浙江专用高考物理二轮复习专题二第2讲动量观点和能量观点在电磁学中的应用讲义增分练

合集下载

【精选】高考物理二轮复习第一部分专题二能量与动量第2讲能量和动量观点在电磁学中的应用课件新人教版

【精选】高考物理二轮复习第一部分专题二能量与动量第2讲能量和动量观点在电磁学中的应用课件新人教版
第一单元 专题生二活智能慧量与和时代动精量神
赢在高考
(1)求电势能为 E1 时小球的位置坐标 x1 和小球的质量 m; (2)已知在 x=x1 处时小球与杆间的弹力恰好为零,求小球 的电荷量 q2; (3)求小球释放瞬间弹簧的弹性势能 Ep.
第一单元 专题生二活智能慧量与和时代动精量神
赢在高考
解析 (1)当小球运动到距离 q1 最近的 A 点时电势能最大, 如图所示
第一单元 专题生二活智能慧量与和时代动精量神
当带电液滴进入磁场时,由于电场力与重力方向相反,处 于平衡.而洛伦兹力提供向心力,带电液滴做匀速圆周运动.所 以重力势能先减小后增大,故 A 正确;由于电场力先做负功后 做正功,所以电势能先增大后减小,那么机械能先减小后增大, 故 B 错误;由于做匀速圆周运动,则速度的大小不变,则动能 不变,故 C 错误,D 正确.
第一单元 专题生二活智能慧量与和时代动精量神
赢在高考
4.(2015·全国Ⅰ)如图,直线 a、b 和 c、d 是处于匀强电场中的两组平行线,M、N、P、 Q 是它们的交点,四点处的电势分别为 φM、φN、 φP、φQ.一电子由 M 点分别运动到 N 点和 P 点 的过程中,电场力所做的负功相等.则( )
第一单元 专题生二活智能慧量与和时代动精量神
赢在高考
ABD 如图所示,由匀强电场中两平 行线距离相等的两点间电势差相等知,Oa 间电势差与 bc 间电势差相等,故 O 点电 势为 1 V,选项 B 正确;则在 x 轴上,每 0.5 cm 长度对应电势差为 1 V,10 V 对应的等势线与 x 轴交点 e 坐标为(4.5,0),△aOe 中,Oe∶Oa=4.5∶6=3∶4,由几何知识 得:Od 长度为 3.6 cm,代入公式 E=Ud 得,E=2.5 V/cm,选项 A 正确;电子带负电,电势越高,电势能越小,电子在 a 点的 电势能比在 b 点的高 7 eV,选项 C 错误;电子从 b 点运动到 c 点,电场力做功 W=eU=9 eV,选项 D 正确.

浙江高考物理二轮复习专题二能量和动量第2讲动量和能量观点的应用学案

浙江高考物理二轮复习专题二能量和动量第2讲动量和能量观点的应用学案

第2讲 动量和能量观点的应用[历次选考考情分析]考点一 动量与冲量有关概念与规律的辨析1.动量定理(1)冲量:力与力的作用时间的乘积叫做力的冲量,即I =Ft ,冲量是矢量,其方向与力的方向相同,单位是N·s.(2)物理意义:动量定理表示了合外力的冲量与动量变化间的因果关系;冲量是物体动量变化的原因,动量发生改变是物体合外力的冲量不为零的结果.(3)矢量性:动量定理的表达式是矢量式,应用动量定理时需要规定正方向. 2.动量定理的应用(1)应用I =Δp 求变力的冲量:若作用在物体上的作用力是变力,不能直接用Ft 求变力的冲量,但可求物体动量的变化Δp ,等效代换变力的冲量I .(2)应用Δp =Ft 求恒力作用下物体的动量变化:若作用在物体上的作用力是恒力,可求该力的冲量Ft ,等效代换动量的变化. 3.动量守恒的适用条件(1)系统不受外力或所受外力的合力为零,不是系统内每个物体所受的合力都为零,更不能认为系统处于平衡状态.(2)近似适用条件:系统内各物体间相互作用的内力远大于它所受到的外力. (3)如果系统在某一方向上所受外力的合力为零,则系统在该方向上动量守恒. 4.动量守恒的表达式(1)m 1v 1+m 2v 2=m 1v 1′+m 2v 2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(2)Δp 1=-Δp 2,相互作用的两个物体动量的增量等大反向. (3)Δp =0,系统总动量的增量为零.1.[动量定理的定性分析](多选)篮球运动员通常要伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前,如图1所示,下列说法正确的是( )图1A .球对手的冲量减小B .球对人的冲击力减小C .球的动量变化量不变D .球的动能变化量减小答案 BC解析 先伸出两臂迎接,手接触到球后,两臂随球引至胸前,这样可以增加球与手接触的时间,根据动量定理得:-Ft =0-mv 得F =mvt,当时间增大时,作用力减小,而冲量和动量变化量、动能变化量都不变,所以B 、C 正确.2.[动量定理的定量计算](多选)如图2所示为运动传感器探测到小球由静止释放后撞击地面弹跳的v -t 图象,小球质量为0.5 kg ,重力加速度g =10 m/s 2,不计空气阻力,根据图象可知( )图2A .横坐标每一小格表示的时间是0.1 sB .小球第一次反弹的最大高度为1.25 mC .小球下落的初始位置离地面的高度为1.25 mD .小球第一次撞击地面时地面给小球的平均作用力为55 N 答案 AB解析 小球下落时做自由落体运动,加速度为g ,则落地时速度为6 m/s ,用时t =610 s =0.6s ,图中对应6个小格,每一小格表示0.1 s ,故A 正确;第一次反弹后加速度也为g ,为竖直上抛运动,由题图可知,最大高度为:h =12×10×(0.5)2m =1.25 m ,故B 正确;小球下落的初始位置离地面的高度为:h ′=12×10×(0.6)2m =1.8 m ,故C 错误;设向下为正方向,由题图可知,碰撞时间约为t ′=0.1 s ,根据动量定理可知:mgt ′-Ft ′=mv ′-mv ,代入数据解得:F =60 N ,故D 错误.3.[动量守恒的应用](多选)如图3所示,在光滑水平面上,质量为m 的A 球以速度v 0向右运动,与静止的质量为5m 的B 球碰撞,碰撞后A 球以v =av 0(待定系数a <1)的速率弹回,并与固定挡板P 发生弹性碰撞,若要使A 球能再次追上B 球并相撞,则系数a 可以是( )图3A.14B.25C.23D.17 答案 BC解析 A 与B 发生碰撞,选取向右为正方向,根据动量守恒可知:mv 0=5mv B -mav 0.要使A 球能再次追上B 球并相撞,且A 与固定挡板P 发生弹性碰撞,则av 0>v B ,由以上两式可解得:a >14,故B 、C 正确,A 、D 错误.考点二 动量观点在电场和磁场中的应用例1 如图4所示,轨道ABCDP 位于竖直平面内,其中圆弧段CD 与水平段AC 及倾斜段DP 分别相切于C 点和D 点,水平段AB 、圆弧段CD 和倾斜段DP 都光滑,水平段BC 粗糙,DP 段与水平面的夹角θ=37°,D 、C 两点的高度差h =0.1 m ,整个轨道绝缘,处于方向水平向左、场强未知的匀强电场中.一个质量m 1=0.4 kg 、带正电、电荷量未知的小物块Ⅰ在A 点由静止释放,经过时间t =1 s ,与静止在B 点的不带电、质量m 2=0.6 kg 的小物块Ⅱ碰撞并粘在一起在BC 段上做匀速直线运动,到达倾斜段DP 上某位置.物块Ⅰ和Ⅱ与轨道BC 段间的动摩擦因数均为μ=0.2.g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:图4(1)物块Ⅰ和Ⅱ在BC 段上做匀速直线运动的速度大小;(2)物块Ⅰ和Ⅱ第一次经过C 点时,圆弧段轨道对物块Ⅰ和Ⅱ的支持力的大小. 答案 (1)2 m/s (2)18 N解析 (1)物块Ⅰ和Ⅱ粘在一起在BC 段上做匀速直线运动,设电场强度为E ,物块Ⅰ带电荷量为q ,与物块Ⅱ碰撞前物块Ⅰ的速度为v 1,碰撞后共同速度为v 2,取水平向左为正方向,则qE =μ(m 1+m 2)g ,qEt =m 1v 1,m 1v 1=(m 1+m 2)v 2解得v 2=2 m/s(2)设圆弧段CD 的半径为R ,物块Ⅰ和Ⅱ第一次经过C 点时圆弧段轨道对物块Ⅰ和Ⅱ的支持力的大小为F N ,则R (1-cos θ)=hF N -(m 1+m 2)g =(m 1+m 2)v 22R解得F N =18 N4.(2018·诸暨市期末)在一个高为H =5 m 的光滑水平桌面上建立直角坐标系,x 轴刚好位于桌子的边缘,如图5所示为俯视平面图.在第一象限的x =0到x =4 3 m 之间有竖直向上的匀强磁场,磁感应强度B =1.0 T ,第二象限内的平行金属板MN 之间加有一定的电压.甲、乙为两个绝缘小球,已知甲球质量m 1=3×10-3kg ,带q =5×10-3C 的正电荷,乙球的质量m 2=10×10-3 kg ,静止在桌子边缘上的F 点,即x 轴上x =3 3 m 处;现让甲球从金属板M附近由静止开始在电场中加速,经y 轴上y =3 m 处的E 点,垂直y 轴射入磁场,甲球恰好能与乙球对心碰撞,碰后沿相反方向弹回,最后垂直于磁场边界PQ 射出,而乙球落到地面.假设在整个过程中甲球的电荷量始终保持不变,重力加速度g =10 m/s 2,则:图5(1)求平行金属板MN 之间的电压; (2)求甲球从磁场边界PQ 射出时速度大小;(3)求乙球的落地点到桌子边缘(即x 轴)的水平距离. 答案 (1)30 V (2)103m/s (3)2 3 m解析 (1)设甲球做第一次圆周运动的半径为R 1,则由几何关系可得(R 1-OE )2+OF 2=R 12R 1=6.0 m.设平行金属板MN 之间的电压为U ,甲球加速后的速度为v 1,则qv 1B =m 1v 12R 1,得v 1=10 m/sqU =12m 1v 12代入数据得U =30 V.(2)设甲球做第二次圆周运动的半径为R 2,则由几何关系可得R 2=2.0 m qv 2B =m 1v 22R 2代入数据得v 2=103m/s.(3)甲、乙两球对心碰撞,设碰后乙球的速度为v ,以碰撞前甲球的速度方向为正方向,由动量守恒定律有m 1v 1=-m 1v 2+m 2v ,代入数据得v =4 m/s.由几何关系可得甲球的碰前速度方向与x 轴成60°,因此乙球的碰后速度方向也与x 轴成θ=60°,开始做平抛运动,设水平位移为s ,沿y 轴方向位移分量为y .H =12gt 2, s =vt , y =s sin θ,代入数据得y =2 3 m.考点三 动量和能量观点在电磁感应中的简单应用例2 如图6所示,足够长的水平轨道左侧b 1b 2-c 1c 2部分的轨道间距为2L ,右侧c 1c 2-d 1d 2部分的轨道间距为L ,曲线轨道与水平轨道相切于b 1b 2,所有轨道均光滑且电阻不计.在水平轨道内有斜向下与竖直方向成θ=37°的匀强磁场,磁感应强度大小为B =0.1 T .质量为M =0.2 kg 的金属棒C 垂直于导轨静止放置在右侧窄轨道上,质量为m =0.1 kg 的导体棒A自曲线轨道上a 1a 2处由静止释放,两金属棒在运动过程中始终相互平行且与导轨保持良好接触,A 棒总在宽轨上运动,C 棒总在窄轨上运动.已知:两金属棒接入电路的有效电阻均为R =0.2 Ω,h =0.2 m ,L =0.2 m ,sin 37°=0.6,cos 37°=0.8,g =10 m/s 2,求:图6(1)金属棒A 滑到b 1b 2处时的速度大小; (2)金属棒C 匀速运动的速度大小;(3)在两棒整个的运动过程中通过金属棒A 某截面的电荷量;(4)在两棒整个的运动过程中金属棒A 、C 在水平导轨间扫过的面积之差. 答案 (1)2 m/s (2)0.44 m/s (3)5.56 C (4)27.8 m 2解析 (1)A 棒在曲线轨道上下滑,由机械能守恒定律得:mgh =12mv 02得:v 0=2gh =2×10×0.2 m/s =2 m/s(2)选取水平向右为正方向,对A 、C 利用动量定理可得: 对C :F C 安cos θ·t =Mv C 对A :-F A 安cos θ·t =mv A -mv 0 其中F A 安=2F C 安联立可知:mv 0-mv A =2Mv C两棒最后匀速运动时,电路中无电流:有BLv C =2BLv A 得:v C =2v A 解得v C ≈0.44 m/s(3)在C 加速过程中:Σ(B cos θ)iL Δt =Mv C -0q =Σi Δt得:q =509C≈5.56 C(4)根据法拉第电磁感应定律有:E =ΔΦΔt磁通量的变化量:ΔΦ=B ΔS cos θ 电路中的电流:I =E2R通过截面的电荷量:q =I ·Δt 得:ΔS =2509m 2≈27.8 m 25.如图7所示,两平行光滑金属导轨由两部分组成,左面部分水平,右面部分为半径r =0.5 m 的竖直半圆,两导轨间距离d =0.3 m ,导轨水平部分处于竖直向上、磁感应强度大小B =1 T 的匀强磁场中,两导轨电阻不计.有两根长度均为d 的金属棒ab 、cd ,均垂直导轨置于水平导轨上,金属棒ab 、cd 的质量分别为m 1=0.2 kg 、m 2=0.1 kg ,电阻分别为R 1=0.1 Ω、R 2=0.2 Ω.现让ab 棒以v 0=10 m/s 的初速度开始水平向右运动,cd 棒进入圆轨道后,恰好能通过轨道最高点PP ′,cd 棒进入圆轨道前两棒未相碰,重力加速度g =10 m/s 2,求:图7(1)ab 棒开始向右运动时cd 棒的加速度a 0; (2)cd 棒刚进入半圆轨道时ab 棒的速度大小v 1; (3)cd 棒进入半圆轨道前ab 棒克服安培力做的功W . 答案 (1)30 m/s 2(2)7.5 m/s (3)4.375 J解析 (1)ab 棒开始向右运动时,设回路中电流为I ,有E =Bdv 0 I =E R 1+R 2 BId =m 2a 0解得:a 0=30 m/s 2(2)设cd 棒刚进入半圆轨道时的速度为v 2,系统动量定恒,有m 1v 0=m 1v 1+m 2v 212m 2v 22=m 2g ·2r +12m 2v P 2 m 2g =m 2v P 2r解得:v 1=7.5 m/s(3)由动能定理得12m 1v 12-12m 1v 02=-W解得:W =4.375 J.专题强化练1.(多选)下列说法正确的是( )A.物体运动的方向就是它的动量的方向B.如果物体的速度发生变化,则可以肯定它受到的合外力的冲量不为零C.如果合外力对物体的冲量不为零,则合外力一定使物体的动能增大D.作用在物体上的合外力的冲量不一定能改变物体速度的大小答案ABD解析物体动量的方向与物体的运动方向相同,A对;如果物体的速度变化,则物体的动量一定发生了变化,由动量定理知,物体受到的合外力的冲量不为零,B对;合外力对物体的冲量不为零,但合外力可以对物体不做功,物体的动能可以不变,C错;作用在物体上的合外力的冲量可以只改变物体速度的方向,不改变速度的大小,D对.2.(多选)关于动量、冲量,下列说法成立的是( )A.某段时间内物体的动量增量不为零,而物体在某一时刻的动量可能为零B.某段时间内物体受到的冲量不为零,而物体动量的增量可能为零C.某一时刻,物体的动量为零,而动量对时间的变化率可能不为零D.某段时间内物体受到的冲量变大,则物体的动量大小可能变大、变小或不变答案ACD解析自由落体运动,从开始运动的某一段时间内物体动量的增量不为零,而其中初位置物体的动量为零,故A正确;某一段时间内物体受到的冲量不为零,根据动量定理,动量的变化量不为零,故B错误;某一时刻物体的动量为零,该时刻速度为零,动量的变化率是合力,速度为零,合力可以不为零,即动量的变化率可以不为零,故C正确;根据动量定理,冲量等于动量的变化.某段时间内物体受到的冲量变大,则物体的动量的改变量变大,动量大小可能变大、变小或不变,故D正确.3.(多选)如图1所示,一段不可伸长的轻质细绳长为L,一端固定在O点,另一端系一个质量为m的小球(可以视为质点),保持细绳处于伸直状态,把小球拉到跟O点等高的位置由静止释放,在小球摆到最低点的过程中,不计空气阻力,重力加速度大小为g,则( )图1A.合外力做的功为0 B.合外力的冲量为m2gLC.重力做的功为mgL D.重力的冲量为m2gL答案BC4.(多选)(2018·新高考研究联盟联考)如图2所示是两名短道速滑选手在接力瞬间的照片,在短道速滑接力时,后面队员把前面队员用力推出(推出过程中可忽略运动员受到的冰面水平方向的作用力),以下说法正确的是( )图2A.接力过程中前面队员的动能增加量等于后面队员的动能减少量B.接力过程中前面队员受到的冲量和后面队员受到的冲量大小相等方向相反C.接力过程中前后两名队员总动量增加D.接力过程中前后两名队员总动量不变答案BD5.(多选)(2018·诸暨中学段考)向空中发射一物体(不计空气阻力),当物体的速度恰好沿水平方向时,物体炸裂为a、b两块.若质量较大的a的速度方向仍沿原来的方向,则( ) A.b的速度方向一定与原速度方向相反B.从炸裂到落地这段时间里,a飞行的水平距离一定比b的大C.a、b一定同时到达地面D.炸裂的过程中,a、b的动量变化大小一定相等答案CD6.(多选)一辆小车静止在光滑的水平面上,小车立柱上固定一条长L(小于立柱高)、拴有小球的细线,将小球拉至和悬点在同一水平面处由静止释放,如图3所示,小球摆动时,不计一切阻力,重力加速度为g,下面说法中正确的是( )图3A.小球和小车的总机械能守恒B.小球和小车的动量守恒C.小球运动到最低点的速度为2gLD.小球和小车只在水平方向上动量守恒答案AD7.(多选)质量相同的子弹、橡皮泥和钢球以相同的水平速度射向竖直墙壁,结果子弹穿墙而过,橡皮泥粘在墙上,钢球被弹回.不计空气阻力,关于它们对墙的水平冲量的大小,下列说法正确的是( ) A .子弹对墙的冲量最小 B .橡皮泥对墙的冲量最小 C .钢球对墙的冲量最大D .子弹、橡皮泥和钢球对墙的冲量大小相等 答案 AC解析 由于子弹、橡皮泥和钢球的质量相等、初速度相等,取初速度的方向为正方向,则它们动量的变化量Δp =mv -mv 0,子弹穿墙而过,末速度的方向为正,橡皮泥粘在墙上,末速度等于0,钢球被弹回,末速度的方向为负,可知子弹的动量变化量最小,钢球的动量变化量最大.由动量定理I =Δp ,则子弹受到的冲量最小,钢球受到的冲量最大.结合牛顿第三定律可知,子弹对墙的冲量最小,钢球对墙的冲量最大,故A 、C 正确,B 、D 错误. 8.(多选)如图4所示,质量为m 的物体在一个与水平方向成θ角的拉力F 作用下,一直沿水平面向右匀速运动,则下列关于物体在t 时间内所受力的冲量,正确的是( )图4A .拉力F 的冲量大小为Ft cos θB .摩擦力的冲量大小为Ft cos θC .重力的冲量大小为mgtD .物体所受支持力的冲量大小是mgt 答案 BC解析 拉力F 的冲量大小为Ft ,故A 错误;物体做匀速直线运动,可知摩擦力F f =F cos θ,则摩擦力的冲量大小为F f t =Ft cos θ,故B 正确;重力的冲量大小为mgt ,故C 正确;支持力的大小为F N =mg -F sin θ,则支持力的冲量大小为(mg -F sin θ)t ,故D 错误.9.如图5所示,粗糙水平地面上方以PQ 为界,左边有水平向右的匀强电场,场强大小为E =mg q,右边有垂直纸面向里的匀强磁场,磁感应强度大小为B ,磁场以MN 为右边界,一个质量为2m 的带电荷量为+q 的物体从地面上O 点出发,在电场力作用下运动到Q 点时与另一质量为m 、不带电的物体发生正碰,碰后两者粘为一体,并恰好能在QN 间做匀速直线运动,已知两物体与地面间的动摩擦因数μ=0.1,g 为重力加速度,sin 37°=0.6,cos 37°=0.8.图5(1)求O 、Q 之间的距离x 1;(2)若MN 右侧有一倾角θ=37°的倾斜传送带正以速度v 0逆时针转动,物体系统通过N 点到传送带时无动能损失,且传送带足够大,已知物体系统与传送带间的动摩擦因数为μ1=0.5,求物体系统在传送带上上升过程中运动的最大距离.答案 (1)405m 2g 16B 2q 2 (2)9m 2g 2B 2q 2 解析 (1)设两物体碰后的瞬间速度为v 2,则有:Bqv 2=3mg设带电物体的碰撞前速度为v 1,取向右为正方向,由动量守恒定律有:2mv 1=3mv 2对2m ,从O 到Q 由动能定理可得:Eqx 1-μ·2mgx 1=12×2mv 12,则x 1=405m 2g 16B 2q 2 (2)物体系统沿传送带向上做匀减速运动,由牛顿第二定律得:3mg sin θ+μ1·3mg cos θ=3ma则a =g . 故物体系统上升的最大距离为:x 2=v 222a =9m 2g 2B 2q 2 10.(2017·名校协作体联考)用质量为m 、电阻率为ρ、横截面积为S 的均匀薄金属条制成边长为L 的闭合正方形框abb ′a ′,如图6甲所示,金属方框水平放在磁极的狭缝间,方框平面与磁场方向平行.设匀强磁场仅存在于相对磁极之间,其他地方的磁场忽略不计.可认为方框的aa ′边和bb ′边都处在磁极间,磁极间磁感应强度大小为B .方框从静止开始释放,其平面在下落过程中保持水平(不计空气阻力,重力加速度为g ).甲 装置纵截面示意图 乙 装置俯视示意图图6(1)请判断图乙金属方框中感应电流的方向;(2)当方框下落的加速度为g 3时,求方框的发热功率P ; (3)当方框下落的时间t =2m ρB 2LS时,速度恰好达到最大,求方框的最大速度v m 和此过程中产生的热量.答案 (1)顺时针 (2)4m 2g 2ρ9B 2LS (3)mg ρB 2LS m 3g 2ρ22B 4L 2S 2 解析 (1)由右手定则可知:感应电流方向为顺时针.(2)方框受到的安培力:F 安=2BIL由牛顿第二定律有mg -F 安=mg 3 解得I =mg 3BL由电阻定律得金属方框电阻R =ρ4L S方框的发热功率P =I 2R =4m 2g 2ρ9B 2LS (3)当方框下落的加速度为零时,速度达到最大,即mg =F 安′=2B2BLv m R L 解得v m =mg ρB 2LS将下落过程分成若干微元,由动量定理得mgt -∑2B2BLv i R Lt =mv m -0∑v i t =h 解得h =m 2g ρ2B 4L 2S 2 由能量守恒定律得mgh -Q =12mv m 2 解得Q =m 3g 2ρ22B 4L 2S 2 11.(2017·鲁迅中学月考)如图7所示,两根平行金属导轨MN 和PQ 放在水平面上,左端向上弯曲且光滑,导轨间距为L ,电阻不计.水平段导轨所处空间有两个有界匀强磁场,相距一段距离不重叠,磁场Ⅰ左边界在水平段导轨的最左端,磁感应强度大小为B ,方向竖直向上;磁场Ⅱ的磁感应强度大小为2B ,方向竖直向下.质量均为m 、电阻均为R 的金属棒a 和b 垂直放置在导轨上,金属棒b 置于磁场Ⅱ的右边界CD 处.现将金属棒a 从弯曲导轨上某一高处由静止释放,使其沿导轨运动.设两金属棒运动过程中始终与导轨垂直且接触良好.图7(1)若水平段导轨粗糙,两金属棒与水平段导轨间的最大静摩擦力均为15mg ,将金属棒a 从距水平面高度为h 处由静止释放.①金属棒a 刚进入磁场Ⅰ时,求通过金属棒b 的电流大小;②若金属棒a 在磁场Ⅰ内运动过程中,金属棒b 能在导轨上保持静止,通过计算分析金属棒a 释放时的高度h 应满足的条件;(2)若水平段导轨是光滑的,将金属棒a 仍从高度为h 处由静止释放,使其进入磁场Ⅰ.设两磁场区域足够大,金属棒a 在磁场Ⅰ内运动过程中,求金属棒b 中可能产生的电热的最大值.答案 (1)①BL 2gh 2R ②h ≤m 2gR 250B 4L 4 (2)110mgh 解析 (1)①a 棒从h 高处释放后在弯曲导轨上滑动时机械能守恒,有mgh =12mv 02 解得v 0=2gha 棒刚进入磁场Ⅰ时,E =BLv 0,此时通过a 、b 的感应电流大小为I =E 2R, 解得I =BL 2gh 2R. ②a 棒刚进入磁场Ⅰ时,b 棒受到的安培力大小F =2BIL为使b 棒保持静止,应有F ≤15mg 联立解得h ≤m 2gR 250B 4L4. (2)当金属棒a 进入磁场Ⅰ时,由左手定则判断,a 棒向右做减速运动,b 棒向左做加速运动. 二者产生的感应电动势相反,当二者产生的感应电动势大小相等时,闭合回路的电流为零,此后二者均匀速运动,故金属棒a 、b 均匀速运动时,金属棒b 中产生的电热最大. 设此时a 、b 的速度大小分别为v 1与v 2,有BLv 1=2BLv 2对金属棒a 应用动量定理,有-B I L Δt =mv 1-mv 0对金属棒b 应用动量定理,有2B I L Δt =mv 2联立解得v 1=45v 0,v 2=25v 0 根据能量守恒定律,电路中产生的总电热Q 总=12mv 02-12mv 12-12mv 22=15mgh 故金属棒b 中产生的电热最大值为Q =12Q 总=110mgh。

【小初高学习】浙江高考物理二轮复习专题二能量和动量第2讲动量和能量观点的应用学案

【小初高学习】浙江高考物理二轮复习专题二能量和动量第2讲动量和能量观点的应用学案

第2讲 动量和能量观点的应用[历次选考考情分析]考点一 动量与冲量有关概念与规律的辨析1.动量定理(1)冲量:力与力的作用时间的乘积叫做力的冲量,即I =Ft ,冲量是矢量,其方向与力的方向相同,单位是N·s.(2)物理意义:动量定理表示了合外力的冲量与动量变化间的因果关系;冲量是物体动量变化的原因,动量发生改变是物体合外力的冲量不为零的结果.(3)矢量性:动量定理的表达式是矢量式,应用动量定理时需要规定正方向. 2.动量定理的应用(1)应用I =Δp 求变力的冲量:若作用在物体上的作用力是变力,不能直接用Ft 求变力的冲量,但可求物体动量的变化Δp ,等效代换变力的冲量I .(2)应用Δp =Ft 求恒力作用下物体的动量变化:若作用在物体上的作用力是恒力,可求该力的冲量Ft ,等效代换动量的变化. 3.动量守恒的适用条件(1)系统不受外力或所受外力的合力为零,不是系统内每个物体所受的合力都为零,更不能认为系统处于平衡状态.(2)近似适用条件:系统内各物体间相互作用的内力远大于它所受到的外力. (3)如果系统在某一方向上所受外力的合力为零,则系统在该方向上动量守恒. 4.动量守恒的表达式(1)m 1v 1+m 2v 2=m 1v 1′+m 2v 2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(2)Δp 1=-Δp 2,相互作用的两个物体动量的增量等大反向. (3)Δp =0,系统总动量的增量为零.1.[动量定理的定性分析](多选)篮球运动员通常要伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前,如图1所示,下列说法正确的是( )图1A .球对手的冲量减小B .球对人的冲击力减小C .球的动量变化量不变D .球的动能变化量减小答案 BC解析 先伸出两臂迎接,手接触到球后,两臂随球引至胸前,这样可以增加球与手接触的时间,根据动量定理得:-Ft =0-mv 得F =mvt,当时间增大时,作用力减小,而冲量和动量变化量、动能变化量都不变,所以B 、C 正确.2.[动量定理的定量计算](多选)如图2所示为运动传感器探测到小球由静止释放后撞击地面弹跳的v -t 图象,小球质量为0.5 kg ,重力加速度g =10 m/s 2,不计空气阻力,根据图象可知( )图2A .横坐标每一小格表示的时间是0.1 sB .小球第一次反弹的最大高度为1.25 mC .小球下落的初始位置离地面的高度为1.25 mD .小球第一次撞击地面时地面给小球的平均作用力为55 N 答案 AB解析 小球下落时做自由落体运动,加速度为g ,则落地时速度为6 m/s ,用时t =610 s =0.6s ,图中对应6个小格,每一小格表示0.1 s ,故A 正确;第一次反弹后加速度也为g ,为竖直上抛运动,由题图可知,最大高度为:h =12×10×(0.5)2m =1.25 m ,故B 正确;小球下落的初始位置离地面的高度为:h ′=12×10×(0.6)2m =1.8 m ,故C 错误;设向下为正方向,由题图可知,碰撞时间约为t ′=0.1 s ,根据动量定理可知:mgt ′-Ft ′=mv ′-mv ,代入数据解得:F =60 N ,故D 错误.3.[动量守恒的应用](多选)如图3所示,在光滑水平面上,质量为m 的A 球以速度v 0向右运动,与静止的质量为5m 的B 球碰撞,碰撞后A 球以v =av 0(待定系数a <1)的速率弹回,并与固定挡板P 发生弹性碰撞,若要使A 球能再次追上B 球并相撞,则系数a 可以是( )图3A.14B.25C.23D.17 答案 BC解析 A 与B 发生碰撞,选取向右为正方向,根据动量守恒可知:mv 0=5mv B -mav 0.要使A 球能再次追上B 球并相撞,且A 与固定挡板P 发生弹性碰撞,则av 0>v B ,由以上两式可解得:a >14,故B 、C 正确,A 、D 错误.考点二 动量观点在电场和磁场中的应用例1 如图4所示,轨道ABCDP 位于竖直平面内,其中圆弧段CD 与水平段AC 及倾斜段DP 分别相切于C 点和D 点,水平段AB 、圆弧段CD 和倾斜段DP 都光滑,水平段BC 粗糙,DP 段与水平面的夹角θ=37°,D 、C 两点的高度差h =0.1 m ,整个轨道绝缘,处于方向水平向左、场强未知的匀强电场中.一个质量m 1=0.4 kg 、带正电、电荷量未知的小物块Ⅰ在A 点由静止释放,经过时间t =1 s ,与静止在B 点的不带电、质量m 2=0.6 kg 的小物块Ⅱ碰撞并粘在一起在BC 段上做匀速直线运动,到达倾斜段DP 上某位置.物块Ⅰ和Ⅱ与轨道BC 段间的动摩擦因数均为μ=0.2.g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:图4(1)物块Ⅰ和Ⅱ在BC 段上做匀速直线运动的速度大小;(2)物块Ⅰ和Ⅱ第一次经过C 点时,圆弧段轨道对物块Ⅰ和Ⅱ的支持力的大小. 答案 (1)2 m/s (2)18 N解析 (1)物块Ⅰ和Ⅱ粘在一起在BC 段上做匀速直线运动,设电场强度为E ,物块Ⅰ带电荷量为q ,与物块Ⅱ碰撞前物块Ⅰ的速度为v 1,碰撞后共同速度为v 2,取水平向左为正方向,则qE =μ(m 1+m 2)g ,qEt =m 1v 1,m 1v 1=(m 1+m 2)v 2解得v 2=2 m/s(2)设圆弧段CD 的半径为R ,物块Ⅰ和Ⅱ第一次经过C 点时圆弧段轨道对物块Ⅰ和Ⅱ的支持力的大小为F N ,则R (1-cos θ)=hF N -(m 1+m 2)g =(m 1+m 2)v 22R解得F N =18 N4.(2018·诸暨市期末)在一个高为H =5 m 的光滑水平桌面上建立直角坐标系,x 轴刚好位于桌子的边缘,如图5所示为俯视平面图.在第一象限的x =0到x =4 3 m 之间有竖直向上的匀强磁场,磁感应强度B =1.0 T ,第二象限内的平行金属板MN 之间加有一定的电压.甲、乙为两个绝缘小球,已知甲球质量m 1=3×10-3kg ,带q =5×10-3C 的正电荷,乙球的质量m 2=10×10-3 kg ,静止在桌子边缘上的F 点,即x 轴上x =3 3 m 处;现让甲球从金属板M附近由静止开始在电场中加速,经y 轴上y =3 m 处的E 点,垂直y 轴射入磁场,甲球恰好能与乙球对心碰撞,碰后沿相反方向弹回,最后垂直于磁场边界PQ 射出,而乙球落到地面.假设在整个过程中甲球的电荷量始终保持不变,重力加速度g =10 m/s 2,则:图5(1)求平行金属板MN 之间的电压; (2)求甲球从磁场边界PQ 射出时速度大小;(3)求乙球的落地点到桌子边缘(即x 轴)的水平距离. 答案 (1)30 V (2)103m/s (3)2 3 m解析 (1)设甲球做第一次圆周运动的半径为R 1,则由几何关系可得(R 1-OE )2+OF 2=R 12R 1=6.0 m.设平行金属板MN 之间的电压为U ,甲球加速后的速度为v 1,则qv 1B =m 1v 12R 1,得v 1=10 m/sqU =12m 1v 12代入数据得U =30 V.(2)设甲球做第二次圆周运动的半径为R 2,则由几何关系可得R 2=2.0 m qv 2B =m 1v 22R 2代入数据得v 2=103m/s.(3)甲、乙两球对心碰撞,设碰后乙球的速度为v ,以碰撞前甲球的速度方向为正方向,由动量守恒定律有m 1v 1=-m 1v 2+m 2v ,代入数据得v =4 m/s.由几何关系可得甲球的碰前速度方向与x 轴成60°,因此乙球的碰后速度方向也与x 轴成θ=60°,开始做平抛运动,设水平位移为s ,沿y 轴方向位移分量为y .H =12gt 2, s =vt , y =s sin θ,代入数据得y =2 3 m.考点三 动量和能量观点在电磁感应中的简单应用例2 如图6所示,足够长的水平轨道左侧b 1b 2-c 1c 2部分的轨道间距为2L ,右侧c 1c 2-d 1d 2部分的轨道间距为L ,曲线轨道与水平轨道相切于b 1b 2,所有轨道均光滑且电阻不计.在水平轨道内有斜向下与竖直方向成θ=37°的匀强磁场,磁感应强度大小为B =0.1 T .质量为M =0.2 kg 的金属棒C 垂直于导轨静止放置在右侧窄轨道上,质量为m =0.1 kg 的导体棒A自曲线轨道上a 1a 2处由静止释放,两金属棒在运动过程中始终相互平行且与导轨保持良好接触,A 棒总在宽轨上运动,C 棒总在窄轨上运动.已知:两金属棒接入电路的有效电阻均为R =0.2 Ω,h =0.2 m ,L =0.2 m ,sin 37°=0.6,cos 37°=0.8,g =10 m/s 2,求:图6(1)金属棒A 滑到b 1b 2处时的速度大小; (2)金属棒C 匀速运动的速度大小;(3)在两棒整个的运动过程中通过金属棒A 某截面的电荷量;(4)在两棒整个的运动过程中金属棒A 、C 在水平导轨间扫过的面积之差. 答案 (1)2 m/s (2)0.44 m/s (3)5.56 C (4)27.8 m 2解析 (1)A 棒在曲线轨道上下滑,由机械能守恒定律得:mgh =12mv 02得:v 0=2gh =2×10×0.2 m/s =2 m/s(2)选取水平向右为正方向,对A 、C 利用动量定理可得: 对C :F C 安cos θ·t =Mv C 对A :-F A 安cos θ·t =mv A -mv 0 其中F A 安=2F C 安联立可知:mv 0-mv A =2Mv C两棒最后匀速运动时,电路中无电流:有BLv C =2BLv A 得:v C =2v A 解得v C ≈0.44 m/s(3)在C 加速过程中:Σ(B cos θ)iL Δt =Mv C -0q =Σi Δt得:q =509C≈5.56 C(4)根据法拉第电磁感应定律有:E =ΔΦΔt磁通量的变化量:ΔΦ=B ΔS cos θ 电路中的电流:I =E2R通过截面的电荷量:q =I ·Δt 得:ΔS =2509m 2≈27.8 m 25.如图7所示,两平行光滑金属导轨由两部分组成,左面部分水平,右面部分为半径r =0.5 m 的竖直半圆,两导轨间距离d =0.3 m ,导轨水平部分处于竖直向上、磁感应强度大小B =1 T 的匀强磁场中,两导轨电阻不计.有两根长度均为d 的金属棒ab 、cd ,均垂直导轨置于水平导轨上,金属棒ab 、cd 的质量分别为m 1=0.2 kg 、m 2=0.1 kg ,电阻分别为R 1=0.1 Ω、R 2=0.2 Ω.现让ab 棒以v 0=10 m/s 的初速度开始水平向右运动,cd 棒进入圆轨道后,恰好能通过轨道最高点PP ′,cd 棒进入圆轨道前两棒未相碰,重力加速度g =10 m/s 2,求:图7(1)ab 棒开始向右运动时cd 棒的加速度a 0; (2)cd 棒刚进入半圆轨道时ab 棒的速度大小v 1; (3)cd 棒进入半圆轨道前ab 棒克服安培力做的功W . 答案 (1)30 m/s 2(2)7.5 m/s (3)4.375 J解析 (1)ab 棒开始向右运动时,设回路中电流为I ,有E =Bdv 0 I =E R 1+R 2 BId =m 2a 0解得:a 0=30 m/s 2(2)设cd 棒刚进入半圆轨道时的速度为v 2,系统动量定恒,有m 1v 0=m 1v 1+m 2v 212m 2v 22=m 2g ·2r +12m 2v P 2 m 2g =m 2v P 2r解得:v 1=7.5 m/s(3)由动能定理得12m 1v 12-12m 1v 02=-W解得:W =4.375 J.专题强化练1.(多选)下列说法正确的是( )A.物体运动的方向就是它的动量的方向B.如果物体的速度发生变化,则可以肯定它受到的合外力的冲量不为零C.如果合外力对物体的冲量不为零,则合外力一定使物体的动能增大D.作用在物体上的合外力的冲量不一定能改变物体速度的大小答案ABD解析物体动量的方向与物体的运动方向相同,A对;如果物体的速度变化,则物体的动量一定发生了变化,由动量定理知,物体受到的合外力的冲量不为零,B对;合外力对物体的冲量不为零,但合外力可以对物体不做功,物体的动能可以不变,C错;作用在物体上的合外力的冲量可以只改变物体速度的方向,不改变速度的大小,D对.2.(多选)关于动量、冲量,下列说法成立的是( )A.某段时间内物体的动量增量不为零,而物体在某一时刻的动量可能为零B.某段时间内物体受到的冲量不为零,而物体动量的增量可能为零C.某一时刻,物体的动量为零,而动量对时间的变化率可能不为零D.某段时间内物体受到的冲量变大,则物体的动量大小可能变大、变小或不变答案ACD解析自由落体运动,从开始运动的某一段时间内物体动量的增量不为零,而其中初位置物体的动量为零,故A正确;某一段时间内物体受到的冲量不为零,根据动量定理,动量的变化量不为零,故B错误;某一时刻物体的动量为零,该时刻速度为零,动量的变化率是合力,速度为零,合力可以不为零,即动量的变化率可以不为零,故C正确;根据动量定理,冲量等于动量的变化.某段时间内物体受到的冲量变大,则物体的动量的改变量变大,动量大小可能变大、变小或不变,故D正确.3.(多选)如图1所示,一段不可伸长的轻质细绳长为L,一端固定在O点,另一端系一个质量为m的小球(可以视为质点),保持细绳处于伸直状态,把小球拉到跟O点等高的位置由静止释放,在小球摆到最低点的过程中,不计空气阻力,重力加速度大小为g,则( )图1A.合外力做的功为0 B.合外力的冲量为m2gLC.重力做的功为mgL D.重力的冲量为m2gL答案BC4.(多选)(2018·新高考研究联盟联考)如图2所示是两名短道速滑选手在接力瞬间的照片,在短道速滑接力时,后面队员把前面队员用力推出(推出过程中可忽略运动员受到的冰面水平方向的作用力),以下说法正确的是( )图2A.接力过程中前面队员的动能增加量等于后面队员的动能减少量B.接力过程中前面队员受到的冲量和后面队员受到的冲量大小相等方向相反C.接力过程中前后两名队员总动量增加D.接力过程中前后两名队员总动量不变答案BD5.(多选)(2018·诸暨中学段考)向空中发射一物体(不计空气阻力),当物体的速度恰好沿水平方向时,物体炸裂为a、b两块.若质量较大的a的速度方向仍沿原来的方向,则( ) A.b的速度方向一定与原速度方向相反B.从炸裂到落地这段时间里,a飞行的水平距离一定比b的大C.a、b一定同时到达地面D.炸裂的过程中,a、b的动量变化大小一定相等答案CD6.(多选)一辆小车静止在光滑的水平面上,小车立柱上固定一条长L(小于立柱高)、拴有小球的细线,将小球拉至和悬点在同一水平面处由静止释放,如图3所示,小球摆动时,不计一切阻力,重力加速度为g,下面说法中正确的是( )图3A.小球和小车的总机械能守恒B.小球和小车的动量守恒C.小球运动到最低点的速度为2gLD.小球和小车只在水平方向上动量守恒答案AD7.(多选)质量相同的子弹、橡皮泥和钢球以相同的水平速度射向竖直墙壁,结果子弹穿墙而过,橡皮泥粘在墙上,钢球被弹回.不计空气阻力,关于它们对墙的水平冲量的大小,下列说法正确的是( ) A .子弹对墙的冲量最小 B .橡皮泥对墙的冲量最小 C .钢球对墙的冲量最大D .子弹、橡皮泥和钢球对墙的冲量大小相等 答案 AC解析 由于子弹、橡皮泥和钢球的质量相等、初速度相等,取初速度的方向为正方向,则它们动量的变化量Δp =mv -mv 0,子弹穿墙而过,末速度的方向为正,橡皮泥粘在墙上,末速度等于0,钢球被弹回,末速度的方向为负,可知子弹的动量变化量最小,钢球的动量变化量最大.由动量定理I =Δp ,则子弹受到的冲量最小,钢球受到的冲量最大.结合牛顿第三定律可知,子弹对墙的冲量最小,钢球对墙的冲量最大,故A 、C 正确,B 、D 错误. 8.(多选)如图4所示,质量为m 的物体在一个与水平方向成θ角的拉力F 作用下,一直沿水平面向右匀速运动,则下列关于物体在t 时间内所受力的冲量,正确的是( )图4A .拉力F 的冲量大小为Ft cos θB .摩擦力的冲量大小为Ft cos θC .重力的冲量大小为mgtD .物体所受支持力的冲量大小是mgt 答案 BC解析 拉力F 的冲量大小为Ft ,故A 错误;物体做匀速直线运动,可知摩擦力F f =F cos θ,则摩擦力的冲量大小为F f t =Ft cos θ,故B 正确;重力的冲量大小为mgt ,故C 正确;支持力的大小为F N =mg -F sin θ,则支持力的冲量大小为(mg -F sin θ)t ,故D 错误.9.如图5所示,粗糙水平地面上方以PQ 为界,左边有水平向右的匀强电场,场强大小为E =mg q,右边有垂直纸面向里的匀强磁场,磁感应强度大小为B ,磁场以MN 为右边界,一个质量为2m 的带电荷量为+q 的物体从地面上O 点出发,在电场力作用下运动到Q 点时与另一质量为m 、不带电的物体发生正碰,碰后两者粘为一体,并恰好能在QN 间做匀速直线运动,已知两物体与地面间的动摩擦因数μ=0.1,g 为重力加速度,sin 37°=0.6,cos 37°=0.8.图5(1)求O 、Q 之间的距离x 1;(2)若MN 右侧有一倾角θ=37°的倾斜传送带正以速度v 0逆时针转动,物体系统通过N 点到传送带时无动能损失,且传送带足够大,已知物体系统与传送带间的动摩擦因数为μ1=0.5,求物体系统在传送带上上升过程中运动的最大距离.答案 (1)405m 2g 16B 2q 2 (2)9m 2g 2B 2q 2 解析 (1)设两物体碰后的瞬间速度为v 2,则有:Bqv 2=3mg设带电物体的碰撞前速度为v 1,取向右为正方向,由动量守恒定律有:2mv 1=3mv 2对2m ,从O 到Q 由动能定理可得:Eqx 1-μ·2mgx 1=12×2mv 12,则x 1=405m 2g 16B 2q 2 (2)物体系统沿传送带向上做匀减速运动,由牛顿第二定律得:3mg sin θ+μ1·3mg cos θ=3ma则a =g . 故物体系统上升的最大距离为:x 2=v 222a =9m 2g 2B 2q 2 10.(2017·名校协作体联考)用质量为m 、电阻率为ρ、横截面积为S 的均匀薄金属条制成边长为L 的闭合正方形框abb ′a ′,如图6甲所示,金属方框水平放在磁极的狭缝间,方框平面与磁场方向平行.设匀强磁场仅存在于相对磁极之间,其他地方的磁场忽略不计.可认为方框的aa ′边和bb ′边都处在磁极间,磁极间磁感应强度大小为B .方框从静止开始释放,其平面在下落过程中保持水平(不计空气阻力,重力加速度为g ).甲 装置纵截面示意图 乙 装置俯视示意图图6(1)请判断图乙金属方框中感应电流的方向;(2)当方框下落的加速度为g 3时,求方框的发热功率P ; (3)当方框下落的时间t =2m ρB 2LS时,速度恰好达到最大,求方框的最大速度v m 和此过程中产生的热量.答案 (1)顺时针 (2)4m 2g 2ρ9B LS (3)mg ρB LS m 3g 2ρ22B L S 解析 (1)由右手定则可知:感应电流方向为顺时针.(2)方框受到的安培力:F 安=2BIL由牛顿第二定律有mg -F 安=mg 3 解得I =mg 3BL由电阻定律得金属方框电阻R =ρ4L S方框的发热功率P =I 2R =4m 2g 2ρ9B 2LS (3)当方框下落的加速度为零时,速度达到最大,即mg =F 安′=2B2BLv m R L 解得v m =mg ρB 2LS将下落过程分成若干微元,由动量定理得mgt -∑2B2BLv i R Lt =mv m -0∑v i t =h 解得h =m 2g ρ2B 4L 2S 2 由能量守恒定律得mgh -Q =12mv m 2 解得Q =m 3g 2ρ22B 4L 2S 2 11.(2017·鲁迅中学月考)如图7所示,两根平行金属导轨MN 和PQ 放在水平面上,左端向上弯曲且光滑,导轨间距为L ,电阻不计.水平段导轨所处空间有两个有界匀强磁场,相距一段距离不重叠,磁场Ⅰ左边界在水平段导轨的最左端,磁感应强度大小为B ,方向竖直向上;磁场Ⅱ的磁感应强度大小为2B ,方向竖直向下.质量均为m 、电阻均为R 的金属棒a 和b 垂直放置在导轨上,金属棒b 置于磁场Ⅱ的右边界CD 处.现将金属棒a 从弯曲导轨上某一高处由静止释放,使其沿导轨运动.设两金属棒运动过程中始终与导轨垂直且接触良好.图7(1)若水平段导轨粗糙,两金属棒与水平段导轨间的最大静摩擦力均为15mg ,将金属棒a 从距水平面高度为h 处由静止释放.①金属棒a 刚进入磁场Ⅰ时,求通过金属棒b 的电流大小;②若金属棒a 在磁场Ⅰ内运动过程中,金属棒b 能在导轨上保持静止,通过计算分析金属棒a 释放时的高度h 应满足的条件;(2)若水平段导轨是光滑的,将金属棒a 仍从高度为h 处由静止释放,使其进入磁场Ⅰ.设两磁场区域足够大,金属棒a 在磁场Ⅰ内运动过程中,求金属棒b 中可能产生的电热的最大值.答案 (1)①BL 2gh 2R ②h ≤m 2gR 250B 4L 4 (2)110mgh 解析 (1)①a 棒从h 高处释放后在弯曲导轨上滑动时机械能守恒,有mgh =12mv 02 解得v 0=2gha 棒刚进入磁场Ⅰ时,E =BLv 0,此时通过a 、b 的感应电流大小为I =E 2R, 解得I =BL 2gh 2R. ②a 棒刚进入磁场Ⅰ时,b 棒受到的安培力大小F =2BIL为使b 棒保持静止,应有F ≤15mg 联立解得h ≤m 2gR 250B 4L4. (2)当金属棒a 进入磁场Ⅰ时,由左手定则判断,a 棒向右做减速运动,b 棒向左做加速运动. 二者产生的感应电动势相反,当二者产生的感应电动势大小相等时,闭合回路的电流为零,此后二者均匀速运动,故金属棒a 、b 均匀速运动时,金属棒b 中产生的电热最大. 设此时a 、b 的速度大小分别为v 1与v 2,有BLv 1=2BLv 2对金属棒a 应用动量定理,有-B I L Δt =mv 1-mv 0对金属棒b 应用动量定理,有2B I L Δt =mv 2联立解得v 1=45v 0,v 2=25v 0 根据能量守恒定律,电路中产生的总电热Q 总=12mv 02-12mv 12-12mv 22=15mgh 故金属棒b 中产生的电热最大值为Q =12Q 总=110mgh。

高考物理二轮复习专题二功和能动量和能量第2讲动量和能量观点的应用课件

高考物理二轮复习专题二功和能动量和能量第2讲动量和能量观点的应用课件

件31213������0������2������≤μ<���2���0������2������

-10-
1
2
3
【命题规律研究及预测】 分析高考试题可以看出,高考命题突出 动量定理、动量守恒定律、碰撞模型的考查。动量守恒定律与运 动学公式及动量守恒定律与能量守恒定律的综合题也是考查的重 点。题型一般为选择题。
右滑动。此后a与b发生弹性碰撞,但b没有与墙发生碰撞。重力加
速度大小为g。求物块与地面间的动摩擦因数满足的条件。
考点定位:动量守恒定律、能量守恒定律的应用
命题能力点:侧重考查理解能力
物理学科素养点:物理观念、科学思维
方法技巧:本题要按时间顺序分析物体的运动过程,知道弹性碰撞
过程遵守动量守恒和能量守恒,要结合功能关系分析b与墙不相撞
12Βιβλιοθήκη 31.(2017全国Ⅰ卷)将质量为1.00 kg的模型火箭点火升空,50 g燃烧的
燃气以大小为600 m/s的速度从火箭喷口在很短时间内喷出。在燃
气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力
可忽略)( A )
A.30 kg·m/s
B.5.7×102 kg·m/s
C.6.0×102 kg·m/s D.6.3×102 kg·m/s
(1)动量的变化量:Δp=p'-p。 (2)动能和动量的关系:Ek= 2���������2���。 3.动量守恒定律
(1)条件:系统不受外力或系统所受外力的矢量和为零。
(2)表达式:m1v1+m2v2= m1v1'+m2v2'

4.能量的观点:在涉及系统内能量的转化问题时,常用能量守恒定律。

(全国通用)2018年高考物理二轮复习 专题二 动量与能量 第2讲 动量观点和能量观点在电学中的应用学案

(全国通用)2018年高考物理二轮复习 专题二 动量与能量 第2讲 动量观点和能量观点在电学中的应用学案

(全国通用)2018年高考物理二轮复习 专题二 动量与能量 第2讲 动量观点和能量观点在电学中的应用学案1.静电力做功与路径无关。

若电场为匀强电场,则W =Fl cos α=qEl cos α;若是非匀强电场,则一般利用W =qU 来求。

2.静电力做的功等于电势能的变化,即W AB =-ΔE p 。

3.电流做功的实质是电场对移动电荷做功,即W =UIt =qU 。

4.磁场力又可分为洛伦兹力和安培力。

洛伦兹力在任何情况下对运动电荷都不做功;安培力可以做正功、负功,还可以不做功。

5.电磁感应中的能量问题(1)能量转化:其他形式的能量――→克服安培力做功电能 电能――→电流做功焦耳热或其他形式能 (2)焦耳热的三种求法: ①焦耳定律:Q =I 2Rt ②功能关系:Q =W 克服安培力 ③能量转化:Q =W 其他能的减少量,备考策略动量观点和能量观点在电学中应用的题目,一般过程复杂且涉及多种性质不同的力,因此,要抓住4点:(1)受力分析和运动过程分析是关键。

(2)根据不同的运动过程中各力做功的特点来选择相应规律求解。

(3)力学中的几个功能关系在电学中仍然成立。

(4)感应电动势是联系电磁感应与电路的桥梁,要做好“源”的分析,电磁感应产生的电功率等于内、外电路消耗的功率之和,这是能量守恒分析这类问题的思路。

功能关系在电学中的应用【真题示例】 (多选)(2017·全国卷Ⅲ,21)一匀强电场的方向平行于xOy 平面,平面内a 、b 、c 三点的位置如图1所示,三点的电势分别为10 V 、17 V 、26 V 。

下列说法正确的是( )图1A.电场强度的大小为2.5 V/cmB.坐标原点处的电势为1 VC.电子在a 点的电势能比在b 点的低7 eVD.电子从b 点运动到c 点,电场力做功为9 eV解析 如图所示,设a 、c 之间的d 点电势与b 点电势相同,则ad dc =10-1717-26=79,所以d 点的坐标为(3.5 cm ,6 cm),过c 点作等势线bd 的垂线,电场强度的方向由高电势指向低电势。

2019高考物理浙江选考新增分二轮实用课件:专题二能量和动量2讲

2019高考物理浙江选考新增分二轮实用课件:专题二能量和动量2讲


2 C.3
1 D.7
图3
A 与 B 发生碰撞,选取向右为正方向,根据动量守恒可知: mv0 =
5mvB- mav0.要使 A 球能再次追上 B球并相撞,且 A与固定挡板 P 发生弹性 1 碰撞,则av0>vB,由以上两式可解得:a> ,故B、C正确,A、D错误. 4
解析 答案
考点二
动量观点在电场和磁场中的应用
专题二 能量和动量
第2讲 动量和能量观点的应用
内容索引
考点一 考点二 考点三
动量与冲量有关概念与规律的辨析 动量观点在电场和磁场中的应用 动量和能量观点在电磁感应中的简单应用
考点一
动量与冲量有关概念与规律的辨析
1 基础知识梳理
1.动量定理 (1)冲量:力与力的作用时间的乘积叫做力的冲量,即I=Ft,冲量是矢 量,其方向与力的方向相同,单位是N· s. (2)物理意义:动量定理表示了合外力的冲量与动量变化间的因果关系; 冲量是物体动量变化的原因,动量发生改变是物体合外力的冲量不为 零的结果. (3)矢量性:动量定理的表达式是矢量式,应用动量定理时需要规定正 方向.
=10×10-3 kg,静止在桌子边缘上的F点,即x轴上x=3 3m处; 现让甲球从金属板M
附近由静止开始在电场中加速,经y轴上y=3 m处的E点, 垂直y轴射入磁场, 甲球恰好
能与乙球对心碰撞,碰后沿相反方向弹回, 最后垂直于磁场边界PQ射出, 而乙球落到
地面.假设在整个过程中甲球的电荷量始终保持不变,重力加速度g=10 m/s2,则:
(2)近似适用条件:系统内各物体间相互作用的内力远大于它所受到的外力.
(3)如果系统在某一方向上所受外力的合力为零,则系统在该方向上动量

高考物理二轮复习专题二第二讲动量和能量观点的应用课件

高考物理二轮复习专题二第二讲动量和能量观点的应用课件
船以v=2.0×103 m/s的速度进入密度ρ=2.0×10-6 kg/m3的微粒尘区,飞船垂
直于运动方向上的最大截面积S=5 m2,且认为微粒与飞船相碰后都附着在
飞船上,则飞船要保持速度v不变,所需推力为多大?
答案 40 N
解析 设飞船在微粒尘区飞行Δt时间,则在这段时间内附着在飞船上的微粒
质量Δm=ρSvΔt
2022
专题二
第二讲 动量和能量观点的应用




01
体系构建•真题感悟
02
高频考点•能力突破
03
专项模块•素养培优
体系构建•真题感悟
知识回顾 构建网络
感悟高考 真题再练
1.(2020全国Ⅲ卷)甲、乙两个物块在光滑水平桌面上沿同一直线运动,甲
追上乙,并与乙发生碰撞,碰撞前后甲、乙的速度随时间的变化如图中实线
即p1+p2=p1'+p2'。
(2)动能制约:在碰撞过程中,碰撞双方的总动能不会增加,即
Ek1+Ek2≥Ek1'+Ek2'。
(3)运动制约:碰撞要受到运动的合理性要求的制约,如果碰前两物体同向
运动,碰撞后原来在前面的物体速度必增大,且大于或等于原来在后面的物
体的碰后速度。
对点训练
4.(2021浙江高三二模,命题点1)两个质量相同的小圆环A、B用细线相连,A
W=μmgcos
+ℎ
θ·
sin
设物块 B 在水平轨道上能够滑行的距离为
1
s',由动能定理有-μm'gs'=0- m'v'2
2
设改变后的动摩擦因数为 μ',由动能定理有

2022-2023年高考物理二轮复习 专题2能量与动量第2讲动量观点的应用课件

2022-2023年高考物理二轮复习 专题2能量与动量第2讲动量观点的应用课件

【解析】 由于地面光滑,所以物块和小车构成的系统动量守恒, 故 A 正确;由于物块和小车之间有摩擦力,所以系统机械能不守恒,故 B 错误;设物块与小车的共同速度为 v,以水平向右的方向为正方向, 根据动量守恒定律有 m2v0=(m1+m2)v,设物块与车面间的滑动摩擦力 为 f,则 f=μm2g,对物块应用动量定理有-μm2gt=m2v-m2v0,解得 t =μmm1+1vm0 2g,t=μmm1+1vm0 2g,代入数据得 t=0.24 s,C 正确;要使物 块恰好不从车面上滑出,须物块到车面最右端时与小车有共同的速度,
根据题意,木块 A 和墙壁碰撞后,速度变小,机械能有损失,B 错误; 水平轨道光滑,则 A 和 B 碰撞过程动量守恒 mAv2=(mA+mB)v,解得 v =3 m/s,故 C 正确;四分之一圆弧轨道足够高,则 A、B 不会脱离轨 道,它们运动到最高点时,速度变为零.从轨道最低点到它们一起运动 到最高点的过程中,只有重力做功,机械能守恒,即21(mA+mB)v2=(mA +mB)gh,解得 h=0.45 m,D 错误;故选 A、C.
【解析】 因安全气囊充气后,受力面积增大,故减小了司机单 位面积的受力大小,故A错误;有无安全气囊司机初动量和末动量均 相同,所以动量的改变量也相同,故B错误;因有安全气囊的存在, 司机和安全气囊接触后会有一部分动能转化为气体的内能,不能全部 转化成汽车的动能,故C错误;因为安全气囊充气后面积增大,司机 的受力面积也增大,在司机挤压气囊作用过程中由于气囊的缓冲故增 加了作用时间,故D正确.
专题二 能量与动量
第2讲 动量观点的应用
01 考情速览 · 明规律
02 核心知识 · 提素养
“物理观念”构建
1.动量定理 (1)公式:Ft=p′-p,除表明等号两边大小、方向的关系外,还 说明了两边的因果关系,即合外力的冲量是动量变化的原因. (2)意义:动量定理说明的是合外力的冲量与动量变化的关系,反 映了力对时间的累积效果,与物体的初、末动量无必然联系.动量变 化的方向与合外力的冲量方向相同,而物体在某一时刻的动量方向跟 合外力的冲量方向无必然联系.

(浙江选考)高考物理二轮复习专题二能量和动量第2讲动量和能量观点的应用课件

(浙江选考)高考物理二轮复习专题二能量和动量第2讲动量和能量观点的应用课件

2 基本题目训练
1.[动量定理的定性分析](多选)篮球运动员通常要伸出双手迎接传来的篮 球.接球时,两手随球迅速收缩至胸前,如图1所示,下列说法正确的是 A.球对手的冲量减小
√B.球对人的冲击力减小 √C.球的动量变化量不变
D.球的动能变化量减小 图1
解析 答案
2.[动量定理的定量计算](多选)如图2所示为运动传感器探测到小球由静止释 放后撞击地面弹跳的v-t图象,小球质量为0.5 kg,重力加速度g=10 m/s2, 不计空气阻力,根据图象可知
答案 2 3 m
解析 答案
考点三
动量和能量观点在电磁感应中的简单应用
例2 如图6所示,足够长的水平轨道左侧b1b2-c1c2部分的轨道间距为2L, 右侧c1c2-d1d2部分的轨道间距为L,曲线轨道与水平轨道相切于b1b2,所有 轨道均光滑且电阻不计.在水平轨道内有斜向下与竖直方向成θ=37°的匀强
专题二 能量和动量
第2讲 动量和能量观点的应用
内容索引
考点一 动量与冲量有关概念与规律的辨析 考点二 动量观点在电场和磁场中的应用 考点三 动量和能量观点在电磁感应中的简单应用
考点一
动量与冲量有关概念与规律的辨析
1 基础知识梳理
1.动量定理 (1)冲量:力与力的作用时间的乘积叫做力的冲量,即I=Ft,冲量是矢 量,其方向与力的方向相同,单位是N·s. (2)物理意义:动量定理表示了合外力的冲量与动量变化间的因果关系; 冲量是物体动量变化的原因,动量发生改变是物体合外力的冲量不为 零的结果. (3)矢量性:动量定理的表达式是矢量式,应用动量定理时需要规定正 方向.
=10×10-3 kg,静止在桌子边缘上的F点,即x轴上x=3 3m处;现让甲球从金属板M

高考物理二轮复习专题二动量与能量第2讲动量观点和能量观点在电磁学中的应用学案

高考物理二轮复习专题二动量与能量第2讲动量观点和能量观点在电磁学中的应用学案

高考物理二轮复习专题二动量与能量第2讲动量观点和能量观点在电磁学中的应用学案第2讲动量观点和能量观点在电磁学中的应用网络构建备考策略1.若只有电场力做功,电势能与动能之和保持不变。

2.若只有电场力和重力做功,电势能、重力势能、动能之和保持不变。

3.洛伦兹力对运动电荷不做功。

4.安培力可做正功,也可做负功。

5.力学中的三大观点(动力学、动量、能量观点)仍是解决力电综合问题首选的方法。

应用能量观点解决力电综合问题电场中的功能关系d的过程中克服电场力所做的功为6eV。

下列说法正确的是()A.平面c上的电势为零B.该电子可能到达不了平面fC.该电子经过平面d时,其电势能为4eVD.该电子经过平面b时的速率是经过d时的2倍解析电子在等势面b时的电势能为E=qφ=-2eV,电子由a到d的过程电场力做负功,电势能增加6eV,由于相邻两等势面之间的距离相等,故相邻两等势面之间的电势差相等,则电子由a到b、由b到c、由c到d、由d到f电势能均增加2eV,则电子在等势面c的电势能为零,等势面c的电势为零,A正确;由以上分析可知,电子在等势面d的电势能应为2eV,C错误;电子在等势面b的动能为8eV,电子在等势面d的动能为4eV,由公式Ek=mv2可知,该电子经过平面b时的速率为经过平面d时速率的2倍,D错误;如果电子的速度与等势面不垂直,则电子在该匀强电场中做曲线运动,所以电子可能到达不了平面f就返回平面a,B正确。

答案AB能量观点在电磁场中的应用A.到达C点后小球不可能沿杆向上运动B.小球在AD段克服摩擦力做的功与在DC段克服摩擦力做的功不等C.小球在D点时的动能为50JD.小球电势能的增加量等于重力势能的减少量解析如果电场力大于重力,则速度减为零后小球可能沿杆向上运动,选项A错误;小球受重力、电场力、洛伦兹力、弹力和滑动摩擦力,由于F洛=qvB,故洛伦兹力减小,导致支持力和滑动摩擦力变化,故小球在AD段克服摩擦力做的功与在DC段克服摩擦力做的功不等,选项B正确;由于小球在AD段克服摩擦力做的功与在DC段克服摩擦力做的功不等,故小球在D点时的动能也就不一定为50J,选项C错误;该过程是小球的重力势能、电势能、动能和系统的内能之和守恒,故小球电势能的增加量不等于重力势能的减少量,选项D错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲 动量观点和能量观点在电磁学中的应用网络构建备考策略1.若只有电场力做功,电势能与动能之和保持不变。

2.若只有电场力和重力做功,电势能、重力势能、动能之和保持不变。

3.洛伦兹力对运动电荷不做功。

4.安培力可做正功,也可做负功。

5.力学中的三大观点(动力学、动量、能量观点)仍是解决力电综合问题首选的方法。

应用能量观点解决力、电综合问题电场中的功能关系【典例1】 (2018·全国卷Ⅰ,21) (多选)图1中虚线a 、b 、c 、d 、f 代表匀强电场内间距相等的一组等势面,已知平面b 上的电势为2 V 。

一电子经过a 时的动能为10 eV ,从a 到d 的过程中克服电场力所做的功为6 eV 。

下列说法正确的是( )图1A.平面c 上的电势为零B.该电子可能到达不了平面fC.该电子经过平面d 时,其电势能为4 eVD.该电子经过平面b 时的速率是经过d 时的2倍解析 电子在等势面b 时的电势能为E =qφ=-2 eV ,电子由a 到d 的过程电场力做负功,电势能增加6 eV ,由于相邻两等势面之间的距离相等,故相邻两等势面之间的电势差相等,则电子由a 到b 、由b 到c 、由c 到d 、由d 到f 电势能均增加2 eV ,则电子在等势面c 的电势能为零,等势面c 的电势为零,A 正确;由以上分析可知,电子在等势面d 的电势能应为2eV ,C 错误;电子在等势面b 的动能为8 eV ,电子在等势面d 的动能为4 eV ,由公式E k =12mv 2可知,该电子经过平面b 时的速率为经过平面d 时速率的2倍,D 错误;如果电子的速度与等势面不垂直,则电子在该匀强电场中做曲线运动,所以电子可能到达不了平面f 就返回平面a ,B 正确。

答案 AB能量观点在电磁场中的应用【典例2】(2019·浙江宁海选考模拟)如图2所示,一带正电小球穿在一根绝缘粗糙直杆上,杆与水平方向夹角为θ,整个空间存在着竖直向上的匀强电场和垂直纸面向外的匀强磁场,先给小球一初速度,使小球沿杆向下运动,在A点时的动能为100 J,在C点时动能减为零,D为AC的中点,那么带电小球在运动过程中( )图2A.到达C点后小球不可能沿杆向上运动B.小球在AD段克服摩擦力做的功与在DC段克服摩擦力做的功不等C.小球在D点时的动能为50 JD.小球电势能的增加量等于重力势能的减少量解析如果电场力大于重力,则速度减为零后小球可能沿杆向上运动,选项A错误;小球受重力、电场力、洛伦兹力、弹力和滑动摩擦力,由于F洛=qvB,故洛伦兹力减小,导致支持力和滑动摩擦力变化,故小球在AD段克服摩擦力做的功与在DC段克服摩擦力做的功不等,选项B正确;由于小球在AD段克服摩擦力做的功与在DC段克服摩擦力做的功不等,故小球在D点时的动能也就不一定为50 J,选项C错误;该过程是小球的重力势能、电势能、动能和系统的内能之和守恒,故小球电势能的增加量不等于重力势能的减少量,选项D错误。

答案 B动力学观点和能量观点在电磁感应中的应用【典例3】(2019·温州九校高三上学期模拟)如图3甲所示,两条相互平行的光滑金属导轨,相距L=0.2 m,左侧轨道的倾斜角θ=30°,右侧轨道为圆弧线,轨道端点间接有电阻R=1.5 Ω,轨道中间部分水平,MP、NQ间距离为d=0.8 m,水平轨道间充满方向竖直向下的匀强磁场,磁感应强度B随时间变化如图乙所示。

一质量为m=10 g、导轨间电阻为r=1.0 Ω的导体棒a从t=0时刻无初速释放,初始位置与水平轨道间的高度差H=0.8 m。

另一与a棒完全相同的导体棒b静置于磁场外的水平轨道上,靠近磁场左边界PM。

a棒下滑后平滑进入水平轨道(转角处无机械能损失),并与b棒发生碰撞而粘合在一起,此后作为一个整体运动。

导体棒始终与导轨垂直并接触良好,轨道的电阻和电感不计,重力加速度大小g取10 m/s2。

求:图3(1)导体棒进入磁场前,流过R的电流大小;(2)导体棒刚进入磁场瞬间受到的安培力大小;(3)导体棒最终静止的位置离PM的距离;(4)全过程电阻R上产生的焦耳热。

解析 (1)由法拉第电磁感应定律可知E 0=ΔΦΔt =kdL =0.2 V由闭合电路欧姆定律有I 0=E 0R +r 2=0.1 A。

(2)a 棒滑到底端时的速度为v D ,由动能定理有mgH =12mv 2D与b 发生完全非弹性碰撞后的速度为v由动量守恒定律有mv D =2mv由于t =2Hv D sin 30°=0.8 s此后磁场不再变化,电动势为E =BLv ,I =ER +r 2所以安培力大小为F =BIL =0.04 N 。

(3)导体棒直到静止,由动量定理有BqL =2mv其中q =LBs R +r 2,s 为导体棒在水平轨道上滑过的路程由以上各式解得s =2 m ,因此导体棒停在距离PM 为0.4 m 处。

(4)滑入磁场前有Q R 1=I 20Rt ,解得Q R 1=1.2×10-2J碰后有Q =12×2mv 2=Q R 2+Q r 2Q R 2Q r 2=Rr 2,解得Q R 2=3×10-2J ,Q R =Q R 1+Q R 2由以上各式解得Q R =0.042 J 。

答案 (1)0.1 A (2)0.04 N (3)0.4 m (4)0.042 J1.动能定理在力学和电场中应用时的“三同一异”2.功能关系在力学和电磁感应中应用时的“三同三异”1.(2019·浙江安吉选考模拟)如图4所示,一竖直固定且光滑绝缘的直圆筒底部放置一可视为点电荷的场源电荷A ,其电荷量Q =+4×10-3 C ,场源电荷A 形成的电场中各点的电势表达式为φ=kQ r ,其中k 为静电力常量,r 为空间某点到场源电荷A 的距离。

现有一个质量为m =0.1 kg 的带正电的小球B ,它与A 球间的距离为a =0.4 m ,此时小球B 处于平衡状态,且小球B 在场源电荷A 形成的电场中具有的电势能的表达式为E p =k Qq r,其中r 为A 与B 之间的距离。

另一质量为m 的不带电绝缘小球C 从距离B 的上方H =0.8 m 处自由下落,落在小球B 上立刻与小球B 粘在一起以2 m/s 的速度向下运动,它们到达最低点后又向上运动,向上运动到达的最高点为P (g 取10 m/s 2,k =9×109 N·m 2/C 2)。

求:图4(1)小球C 与小球B 碰撞前的速度v 0的大小?小球B 的电荷量q 为多少?(2)小球C 与小球B 一起向下运动的过程中,最大速度为多少?解析 (1)小球C 自由下落H 时获得速度v 0,由机械能守恒定律得 mgH =12mv 2解得v 0=2gH =4 m/s小球B 在碰撞前处于平衡状态,对B 球由平衡条件得 mg =kqQ a 2 代入数据得q =49×10-8 C =4.4×10-9 C 。

(2)两个球碰撞过程,动量守恒,故mv 0=2mv设当B 和C 向下运动的速度最大为v m 时,与A 相距x ,对B 和C 整体,由平衡条件得 2mg =k Qq x 2代入数据得x =0.28 m由能量守恒定律得12×2mv 2+kQq a +2mga =12×2mv 2m +2mgx +k Qq x代入数据得v m =2.16 m/s 。

答案 (1)4 m/s 4.4×10-9 C (2)2.16 m/s2.(2019·江南十校模拟)如图5,EFPMN 为光滑金属导轨,电阻不计,处于竖直平面内,其中FP 倾斜,倾角为θ,EF ⊥FP ,PMN 是半径为R 的圆弧,圆弧与倾斜部分平滑连接于P 点,N 、M 分别为圆弧的竖直直径的两端点,还有一根与EFPMN 完全相同的导轨E ′F ′P ′M ′N ′,两导轨平行放置,间距为L ,沿垂直于导轨所在平面的方向看去,两导轨完全重合。

过P 点的竖直线右侧有垂直于FP 向上的匀强磁场,磁感应强度大小为B ,两根相同的金属棒ab 、cd (图中只画出了a 端和c 端),质量为m 、电阻为r ,分别从导轨FP 和EF 上某位置由静止释放,在以后的过程中,ab 、cd 始终与导轨保持垂直且接触良好。

(轨道FP 和EF 足够长,题中所给的各个物理量均为已知,重力加速度为g )图5(1)若ab 棒到达P 点之前已经匀速运动,求ab 棒匀速下滑时的速度v ,以及此时cd 棒的电功率P ;(2)在第(1)问的基础上,若θ=60°,m =0.1 kg ,r =433Ω,B =1 T ,L =1 m , R =815 m ,g =10 m/s 2,则ab 棒能否运动到圆弧最高点?解析 (1)匀速下滑时有mg sin θ-BIL =0,I =BLv 2r , 得v =2mgr sin θB 2L2 根据能量守恒,此时回路总的电功率等于ab 棒重力的功率,所以cd 棒的电功率P =mgv sin θ2 即P =(mg sin θBL)2·r 。

(2)到达P 点时,由v =2mgr sin θB 2L 2,得v P =4 m/s , 假定能够运动到圆弧最高点,且到达最高点时速度为v N ,由机械能守恒得32mgR +12mv 2N =12mv 2P 代入数据得v N =0<gR故ab 棒不能运动到圆弧最高点。

答案 (1)2mgr sin θB 2L 2 (mg sin θBL)2·r (2)不能运动到圆弧最高点 应用动量观点和能量观点解决力、电综合问题动量观点和能量观点在电磁场中的应用【典例1】 (2019·浙江宁波选考模拟)如图6所示,一竖直光滑绝缘的管内有一劲度系数为k 的轻质绝缘弹簧,其下端固定于地面,上端与一质量为m 、带电荷量为+q 的小球A 相连,整个空间存在一竖直向上的匀强电场,小球A 静止时弹簧恰为原长,另一质量也为m 的不带电的绝缘小球B 从管内距A 高为x 0处由静止开始下落,与A 发生碰撞后一起向下运动。

若全过程中小球A 的电荷量不发生变化,重力加速度为g 。

图6(1)若x 0已知,试求B 与A 碰撞过程中损失的机械能ΔE ;(2)若x 0未知,且B 与A 一起向上运动在最高点时恰未分离,试求A 、B 运动到最高点时弹簧的形变量x ;(3)在满足第(2)问的情况下,试求A 、B 运动过程中的最大速度v m 。

解析 (1)设匀强电场的场强为E ,在碰撞前A 静止、弹簧恰为原长时,有mg -qE =0设B 在与A 碰撞前的速度为v 0,由机械能守恒定律得mgx 0=12mv 20 设B 与A 碰撞后共同速度为v 1,由动量守恒定律得mv 0=2mv 1B 与A 碰撞过程中损失的机械能ΔE 为ΔE =12mv 20-12·2mv 21 解得ΔE =12mgx 0。

相关文档
最新文档