高一数学三角恒等变换
三角恒等变换与解三角形

三角恒等变换与解三角形三角恒等变换是解三角形问题中经常用到的重要工具。
在解三角形问题中,我们常常需要求解三角函数的值,而三角恒等变换则可以帮助我们将一个三角函数的值转换为其他三角函数的值,从而简化计算过程。
本文将介绍三角恒等变换的概念和常见的恒等变换公式,并结合实例讲解如何利用三角恒等变换解决实际问题。
一、三角恒等变换的概念三角恒等变换是指将一个三角函数的值转换为其他三角函数的值的变换过程。
在三角恒等变换中,我们利用三角函数的基本关系和性质,通过代数运算和恒等式的推导,将一个三角函数的表达式转换为其他三角函数的表达式。
三角恒等变换在解三角形问题中起到了重要的作用,可以帮助我们简化计算过程,提高解题效率。
二、常见的三角恒等变换公式1. 正弦函数的恒等变换正弦函数的恒等变换公式如下:sin(A ± B) = sinAcosB ± cosAsinBsin2A = 2sinAcosAsin(A + B)sin(A - B) = cos2B - cos2A这些恒等变换公式可以帮助我们将一个正弦函数的值转换为其他正弦函数的值,从而简化计算过程。
2. 余弦函数的恒等变换余弦函数的恒等变换公式如下:cos(A ± B) = cosAcosB ∓ sinAsinBcos2A = cos^2A - sin^2Acos(A + B)cos(A - B) = cos2A - sin2B利用这些恒等变换公式,我们可以将一个余弦函数的值转换为其他余弦函数的值,从而简化计算过程。
3. 正切函数的恒等变换正切函数的恒等变换公式如下:tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)tan2A = (2tanA) / (1 - tan^2A)tan(A + B) = (tanA + tanB) / (1 - tanAtanB)这些恒等变换公式可以帮助我们将一个正切函数的值转换为其他正切函数的值,从而简化计算过程。
高一数学三角恒等变换

高一数学三角恒等变换一、考点、热门回首1.引诱公试:奇变偶不变,符号看象限2.同角三角函数的基本关系式:sin 2cos 21 , tan= sin, tan cot 1cos3.和差角公式:① sin() sin coscos sin② cos() coscossin sin○3 tan()tan tan1 tantan4.倍角公式:① sin 22sin cos2tan ② cos2cos 2sin 22cos 21 1 2sin 22tan 1 tan 2○3 tan 2○4 sin3a=3sin a-4sin3a ○5cos3a =4cos3a-3cosa1 tan25.降次升角公式:○1 sin21 cos2○ 2 1 cos2○ sin cos1sin 22 2 cos2326.全能公式:○1 sin 22 tan○2 cos21 tan 21 tan 21 tan 27.半角公式:(符号的选择由所在的象限确立)2① sin1 cos1 cos2○2 cos222○3 tan1cos sin 1 cos1cos1 cossin28.协助角公式 :a sinbcos= a2b 2sin() ,( tanb).a=a2b 2cos( m ),( tana) .b二、典型例题1.已知角 α的终边过点 p(- 5, 12),则 cos α= , tan α=.2.若 cos θ tan >θ0,则 θ是()A .第一象限角B .第二象限角C .第一、二象限角D .第二、三象限角3. sin 2150 °+sin 2135 °+2sin210 +cos °2 225 °的值是( )13119A . 4B .4C .4D . 44.已知3 ,则()sin( π +α-)=54 3 C . cos α =-4 D . sin( -πα )= 3A . cos α =B . tan α =55544sin α- 2cos α.的值为5.已 tan α =3,5cos α+ 3sin α6.化简 1+2sin( π-2)cos(π +2) =.7.已知 θ是第三象限角,且445( )sinθ +cos θ = ,那么 sin2 θ等于922 2 222A .3B .- 3C . 3D .- 3θθ θ8、设 θ是第二象限角,且知足 |sin 2|= - sin 2 , 2是 _____________________ 象限的角 ?三、习题练习1、已知 A={ 第一象限角 } , B={ 锐角 } ,C={ 小于 90°的角 } ,那么 A 、 B 、 C 关系是()A . B=A ∩CB . B ∪ C=CC .A CD . A=B=C2.已知是第二象限角,那么 是( )2A .第一象限角B .第二象限角C .第二或第四象限角D .第一或第三象限角3、若 f (cos x)cos2 x ,则 f (sin15 ) 等于( )A .331 D .12B .C .2224、化简 1sin 2160 的结果是()A . cos160B .cos160C .cos160D .cos1605、 A 为三角形 ABC的一个内角 ,若 sin A cos A12(),则这个三角形的形状为25A. 锐角三角形B. 钝角三角形C. 等腰直角三角形D. 等腰三角形6、已知 sincos1,且, 则 cossin.8427、已知弧度数为 2的圆心角所对的弦长也是 2,则这个圆心角所对的弧长()A . 2B .2C . 2 sin1D . sin 2sin 18、已知 tan 3,3,求 sincos 的值 .29、已知sin cos 5, 则 sin cos.410、已知x0, sin x cos x1.( I)求 sinx- cosx 的值;251,则1=11、已知 tan α=-23α2sin α cos α +cos 12、1- 2sin10 cos10°° 的值为cos10 °-1- cos2170 °1+2sinα cos α1+ tanα.13、证明cos2α- sin2α=1- tan α14.求sin6o sin12 o sin24 o sin48 o的值.cos10o 3 sin10o1cos80o1sin1sin15、已知α是第三角限的角,化简sin1sin116 、已知tan x1,则 sin 2 x 3sin xcos x 1=______217、求函数y 12sin 2x 5cos x 的最大值和最小值。
高中 简单的三角恒等变换 知识点+例题

教学内容
1.公式的常见变形
(1)tanα+tanβ=tan(α+β)(1-tanαtanβ);tanα-tanβ=tan(α-β)(1+tanαtanβ).
(2)sin2α= ;cos2α= ;sinαcosα= sin 2α.
(3)1+cosα=2cos2 ;1-cosα=2sin2 ;
(1)求f( )的值;
(2)设α,β∈[0, ],f(3α+ )= ,f(3β+2π)= ,求cos(α+β)的值.
解(1)由题设知:
f( )=2sin( - )=2sin = .
(2)由题设知: =f(3α+ )=2sinα,
=f(3β+2π)=2sin(β+ )=2cosβ,
即sinα= ,cosβ= ,
又α,β∈[0, ],∴cosα= ,sinβ= ,
∴cos(α+β)=cosαcosβ-sinαsinβ= × - × = .
11.cos 20°cos 40°cos 60°·cos 80°等于_________.
答案
解析原式= = = = = .
12.定义运算 =ad-bc,若cosα= , = ,0<β<α< ,则β等于______.
答案
解析 方法一因为y= = ,
所以令k= .又x∈ ,
所以k就是单位圆x2+y2=1的左半圆上的动点
P(-sin 2x,cos 2x)与定点Q(0,2)所成直线的斜率.
又kmin=tan 60°= ,所以函数y= 的最小值为 .
方法二y= = = = tanx+ .
∵x∈(0, ),∴tanx>0.
∴ tanx+ ≥2 = .(当tanx= ,即x= 时取等号)
三角恒等变换知识点总结详解

三角恒等变换知识点总结详解三角恒等变换是指一些与三角函数相关的恒等式或等式组,通过这些等式可以将一个三角函数表达式转化为另一个三角函数表达式,或者简化一个复杂的三角函数表达式。
这些恒等变换在解决三角函数相关问题时非常有用。
下面是对一些常见的三角恒等变换进行总结和详解。
1.正弦函数的恒等变换:- 正弦函数的定义:对于任意实数x,sin(x) = y,其中y为[-1, 1]之间的值。
- 正弦函数的周期性:sin(x + 2π) = sin(x),即正弦函数以2π为周期。
- 正弦函数的奇偶性:sin(-x) = -sin(x),即正弦函数是奇函数。
2.余弦函数的恒等变换:- 余弦函数的定义:对于任意实数x,cos(x) = y,其中y为[-1, 1]之间的值。
- 余弦函数的周期性:cos(x + 2π) = cos(x),即余弦函数以2π为周期。
- 余弦函数的奇偶性:cos(-x) = cos(x),即余弦函数是偶函数。
3.正切函数的恒等变换:- 正切函数的定义:对于任意实数x(除了例如π/2 + kπ,其中k 为整数),tan(x) = y,其中y为整个实数轴上的值。
- 正切函数的周期性:tan(x + π) = tan(x),即正切函数以π为周期。
- 正切函数的奇偶性:tan(-x) = -tan(x),即正切函数是奇函数。
4.三角函数的平方和差公式:- sin²(x) + cos²(x) = 1,即正弦函数的平方与余弦函数的平方和等于1- sin(x + y) = sin(x)cos(y) + cos(x)sin(y),即正弦函数的和的正弦等于两个正弦函数的乘积和。
- cos(x + y) = cos(x)cos(y) - sin(x)sin(y),即余弦函数的和的余弦等于两个余弦函数的乘积差。
- sin(x - y) = sin(x)cos(y) - cos(x)sin(y),即正弦函数的差的正弦等于两个正弦函数的乘积差。
三角的恒等变换

三角恒等变换公式如下:cos(α+β)=cosα·cosβ-sinα·sinβ。
cos(α-β)=cosα·cosβ+sinα·sinβ。
sin(α+β)=sinα·cosβ+cosα·sinβ。
sin(α-β)=sinα·cosβ-cosα·sinβ。
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)。
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)。
定号法则将α看做锐角(注意是“看做”),按所得的角的来象垍限头樤,取三角函数的符号。
也就是“象限定号,符号看象限”(或为“奇变偶不变,符号看象限”)。
在Kπ/2中如果K为偶数时函数名不变,若为奇数时函数名变为相反的函数名。
正负号看原函数中α所在象限的正负号。
关于正负号有个口诀;一全正,二正弦,三两切,四余弦,即第一象限全部为正,第二象限角,正弦为正,第三象限,正切和余切为正,第四象限,余弦为正。
或简写为“ASTC”,即“all”“sin”“tan+cot”“cos”依次为正。
还可简记为:sin上cos右tan/cot对角,即sin的正值都在x轴上方,cos的正值都在y轴右方,tan/cot 的正值斜着。
比如:90°+α。
定名:90°是90°的奇数倍,所以应取余函数;定号:将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,余弦为负。
所以sin(90°+α)=cosα, cos(90°+α)=-sinα这个非常神奇,屡试不爽~还有一个口诀“纵变横不变,符号看象限”,例如:sin(90°+α),90°的终边在纵轴上,所以函数名变为相反的函数名,即cos,所以sin(90°+α)=cosα。
(完整word版)三角恒等变换知识总结

三角恒等变换知识点总结2014/10/24一、基本内容串讲1. 两角和与差的正弦、余弦和正切公式如下:sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=对其变形:tan α+tan β=tan(α+β)(1— tan αtan β),有时应用该公式比较方便。
2. 二倍角的正弦、余弦、正切公式如下:sin 2sin cos ααα=. 2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-。
要熟悉余弦“倍角”与“二次”的关系(升角-降次,降角-升次).特别注意公式的三角表达形式,且要善于变形, 22cos 1sin ,22cos 1cos 22α-=αα+=α 这两个形式常用。
3.辅助角公式:sin cos4x x x π⎛⎫+=+ ⎪⎝⎭cos 2sin 6x x x π⎛⎫±=± ⎪⎝⎭()sin cos a x b x x ρ+=+。
4。
简单的三角恒等变换(1)变换对象:角、名称和形式,三角变换只变其形,不变其质.(2)变换目标:利用公式简化三角函数式,达到化简、计算或证明的目的。
(3)变换依据:两角和与差的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式。
(4)变换思路:明确变换目标,选择变换公式,设计变换途径. 5。
常用知识点:(1)基本恒等式:22sin sin cos 1,tan cos ααααα+==(注意变形使用,尤其‘1’的灵活应用,求函数值时注意角的范围);(2)三角形中的角:A B C π++=,sinA sin(B ),cosA cos(B C)C =+=-+; (3)向量的数量积:cos ,a b a b a b =,1212a b x x y y =+,12120a b x x y y ⊥⇔+=1221//0a b x y x y ⇔-=;二、考点阐述考点1两角和与差的正弦、余弦、正切公式1、sin 20cos 40cos 20sin 40+的值等于( )2、若tan 3α=,4tan 3β=,则tan()αβ-等于( ) 3、若3,4παβ+=则(1tan )(1tan )αβ--的值是________. 4、(1tan1)(1tan 2)(1tan3)(1tan 44)(1tan 45)+︒+︒+︒+︒+︒=_______________。
三角恒等变换与解题技巧

三角恒等变换与解题技巧三角恒等变换是解决三角函数相关问题的重要方法之一,通过巧妙地变换三角函数的表达式,可以简化计算、化简复杂的式子、推导出新的关系等。
在解题过程中,合理应用三角恒等变换可以帮助我们降低难度、提高效率。
本文将介绍三角恒等变换的基本概念、常用公式以及解题技巧,以帮助读者更好地理解和运用三角恒等变换。
一、基本概念三角恒等变换是指通过等式的变换,将一个三角函数表达式变为与之等价的另一个表达式。
通常,三角恒等变换会使得原先复杂的式子简化或转化成更易处理的形式,从而方便我们求解问题。
三角恒等变换的基本思想是利用三角函数之间的相互关系以及已知恒等式,将三角函数表达式转换为其他函数的组合或者其他三角函数的形式。
二、常用公式以下是一些常用的三角恒等变换公式:1. 余弦的平方与正弦的平方恒等变换:cos^2θ + sin^2θ = 12. 二倍角公式:sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θ = 2cos^2θ - 1 = 1 - 2sin^2θ3. 和差角公式:sin(α + β) = sinαcosβ + cosαsinβsin(α - β) = sinαcosβ - cosαsinβcos(α + β) = cosαcosβ - sinαsinβcos(α - β) = cosαcosβ + sinαsinβ4. 倍角公式:sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θ= 2cos^2θ - 1 = 1 - 2sin^2θ5. 平方和与平方差公式:sin^2θ + cos^2θ = 1sin^2θ - cos^2θ = sin^2θ / cos^2θ以上只是一部分常用的三角恒等变换公式,通过合理运用这些公式,我们可以将复杂的三角函数式子转化为简单易解的形式,为解题提供便利。
三、解题技巧1. 利用三角恒等变换化简式子在解决问题时,我们常常会遇到需要化简复杂的三角函数式子的情况。
高中数学的解析如何利用三角恒等变换解决数学问题

高中数学的解析如何利用三角恒等变换解决数学问题高中数学是培养学生数理思维和解决问题能力的重要学科,其中解析几何和三角函数的学习尤为重要。
在解析几何中,使用三角恒等变换可以简化问题的研究和解决过程。
本文将探讨高中数学的解析如何利用三角恒等变换解决数学问题,并给出实例说明。
一、三角恒等变换的基本概念在学习解析几何和三角函数之前,我们先来了解一下三角恒等变换的基本概念。
三角恒等变换是指在三角函数的运算过程中,通过等式的变形来简化计算的方法。
常用的三角恒等变换有正弦定理、余弦定理、和差化积公式等。
例如,正弦定理可以表达为:$$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$$其中,a、b、c分别为三角形的边长,A、B、C分别为对应的内角,R为三角形的外接圆半径。
二、解析几何中的三角恒等变换在解析几何中,我们通过运用三角恒等变换来简化和推导问题的解决过程。
以一个简单的例子来说明。
例1:已知直线L的对称点在直线L'上,且L:2x+y-3=0,L':3x-y-8=0,求直线L与L'的交点坐标。
解:设交点坐标为(x0, y0),代入直线方程得:2x0 + y0 - 3 = 03x0 - y0 - 8 = 0通过观察以上的方程,我们可以发现其中存在一个正弦关系。
为了简化解题过程,我们可以利用正弦关系进行求解。
令2x0 + y0 - 3 = A3x0 - y0 - 8 = B通过求解A和B之间的关系,可以得到:2A + B = 133A - B = 11通过联立方程组求解,可以得到:A = 5B = 3将A和B带入原方程,可以解得:x0 = 2y0 = -1因此,直线L与L'的交点坐标为(2, -1)。
通过以上的例子,我们可以看到,在解析几何中,通过利用三角恒等变换来简化问题的解决过程,不仅可以减少计算量,还可以提高问题解决的效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学 三角恒等变换
一、考点、热点回顾
1、诱导公试:奇变偶不变,符号瞧象限
2、同角三角函数得基本关系式:
22sin cos 1θθ+=,tan θ=θ
θ
cos sin ,tan 1cot θθ⋅=
3、与差角公式:
①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =±
○3β
αβ
αβαtan tan 1tan an )tan(⋅±=± t
4、倍角公式:
①θ
θθθ2
tan 2cos sin 22sin ==②2222cos2cos sin 2cos 112sin θθθθθ=-=-=-
5、降次升角公式: ○121cos 2sin 2
θ
θ-=
○22
2cos 1cos 2θθ+=
○31
sin cos sin 22θθθ=
6、万能公式:
○122tan sin 21tan θ
θθ
=
+ ○2 221tan cos21tan θ
θθ
-=
+
7、半角公式:(符号得选择由2
θ
所在得象限确定)
①2cos 12sin θθ-±= ○22cos 12cos θθ+±=
○3sin 1cos tan 2
1cos sin θ
θθ
θθ
-==
+ 8、辅助角公式:
sin cos a b αα±)αϕ±,(tan b
a
ϕ=
)、
),
tan )a
b
αγγ=(、 二、典型例题
1.已知角α得终边过点p(-5,12),则cos α= ,tan α= .
2.若cos θtan θ>0,则θ就是 ( )
A.第一象限角
B.第二象限角
C.第一、二象限角
D.第二、三象限角 3.sin 2150°+sin 2135°+2sin210°+cos 2
225°得值就是 ( )
A. 14
B. 34
C. 114
D. 94
4.已知sin(π+α)=-3
5
,则 ( )
A.cos α= 45
B.tan α= 34
C.cos α= -45
D.sin(π-α)= 3
5
5.已tan α=3,4sin α-2cos α
5cos α+3sin α
得值为 .
6.化简1+2sin(π-2)cos(π+2) = .
7.已知θ就是第三象限角,且sin 4θ+cos 4
θ= 59,那么sin2θ等于 ( )
A. 2 2 3
B.-2 2 3
C.23
D.- 23
8、设θ就是第二象限角,且满足|sin θ2|= -sin θ2 ,θ
2
就是_____________________象限得
角?
三、习题练习
1、已知A={第一象限角},B={锐角},C={小于90°得角},那么A 、B 、C 关系就是( )
A.B=A ∩C
B.B ∪C=C
C.A C
D.A=B=C 2.已知α就是第二象限角,那么
2
α
就是
( )
A.第一象限角
B.第二象限角
C.第二或第四象限角
D.第一或第三象限角 3、若(cos )cos2f x x =,则(sin15)f ︒等于 ( ) A.32
-
B.
32
C.
12
D. 12
-
41160-︒2sin ( )
A.cos160︒
B.cos160-︒
C.cos160±︒
D.cos160±︒ 5、A 为三角形ABC 得一个内角,若12
sin cos 25
A A +=
,则这个三角形得形状为 ( ) A 、 锐角三角形 B 、 钝角三角形 C 、 等腰直角三角形 D 、 等腰三角形
6、已知,2
4,81cos sin π
απαα<<=
⋅且则=-ααsin cos 、 7、已知弧度数为2得圆心角所对得弦长也就是2,则这个圆心角所对得弧长
( )
A.2
B.
1
sin 2
C.1sin 2
D.2sin 8、已知3
tan 3,2απαπ=<<,求sin cos αα-得值、
9、已知=-=-ααααcos sin ,4
5
cos sin 则 .
10、已知5
1
cos sin ,02
=
+<<-
x x x π
、(I)求sin x -cos x 得值; 11、已知tan α=-13,则1
2sin αcos α+cos 2
α
= . 12、 1-2sin10°cos10° cos10°-1-cos 2
170° 得值为 3sin10
1cos80+=- 13、证明1+2sin αcos α cos 2α-sin 2
α =1+ tan α 1-tan α
.
14、求sin6sin12sin24sin48⋅⋅⋅得值 15、已知α就是第三角限得角,化简
α
α
ααsin 1sin 1sin 1sin 1+--
-+ 16、已知2
1tan -=x ,则1cos sin 3sin 2
-+x x x =______
17、求函数2
12sin 5cos y x x =-+得最大值与最小值。
四、课后反馈
1、已知
sin 2cos 5,tan 3sin 5cos ααααα
-=-+那么得值为
( )
A.-2
B.2
C.
2316
D.-
2316
2、函数=-=++=)5(,7)5(,1sin )(f f x b ax x f 则若 __________
3、化简 sin(2π-α)tan(π+α)cot(-α-π)
cos(π-α)tan(3π-α)
.
4、已知tan θ=3.求cos 2
θ+sin θcos θ得值.
5. 已知α就是钝角,那么α
2
就是 ( )
A.第一象限角
B.第二象限角
C.第一与第二象限角
D.不小于直角得正角
6. 角α得终边过点P(-4k,3k)(k <0},则cos α得值就是 ( )
A. 3 5
B. 45
C.- 35
D.- 45
7.已知点P(sin α-cos α,tan α)在第一象限,则在[0,2π]内,α得取值范围就是
( )
A.( π2, 3π4)∪(π, 5π4)
B.( π4, π2)∪(π, 5π4)
C.( π2 , 3π4 )∪(5π4,3π2)
D.( π4, π2 )∪(3π
4
,π)
8.若sinx= - 35,cosx =4
5
,则角2x 得终边位置在 ( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
9.若4π<α<6π,且α与- 2π
3
终边相同,则α= .
10、角α终边在第三象限,则角2α终边在 象限.
11.已知|tanx |=-tanx,则角x 得集合为 . 12.如果θ就是第三象限角,则cos(sin θ)·sin(sin θ)得符号为什么? 13.已知扇形AOB 得周长就是6cm,该扇形中心角就是1弧度,求该扇形面积.
14.sin600°得值就是 ( )
A.12
B.- 12
C. 3 2
D.- 3 2
15、sin(π4+α)sin(π
4
-α)得化简结果为 ( )
A.cos2α
B.12cos2α
C.sin2α
D. 1
2sin2α
16、已知sinx+cosx=1
5
,x ∈[0,π],则tanx 得值就是 ( )
A.-34
B.- 43
C.±43
D.-34或-43
17、已知tan α=-13,则1
2sin αcos α+cos 2
α = . 18、若不等式log a x >sin2x,(a >0,a ≠1)对于任意得x ∈(0,
4
π
)恒成立,求实数a 得范围。