解答本题的关键在于准确地根据三角函数的图象求出三角函数sin()y A xωϕ=+的解析式,一般根据周期求出ω的值,根据最值求出A的值,根据最值点求出ϕ的值. 4.B解析:B【分析】先通过计算得出转动的角速度,然后利用三角函数模型表示在转动的过程中点B的纵坐标满足的关系式,则吊舱到底面的距离为点B的纵坐标减2.【详解】如图所示,以点M为坐标原点,以水平方向为x轴,以OM所在直线为y轴建立平面直角坐标系.因为巨轮逆时针旋转且每12分钟转一圈,则转动的角速度为6π每分钟, 经过t 分钟之后,转过的角度为6BOA t π∠=,所以,在转动的过程中,点B 的纵坐标满足:3230sin 30sin 322662y t t ππππ⎛⎫⎛⎫=--=-+ ⎪ ⎪⎝⎭⎝⎭则吊舱距离地面的距离30sin 32230sin 306262h t t ππππ⎛⎫⎛⎫=-+-=-+ ⎪ ⎪⎝⎭⎝⎭. 故选:B . 【点睛】建立三角函数模型解决实际问题的一般步骤: (1)审题:审清楚题目条件、要求、理解数学关系; (2)建模:分析题目变化趋势,选择合适的三角函数模型; (3)求解:对所建立的数学模型进行分析研究,从而得到结论.5.D解析:D 【分析】先根据对称轴及最小正周期,求得函数()f x 的解析式,再结合正弦函数的图象与性质,判断点是否在函数图象上可判断A ,求得函数的单调区间及对称中心即可判断选项BC ,由平移变换求得变化后的解析式并对比即可判断D. 【详解】函数()3sin()10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭的最小正周期是π 所以22πωπ==,则()()3sin 21f x x ϕ=++,()()3sin 21f x x ϕ=++图象关于直线3x π=对称,对称轴为2,2x k k Z πϕπ+=+∈,代入可得2,32k k Z ππϕπ⨯+=+∈,解得,6k k Z πϕπ=-+∈,因为,22ππϕ⎛⎫∈- ⎪⎝⎭,所以当0k =时, 6πϕ=-, 则()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭,对于A,当0x =时,()3103sin 11622f π=-+=-+=- ,所以错误; 对于B,()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的单调递减区间为3222,262k x k k πππππ+-+∈Z ≤≤, 解得5,36k x k k Z ππππ+≤≤+∈,因为123ππ<,则()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上不是减函数,所以错误; 对于C ,773sin 213sin 11012126f ππππ⎛⎫⎛⎫=⨯-+=+=≠⎪ ⎪⎝⎭⎝⎭,所以7,012π⎛⎫ ⎪⎝⎭不是()f x 的一个对称中心,所以错误; 对于D ,1212πϕ=,将()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的图象向左平移12π个单位长度得到可得3sin 213sin 21126y x x ππ⎡⎤⎛⎫=-++=+ ⎪⎢⎥⎝⎭⎣⎦,所以能得到3sin 21y x =+的图象,所以正确. 故选: D. 【点睛】本题考查了正弦函数的图象与性质的综合应用,关键点是根据已知条件先求出正弦函数的解析式,还要熟练掌握三角函数的性质才能正确的解题,属于中档题.6.C解析:C 【分析】由0,3x π⎡⎤∈⎢⎥⎣⎦计算出x ω的取值范围,可得出0,0,32πωπ⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣⎦,再由函数()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减可得出关于ω的等式,由此可解得实数ω的值. 【详解】0ω>,当0,3x π⎡⎤∈⎢⎥⎣⎦时,0,3x πωω⎡⎤∈⎢⎥⎣⎦, 由于函数()()sin 0f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,则0,0,32πωπ⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣⎦,所以,032πωπ<≤,由于函数()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,所以,函数()f x 在3x π=处取得最大值,则()232k k N πωππ=+∈,又032πωπ<≤,所以,32πωπ=,解得32ω=. 故选:C. 【点睛】关键点点睛:本题通过正弦型函数在区间上的单调性求参数值,解题的就是将函数在区间上的单调性转化为两个区间的包含关系,并且分析出函数()f x 的一个最大值点,进而列出关于ω的等式求解.7.A解析:A 【分析】由最大值点和对称中心的坐标可以求出()f x 的解析式,利用三角函数的性质,整体代换得出该复合函数的单调增区间. 【详解】图像上相邻的一个最大值点与对称中心分别为2,39π⎛⎫⎪⎝⎭,,018π⎛⎫⎪⎝⎭, 3A ∴=,0b =且124918T ππ=-,可得23T π=, 23Tπω∴==, 3sin(3)y x ϕ∴=+ 将2,39π⎛⎫⎪⎝⎭代入可得3sin(3)3y x ϕ=+=, 可得22,32k k Z ππϕπ+=+∈,且2πϕ<, 6πϕ∴=-,可得()3sin(3)6f x x π=-,令6232,22k x k k Z πππππ-+≤-≤+∈,可得222+9393k x k ππππ-≤≤, 故选:A.【点睛】方法点睛:根据图像求函数()sin()f x A x k ωϕ=++的解析式,根据最高点和对称中心的纵坐标可求出A 和k ,根据横坐标可求出周期T ,进而求出ω.求该函数的单调区间时,用整体代换的思想,借助正弦函数的单调区间,用解不等式的方法求复合函数的单调区间.8.C解析:C 【分析】利用三角恒等变换的公式,化简得由函数cos(2)5y x π=+,再根据余弦型函数的性质,即可求解函数的单调递增区间,得到答案. 【详解】由函数3cos 2cos2sin cos cos cos 2cos sin 2sin cos(2)510555y x x x x x x πππππ=-=-=+, 令222,5k x k k Z ππππ-+≤+≤∈,整理得3,510k x k k Z ππππ-+≤≤-+∈, 所以函数的单调递增区间为3[,],510k k k Z ππππ-+-+∈,故选C. 【点睛】本题主要考查了三角恒等变换的化简,以及三角函数的性质的应用,其中解答中根据三角恒等变换的公式,化简得到函数的解析式,再利用三角函数的性质求解是解答的关键,着重考查了运算与求解能力,属于基础题.9.A解析:A 【分析】5()8f x f π⎛⎫≤⎪⎝⎭对任意的实数x 都成立,可得 58x π=时函数取得最大值,则函数满足518f π⎛⎫= ⎪⎝⎭,1108f π⎛⎫= ⎪⎝⎭,且()f x 在443,ππ⎛⎫-⎪⎝⎭单调,再利用排除法可得答案. 【详解】 因为5()8f x f π⎛⎫≤⎪⎝⎭对任意的实数x 都成立,则58x π=时函数取得最大值, 所以函数满足518f π⎛⎫= ⎪⎝⎭,1108f π⎛⎫= ⎪⎝⎭,且()f x 在443,ππ⎛⎫-⎪⎝⎭单调, 对于A ,若23ω=,12πϕ=,可得2()sin 312f x x π⎛⎫=+ ⎪⎝⎭,5sin 182f ππ⎛⎫== ⎪⎝⎭,11sin 08f ππ⎛⎫== ⎪⎝⎭,3254412,,4,31222x x πππππππ⎛⎫⎛⎫⎡⎤∈-⇒+∈-⊆- ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦,则2()sin 312f x x π⎛⎫=+ ⎪⎝⎭在443,ππ⎛⎫- ⎪⎝⎭单调递增,故A 符合题意; 对于B ,若23ω=,1112πϕ=-,可得211()sin 312f x x π⎛⎫=- ⎪⎝⎭,5sin 1182f ππ⎛⎫⎛⎫=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故B 不符合题意; 对于C ,若13ω=,1124πϕ=-,可得111()sin 324f x x π⎛⎫=-⎪⎝⎭,5sin 1842f ππ⎛⎫⎛⎫=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故C 不符合题意; 对于D ,若13ω=,724πϕ=,可得17()sin 324f x x π⎛⎫=+ ⎪⎝⎭,113sin 0842f ππ⎛⎫==≠ ⎪⎝⎭,故D 不符合题意; 故选:A. 【点睛】方法点睛:特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前n 项和公式问题等等.10.D解析:D 【分析】结合图象,依次求得,,A ωϕ的值. 【详解】 由图象可知2A =,2,,22362T T πππππωω⎛⎫=--==== ⎪⎝⎭,所以()()2sin 2f x x ϕ=+,依题意0ϕπ≤≤,则2333πππϕ-≤-≤, 2sin 0,0,6333f ππππϕϕϕ⎛⎫⎛⎫-=-+=-+== ⎪ ⎪⎝⎭⎝⎭,所以2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭.故选:D. 【点睛】方法点睛:根据三角函数()()sin f x A x b ωϕ=++或的部分图象求函数解析式的方法:(1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.11.B解析:B 【分析】首先根据图象求函数的解析式,再根据左右平移规律判断选项. 【详解】 由图象可知37341264T T ππππ⎛⎫=--=⇒= ⎪⎝⎭, 即22ππωω=⇒=,当6x π=-时,22,6k k Z πϕπ⎛⎫⨯-+=∈ ⎪⎝⎭, 解得:2,3k k Z πϕπ=+∈,2πϕ<,3πϕ∴=,()sin 23f x x π⎛⎫∴=+⎪⎝⎭, 22643x x πππ⎛⎫-=-+ ⎪⎝⎭, ∴ 要得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移4π个单位. 故选:B 【点睛】方法点睛:本题考查函数的图象变换,以及()sin y A ωx φ=+的性质,属于中档题型,()sin y A x ϕ=+的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是()sin y A ωx φ=+,若sin y A x ω=向右(或左)平移ϕ(0ϕ>)个单位,得到函数的解析式是()sin y A x ωϕ=-⎡⎤⎣⎦或()sin y A x ωϕ=+⎡⎤⎣⎦.12.D解析:D 【解析】分析:将2cos x 化为21sin x -,令()sin 11x t t =-≤≤,可得关于t 的二次函数,根据t的取值范围,求二次函数的最值即可.详解:利用同角三角函数关系化简,22cos 2sin sin 2sin 1y x x x x =-=--+ 设()sin 11x t t =-≤≤,则()()22211211y t t t t =--+=-++-≤≤,根据二次函数性质当1t =-时,y 取最大值2,当1t =时,y 取最小值2-. 故选D.点睛:本题考查三角函数有关的最值问题,此类问题一般分为两类,一种是解析式化为2sin sin y A x B x C =++的形式,用换元法求解;另一种是将解析式化为()sin y A x k ωϕ=++的形式,根据角的范围求解.二、填空题13.(集合或中的任何一个值都行)【分析】由函数的周期和区间长度可以确定和是单调区间的端点值由此列式求值【详解】的周期是而区间的长度是个单位长度则一个周期内完整的一个单调增区间或减区间当时所以解得:或解得解析:6π(集合5{26k πϕϕπ=-+或2,}6k k Z πϕπ=+∈中的任何一个值都行 ) 【分析】由函数的周期,和区间长度可以确定3π和43π是单调区间的端点值,由此列式,求ϕ值. 【详解】()f x 的周期是2π,而区间4,33ππ⎛⎫ ⎪⎝⎭的长度是π个单位长度,则4,33ππ⎛⎫⎪⎝⎭一个周期内完整的一个单调增区间或减区间, 当433x ππ<<时,433x ππϕϕϕ+<+<+, 所以2324232k k ππϕπππϕπ⎧+=-+⎪⎪⎨⎪+=+⎪⎩ ,解得:52,6k k Z πϕπ=-+∈, 或23243232k k ππϕπππϕπ⎧+=+⎪⎪⎨⎪+=+⎪⎩,解得:26k πϕπ=+,k Z ∈,所以其中一个6π=ϕ, 故答案为:6π(集合5{26k πϕϕπ=-+或2,}6k k Z πϕπ=+∈中的任何一个值都行 ) 【点睛】关键点点睛:本题考查三角函数的性质,求参数的取值范围,本题的关键是确定3π和43π是单调区间的端点值,列式后就比较容易求解.14.【分析】如图作出月牙湖的示意图由题意可得可求的值进而由图利用扇形的弧长公式可计算得解【详解】如图是月牙湖的示意图是的中点连结可得由条件可知所以所以所以月牙泉的周长故答案为:【点睛】关键点点睛:本题的 解析:(40303)π+【分析】如图,作出月牙湖的示意图,由题意可得3sin QPO ∠=,可求,QPO QPT ∠∠的值,进而由图利用扇形的弧长公式可计算得解. 【详解】如图,是月牙湖的示意图,O 是QT 的中点,连结PO ,可得PO QT ⊥,由条件可知603QT =,60PQ = 所以3sin 2QPO ∠=,所以3QPO π∠=,23QPT π∠=,所以月牙泉的周长(260303403033l πππ=⨯+⨯=+. 故答案为:(40303π+ 【点睛】关键点点睛:本题的关键是根据实际问题抽象出图象,再根据数形结合分析问题.15.【分析】由图象知三角函数的周期结合函数图象及写出单调递增区间【详解】由图象知:∴的单调递增区间为故答案为:【点睛】思路点睛:1看图定周期特殊函数值:2结合图象由周期对称轴写出增区间解析:37[2,2],44k k k Z ++∈【分析】由图象知,三角函数的周期2T =,结合函数图象及15()()044f f ==,写出单调递增区间.【详解】 由图象知:22||T πω==, 15()()044f f ==, ∴()f x 的单调递增区间为37[2,2],44k k k Z ++∈, 故答案为:37[2,2],44k k k Z ++∈ 【点睛】 思路点睛:1、看图定周期、特殊函数值:2T =,15()()044f f ==.2、结合图象,由周期、对称轴写出增区间. 16.【解析】试题分析:将非特殊角化为特殊角的和与差是求三角函数值的一个有效方法考点:两角和的正弦 解析:【解析】 试题分析:232162sin 75sin(4530)sin 45cos30cos 45sin 3022224︒︒︒︒︒︒︒=+=+=⨯+=将非特殊角化为特殊角的和与差,是求三角函数值的一个有效方法. 考点:两角和的正弦17.【分析】由题意画出图形由两角差的正切求出的正切值然后通过求解两个直角三角形得到和的长度作差后可得答案【详解】由图可知在中在中河流的宽度等于故答案为:【点睛】本题给出实际应用问题求河流在两地的宽度着重 解析:120(31)【分析】由题意画出图形,由两角差的正切求出15︒的正切值,然后通过求解两个直角三角形得到DC 和DB 的长度,作差后可得答案. 【详解】由图可知,15DAB ∠=︒()tan 45tan 30tan15tan 4530231tan 45tan 30︒-︒︒=︒-︒==-+︒︒在Rt ADB 中,60AD =(tan156023120603DB AD ∴=⋅︒=⨯=-在Rt ADC 中,60,60DAC AD ∠=︒=tan 60603DC AD ∴=⋅︒=()()1201201BC DC DB m ∴=-=-=∴河流的宽度BC 等于)1201m故答案为:1) 【点睛】本题给出实际应用问题,求河流在,B C 两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.18.①④【分析】结合题意得出函数的奇偶性根据奇偶性研究函数在时的性质对结论逐一判断即可【详解】解:∵定义域为∴∴函数是偶函数故①对;当时∴由正弦函数的单调性可知函数在区间上单调递减故②错;当时由得根据偶解析:①④ 【分析】结合题意,得出函数的奇偶性,根据奇偶性研究函数在0x >时的性质对结论逐一判断即可. 【详解】解:∵()sin |||sin |f x x x =+,定义域为R ,∴()()sin |||sin |f x x x -=-+-sin sin ()x x f x =+=, ∴函数()f x 是偶函数,故①对;当[]0,x π∈时,()sin |||sin |f x x x =+sin sin 2sin x x x =+=, ∴由正弦函数的单调性可知,函数()f x 在区间,2ππ⎛⎫⎪⎝⎭上单调递减,故②错; 当[]0,x π∈时,由()2sin 0f x x ==得0x =,x π=,根据偶函数的图象和性质可得,()f x 在[),0π-上有1个零点x π=- , ∴()f x 在[],ππ-有3个零点,故③错;当0x ≥时,()sin |||sin |f x x x =+sin sin x x =+2sin ,sin 00,sin 0x x x ≥⎧=⎨<⎩, 根据奇偶性可得函数()f x 的图象如图,∴当sin 1x =时,函数()f x 有最大值()max 2f x =,故④对; 故答案为:①④. 【点睛】本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键,属于中档题.19.【分析】和的图象都关于对称所以①②由①②结合即可得到答案【详解】由题意因为和的图象都关于对称所以①②由①②得又所以将代入①得注意到所以所以故答案为:【点睛】本题考查正弦型函数的性质涉及到函数图象的平解析:34π-【分析】()f x 和()g x 的图象都关于4x π=对称,所以11,42k k Z ππωθπ+=+∈①,22,432k k Z πππωωθπ-+=+∈②,由①②结合06,22ππωθ<<-<<即可得到答案.【详解】由题意,()()sin()33g x f x x ππωωθ=-=-+,因为()f x 和()g x 的图象都关于4x π=对 称,所以11,42k k Z ππωθπ+=+∈①,22,432k k Z πππωωθπ-+=+∈②,由①②,得12123(),,k k k k Z ω=-∈,又06ω<<,所以3ω=,将3ω=代入①,得11,4k k Z πθπ=-∈,注意到22ππθ-<<,所以4πθ=-,所以34ωθπ⋅=-.故答案为:34π- 【点睛】本题考查正弦型函数的性质,涉及到函数图象的平移、函数的对称性,考查学生的运算求解能力,是一道中档题.20.【分析】利用辅助角公式化简根据正弦型函数为奇函数可构造方程求得进而得到解析式代入即可求得结果【详解】为上的奇函数解得:又故答案为:【点睛】本题考查根据正弦型函数的奇偶性求解参数值已知解析式求解三角函解析:【分析】利用辅助角公式化简()f x ,根据正弦型函数为奇函数可构造方程求得ϕ,进而得到()f x 解析式,代入8x π=-即可求得结果.【详解】()()()2cos 22sin 26f x x x x πϕϕϕ⎛⎫=+-+=-+ ⎪⎝⎭,()f x 为R 上的奇函数,()6k k Z πϕπ∴-=∈,解得:()6k k Z πϕπ=+∈,又0ϕπ<<,6πϕ∴=,()2sin 2f x x ∴=,2sin 84f ππ⎛⎫⎛⎫∴-=-= ⎪ ⎪⎝⎭⎝⎭故答案为:. 【点睛】本题考查根据正弦型函数的奇偶性求解参数值、已知解析式求解三角函数值的问题;关键是能够通过辅助角公式将函数化简为正弦型函数,进而利用奇偶性构造方程求得参数.三、解答题21.(1)π,5,,36k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ;(2)2a =. 【分析】(1)利用诱导公式化简函数的解析式,再根据正弦函数的周期性和单调性求解. (2)根据0,2x π⎡⎤∈⎢⎥⎣⎦得到52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,然后利用正弦函数的性质求解. 【详解】 (1)()2sin 212sin 2166f x x a x a ππ⎛⎫⎛⎫=-++=--++ ⎪ ⎪⎝⎭⎝⎭,它的最小正周期为22ππ=. 令3222262k x k πππππ+≤-≤+,解得536k x k ππππ+≤≤+, 所以函数的单调递增区间为5,,36k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . (2)因为0,2x π⎡⎤∈⎢⎥⎣⎦时, 所以52,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以()f x 的最大值为42sin 16a π⎡⎤⎛⎫=-⨯-++ ⎪⎢⎥⎝⎭⎣⎦, 解得2a =. 【点睛】方法点睛:1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式; 2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2πω,y =tan(ωx +φ)的最小正周期为πω;3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质. 22.(1)70m ;(2)0.5min . 【分析】(1)根据题意,确定()sin()f t A t h ωϕ=++的表达式,代入2020t =运算即可;(2)要求()50f t >+2cos 3t π<,解不等式即可. 【详解】(1)依题意,40A =,50h =,3T =, 由23πω=得23πω=,所以2()40sin 503f t t πϕ⎛⎫=++⎪⎝⎭. 因为(0)10f =,所以sin 1ϕ=-,又||2πϕ≤,所以2πϕ=-.所以2()40sin 50(0)32f t t t ππ⎛⎫=-+≥ ⎪⎝⎭,所以2(2020)40sin 2020507032f ππ⎛⎫=⨯-+= ⎪⎝⎭.即2020t =时点P 距离地面的高度为70m .(2)由(1)知22()40sin 505040cos (0)323f t t t t πππ⎛⎫=-+=-≥ ⎪⎝⎭.令()50f t >+2cos 32t π<-, 从而()*52722N 636k t k k πππππ+<<+∈, ∴()*5733N 44k t k k +<<+∈. ∵()*751330.5N 442k k k ⎛⎫+-+==∈ ⎪⎝⎭, ∴转一圈中在点P 处有0.5min 的时间可以看到公园的全貌. 【点睛】本题考查了已知三角函数模型的应用问题,解答本题的关键是能根据题目条件,得出相应的函数模型,作出正确的示意图,然后再由三角函数中的相关知识进行求解,解题时要注意综合利用所学知识与题中的条件,是中档题. 23.(1)1()cos(2)3f x x π=-;(2)3,12⎡⎤--⎢⎥⎣⎦. 【分析】(1)由伸缩变换得1()cos()2g x x ωϕ=+,由()g x 的图像的周期为54()263T πππ=-=,解得2ω=,由()g x 图像过点(,1)3π,求得ϕ,进而得到()g x ,()f x 的解析式.(2)易得()22cos ()2cos()166h x x x ππ=----,令cos()6t x π=-,利用二次函数的性质求解. 【详解】(1)由题意1()cos()2g x x ωϕ=+, 由()g x 的图像可得:函数()g x 的周期为54()263T πππ=-=, 解得2ω=, ∴()cos )(g x x ϕ=+, 由图知()g x 图像过点(,1)3π,所以cos()13πϕ+=,则23k πϕπ=-+,k Z ∈,因为||2ϕπ<,取0k =得3πϕ=-,所以()cos()3g x x π=-,从而函数()f x 的解析式为()cos(2)3f x x π=-.(2)()()2()cos(2)2cos()636h x f x g x x x πππ=-+=---, 22cos ()2cos()166x x ππ=----,令cos()6t x π=-,由0,2x π⎡⎤∈⎢⎥⎣⎦,得,663x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以1,12t ⎡⎤∈⎢⎥⎣⎦, 则22132212()22y t t t =--=--,1,12t ⎡⎤∈⎢⎥⎣⎦, 当12t =时,y 有最小值32-,此时,1cos()62x π-=,63x ππ-=,即2x π=,当1t =时有最大值1-,此时cos()16x π-=,06x π-=,即6x π=.所以函数()h x 的值域为3,12⎡⎤--⎢⎥⎣⎦. 【点睛】方法点睛:求解三角函数的值域(最值)常见到以下几种类型:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域);②形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值). 24.(1)()2sin 566f t t ππ⎛⎫=++⎪⎝⎭;(2)在0时进港4时出港或12时进港16时出港,每次在港内可停留4个小时. 【分析】由表格易知()()max min 7,3f t f t ==,由()()()()max minmax min,22f t f t f t f t A B -+==,求得A ,B ,再根据14212T =-=和2t =时,函数取得最大值,分别求得,ωϕ即可.(2)根据货船需要的安全水深度为6,由()2sin 5666f t t ππ⎛⎫=++≥ ⎪⎝⎭求解. 【详解】由表格可知()()max min 7,3f t f t ==,, 则()()()()max minmax min2,522f t f t f t f t A B -+====,又214212,6T T ππω=-===, 当2t =时,()22sin 2576f πϕ⎛⎫=⨯++= ⎪⎝⎭, 即sin 13πϕ⎛⎫+= ⎪⎝⎭, 所以232k ππϕπ+=+,又2πϕ<,所以6π=ϕ, 所以()2sin 566f t t ππ⎛⎫=++ ⎪⎝⎭.(2)因为货船需要的安全水深度为6,所以()2sin 5666f t t ππ⎛⎫=++≥ ⎪⎝⎭,即1sin 662t ππ⎛⎫+≥ ⎪⎝⎭, 所以5226666k t k ππππππ+≤+≤+, 即12412k t k ≤≤+, 又因为[]0,24t ∈,当0k =时,[]0,4t ∈,当1k =时,[]12,16t ∈,所以在0时进港4时出港或12时进港16时出港,每次在港内可停留4个小时. 【点睛】方法点睛:由函数y =A sin(ωx +φ)的图象或表格确定A ,ω,φ的题型,常常以“五点法”中的五个点作为突破口,要从图象的升降情况找准“零点”或“最大(小)值点”的位置.要善于抓住特殊量和特殊点.25.(1)()23f x x π⎛⎫=+⎪⎝⎭;(2),,2πππ⎡⎤+∈⎢⎥⎣⎦k k k Z ;(3){},66πππ⎡⎤-⋃⎢⎥⎣⎦. 【分析】(1)利用题中图象可知A =,44T π=,结合周期公式求得=2ω,再由3x π=代入计算得=3πϕ即得解析式;(2)根据三角函数平移的方法求得()g x ,再利用整体代入法求单调递减区间即可;(3)先由()32fx ≥可得sin 232x π⎛⎫+≥ ⎪⎝⎭,再由,2x ππ⎡⎤∈-⎢⎥⎣⎦得到23x π+的前提范围,结合正弦函数性质得到不等式中23x π+的范围,再计算x 范围即可.【详解】解:(1)由题中图象可知:A =,741234T πππ=-=, 2T ππω∴==,即2ω=,又由图象知,3x π=时,223k πϕππ⋅+=+,即23k πϕπ=+,k Z ∈,又02ϕπ≤<,∴=3πϕ,()23f x x π⎛⎫∴=+ ⎪⎝⎭;(2)()f x 向左平移12π个单位后得到函数()g x ,故()2221232g x x x x πππ⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由余弦函数性质知,令222,k x k k Z πππ≤≤+∈,得减区间,,2πππ⎡⎤+∈⎢⎥⎣⎦k k k Z , ∴()g x 的单调递减区间为,,2πππ⎡⎤+∈⎢⎥⎣⎦k k k Z ;(3)由题意知:()3232fx x π⎛⎫=+≥ ⎪⎝⎭,即sin 23x π⎛⎫+≥ ⎪⎝⎭,由,2x ππ⎡⎤∈-⎢⎥⎣⎦,知[]0,x π∈,2,2333x ππππ⎡⎤+∈+⎢⎥⎣⎦,由正弦函数图象性质可知,22333x πππ≤+≤或2233x πππ+=+ 即06x π≤≤或x =π,又,2x ππ⎡⎤∈-⎢⎥⎣⎦,得x 的取值范围为{},66x πππ⎡⎤∈-⋃⎢⎥⎣⎦.【点睛】 方法点睛:求三角函数()()sin f x A x b ωϕ=++性质问题时,通常利用整体代入法求解单调性、对称性,最值等性质,或者整体法求三角不等式的解. 26.(1)最大值1,2,2x k k Z ππ=+∈;(2)5{|22,}66x k x k k Z ππππ+≤≤+∈. 【分析】(1)当sin 1x =时,函数取最大值得解; (2)根据三角函数的图象解不等式得解集. 【详解】(1)当sin 1x =即2,2x k k Z ππ=+∈时,()2111max f x =⨯-=;(2)由题得1sin 2x >,所以不等式的解集为5{|22,}66x k x k k Z ππππ+≤≤+∈. 【点睛】关键点睛:解答这类题的关键是熟练掌握三角函数的图象和性质,再灵活利用其解题.。
人教版高一数学必修四测试题(含详细答案)
高一数学试题(必修4)(特殊适合按14523依次的省份)必修4第一章三角函数(1)一、选择题:l已知A={第一象限角}'B={锐角}'C={小千90°的角},那么A、B、C关系是()A. B=Anc2.✓sin2120° 等千忒i A土——- B. B U C=CC. A宝D. A=B=C()五2B五2c1_2n i sin a —2cosa3已知=-5, 那么tana的值为3 sin a + 5 c os aA.—2B. 2C .23164. 下列函数中,最小正周期为兀的偶函数是A.y =sin 2xXB y =c s—2A , 4✓3B -4✓3C .s in 2x+c s 2x 5, 若角600°的终边上有一点(-4,a),则a的值是()23 D.16( )1-tan 2 xD. y =1 + tan2 x()c .土4✓3D✓3X冗X6. 要得到函数y=co s (—-—)的图象,只需将y=sin —的图象( )2 4 2冗冗A. 向左平移—个单位B 同右平移—个单位22冗冗C. 向左平移—个单位D. 向右平移—个单位4 47. 若函数y=f (x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将冗l整个图象沿x轴向左平移—个单位,沿y轴向下平移l个单位,得到函数y =-sin x 的图象22测y=f (x)是()l 兀A. y=—sin(2x+—) +12 2 l 兀C.y =—sin(2x+—) +1 2 4l 兀B.y =—sin(2x -—) +12 2 l 冗D. —sin(2x -—) +12 45兀8. 函数y=sin (2x+—-)的图像的一条对方程是2冗A.x=-— 冗B. x =-— 冗_8__ xc 19. 若sin0·cos0=—,则下列结论中肯定成立的是A .si n 0 = ✓22B. 五sin 0 = -—C. si n 0+cos0 = 1(三4(_ x D))冗10 函数y = 2si n (2x+—)的图象3冗A. 关千原点对称B.关千(——,0)对称c.6 冗11 函数y =s n (x+—)X E R 是2 兀冗A . [-—,—]上是增函数2 2C. [-冗OJ 上是减函数12函数y =✓2c o sx l的定义域是A . [2k三三}k EZ)C. [2k冗十f,2k冗+气}k EZ)D. si n 0—cos0=0()冗关千y 对称D .关千直线x =—对称6( )B. [O五上是减函数D. [-冗冗上是减函数()B. [2k 二,2k 兀三}k E Z ) 6 6D. [2k 兀一气,2k兀+气}k E Z ) 二、填空题:冗冗213. 函数y = cos (x -—) (x E [—,—兀)的最小值是8 6 314。
必修4数学教材习题答案
必修4数学教材习题答案必修4数学教材习题答案数学是一门重要的学科,它不仅对我们的日常生活有着深远的影响,也是其他学科的基础。
在学习数学的过程中,教材中的习题是非常重要的一部分。
通过解答习题,我们可以巩固知识,培养逻辑思维能力。
然而,对于一些复杂的习题,我们可能会遇到困难,无法找到正确的答案。
在这篇文章中,我将为大家提供必修4数学教材习题的答案,希望能够帮助大家更好地学习数学。
第一章函数与导数1. 已知函数f(x) = 2x^2 - 3x + 1,求f(2)的值。
答案:将x替换为2,得到f(2) = 2(2)^2 - 3(2) + 1 = 9。
2. 已知函数f(x) = x^3 - 2x^2 + x + 3,求f'(x)的表达式。
答案:对f(x)进行求导,得到f'(x) = 3x^2 - 4x + 1。
第二章二次函数与一元二次方程1. 解方程2x^2 + 5x - 3 = 0。
答案:可以使用因式分解或者求根公式来解这个方程。
通过求根公式可以得到x = -3/2或x = 1/2。
2. 已知函数f(x) = ax^2 + bx + c,其中a > 0,求当x = 2时,f(x)的最小值。
答案:使用求导的方法,对f(x)进行求导,令导数等于0,解得x = -b/2a。
将x = 2代入得到f(2)的最小值。
第三章概率统计1. 有一袋中装有红球3个,绿球4个,蓝球5个,从中任取3个球,求至少有两个球颜色相同的概率。
答案:可以使用排列组合的方法来求解。
总共有12个球,从中取3个,共有C(12, 3)种取法。
至少有两个球颜色相同,可以分为两种情况:一种是三个球颜色相同,共有C(3, 1) * C(4, 3)种取法;另一种是两个球颜色相同,另一个球颜色不同,共有C(3, 2) * C(4, 2) * C(5, 1)种取法。
将两种情况的取法数相加,再除以总的取法数,即可得到概率。
2. 有一批产品,其中10%有瑕疵。
数学必修四课本练习题
数学必修四课本练习题一、三角函数1. 求下列函数的定义域:(1) y = tan(x π/4)(2) y = cot(2x + π/3)2. 已知sinα = 1/2,α为第二象限角,求cosα和tanα的值。
3. 化简下列表达式:(1) sin²θ + cos²θ(2) 1 tan²α4. 已知tanα = 3,求sinα和cosα的值。
二、平面向量1. 已知向量a = (2, 3),求向量a的模。
2. 已知向量b = (4, 1),求向量b与x轴正方向的夹角。
3. 计算向量a = (1, 2)和向量b = (2, 3)的点积。
4. 已知向量a = (3, 4),求向量a的单位向量。
三、数列1. 写出数列1, 3, 5, 7, 9, …的通项公式。
2. 求等差数列2, 5, 8, 11, …的前10项和。
3. 已知等比数列的首项为3,公比为2,求第5项。
4. 判断数列1, 1/2, 1/4, 1/8, …是否为等比数列,并说明理由。
四、立体几何1. 已知正方体的边长为2,求其对角线的长度。
2. 计算底面半径为3,高为4的圆锥的体积。
3. 已知长方体的长、宽、高分别为6、4、3,求其表面积。
4. 计算底面边长为5的正四面体的体积。
五、概率与统计1. 从一副52张的扑克牌中随机抽取一张,求抽到红桃的概率。
2. 抛掷一枚硬币三次,求恰好出现两次正面的概率。
3. 已知一组数据的平均数为5,方差为4,求这组数据的标准差。
4. 某班有50名学生,其中男生30名,女生20名,随机抽取5名学生,求至少抽到3名女生的概率。
六、解析几何1. 在直角坐标系中,点A(2, 3)关于x轴的对称点坐标是?2. 写出经过点(1, 1)且斜率为2的直线方程。
3. 已知直线y = 3x + 1和直线x + 2y 5 = 0,求这两条直线的交点坐标。
4. 求圆心在原点,半径为4的圆的方程。
七、函数的性质1. 判断函数f(x) = 2x^3 3x^2 12x + 5的单调性。
高中数学必修四课本部分题目
1、 已知3tan =α,求ααsin cos -的值2、 在平面直角坐标系中,已知点O(0,0),A (1,2),B (4,5),,AB t OA OP +=当t=1,-2,2时,分别求点P 的坐标。
3、某商品进货价为每件50元,当销售价格每件x 元8050≤≤x 时每天销售的件数为25)50(10-=x p 若想每天获得的利润最多,则销售价为多少元?必修四课本内容1. 求函数)321sin(π+=x y ,]2,2[ππ-∈x 的单调递增区间。
39页 2. 函数)6tan(π+-=x y +2的定义域是 46页 3. 求函数)64cos()43sin()(ππ-++=x x x f 的最小正周期和递减区间。
143页 若函数m x x x f ++=2cos 22sin 3)(在区间]2,0[π上的最大值为6,求常数m 的值及此函数当R x ∈时的最小值,并求出相应的x 的取值集合。
147页 4.平面上三个力1F 、2F 、3F 作用于一点且处于平衡状态,1||1F N =,26||2F N +=,1F 与2F 的夹角为45︒,求:(1)3F 的大小; (2)3F 与1F 夹角的大小 113页5.与)8,6(-=a 平行的单位向量是 教参6.设55cos -=α,31tan =β,23παπ<<,20πβ<<,求βα-的值 教参7.已知ABC ∆的顶点坐标分别为A (1,1)、B (4,1)、C (4,5),求C B A cos ,cos ,cos 的值 119页8.当k 取什么值时,一元二次不等式08322<-+kx kx 对一切实数x 都成立? 103页 5. 函数)sin(ϕω+=x A y 在一个周期内的图象如下,此 函数的解析式为 ( )A 、)322sin(2π+=x y B 、)32sin(2π+=x y C 、)32sin(2π-=x y D 、)32sin(2π-=x y 6.在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或D .0015030或7. 已知αα,53sin =是第二象限角,且1)tan(=+βα,则βtan 的值为( ) A .-7 B.7 C.43- D. 43 9.在△ABC 中,若8,3,7===c b a ,则其面积等于( )A .12B .221 C .28 D .6313.若,x y 是正数,且121x y+=,则xy 的最小值为 11.不等式2450x x +->的解集为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、 已知3tan =
α,求ααsin cos -的值
2、 在平面直角坐标系中,已知点O(0,0),A (1,2),B (4,5),,t +=当t=1,-2,2时,分别求
点P 的坐标。
3、某商品进货价为每件50元,当销售价格每件x 元8050≤≤x 时每天销售的件数为25
)50(10-=x p 若想每天获得的利润最多,则销售价为多少元?
必修四课本内容
1. 求函数)321sin(π+
=x y ,]2,2[ππ-∈x 的单调递增区间。
39页 2. 函数)6tan(π+
-=x y +2的定义域是 46页 3. 求函数)64cos()43sin(
)(ππ-++=x x x f 的最小正周期和递减区间。
143页 若函数m x x x f ++=2cos 22sin 3)(在区间]2
,0[π
上的最大值为6,求常数m 的值及此函数当R x ∈时的最小值,并求出相应的x 的取值集合。
147页
4.平面上三个力1F u u r 、2F uu r 、3F uu r 作用于一点且处于平衡状态,1||1F N =u u r ,2||2F N =u u r ,1F u u r 与2F uu r 的夹角为45︒,求:(1)3F uu r 的大小; (2)3F uu r 与1F u u r 夹角的大小 113页
5.与)8,6(-=平行的单位向量是 教参
6.设55cos -
=α,31tan =β,23παπ<<,2
0πβ<<,求βα-的值 教参
7.已知ABC ∆的顶点坐标分别为A (1,1)、B (4,1)、C (4,5),求C B A cos ,cos ,cos 的值 119页
8.当k 取什么值时,一元二次不等式08
322<-
+kx kx 对一切实数x 都成立? 103页 5. 函数)sin(ϕω+=x A y 在一个周期内的图象如下,
此 函数的解析式为 ( )
A 、)322sin(2π+
=x y B 、)32sin(2π+=x y C 、)32sin(2π-=x y D 、)3
2sin(2π-=x y 6.在△ABC 中,若B a b sin 2=,则A 等于( )
A .006030或
B .006045或
C .0060120或
D .0015030或
7. 已知αα,5
3sin =是第二象限角,且1)tan(=+βα,则βtan 的值为( ) A .-7 B.7 C.43- D. 43 9.在△ABC 中,若8,3,7===c b a ,则其面积等于( )
A .12
B .2
21 C .28 D .6313.若,x y 是正数,且
121x y +=,则xy 的最小值为 11.不等式2
450x x +->的解集为。