平行与相交练习题
相交线与平行线单元测试题(含答案)
相交线与平行线一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,共24分)1.在下面各图中,∠1与∠2是对顶角的是()A.B.C.D.2.如图,直线a、b相交于点O,若∠1=30°,则∠2等于()A.60°B.30°C.140°D.150°3.如图,直线a,b相交于点O,若∠1=40°,则∠2=()A.40°B.50°C.60°D.140°4.如图,点P在直线l外,点A,B在直线l上,PA=3,PB=7,点P到直线l的距离可能是()A.2 B.4 C.7 D.85.如图,直线a∥b,∠1=50°,则∠2的度数为()A.40°B.50°C.55°D.60°6.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连接直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行7.如图,已知ON丄a,OM丄a,所以OM与ON重合的理由是()A.两点确定一条直线B.经过一点有且只有一条线段垂直于己知直线C.过一点只能作一条垂线D.垂线段最短8.如图,直线AB∥CD,∠A=70°,∠E=30°,则∠C等于()A.30°B.40°C.60°D.70°二、填空题(本大题共6小题,每小题3分,共18分)9.如图所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:.10.如图,已知O是直线AB上一点,∠1=30°,OD平分∠BOC,则∠2=.11.如图,直线AB、CD相交于点O,EO⊥AB,∠AOC=25°。
平行与相交专项练习30题(有答案)ok
平行与相交专项练习30题(有答案)ok平行与相交专项练30题(有答案)1.下列对于线的描述,说法正确的是()A.不相交的两条直线是平行线B.两条直线相交成直角时,这两条直线互相垂直C.过直线外一点,能画无数条平行线D.有一条直线长6分米2.从直线外一点画已知直线的平行线,可以画()条.A.1B.2C.无数3.下面的图形中,()只有2组平行线.A.B.C.D.4.如果在同一平面内画两条直线,它们都和第三条直线相交成直角,那么这两条直线(A.互相垂直B.互相平行C.不垂直也不平行5.下列各句话中有()句是错误的.(1)两条直线相交,这两条直线互相垂直.(2)两条直线的交点,叫做这两条直线的垂足.(3)平行线之间的线段到处相等.(4)两条直线都与另一条直线相交,这两条直线一定平行.A.1B.2C.3D.46.在同一平面内,若把两根小棒都摆成和第三根小棒垂直,那么这两根小棒()A.相互平行B.相互垂直C.相交7.同一平面内的两条直线最多有()个交点.A.B.1C.28.一张长方形纸对折两次后展开,折痕()A.相互平行B.相互垂直C.可能相互垂直,也可能相互平行9.在两条平行线之间画垂直线段,第一条长7厘米,第二条长()A.大于7厘米B.小于7厘米C.等于7厘米10.关于平行线的说法正确的是()A.不相交的两条线段B.不相交的两条直线C.在同一平面内,不相交的两条直线11.直线a、b、c在同一平面里,a与b相互垂直,b与c 相互垂直,那么a与c相互(A..垂直B.平行C.平行或垂直12.有两条直线都与同一条直线平行,则这两条直线一定()平行与相交----1))A.相互垂直B.相互平行C.相交13.在同一个平面上垂直于同一条直线的两条直线一定()A.互相垂直B.互相平行C.两种都有可能D.A、B两种都不可能.14.在同一平面内,两条直线可能_________,也可能_________,互相垂直是一种特殊的_________.15.指出左图形中各有几组互相平行的线段,并写在括号里,(_________).16.在同一平面内不相交的两条直线叫做_________,也可以说这两条直_________.在同一平面内的两条直线的位置关系有_________、_________两种情况.17.语文课本的封面,相对的两条边是相互_________的,相邻的两条边是相互_________的.18.点到直线的所有线段中,_________最短.19.平行线之间的垂直线段不但相互_________,并且长度_________.20.在同一平面内,两条不重合的直线的位置干系有_________、_________.21.上面有一排字母:TEFNKHXZ有互相垂直线段的字母是_________;有互相平行线段的字母是_________;既有互相垂直,又有互相平行的线段的字母是_________.22.如图,能找到_________组相互垂直的线段.23.两条直线不相交,就说这两条直线相互平行._________.24.图中有几组相互垂直的线段?_________组.25.当两条直线相交成直角时,这两条直线相互平行._________.26.在一张纸上画若干条直线后发现,凡是不平行的,就一定会相交._________.平行与相交----227.在同一平面内,两条直线的位置干系可分红哪两类?相交或垂直_________相交或平行_________平行或垂直_________.28.过直线外一点只能画一条直线的垂线._________.29.小猪要过河,它走下面的哪条路最近?这条路有什么特点?30.点A是大象的家,XXX表示河.大象要去河岸边饮水,请设想一条使大象饮水近来的线路图.平行与相交----3参考答案:1.A、不相交的两条直线是平行线,说法错误,前提是:在同一平面内;B、根据互相垂直的含义:两条直线相交成直角时,这两条直线互相垂直,说法正确;C、过直线外一点,能画无数条平行线,说法错误,应为一条平行线;D、因为直线无限长,所以有一条直线长6分米,说法错误;故选:B.2.按照平行的性质得:过直线外一点画直线的平行线,可以画一条直线与直线平行,应选:A.3.A、是正六边形,有3组平行线;B、没有平行线;C、有2组平行线;D、是正八边形,有4组平行线;故选:C.4.如图:在同一平面内,p⊥d,k⊥d,所以XXX,故选:B.5.(1)两条直线相交,这两条直线互相垂直,说法错误,应为:两条直线相交成直角时,这两条直线就互相垂直;(2)两条直线的交点,叫做这两条直线的垂足,说法错误;因为两条直线相交成直角,这两条直线就互相垂直,交点叫做垂足;(3)平行线之间的线段处处相等,说法错误,应为:平行线之间的距离处处相等;(4)根据垂直的性质可知:两条直线都与另一条直线相交,这两条直线一定平行,说法错误,前提必须在同一个平面内;故选:D.6.如图所示,,a和b都垂直于c,则a和b平行;应选:A.7.同一平面内的两条直线最多有1个交点.应选:B.8.由阐发可知:把一张长方形的纸对折两次后,折痕的干系是可能相互平行,也可能相互垂直;应选:C.9.由阐发可知:两条平行线中可以画无数条垂线段,这些线段的长度都相等,所以在两条平行线之间画垂直线段,第一条长7厘米,第二条也长7厘米;应选:C.10.因为在同一平面内,两条不相交的直线是平行线,故A、B错误;应选:C.11.由垂直和平行的特征和性质可知:直线a、b、c在同一平面里,a与b相互垂直,b与c相互垂直,那么a与c互相平行;故选:B.12.根据平行的性质可得:有两条直线都与同一条直线平行,则这两条直线一定互相平行;故选:B13.由垂直的性质可得:在同一个平面内垂直于同一条直线的两条直线一定互相平行;故选:B.14.在同一平面内,两条直线可能相交,也可能平行,互相垂直是一种特殊的相交.15.指出左图形中各有几组互相平行的线段,并写在括号里,(9组).如图:平行与相交----4图中的平行线段有:AD∥EF,BD∥EF,DE∥FB,DE∥FC,DF∥AE,DF∥EC,DE∥BC,DF∥AC,EF∥AB;共有9对;故谜底为:9组16.在同一平面内不相交的两条直线叫做平行线,也能够说这两条直线相互平行.在同一平面内的两条直线的位置干系有相交、平行两种情形.由阐发得出:在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行,在同一平面内的两条直线的位置关系有相交、平行两种情况.故答案为:平行线;线互相平行;相交;平行17.语文课本的封面,相对的两条边是相互平行的,相邻的两条边是相互垂直的.18.点到直线的所有线段中,垂线段最短.19.平行线之间的垂直线段不但相互平行,并且长度相等.20.在同一平面内,两条不重合的直线的位置干系有相交、平行.21.上面有一排字母:XXX有相互垂直线段的字母是T、E、H;有相互平行线段的字母是E、N、Z、H;既有相互垂直,又有相互平行的线段的字母是E、H.22.如图,能找到8组相互垂直的线段.23.两条直线如果永不相交,这两条直线一定互相平行,说法错误,前提是必须在同一平面内;故答案为:错误.24.图中有几组互相垂直的线段?6组.25.当两条直线相交成直角时,这两条直线相互平行.错误.26.在一张纸上画若干条直线后发现,凡是不平行的,就一定会相交.正确.由分析可知:在一张纸上画若干条直线后发现,凡是不平行的,就必然会相交;故答案为:正确.27.在同一平面内,两条直线的位置关系可分成哪两类?相交或垂直×相交或平行√平行或垂直×.28.过直线外一点只能画一条已知直线的垂线.正确.29.如图:PC近来,这条路垂直于河对岸的路.30.如图所示:根据垂直线段最短的性质,红色的垂线段就是使大象饮水最近的线路,。
平行与相交习题(附答案)
相交线与平行线测试卷(一)一、选择题1.下列说法中,正确的是()A.一条射线把一个角分成两个角,这条射线叫做这个角的平分线。
B.P是直线L外一点,A、B、C分别是L上的三点,已知PA=1,PB=2,PC=3,则点P•到L的距离一定是1。
C.相等的角是对顶角。
D.钝角的补角一定是锐角.2.如图1,直线AB、CD相交于点O,过点O作射线OE,则图中的邻补角一共有()A.3对 B.4对 C.5对 D.6对(1) (2) (3)3.若∠1与∠2的关系为内错角,∠1=40°则∠2等于()A.40° B.140° C.40°或140° D.不确定5.a,b,c为平面内不同的三条直线,若要a∥b,条件不符合的是()A.a∥b,b∥c。
B.a⊥b,b⊥c。
C.a⊥c,b∥c。
D.c截a,b所得的内错角的邻补角相等6.如图2,直线a、b被直线c所截,现给出下列四个条件:(1)∠1=∠5;(2)∠1=•∠7;(3)∠2+∠3=180°;(4)∠4=∠7,其中能判定a∥b的条件的序号是()A.(1)、(2) B.(1)、(3)C.(1)、(4) D.(3)、(4)7.如图3,若AB∥CD,则图中相等的内错角是()A.∠1与∠5,∠2与∠6。
B.∠3与∠7,∠4与∠8。
C.∠2与∠6,∠3与∠7。
D.∠1与∠5,∠4与∠88.如图4,AB∥CD,直线EF分别交AB、CD于点E、F,ED平分∠BEF.若∠1=72°,•则∠2的度数为()A.36° B.54° C.45° D.68°(4) (5) (6)9.已知线段AB的长为10cm,点A、B到直线L的距离分别为6cm和4cm,•则符合条件的直线L的条数为()A.1 B.2 C.3 D.410.如图5,四边形ABCD中,∠B=65°,∠C=115°,∠D=100°,则∠A的度数为(• )A.65° B.80° C.100° D.115°11.如图6,AB⊥EF,CD⊥EF,∠1=∠F=45°,那么与∠FCD相等的角有()A.1个 B.2个 C.3个 D.4个12.若∠A和∠B的两边分别平行,且∠A比∠B的2倍少30°,则∠B的度数为()A.30°B.70°C.30°或70° D.100°二、填空题13.如图,一个合格的弯形管道,经过两次拐弯后保持平行(即AB∥DC).•如果∠C=60°,那么∠B的度数是________.14.已知,如图,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°.将下列推理过程补充完整:(1)∵∠1=∠ABC(已知),∴AD∥______(2)∵∠3=∠5(已知),∴AB∥_____,(___________)(3)∵∠ABC+∠BCD=180°(已知),∴_______∥________,(__________)16.已知直线AB、CD相交于点O,∠AOC-∠BOC=50°,则∠AOC=_____度,•∠BOC=___度.17.如图7,已知B、C、E在同一直线上,且CD∥AB,若∠A=105°,∠B=40°,则∠ACE为_________.(7)(8)18.如图8,已知∠1=∠2,∠D=78°,则∠BCD=______度19.如图9,直线L1∥L2,AB⊥L1,垂足为O,BC与L2相交于点E,若∠1=43°,•则∠2=_______度.(9)(10)20.如图10,∠ABD=•∠CBD,•DF•∥AB,•DE•∥BC,•则∠1•与∠2•的大小关系是________.三、解答题22.如图,AB∥A′B′,BC∥B′C′,BC交A′B′于点D,∠B与∠B•′有什么关系?为什么?23.如图,已知AB∥CD,试再添上一个条件,使∠1=∠2成立(•要求给出两个答案).24.如图,AB∥CD,∠1:∠2:∠3=1:2:3,说明BA平分∠EBF的道理.25.如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB 于E,且∠1=∠2,•∠3=80°.求∠BCA的度数.26.如图,EF⊥GF于F.∠AEF=150°,∠DGF=60°,试判断AB和CD的位置关系,并说明理由.1、∵直线AB、CD相交于点O,∴∠AOC和∠BOD是对顶角,∴∠AOC=∠BOD.∵∠AOC+∠BOD=240°,∴∠AOC=∠BOD=120°.又∵∠AOC和∠BOC是邻补角,∴∠BOC=180°-∠AOC,∴∠BOC=60°..2、[点拨] 观察图形,∠AOF与∠BOF是邻补角,∠BOF 与∠AOE是对顶角,利用它们的性质可求出∠EOC的度数.[解答] 设∠BOF=x,则∠AOF=3x,∵∠AOF+∠BOF=180°∴x+3x=180°∴x=45°,即∠BOF=45°∴∠AOE=∠BOF=45°∴∠EOC=∠AOC-∠AOE=90°-45°=45°.[方法规律] 通过设未知数列方程求解,是求角的度数一种常用的方法.3、[点拨]过一点画射线或线段的垂线时,是指画它们所在直线的垂线,垂足有时在射线反向延长线或在线段的延长线上.本题垂足分别在射线OB的反向延长线上和线段AO的延长线上.[解答]如图5.1.2-3所示,直线AE为过点A与OB垂直的直线,垂足为E;直线BD为过点B与OA垂直的直线,垂足为D.图5.1.2-3[方法规律] ①所有的垂足都要作垂直标记;②垂线画实线,延长线画虚线.5、 [方法规律] 判断两条直线平行要抓住两个关键一个前提.两个关键:一是“在同一平面内”;二是“不相交”. 一个前提:两条直线.6、[点拨]运用平行公理的推论加以判断.[解答]因为a∥b,b∥c,所以a∥c,又因为c∥d,所以a∥d.[方法规律] 对于n条直线l1,l2,l3…l n,若l1∥l2,l2∥l3,…,l n-1∥l n,那么这n条直线互相平行.7、[点拨]由∠1=∠2,及角平分线定义,可得∠EAQ=∠ABN,从而可证PQ∥MN.[解答] ∵AF平分∠EAQ,BC平分∠ABN,∴∠1=12∠EAQ,∠2=12∠ABN∵∠1=∠2,∴∠EAQ=∠ABN∴PQ∥MN[方法规律]本题不能直接判定PQ∥MN,要经过转化才能成为直接条件.8、[点拨]从标出的3个角可知:∠1与∠3是同位角,若∠1=∠3,则AB∥CD,由图可知,∠1+∠2=180°,已知∠2=3∠1,故可求出∠1,又由∠1+∠3=90°,可求出∠3.[解答] ∵∠1+∠2=180°,∠2=3∠1∴∠1+3∠1=180°,∴∠1=45°∵∠1+∠3=90°,∴∠3=45°∴∠1=∠3,∴AB∥CD.[方法规律] 利用角的关系和邻补角定义,求角定线.9、点拨] ∠1和∠3,∠2和∠3分别是l1与l3被l 所截而成的内错角及l2与l3被l所截而成的同旁内角,若它们满足平行的判定条件再由平行公理推论即可得到l1∥l2.[解答] ∵∠1=∠3=80°∴l1∥l3∵∠2=100°∴∠2+∠3=180°∴l2∥l3∴l1∥l2[方法规律] 这里l3为l1与l2平行架起了桥梁,这就是转化,它为已知与求证结论铺平了道路[点拨] ∠1与∠3是AD、DC被AC所截的同旁内角,由∠1=∠3并不能推出两条直线平行,但∠2=∠1所以能代换得到∠2=∠3,这时∠2与∠3是AB与DC被AC所截得的内错角,由内错角相等可推出AB∥CD.10、[解答]由已知条件可判断AB∥CD,理由如下:∵AC平分∠DAB(已知),∴∠1=∠2(角平分线定义).又∵∠1=∠3(已知),∴∠2=∠3(等量代换).∴AB∥CD(内错角相等,两直线平行).[方法规律] 要判断两条直线平行,得寻找同位角、内错角相等或同旁内角互补.[点拨] 本题直接求∠C不容易,如果过点C作FC∥AB,就可以把问题转化为求已知的∠B及∠D的同旁内角,进而求得∠C.11、[解答] 过点C作FC∥AB,∵AB∥ED,∴FC∥ED,∴∠1+∠B=180°,∠2+∠D=180°,∴∠1+∠2+∠B+∠D=360°.∵∠B=140°,∠D=120°,∴∠1+∠2=360°-140°-120°=120°[方法规律]此类题型,一般都是过拐点作已知直线的平行线,从而把未知问题转化为已知问题.12、点拨]利用对顶角相等,转化为同旁内角互补,得l1∥l2,再根据平行性质和对顶角相等即可求出∠4的度数.[解答]∵∠1=60°,∠2=120°,∴∠1+∠2=180°∵∠1=∠6,∴∠6+∠2=180°,∴l1∥l2∴∠7=∠3=70°,∵∠4=∠7,∴∠4=70°.[方法规律]本题的切入点是对顶角相等,再根据平行的判定和性质,可求出∠4的度数.点拨] 由∠2=∠EBD,∠1=∠2,得∠1=∠EBD,从而得FG∥CD,再由平行线的性质和∠3=55°,可求出∠4的度数.[解答] ∵∠2=∠EBD,∠1=∠2,∴∠1=∠EBD∴GF∥CD,∴∠4=∠ABD∵∠3=55°,∴∠ABD=125°,∴∠4=125°,∴选D.13、[方法规律]本题综合运用了平行线的判定和性质,在解题过程中应由未知想已知,不断促使问题的转化.[点拨]由CD⊥AB,EF⊥AB,得DC∥EF,从而得∠1=∠BCD,再由∠1=∠2,可得DG∥BC.[解答] DG∥BC.∵CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°∴CD∥EF.(同位角相等,两直线平行)∴∠1=∠BCD.(两直线平行,同位角相等)又∵∠1=∠2,∴∠2=∠BCD.∴DG∥BC.(内错角相等,两直线平行)[方法规律]本题抓住垂直证平行,促使已知条件向未知条件转换.相交线平行线答案1.D2.D 点拨:图中的邻补角分别是:∠AOC与∠BOC,∠AOC与∠AOD,∠COE与∠DOE,∠BOE与∠AOE,∠BOD与∠BOC,∠AOD与∠BOD,共6对,故选D.3.D 4.C 5.C 6.A7.C 点拨:本题的题设是AB∥CD,解答过程中不能误用AD∥BC这个条件.8.B 点拨:∵AB∥CD,∠1=72°,∴∠BEF=180°-∠1=108°.∵ED平分∠BEF,∴∠BED=12∠BEF=54°.∵AB∥CD,∴∠2=∠BED=54°.故选B.9.C 点拨:如答图,L1,L2两种情况容易考虑到,但受习惯性思维的影响,L3这种情况容易被忽略.10.B11.D 点拨:∠FCD=∠F=∠A=∠1=∠ABG=45°.故选D.12.C 点拨:由题意,知,230A BA B∠=∠⎧⎨∠=∠-︒⎩或180,230A BA B∠+∠=︒⎧⎨∠=∠-︒⎩解之得∠B=30°或70°.故选C.13.120°14.(1)BC;同位角相等,两直线平行(2)CD;内错角相等,两直线平行(3)AB;CD;同旁内角互补,两直线平行15.(2),(3),(5)16.115;65点拨:设∠BOC=x°,则∠AOC=x°+50°.∵∠AOC+∠BOC=180°.∴x+50+x=180,解得x=65.∴∠AOC=115°,∠BOC=65°.17.145°18.10219.133点拨:如答图,延长AB交L2于点F.∵L1∥L2,AB⊥L1,∴∠BFE=90°.∴∠FBE=90°-∠1=90°-43°=47°.∴∠2=180°-∠FBE=133°.20.∠1=∠221.解:如答图,由邻补角的定义知∠BOC=100°.∵OD,OE分别是∠AOB,∠BOC的平分线,。
中考数学相交线与平行线专题训练50题-含答案
中考数学相交线与平行线专题训练50题含答案(单选、填空、解答题)一、单选题1.一副直角三角板如图所示摆放,它们的直角顶点重合于点O,//CO AB,则∠=()BODA.30︒B.45︒C.60︒D.90︒2.∠1与∠2是一组平行线被第三条直线所截的同旁内角,若∠1=50°,则()A.∠2=50°B.∠2=130°C.∠2=50°或∠2=130°D.∠2的大小不一定3.如图,AB//CD,如果∠B=30°,那么∠C为()A.40°B.30°C.50°D.60°4.如图,已知∠1=50°,要使a∠b,那么∠2等于()A.40°B.130°C.50°D.120°5.在同一平面内不重合的三条直线的交点个数()A.可能是0个,1个,2个B.可能是0个,1个,3个C.可能是0个,1个,2个,3个D.可能是0个,2个,3个6.在下图中,1∠是同位角的是()∠和2A .(1)、(2)B .(1)、(3)C .(2)、(3)D .(2)、(4) 7.在平面直角坐标系中,点A (﹣3,2),B (3,5),C (x ,y ),若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,(﹣3,5)B .6,(3,2)C .3,(3,0)D .3,(3,2) 8.下面四个图形中,1∠与2∠是同位角的是( )A .B .C .D .9.如图,直线l ∠m ,将Rt △ABC (∠ABC =45°)的直角顶点C 放在直线m 上,若∠2=24°,则∠1 的度数为( )A .23︒B .22︒C .21︒D .24︒ 10.如图,已知1130∠=︒,250∠=︒,3115∠=︒,则4∠的度数为( )A .65︒B .60︒C .55︒D .50︒11.如图,直线AB ,CD 被直线EF 所截,则∠AGE 的同位角是( )A .∠BGEB .∠BGFC .∠CHED .∠CHF 12.下列四个选项中不是命题的是( )A .对顶角相等B .过直线外一点作直线的平行线C .三角形任意两边之和大于第三边D .如果a b a c ==,,那么b c =13.如图,直线AB 、直线CD 交于点E ,EF AB ⊥,则CEF ∠与BED ∠的关系是( )A .互余B .相等C .对顶角D .互补 14.下列命题是真命题的是()A .过一点有且只有一条直线与已知直线垂直B .经过一点有且只有一条直线与已知直线平行C .同旁内角互补,两直线平行D .同位角相等15.如图,已知AB =DC ,AD =BC ,E ,F 在DB 上两点且BF =DE ,若∠AEB =120°,∠ADB =30°,则∠BCF = ( )A .150°B .40°C .80°D .90° 16.如图,直线a //b ,∠1=85°,∠2=35°,则∠3的度数为( )A .40°B .45°C .50°D .55° 17.如图,AB CD ∥,直线EF 分别交AB ,CD 于点M ,N ,将一个含有45°角的直角三角尺按如图所示的方式摆放,若80EMB ∠=︒,则PNM ∠等于( )A .15°B .25°C .35°D .45° 18.如图,∠1=∠2=22°,∠C=130°,则∠DAC = ( )A .28°B .25°C .23°D .22° 19.如图,∠ADB =∠ACB =90°,AC 与BD 相交于点O ,且OA =OB ,下列结论:∠AD =BC ;∠AC =BD ;∠∠CDA =∠DCB ;∠CD ∠AB ,其中正确的有( )A .1个B .2个C .3个D .4个 20.一辆汽车在笔直的公路上行驶,两次拐弯后,在与原方向相反的方向上平行行驶,则这两次拐弯的角度应为( )A .第一次向右拐38°,第二次向左拐142°B .第一次向左拐38°,第二次向右拐38°C .第一次向左拐38°,第二次向左拐142°D.第一次向右拐38°,第二次向右拐40°二、填空题a b∠=︒,则∠2=_________.21.如图,已知直线//,17022.如图,AB∠CD,CE∠GF,若∠1=60°,则∠2=_____°.23.如图,直线AC和FD相交于点B,下列判断:∠∠GBD和∠HCE是同位角;∠∠ABD和∠ACH是同位角;∠∠FBC和∠ACE是内错角;∠∠FBC和∠HCE是内错角;∠∠GBC和∠BCE是同旁内角.其中正确的是____.(填序号)24.如图,直线a,b交于点O,若138∠=︒,则2∠=__°.25.如图,四边形ABCD,点E是AB的延长线上的一点.请你添加一个条件,能判定∥.这个条件是______.AD BC26.如图,AB 、BC 是∠O 的弦,OM ∥BC 交AB 于点M ,若∠AOC =100°,则∠AMO =___.27.检验直线与平面平行的方法:(1)______________只能检验直线与水平面是否平行;(2)______________可以检验一般的直线与平面是否垂直;28.如图,AB//CD ,点E 在线段BC 上,若140∠=,230∠=,则3∠的度数是______.29.命题:“两个角的和等于平角时,这两个角互为邻补角”是_____命题(填“真”或“假”)30.如图,AB∠CD .EF∠AB 于E ,EF 交CD 于F ,已知∠1=58°12',则∠2=______.31.如图,直线AB 、CD 相交于点O ,∠AOC=80°,∠1=30°,求∠2的度数解:因为∠DOB=∠______ ( )_________=80° (已知)所以,∠DOB=____°(等量代换)又因为∠1=30°( )所以∠2=∠____- ∠_____ = _____ - _____=_____ °32.把一张宽度相等的纸条按如图所示的方式折叠.图中∠1=100°,则∠2=____°.33.已知,如图,在△ABC 中,BO 和CO 分别平分△ABC 和△ACB ,过O 作DE△BC ,分别交AB 、AC 于点D 、E ,若BD+CE=5,则线段DE 的长为________.34.如图,在四边形ABCD 中,AB ∠CD ,连接AC ,BD .若∠ACB =90°,AC =BC ,AB =BD ,AD =AE 则∠ADC =_____°.35.如图,BE 平分ABC ∠,DE BC ∥,若1=25∠.,则2∠的度数为______.36.在四边形ABCD 中,AD BC ∥,AD BC <,90A ∠=︒,4AB =,3BC =,点E 为BCD ∠的平分线上一点,连接BE ,且3BE =,连接DE ,则CDE 的面积为________.37.如图,将矩形纸片ABCD 沿EF 折叠后,点C 、D 分别落在点C ′、D ′处,若∠AFE=65°,则∠C ′EB =________度.38.已知 ∠1 的两边分别平行于 ∠2 的两边,若 ∠1 = 40°,则 ∠2 的度数为__. 39.如图,在∠ABC 中,∠ABC 和∠ACB 的平分线交于点D ,过点D 作EF∠BC 交AB 于E ,交AC 于F.若BE=2,CF=3,则线段EF 的长为________.40.如图,在t R ABC ∆中,90︒∠=C ,6AC =,8BC =,点F 在边AC 上,并且2CF =,点E 为边BC 上的动点,将CEF ∆沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是________.三、解答题41.如图,∠A=∠1,∠1=∠2,CD 平分∠ADE ,试说明∠C=∠ADC .42.如图.BA DE ∥,30B ∠=︒,40D ∠=︒,求∠C 的度数.43.如图所示,已知12180,3,B DE ∠+∠=︒∠=∠和BC 平行吗?如果平行,请说明理由.44.如图,点E 、F 分别在AB 、CD 上,AF ∠CE 于点O ,∠1=∠B ,∠A +∠2=90°,求证∠AB ∥CD .请填空.证明∠∠AF ∠CE (已知),∠∠AOE =90°(___)又∠∠1=∠B (已知)∠CE ∥BF (_____),∠∠AFB =∠AOE (___)∠∠AFB =90°(_)又∠∠AFC +∠AFB +∠2=180°(平角的定义)∠∠AFC +∠2=(________)又∠∠A +∠2=90°(已知)∠∠A =∠AFC (_____)∠AB ∥CD (_____)45.如图,在∠ABC 中,AB =BC ,点D 、E 分别在边AB 、BC 上,且DE ∠AC ,AD =DE ,点F 在边AC 上,且CE =CF ,连接FD .(1)求证:四边形DECF是菱形;(2)如果∠A=30°,CE=4,求四边形DECF的面积.46.已知:如图,B、D分别在AC、CE上,AD是∠CAE的平分线,BD∠AE,AB=BC.求证:AC=AE.47.如图,直线AB与CD交于点F,锐角∠CDE=α,∠AFC+α=180°.(1)求证:AB∠DE;(2)若G为直线AB(不与点F重合)上一点,∠FDG与∠DGB的角平分线所在的直线交于点P.∠如图2,α=50°,G为FB上一点,请补齐图形并求∠DPG的度数;∠直接写出∠DPG的度数为(结果用含α的式子表示).48.完成下面的证明.已知:如图,BC∠DE,BE、DF分别是∠ABC、∠ADE的平分线.求证:∠1=∠2.证明:∠BC∠DE,∠∠ABC=∠ADE().∠BE、DF分别是∠ABC、∠ADE的平分线.∠∠3=12∠ABC,∠4=12∠ADE.∠∠3=∠4.∠∠().∠∠1=∠2().49.如图所示,∠ABC∠∠DEF,试说明AB∠DE,BC∠EF.50.(1)填空:如图∠,AB∠CD,猜想∠BPD与∠B,∠D的关系,并说明理由.解:过点P作EF∠AB,如图所示∠∠B+∠BPE=180°(______________________________).∠AB∠CD,AB∠EF∠EF∠CD(如果两条直线都和第三条直线平行,那么(_____________________).∠∠EPD+∠D=180°∠∠B+∠BPE+∠EPD+∠D=________,即∠BPD+∠B+∠D=360°(2)仿照上面的解题方法,观查图∠,已知AB∠CD,猜想图中∠BPD与∠B,∠D的关系,并说明理由.(3)观查图∠和∠,已知AB∠CD,猜想图中∠BPD与∠B,∠D的关系,不需要说明理由.参考答案:1.C【分析】由AB //CO 得出∠BAO =∠AOC ,即可得出∠BOD .【详解】解://AB CO ,60OAB AOC ∴∠=∠=︒6090150BOC ∴∠=︒+︒=︒90AOC DOA DOA BOD ∠+∠=∠+∠=︒60AOC BOD ∴∠=∠=︒故选:C .【点睛】本题考查两直线平行内错角相等的知识点,掌握这一点才能正确解题. 2.B【分析】根据两直线平行,同旁内角互补即可得.【详解】根据题意有:∠1+∠2=180°,∠∠1=50°,∠∠2=130°,故选:B .【点睛】本题主要考查了平行线的性质的知识,掌握两直线平行,同旁内角互补是解答本题的关键.3.B【分析】根据两直线平行内错角相等即可解决.【详解】解://30AB CD B ∠=︒,,30C ∴∠=︒, 故选:B .【点睛】本题主要考查平行线的性质,平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;题目较简单,能正确识别角的类型是解题的关键.4.C【分析】先假设a ∠b ,由平行线的性质即可得出∠2的值.【详解】解:假设a ∠b ,∠∠1=∠2,∠∠1=50°,∠∠2=50°.故选:C.【点睛】本题考查的是平行线的判定定理,即同位角相等,两直线平行.5.C【分析】在同一平面内,两条直线的位置关系有两种,平行和相交,三条直线互相平行无交点,两条直线平行,第三条直线与它相交,有2个交点,三条直线两两相交,最多有3个交点,最少有1个交点.【详解】解:由题意画出图形,如图所示:故选C.【点睛】本题考查了直线的交点个数问题,此类题没有明确平面上三条不重合直线的相交情况,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.6.B【分析】根据同位角的特征:两条直线被第三条直线所截形成的角中,两个角都在两条被截直线的同侧,并且在第三条直线(截线)的同旁,由此判断即可.【详解】解:∠∠1和∠2是同位角;∠∠1的两边所在的直线没有任何一条和∠2的两边所在的直线公共,∠1和∠2不是同位角;∠∠1和∠2是同位角;∠∠1的两边所在的直线没有任何一条和∠2的两边所在的直线公共,∠1和∠2不是同位角.故选:B.【点睛】本题考查三线八角中的某两个角是不是同位角,同位角完全由两个角在图形中的相对位置决定.在复杂的图形中判别同位角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F “形.7.D【分析】由AC x ∥轴,A (-3,2),根据坐标的定义可求得y 值,根据线段BC 最小,确定BC ∠AC ,垂足为点C ,进一步求得BC 的最小值和点C 的坐标.【详解】解:∠AC x ∥轴,A (-3,2),(),C x y ,()3,5B ,∠y =2,当BC ∠AC 于点C 时, 点B 到AC 的距离最短,即:BC 的最小值为:5−2=3, ∠此时点C 的坐标为(3,2),故D 正确.故选:D .【点睛】本题主要考查平面直角坐标系中的点的坐标,根据题意,画出图形,掌握“直线外一点与直线上各个点的连线中,垂线段最短”,是解题的关键.8.D【分析】根据同位角的定义和图形逐个判断即可.【详解】A 、不是同位角,故本选项错误;B 、不是同位角,故本选项错误;C 、不是同位角,故本选项错误;D 、是同位角,故本选项正确;故选:D .【点睛】本题考查了同位角的应用,注意:两条直线被第三条直线所截,如果有两个角在第三条直线的同旁,并且在两条直线的同侧,那么这两个角叫同位角.9.C【分析】过点B 作直线b∠l ,再由直线m∠l 可知m∠l∠b ,得出∠3=∠1,∠2=∠4,由此可得出结论.【详解】解:过点B 作直线b∠l ,如图所示:∠直线m∠l ,∠m∠l∠b ,∠∠3=∠1,∠2=∠4.∠∠2=24°,∠∠4=24°,∠∠3=45°-24°=21°,∠∠1=∠3=21°;故选择:C.【点睛】本题考查的是平行线的性质;熟练掌握平行线的性质,并能进行推理论证与计算是解决问题的关键.10.A【分析】如图,由题意易得a ∠b ,则有∠3+∠5=180°,∠4=∠5,然后问题可求解.【详解】解:如图,∠1130∠=︒,250∠=︒,∠12180∠+∠=︒,∠a ∠b ,∠∠3+∠5=180°,∠3115∠=︒,∠4565∠=∠=︒;故选A .【点睛】本题主要考查平行线的性质与判定,熟练掌握平行线的性质与判定是解题的关键.11.C【分析】根据同位角的定义进行分析解答即可,两个角都在截线的同旁,又分别处在被截的两条直线同侧,具有这样位置关系的一对角叫做同位角.【详解】解:∠直线AB 、CD 被直线EF 所截,∠只有∠CHE 与∠AGE 在截线EF 的同侧,且在AB 和CD 的同旁,即∠AGE 的同位角是∠CHE .故选:C .【点睛】本题考查同位角概念,解题的关键在于运用同位角的定义正确地进行分析. 12.B【分析】判断一件事情的语句,叫做命题.根据定义判断即可.【详解】解:由题意可知,A 、对顶角相等,故选项是命题;B 、过直线外一点作直线的平行线,是一个动作,故选项不是命题;C 、三角形任意两边之和大于第三边,故选项是命题;D 、如果a b a c ==,,那么b c =,故选项是命题;故选:B .【点睛】本题考查了命题与定理:判断一件事情的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.注意:疑问句与作图语句都不是命题.13.A【分析】根据邻补角的定义由90BEF ∠=︒得到90FEA ∠=︒,即90CEA AEF ∠+∠=︒,再根据对顶角相等得到CEA BED ∠=∠,所以90CEF BED ∠+∠=︒.【详解】解:90BEF ∠=︒,90FEA ∴∠=︒,即90CEA CEF ∠+∠=︒,CEA BED ∠=∠,90CEF BED ∴∠+∠=︒,即CEF ∠与BED ∠互余.故选:A .【点睛】本题考查了对顶角、邻补角:解题的关键是:知道有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角;只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.14.C【分析】根据两直线的位置关系、平行线的性质与判定分别进行判断即可.【详解】A:同一平面内,过一点有且只有一条直线与已知直线垂直,错误;B:过直线外一点有且只有一条直线与已知直线平行,错误;C:平行线的判定:同旁内角互补,两直线平行,正确;D:平行线的性质:两直线平行,同位角相等,错误.故答案选:C【点睛】本题考查两直线的位置关系以及平行线的性质与判定,掌握两直线的位置关系以及平行线的性质与判定是解题关键.15.D【详解】解:∠AB=DC,AD=BC,∠四边形ABCD为平行四边形,∠∠ADE=∠CBF,∠BF=DE,∠∠ADE∠∠CBF,∠∠BCF=∠DAE,∠∠DAE+∠ADB=∠AEB∠∠BCF=∠DAE=∠AEB-∠ADB=90°故选D.16.C【分析】根据平行线的性质可得同位角相等,再根据三角形的外角性质可求出∠3,即可求出结果.a b【详解】解://∴∠=∠︒14=85∠=∠∠,由三角形外角性质知,42+3∠=︒又235∴∠=∠-∠=︒-︒=︒,342853550故选:C.【点睛】本题考查平行线的性质、三角形的外角等知识,是重要考点,难度较易,掌握相关知识是解题关键.17.C【分析】根据平行线的性质得到∠DNM=∠BME=80°,由等腰直角三角形的性质得到∠PND=45°,即可得到结论.【详解】解:∠AB∠CD,∠∠DNM=∠BME=80°,∠∠PND=45°,∠∠PNM=∠DNM-∠DNP=35°,故选:C.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.18.A【详解】因为∠1=∠2=22°,所以AB//CD,所以∠DAC+∠CAB=180°.由于∠C=130°,则︒-︒-︒=︒.故选A.∠DAC=180130222819.D【分析】由△ABC∠∠BAD(AAS),推出AD=BC,AC=BD,故∠∠正确,再证明CO=OD,可得∠CDA=∠DCB,故∠正确,由∠CDO=∠OAB,可得CD∠AB,故∠正确;【详解】解:∠OA=OB,∠∠DAB=∠CBA,∠∠ACB=∠BDA=90°,AB=BA,∠∠ABC∠△BAD(AAS),∠AD=BC,AC=BD,故∠∠正确,∠BC=AD,BO=AO,∠CO=OD,∠∠CDA=∠DCB,故∠正确,∠∠COD=∠AOB,∠∠CDO=∠OAB,∠CD∠AB,故∠正确,故选:D.【点睛】本题考查全等三角形的判定和性质、等腰三角形的判定和性质、平行线的判定等知识,解题的关键是灵活的选择判定方法证明三角形全等.20.B【详解】A. 如图:∠∠1=38°,∠2=142°,∠∠3=180°−∠2=38°,∠∠4=∠1+∠3=76°≠∠1,∠AB与CD不平行;故本选项错误;B. 如图:∠∠1=∠2=38°,∠AB∠CD,且方向相同;故本选项正确;C. 如图:∠∠2=142°,∠∠3=180°−∠2=38°,∠∠1=38°,∠∠1=∠2,∠AB∠CD,但方向相反;故本选项错误;D. 如图:∠∠2=40°,∠∠3=180°−∠2=140°≠∠1,∠AB与CD不平行,故本选项错误.故选:B.21.110°【详解】解:根据a∠b得∠1=∠3=70°,∠∠2+∠3=180°,∠∠2=180°-70°=110°.故答案为110°.22.60【分析】根据AB∠CD得出:∠1=∠CEF,又CE∠GF得出:∠2=∠CEF,根据等量代换∠=∠=︒.即可得出:1260【详解】解:∠AB∠CD,∠∠1=∠CEF,∠CE∠GF,∠∠2=∠CEF,∠∠2=∠1,∠∠1=60°,∠∠2=60°,故答案为:60.【点睛】本题考查平行线的性质,注意两直线平行,内错角相等、同位角相等. 23.∠∠∠【分析】根据同位角、内错角、同旁内角的定义判断即可.【详解】∠中∠GBD 和∠HCE 没有任何关系,故∠错;∠中∠ABD 和∠ACH 是直线FD 与直线CH 被直线AC 所截形成的同位角,故∠对; ∠中∠FBC 和∠ACE 是直线FD 与直线CE 被直线AC 所截形成的内错角,故∠对; ∠中∠FBC 和∠HCE 没有任何关系,故∠错;∠中∠GBC 和∠BCE 是直线BG 与直线CE 被直线AC 所截形成的同旁内角,故∠对; 综上正确的有:∠∠∠.【点睛】本题主要考查同位角、内错角、同旁内角的定义,解题的关键是能够熟练地掌握同位角、内错角、同旁内角的定义即可.24.38【分析】根据对顶角相等进行解答即可.【详解】解:∠图中1∠和2∠是对顶角,138∠=︒,∠2138∠=∠=︒.故答案为:38.【点睛】本题主要考查了对顶角的性质,熟练掌握对顶角相等,是解题的关键. 25.A CBE ∠=∠(答案不唯一)【分析】根据平行线的判定方法结合图形进行补充条件即可.【详解】解:补充:,A CBE由同位角相等,两直线平行可得,AD BC ∥补充:180,A ABC根据同旁内角互补,两直线平行可得,AD BC ∥故答案为:A CBE ∠=∠或180A ABC ∠+∠=︒(任写一个即可)【点睛】本题考查的是平行线的判定,掌握“同位角相等,两直线平行或同旁内角互补,两直线平行”是解本题的关键.26.50°##50度【分析】先由圆周角定理求出∠B 的度数,再根据平行线的性质即可求出∠AMO 的度数【详解】∠∠AOC =2∠B ,∠AOC =100°,∠∠B =50°,∠OM ∥BC ,∠∠AMO =∠B =50°,故答案为50°.【点睛】本题考查了圆周角定理,平行线的性质,熟练掌握圆周角定理,并找到∠AMO 与∠B 的关系,已知角与∠B 的关系,从而求出角的度数.27. 铅垂线 合页型折纸【分析】根据平行线的判定,以及“铅垂线”、“合页型折纸法”、“长方形纸片法”的方法分析判断即可得解.【详解】(1)根据重力学原理,铅垂线垂直于水平面,与铅垂线垂直的直线则与平面平行,故填:铅垂线;(2)合页型折纸其折痕与纸被折断的一边垂直,即折痕与被折断的两线段垂直,把折断的两边放到水平面上,可判断折痕与水平面垂直,故填:合页型折纸.【点睛】本题考查了平行线的判定与垂线,利用物理力学原理是最好的检验方法. 28.70【分析】先根据平行线的性质求出C ∠的度数,再由三角形外角的性质即可得出结论.【详解】解:AB//CD ,140∠=,230∠=,C 40∠∴=,3∠是CDE 的外角,3C 2403070∠∠∠∴=+=+=.故答案为70.【点睛】本题考查了平行线的性质,三角形外角的性质,用到的知识点为:两直线平行,内错角相等.29.假.【分析】根据邻补角的定义来分析:既要其和是个平角(或180°),也要满足位置关系.【详解】解:根据邻补角的定义可知,两个角的度数和是180度,且有一条公共边称这两个角互为邻补角,∴如果两个角的和是平角时,那么这两个角不一定是邻补角.故答案为:假.【点睛】本题主要考查了邻补角的概念,比较简单.30.31°48′【分析】先由平行线的性质求出∠3的度数,再由∠AEF=90°,即可求出∠2.【详解】∠AB ∠ CD,∠1=58°12',∠∠3=∠1=58°12',∠EF∠AB,∠∠AEF=90°,∠∠2=90°-∠3=90°-58°12'=31°48′,故答案为31°48′.【点睛】本题考查了平行线的性质、垂线的定义,熟练掌握相关内容是解题的关键. 31.∠AOC,对顶角相等,∠AOC, 80°,已知BOD,1,80°,30°,50【详解】解:因为∠DOB=∠AOC (对顶角相等),∠AOC=80° (已知),所以,∠DOB=80°(等量代换),又因为∠1=30°(已知),所以∠2=∠BOD- ∠1 = 80°-50°=30°,故答案为:∠AOC,对顶角相等,∠AOC,80°,已知,BOD,1,80°,30°,50. 32.50.【详解】试题解析:如图:∠FED,根据折叠得出∠2=∠DEM=12∠是一张宽度相等的纸条,∠AE∠BM,∠1=100°,∠∠FED=∠1=100°,∠∠2=50°考点:1.平行线的性质;2.翻折变换(折叠问题).33.5【详解】∠在△ABC 中,BO 和CO 分别平分∠ABC 和∠ACB , ∠∠DBO=∠OBC ,∠ECO=∠OCB ,∠DE∠BC ,∠∠DOB=∠OBC=∠DBO ,∠EOC=∠OCB=∠ECO ,∠DB=DO ,OE=EC ,∠DE=DO+OE ,∠DE=BD+CE=5.故答案为5.34.105【分析】先根据90,ACB AC BC ∠=︒=判断出ACB ∆是等腰直角三角形,再根据AB BD =,AD DE =利用等腰三角形两底角相等的性质求算.【详解】∠90,ACB AC BC ∠=︒=∠45CAB ∠=︒又∠,AB BD AD AE ==∠,ADE AED BAD BDA ∠=∠∠=∠设=ADE AED x ∠=∠︒∠1802DAE x DAB ADB x ∠=︒-︒∠=∠=︒,∠180245x x ︒-︒+︒=︒∠75x =︒∠75DAB x ∠=︒=︒又∠//AB CD∠18075105ADC ∠=︒-︒=︒故答案为:105【点睛】本题考查平行线、等腰三角形、等腰直角三角形的性质,转化相关的角度是解题关键.35.50.【分析】先由角平分线的定义即可得出∠ABC 的度数,再根据平行线的性质求出∠1的度数.【详解】∠BE 平分∠ABC ,∠∠ABC=2∠1=50°.∠DE∠BC,∠∠ABC=∠2=50°.故答案为50°.【点睛】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.36.6【分析】过点D作DF∠BC,连接BD,根据平行线的判定和性质得出DF=AB=4,再由等边对等角确定∠BEC=∠BCE,利用各角之间的关系及平行线的判定及性质得出BE∠DC,∆CED与∆CDB的边CD上的高相等,结合图形求解即可.【详解】解:过点D作DF∠BC,连接BD,如图所示,∠AD∠BC,∠A=90,∠∠ABC=90,∠DF∠BC,∠∠DFB=90,∠DF∠AB,∠四边形ABFD为平行四边形,∠DF=AB=4,∠BE=BC=3,∠∠BEC=∠BCE,∠CE平分∠BCD,∠∠DCE=∠BEC,∠BE∠DC,∠∆CED与∆CDB的边CD上的高相等,∠1·62CDE BCDS S BC DF===,故答案为:6.【点睛】题目主要考查平行四边形的判定和性质,平行线的判定,角平分线的计算,等边对等角等,理解题意,综合运用这些知识点是解题关键.37.50【详解】试题解析:∠AD∠BC∠∠FEC=∠AFE=65°又∠沿EF折叠∠∠C′EF=∠FEC=65°,∠∠C'EB=180°-65°-65°=50°.【点睛】本题考查了翻折变换的知识,解答本题关键是掌握折叠前后图形的对应边和对应角相等,另外要熟练运用平行线的性质,难度一般.38.40°或140°【分析】如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补. 根据题意, ∠1=∠2或∠1和∠2互补.【详解】解:根据题意,得∠1=∠2=40°或∠2=180°-∠1=180°-40°=140°故答案为40°或140°.【点睛】本题考查了平行线的性质,如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.39.5【分析】利用角平分线和平行可证得∠EBD=∠EDB,∠FDC=∠FCD,可得到DE=BE,DF=FC,可得到EF=BE+FC.【详解】∠BD平分∠ABC,∠∠EBD=∠DBC,∠EF∠BC,∠∠EDB=∠DBC,∠∠EBD=∠EDB,∠DE=BE=2,同理DF=3,∠EF=DE+DF=2+3=5.【点睛】此题主要考查学生对等腰三角形的判定与性质和平行线性质的理解和掌握,解答此题的关键是熟练掌握等腰三角形的两角相等或两边相等.40.1.2【分析】过点F 作FG ∠AB ,垂足为G ,过点P 作PD ∠AB ,垂足为D ,根据垂线段最短,得当PD 与FG 重合时PD 最小,利用相似求解即可.【详解】∠90︒∠=C ,6AC =,8BC =,∠AB =10,∠2CF =,将CEF ∆沿直线EF 翻折,点C 落在点P 处,∠CF =PF =2,AF =AC -CF =6-2=4,过点F 作FG ∠AB ,垂足为G ,过点P 作PD ∠AB ,垂足为D ,根据垂线段最短,得当PD 与FG 重合时PD 最小,∠∠A =∠A ,∠AGF =∠ACB ,∠△AGF ∠△ACB , ∠AF GF AB CB =, ∠4108GF =, ∠FG =3.2,∠PD =FG -PF =3.2-2=1.2,故答案为:1.2.【点睛】本题考查了勾股定理,折叠的性质,三角形相似,垂线段最短,准确找到最短位置,并利用相似求解是解题的关键.41.见解析.【分析】根据平行线的判定可得AD∠BE ,然后求出∠2=∠E ,结合已知条件可证明AC∠DE ,进而得到∠C=∠CDE ,再根据角平分线的定义求出∠ADC=∠CDE ,等量代换即可证明结论.【详解】证明:∠∠A=∠1,∠AD∠BE ,∠∠2=∠E ,∠∠1=∠2,∠∠1=∠E ,∠AC∠DE ,∠∠C=∠CDE ,∠CD 平分∠ADE ,∠∠ADC=∠CDE ,∠∠C=∠ADC.【点睛】本题考查了角平分线的定义以及平行线的判定和性质,灵活运用平行线的判定定理和性质定理是解题的关键.42.70°【分析】过点C 作//CF BA ,根据平行线的性质及可求解;【详解】解:过点C 作//CF BA ,∠30BCF B ∠=∠=︒,∠//BA DE ,∠//CF DE ,∠40FCD D ∠=∠=︒,∠70BCD BCF FCD ∠=∠+∠=︒.【点睛】本题主要考查平行线的性质,掌握平行线的性质是解题的关键.43.DE ∠BC ,理由见解析【分析】由条件可得到∠2+∠DFH =180°,可证得AB//EH ,可得到∠3+∠BDE=180°,结合条件可证明DE//BC【详解】DE ∠BC ,理由如下:∠∠1+∠2=180°,∠1=∠DFH ,∠∠2+∠DFH =180°,∠AB ∠EH ,∠∠3+∠BDE =180°,∠∠B =∠3,∠∠B +∠BDE =180°,∠DE ∠B C .【点睛】本题主要考查平行线的判定,用到的知识点为:同旁内角互补,两直线平行. 44.垂直的定义;内错角相等,两直线平行;两直线平行,同位角相等;等量代换;90°;同角的余角相等;内错角相等,两直线平行.【分析】根据垂直的定义,平行线的判定与性质即可得.【详解】证明∠∠AF ∠CE (已知),∠∠AOE =90°(垂直的定义),又∠∠1=∠B (已知),∠CE BF ∥ (内错角相等,两直线平行),∠∠AFB =∠AOE (两直线平行,同位角相等),∠∠AFB =90°(等量代换),又∠∠AFC +∠AFB +∠2=180°(平角的定义),∠∠AFC +∠2=(90°),又∠∠A +∠2=90°(已知),∠∠A =∠AFC (同角的余角相等),∠AB CD ∥ (内错角相等,两直线平行),故答案为:垂直的定义;内错角相等,两直线平行;两直线平行,同位角相等;等量代换;90°;同角的余角相等;内错角相等,两直线平行.【点睛】本题考查了垂直的定义,平行线的判定与性质,解题的关键是掌握这些知识点. 45.(1)证明见解析;(2)四边形DECF 的面积=8【分析】(1)根据等腰三角形的性质和平行线的性质得到BDE BED ∠=∠,求得BD BE =,推出四边形DECF 是平行四边形,于是得到结论;(2)过点F 作FG BC ⊥交BC 于G ,根据菱形的性质得到4CF =,根据等腰三角形的性质得到A C ∠=∠,根据直角三角形的性质得到122FG FC ==,于是得到结论.【详解】(1)解:AB BC =,A C ∴∠=∠,//DE AC ,BDE A ∴∠=∠,BED C ∠=∠,BDE BED ∴∠=∠,BD BE ∴=,BA BD BC BE ∴-=-,AD CE ∴=,AD DE =,DE EC ∴=,CE CF =,DE CF ∴=,//DE FC ,∴四边形DECF 是平行四边形,CE CF =,∴四边形DECF 是菱形;(2)解:过点F 作FG BC ⊥交BC 于G ,四边形DECF 是菱形,4CE =,4CF ∴=,AB BC =,A C ∴∠=∠,30A ∠=︒,30C ∴∠=︒,90FGC ∠=︒,30C ∠=︒,122FG FC ∴==, ∴四边形DECF 的面积428EC FG ==⨯=.【点睛】本题考查了菱形的判定和性质,平行四边形的判定和性质,等腰三角形的性质,直角三角形的性质,解题的关键是正确的识别图形.46.见解析【分析】根据角平分线和平行线的性质以及等腰三角形的判定解答即可.【详解】证明:∠AD 是∠CAE 的平分线,∠∠BAD =∠DAE ,∠BD ∠AE ,∠∠BDA =∠DAE ,∠∠BAD =∠BDA ,∠AB =BD ,∠AB =BC ,∠BC =BD ,∠∠C =∠CDB ,∠BD ∠AE ,∠∠E =∠CDB ,∠∠C =∠E ,∠AC =AE .【点睛】此题考查等腰三角形的性质与判定,关键是根据角平分线和平行线的性质得出BC=BD .47.(1)见解析;(2)∠见解析,∠DPG =65°;∠(90°﹣12a )或(90°+12a ) 【分析】(1)利用邻补角的意义,得出∠D =∠AFD ,根据内错角相等,两直线平行即可得结论;(2)∠根据题意画出图形结合(1)即可求出∠DPG 的度数;∠结合∠即可写出∠DPG 的度数.【详解】(1)证明:∠∠AFC +∠AFD =180°,∠AFC +α=180°,∠∠AFD =α=∠CDE ,∠AB∠DE;(2)解:∠如图即为补齐的图形,∠∠FDG与∠DGB的角平分线所在的直线交于点P,∠∠FDG=2∠FDP=2∠GDP,∠DGB=2∠DGQ=2∠BGQ,由(1)知AB∠DE,∠∠DFB=180°﹣α=180°﹣50°=130°,∠∠DGB=∠FDG+∠DFG,∠2∠DGQ=2∠GDP+130°,∠∠DGQ=∠GDP+65°,∠∠DGQ=∠GDP+∠DPG,∠∠DPG=65°;∠由∠知∠DPG=12∠DFB=12(180°﹣α)=90°﹣12a.当点G在AF上时,∠DPG=180°﹣(∠GDP+∠DGP)=180°﹣12(∠GDC+∠DGB)=180°﹣12∠DFB=180°﹣12(180°﹣α)=90°+12 a.故答案为:(90°﹣12a)或(90°+12a).【点晴】考查了平行线的判定与性质,解题关键是灵活运用其性质.48.两直线平行,同位角相等;DF;BE;同位角相等,两直线平行;两直线平行,内错角相等.【分析】根据平行线的性质得出∠ABC=∠ADE,根据角平分线定义得出∠3=12∠ABC,∠4=12∠ADE,求出∠3=∠4,根据平行线的判定得出DF∠BE,根据平行线的性质得出即可.【详解】证明:∠BC∠DE,∠∠ABC=∠ADE(两直线平行,同位角相等).∠BE、DF分别是∠ABC、∠ADE的平分线.∠∠3=12∠ABC,∠4=12∠ADE.∠∠3=∠4,∠DF∠BE(同位角相等,两直线平行),∠∠1=∠2(两直线平行,内错角相等),故答案是:两直线平行,同位角相等;DF;BE;同位角相等,两直线平行;两直线平行,内错角相等.【点睛】本题考查了平行线的性质和判定,角平分线定义的应用,能综合运用平行线的性质和判定进行推理是解此题的关键.49.见解析.【分析】根据∠ABC∠∠DEF,得到∠A=∠D,∠1=∠2,根据内错角相等,两直线平行即可判定.【详解】解:证明:∠∠ABC∠∠DEF∠∠A=∠D,∠AB//DE;∠∠ABC∠∠DEF,∠∠1=∠2,∠BC//EF.【点睛】考查全等三角形的性质以及平行线的判定,掌握全等三角形的性质是解题的关键.50.(1)两直线平行,同旁内角互补;这两条直线互相平行;360°(2)∠BPD=∠B+∠D;理由见解析(3)图∠:∠D=∠B+∠BPD;图∠:∠B=∠BPD+∠D【分析】(1)利用平行线的性质解答;(2)作平行线,根据内错角相等可证∠BPD=∠B+∠D;(3)同样作平行线,根据内错角相等可证∠B=∠BPD+∠D.【详解】(1)过点P作EF∥AB,如图所示:∠∠B+∠BPE=180°(两直线平行,同旁内角互补),∠AB∥CD,EF∥AB,∠CD∥EF(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∠∠EPD+∠D=180°,∠∠B+∠BPE+∠EPD+∠D=360°,∠∠B+∠BPD+∠D=360°.故答案为:两直线平行,同旁内角互补;这两条直线互相平行;360°.(2)猜想∠BPD=∠B+∠D;理由:过点P作EP∥AB,如图所示:∠EP∥AB,∠∠B=∠BPE(两直线平行,内错角相等),∠AB∥CD,EP∥AB,∠CD∥EP(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∠∠EPD=∠D,∠∠BPD=∠B+∠D.(3)图∠结论:∠D=∠BPD+∠B,。
初中数学相交线与平行线专题训练50题含答案
初中数学相交线与平行线专题训练50题含答案(单选、填空、解答题)一、单选题1.如图,直线AB ,CD 交于点O ,射线OM 平分AOC ∠,如果104AOD ∠=︒,那么MOC ∠等于( )A .38°B .37°C .36°D .52° 2.如图,在直线l 外一点P 与直线上各点的连线中,P A =5,PO =4,PB =4.3,OC =3,则点P 到直线l 的距离为( )A .3B .4C .4.3D .5 3.如图网格中,每个小方格都是边长为1的小正方形,点A 、B 是方格纸中的两个格点(网格线的交点称格点),在这个7×7的方格纸中,找出格点C ,使△ABC 的面积为3,则满足条件的格点C 的个数是( )A .2 个B .4个C .5个D .6个 4.如图,直线a ,b 穿过正五边形ABCDE ,且//a b ,则αβ∠-∠=( )A .95°B .84°C .72°D .60° 5.如图,某沿湖公路有三次拐弯,如果第一次的拐角120A ∠=︒,第二次的拐角155B ∠=︒,第三次的拐角为C ∠,这时的道路恰好和第一次拐弯之前的道路平行,则C ∠的度数是( )A .130︒B .140︒C .145︒D .150︒ 6.如图,下列条件:①①C =①CAF ,①①C =①EDB ,①①BAC +①C =180°,①①GDE +①B =180°,①①CDG =①B .其中能判断AB //CD 的是( )A .①①①①B .①①①C .①①①D .①①① 7.如图,与①α构成同旁内角的角有( )A .1个B .2个C .5个D .4个 8.如图,下列说法中错误的是( )A .①1与①A 是同旁内角B .①3与①A 是同位角C .①2与①3是同位角D .①3与①B 是内错角9.如图,为判断一段纸带的两边a ,b 是否平行,小明在纸带两边a ,b 上分别取点A ,B ,并连接AB .下列条件中,能得到a b ∥的是( )A .12∠=∠B .13∠=∠C .14180∠+∠=︒D .13180∠+∠=︒ 10.如图,//DE BC BE ,平分ABC ∠,若170=︒∠,则AEB ∠的度数为( )A .20︒B .35︒C .55︒D .70︒ 11.用“垂线段最短”来解释的现象是( )A .B .C .D .12.如图,直线AB ,CD 相交于点O ,OE 平分①AOC ,若①BOD =70°,则①DOE 的度数是( )A .70°B .35°C .120°D .145° 13.下列说法错误的是( )A .同旁内角相等,两直线平行B .旋转不改变图形的形状和大小C .对角线相等的平行四边形是矩形D .菱形的对角线互相垂直14.(1)如果直线a b ,b c ,那么a c ;(2)相等的角是对顶角;(3)两条直线被第三条直线所截,同位角相等;(4)在同一平面内如果直线a b ⊥,c b ,那么a c ; (5)两条直线平行,同旁内角相等;(6)两条直线相交,所成的四个角中,一定有一个是锐角.其中真命题有( )A .1个B .2个C .3个D .4个 15.以下四个命题:①在同一平面内,过一点有且只有一条直线与已知直线垂直;①若a>b ,则-2a>-2b ;①如果三条直线a 、b 、c 满足:a①b ,b①c ,那么直线a 与直线c 必定平行;①对顶角相等,其中真命题有( )个.A .1B .2C .3D .416.在统一平面内有三条直线a 、b 、c ,下列说法:①若//a b ,//b c ,则//a c ;①若a b ⊥,b c ⊥,则a c ⊥,其中正确的是( )A .只有①B .只有①C .①①都正确D .①①都不正确 17.如图,在Rt ABC ∆中,90C ∠=︒,3AC =,6BC =,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于两点,过这两点作直线与AB 相交于点D ,则AD 的长是( )A .3B .1.5CD .18.如图,直线AB 与直线CD 相交于点O.若①AOD =50°,则①BOC 的度数是( )A .40°B .50°C .90°D .130° 19.将一块直角三角板ABC 按如图方式放置,其中①ABC =30°,A 、B 两点分别落在直线m 、n 上,①1=20°,添加下列哪一个条件可使直线m①n( )A .①2=20°B .①2=30°C .①2=45°D .①2=50° 20.如图,在正方形ABCD 中,BPC △是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连结BD ,DP ,BD 与CF 相交于点H .给出下列结论:①~BDE DPE ,①35FP PH =,①2DP PH PB =⋅,①tan 2DBE ∠=序号是( )A .①①B .①①①C .①①①D .①①二、填空题21.如图,直线AB 、CD 相交于点O ,EO AB ⊥于点O ,50EOD ∠=︒,则AOC ∠的度数为______.22.如图,直线,则的度数为=______.23.如图所示,A ,B 之间有一座山,一条笔直的铁路要通过A ,B 两地,在A 地测得铁路的走向是北偏东68°20',如果A ,B 两地同时开工,那么在B 地按____方向施工才能使铁路在山中准确接通.24.如图,直线AB ,CD 相交于点O ,若①AOC =20°,则①BOD 的大小为___________(度).25.下列三个日常现象:其中,可以用“两点之间线段最短”来解释的是 _____ (填序号).26.如图,直线AB 与直线CD 交于点O ,OE 平分AOC ∠,已知①100AOD =︒,那么EOB ∠=__度.27.如图,直线AB 与CD 相交于点O ,OE AB ⊥于O ,140∠=︒,则2∠=______.28.如图,已知平行线AB ,CD 被直线AE 所截,AE 交CD 于点F ,连接CE ,若20E ∠=︒,CF EF =,则A ∠的度数为______.29.如图,直线a①直线b ,且被直线c 所截,若①1=(3x+70)度,①2=(2x+10)度,则x 的值为________.30.如图,六边形ABCDEF 是正六边形,若l 1①l 2,则①1﹣①2=_____.31.如图,直线a ①b ,在Rt①ABC 中,点C 在直线a 上,若①1=56°,①2=29°,则①A 的度数为______度.32.如图,梯形ABCD 中,AB CD ∥,对角线AC 、BD 相交于点O ,如果ABD △的面积是BCD △面积的2倍,那么DOC △与BOC 的面积之比是______.33.如图,在Rt①ABC 中,AC =6,BC =8,点P 是AC 边的中点,点D 和E 分别是边BC 和AB 上的任意一点,则PD+DE 的最小值为_____.34.如图,AC BC ⊥,90CDA ∠=︒,4,3,5AC BC AB ===,点C 到AB 的距离是______.与ACD ∠相等的角是_________.35.如图,直线a ,b ,c 两两相交于A ,B ,C 三点,则图中有________对对顶角;有________对同位角;有________对内错角;有________对同旁内角.36.如图,在长方形ABCD 中,点E 、F 分别在AD 、BC 边上,沿直线EF 折叠后,C 、D 两点分别落在平面内的C '和D 处,若①1=70°,则①2=______.37.如图,将一张长方形纸片ABCD 沿EF 折叠后,点A ,B 分别落在点A ',B '的位置.若155∠=︒,则2∠的度数是__________.38.如图,在①ABC 中,①ABC 与①ACB 的平分线交于点D ,EF 经过点D ,分别交AB ,AC 于点E ,F ,BE =DE ,DF =5,点D 到BC 的距离为4,则①DFC 的面积为_____39.如图,已知AB①CD ,垂足为点O ,直线EF 经过O 点,若①1=55°,则①COE 的度数为______度.40.如图,在ABCD 中,105ABC ∠=︒,对角线,AC BD 交于点,30,4O DAC AC ∠=︒=,点P 从点B 出发,沿着边BC CD 、运动到点D 停止,在点P运动过程中,若OPC 是直角三角形,则CP 的长是___________.三、解答题41.如图,点B ,F ,C ,E 在同一条直线上,BF EC =,AB DE =,DE AB ∥.求证:A D ∠=∠.42.如图,已知AM ①CN ,且①1=①2,那么AB ①CD 吗?为什么? 解:因为AM ①CN ( 已知 )所以①EAM =①ECN又因为①1=①2所以①EAM +①1=①ECN +①2即① =①所以 .43.如图,在ABC 中,ABC ∠的平分线交AC 于点D ,过点D 作DE BC ∥交AB 于点E ,若80A ∠=︒,40C ∠=︒,求BDE ∠的度数.44.按要求画图:已知点P 、Q 分别在AOB ∠的边OA ,OB 上(如图所示):(1)①画线段PQ ;①过点P 作OB 的垂线PE ,垂足为E ;①过点Q 作OA 的平行线MN (M 在上,N 在下).(2)在(1)的情况下,若40MQB ∠=︒,求OPE ∠.(不使用三角形的内角和为180°) 45.如图,在ΔABC 中,CD 是高,点E 、F 、G 分别在BC 、AB 、AC 上且EF①AB ,DG①BC ,试判断①1与①2的大小关系,并说明理由.46.(1)如图1,在①ABC 中,BD 是①ABC 的角平分线,点D 在AC 上,DE①BC ,交AB 于点E ,①A =50°,①ADB =110°,求①BDE 各内角的度数;(2)完成下列推理过程.已知:如图2,AD ①BC ,EF ①BC ,①1=①2,求证:DG ①AB .推理过程:因为AD ①BC ,EF ①BC (已知),所以①EFB =①ADB =90°(________).所以EF①AD (同位角相等,两直线平行).所以①1=①BAD (________).因为①1=①2(已知),所以________=________(等量代换).所以DG①AB (内错角相等,两直线平行).47.如图,点A 为直线外一点,点B 是直线l 上一定点,点P 是直线l 上一动点,连接AB ,AP ,若要使2PA PB 1+的值最小,确定点P 的位置,并说明理由.48.如图,在三角形ABC 中,点D ,F 在边BC 上,点E 在边AB 上,点G 在边AC 上,EF 与GD 的延长线交于点H ,1B ∠=∠,23180∠+∠=︒.(1)判断EH 与AD 的位置关系,并说明理由(2)若58DGC ∠=°,且410H ∠=∠+︒,求H ∠的度数.49.已知:直线AB 与直线PQ 交于点E ,直线CD 与直线PQ 交于点F ,∠PEB +∠QFD =180°.(1)如图1,求证:AB ∥CD ;(2)如图2,点G 为直线PQ 上一点,过点G 作射线GH ∥AB ,在∠EFD 内过点F 作射线FM,∠FGH内过点G作射线GN,∠MFD=∠NGH,求证:FM∥GN;(3)如图3,在(2)的条件下,点R为射线FM上一点,点S为射线GN上一点,分别连接RG、RS、RE,射线RT平分∠ERS,∠SGR=∠SRG,TK∥RG,若∠KTR+∠ERF=108°,∠ERT=2∠TRF,∠BER=40°,求∠NGH的度数.50.如图,四边形ABCD与四边形CEFH均为正方形,点B、C、E在同一直线上,连接BD,DF,BF.(1)观察图形,直接写出与线段CH平行的线段.(2)图中与线段CH垂直的线段共有_______条.(3)点B到点F的最短距离为线段____的长,点B到线段EF的的最短距离为线段____的长.(4)若正方形ABCD的边长为a, 正方形CEFH的边长为2,则线段HD=___,线段BE=___,此时请你求出三角形DBF的面积,你有什么发现?参考答案:1.A【分析】先根据已知条件求出①AOC 的度数,再根据OM 平分①AOC ,即可得到①MOC 的值【详解】解:①104AOD ∠=︒①①AOC =180°−104°=76°①OM 平分①AOC ①①MOC=12AOC ∠ 1762=⨯︒ =38°故选:A【点睛】本题主要考查了领补角及角平分线的定义,熟练掌握定义是解题的关键 2.B【分析】点到直线的距离:直线外一点到直线的垂线段的长度,叫做点到直线的距离.【详解】解:由于OP ①直线l ,根据题意知:点P 到直线l 的距离等于PO 的长,即点P 到直线l 的距离PO =4,故选:B .【点睛】本题考查了对点到直线的距离的应用,注意:点到直线的距离是指该点到直线的垂线段的长.3.D【分析】利用格点的性质和三角形的面积公式即可得.【详解】由格点的性质和三角形的面积公式得,总共有6个满足条件的格点C ,如图所示:(格点C 均在平行于AB 的直线上)其中,由点12345,,,,C C C C C 与点,A B 分别构成的5个三角形的面积显然是36ABC 的面积为3663AC C BDC ABDC S S S --直角梯形1114633(36)1222=⨯⨯-⨯⨯-⨯+⨯ 991222=--故选:D .【点睛】本题考查了平行线的实际应用,理解题意,结合格点的性质是解题关键. 4.C【分析】延长EA 与直线b 交于点F ,由平行线的性质得①AFG =∠β,再由多边形的内角和定理求出108EAB ∠=︒,进一步得出72GAF ∠=︒,最后由三角形的外角关系可得结论.【详解】解:延长EA 与直线b 交于点F ,如图,①//a b①AFG β∠=∠①五边形ABCDE 是正五边形, ①(52)1801085EAB -⨯︒∠==︒ ①180********GAF EAB ∠=︒-∠=︒-︒=︒又=72AFG GAF αβ∠∠+∠=∠+︒①72αβ∠-∠=︒故选:C【点睛】本题考查的是多边形内角与外角,正五边形的性质,三角形外角的性质,利用数形结合求解是解答此题的关键.【分析】过点B作BH①AM,则BH①CD,利用平行线的性质求解即可.【详解】解:如图,过点B作BH①AM,①AM①CD,①BH①CD,①①ABH=①A=120°,①HBC+①C=180°,①①HBC=①ABC-①ABH=35°,①①C=180°-①HBC=145°,故选:C.【点睛】本题考查平行线的判定与性质,添加平行线是解答的关键.6.A【分析】根据平行线的判定定理逐一排除得出即可.【详解】解:①①C=①CAF,①AB//CD;故①符合题意;∠=∠C EDB//∴AC BD故①不符合题意;①①BAC+①C=180°,①AB//CD;故①符合题意;①①GDE+①B=180°,①GDE+①EDB=180°,①①EDB=①B,①AB//CD;故①符合题意;①①CDG=①B,①AB//CD,故①符合题意;符合题意的有:①①①①故选:A .【点睛】本题考查了平行线的判定,掌握平行线的判定是解题的关键.7.C【详解】试题分析:根据题意可知与①α构成同旁内角的角有如图5个.考点:三线八角点评:本题难度较低,主要考查学生对三线八角的掌握.分析这类题型是,主要抓住已知角两边与第三边相交的构成三线基础,为解题关键.8.B【分析】根据同位角、内错角、同旁内角的定义,可得答案.【详解】A. ①1与①A 是同旁内角,故A 正确;B. ①3与①A 不是同位角,故B 错误;C. ①2与①3是同位角,故C 正确;D. ①3与①B 是内错角,故D 正确;故选B.【点睛】此题考查同位角、内错角、同旁内角,解题关键在于掌握其性质9.D【分析】根据平行线的判定定理进行判断即可.【详解】解:A 、12∠=∠,1∠和2∠邻补角,不能证明a b ∥;B 、13∠=∠,1∠和3∠是同旁内角,同旁内角相等不能证明a b ∥;C 、14180∠+∠=︒,1∠和4∠属于内错角,内错角互补不能证明a b ∥;D 、①13180∠+∠=︒,①a b ∥(同旁内角互补两直线平行);故选:D .【点睛】本题考查了平行线的判定定理,熟知:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;是解本题的关键.10.B【分析】先根据平行线的性质求得①ABC=70°,①CBE=①AEB,再运用角平分线即可求得①AEB的度数.【详解】解:①//DE BC,①170ABC∠=∠=︒,CBE AEB∠=∠,①BE平分①ABC,①1352CBE AEB ABC∠=∠=∠=︒.故选:B.【点睛】本题考查了平行线的性质和角平分线,灵活应用相关性质定理是解答本题的关键.11.A【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】解:A.体育课上,老师测量某个同学的跳远成绩,利用了垂线段最短,故A符合题意;B.木板上弹墨线,利用了两点确定一条直线,故B不符合题意;C.用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故C不符合题意;D.把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故D不符合题意.故选:A.【点睛】本题主要考查了线段的性质,熟记性质并能灵活过应用是解题关键.12.D【分析】根据对顶角相等求出①AOC,根据角平分线的定义计算,得到答案.【详解】解:①①BOD=70°,①①AOC=①BOD=70°,①OE平分①AOC,①①COE=12①AOC=12×70°=35°,①DOE=①COD-①COE=145°故选:D.【点睛】本题考查的是对顶角、角平分线的定义、平角定义,掌握对顶角相等、角平分线的定义是解题的关键.13.A【分析】依次分析各选项即可得出说法错误的选项.【详解】解:因为同旁内角互补,两直线平行,因此A选项错误;根据旋转的性质,旋转不改变图形的形状和大小,因此B选项内容正确;根据矩形的判定,C选项内容正确;根据菱形的性质,D选项内容正确.故选:A.【点睛】本题综合考查了平行线的判定、旋转的性质、矩形的判定、菱形的性质等内容,解决本题的关键是理解并能灵活运用相关概念,本题考查的是概念基础题,因此侧重考查学生对教材基础知识的理解与掌握等.14.A【分析】分别利用平行线的性质,以及对顶角的定义等分析得出答案.【详解】解:(1)如果直线a b,b c,那么a c,正确,是真命题,(2)相等的角是对顶角,错误,不是真命题;(3)两条直线被第三条直线所截,同位角不一定相等,错误,不是真命题;(4)在同一平面内如果直线a①b,c b,那么a c,错误,不是真命题;(5)两条直线平行,同旁内角互补,错误,不是真命题;(6)两条直线相交,所成的四个角中,一定有一个是锐角,错误,不是真命题;故选:A.【点睛】此题主要考查了命题与定理,正确把握平行线的性质是解题关键.15.C【详解】试题分析:根据基本的数学概念依次分析各小题即可作出判断.解:①在同一平面内,过一点有且只有一条直线与已知直线垂直,①如果三条直线a、b、c 满足:a①b,b①c,那么直线a与直线c必定平行,①对顶角相等,均正确;①若,则,错误;故选C.考点:真假命题点评:本题属于基础应用题,只需学生熟练掌握基本的数学概念,即可完成.16.A【分析】根据如果两条直线都与第三条直线平行,那么这两条直线也互相平行可得①正确;根据应为同一平面内,垂直于同一条直线的两直线平行可得①错误.【详解】解:①若a①b,b①c,则a①c,说法正确;①若a①b,b①c,则a①c,说法错误,应为同一平面内,若a①b,b①c,则a①c;故选:A.【点睛】此题主要考查了平行公理和垂线,关键是注意同一平面内,垂直于同一条直线的两直线平行.17.C【分析】利用勾股定理求出AB,证明BD=AD即可解决问题.【详解】解:在Rt①ABC中,AC=3,BC=6,①AB=由作图可知,直线DE垂直平分线段BC,①①BED=①C=90°,①DE①AC,①BE=EC,DE①AC,①BD=AD,故选:C.【点睛】本题考查作图−基本作图,勾股定理,平行线等分线段定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.B【分析】根据对顶角相等,可得答案.【详解】解;①①BOC与①AOD是对顶角,①①BOC=①AOD=50°,故选B.【点睛】本题考查了对顶角与邻补角,对顶角相等是解题关键.19.D【分析】根据平行线的性质即可得到①2=①ABC+①1,即可得出结论.【详解】①直线EF①GH ,①①2=①ABC+①1=30°+20°=50°,故选D .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.20.C【分析】根据等边三角形的性质和正方形的性质,得到30PCD ∠=︒,于是得到75CPD CDP ∠=∠=︒,证得15EDP PBD ∠=∠=︒,于是得到BDE DPE ∆∆,故①正确;由于FDP PBD ∠=∠,60DFP BPC ∠=∠=︒,推出DFP BPH ∆∆,得到PF DF DF PH PB CD ===①错误;由于30PDH PCD ∠=∠=︒,DPH DPC ∠=∠,推出DPH CPD ∆∆,得到PD PH CD PD=,PB CD =,等量代换得到2PD PH PB =⋅,故①正确;过P 作PM CD ⊥,PN BC ⊥,求得30PCD ∠=︒,根据三角函数的定义得到CM PN ==2PM =,由平行线的性质得到EDP DPM ∠=∠,等量代换得到DBE DPM ∠=∠,于是求得tan 2DBE ∠=①正确.【详解】解:①BPC ∆是等边三角形,BP PC BC ∴==,60PBC PCB BPC ∠=∠=∠=︒,在正方形ABCD 中,①AB BC CD ==,A ADC BCD 90∠=∠=∠=︒30ABE DCF ∴∠=∠=︒,75CPD CDP ∴∠=∠=︒,15PDE ∴∠=︒,①604515PBD PBC HBC ∠=∠-∠=︒-=︒︒,EBD EDP ∴∠=∠,①DEP DEB ∠=∠,BDE DPE ∴∆∆;故①正确;①=PC CD ,=30PCD ∠︒=75PDC ∴∠︒15FDP ∴∠=︒①45DBA ∠=︒60PBD BPC ∴∠=∠=︒①DFP BPH ∆∆PF DF DF PH PB CD ∴===①错误; ①30PDH PCD ∠=∠=︒,DPH DPC ∠=∠,①DPHCPD ∆∆, ∴PD PH CD PD=, 2PD PH CD ∴=•,①PB CD =,2PD PH PB =∴⋅,故①正确;如图,过P 作PM CD ⊥,PN BC ⊥,设正方形ABCD 的边长是4,BPC △为正三角形,60PBC PCB ︒∴∠=∠=,4PB PC BC CD ====,30PCD ∴∠=︒sin 604CM PN PB ︒∴==⋅==,sin302PM PC =︒⋅=, ①//DE PM ,EDP DPM ∴∠=∠,DBE DPM ∴∠=∠,tan tan 2DM DBE DPM PM ∴∠=∠===①正确;故选:C.【点睛】本题考查的正方形的性质,相似三角形的判定和性质,平行线的性质,三角函数定义,等积变换,解答此题的关键是作出辅助线,利用锐角三角函数的定义求出PM及PN的长.21.40︒∠的度数,根据对顶角相等可得解.【分析】由余角的定义可得BOD⊥【详解】解:EO AB90∴∠=BOE︒∴∠=∠-∠=-=905040BOD BOE EOD︒︒︒∴∠=∠=AOC BOD︒40故答案为:40︒【点睛】本题考查了对顶角,熟练掌握对顶角的性质是解题的关键.22.120°.【详解】试题分析:①①①1=50°①①=70°+①1=120°.考点: 1.平等线的性质;2.对顶角.23.南偏西68°20'【分析】根据平行线的性质:两条直线平行,内错角相等进行解答.【详解】如图所示:由于是相向开工.故角度相等,方向相反.而①1与①2为内错角,所以对B来说是南偏西68°20′.故答案是:68°20′.【点睛】考查了平行线的性质和方向角,注意此类题的结论:角度不变,方向相反.24.20【分析】直接利用“对顶角相等”即可解答.【详解】解:①①AOC 和①BOD 是对顶角①①BOD=①AOC=20°.故答案为20.【点睛】本题考查了对顶角的定义和性质,正确识别对顶角是解答本题的关键. 25.①.【分析】利用线段的性质进行解答即可.【详解】解:图①利用垂线段最短;图①利用两点之间线段最短;图①利用两点确定一条直线;故答案为:①.【点睛】本题主要考查了线段的性质,熟悉相关性质是解题的关键.26.140【分析】根据角平分线的定义和对顶角的性质解答即可.【详解】解:①100AOD ∠=︒,①18010080AOC ∠=︒-︒=︒,①OE 平分AOC ∠, ①1402COE AOC ∠=∠=︒, ①100BOC AOD ∠=∠=︒,①10040140EOB BOC COE ∠=∠+∠=︒+︒=︒.故答案为:140.【点睛】本题主要考查了角平分线的定义和对顶角的性质,熟练掌握相关的定义和性质是解答本题的关键.27.50°【分析】先根据垂直的定义、角的和差求出BOD ∠的度数,再根据对顶角相等即可得.【详解】OE AB ⊥90BOE1904050BOE BOD ∠∠=∴=∠-︒-︒=︒由对顶角相等得:520BOD ∠=∠=︒故答案为:50︒.【点睛】本题考查了垂直的定义、对顶角相等等知识点,熟记对顶角的性质是解题关键. 28.40°【分析】根据等腰三角形性质,得到20C E ∠=∠=︒,再根据三角形外交定理求得40DFE C E ∠=∠+∠=︒,最后根据平行线的性质求出①A 的度数.【详解】:CF EF =,20E ∠=︒,20C E ∴∠=∠=︒,40DFE C E ∴∠=∠+∠=︒.//AB CD ,40A DFE ∴∠=∠=︒.故答案为40°.【点睛】本题主要考查了平行线的性质、等腰三角形和三角形外角等有关知识,属于常考基础题型.29.20【分析】因为两直线平行,所以①2与①1的补角互为内错角,通过两直线平行内错角相等,建立一个关于x 的方程,解方程即可.【详解】①直线a①直线①21801∠=︒-∠即210180(370)x x +=-+解得20x故答案为20【点睛】本题主要考查平行线的性质,掌握平行线的性质并利用方程的思想列出方程是解题的关键.30.60°【分析】首先根据多边形内角和180°•(n -2)可以计算出①F AB =120°,再过A 作l ①l 1,进而得到l ①l 2,再根据平行线的性质可得①4=①2,①1+①3=180°,进而可以得出结果.【详解】解:如图,过A 作l ①l 1,则①4=①2,①六边形ABCDEF是正六边形,①①F AB=120°,即①4+①3=120°,①①2+①3=120°,即①3=120°﹣①2,①l1①l2,①l①l2,①①1+①3=180°,①①1+120°﹣①2=180°,①①1﹣①2=180°﹣120°=60°,故答案为60°.【点睛】此题主要考查了正多边形和平行线的性质,关键是掌握两直线平行、内错角相等,同旁内角互补.31.27【分析】如图,①3=①1,由①3=①2+①A计算求解即可.【详解】解:如图①a①b,①1=56°①①3=①1=56°①①3=①2+①A,①2=29°①①A=①3﹣①2=56°﹣29°=27°故答案为:27.【点睛】本题考查了平行线性质中的同位角,三角形的外角等知识.解题的关键在于正确的表示角的数量关系.32.1:2【分析】先根据∥DC BA 得到BN DM =,根据=2ABD BCD S S 得到1=2DO BO ,再根据12DOC S DO CH =,12BOC S BO CH =可得到1==2DOCBOC S DO BO S . 【详解】解:过点D 作DM AB ⊥,垂足为M ,过点B 作BN DC ⊥,交DC 的延长线于点N ,过点C 作CH DB ⊥与点H ,①∥DC BA ,①BN DM =,①=2ABD BCD SS , ①11=222AC DM DC BN ⨯⨯⨯, ①2AB DC =,①∥DC BA ,①==CDO OBA DCO OAB ∠∠∠∠,, ①DCO AOB ∽,①1==2DC DO AB BO , ①12DOC SDO CH =,12BOC S BO CH =, ①1==2DOCBOC SDO BO S , 故答案为:1:2.【点睛】本题考查了平行线间的距离,相似三角形的判定与性质,梯形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.33.365【分析】作点P 关于BC 的对称点F ,过F 作FE①AB 于E 交BC 于D ,则此时,PD+DE 的值最小,且PD+DE 的最小值=EF ,求得AF =9,根据勾股定理得到AB =10,根据相似三角形的性质得到EF =365,于是得到结论. 【详解】解:作点P 关于BC 的对称点F ,过F作FE①AB 于E 交BC 于D ,则此时,PD+DE 的值最小,且PD+DE 的最小值=EF ,①CF =CP ,①点P 是AC 边的中点,①AP =PC =3,①AF =9,①在Rt △ABC 中,AC =6,BC =8,①AB =10,①①AEF =①ACB =90°,①①A+①B =①A+①F ,①①B =①F ,①①ABC①①AFE , ①AF AB =EF BC , ①910=8EF , ①EF =365, ①PD+DE 的最小值为365, 答案为:365.【点睛】本题考查了轴对称-最短路线问题,勾股定理,相似三角形的判定和性质,正确的作出图形是解题的关键.34. 125B ∠ 【分析】根据等面积法求得线段CD 的长度,即可求得点C 到AB 的距离,再根据三角形内角和定理即可求得与ACD ∠相等的角.【详解】解:①90CDA ∠=︒,①CD AB ⊥.点C 到AB 的距离为线段CD 的长度. 由题意可得:1122ABC SAC BC AB CD =⨯=⨯ ①125AC BC CD AB ⨯==, ①AC BC ⊥,①90ACB ∠=︒,①90180DCB B CDB DCB B ∠+∠+∠=∠+∠+︒=︒,①90ACD DCB DCB B ∠+∠=︒=∠+∠,①ACD B ∠=∠. 故答案为:125,B ∠. 【点睛】此题考查了点到直线的距离,三角形内角和的性质,以及等面积法求三角形的高,解题的关键是掌握相关基础知识.35.6;12;6;6【详解】每两条直线的交点处有两对对顶角,共有对顶角有6对.①两条直线被第三条直线所截,可得到4对同位角,2对内错角,2对同旁内角, ①三条直线两两相交于三点,可分解成三个“三线八角”的基本图形,则同位角共有12对,内错角有6对,同旁内角有6对.36.125︒【分析】根据矩形的性质可得AD ①BC ,再利用平行线的性质可得①BFC ′=70°,从而利用平角定义求出①CFC ′=110°,然后根据折叠的性质可求出①CFE 的度数,最后利用平行线的性质,即可解答.【详解】解:①由题意可知:AD ①BC ,①①1=①BFC ′=70°,①①CFC ′=180°-①BFC ′=110°,由折叠得:①CFE =①C ′FE =12①CFC ′=55°,①AD ①BC ,①①2=180°-①CFE =125°,故答案为:125°【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.37.70°【分析】首先根据折叠可得①1=①EF B'=55°,再求出①B'FC的度数,然后根据平行线的性质可得①2=①B'FC=70°.【详解】解:根据折叠可得①1=①EF B',①①1=55°,①①EF B'=55°,①①B'FC=180°-55°-55°=70°,①AD//BC,①①2=①B'FC=70°,故答案为:70°.【点睛】本题主要考查了平行线的性质以及折叠的性质,关键是掌握两直线平行,同位角相等.38.10【分析】过点D作DG①BC于G,DH①AC于H,根据等腰三角形的性质得到①EBD=①EDB,根据角平分线的定义得到①EBD=①DBC,进而得到①DBC=①EDB,证明EF BC,求出DF=FC,根据角平分线的性质求出DH,根据三角形的面积公式计算,即可求出结果.【详解】解:如图,过点D作DG①BC于G,DH①AC于H,①BE=DE,①①EBD=①EDB,①BD平分①ABC,①①EBD=①DBC,①①DBC=①EDB,①EF BC,①①FDC=①DCB,①CD平分①ACB,①①FCD=①DCB,①①FDC=①FCD,①FC=DF=5,①CD平分①ACB,DG①BC,DH①AC,①DH=DG=4,①①DFC的面积=12FC·DH=12×5×4=10.故答案为:10.【点睛】本题考查的是角平分线的性质、平行线的性质、三角形的面积计算,掌握角的平分线上的点到角的两边的距离相等是解题的关键.39.125【分析】根据邻补角的和是180°,结合已知条件可求①COE的度数.【详解】①①1=55°,①①COE=180°-55°=125°.故答案为125.【点睛】此题考查了垂线以及邻补角定义,关键熟悉邻补角的和是180°这一要点.40【分析】在平行四边形ABCD中,①ABC=105°,①DAC=①ACB=30°,故①BAC=①ACD=45°,OA=OC=2,P点一共有三种情况,①当①OP1C=90°时,①当①OP2C=90°时,①当①P3OC=90°时,根据三角函数的值即可求得CP的长度.【详解】解:如图所示,P点可以有以下三种情况,在平行四边形ABCD中,①ABC=105°,①DAC=①ACB=30°,故①BAC=①ACD=45°,OA=OC=2,①当①OP 1C=90°时,①ACB=30°,OC=2,①1P C=OC cos30=2⋅︒①当①OP 2C=90°时,①ACD=45°,OC=2,①2P C=OC cos45=2⋅︒①当①P 3OC=90°时,①ACB=30°,OC=2,①3OC P C==2cos30︒【点睛】本题主要考查了平行四边形的动点问题、平行线的性质、三角形内角和为180°、三角函数,解题的关键在于进行分类讨论,并用三角函数求出最后的答案.41.见解析【分析】先根据平行线的性质证得E B ∠=∠,再根据线段和求得EF BC =,然后SAS 证明EDF BAC △△≌,即可由全等三角形的性质得出结论.【详解】证明:①DE AB ∥,①E B ∠=∠①BF EC =,①BF CF EC CF +=+①EF BC =在EDF 与BAC 中,ED BA E B EF BC =⎧⎪∠=∠⎨⎪=⎩①()SAS EDF BAC ≌①A D ∠=∠【点睛】本题考查三角形全等的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.42.两直线平行,同位角相等;已知;等式性质;BAE ;DCE ;AB ①CD .【分析】利用两直线平行,同位角相等即可得到一对同位角相等,利用等式的性质得到另一对同位角相等,最后利用同位角相等,两直线平行即可得证.【详解】解:因为AM //CN (已知),所以①EAM =①ECN (两直线平行,同位角相等),又因为①1=①2(已知),所以①EAM +①1=①ECN +①2(等式性质),即①BAE =①DCE ,所以AB //CD .故答案为:两直线平行,同位角相等;已知;等式性质;BAE ;DCE ;AB //CD .【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.43.30°##30度【分析】由三角形内角和可得60ABC ∠=︒,然后根据角平分线的定义可得1302ABD CBD ABC ∠=∠=∠=︒,进而根据平行线的性质可求解. 【详解】解:①80A ∠=︒,40C ∠=︒,①60ABC ∠=︒,①ABC ∠的角平分线交AC 于点D , ①1302ABD CBD ABC ∠=∠=∠=︒, ①DE BC ∥,①30EDB CBD ∠=∠=︒,故BDE ∠的度数为30°. 【点睛】本题主要考查角平分线的定义、三角形内角和及平行线的性质,熟练掌握三角形内角和是解题的关键.44.(1)①见解析;①见解析;①见解析(2)50°【分析】(1)①连接PQ即可;①利用直角三角板画垂线即可;①利用直尺和直角三角板画OA的平行线MN即可;∥,根据平行线的性质求出①APF=①AOE=①MQB=40°,(2)过点P作PF OB①FPE=①PEO=90°,然后根据平角定义即可求解.(1)解:①连接PQ,如图,线段PQ即为所求.①如图,直线段PE即为所求.①如图,直线MN即为所求.(2)∥解:①MN OA①①AOE=①MQB,又①MQB=40°,①①AOE=40°,∥,如图,过点P作PF OB①①APF=①AOE=40°,①FPE=①PEO,又PE①OB,①①PEO=①FPE=90°,①①OPE=180°-①APF-①FPE=180°-40°-90°=50°.【点睛】本题考查了基本作图,平行线的性质等,添加辅助线PF是解第2问的关键.45.见解析【分析】由DG①BC,根据“两直线平行,内错角相等”得到①1=①DCE,由CD是高,EF①AB,得到①CDB=①EFB=90°,根据平行线的判定得到CD①EF,由平行线的性质:两直线平行,同位角相等,得到①DCE=①2,即可得到①1=①2.【详解】解:相等,理由如下:①CD 是高,①CD ①AB ,①①CDB=90°① EF①AB, ①①EFB=90°①①CDB=①EFB ,①EF①CD①①2= ①DCB① DG①BC ①①1= ①DCB①①1=①2【点睛】本题考查了平行线的判定与性质以及垂直的定义,熟练掌握相关的定理和定义是解题的关键.46.(1)①ABD =20︒,BDE ∠=20º,BED ∠=140º;(2)垂直的定义;两直线平行,同位角相等;BAD ∠,2∠【分析】(1)由①BDC-①A 求出①ABD 的度数,由BD 为角平分线得到①DBC 的度数,再由DE 与BC 平行,利用两直线平行内错角相等求出①BDE 的度数,利用三角形的内角和定理即可求出①BED 的度数;(2)由AD 垂直于BC ,EF 垂直于BC ,利用垂直的定义得到一对直角相等,利用同位角相等两直线平行得到EF 与AD 平行,利用两直线平行同位角相等得到一对角相等,再由已知一对角相等,利用等量代换得到一对内错角相等,利用内错角相等两直线平行即可得证.【详解】(1)因为50A ∠=︒,70BDC ∠=︒,所以20ABD BDC A ∠=∠-∠=︒,因为BD 是ABC ∆的角平分线,所以20DBC ABD ∠=∠=︒.因为//DE BC ,所以20BDE DBC ∠=∠=︒(两直线平行,内错角相等),所以180140BED EBD EDB ∠=︒-∠-∠=︒(三角形内角和定理);(2)因为AD ①BC ,EF ①BC (已知),所以①EFB =①ADB =90°(垂直的定义).所以EF①AD (同位角相等,两直线平行).所以①1=①BAD (两直线平行,同位角相等).因为①1=①2(已知),所以BAD ∠=2∠(等量代换).。
相交线与平行线专项练习题
相交线与平行线专项练习题一、选择题:1.如图,DE ∥AB ,∠CAE=31∠CAB ,∠CDE=75°,∠B=65°则∠AEB 是 ( ) A .70° B .65° C .60° D .55°1题 2题 3题 4题2.如图所示,∠1的邻补角是( )A.∠BOCB.∠BOE 和∠AOFC.∠AOFD.∠BOC 和∠AOF3.如图所示,内错角共有( )A.4对B.6对C.8对D.10对4.如图,直线a 、b 被直线c 所截,现给出下列四个条件:(1)∠1=∠5;(2)∠1=•∠7;(3)∠2+∠3=180°;(4)∠4=∠7,其中能判定a ∥b 的条件的序号是( )A .(1)、(2)B .(1)、(3)C .(1)、(4)D .(3)、(4)5.如图,点E 在BC 的延长线上,在下列四个条件中,不能判定AB ∥CD 的是( )A.∠1=∠2B.∠B=∠DCEC.∠3=∠4D.∠D+∠DAB=180°5题 6题7题 8题6.如图,如果AB ∥CD ,则α、β、γ之间的关系为 ( )A.α+β+γ=360°B.α-β+γ=180°C.α+β-γ=180°D.α+β+γ=180°7.如图,AB ∥CD ,那么∠A ,∠P ,∠C 的数量关系是( )A.∠A+∠P+∠C=90°B.∠A+∠P+∠C=180°C.∠A+∠P+∠C=360°D.∠P+∠C=∠A8.如图,AB ∥CD ,∠ABF=32∠ABE ,∠CDF=32∠CDE ,则∠E ∶∠F 等于( ) A .2:1 B .3:1 C .3:2 D .4:39.如图,AB ⊥EF ,CD ⊥EF ,∠1=∠F=45°,那么与∠FCD 相等的角有( )B DE 1 3 A CF 2 A .1个 B .2个 C .3个 D .4个二、填空题:10.观察图中角的位置关系,∠1和∠2是______角,∠3和∠1是_____角,∠1•和∠4是_______角,∠3和∠4是_____角,∠3和∠5是______角.10题11题12题13题11.如图,已知CD ⊥AB 于D ,EF ⊥AB 于F ,∠DGC=105°,∠BCG=75°,则∠1+∠2=____度.12.如图,AB ∥CD ,∠BAE = 120º,∠DCE = 30º,则∠AEC = 度。
数学第五章 相交线与平行线练习题附解析
数学第五章 相交线与平行线练习题附解析一、选择题1.如图,直线a ∥b ,则∠A 的度数是( )A .28°B .31°C .39°D .42°2.如图,直线AB ,CD 被直线EF 所截,与AB ,CD 分别交于点E ,F ,下列描述: ①∠1和∠2互为同位角 ②∠3和∠4互为内错角③∠1=∠4 ④∠4+∠5=180°其中,正确的是( )A .①③B .②④C .②③D .③④3.如图,AB ∥CD ∥EF ,AF ∥CG ,则图中与∠A (不包括∠A )相等的角有( )A .5个B .4个C .3个D .2个4.如图,下列条件不能判定AB ∥CD 的是( )A .12∠∠=B .2E ∠∠=C .B E 180∠∠+=D .BAF C ∠∠= 5.如图,直线a ∥b ,把三角板的直角顶点放在直线b 上,若∠1=60°,则∠2的度数为( )A .45°B .35°C .30°D .25°6.①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180° ; ④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是( )A .、1个B .2个C .3个D .4个7.如图,已知AB ∥CD ∥EF ,则∠x 、∠y 、∠z 三者之间的关系是( )A .180x y z ++=°B .180x y z +-=°C .360x y z ++=°D .+=x z y8.如图,若180A ABC ∠+∠=︒,则下列结论正确的是( )A .12∠=∠B .24∠∠=C .13∠=∠D .23∠∠=9.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°10.如图,直线l 与直线AB 、CD 分别相交于点E 、点F ,EG 平分BEF ∠交直线CD 与点G ,若168BEF ∠=∠=︒,则EGF ∠的度数为( ).A .34°B .36°C .38°D .68°二、填空题11.如图,现给出下列条件:①∠1=∠2,②∠B =∠5,③∠3=∠4,④∠5=∠D ,⑤∠B+∠BCD =180°,其中能够得到AD ∥BC 的条件是______(填序号);能够得到AB ∥CD 的条件是_______.(填序号)12.如图,直线l 1∥l 2∥l 3,等边△ABC 的顶点B 、C 分别在直线l 2、l 3上,若边BC 与直线l 3的夹角∠1=25°,则边AB 与直线l 1的夹角∠2=________.13.如图,//AB CD ,BD 平分ABC ∠,:4:1C DBA ∠∠=,则CDB ∠=______.14.如图,△ABC 的边长AB =3 cm ,BC =4 cm ,AC =2 cm ,将△ABC 沿BC 方向平移a cm (a <4 cm ),得到△DEF ,连接AD ,则阴影部分的周长为_______cm .15.如图,AB ∥CD ,CF 平分∠DCG ,GE 平分∠CGB 交FC 的延长线于点E ,若∠E =34°,则∠B 的度数为____________.16.如图,∠AEM=∠DFN=a,∠EMN=∠MNF=b,∠PEM=12∠AEM,∠MNP=12∠FNP,∠BEP,∠NFD的角平分线交于点I,若∠I=∠P,则a和b的数量关系为_____(用含a的式子表示b).17.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.18.如图,长方形ABCD的周长为30,则图中虚线部分总长为____________.19.如图,直线AB、CD相交于点O,OE平分∠AOC,OF⊥OE于点O,若∠AOD=70°,则∠AOF=______度.20.如图,直角△ABC中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为_____.三、解答题21.如图1,D是△ABC延长线上的一点,CE//AB.(1)求证:∠ACD=∠A+∠B;(2)如图2,过点A作BC的平行线交CE于点H,CF平分∠ECD,FA平分∠HAD,若∠BAD =70°,求∠F 的度数.(3)如图3,AH //BD ,G 为CD 上一点,Q 为AC 上一点,GR 平分∠QGD 交AH 于R ,QN 平分∠AQG 交AH 于N ,QM //GR ,猜想∠MQN 与∠ACB 的关系,说明理由.22.综合与探究综合与实践课上,同学们以“一个含30角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线a ,b ,且//a b ,三角形ABC 是直角三角形,90BCA ∠=︒,30BAC ∠=︒,60ABC ∠=︒操作发现:(1)如图1.148∠=︒,求2∠的度数;(2)如图2.创新小组的同学把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由.实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.23.已知:如图所示,直线MN ∥GH ,另一直线交GH 于A ,交MN 于B ,且∠MBA =80°,点C 为直线GH 上一动点,点D 为直线MN 上一动点,且∠GCD =50°.(1)如图1,当点C 在点A 右边且点D 在点B 左边时,∠DBA 的平分线交∠DCA 的平分线于点P ,求∠BPC 的度数;(2)如图2,当点C 在点A 右边且点D 在点B 右边时,∠DBA 的平分线交∠DCA 的平分线于点P ,求∠BPC 的度数;(3)当点C 在点A 左边且点D 在点B 左边时,∠DBA 的平分线交∠DCA 的平分线所在直线交于点P ,请直接写出∠BPC 的度数,不说明理由.24.如图1,AB//CD ,在AB 、CD 内有一条折线EPF .(1)求证:AEP CFP EPF ∠∠∠+=.(2)如图2,已知BEP ∠的平分线与DFP ∠的平分线相交于点Q ,试探索EPF ∠与EQF ∠之间的关系;(3)如图3,已知BEQ ∠=1BEP 3∠,1DFQ DFP 3∠∠=,则P ∠与Q ∠有什么关系,请说明理由.25.已知E 、D 分别在AOB ∠的边OA 、OB 上,C 为平面内一点,DE 、DF 分别是CDO ∠、CDB ∠的平分线.(1)如图1,若点C 在OA 上,且//FD AO ,求证:DE AO ⊥;(2)如图2,若点C 在AOB ∠的内部,且DEO DEC ∠=∠,请猜想DCE ∠、AEC ∠、CDB ∠之间的数量关系,并证明;(3)若点C 在AOB ∠的外部,且DEO DEC ∠=∠,请根据图3、图4直接写出结果出DCE ∠、AEC ∠、CDB ∠之间的数量关系.26.如图1,已知a ∥b ,点A 、B 在直线a 上,点C 、D 在直线b 上,且AD ⊥BC 于E .(1)求证:∠ABC+∠ADC=90°;(2)如图2,BF 平分∠ABC 交AD 于点F ,DG 平分∠ADC 交BC 于点G ,求∠AFB+∠CGD 的度数;(3)如图3,P为线段AB上一点,I为线段BC上一点,连接PI,N为∠IPB的角平分线上一点,且∠NCD=12∠BCN,则∠CIP、∠IPN、∠CNP之间的数量关系是______.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:根据平行线的性质可得∠1=70°,再根据三角形的一个外角等于和它不相邻的两个内角的和可得∠A=70°-31°=39°.故选C.考点:平行线的性质2.C解析:C【分析】根据同位角,内错角,同旁内角的定义判断即可.【详解】①∠1和∠2互为邻补角,故错误;②∠3和∠4互为内错角,故正确;③∠1=∠4,故正确;④∵AB不平行于CD,∴∠4+∠5≠180°故错误,故选:C.【点睛】本题考查了同位角,内错角,同旁内角的定义,熟记定义是解题的关键.3.B解析:B【分析】由平行线的性质,可知与∠A相等的角有∠ADC、∠AFE、∠EGC、∠GCD.【详解】∵AB∥CD,∴∠A=∠ADC;∵AB∥EF,∴∠A=∠AFE;∵AF∥CG,∴∠EGC=∠AFE=∠A;∵CD∥EF,∴∠EGC=∠DCG=∠A;所以与∠A相等的角有∠ADC、∠AFE、∠EGC、∠GCD四个,故选B.4.B解析:B【分析】结合图形,根据平行线的判定方法对选项逐一进行分析即可得.【详解】A. ∠l=∠2,根据内错角相等,两直线平行,可得AB//CD,故不符合题意;B. ∠2=∠E,根据同位角相等,两直线平行,可得AD//BE,故符合题意;C. ∠B+∠E= 180°,根据同旁内角互补,两直线平行,可得AB//CD,故不符合题意;D. ∠BAF=∠C,根据同位角相等,两直线平行,可得AB//CD,故不符合题意,故选B.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.5.C解析:C【分析】由a与b平行,利用两直线平行同位角相等求出∠3的度数,再利用平角定义及∠4为直角,即可确定出所求角的度数.【详解】【解答】解:∵a∥b,∴∠3=∠1=60°,∵∠4=90°,∠3+∠4+∠2=180°,∴∠2=30°.故选:C.【点睛】本题考查了根据平行线的性质求角的度数,利用直角转化角是一种比较常见的方法,在一条直线上,3个角共顶点,且有一个角为直角,则另两个角的和为90°.6.C解析:C【详解】①如图1,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠C+∠CEF=180°,所以∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°,则①错误;②如图2,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A=∠AEF,∠C=∠CEF,所以∠A+∠C=∠AEC+∠AEF=∠AEC,则②正确;③如图3,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠1=∠CEF,所以∠A+∠AEC-∠1=∠A+∠AEC-∠CEF=∠A+∠AEF=180°,则③正确;④如图4,过点P作PF∥AB,因为AB∥CD,所以AB∥PF∥CD,所以∠A=∠APF,∠C=∠CPF,所以∠A=∠CPF+∠APC=∠C+∠APC,则④正确;故选C.7.B解析:B【分析】根据平行线的性质可得∠CEF=180°-y,x=z+∠CEF,利用等量代换可得x=z+180°-y,再变形即可.【详解】解:∵CD∥EF,∴∠C+∠CEF=180°,∴∠CEF=180°-y,∵AB∥CD,∴x=z+∠CEF,∴x=z+180°-y,∴x+y-z=180°,故选:B.8.C解析:C【分析】由∠A+∠ABC=180°可得到AD∥BC,再根据平行线的性质判断即可得答案.【详解】∵180A ABC ∠+∠=︒,∴//AD BC (同旁内角互补,两直线平行),∴13∠=∠(两直线平行,内错角相等).故选:C .【点睛】本题考查的是平行线的判定与性质,同旁内角互补,两直线平行;两直线平行内错角相等;熟知平行线的判定定理是解答此题的关键.9.B解析:B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,10.A解析:A【分析】由角平分线的性质可得∠GEB=12∠BEF=34°,由同位角相等,两直线平行可得CD ∥AB ,即可求解.【详解】∵EG 平分∠BEF ,∴∠GEB=12∠BEF=34°, ∵∠1=∠BEF=68°,∴CD ∥AB ,∴∠EGF=∠GEB=34°,故选:A .【点睛】本题考查了平行线的判定和性质,角平分线的定义,灵活运用这些性质进行推理是本题的关键.二、填空题11.①④ ②③⑤【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【详解】解:∵①∠1=∠2,∴AD∥BC;②∵∠B=∠5,解析:①④ ②③⑤【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【详解】解:∵①∠1=∠2,∴AD∥BC;②∵∠B=∠5,∴AB∥DC;③∵∠3=∠4,∴AB∥CD;④∵∠5=∠D,∴AD∥BC;⑤∵∠B+∠BCD=180°,∴AB∥CD,∴能够得到AD∥BC的条件是①④,能够得到AB∥CD的条件是②③⑤,故答案为①④,②③⑤.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.12.【解析】试题分析:如图:∵△ABC是等边三角形,∴∠ABC=60°,又∵直线l1∥l2∥l3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35解析:035【解析】试题分析:如图:∵△ABC 是等边三角形,∴∠ABC=60°,又∵直线l 1∥l 2∥l 3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35°.考点:1.平行线的性质;2.等边三角形的性质.13.30°【分析】先由AB//CD 得到∠CDB=∠ABD ,∠C+∠ABC=180︒,设出∠ABD=x°,依据“平分,”列出方程,求出∠ABD 即可解决问题.【详解】∵AB//CD∴∠ABD=x°解析:30°【分析】先由AB//CD 得到∠CDB=∠ABD ,∠C+∠ABC=180︒,设出∠ABD=x°,依据“BD 平分ABC ∠,:4:1C DBA ∠∠=”列出方程,求出∠ABD 即可解决问题.【详解】∵AB//CD∴∠ABD=x°,∠ABD ,∠C+∠ABC=180︒,BD 平分ABC ∠,∴∠ABD=∠CBD∵:4:1C DBA ∠∠=,∴4C DBA ∠=∠设∠ABD=x°,则∠CBD=x°,∠C=4x°,∴2x°+4x°=180°,解得,x=30∴∠ABD=30°,∴∠CDB=30°,故答案为:30°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,求出∠ABD=30°是解此题的关键.14.9【分析】根据平移的特点,可直接得出AC、DE、AD的长,利用EC=BC-BE可得出EC的长,进而得出阴影部分周长.【详解】∵AB=3cm,BC=4cm,AC=2cm,将△ABC沿BC方向平解析:9【分析】根据平移的特点,可直接得出AC、DE、AD的长,利用EC=BC-BE可得出EC的长,进而得出阴影部分周长.【详解】∵AB=3cm,BC=4cm,AC=2cm,将△ABC沿BC方向平移a cm∴DE=AB=3cm,BE=a cm∴EC=BC-BE=(4-a)cm∴阴影部分周长=2+3+(4-a)+a=9cm故答案为:9【点睛】本题考查平移的特点,解题关键是利用平移的性质,得出EC=BC-BE.15.68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意解析:68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.则有22x y GMCx y E=+∠⎧⎨=+∠⎩①②,①-2×②得:∠GMC=2∠E,∵∠E=34°,∴∠GMC=68°,∵AB ∥CD ,∴∠GMC=∠B=68°,故答案为:68°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题.16..【分析】分别过点P 、I 作ME∥PH,AB∥GI,设∠AME=2x,∠PNF=2y,知∠PEM=x,∠MNP=y,由PH∥ME 知∠EPH=x,由EM∥FN 知PH∥FN,据此得∠HPN=2y,∠E 解析:81209a b =-︒. 【分析】分别过点P 、I 作ME ∥PH ,AB ∥GI ,设∠AME=2x ,∠PNF=2y ,知∠PEM=x ,∠MNP=y ,由PH ∥ME 知∠EPH=x ,由EM ∥FN 知PH ∥FN ,据此得∠HPN=2y ,∠EPN=x+2y ,同理知3902EIF x x ∠︒-+=,根据∠EPN=∠EIF 可得答案. 【详解】 分别过点P 、I 作ME ∥PH ,AB ∥GI ,设∠AME =2x ,∠PNF =2y ,则∠PEM =x ,∠MNP =y ,∴∠DFN =2x ,∵PH ∥ME ,∴∠EPH =x ,∵EM ∥FN ,∴PH ∥FN ,∴∠HPN =2y ,∠EPN =x +2y ,同理,3902EIF x x ∠︒-+=,∵∠EPN=∠EIF,∴3902x x︒-+=x+2y,∴339042b︒-a=,∴91358b a =︒-,∴81209b-︒a=,故答案为:81209b-︒a=.【点睛】本题主要考查平行线的判定与性质,解题的关键是熟练掌握平行线的判定与性质.17.如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是解析:如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为:如果两个角是相等角的余角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.18.15【分析】由长方形的性质和平移的性质,即可求出答案.【详解】解:根据题意,虚线部分的总长为:.故答案为:15.【点睛】本题考查了长方形的性质,平移变换等知识,解题的关键是理解题意, 解析:15【分析】由长方形的性质和平移的性质,即可求出答案.【详解】解:根据题意, 虚线部分的总长为:130152AB BC +=⨯=. 故答案为:15.【点睛】本题考查了长方形的性质,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型. 19.145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵,∵OE 平分∠AOC ,∴,∵OF⊥OE 于点O ,∴∠EOF=90°,∴∠A解析:145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵70180110AOD AOC AOD ∠=︒∴∠=︒-∠=︒,,∵OE 平分∠AOC ,∴1552AOE AOC ∠=∠=︒, ∵OF ⊥OE 于点O ,∴∠EOF =90°,∴∠AOF =∠AOE+∠EOF =55°+90°=145°, 故答案为145.【点睛】本题考查邻补角、角平分线和垂直以及角度的运算等知识,根据有关性质和定义灵活计算是解题关键.20.12【解析】分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的解析:12【解析】分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的, 故内部五个小直角三角形的周长为AC+BC+AB=12.故答案为12.点睛:本题主要考查了平移的性质,需要注意的是:平移前后图形的大小、形状都不改变.三、解答题21.(1)证明见解析;(2)∠F=55°;(3)∠MQN =12∠ACB ;理由见解析. 【分析】(1)首先根据平行线的性质得出∠ACE =∠A ,∠ECD =∠B ,然后通过等量代换即可得出答案;(2)首先根据角平分线的定义得出∠FCD =12∠ECD ,∠HAF =12∠HAD ,进而得出∠F =12(∠HAD+∠ECD ),然后根据平行线的性质得出∠HAD+∠ECD 的度数,进而可得出答案;(3)根据平行线的性质及角平分线的定义得出12QGR QGD ∠=∠,12NQG AQG ∠=∠,180MQG QGR ∠+∠=︒ ,再通过等量代换即可得出∠MQN =12∠ACB . 【详解】解:(1)∵CE //AB ,∴∠ACE =∠A ,∠ECD =∠B ,∵∠ACD =∠ACE+∠ECD ,∴∠ACD =∠A+∠B ;(2)∵CF 平分∠ECD ,FA 平分∠HAD ,∴∠FCD =12∠ECD ,∠HAF =12∠HAD , ∴∠F =12∠HAD+12∠ECD =12(∠HAD+∠ECD ), ∵CH //AB ,∴∠ECD =∠B ,∵AH //BC ,∴∠B+∠HAB =180°,∵∠BAD =70°,110B HAD ∴∠+∠=︒,∴∠F =12(∠B+∠HAD )=55°; (3)∠MQN =12∠ACB ,理由如下: GR 平分QGD ∠,12QGR QGD ∴∠=∠. GN 平分AQG ∠,12NQG AQG ∴∠=∠. //QM GR ,180MQG QGR ∴∠+∠=︒ .∴∠MQN =∠MQG ﹣∠NQG=180°﹣∠QGR ﹣∠NQG=180°﹣12(∠AQG+∠QGD ) =180°﹣12(180°﹣∠CQG+180°﹣∠QGC ) =12(∠CQG+∠QGC ) =12∠ACB . 【点睛】本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解题的关键.22.(1)242∠=︒;(2)理由见解析;(3)12∠=∠,理由见解析.【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD =180°,∠1=∠DBC ,则∠ABD =∠ABC−∠DBC =60°−∠1,进而得出结论;(3)过点C 作CP ∥a ,由角平分线定义得∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,由平行线的性质得∠1=∠BAM =60°,∠PCA =∠CAM =30°,∠2=∠BCP =60°,即可得出结论.【详解】解:(1)如图1148∠=︒,90BCA ∠=︒,3180142BCA ∴∠=︒-∠-∠=︒,//a b ,2342∴∠=∠=︒;图1BD a,(2)理由如下:如图2.过点B作//图2∴∠+∠=︒,2180ABDa b,//∴,//b BD∴∠=∠DBC,1ABD ABC DBC∴∠=∠-∠=︒-∠,601∴∠+︒-∠=︒,2601180∴∠-∠=︒;21120∠=∠,(3)12图3CP a,理由如下:如图3,过点C作//AC平分BAM∠,∴∠=∠=︒,CAM BAC30∠=∠=︒,260BAM BACa b,又//∴,CP b//∠=∠=︒,160BAM30PCA CAM ∴∠=∠=︒,903060BCP BCA PCA ∴∠=∠-∠=︒-︒=︒,又//CP a ,260BCP ∴∠=∠=︒,12∠∠∴=.【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.23.(1)∠BPC =65°;(2)∠BPC =155°;(3)∠BPC =155°【分析】(1)如图1,过点P 作PE ∥MN ,根据题意结合平行线的性质和角平分线的性质可以得出:∠BPE=∠DBP=40°,1CPE PCA DCA 252︒∠=∠=∠=,据此进一步求解即可; (2)如图2,过点P 作PE ∥MN ,根据平角可得∠DBA =100°,再由角平分线和平行线的性质得∠BPE =130°,1PCA CPE DCA 252︒∠=∠=∠=,据此进一步求解即可; (3)如图3,过点P 作PE ∥MN ,根据角平分线性质得出∠DBP =∠PBA=40°,由此得出∠BPE =∠DBP =40°,然后根据题意得出1PCA DCA 652︒∠=∠=,由此再利用平行线性质得出∠CPE 度数,据此进一步求解即可.【详解】(1)如图1,过点P 作PE ∥MN .∵PB 平分∠DBA ,∴∠DBP=∠PBA=40°,∵PE ∥MN ,∴∠BPE=∠DBP=40°,同理可证:1CPE PCA DCA 252︒∠=∠=∠=, ∴∠BPC =40°+25°=65°;(2)如图2,过点P 作PE ∥MN .∵∠MBA=80°.∴∠DBA=180°−80°=100°.∵BP平分∠DBA.∴1DBP DBA502︒∠=∠=,∵MN∥PE,∴∠BPE=180°−∠DBP=130°,∵PC平分∠DCA.∴1PCA DCA252︒∠=∠=,∵MN∥PE,MN∥GH,∴PE∥GH,∴∠EPC=∠PCA=25°,∴∠BPC=130°+25°=155°;(3)如图3,过点P作PE∥MN.∵BP平分∠DBA.∴∠DBP=∠PBA=40°,∵PE∥MN,∴∠BPE=∠DBP=40°,∵CP平分∠DCA,∠DCA=180°−∠DCG=130°,∴1PCA DCA652︒∠=∠=,∵PE∥MN,MN∥GH,∴PE∥GH,∴∠CPE=180°−∠PCA=115°,∴∠BPC=40°+115°=155°.【点睛】本题主要考查了平行线性质与角平分线性质的综合运用,熟练掌握相关概念是解题关键.24.(1)见解析;(2)∠EPF+2∠EQF=360°;(3)∠P+3∠Q=360°.【分析】(1)首先过点P作PG∥AB,然后根据AB∥CD,PG∥CD,可得∠AEP=∠1,∠CFP=∠2,据此判断出∠AEP+∠CFP=∠EPF即可.(2)首先由(1),可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ;然后根据∠BEP的平分线与∠DFP的平分线相交于点Q,推得∠EQF=1(360)2EPF⨯︒-∠,即可判断出∠EPF+2∠EQF=360°.(3)首先由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ;然后根据∠BEQ=1 3∠BEP,∠DFQ=13∠DFP,推得∠Q=13×(360°﹣∠P),即可判断出∠P+3∠Q=360°.【详解】(1)证明:如图1,过点P作PG∥AB,∵AB∥CD,∴PG∥CD,∴∠AEP=∠1,∠CFP=∠2,又∵∠1+∠2=∠EPF,∴∠AEP+∠CFP=∠EPF.(2)如图2,,由(1),可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ,∵∠BEP的平分线与∠DFP的平分线相交于点Q,∴∠EQF=∠BEQ+∠DFQ=12(∠BEP+∠DFP)=1[360()] 2AEP CFP︒-∠+∠=1(360)2EPF⨯︒-∠,∴∠EPF+2∠EQF=360°.(3)如图3,,由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,∵∠BEQ=13∠BEP,∠DFQ=13∠DFP,∴∠Q=∠BEQ+∠DFQ=13(∠BEP+∠DFP)=13[360°﹣(∠AEP+∠CFP)]=13×(360°﹣∠P),∴∠P+3∠Q=360°.【点睛】此题主要考查了平行线的性质的应用,要熟练掌握,解答此题的关键是要明确:(1)定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.(2)定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.(3)定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.25.(1)证明见解析;(2)∠CDB+∠AEC=2∠DCE;(3)图3中∠CDB=∠AEC+2∠DCE,图4中∠AEC=∠CDB+2∠DCE.【分析】(1)依据DE、DF分别是∠CDO、∠CDB的平分线,可得∠CDF=12∠CDB,∠CDE=1 2∠CDO,进而得出∠EDF=12(∠CDB+∠CDO)=90°,再根据平行线的性质,即可得到∠AED=90°,即DE⊥AO;(2)连接OC,依据∠DEO=∠DEC,∠EDO=∠EDC,可得∠DOE=∠DCE,再根据三角形外角性质,即可得到∠CDB+∠AEC=∠COD+∠OCD+∠EOC+∠ECO=2∠DCE;(3)如图3中,依据∠CDB是△ODG的外角,可得∠CDB=∠DOG+∠DGO,依据∠DGO 是△CEG的外角,可得∠DGO=∠AEC+∠C,进而得到∠CDB=∠DOG+∠AEC+∠C=∠AEC+2∠DCE;如图4中,同理可得∠AEC=∠DOE+∠CDB+∠C=∠CDB+2∠DCE.【详解】解:(1)如图1,∵DE、DF分别是∠CDO、∠CDB的平分线,∴∠CDF=12∠CDB,∠CDE=12∠CDO,∴∠EDF=12(∠CDB+∠CDO)=90°,又∵DF∥AO,∴∠AED=90°,∴DE⊥AO;(2)如图2,连接OC,∵∠DEO=∠DEC,∠EDO=∠EDC,∴∠DOE=∠DCE,∵∠CDB是△COD的外角,∠AEC是△COE的外角,∴∠CDB=∠COD+∠OCD,∠AEC=∠EOC+∠ECO,∴∠CDB+∠AEC=∠COD+∠OCD+∠EOC+∠ECO=2∠DCE;(3)图3中,∠CDB=∠AEC+2∠DCE;图4中,∠AEC=∠CDB+2∠DCE.理由:如图3,∵∠DEO=∠DEC,∠EDO=∠EDC,∴∠DOE=∠DCE,∵∠CDB是△ODG的外角,∴∠CDB=∠DOG+∠DGO,∵∠DGO是△CEG的外角,∴∠DGO=∠AEC+∠C,∴∠CDB=∠DOG+∠AEC+∠C=∠AEC+2∠DCE;如图4,∵∠DEO=∠DEC,∠EDO=∠EDC,∴∠DOE=∠DCE,∵∠AEC是△OEH的外角,∴∠AEC=∠DOE+∠OHE,∵∠OHE是△CDH的外角,∴∠OHE=∠CDB+∠C,∴∠AEC=∠DOE+∠CDB+∠C=∠CDB+2∠DCE.【点睛】本题主要考查了平行线的性质以及三角形外角性质的综合运用,解题时注意:三角形的外角等于与它不相邻的两个内角的和.26.(1)见解析;(2)225°;(3)3∠CNP=∠CIP+∠IPN或3∠IPN=∠CIP+∠CNP.【分析】(1)如图1中,过E作EF∥a,利用平行线的性质即可解决问题;(2)如图2中,作FM∥a,GN∥b,设∠ABF=∠EBF=x,∠ADG=∠CDG=y,可得x+y=45°,证明∠AFB=180°-(2y+x),∠CGD=180°-(2x+y),推出∠AFB+∠CGD=360°-(3x+3y)即可解决问题;(3)分两种情形:①当点N在∠DCB内部时,②当点N′在直线CD的下方时,分别画出图形求解即可.【详解】(1)证明:如图1中,过E作EF∥a.∵a∥b,∴a∥b∥EF,∵AD⊥BC,∴∠BED=90°,∵EF∥a,∴∠ABE=∠BEF,∵EF∥b,∴∠ADC=∠DEF,∴∠ABC+∠ADC=∠BED=90°.(2)解:如图2中,作FM∥a,GN∥b,设∠ABF=∠EBF=x,∠ADG=∠CDG=y,由(1)知:2x+2y=90°,x+y=45°,∵FM∥a∥b,∴∠BFD=2y+x,∴∠AFB=180°-(2y+x),同理:∠CGD=180°-(2x+y),∴∠AFB+∠CGD=360°-(3x+3y),=360°-3×45°=225°.(3)解:如图,设PN交CD于E.当点N在∠DCB内部时,∵∠CIP=∠PBC+∠IPB,∴∠CIP+∠IPN=∠PBC+∠BPN+2∠IPE,∵PN平分∠EPB,∴∠EPB=∠EPI,∵AB∥CD,∴∠NPE=∠CEN,∠ABC=∠BCE,∵∠NCE=12∠BCN,∴∠CIP+∠IPN=3∠PEC+3∠NCE=3(∠NCE+∠NEC)=3∠CNP.当点N′在直线CD的下方时,同理可知:∠CIP+∠CNP=3∠IPN,综上所述:3∠CNP=∠CIP+∠IPN或3∠IPN=∠CIP+∠CNP.【点睛】本题考查平行线的性质,对顶角相等等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。
相交线与平行线练习题(附答案)
相交线与平行线练习题(附答案)【知识积累】一、相交线1、邻补角:如下图,∠1和∠2(或∠3和∠4、或∠5和∠6、或∠7和∠8、或∠1和∠3、或∠2和∠4、或∠5和∠7、或∠6和∠8)有一条公共边,它们的另一边互为反向延长线(∠1和∠2互补),具有这种关系的两个角,互为邻补角。
2、对顶角:如上图,∠1和∠4(或∠2和∠3、或∠5和∠8、或∠6和∠7)有一个公共顶点,并且∠1的两边分别是∠4的两边的反向延长线(∠1和∠4相等),具有这种位置关系的两个角,互为对顶角。
3、同位角:如上图,∠1和∠5(或∠3和∠7、或∠2和∠6、或∠4和∠8),这两个角分别在直线的同一侧,即左侧(或左侧、或右侧、或右侧),并且在另外两条直线的同一方,即上方(或下方、或上方、或下方),具有这种位置关系的一对角叫做同位角。
4、内错角:如上图,∠3和∠6(或∠4和∠5),这两个角都在两条直线之间,并且分别在中间直线的两侧,具有这种位置关系的一对角叫做内错角。
5、同旁内角:如上图,∠3和∠5(或∠4和∠6),这两个角都在两条直线之间,并且分别在中间直线的同侧,具有这种位置关系的一对角叫做同旁内角。
二、垂直1、定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
符号语言记作:如图所示:AB⊥CD,垂足为O。
垂直定义的两层含义:(1)∵∵AOC=90°(已知),∵AB∵CD(垂直的定义)(2)∵AB∵CD(已知),∵∵AOC=90°(垂直的定义)2、性质:(1)过一点有且只有一条直线与已知直线垂直。
(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。
简称:垂线段最短。
3、垂线段的概念:由直线外一点向直线引垂线,这点与垂足间的线段叫做垂线段。
4、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
三、平行1、定义:在同一平面内,不相交的两条直线叫做平行线,直线a与直线b互相平行,记作a∵b。
(完整版)相交线与平行线常考题目及答案(绝对经典)
一.选择题(共3小题)
1.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是( )
A.平行B.垂直C.平行或垂直D.无法确定
2.如图,直线AB、CD相交于O,OE⊥AB,OF⊥CD,则与∠1互为余角的有( )
26.几何推理,看图填空:
(1)∵∠3=∠4(已知)
∴∥()
(2)∵∠DBE=∠CAB(已知)
∴∥()
(3)∵∠ADF+=180°(已知)
∴AD∥BF()
27.如图,直线AB、CD相交于点O,OE平分∠BOD.
(1)若∠AOC=68°,∠DOF=90°,求∠EOF的度数.
(2)若OF平分∠COE,∠BOF=30°,求∠AOC的度数.
7.将一副学生用三角板按如图所示的方式放置.若AE∥BC,则∠AFD的度数是.
评卷人
得分
三.解答题(共43小题)
8.已知:直线EF分别与直线AB,CD相交于点F,E,EM平∠FED,AB∥CD,H,P分别为直线AB和线段EF上的点.
(1)如图1,HM平分∠BHP,若HP⊥EF,求∠M的度数.
(2)如图2,EN平分∠HEF交AB于点N,NQ⊥EM于点Q,当H在直线AB上运动(不与点F重合)时,探究∠FHE与∠ENQ的关系,并证明你的结论.
(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.
15.如图,已知AB∥PN∥CD.
(1)试探索∠ABC,∠BCP和∠CPN之间的数量关系,并说明理由;
(2)若∠ABC=42°,∠CPN=155°,求∠BCP的度数.
16.如图,AD∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°
相交线与平行线测试题及答案
相交线与平行线测试题及答案1. 单选题:在平面上,两条互相垂直的直线称为()。
A. 平行线B. 垂直线C. 相交线D. 对称线答案:B. 垂直线2. 单选题:下面哪种说法是正确的?A. 平行线永远不会相交B. 相交线永远不会平行C. 平行线和相交线可以同时存在D. 平行线和相交线不能同时存在答案:C. 平行线和相交线可以同时存在3. 多选题:判断下列述句是否正确。
1) 平行线没有交点。
2) 相交线可以有无数个交点。
3) 两条垂直线的交点一定是直角。
A. 正确的有1)、2)、3)B. 正确的有1)、3)C. 正确的有2)、3)D. 正确的只有3)答案:B. 正确的有1)、3)4. 填空题:两条互相垂直的直线所成的角度为()度。
答案:90度5. 判断题:两条平行线的夹角为180度。
答案:错误6. 判断题:两条相交直线一定不平行。
答案:正确7. 计算题:已知直线L1与直线L2互相垂直,L1的斜率为2,过点(1,3)的直线L2的斜率为()。
答案:-1/28. 计算题:已知直线L1过点(1,2)且斜率为3/4,直线L2与L1平行且过点(3,5),求直线L2的斜率。
答案:3/49. 解答题:请解释什么是相交线和平行线,并举例说明。
答案:相交线是指两条直线或线段在平面上有唯一一点相交。
例如,在平面上有两条直线,一条通过点A和点B,另一条通过点C和点D,如果点A与点C不重合并且点B与点D不重合,则这两条直线相交于点E。
平行线是指在平面上没有任何交点的两条直线。
例如,在平面上有一条直线通过点A和点B,另一条直线通过点C和点D,如果两条直线没有任何一点相交,则这两条直线是平行线。
10. 解答题:如何通过直线的斜率来判断两条直线是否平行或垂直?答案:两条直线平行的充要条件是它们的斜率相等,即斜率相同的两条直线是平行线。
两条直线垂直的充要条件是它们的斜率的乘积为-1,即斜率之积为-1的两条直线是垂直线。
总结:在平面几何中,相交线是指两条直线或线段在平面上有唯一一点相交,平行线是指在平面上没有任何交点的两条直线。
相交线与平行线典型考题(附答案及解析)
A BDC第5题图 平行线相交线常见题型过关练习一、选择题一、如图,l 1∥l 2,∠1=120°,那么∠2= . (第1题图)二、如图,AB ∥CD ,∠DCE=80°,那么∠BEF=3、如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E 的大小为 (第2题图) (第3题图) (第4题图)4、如图,AB ∥CD ,AD 和BC 相交于点O ,∠A =40°,∠AOB =75°.那么∠C 等于 五、如图,AB ∥CD ,∠C =80°,∠CAD =60°,那么∠BAD 等于 六、如图,AB ∥EF ∥CD ,∠ABC =46°,∠CEF =154°,那么∠BCE 等于(第6题图) (第7题图) (第8题图) (第9题图)7、如图,AB∥CD,AC 与BD 相交于点O ,∠A=30°,∠COD=105°.那么∠D 的大小是 八、如图,直线l 1∥l 2,∠1=40°,∠2=75°,那么∠3等于九、如图,己知AB∥CD,BE 平分∠ABC,∠CDE=150°,那么∠C 的度数是 10、如图,已知AB ∥CD ,那么图中与∠1互补的角有 个。
1一、如图,CD ∥AB ,∠1=120°,∠2=80°,那么∠E 的度数是(第10题图)(第11题图) (第12题图) (第13题图)1二、如图,已知直线a ∥b ,∠1=40°,∠2=60°.那么∠3等于13、如图,已知AB∥CD,∠E=︒28,∠C=︒52,那么∠EAB 的度数是 14、如图,AB ∥EF ∥CD ,∠ABC = 46,∠CEF = 154,那么∠BCE 等于 1五、如下图,AB ∥CD ,∠E =37°,∠C =20°,那么∠EAB 的度数为1六、如图,已知AB ∥CD ,∠A =60°,∠C =25°,那么∠E 等于 (第15题图)B AD CEF 15446 (第14题图)(第16题图)(第17题图)(第18题图)17、如下图,直线a∥b.直线c与直线a,b别离相交于点A、点B,AM b⊥,垂足为点M,假设158∠=︒,那么2∠=_________1八、如图:CD平分∠ACB,DE∥AC且∠1=30°,那么∠2=度.1九、如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系.(辅助线已画)(第19题图)答案及解析一、分析:由邻补角的概念,即可求得∠3的度数,又由l1∥l2,依照两直线平行,同位角相等,即可求得∠2的度数.解答:∵∠1=120°,∴∠3=180°﹣∠1=60°,∵l1∥l2,∴∠2=∠3=60°.点评:此题考查了平行线的性质与邻补角的概念.注意两直线平行,同位角相等.二、分析:依照平行线的性质推出∠DCE+∠BEF=180°,代入求出即可.解答:∵AB∥CD,∴∠DCE+∠BEF=180°,∵∠DCE=80°,∴∠BEF=180°﹣80°=100°.点评:此题要紧考查对平行线的性质,邻补角的概念等知识点的明白得和把握,依照平行线的性质推出∠DCE+∠BEF=180°是解此题的关键.3、分析:依照两直线平行,同位角相等,求得∠EFA=55°,再利用三角形内角和定理即可求得∠E的度数.解答:∵AB∥CD,∠C=125°,∴∠EFB=125°,∴∠EFA=180﹣125=55°,∵∠A=45°,∴∠E=180°﹣∠A﹣∠EFA=180°﹣45°﹣55°=80°.4、分析:由∠A=40°,∠AOB=75°,依照三角形内角和定理,即可求得∠B的度数,又由AB∥CD,依照两直线平行,内错角相等,即可求得∠C的值.解答:∵∠A=40°,∠AOB=75°.∴∠B=180°﹣∠A﹣∠AOB=180°﹣40°﹣75°=65°,∵AB∥CD,∴∠C=∠B=65°.五、分析:依照三角形的内角和为180°,即可求出∠D的度数,再依照两直线平行,内错角相等即可明白∠BAD的度数.解答:∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB∥CD,∴∠BAD=∠D=40°。
相交线与平行线技巧及练习题含答案
相交线与平行线技巧及练习题含答案一、选择题1.如图,直线AD BC ∥,30C ∠=︒,:1:3ADB BDC ∠∠=,则DBC ∠的度数是( )A .35°B .37.5°C .45°D .40° 【答案】B【解析】【分析】根据两直线平行,同旁内角互补,可得出18030015ADC ∠=︒-︒=︒,再结合:1:3ADB BDC ∠∠=即可得出ADB ∠的度数,最后,根据两直线平行,内错角相等即可得出答案.【详解】解:∵//AD BC ,30C ∠=︒∴18030015ADC ∠=︒-︒=︒∵:1:3ADB BDC ∠∠= ∴115037.513ADB ∠=︒⨯=︒+ ∴37.5DBC ADB ∠=∠=︒故选:B .【点睛】本题考查的知识点是平行线的性质,难度不大,熟记平行线性质的内容是解此题的关键.2.如图,11∥l 2,∠1=100°,∠2=135°,则∠3的度数为( )A .50°B .55°C .65°D .70°【答案】B【解析】【分析】 如图,延长l 2,交∠1的边于一点,由平行线的性质,求得∠4的度数,再根据三角形外角性质,即可求得∠3的度数.【详解】如图,延长l 2,交∠1的边于一点,∵11∥l2,∴∠4=180°﹣∠1=180°﹣100°=80°,由三角形外角性质,可得∠2=∠3+∠4,∴∠3=∠2﹣∠4=135°﹣80°=55°,故选B.【点睛】本题考查了平行线的性质及三角形外角的性质,熟练运用平行线的性质是解决问题的关键.3.下列说法中,正确的是()A.过一点有且只有一条直线与已知直线垂直B.过直线外一点有且只有一条直线与已知直线平行C.垂于同一条直线的两条直线平行D.如果两个角的两边分别平行,那么这两个角一定相等【答案】B【解析】【分析】根据平行线的性质和判定,平行线公理及推论逐个判断即可.【详解】A、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项不符合题意;B、过直线外一点有且只有一条直线与已知直线平行,故本选项符合题意;C、在同一平面内,垂直于同一条直线的两直线平行,故本选项不符合题意;D、如果两个角的两边分别平行,那么这两个角相等或互补,故本选项不符合题意;故选:B.【点睛】此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键.4.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°【答案】C【解析】【分析】根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.【详解】因为a∥b,所以∠1=∠BAD=50°,因为AD是∠BAC的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本题正确答案为C.【点睛】本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.5.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.70°【答案】D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.6.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°【答案】B【解析】试题分析:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE 平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.考点:平行线的性质.7.如图AD∥BC,∠B=30,DB平分∠ADE,则∠DEC的度数为()A.30B.60C.90D.120【答案】B【解析】∵AD∥BC,∴∠ADB=∠DBC,∵DB平分∠ADE,∴∠ADB=∠ADE,∵∠B=30°,∴∠ADB=∠BDE=30°,则∠DEC=∠B+∠BDE=60°.故选B .【点睛】此题主要考查了平行线的性质,正确得出∠ADB 的度数是解题关键.8.如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p ,q 分别是点M 到直线l 1,l 2的距离,则称(p,q)为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有( )个.A .1个B .2个C .3个D .4个【答案】D【解析】【分析】 到l 1距离为2的直线有2条,到l 2距离为1的直线有2条,这4条直线有4个交点,这4个交点就是“距离坐标”是(2,1)的点.【详解】因为两条直线相交有四个角,因此每一个角内就有一个到直线l 1,l 2的距离分别是2,1的点,即距离坐标是(2,1)的点,因而共有4个.故选:D .【点睛】本题主要考查了点到直线的距离,解题时注意:到一条已知直线距离为定值的直线有两条.9.如图,下列条件中能判定//DE AC 的是( )A .EDC EFC ∠=∠B .AEF ACD ∠=∠C .34∠=∠D .12∠=∠【答案】C【解析】【分析】 对于A ,∠EDC=∠EFC 不是两直线被第三条直线所截得到的,据此进行判断;对于B 、D ,∠AFE=∠ACD ,∠1=∠2是EF 和BC 被AC 所截得到的同位角和内错角,据此进行判断;对于C ,∠3=∠4这两个角是AC 与DE 被EC 所截得到的内错角,据此进行判断.【详解】∠EDC=∠EFC 不是两直线被第三条直线所截得到的,因而不能判定两直线平行;∠AFE=∠ACD,∠1=∠2是EF 和BC 被AC 所截得到的同位角和内错角,因而可以判定EF ∥BC,但不能判定DE ∥AC ;∠3=∠4这两个角是AC 与DE 被EC 所截得到的内错角,可以判定DE ∥AC.故选C.【点睛】本题考查平行线的判定,掌握相关判定定理是解题的关键.10.如图,直线AB ,CD 相交于点O ,∠2-∠1=15°,∠3=130°.则∠2的度数是( )A .37.5°B .75°C .50°D .65°【答案】D【解析】【分析】 先根据条件和邻补角的性质求出∠1的度数,然后即可求出∠2的度数.【详解】)∵∠3=130°,∠1+∠3=180°,∴∠1=180°-∠3=50°,∵∠2-∠1=15°,∴∠2=15°+∠1=65°;故答案为D.【点睛】本题考查角的运算,邻补角的性质,比较简单.11.如图,已知AB CD ∥,ABE ∠和CDE ∠的平分线相交于F ,100BED ∠=︒,则BFD ∠的度数为( )A .100°B .130°C .140°D .160°【答案】B【解析】【分析】连接BD ,因为AB ∥CD ,所以∠ABD +∠CDB =180°;又由三角形内角和为180°,所以∠ABE +∠E +∠CDE =180°+180°=360°,所以∠ABE +∠CDE =360°−100°=260°;又因为BF 、DF 平分∠ABE 和∠CDE ,所以∠FBE +∠FDE =130°,又因为四边形的内角和为360°,进而可得答案.【详解】连接BD ,∵AB ∥CD ,∴∠ABD +∠CDB =180°,∴∠ABE +∠E +∠CDE =180°+180°=360°,∴∠ABE +∠CDE =360°−100°=260°,又∵BF 、DF 平分∠ABE 和∠CDE ,∴∠FBE +∠FDE =130°,∴∠BFD =360°−100°−130°=130°,故选B .【点睛】此题考查了平行线的性质:两直线平行,同旁内角互补.还考查了三角形内角和定理与四边形的内角和定理.解题的关键是作出BD 这条辅助线.12.如图,在矩形ABCD 中,6AB =,8BC =,若P 是BD 上的一个动点,则PB PC PD ++的最小值是( )A .16B .15.2C .15D .14.8【答案】D【解析】【分析】 根据题意,当PC ⊥BD 时,PB PC PD ++有最小值,由勾股定理求出BD 的长度,由三角形的面积公式求出PC 的长度,即可求出最小值.【详解】解:如图,当PC ⊥BD 时,PB PC PD BD PC ++=+有最小值,在矩形ABCD 中,∠A=∠BCD=90°,AB=CD=6,AD=BC=8,由勾股定理,得226810BD +=,∴=10PB PD BD +=,在△BCD 中,由三角形的面积公式,得11=22BD PC BC CD ••, 即1110=8622PC ⨯⨯⨯⨯, 解得: 4.8PC =, ∴PB PC PD ++的最小值是:10 4.814.8PB PC PD BD PC ++=+=+=; 故选:D.【点睛】本题考查了勾股定理解直角三角形,最短路径问题,垂线段最短,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,正确确定点P 的位置,得到PC 最短.13.已知α∠的两边与β∠的两边分别平行,且α∠=20°,则∠β的度数为( ) A .20°B .160°C .20°或160°D .70°【答案】C【解析】【分析】分两种情况,画出图形,结合平行线的性质求解即可.【详解】如图1,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=∠1=20°;如图2,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=180°-∠1=160°;故选C.【点睛】本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.本题也考查了分类讨论的数学思想.14.如图,等边ABC 边长为a ,点O 是ABC 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE 形状不变;②ODE 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .1【答案】A【解析】【分析】 连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和3OE ,然后三角形的面积公式可得S △ODE =34OE 2,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC =2312即可判断②和③;求出BDE 的周长=a +DE ,求出DE 的最小值即可判断④.【详解】解:连接OB 、OC∵ABC 是等边三角形,点O 是ABC 的内心,∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12∠ACB=30° ∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120° ∵120FOG ∠=︒∴∠=FOG ∠BOC∴∠FOG -∠BOE=∠BOC -∠BOE∴∠BOD=∠COE 在△ODB 和△OEC 中BOD COE BO COOBD OCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ODB ≌△OEC∴OD=OE∴△ODE 是顶角为120°的等腰三角形,∴ODE 形状不变,故①正确;过点O 作OH ⊥DE ,则DH=EH∵△ODE 是顶角为120°的等腰三角形∴∠ODE=∠OED=12(180°-120°)=30° ∴OH=OE·sin ∠OED=12OE ,EH= OE·cos ∠OED=32OE ∴DE=2EH=3OE∴S △ODE =12DE·OH=34OE 2 ∴OE 最小时,S △ODE 最小,过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值∴BE ′=12BC=12a 在Rt △OBE ′中 OE′=BE′·tan ∠OBE ′=12a ×33=36a∴S △ODE 22 ∵△ODB ≌△OEC∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =12BC·OE′=2122=142 ∴S △ODE ≤14S 四边形ODBE 即ODE 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确;∵S 四边形ODBE 2 ∴四边形ODBE 的面积始终不变,故③正确;∵△ODB ≌△OEC∴DB=EC∴BDE 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE∴DE 最小时BDE 的周长最小∵OE∴OE 最小时,DE 最小而OE 的最小值为∴DE =12a ∴BDE 的周长的最小值为a +12a =1.5a ,故④正确; 综上:4个结论都正确,故选A .【点睛】 此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.15.如图//,AB CD EG EH FH ,、、分别平分,,,CEF DEF EFB ∠∠∠则图中与BFH ∠相等的角(不含它本身)的个数是( )A .5B .6C .7D .8【答案】C【解析】【分析】 先根据平行线的性质得到CEF EFB ∠=∠,CEG EGB ∠=∠,再利用把角平分线的性质得到CEG FEG EFH BFH ∠=∠=∠=∠,最后对顶角相等和等量替换得到答案.【详解】解:如图,做如下标记,∵//AB CD ,∴,CEF EFB ∠=∠CEG EGB ∠=∠(两直线平行,内错角相等),又∵EG 、FH 分别平分,,CEF EFB ∠∠∴CEG FEG EFH BFH ∠=∠=∠=∠,又∵CEG NEG ∠=∠,FEG MEN ∠=∠,EGB AGP ∠=∠(对顶角相等),∴BFH ∠=CEG FEG EFH MEN NED EGF AGP ∠=∠=∠=∠=∠=∠=∠(等量替换)故与BFH ∠相等的角有7个,故C 为答案.【点睛】本题主要考查直线平行的性质、对顶角的性质(对顶角相等)、角平分线的性质(角平分线把角分为两个大小相等的角)还有等量替换,把所学知识灵活运用是解题的关键.16.如图,直线,a b 被直线c 所截,则图中的1∠与2∠是( )A .同位角B .内错角C .同旁内角D .邻补角【答案】B【解析】【分析】 根据1∠与2∠的位置关系,由内错角的定义即可得到答案.【详解】解:∵1∠与2∠在截线,a b 之内,并且在直线c 的两侧,∴由内错角的定义得到1∠与2∠是内错角,故B 为答案.【点睛】本题主要考查了内错角、同位角、同旁内角、邻补角的定义,理解内错角、同位角、同旁内角、邻补角是解题的关键.17.如图,已知AB ∥CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若∠1=45°,∠2=35°,则∠3=( )A .65°B .70°C .75°D .80°【答案】D【解析】【分析】 由平行线的性质可求得∠C ,在△CDE 中利用三角形外的性质可求得∠3.【详解】解:∵AB ∥CD ,∴∠C =∠1=45°,∵∠3是△CDE 的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D .【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a ∥b ,b ∥c ⇒a ∥c .18.如图,AB ∥CD ,DE ⊥CE ,∠1=34°,则∠DCE 的度数为( )A .34°B .56°C .66°D .54°【答案】B【解析】试题分析:∵AB ∥CD ,∴∠D=∠1=34°,∵DE ⊥CE ,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选B .考点:平行线的性质.19.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A .110°B .120°C .140°D .150° 【答案】B【解析】【详解】解:∵AD ∥BC ,∴∠DEF=∠EFB=20°, 图b 中∠GFC=180°-2∠EFG=140°,在图c 中∠CFE=∠GFC-∠EFG=120°,故选B .20.如图,已知//AB CD ,直线EF 分别交AB ,CD 于M ,N 两点,将一个含有30角的直角三角尺按如图所示的方式放置(30PNG ∠=︒),若75EMB ∠=︒,则PNM ∠的度数是()A .30B .45︒C .60︒D .75︒【答案】B【解析】【分析】 根据75EMB ∠=︒,可以计算75END ∠=︒(两直线平行,同位角相等),又由75END PNM PNG ∠=∠+∠=︒,30PNG ∠=︒从而得到PNM ∠的度数.【详解】解:∵//AB CD ,∴75EMB EFD ∠=∠=︒(两直线平行,同位角相等),又∵30PNG ∠=︒,75END PNM PNG ∠=∠+∠=︒,∴753045PNM END PNG ∠=∠-∠=︒-︒=︒,故答案为B.【点睛】本题主要考查了两直线平行的性质. 牢记知识点: 两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;。
相交线与平行线下)100题含解析相交线与平行线
相交线与平行线100题一.选择题(共45小题)1.(2014•铜仁地区)下列图形中,∠1与∠2是对顶角的是()A.B.C.D.2.(2012春•鼓楼区校级期中)平面内有两两相交的三条直线,若最多有m个交点,最少有n个交点,则m+n等于()A.1B.2C.3D.43.下列说法正确的是()(1)如果∠1+∠2+∠3=180°,那么∠1与∠2与∠3互为补角;(2)如果∠A+∠B=90°,那么∠A是余角;(3)互为补角的两个角的平分线互相垂直;(4)有公共顶点且又相等的角是对顶角;(5)如果两个角相等,那么它们的余角也相等.A.1个B.2个C.3个D.4个4.(2014•河南)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON 的度数为()A.35°B.45°C.55°D.65°5.如图,直线AB、CD相交于点O,∠DOE=90°,则∠AOE与∠DOB的关系是()A.对顶角B.互补的两个角C.互余的两个角D.一对相等的角6.如图,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是()A.∠1=90°,∠2=30°,∠3=∠4=60°B.∠1=∠3=90°,∠2=∠4=30°C.∠1=∠3=90°,∠2=∠4=60°D.∠1=∠3=90°,∠2=60°,∠4=30°7.(2014•上海)如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2B.∠3C.∠4D.∠58.如图,已知AB⊥MN于E,下列条件中不能得到CD⊥MN的是()A.CD∥AB B.∠CFE=∠AEM C.∠CFE+∠AEF=180°D.∠CFE+∠CFN=180°9.(2014•汕尾)如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE 10.(2009秋•翠屏区期末)已知如图,∠A=135°,∠B=45°,在下面的说法中,一定正确的是()A.AD∥BC B.AB∥CD C.∠C=135°,∠D=45°D.∠C=45°,∠D=135°11.(2007春•西城区期末)下列命题中,错误的是()A.对顶角的角平分线互为反向延长线B.在同一平面内,垂直于同一直线的两条直线互相平行C.如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补D.同时垂直于两条平行线,并且夹在这两条平行线间的线段叫做这两条平行线的距离12.(2011秋•岳阳楼区校级期末)下列说法中正确的有()①同位角相等.②凡直角都相等.③一个角的余角一定比它的补角小.④在直线、射线和线段中,直线最长.⑤两点之间的线段的长度就是这两点间的距离.⑥如果一个角的两边分别平行于另一个角的两边,则这两个角一定相等.A.0个B.1个C.2个D.3个13.(2011春•灌南县校级期末)如图,下列推理正确的是()A.∵MA∥NB,∴∠1=∠3B.∵∠2=∠4,∴MC∥ND C.∵∠1=∠3,∴MA∥NB D.∵MC∥ND,∴∠1=∠3 14.(2012春•金台区期末)如图,AB⊥BC,BC⊥CD,∠EBC=∠BCF,则∠ABE与∠FCD的关系是()A.同位角且相等B.不是同位角但相等C.是同位角但不相等D.不是同位角也不相等15.(2013春•下城区期末)如图,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有()A.6个B.5个C.4个D.3个16.(2015•河北一模)如图,在五边形ABCDE中,AB∥DE,若△ABE的面积为5,则△ABD的面积为()A.4B.5C.10D.无法判断17.(2014•安顺)如图,∠AOB的两边OA,OB均为平面反光镜,∠AOB=40°.在射线OB上有一点P,从P点射出一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行,则∠QPB的度数是()A.60°B.80°C.100°D.120°18.(2014•龙岩)如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于()A.40°B.50°C.70°D.80°19.(2014•荆州)如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是()A.155°B.145°C.110°D.35°20.(2011秋•射洪县校级期末)如图,已知l1∥l2,AB∥CD,CE⊥l2于点E,FG⊥l2于点G,则下列说法中错误的是()A.AB=CDB.CE=FGC.A、B两点间距离就是线段AB的长度D.l1与l2两平行线间的距离就是线段CD的长度21.(2009春•常州期末)如图,∠1=120°,∠2=60°,∠3=65°,则∠4等于()A.40°B.50°C.65°D.115°22.(2009秋•长春校级期末)如图,已知∠1=∠2,∠3=60°,则∠4=()A.80°B.70°C.60°D.50°23.(2014春•乳山市期末)如图,AC⊥CD于C,ED⊥CD于D,AB∥EF,∠CAE=25°,∠BAE=10°,则∠DEF=()A.30°B.35°C.40°D.45°24.(2013春•下城区期末)如图,∠1=100°,∠2=100°,且∠3:∠1=6:5,则∠4的度数为()A.100°B.110°C.120°D.130°25.(2005春•武昌区期末)如图,∠1与∠3互余,∠2与∠3的余角互补,∠4=115°,则∠3为()A.45°B.60°C.65°D.70°26.(2014春•苏州期末)如图,已知AB∥CD,∠1=∠2,∠E=50°,则∠F=()A.40°B.50°C.60°D.70°27.(2008秋•江苏校级期末)如图,AB∥CD,EG、EM、FM分别平分∠AEF,∠BEF,∠EFD,则图中与∠DFM 相等的角(不含它本身)的个数为()A.5B.6C.7D.828.(2008春•江岸区期末)如图,AB∥CD,∠D=∠E,∠B=110°,则∠D为()A.70°B.60°C.55°D.45°29.(2014春•宜宾校级期末)如图,矩形纸片ABCD中,沿折痕EF折叠,得∠EFG=40°,∠AEG的度数为()A.98°B.99°C.100°D.101°30.如图所示,AD∥BC,∠BCD=50°,∠B=80°,CA平分∠BCD,则∠CAD与∠BAC的度数分别为()A.25°,75°B.75°,25°C.20°,50°D.25°,65°31.如图,已知AB∥CD,直线EF交AB于E,交CD于F,∠1=∠2,则下列判断不正确的是()A.FN∥EM B.∠MEB=∠NFC C.∠1+∠AEF=180°D.∠AEM=∠DFN 32.(2006春•襄城区期末)如图,AB∥CD,OE平分∠AOC,OE⊥OF,∠C=60°,则∠BOF的度数为()A.15°B.30°C.60°D.90°33.(2013•台湾)附图中直线L、N分别截过∠A的两边,且L∥N.根据图中标示的角,判断下列各角的度数关系,何者正确?()A.∠2+∠5>180°B.∠2+∠3<180°C.∠1+∠6>180°D.∠3+∠4<180°34.(2014春•招远市期末)如图,直线l1,l2分别截射线AB,AC,若l1∥l2,则下列各角度数关系正确的是()A.∠5+∠1=180°B.∠4+∠2>180°C.∠6+∠3<180°D.∠4+∠6<180°35.(2009春•成华区期末)如图,已知AB∥EF,则∠B+∠C+∠D+∠E的度数为()A.270°B.360°C.450°D.540°36.(2011春•抚州校级期末)如图,AB∥CD,∠BED=110°,BF平分∠ABE,DF平分∠CDE,则∠BFD=()A.110°B.115°C.125°D.130°37.(2013春•太仓市期末)如图,已知AB∥CD,则∠a、∠B和∠y之间的关系为()A.α+β﹣γ=180°B.α+γ=βC.α+β+γ=360°D.α+β﹣2γ=180°38.(2013秋•永州期末)如图,AB∥CD,用含α,β,γ的式子表示θ,则θ=()A.180°+α+β﹣γB.180°+γ﹣α﹣βC.β+γ﹣αD.α+γ﹣β39.(2014•鄂州)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°40.(2014•长沙二模)如图,AB∥EF,BC⊥CD于C,∠ABC=30°,∠DEF=45°,则∠CDE等于()A.105°B.75°C.135°D.115°41.(2014春•武昌区期末)如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是()A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180°D.∠E﹣∠C+∠D﹣∠A=90°42.(2013秋•招远市期末)如图,AB∥EF∥CD,连接BD,ED,则下列等式中正确的是()A.∠1﹣∠2+∠3=180°B.∠1+∠2﹣∠3=180°C.∠2+∠3﹣∠1=180°D.∠1+∠2+∠3=180°43.(2013春•石景山区期末)如图,AF是∠BAC的平分线,EF∥AC交AB于点E,若∠1=155°,则∠BEF的度数为()A.50°B.12.5°C.25°D.15°44.(2014春•招远市期末)如图,一条公路修到湖边时,需拐弯绕湖而过,第一次拐的角∠A=110°,第二次拐的角∠B=150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C的度数为()A.120°B.130°C.140°D.150°45.(2014春•海淀区期末)如图,AB∥CD,∠BAC与∠DCA的平分线相交于点G,EG⊥AC于点E,F为AC上的一点,且FA=FG=FC,GH⊥CD于H.下列说法正确的是()①AG⊥CG;②∠BAG=∠CGE;③S△AFG=S△GFC;④若∠EGH:∠ECH=2:7,则∠EGF=50°.A.①③④B.②③C.①②③D.①②③④二.填空题(共45小题)46.(2014春•新泰市期末)如图,已知直线CD、EF相交于点O,OA⊥OB,且OC平分∠AOF,∠BOE=2∠AOE.则∠BOD=.47.(2013春•黄山期末)如图,已知直线AD、BE、CF相交于O,OG⊥AD,且∠BOC=35°,∠FOG=30°,则∠DOE=.48.(2013秋•昌平区期末)如图,直线AB,CD相交于点O,∠AOC=60°,∠1=2∠2,则∠2=°,∠AOE=°.49.(2014春•霸州市期末)如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠AOC =度,∠COB=度.50.(2013•河北模拟)如图,直线AB与直线CD相交于点O,射线OP平分∠AOD,若∠BOC=130°,则∠COP 的度数为.51.(2010秋•江阴市期末)已知直线AB和CD相交于O点,OE⊥AB,∠1=55°,则∠BOD=度;若OF平分∠DOB,则∠EOF的度数是度.52.(2011秋•大兴区期末)如图,三条直线相交于一点,按从小到大的顺序排列∠1,∠2,∠3为.53.(2014春•武昌区期末)如图,已知∠α与∠β共顶点O,∠α+∠β<180°,∠α=∠β.若∠β的邻补角等于∠α,则∠β=度.54.(2011•平塘县校级模拟)如图,要从小河引水到村庄A,请设计并作出一最佳路线,理由是.55.看图填空:(1)∠1和∠4是角;(2)∠1和∠3是角;(3)∠2和∠D是角;(4)∠3和∠D是角;(5)∠4和∠D是角;(6)∠4和∠B是角.56.如图所示,AB与BC被AD所截得的内错角是;DE与AC被AD所截得的内错角是;∠1与∠4是直线被直线截得的角,图中同位角有对.57.(2011秋•岳阳楼区校级期末)如图所示,其中共有对对顶角.58.(2014春•富顺县校级期末)如图所示,同位角一共有对,内错角一共有对,同旁内角一共有有对.59.(2004秋•奉贤区期末)如图:a∥b,图中的∠1,∠2,∠3,∠4,∠5,∠6,∠7中同位角有对.60.如图,DH∥EO∥BC,EF∥CD,则与∠BFE相等的角,不包括∠BFE有个.61.如果两条平行直线被第三条直线所截,一对同旁内角的度数之比为3:6,那么这两个角分别等于和.62.(2014春•东城区期末)如图,直线a,b被直线c所截,现给出四个条件:①∠1=∠5;②∠2=∠7;③∠2+∠8=180°;④∠4=∠7.其中能说明a∥b的条件序号为.63.(2014•湘潭)如图,直线a、b被直线c所截,若满足,则a、b平行.64.(2011•开县校级模拟)如图,BC∥DE,∠1=105°,∠AED=65°,则∠A=.65.(2014春•丰城市校级期中)如图∠1=82°,∠2=98°,∠3=80°,则∠4=度.66.(2014•温州)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=度.67.(2014春•兴业县期末)如图,已知AB∥CD∥EF,则∠x、∠y、∠z三者之间的关系是.68.(2011秋•东营期末)如图,若AB∥DE,BC∥FE,∠E+∠B=度.69.(2009•沙坪坝区校级模拟)如图,EF∥GH,点A在EF上,AP,AQ分别交GH于点B、C,且AP⊥AQ,∠PBG=35°,则∠FAC=.70.(2012•温州模拟)如图,AB∥CD,CD∥EF,∠A=110°,∠E=30°,则∠ACE=.71.(2012•开县校级模拟)如图,直线a∥b,直线m分别交a、b于A、B两点,CB⊥m,垂足为B,若∠1=25°,则∠2=.72.(2014•广东模拟)将三角板ABC按如图放置,使其三个顶点分别落在三条平行直线上,其中∠CAB=90°,且CF恰好平分∠ACB.若∠CBA=30°,则∠DAC的度数是.73.如图,如果AB∥EF,BC∥DE,那么∠E和∠B满足的关系.74.如图,直线a∥b,∠1=72°,∠2=130°,那么∠3+∠4=.75.(2009•荆州校级模拟)如图,a∥b,∠1=105°,∠2=140°,则∠3的度数是.76.(2012•湛江模拟)如图所示,AB平行CD,AE与CE相交于点E,∠BAE=30°,∠DCE=40°.∠1=,∠2=.77.(2014•孝南区校级模拟)如图,已知直线AB∥CD,FH平分∠EFD,FG⊥FH,∠AEF=62°,则∠GFC=度.78.(2011•北京模拟)如图,已知AB∥CD,BE平分∠ABC,∠CDE=140°,则∠C=.79.(2013•深圳模拟)如图,AB∥CD,∠CFE=112°,ED平分∠BEF,交CD于D,则∠EDF=度.80.(2012•河南模拟)如图直线a与直线b平行,则|x﹣y|的值是.81.(2013秋•云阳县期末)如图,已知AB,CD,EF互相平行,且∠ABE=70°,∠ECD=150°,则∠BEC=°.82.如图,AB∥EF,设∠C=90°,那么x,y,z的关系是.83.(2009•荆州二模)如图,直线MN∥PQ,∠ABM=30°,∠D=40°,∠EFQ=70°,则∠C+∠E=.84.(2011•鸠江区校级自主招生)如图,DC∥AB,∠BAE=∠BCD,AE⊥DE,∠D=130°,则∠B=度.85.(2009•琼海模拟)如图,∠1=∠2,要判断AB∥DF,需要增加条件.86.(2013秋•翠屏区校级期末)将一直角三角形与两边平行的纸条如图所示放置,下列结论①∠1=∠2,②∠3=∠4,③∠2+∠4=90°,④∠4+∠5=180°,其中正确的有(填序号).87.(2012•诸城市校级模拟)如图,直线AE∥BD,点C在BD上,若AE=5,BD=8,△ABD的面积为16,则△ACE 的面积为.88.(2012春•盐都区期末)如图,将一个长方形纸条折成如图的形状,若已知∠1=130°,则∠2=度.89.(2014•鹿城区校级二模)如图,在四边形纸片ABCD中,∠A=100°,∠C=40°,现将其右下角向内翻折得△FGE,折痕为EF,恰使GF∥CD,GE∥AD,则∠B=度.90.如图(1)是长方形纸条,将纸条沿EF折叠成图(2),再沿AF折叠成图(3),已知图(3)中的∠CFE=120°,则图(1)中∠DEF的度数是.三.解答题(共10小题)91.(2014•益阳)如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.92.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠2=∠3(已知),∴∥()(2)∵∠2=∠5(已知),∴∥()(3)∵∠2+∠1=180°(已知),∴∥()(4)∵∠5=∠3(已知),∴∥()(5)∵∠4+∠6=180°(已知),∴∥()(6)∵AB∥CD,AB∥EF(已知),∴∥()93.如图,∠PCN=45°,直线CP与CN分别交AQ、EF于点B、D,∠ABC=20°,∠CDE=25°,试说明:AQ∥EF.94.如图,若∠ABC+∠CDE﹣∠C=180°,试证明:AB∥DE.95.如图所示,两平面镜OM、ON的夹角为∠θ,入射光线AB沿着与镜面ON平行的方向照射到镜面OM上,经过两次反射后的反射光线CD平行于镜面OM,求∠θ的度数.96.如图,已知∠3+∠DCB=180°,∠1=∠2,∠CME:∠GEM=4:5,求∠CME的度数.97.如图,已知BD∥AC,CE∥BA,且D、A、E在同一条直线上,设∠BAC=x,∠D+∠E=y.(1)试用x的一次式表示y;(2)当x=90°,且∠D=2∠E时,DB与EC具有怎样的位置关系?98.(1)阅读填空:如图1,AB∥DE,试问∠B、∠E、∠BCE有什么关系.解:∠B+∠E=∠BCE过点C作CF∥AB,则∠B=∠1【】又∵AB∥DE,AB∥CF,∴CF∥DE∴∠E=∠2【】∴∠B+∠E=∠1+∠2,即∠B+∠E=∠BCE.(2)应用解答:观察上面图形与结论,解决下面的问题:如图2,∠DAB+∠B+∠BCE=360°,作∠BCF=∠BCG,CF与∠BAH的平分线交于F,若∠F的余角等于2∠B的补角,求∠BAH的度数.(3)拓展深化:如图3,在前面的条件下,若点P是AB上一点,Q是GE上任一点,QR平分∠PQR,PM∥QR,PN平分∠APQ,下列结论:①∠APQ+∠NPM的值不变;②∠NPM的度数不变,可以证明,只有一个是正确的,请你做出正确的选择并求值.99.(2014•赤峰)如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③、④位于直线AB上方,P是位于以上四个区域上的点,猜想:∠PEB,∠PFC,∠EPF 的关系(不要求证明).100.(2007•福州)如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD 三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)(3)当动点P落在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.相交线与平行线100题参考答案与试题解析一.选择题(共45小题)1.(2014•铜仁地区)下列图形中,∠1与∠2是对顶角的是()A.B.C.D.解答:解:利用对顶角的定义可得出:符合条件的只有C,故选:C.2.(2012春•鼓楼区校级期中)平面内有两两相交的三条直线,若最多有m个交点,最少有n个交点,则m+n等于()A.1B.2C.3D.4解答:解:平面内两两相交的三条直线,最多有3个交点,最少有1个交点,即m=3,n=1,∴m+n=4.故选D.3.下列说法正确的是()(1)如果∠1+∠2+∠3=180°,那么∠1与∠2与∠3互为补角;(2)如果∠A+∠B=90°,那么∠A是余角;(3)互为补角的两个角的平分线互相垂直;(4)有公共顶点且又相等的角是对顶角;(5)如果两个角相等,那么它们的余角也相等.A.1个B.2个C.3个D.4个解答:解:(1)互为补角的应是两个角而不是三个,故错误;(2)没说明∠A是∠B的余角,故错误;(3)互为邻补角的两个角的平分线互相垂直,故错误;(4)根据对顶角的定义可判断此命题错误.(5)相等角的余角相等,故正确.综上可得(5)正确.故选A.4.(2014•河南)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON 的度数为()A.35°B.45°C.55°D.65°解答:解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C.5.如图,直线AB、CD相交于点O,∠DOE=90°,则∠AOE与∠DOB的关系是()A.对顶角B.互补的两个角C.互余的两个角D.一对相等的角解答:解:∵∠DOE=90°,∴∠EOC=90°,即∠AOC+∠AOE=90°,∵∠AOC=∠DOB,∴∠DOB+∠AOE=90°,即∠AOE与∠DOB互余.故选C.6.如图,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是()A.∠1=90°,∠2=30°,∠3=∠4=60°B.∠1=∠3=90°,∠2=∠4=30°C.∠1=∠3=90°,∠2=∠4=60°D.∠1=∠3=90°,∠2=60°,∠4=30°解答:解:根据对顶角相等,可知∠2=60°∠4=30°.由平角的定义知,∠3=180°﹣∠2﹣∠4=90°,所以∠1=∠3=90°.故选D.7.(2014•上海)如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2B.∠3C.∠4D.∠5解答:解:∠1的同位角是∠5,故选:D.8.如图,已知AB⊥MN于E,下列条件中不能得到CD⊥MN的是()A.CD∥AB B.∠CFE=∠AEM C.∠CFE+∠AEF=180°D.∠CFE+∠CFN=180°解答:解:A、∵CD∥AB,AB⊥MN,∴CD⊥MN.B、∵∠CFE=∠AEM,∴CD∥AB(同位角相等,两直线平行).∵AB⊥MN,∴CD⊥MN.C、∵∠CFE+∠AEF=180°,∴CD∥AB,(同旁内角互补两直线平行)∵AB⊥MN,∴CD⊥MN.D、∵∠CFE与∠CFN是邻补角,当然有∠CFE+∠CFN=180°,不能得到CD⊥MN.故选D.9.(2014•汕尾)如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE解答:解:A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.10.(2009秋•翠屏区期末)已知如图,∠A=135°,∠B=45°,在下面的说法中,一定正确的是()A.AD∥BC B.AB∥CD C.∠C=135°,∠D=45°D.∠C=45°,∠D=135°解答解:∵∠A=135°,∠B=45°,∴∠A+∠B=135°+45°=180°,∴AD∥BC.故选:A.11.(2007春•西城区期末)下列命题中,错误的是()A.对顶角的角平分线互为反向延长线B.在同一平面内,垂直于同一直线的两条直线互相平行C.如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补D.同时垂直于两条平行线,并且夹在这两条平行线间的线段叫做这两条平行线的距离解答:解:A、对顶角的角平分线成180°的角,它们互为反向延长,所以A选项的说法正确;B、在同一平面内,垂直于同一直线的两条直线互相平行,所以B选项的说法正确;C、如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补,所以C选项的说法正确;D、同时垂直于两条平行线,并且夹在这两条平行线间的线段长叫做这两条平行线的距离,所以D选项的说法错误.故选D.12.(2011秋•岳阳楼区校级期末)下列说法中正确的有()①同位角相等.②凡直角都相等.③一个角的余角一定比它的补角小.④在直线、射线和线段中,直线最长.⑤两点之间的线段的长度就是这两点间的距离.⑥如果一个角的两边分别平行于另一个角的两边,则这两个角一定相等.A.0个B.1个C.2个D.3个解答:解:①只有两直线平行,同位角才相等,故本小题错误;②凡直角都相等,正确;③根据定义,一个角的余角比补角小90°,所以一个角的余角一定比它的补角小,正确;④在直线、射线和线段中,只有线段有长短,直线是向两方无限延伸的,没有长度,故本小题错误;⑤两点之间的线段的长度就是这两点间的距离,正确;⑥如果一个角的两边分别平行于另一个角的两边,则这两个角相等或互补,故本小题错误;所以,正确的有②③⑤共3个.故选D.13.(2011春•灌南县校级期末)如图,下列推理正确的是()A.∵MA∥NB,∴∠1=∠3B.∵∠2=∠4,∴MC∥ND C.∵∠1=∠3,∴MA∥NB D.∵MC∥ND,∴∠1=∠3解答:解:A、由MA∥NB,能够得到∠1+∠2=∠3+∠4(两直线平行,同位角相等),若∠1,∠2的大小不确定,则不能判定∠1=∠3;故A错误.B、因为∠2=∠4,则MC∥ND(同位角相等,两直线平行);故B正确.C、由∠1=∠3,不能判定MA∥NB,因为∠1、∠3不是NB、MA两直线截得的同位角;故C错误.D、由MC∥ND,可得∠2=∠4,而不能得到∠1=∠3;故D错误.故选B.14.(2012春•金台区期末)如图,AB⊥BC,BC⊥CD,∠EBC=∠BCF,则∠ABE与∠FCD的关系是()A.同位角且相等B.不是同位角但相等C.是同位角但不相等D.不是同位角也不相等解答:解:∵AB⊥BC,BC⊥CD,∴∠ABC=∠DCB=90°,∵∠EBC=∠BCF,∴∠ABE=∠FCD.故选:B.15.(2013春•下城区期末)如图,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有()A.6个B.5个C.4个D.3个解答:解:如图,∵EG∥DB,∴∠1=∠2,∠1=∠3,∵AB∥EF∥DC,∴∠2=∠4,∠3=∠5=∠6,∴与∠1相等的角有∠2、∠3、∠4、∠5、∠6共5个.故选B.16.(2015•河北一模)如图,在五边形ABCDE中,AB∥DE,若△ABE的面积为5,则△ABD的面积为()A.4B.5C.10D.无法判断解答:解:∵在五边形ABCDE中,AB∥DE,∴点E、点D到直线AB上的垂线段相等,即在△ABE与△ABD中,边AB上的高线相等,∴△ABE与△ABD是同底等高的两个三角形,S△ABE =S△ABD=5.故选:B.17.(2014•安顺)如图,∠AOB的两边OA,OB均为平面反光镜,∠AOB=40°.在射线OB上有一点P,从P点射出一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行,则∠QPB的度数是()A.60°B.80°C.100°D.120°解答:解:∵QR∥OB,∴∠AQR=∠AOB=40°,∠PQR+∠QPB=180°;∵∠AQR=∠PQO,∠AQR+∠PQO+∠RQP=180°(平角定义),∴∠PQR=180°﹣2∠AQR=100°,∴∠QPB=180°﹣100°=80°.故选:B.18.(2014•龙岩)如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于()A.40°B.50°C.70°D.80°解答:解:∵∠1=∠2,∠3=40°,∴∠1=×(180°﹣∠3)=×(180°﹣40°)=70°,∵a∥b,∴∠4=∠1=70°.故选:C.19.(2014•荆州)如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是()A.155°B.145°C.110°D.35°解答:解:如图,∵AB∥ED,∠ECF=70°,∴∠BAC=∠ECF=70°,∴∠FAB=180°﹣∠BAC=110°.又∵AG平分∠BAC,∴∠BAG=∠BAC=35°,∴∠FAG=∠FAB+∠BAG=145°.故选:B.20.(2011秋•射洪县校级期末)如图,已知l1∥l2,AB∥CD,CE⊥l2于点E,FG⊥l2于点G,则下列说法中错误的是()A.AB=CDB.CE=FGC.A、B两点间距离就是线段AB的长度D.l1与l2两平行线间的距离就是线段CD的长度解答:解:A、∵l1∥l2,AB∥CD,∴四边形ABDC是平行四边形,∴AB=CD,故本选项正确;B、∵l1∥l2,CE⊥l2于点E,FG⊥l2于点G,∴边形CEGF是平行四边形,∴CE=FG,故本选项正确;C、∵AB是线段,∴A、B两点间距离就是线段AB的长度,故本选项正确;D、∵CE⊥l2于点E,∴l1与l2两平行线间的距离就是线段CE的长度,故本选项错误.故选D.21.(2009春•常州期末)如图,∠1=120°,∠2=60°,∠3=65°,则∠4等于()A.40°B.50°C.65°D.115°解答:解:∵∠1=120°,∠2=60°,120°+60°=180°,∴这两个角所在的两条直线平行,∴∠4=∠3=65°.故本题选C.22.(2009秋•长春校级期末)如图,已知∠1=∠2,∠3=60°,则∠4=()A.80°B.70°C.60°D.50°解答:解:∵∠1=∠2,2=∠5(对顶角相等)∴∠1=∠5,∴a∥b,(内错角相等,两直线平行)∴∠4=∠3=60°,故选C.23.(2014春•乳山市期末)如图,AC⊥CD于C,ED⊥CD于D,AB∥EF,∠CAE=25°,∠BAE=10°,则∠DEF=()A.30°B.35°C.40°D.45°解答:解:∵AC⊥CD,ED⊥CD,∴∠C=∠D=90°,∴AC∥DE,∴∠CAE=∠DEF=25°,∵AB∥EF,∠BAE=10°,∴∠BAE=∠CEF=10°,∴∠DEF=∠DEA+∠CEA=25°+10°=35°,故选B.24.(2013春•下城区期末)如图,∠1=100°,∠2=100°,且∠3:∠1=6:5,则∠4的度数为()A.100°B.110°C.120°D.130°解答:解:∵∠1=100°,∠3:∠1=6:5,∴∠3=120°.∵∠1=100°,∠2=100°,即∠1=∠2,∴a∥b,∴∠4=∠3=120°.故选C.25.(2005春•武昌区期末)如图,∠1与∠3互余,∠2与∠3的余角互补,∠4=115°,则∠3为()A.45°B.60°C.65°D.70°解答:解:∵∠1与∠3互余,∠2与∠3的余角互补,∴∠1+∠3=90°,∠2+(90°﹣∠3)=180°,∴∠1+∠2=180°,∴l1∥l2,∴∠3+∠5=180°,又∵∠5=∠4=115°,∴∠3=180°﹣115°=65°.故选C.26.(2014春•苏州期末)如图,已知AB∥CD,∠1=∠2,∠E=50°,则∠F=()A.40°B.50°C.60°D.70°解答:解:∵AB∥CD,∴∠ABC=∠BCD,∵∠1=∠2,∴∠EBC=∠BCF,∴EB∥CF,∴∠F=∠E=50°.故选B.27.(2008秋•江苏校级期末)如图,AB∥CD,EG、EM、FM分别平分∠AEF,∠BEF,∠EFD,则图中与∠DFM 相等的角(不含它本身)的个数为()A.5B.6C.7D.8解答:解:∵FM平分∠EFD,∴∠EFM=∠DFM=∠CFE,∵EG平分∠AEF,∴∠AEG=∠GEF=∠AEF,∵EM平分∠BEF,∴∠BEM=∠FEM=∠BEF,∴∠GEF+∠FEM=(∠AEF+∠BEF)=90°,即∠GEM=90°,∠FEM+∠EFM=(∠BEF+∠CFE),∵AB∥CD,∴∠EGF=∠AEG,∠CFE=∠AEF∴∠FEM+∠EFM=(∠BEF+∠CFE)=(BEF+∠AEF)=90°,∴在△EMF中,∠EMF=90°,∴∠GEM=∠EMF,∴EG∥FM,∴与∠DFM相等的角有:∠EFM、∠GEF、∠EGF、∠AEG以及∠GEF、∠EGF、∠AEG三个角的对顶角.故选C.28.(2008春•江岸区期末)如图,AB∥CD,∠D=∠E,∠B=110°,则∠D为()A.70°B.60°C.55°D.45°解答:解:∵AB∥CD,∴∠BFD=∠B=110°.又∵∠D=∠E,∴∠D=110°÷2=55°.故选C29.(2014春•宜宾校级期末)如图,矩形纸片ABCD中,沿折痕EF折叠,得∠EFG=40°,∠AEG的度数为()A.98°B.99°C.100°D.101°解答:解:∵在矩形ABCD中,AD∥BC,∴∠DEF=∠EFG=40°由对称性可知∠GEF=∠DEF=40°.∴∠AEG=180°﹣∠GEF﹣∠DEF=100°.故选C.30.如图所示,AD∥BC,∠BCD=50°,∠B=80°,CA平分∠BCD,则∠CAD与∠BAC的度数分别为()A.25°,75°B.75°,25°C.20°,50°D.25°,65°解答:解:∵∠BCD=50°,CA平分∠BCD,∴∠BCA=∠BCD=25°,∵AD∥BC,∴∠CAD=∠BCA=25°;∵∠B=80°,∴∠BAC=180°﹣∠B﹣∠BCA=75°.故选:A.31.如图,已知AB∥CD,直线EF交AB于E,交CD于F,∠1=∠2,则下列判断不正确的是()A.FN∥EM B.∠MEB=∠NFC C.∠1+∠AEF=180°D.∠AEM=∠DFN解答:解:A、由∠1=∠2可得FN∥EM;故结论正确;B、由AB∥CD可得∠BED=∠CFE,由A证得的结论可推得:∠MEB=∠NFC;故结论正确;C、由AB∥CD可得∠AEF+∠CFE=180°,故原结论错误;D、由AB∥CD可得∠AEF=∠DFE,由A证得的结论可推得:∠AEM=∠DFC;故结论正确.故选C.32.(2006春•襄城区期末)如图,AB∥CD,OE平分∠AOC,OE⊥OF,∠C=60°,则∠BOF的度数为()A.15°B.30°C.60°D.90°解答:解:∵AB∥CD,∠C=60°,∴∠BOC=∠C=60°,∴∠AOC=180°﹣∠BOC=180°﹣60°=120°,∵OE平分∠AOC,∴∠BOC=∠AOC=×120°=60°,∵OE⊥OF,∴∠COF=90°﹣60°=30°,∴∠BOF=∠BOC﹣∠COF=60°﹣30°=30°.故选B.33.(2013•台湾)附图中直线L、N分别截过∠A的两边,且L∥N.根据图中标示的角,判断下列各角的度数关系,何者正确?()A.∠2+∠5>180°B.∠2+∠3<180°C.∠1+∠6>180°D.∠3+∠4<180°解答:解:根据三角形的外角性质,∠3=∠1+∠A,∵∠1+∠2=180°,∴∠2+∠3=∠2+∠1+∠A>180°,故B选项错误;∵L∥N,∴∠3=∠5,∴∠2+∠5=∠2+∠1+∠A>180°,故A选项正确;C、∵∠6=180°﹣∠5,∴∠1+∠6=∠3﹣∠A+180°﹣∠5=180°﹣∠A<180°,故本选项错误;D、∵L∥N,∴∠3+∠4=180°,故本选项错误.故选A.34.(2014春•招远市期末)如图,直线l1,l2分别截射线AB,AC,若l1∥l2,则下列各角度数关系正确的是()A.∠5+∠1=180°B.∠4+∠2>180°C.∠6+∠3<180°D.∠4+∠6<180°解答:解:∵l1∥l2,∠3=∠1,∴∠2=∠6,∠3+∠6=180°,即∠1+∠6=180°,选项C错误;而AB与AC不平行,故∠5≠∠6,即∠5+∠1≠180°,选项A错误;∠4+∠6≠180°,即∠4+∠2>180°,选项B正确,选项D错误;故选B35.(2009春•成华区期末)如图,已知AB∥EF,则∠B+∠C+∠D+∠E的度数为()A.270°B.360°C.450°D.540°解答:解:如图,分别过点C,D作AB的平行线CG,DH,则∠B+∠BCG=180°,∠GCD+∠HDC=180°,∠HDE+∠DEF=180°,∴∠B+∠BCG+∠GCD+∠HDC+∠HDE+∠DEF=180°×3=540°,∴∠B+∠BCD+∠CDE+∠E=540°.故选D.36.(2011春•抚州校级期末)如图,AB∥CD,∠BED=110°,BF平分∠ABE,DF平分∠CDE,则∠BFD=()A.110°B.115°C.125°D.130°解答:解:过点E作EM∥AB,过点F作FN∥AB,∵AB∥CD,∴EM∥AB∥CD∥FN,∴∠ABE+∠BEM=180°,∠CDE+∠DEM=180°,∴∠ABE+∠BED+∠CDE=360°,∵∠BED=110°,∴∠ABE+∠CDE=250°,∵BF平分∠ABE,DF平分∠CDE,∴∠ABF=∠ABE,∠CDF=∠CDE,∴∠ABF+∠CDF=(∠ABE+∠CDE)=125°,∵∠DFN=∠CDF,∠BFN=∠ABF,∴∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=125°.故选C.37.(2013春•太仓市期末)如图,已知AB∥CD,则∠a、∠B和∠y之间的关系为()A.α+β﹣γ=180°B.α+γ=βC.α+β+γ=360°D.α+β﹣2γ=180°解答:解:过点E作EF∥AB∴∠α+∠AEF=180°(两直线平行,同旁内角互补)∵AB∥CD(已知)∴EF∥CD.∴∠FED=∠EDC(两直线平行,内错角相等)∵∠β=∠AEF+∠FED又∵∠γ=∠EDC(已知)∴∠α+∠β﹣∠γ=180°.故选A.38.(2013秋•永州期末)如图,AB∥CD,用含α,β,γ的式子表示θ,则θ=()A.180°+α+β﹣γB.180°+γ﹣α﹣βC.β+γ﹣αD.α+γ﹣β解答:解:过点E作EM∥AB,过点F作FN∥AB,∵AB∥CD,∴AB∥EM∥FN∥CD,∴∠AEM=α,∠CFN=β,∠FEM+∠EFN=180°,∴∠EFN=γ﹣β,∴∠FEM=180°﹣∠EFN=180°﹣γ+β,∴θ=∠AEM+∠FEM=α+(180°﹣γ+β)=180°+α+β﹣γ.故选A.39.(2014•鄂州)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°解答:解:由三角形的外角性质,∠3=∠1+∠B=70°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣70°﹣90°=20°.故选:A.40.(2014•长沙二模)如图,AB∥EF,BC⊥CD于C,∠ABC=30°,∠DEF=45°,则∠CDE等于()A.105°B.75°C.135°D.115°解答:解:作CM∥AB,DN∥AB,由AB∥EF,得到AB∥CM∥DN∥EF,∴∠ABC=∠BCM=30°,∠DEF=∠GDE=45°,∠MCD=∠CDG,∵BC⊥CD,∴∠BCD=90°,∴∠MCD=∠CDG=60°,∴∠CDE=∠CDG+∠GDE=105°.故选A41.(2014春•武昌区期末)如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是()A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180°D.∠E﹣∠C+∠D﹣∠A=90°解答:解:如图,过点C作CG∥AB,过点D作DH∥EF,则∠A=∠ACG,∠EDH=180°﹣∠E,∵AB∥EF,∴CG∥DH,∴∠CDH=∠DCG,∴∠C=∠ACG+∠CDH=∠A+∠D﹣(180°﹣∠E),∴∠A﹣∠C+∠D+∠E=180°.故选C.42.(2013秋•招远市期末)如图,AB∥EF∥CD,连接BD,ED,则下列等式中正确的是()A.∠1﹣∠2+∠3=180°B.∠1+∠2﹣∠3=180°C.∠2+∠3﹣∠1=180°D.∠1+∠2+∠3=180°解答:解:如图,延长CD,∵EF∥CD,∴∠4=180°﹣∠3,∵AB∥CD,∴∠1=∠2+∠4,∴∠1=∠2+180°﹣∠3,整理得,∠1﹣∠2+∠3=180°.故选A.43.(2013春•石景山区期末)如图,AF是∠BAC的平分线,EF∥AC交AB于点E,若∠1=155°,则∠BEF的度数为()A.50°B.12.5°C.25°D.15°解答:解:∵∠AFE=180°﹣∠1=180°﹣155°=25°,又∵EF∥AC,∴∠CAF=∠AFE=25°,∵AF是∠BAC的平分线,∴∠BAC=2∠CAF=50°,∵EF∥AC,∴∠BEF=∠BAC=50°.故选A.44.(2014春•招远市期末)如图,一条公路修到湖边时,需拐弯绕湖而过,第一次拐的角∠A=110°,第二次拐的角∠B=150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C的度数为()A.120°B.130°C.140°D.150°解答:解:延长FC,AB,交于点E,如图所示,∵AD∥CE,∴∠A=∠E=110°,∵∠ABC为△BCE的外角,∴∠BCE=∠ABC﹣∠E=40°,∴∠BCF=140°.故选C45.(2014春•海淀区期末)如图,AB∥CD,∠BAC与∠DCA的平分线相交于点G,EG⊥AC于点E,F为AC上的一点,且FA=FG=FC,GH⊥CD于H.下列说法正确的是()①AG⊥CG;②∠BAG=∠CGE;③S△AFG=S△GFC;④若∠EGH:∠ECH=2:7,则∠EGF=50°.A.①③④B.②③C.①②③D.①②③④解答:解:①中,∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠BAC与∠DCA的平分线相交于点G,∴∠GAC+∠GCA=∠BAC+∠ACD=×180°=90°,∵∠GAC+∠GCA+AGC=∠180°,∴AG⊥CG;②中,根据等角的余角相等,得∠CGE=∠GAC,故∠BAG=∠CGE;③中,根据三角形的面积公式,∵AF=CF,∴S△AFG =S△CFG;④中,根据题意,得:在四边形GECH中,∠EGH+∠ECH=180°.又∵∠EGH:∠ECH=2:7,∴∠EGH=180°×=40°,∠ECH=180°×=140°.∵CG平分∠ECH,∴∠FCG=∠ECH=70°,根据直角三角形的两个锐角互余,得∠EGC=20°.∵FG=FC,∴∠FGC=∠FCG=70°,∴∠EGF=50°.故上述四个都是正确的.故选D.二.填空题(共45小题)46.(2014春•新泰市期末)如图,已知直线CD、EF相交于点O,OA⊥OB,且OC平分∠AOF,∠BOE=2∠AOE.则∠BOD=15°.解答:解:∵OA⊥OB,∠BOE=2∠AOE.∴∠AOE=30°,∴∠AOF=180°﹣∠AOE=180°﹣30°=150°,∵OC平分∠AOF,∴∠AOC=75°,∴∠BOD=180°﹣∠BOA﹣∠AOC=180°﹣90°﹣75°=15°故答案为:15°.47.(2013春•黄山期末)如图,已知直线AD、BE、CF相交于O,OG⊥AD,且∠BOC=35°,∠FOG=30°,则∠DOE= 25°.解答:解:∵OG⊥AD,∴∠GOD=90°,∵∠EOF=∠BOC=35°,又∵∠FOG=30°,∴∠DOE=∠GOD﹣∠EOF﹣∠GOF=90°﹣35°﹣30°=25°,故答案为:25°.48.(2013秋•昌平区期末)如图,直线AB,CD相交于点O,∠AOC=60°,∠1=2∠2,则∠2=20°,∠AOE= 140°.解答:解:∵∠AOC与∠BOD是对顶角,∴∠BOD=∠AOC=60°,∵∠1=2∠2,∠1+∠2=60°,∴∠2=20°;∵∠AOC+∠BOD=180°,∴∠BOD=180°﹣∠AOC=120°,∵∠AOE=∠AOD+∠EOD=120°+20°=140°,故答案为:20,140.49.(2014春•霸州市期末)如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠AOC= 52度,∠COB=128度.解答:解:∵OE⊥AB,∴∠EOB=90°,又∠EOD=38°,∴∠DOB=90°﹣38°=52°,∵∠AOC=∠DOB,∴∠AOC=52°,∵∠COB与∠AOC互补,∴∠COB=180°﹣52°=128°.故答案为:52;128.50.(2013•河北模拟)如图,直线AB与直线CD相交于点O,射线OP平分∠AOD,若∠BOC=130°,则∠COP 的度数为115°.解答:解:∵∠BOC=130°,∴∠AOD=∠BOC=130°,∵OP平分∠AOD,∴∠POD=∠AOD=×130°=65°,∴∠COP=180°﹣∠POD=180°﹣65°=115°.故答案为:115°.51.(2010秋•江阴市期末)已知直线AB和CD相交于O点,OE⊥AB,∠1=55°,则∠BOD=35度;若OF平分∠DOB,则∠EOF的度数是107.5度.解答:解:∵OE⊥AB,∠1=55°,∴∠AOC=90°﹣∠1=90°﹣55°=35°,又∵∠BOD=∠AOC,∴∠BOD=35°;∵OE⊥AB,∴∠EOB=90°,又∵OF平分∠DOB,∴∠BOF=∠DOB=×35°=17.5°,∠EOF=∠EOB+∠BOF=90°+17.5°=107.5°.故答案分别为:35°;107.5°.52.(2011秋•大兴区期末)如图,三条直线相交于一点,按从小到大的顺序排列∠1,∠2,∠3为∠1<∠3<∠2.解答:解:根据图形,∠1=180°﹣60°﹣70°=180°﹣130°=50°,根据对顶角相等,∠2=70°,∠3=60°,所以∠1<∠3<∠2.故答案为:∠1<∠3<∠2.53.(2014春•武昌区期末)如图,已知∠α与∠β共顶点O,∠α+∠β<180°,∠α=∠β.若∠β的邻补角等于∠α,则∠β=120度.解答:解:设∠α=x,则∠β=3x,根据题意得:解得:,解得:x=40°,∴∠β=3x=120°,故答案为:120.54.(2011•平塘县校级模拟)如图,要从小河引水到村庄A,请设计并作出一最佳路线,理由是垂线段最短.解答:解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴过点A作河岸的垂线段,理由是垂线段最短.55.看图填空:(1)∠1和∠4是邻补角;(2)∠1和∠3是对顶角;(3)∠2和∠D是内错角;(4)∠3和∠D是同旁内角;(5)∠4和∠D是同位角;(6)∠4和∠B是同位角.解答:解:(1)∠1和∠4是邻补角,故答案为:邻补;(2)∠1和∠3是对顶角,故答案为:对顶;(3)∠2和∠D是内错角,故答案为:内错;(4)∠3和∠D是同旁内角,故答案为:同旁内;(5)∠4和∠D是同位角,故答案为:同位;(6)∠4和∠B是同位角,故答案为:同位.56.如图所示,AB与BC被AD所截得的内错角是∠1与∠3;;DE与AC被AD所截得的内错角是∠2与∠4;∠1与∠4是直线AE、ED被直线AD截得的角,图中同位角有6对.解答:解:,AB与BC被AD所截得的内错角是∠1与∠3;DE与AC被AD所截得的内错角是∠2与∠4;∠1与∠4是直线AE、ED被直线AD截得的角,图中同位角有4对,故答案为:∠1与∠3,∠2与∠4,AE、ED,AD,6.57.(2011秋•岳阳楼区校级期末)如图所示,其中共有4对对顶角.解答:解:如图,在顶点H处有2对对顶角,在顶点C处有2对对顶角,所以,共有2+2=4对对顶角.故答案为:4.58.(2014春•富顺县校级期末)如图所示,同位角一共有6对,内错角一共有4对,同旁内角一共有有4对.解答:解:同位角一共有6对,分别是∠1和∠5,∠2和∠6,∠3和∠7,∠4和∠8,∠7和∠9,∠4和∠9;内错角一共有4对,分别是∠1和∠7,∠4和∠6,∠5和∠9,∠2和∠9;同旁内角一共有4对,分别是∠1和∠6,∠1和∠9,∠4和∠7,∠6和∠9.故答案为:6,4,4.59.(2004秋•奉贤区期末)如图:a∥b,图中的∠1,∠2,∠3,∠4,∠5,∠6,∠7中同位角有3对.解答:解:观察图形可知:∠1的同位角是∠4,∠3的同位角是,5,∠7的同位角是∠6,∴图中同位角有3个.故答案为:3.60.如图,DH∥EO∥BC,EF∥CD,则与∠BFE相等的角,不包括∠BFE有5个.。
平行线与相交线精选练习题(很经典哦)
平行线与相交线精选练习题1.如图,∠ABC =∠ADC,BF 、DE 分别是∠ABC 、∠ ADC 的角平分线,∠1=∠2,求征DC ∥AB 。
2.已知直线a 、b 、c 在同一平面内,a ∥b ,a 与c 相交于p ,那么b 与c 也一定相交,请说明理由3.如图,∠B =∠C ,B 、A 、D 三点在同一直线上,∠DAC =∠B +∠C ,AE 是∠DAC 的平分线,求征:AE ∥BC4.如图,已知直线AB 、CD 被直线EF 所截,如果∠BMN =∠D NF ,∠1=∠2,那么MQ ∥NP ,试写出推理5.如图,已知∠1与∠3互余,∠2与∠3的余角互补,问直线12,l l 平行吗?为什么?321FE DCBA21ED CAPQMN 21FEDCB Al 4l 3l 2l 13217.同一平面内三条直线最多有m个交点,最少有n个交点,则m+n等于A.2B.3C.4D.58.小明将较大的一个三角尺按如图12所示的情形放置在课本上(平面图),此时他量得∠1=120°,则你认为∠2应是A.100°B.120°C.150°D.160°9.如图5—15,△ABC中,∠A=60°,∠ABC、∠ACB的平分线BD、CD交于点D,则∠BDC =_________.10.如图5—21,△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高AE是∠BAC的平分线,求∠DAE的度数.AE是∠BAC的平分线,求∠DAE的度数.11.已知DE∥BC,CD是∠ACB的角平分线,∠B=80°,∠ACB=50°。
试求∠EDC与∠BDC的度数。
12.在直角三角形、钝角三角形和锐角三角形这三种三角形中,有两条高在三角形外部的是三角形.13.把一副常用的三角板如图所示拼在一起,那么图中∠ADE是度.14.在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高。