鲁山县高中2018-2019学年高二上学期第一次月考试卷数学

合集下载

河南省鲁山县一中2017_2018学年高二数学第一次月考试题文(含解析)

河南省鲁山县一中2017_2018学年高二数学第一次月考试题文(含解析)

鲁山一高高二年级上学期第一次月考试题(文科数学)第I卷(选择题 共60分)选择题(本大题共有12个小题,每小题5分)1. 不等式的解集为()A. B. C. D.【答案】A...............2. 已知命题,则命题的真假及依次为( )A. 真;B. 真;C. 假;D. 假;【答案】B【解析】当时,,故命题为真命题;∵,∴.故选:B3. 各项为正的等比数列中,与的等比中项为,则的值为()A. B. C. D.【答案】B【解析】试题分析:由题意可知考点:等比数列性质4. 方程表示椭圆的必要不充分条件是( )A. m∈(﹣1,2)B. m∈(﹣4,2)C. m∈(﹣4,﹣1)∪(﹣1,2)D. m∈(﹣1,+∞)【答案】B【解析】方程表示椭圆的充要条件是,即,因为,所以方程表示椭圆的必要不充分条件是;故选B.5. 实数满足,则的最小值是()A. -3B. -4C. 6D. -6【答案】B【解析】试题分析:满足的区域如图所示:设,当经过图中的时最小,由得,所以的最小值为,故选B.考点:简单的线性规划;恒成立问题.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值问题,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6. 已知圆O:,从这个圆上任意一点P向y轴作垂线段(在y轴上),M 在直线上且,则动点M的轨迹方程是( )A. 4x2+16y2=1B. 16x2+4y2=1C.D.【答案】B【解析】设 ,则由得 ,因为所以,即,选D.7. 如图,一货轮航行到处,测得灯塔在货轮的北偏东,与灯塔相距,随后货轮按北偏西的方向航行后,又测得灯塔在货轮的东北方向,则货轮的速度为()A. B.C. D.【答案】B【解析】由题意,,由正弦定理得,所以,速度为,故选B.8. 已知是锐角三角形,若,则的取值范围是()A. B. C. D.【答案】A【解析】由题意得,在中,由正弦定理可得,又因为,所以,又因为锐角三角形,所以所以故选A.9. 设直线与两坐标轴围成的三角形面积为,则()A. B. C. D.【答案】A【解析】分别令x=0和y=0,得到直线nx+(n+1)y= (n∈N∗)与两坐标轴的交点:(,0),(0, ),则=⋅⋅==−然后分别代入1,2, (2017)则有.故答案为:A.点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如(其中是各项均不为零的等差数列,c为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如或.10. 已知函数f(x)=|lgx|.若0<a<b,且f(a)=f(b),则a+2b的取值范围是()A. B. C. D.【答案】C【解析】,所以,所以由得,即,所以,,令,因为函数在区间上是减函数,故,故选C 点睛:(1)运用函数性质解决问题时,先要正确理解和把握函数相关性质本身的含义及其应用方向.(2)在研究函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去,即将函数值的大小转化自变量大小关系, 对称性可得到两个对称的自变量所对应函数值关系.11. 已知两个等差数列和的前项和分别为A和,且,则使得为整数的正整数的个数是()A. 2B. 3C. 4D. 5【答案】D考点:1.等差中项;2.等差数列的前项的和.12. 设f(x)是定义在R上的增函数,且对任意x,都有f(﹣x)+f(x)=0恒成立,如果实数m,n满足不等式f(m2﹣6m+21)+f(n2﹣8n)<0,那么m2+n2的取值范围是()A. (9,49)B. (13,49)C. (9,25)D. (3,7)【答案】A【解析】试题分析:根据对于任意的x都有f(﹣x)+f(x)=0恒成立,不等式可化为f(m2﹣6m+21)<f(﹣n2+8n),利用f(x)是定义在R上的增函数,可得(m﹣3)2+(n﹣4)2<4,确定(m﹣3)2+(n﹣4)2=4内的点到原点距离的取值范围,利用m2+n2表示(m﹣3)2+(n﹣4)2=4内的点到原点距离的平方,即可求得m2+n2的取值范围.解:∵对于任意的x都有f(﹣x)+f(x)=0恒成立,∴f(﹣x)=﹣f(x),∵f(m2﹣6m+21)+f(n2﹣8n)<0,∴f(m2﹣6m+21)<﹣f(n2﹣8n)=f(﹣n2+8n),∵f(x)是定义在R上的增函数,∴m2﹣6m+21<﹣n2+8n,∴(m﹣3)2+(n﹣4)2<4∵(m﹣3)2+(n﹣4)2=4的圆心坐标为:(3,4),半径为2,∴(m﹣3)2+(n﹣4)2=4内的点到原点距离的取值范围为(5﹣2,5+2),即(3,7),∵m2+n2表示(m﹣3)2+(n﹣4)2=4内的点到原点距离的平方,∴m2+n2的取值范围是(9,49).故选:A.考点:函数单调性的性质.第Ⅱ卷(非选择题 共90分)二.填空题(本大题共有4个小题,每小题5分,共20分)13. 已知焦点在轴上的椭圆的离心率为,则实数等于__________.【答案】8【解析】焦点在y轴时,14. 已知>0,>0,且,若恒成立,则实数的取值范围是__________.【答案】【解析】因,即,故,应填答案15. 关于x的方程在内有两个不相等的实数根,则k的取值范围是______.【答案】k∈[0,1)【解析】,又,∴, . ,即k∈[0,1)点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.16. 对于数列,定义为的“优值”,现在已知某数列的“优值”,记数列的前项和为,若对任意的恒成立,则实数的最大值为_____.【答案】【解析】由题设可知,则,以上两式两边相减可得,即,故,则,由题意,即,应填答案。

河南省鲁山县第一高级中学2019-2020学年高二10月月考数学试卷

河南省鲁山县第一高级中学2019-2020学年高二10月月考数学试卷

河南省鲁山县第一高级中学2019-2020学年高二10月月考试卷第Ⅰ卷(选择题 共60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的)1. 已知全集R U =,{})1ln(2x y x A -==,{}12-==x y y B ,则=⋂)(B CA U( )A. )0,1(-B. )1,0[C.)1,0(D.]0,1(- 2. 若复数z 满足(1)2i z i +=-,则在复平面内,z 的共轭复数的虚部为( ) A.23 B.i 23 C.23- D.i 23-3.已知向量b a ,满足5=a ,)3,1(=b ,5=⋅b a ,则b a +在a 方向上的投影为( ) A .10B .52C .53D .1034.已知曲线ax x e x f x -+=2)(在区间)1,0(内存在垂直于y 轴的切线,则a 的取值范围是( )A.)1,0(+eB.)1,1(+eC.)2,0(+eD.)2,1(+e5.中国历法推测遵循以测为辅、以算为主的原则.例如《周髀算经》和《易经》里对二十四节气的晷影长的记录中,冬至和夏至的晷影长是实测得到的,其他节气的晷影长则是按照等差数列的规律计算出来的.下表为《周髀算经》对二十四节气晷影长的记录,其中641.115寸表示115寸641分(1寸10=分) 节气 冬至小寒 (大雪) 大寒 (小雪) 立春 (立冬) 雨水 (霜降) 惊蛰 (寒露) 春分 (秋分) 清明 (白露) 谷雨 (处暑) 立夏 (立秋) 小满 (大暑) 芒种(小暑)夏至晷影 长(寸)135125. 56115. 416 105. 426 95.236 85.246 75.5 66.556 55.466 45.376 35.286 25.19616.0已知《易经》中记录的冬至晷影长为0.130寸,夏至晷影长为8.14寸,那么《易经》中所记录的惊蛰的晷影长应为( )A. 4.72寸B.4.81寸C. 0.82寸D. 6.91寸6.已知正方形ABCD 的边长为4,E 为BC 边的中点,F 为CD 边上一点,若2AE AE AF =⋅,则=AF ( )A . 5 B.3 C.23 D.25 7.函数)sin()(ϕω+=x A x f )0(>ω的部分图像如图所示,)(x f 图象与y 轴交于M 点,与x 轴交于C 点,点N 在)(x f 图象上,满足CN MC =,则下列说法中正确的是( )A .函数()f x 的最小正周期是2πB .函数)(x f 的图像关于127π=x 轴对称 C .函数()f x 在2,36ππ⎛⎫-- ⎪⎝⎭单调递减 D .函数)(x f 的图像上所有的点横坐标扩大到原来的2倍(纵坐标不变),再向右平移3π后关于y 轴对称8.已知函数x xee x x xf 12)(3-+-=,其中e 是自然对数的底数,若0)2()1(2≤+-a f a f ,则实数a 的取值范围是( )A.]23,1[- B.]1,23[-C. ]21,1[-D.]1,21[- 9.已知ABC ∆中,内角C B A ,,所对的边分别是c b a ,,,若212cos )cos cos (=++b a B A b B a ,且032=-∆c S ABC ,则当ab 取到最小值时,=a ( ) A .32B .3C .33D .2310.已知向量,,a b c 满足4=a ,2=b ,a 与b 的夹角为 60,若0)()(=-⋅-b c a c ,则c 的最大值是( )A .7B .37+C .327+D .37-11.已知等差数列{}n a 满足33a =,4581a a a +=+,数列{}n b 满足11n n n n n b a a a a ++=-,记数列{}n b 的前n 项和为n S ,若对于任意的[]2,2a ∈-,*n N ∈,不等式223n S t at <+-恒成立,则实数t 的取值范围为( ) A .(][),22,-∞-+∞ B .(][),21,-∞-⋃+∞C .(][),12,-∞-⋃+∞D .[]22-,12.已知函数⎪⎪⎩⎪⎪⎨⎧<-->+=0,2250,ln 1)(3x x x x xxx f ,若方程ax x f =)(有四个不等的实数根,则实数a的取值范围是( )A. )2,0(eB. )2,21(eC.)1,0(D. )21,0(第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.将答案写在答题卡上相应的位置 13.已知)(x f 是定义在R 上的函数,且满足)(1)2(x f x f -=+,当32≤≤x 时,xx f 2)(=,则_________)3(log 21=f14.一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶m 300后到达B 处,测得此山顶在西偏北 75的方向上,仰角为 30,则此山的高度m CD __________=15.在ABC ∆中,E 为AC 上一点,且4AC AE =,P 为BE 上一点,且满足)0,0(>>+=n m AC n AB m AP ,则11m n+最小值为 __________.16.正项数列{}n a 满足:n n n na a 2)1(1=⋅-+,设n n a a a T ⋅⋅⋅= 21,若λλ->2220T ,则λ的取值范围是______________三、解答题:本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤17.(本小题满分12分)设n S 是正项数列{}n a 的前n 项和,且)(121212*∈-+=N n a a S n n n (1)设数列{}n a 的通项公式.(2)若nn b 2=,设n n n b a c =,求数列{}n c 的前n 项和n T .18.(本小题满分12分)已知函数a =()sin cos ,sin 3(x x x +,)cos sin ,cos 2(x x x b -=,b a x f ⋅=)( (1)求函数)(x f 在[]π,0上的单调递增区间和最小值.(2)在ABC ∆中,c b a ,,分别是角C B A ,, 的对边,且2)(=B f ,)(7c a b -= ,求A cos 的值.19.(本小题满分12分)已知函数()2ln 2(0)f x a x a x=+->. (1)若对于任意()0,x ∈+∞都有()()21f x a >-成立,试求a 的取值范围.(2)记()()()g x f x x b b R =+-∈.当1a =时,函数()g x 在区间1,e e -⎡⎤⎣⎦上有两个零点,求实数b 的取值范围.20.(本小题满分12分)数列{}n a 满足31=a ,nn n a a 321⋅=-+(*∈N n )(1)求{}n a 的通项公式.(2)设1)2(2--+=n n n a b λ,若对任意*∈N n ,恒有n n b b >+1,求λ的取值范围;(3)设nn a n n n c )1(32++=,求数列{}n c 的前n 项和n S21.(本小题满分12分)已知函数1ln 2ln )(2-+-=x a x a x x f .)2(2e a ≤(1)当21-=a 时,求)(x f 的单调区间.(2)若1≥x 时,0)(≥x f 恒成立,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的的第一题记分. 22.(本小题满分10分)在直角坐标系xOy 中,曲线1cos :1sin x tC y t=⎧⎨=+⎩(t 为参数),以坐标原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos 333πρθ⎛⎫-= ⎪⎝⎭. (1)求曲线1C 的极坐标方程.(2)已知点)0,2(M ,直线l 的极坐标方程为3πθ=,它与曲线1C 的交点为P O ,,与曲线2C 的交点为Q ,求MPQ ∆的面积.23.(本小题满分10分)已知函数()|2|2,f x x x a a R =-++∈. (1) 当1a =时,解不等式3)(≥x f(2) 若存在0x 满足52)(00<-+x x f ,求a 的取值范围.——★ 参*考*答*案 ★——一、选择题: 1 2 3 4 5 6 7 8 9 10 11 12 DABDCABCABAB二、填空题: 13.316; 14、650; 15、9 16、)11,10(- 三、解答题:17.(1)1+=n a n ; (2)12+⋅=n n n T18. (1))62sin(2)(π-=x x f 增区间),65(),3,0(πππ 当65π=x ,2)(min -=x f (2)147cos =A 19. (1)e a 20<< (2)121-+≤<ee b 20.(1)nn a 3= (2)123<<-λ (3)n n n S 3)1(11+-= 21.(1)减区间)1,0(,增区间),1(+∞ (2)]2,21[2e -22. (1)θρsin 2:1=C (2)43 23. (1)),0[]32,(+∞⋃--∞ (2)19<<-a。

鲁山县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析

鲁山县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析

鲁山县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. P 是双曲线=1(a >0,b >0)右支上一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则△PF 1F 2的内切圆圆心的横坐标为( )A .aB .bC .cD .a+b ﹣c2. 设是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( ){}n a A .1B .2C .4D .63. 如图可能是下列哪个函数的图象()A .y=2x ﹣x 2﹣1B .y=C .y=(x 2﹣2x )e xD .y=4. 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为()A .B .C .D .5. 已知集合,,若,则( )},052|{2Z x x x x M ∈<+=},0{a N =∅≠N M =a A .B .C .或D .或1-1-1-2-6. 已知F 1,F 2是椭圆和双曲线的公共焦点,M 是它们的一个公共点,且∠F 1MF 2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A .2B .C .D .47. 设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件8. 已知,若圆:,圆:2->a 1O 01582222=---++a ay x y x 2O 恒有公共点,则的取值范围为( ).04422222=--+-++a a ay ax y x a A . B . C . D .),3[]1,2(+∞-- ),3()1,35(+∞-- ),3[]1,35[+∞-- ),3()1,2(+∞-- 9. 已知点是双曲线C :左支上一点,,是双曲线的左、右两个焦点,且P 22221(0,0)x y a b a b-=>>1F 2F ,与两条渐近线相交于,两点(如图),点恰好平分线段,则双曲线的离心率12PF PF ⊥2PF M N N 2PF 是( )A.B.2D.52【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力.10.如果过点M (﹣2,0)的直线l 与椭圆有公共点,那么直线l 的斜率k 的取值范围是()A .B .C .D .11.如图,正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是AA 1,AD 的中点,则CD 1与EF 所成角为()A .0°B .45°C .60°D .90°12.集合A={1,2,3},集合B={﹣1,1,3},集合S=A ∩B ,则集合S 的子集有( )A .2个B .3 个C .4 个D .8个二、填空题13.已知数列中,,函数在处取得极值,则{}n a 11a =3212()3432n n a f x x x a x -=-+-+1x =_________.n a =14.函数在区间上递减,则实数的取值范围是.2()2(1)2f x x a x =+-+(,4]-∞15.已知两个单位向量满足:,向量与的夹角为,则.,a b 12a b ∙=- 2a b - cos θ=16.已知集合{}|03,A x x x R =<∈≤,{}|12,B x x x R =-∈≤≤,则A ∪B = ▲ .17.设α为锐角, =(cos α,sin α),=(1,﹣1)且•=,则sin (α+)= .18.直线l 过原点且平分平行四边形ABCD 的面积,若平行四边形的两个顶点为B (1,4),D (5,0),则直线l 的方程为 .三、解答题19.(本小题满分12分)在△ABC 中,∠A ,∠B ,∠C 所对的边分别是a 、b 、c ,不等式x 2cos C +4x sin C +6≥0对一切实数x 恒成立.(1)求cos C 的取值范围;(2)当∠C 取最大值,且△ABC 的周长为6时,求△ABC 面积的最大值,并指出面积取最大值时△ABC 的形状.【命题意图】考查三角不等式的求解以及运用基本不等式、余弦定理求三角形面积的最大值等.20.定义在R 上的增函数y=f (x )对任意x ,y ∈R 都有f (x+y )=f (x )+f (y ),则(1)求f (0); (2)证明:f (x )为奇函数;(3)若f (k •3x )+f (3x ﹣9x ﹣2)<0对任意x ∈R 恒成立,求实数k 的取值范围. 21.某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100)后得到如图的频率分布直方图.(Ⅰ)求图中实数a 的值;(Ⅱ)根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.22.(本题满分12分)在中,已知角所对的边分别是,边,且ABC ∆,,A B C ,,a b c 72c =,又的面积为,求的值.tan tan tan tan A B A B +=A ABC ∆ABC S ∆=a b +23.(本小题满分12分)如图,在四棱锥中,底面是菱形,且.点是棱的中点,平面P ABCD -ABCD 120ABC ∠=︒E PC ABE 与棱交于点.PD F (1)求证:;//AB EF (2)若,且平面平面,求平面与平面所成的锐二面角的余2PA PD AD ===PAD ⊥ABCD PAF AFE 弦值.【命题意图】本小题主要考查空间直线与平面,直线与直线垂直的判定,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,以及数形结合思想、化归与转化思想.24.已知双曲线过点P (﹣3,4),它的渐近线方程为y=±x .(1)求双曲线的标准方程;(2)设F 1和F 2为该双曲线的左、右焦点,点P 在此双曲线上,且|PF 1||PF 2|=41,求∠F 1PF 2的余弦值.鲁山县第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】A【解析】解:如图设切点分别为M ,N ,Q ,则△PF 1F 2的内切圆的圆心的横坐标与Q 横坐标相同.由双曲线的定义,PF 1﹣PF 2=2a .由圆的切线性质PF 1﹣PF 2=F I M ﹣F 2N=F 1Q ﹣F 2Q=2a ,∵F 1Q+F 2Q=F 1F 2=2c ,∴F 2Q=c ﹣a ,OQ=a ,Q 横坐标为a .故选A.【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义. 2. 【答案】B 【解析】试题分析:设的前三项为,则由等差数列的性质,可得,所以,{}n a 123,,a a a 1322a a a +=12323a a a a ++=解得,由题意得,解得或,因为是递增的等差数列,所以24a =1313812a a a a +=⎧⎨=⎩1326a a =⎧⎨=⎩1362a a =⎧⎨=⎩{}n a ,故选B .132,6a a ==考点:等差数列的性质.3. 【答案】 C【解析】解:A 中,∵y=2x ﹣x 2﹣1,当x 趋向于﹣∞时,函数y=2x 的值趋向于0,y=x 2+1的值趋向+∞,∴函数y=2x ﹣x 2﹣1的值小于0,∴A 中的函数不满足条件;B 中,∵y=sinx 是周期函数,∴函数y=的图象是以x 轴为中心的波浪线,∴B 中的函数不满足条件;C 中,∵函数y=x 2﹣2x=(x ﹣1)2﹣1,当x <0或x >2时,y >0,当0<x <2时,y <0;且y=e x >0恒成立,∴y=(x 2﹣2x )e x 的图象在x 趋向于﹣∞时,y >0,0<x <2时,y <0,在x 趋向于+∞时,y 趋向于+∞;∴C 中的函数满足条件;D 中,y=的定义域是(0,1)∪(1,+∞),且在x ∈(0,1)时,lnx <0,∴y=<0,∴D 中函数不满足条件.故选:C .【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目. 4. 【答案】A【解析】解:由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D 不正确;中间的棱在侧视图中表现为一条对角线,故C 不正确;而对角线的方向应该从左上到右下,故B 不正确故A 选项正确.故选:A .【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键. 5. 【答案】D 【解析】试题分析:由,集合,{}{}1,2,025,0522--=⎭⎬⎫⎩⎨⎧∈<<-=∈<+=Z x x x Z x x x x M {}a N ,0=又,或,故选D .φ≠N M 1-=∴a 2-=a 考点:交集及其运算.6. 【答案】 C【解析】解:设椭圆的长半轴为a ,双曲线的实半轴为a 1,(a >a 1),半焦距为c ,由椭圆和双曲线的定义可知,设|MF 1|=r 1,|MF 2|=r 2,|F 1F 2|=2c ,椭圆和双曲线的离心率分别为e 1,e 2∵∠F 1MF 2=,∴由余弦定理可得4c 2=(r 1)2+(r 2)2﹣2r 1r 2cos ,①在椭圆中,①化简为即4c 2=4a 2﹣3r 1r 2,即=﹣1,②在双曲线中,①化简为即4c 2=4a 12+r 1r 2,即=1﹣,③联立②③得,+=4,由柯西不等式得(1+)(+)≥(1×+×)2,即(+)2≤×4=,即+≤,当且仅当e 1=,e 2=时取等号.即取得最大值且为.故选C .【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大. 7. 【答案】B【解析】解:∵b ⊥m ,∴当α⊥β,则由面面垂直的性质可得a ⊥b 成立,若a ⊥b ,则α⊥β不一定成立,故“α⊥β”是“a ⊥b ”的充分不必要条件,故选:B .【点评】本题主要考查充分条件和必要条件的判断,利用线面垂直的性质是解决本题的关键. 8. 【答案】C【解析】由已知,圆的标准方程为,圆的标准方程为1O 222(1)()(4)x y a a ++-=+2O ,∵ ,要使两圆恒有公共点,则,即222()()(2)x a y a a ++-=+2->a 122||26O O a ≤≤+,解得或,故答案选C62|1|2+≤-≤a a 3≥a 135-≤≤-a9.【答案】A.【解析】10.【答案】D【解析】解:设过点M(﹣2,0)的直线l的方程为y=k(x+2),联立,得(2k2+1)x2+8k2x+8k2﹣2=0,∵过点M(﹣2,0)的直线l与椭圆有公共点,∴△=64k4﹣4(2k2+1)(8k2﹣2)≥0,整理,得k2,解得﹣≤k≤.∴直线l的斜率k的取值范围是[﹣,].故选:D.【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.11.【答案】C【解析】解:连结A1D、BD、A1B,∵正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,∴EF∥A1D,∵A1B∥D1C,∴∠DA1B是CD1与EF所成角,∵A1D=A1B=BD,∴∠DA1B=60°.∴CD1与EF所成角为60°.故选:C.【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养. 12.【答案】C【解析】解:∵集合A={1,2,3},集合B={﹣1,1,3},∴集合S=A ∩B={1,3},则集合S 的子集有22=4个,故选:C .【点评】本题主要考查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础. 二、填空题13.【答案】1231n --A 【解析】考点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.【方法点晴】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法,形如的递推数列求通项往往用1(0,1)n n a qa p p q -=+≠≠构造法,利用待定系数法构造成的形式,再根据等比数例求出的通项,进而得1()n n a m q a m -+=+{}n a m +出的通项公式.{}n a 14.【答案】3a ≤-【解析】试题分析:函数图象开口向上,对称轴为,函数在区间上递减,所以()f x 1x a =-(,4]-∞.14,3a a -≥≤-考点:二次函数图象与性质.15.【答案】.【解析】考点:向量的夹角.【名师点睛】平面向量数量积的类型及求法(1)求平面向量的数量积有三种方法:一是定义;二是坐标运算公式cos a b a b θ⋅= ;三是利用数量积的几何意义.1212a b x x y y ⋅=+ (2)求较复杂的平面向量的数量积的运算时,可先利用平面向量数量积的运算律或相减公式进行化简16.【答案】1-1,3]【解析】试题分析:A ∪B ={}{}|03,|12,x x x R x x x R <∈-∈ ≤≤≤=1-1,3]考点:集合运算【方法点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.17.【答案】:.【解析】解:∵•=cos α﹣sin α=,∴1﹣sin2α=,得sin2α=,∵α为锐角,cos α﹣sin α=⇒α∈(0,),从而cos2α取正值,∴cos2α==,∵α为锐角,sin(α+)>0,∴sin(α+)====.故答案为:.18.【答案】 .【解析】解:∵直线l过原点且平分平行四边形ABCD的面积,则直线过BD的中点(3,2),故斜率为=,∴由斜截式可得直线l的方程为,故答案为.【点评】本题考查直线的斜率公式,直线方程的斜截式.三、解答题19.【答案】【解析】20.【答案】【解析】解:(1)在f(x+y)=f(x)+f(y)中,令x=y=0可得,f(0)=f(0)+f(0),则f(0)=0,(2)令y=﹣x,得f(x﹣x)=f(x)+f(﹣x),又f(0)=0,则有0=f(x)+f(﹣x),即可证得f(x)为奇函数;(3)因为f(x)在R上是增函数,又由(2)知f(x)是奇函数,f(k•3x)<﹣f(3x﹣9x﹣2)=f(﹣3x+9x+2),即有k•3x<﹣3x+9x+2,得,又有,即有最小值2﹣1,所以要使f (k •3x )+f (3x ﹣9x ﹣2)<0恒成立,只要使即可,故k 的取值范围是(﹣∞,2﹣1). 21.【答案】 【解析】解:(Ⅰ)由频率分布直方图,得:10×(0.005+0.01+0.025+a+0.01)=1,解得a=0.03.(Ⅱ)由频率分布直方图得到平均分:=0.05×45+0.1×55+0.2×65+0.3×75+0.25×85+0.1×95=74(分).(Ⅲ)由频率分布直方图,得数学成绩在[40,50)内的学生人数为40×0.05=2,这两人分别记为A ,B ,数学成绩在[90,100)内的学生人数为40×0.1=4,这4人分别记为C ,D ,E ,F ,若从数学成绩在[40,50)与[90,100)两个分数段内的学生中随机选取2名学生,则所有的基本事件有:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15个,如果这两名学生的数学成绩都在[40,50)或都在[90,100)内,则这两名学生的数学成绩之差的绝对值不大于10,记“这两名学生的数学成绩之差的绝对值不大于10”为事件M ,则事件M 包含的基本事件有:(A ,B ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共7个,所以这两名学生的数学成绩之差的绝对值不大于10的概率P=.【点评】本题考查频率和概率的求法,二查平均分的求法,是中档题,解题时要认真审题,注意频率分布直方图和列举法的合理运用.22.【答案】.112【解析】试题解析:由tan tan tan A B A B +=-A可得,即.tan tan 1tan tan A B A B+=-A tan()A B +=∴,∴,∴tan()C π-=tan C -=tan C =∵,∴.(0,)C π∈3C π=又的面积为,即.ABC ∆ABC S ∆=1sin 2ab C =12ab =6ab =又由余弦定理可得,∴,2222cos c a b ab C =+-2227()2cos 23a b ab π=+-∴,∴,∵,∴.122227()()32a b ab a b ab =+-=+-2121()4a b +=0a b +>112a b +=考点:解三角形问题.【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到两角和与两角差的正切函数公式、三角形的面积、正弦定理和余弦定理,以及特殊角的三角函数值等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,其中熟练掌握基本公式和灵活运用公式是解答本题的关键,属于中档试题.23.【答案】【解析】∵平面,∴是平面的一个法向量,BG ⊥PAD )0,3,0(=GB PAF24.【答案】【解析】解:(1)设双曲线的方程为y2﹣x2=λ(λ≠0),代入点P(﹣3,4),可得λ=﹣16,∴所求求双曲线的标准方程为(2)设|PF1|=d1,|PF2|=d2,则d1d2=41,又由双曲线的几何性质知|d1﹣d2|=2a=6,∴d12+d22﹣2d1d2=36即有d12+d22=36+2d1d2=118,又|F1F2|=2c=10,∴|F1F2|2=100=d12+d22﹣2d1d2cos∠F1PF2∴cos∠F1PF2=【点评】本题给出双曲线的渐近线,在双曲线经过定点P的情况下求它的标准方程,并依此求∠F1PF2的余弦值.着重考查了双曲线的标准方程与简单几何性质、利用余弦定理解三角形等知识,属于中档题.。

鲁山县第三中学2018-2019学年上学期高二数学12月月考试题含解析

鲁山县第三中学2018-2019学年上学期高二数学12月月考试题含解析

鲁山县第三中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 487被7除的余数为a (0≤a <7),则展开式中x ﹣3的系数为( )A .4320B .﹣4320C .20D .﹣202. 函数f (x )=e ln|x|+的大致图象为( )A .B .C .D .3. 已知i 是虚数单位,则复数等于( )A .﹣ +iB .﹣ +iC .﹣iD .﹣i4. 函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是( )A .()1,10B .()1,+∞C .()0,1D .()10,+∞ 5. 某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S 的值为( )A .9.6B .7.68C .6.144D .4.91526. 某校在高三第一次模拟考试中约有1000人参加考试,其数学考试成绩近似服从正态分布,即()2~100,X N a (0a >),试卷满分150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总人数的110,则此次数学考试成绩在100分到110分之间的人数约为( ) (A ) 400 ( B ) 500 (C ) 600 (D ) 800 7. 设b ,c 表示两条直线,α,β表示两个平面,则下列命题是真命题的是( ) A .若b ⊂α,c ∥α,则b ∥cB .若c ∥α,α⊥β,则c ⊥βC .若b ⊂α,b ∥c ,则c ∥αD .若c ∥α,c ⊥β,则α⊥β8. 如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )A .{, }B .{,, }C .{V|≤V ≤}D .{V|0<V ≤}9. 自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则点P 轨迹方程为( )A .86210x y --=B .86210x y +-=C .68210x y +-=D .68210x y --=【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.10.已知正三棱柱111ABC A B C -的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱 柱的侧面,绕行两周到达点1A 的最短路线的长为( )A .16cmB .C .D .26cm11.奇函数f (x )在(﹣∞,0)上单调递增,若f (﹣1)=0,则不等式f (x )<0的解集是( ) A .(﹣∞,﹣1)∪(0,1) B .(﹣∞,﹣1)(∪1,+∞) C .(﹣1,0)∪(0,1) D .(﹣1,0)∪(1,+∞)12.已知f (x )=x 3﹣6x 2+9x ﹣abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论: ①f (0)f (1)>0; ②f (0)f (1)<0; ③f (0)f (3)>0; ④f (0)f (3)<0.其中正确结论的序号是( ) A .①③B .①④C .②③D .②④二、填空题13.已知x ,y 为实数,代数式2222)3(9)2(1y x x y ++-++-+的最小值是 .【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力. 14.命题“∃x ∈R ,2x 2﹣3ax+9<0”为假命题,则实数a 的取值范围为 .15.抛物线y 2=﹣8x 上到焦点距离等于6的点的坐标是 .16.直线l 过原点且平分平行四边形ABCD 的面积,若平行四边形的两个顶点为B (1,4),D (5,0),则直线l 的方程为 .17.长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是 .18.已知z ,ω为复数,i 为虚数单位,(1+3i )z 为纯虚数,ω=,且|ω|=5,则复数ω= .三、解答题19.已知曲线21()f x e x ax=+(0x ≠,0a ≠)在1x =处的切线与直线2(1)20160e x y --+= 平行.(1)讨论()y f x =的单调性;(2)若()ln kf s t t ≥在(0,)s ∈+∞,(1,]t e ∈上恒成立,求实数的取值范围.20.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()2ln R f x x ax x a =-+-∈.(1)若函数()f x 是单调递减函数,求实数a 的取值范围; (2)若函数()f x 在区间()0,3上既有极大值又有极小值,求实数a 的取值范围.21.如图,摩天轮的半径OA 为50m ,它的最低点A 距地面的高度忽略不计.地面上有一长度为240m 的景观带MN ,它与摩天轮在同一竖直平面内,且AM=60m .点P 从最低点A 处按逆时针方向转动到最高点B 处,记∠AOP=θ,θ∈(0,π).(1)当θ= 时,求点P 距地面的高度PQ ;(2)试确定θ 的值,使得∠MPN 取得最大值.22.如图所示,在四棱锥P ABCD -中,底面ABCD 为菱形,E 为AC 与BD 的交点,PA ⊥平 面ABCD ,M 为PA 中点,N 为BC 中点. (1)证明:直线//MN 平面ABCD ;(2)若点Q 为PC 中点,120BAD ∠=︒,PA =1AB =,求三棱锥A QCD -的体积.23.已知函数f(x)=x﹣1+(a∈R,e为自然对数的底数).(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(Ⅱ)求函数f(x)的极值;(Ⅲ)当a=1的值时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.24.已知f(x)=x2﹣3ax+2a2.(1)若实数a=1时,求不等式f(x)≤0的解集;(2)求不等式f(x)<0的解集.鲁山县第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】B解析:解:487=(49﹣1)7=﹣+…+﹣1,∵487被7除的余数为a (0≤a <7), ∴a=6,∴展开式的通项为T r+1=,令6﹣3r=﹣3,可得r=3,∴展开式中x ﹣3的系数为=﹣4320,故选:B .. 2. 【答案】C【解析】解:∵f (x )=e ln|x|+∴f (﹣x )=eln|x|﹣f (﹣x )与f (x )即不恒等,也不恒反,故函数f (x )为非奇非偶函数,其图象不关于原点对称,也不关于y 轴对称, 可排除A ,D ,当x →0+时,y →+∞,故排除B故选:C .3. 【答案】A【解析】解:复数===,故选:A .【点评】本题考查了复数的运算法则,属于基础题.4. 【答案】B 【解析】试题分析:函数()f x 有两个零点等价于1xy a ⎛⎫= ⎪⎝⎭与log a y x =的图象有两个交点,当01a <<时同一坐标系中做出两函数图象如图(2),由图知有一个交点,符合题意;当1a >时同一坐标系中做出两函数图象如图(1),由图知有两个交点,不符合题意,故选B.x(1)(2)考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程()y f x=零点个数的常用方法:①直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化法:函数()y f x=零点个数就是方程()0f x=根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)可确定函数的零点个数;③数形结合法:一是转化为两个函数()(),y g x y h x==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x==的交点个数的图象的交点个数问题.本题的解答就利用了方法③.5.【答案】C【解析】解:由题意可知,设汽车x年后的价值为S,则S=15(1﹣20%)x,结合程序框图易得当n=4时,S=15(1﹣20%)4=6.144.故选:C.6.【答案】A【解析】P(X≤90)=P(X≥110)=110,P(90≤X≤110)=1-15=45,P(100≤X≤110)=25,1000×25=400. 故选A. 7.【答案】D【解析】解:对于A,设正方体的上底面为α,下底面为β,直线c是平面β内一条直线因为α∥β,c⊂β,可得c∥α,而正方体上底面为α内的任意直线b不一定与直线c平行故b⊂α,c∥α,不能推出b∥c.得A项不正确;对于B,因为α⊥β,设α∩β=b,若直线c∥b,则满足c∥α,α⊥β,但此时直线c⊂β或c∥β,推不出c⊥β,故B项不正确;对于C,当b⊂α,c⊄α且b∥c时,可推出c∥α.但是条件中缺少“c⊄α”这一条,故C项不正确;对于D ,因为c ∥α,设经过c 的平面γ交平面α于b ,则有c ∥b 结合c ⊥β得b ⊥β,由b ⊂α可得α⊥β,故D 项是真命题 故选:D【点评】本题给出空间位置关系的几个命题,要我们找出其中的真命题,着重考查了线面平行、线面垂直的判定与性质,面面垂直的判定与性质等知识,属于中档题.8. 【答案】D【解析】解:根据几何体的正视图和侧视图,得;当该几何体的俯视图是边长为1的正方形时,它是高为2的四棱锥,其体积最大,为×12×2=;当该几何体的俯视图为一线段时,它的底面积为0,此时不表示几何体;所以,该几何体体积的所有可能取值集合是{V|0<V ≤}. 故选:D .【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征是什么,是基础题目.9. 【答案】D【解析】由切线性质知PQ CQ ⊥,所以222PQ PC QC =-,则由PQ PO =,得,2222(3)(4)4x y x y -++-=+,化简得68210x y --=,即点P 的轨迹方程,故选D ,10.【答案】D 【解析】考点:多面体的表面上最短距离问题.【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题.11.【答案】A【解析】解:根据题意,可作出函数图象:∴不等式f(x)<0的解集是(﹣∞,﹣1)∪(0,1)故选A.12.【答案】C【解析】解:求导函数可得f′(x)=3x2﹣12x+9=3(x﹣1)(x﹣3),∵a<b<c,且f(a)=f(b)=f(c)=0.∴a<1<b<3<c,设f(x)=(x﹣a)(x﹣b)(x﹣c)=x3﹣(a+b+c)x2+(ab+ac+bc)x﹣abc,∵f(x)=x3﹣6x2+9x﹣abc,∴a+b+c=6,ab+ac+bc=9,∴b+c=6﹣a,∴bc=9﹣a(6﹣a)<,∴a2﹣4a<0,∴0<a<4,∴0<a<1<b<3<c,∴f(0)<0,f(1)>0,f(3)<0,∴f(0)f(1)<0,f(0)f(3)>0.故选:C.二、填空题13.【解析】14.【答案】﹣2≤a≤2【解析】解:原命题的否定为“∀x∈R,2x2﹣3ax+9≥0”,且为真命题,则开口向上的二次函数值要想大于等于0恒成立,只需△=9a2﹣4×2×9≤0,解得:﹣2≤a≤2.故答案为:﹣2≤a≤2【点评】存在性问题在解决问题时一般不好掌握,若考虑不周全、或稍有不慎就会出错.所以,可以采用数学上正难则反的思想,去从它的反面即否命题去判定.注意“恒成立”条件的使用.15.【答案】(﹣4,).【解析】解:∵抛物线方程为y2=﹣8x,可得2p=8,=2.∴抛物线的焦点为F(﹣2,0),准线为x=2.设抛物线上点P(m,n)到焦点F的距离等于6,根据抛物线的定义,得点P到F的距离等于P到准线的距离,即|PF|=﹣m+2=6,解得m=﹣4,∴n2=8m=32,可得n=±4,因此,点P的坐标为(﹣4,).故答案为:(﹣4,).【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标.着重考查了抛物线的定义与标准方程等知识,属于基础题.16.【答案】.【解析】解:∵直线l过原点且平分平行四边形ABCD的面积,则直线过BD的中点(3,2),故斜率为=,∴由斜截式可得直线l的方程为,故答案为.【点评】本题考查直线的斜率公式,直线方程的斜截式.17.【答案】50π.【解析】解:长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的对角线为:,所以球的半径为:;则这个球的表面积是:=50π.故答案为:50π.【点评】本题是基础题,考查球的内接多面体的有关知识,球的表面积的求法,注意球的直径与长方体的对角线的转化是本题的解答的关键,考查计算能力,空间想象能力.18.【答案】±(7﹣i).【解析】解:设z=a+bi(a,b∈R),∵(1+3i)z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.又ω===,|ω|=,∴.把a=3b代入化为b2=25,解得b=±5,∴a=±15.∴ω=±=±(7﹣i).故答案为±(7﹣i).【点评】熟练掌握复数的运算法则、纯虚数的定义及其模的计算公式即可得出.三、解答题19.【答案】(1)()f x在1(,)e-∞-,1(,)e+∞上单调递增,在1(,0)e-,1(0,)e上单调递减;(2)1[,)2+∞.【解析】试题解析:(1)由条件可得221'(1)1f e ea=-=-,∴1a=,由21()f x e xx=+,可得2222211'()e xf x ex x-=-=,由'()0f x>,可得2210,0,e xx⎧->⎨≠⎩解得1xe>或1xe<-;由'()0f x<,可得2210,0,e xx⎧-<⎨≠⎩解得10xe-<<或10xe<<.所以()f x在1(,)e-∞-,1(,)e+∞上单调递增,在1(,0)e-,1(0,)e上单调递减.(2)令()lng t t t=,当(0,)s∈+∞,(1,]t e∈时,()0f s>,()ln0g t t t=>,由()lnkf s t t≥,可得ln()t tkf s≥在(0,)x∈+∞,(1,]t e∈时恒成立,即maxln()t tkf s⎡⎤≥⎢⎥⎣⎦max()()g tf s⎡⎤=⎢⎥⎣⎦,故只需求出()f s的最小值和()g t的最大值.由(1)可知,()f s 在1(0,)e 上单调递减,在1(,)e+∞上单调递增,故()f s 的最小值为1()2f e e=,由()ln g t t t =可得'()ln 10g t t =+>在区间(1,]e 上恒成立,所以()g t 在(1,]e 上的最大值为()ln g e e e e ==, 所以只需122e k e ≥=, 所以实数的取值范围是1[,)2+∞.考点:1、利用导数研究函数的单调性及求切线斜率;2、不等式恒成立问题.【方法点晴】本题主要考查的是利用导数研究函数的单调性、利用导数研究函数的最值、不等式的恒成立和导数的几何意义,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(闭区间上还要注意比较端点处函数值的大小).20.【答案】(1)a ≤2)193a <<. 【解析】试题分析:(1)原问题等价于()0f x '≤对()0,+∞恒成立,即12a x x≤+对()0,+∞恒成立,结合均值不等式的结论可得a ≤(2)由题意可知()2210x ax f x x-+-'==在()0,3上有两个相异实根,结合二次函数根的分布可得实数a 的取值范围是193a <<.试题解析:(2)∵函数()f x 在()0,3上既有极大值又有极小值,∴()2210x ax f x x-+-'==在()0,3上有两个相异实根, 即2210x ax -+=在()0,3上有两个相异实根,记()221g x x ax =-+,则()()003{ 40030ag g ∆><<>>,得{012 193a a a a -<<<,即193a <<.21.【答案】【解析】解:(1)由题意得PQ=50﹣50cos θ,从而当时,PQ=50﹣50cos=75.即点P 距地面的高度为75米.(2)由题意得,AQ=50sin θ,从而MQ=60﹣50sin θ,NQ=300﹣50sin θ. 又PQ=50﹣50cos θ,所以tan,tan.从而tan ∠MPN=tan (∠NPQ ﹣∠MPQ )==.令g (θ)=.θ∈(0,π)则,θ∈(0,π). 由g ′(θ)=0,得sin θ+cos θ﹣1=0,解得.当时,g ′(θ)>0,g (θ)为增函数;当x时,g ′(θ)<0,g (θ)为减函数. 所以当θ=时,g (θ)有极大值,也是最大值.因为.所以.从而当g (θ)=tan ∠MNP 取得最大值时,∠MPN 取得最大值.即当时,∠MPN 取得最大值.【点评】本题考查了与三角函数有关的最值问题,主要还是利用导数研究函数的单调性,进一步求其极值、最值.22.【答案】(1)证明见解析;(2)18. 【解析】试题解析:(1)证明:取PD 中点R ,连结MR ,RC , ∵//MR AD ,//NC AD ,12MR NC AD ==, ∴//MR NC ,MR AC =, ∴四边形MNCR 为平行四边形,∴//MN RC ,又∵RC ⊂平面PCD ,MN ⊄平面PCD , ∴//MN 平面PCD .(2)由已知条件得1AC AD CD ===,所以ACD S ∆=, 所以111328A QCD Q ACD ACD V V S PA --∆==⨯⨯=.考点:1、直线与平面平行的判定;2、等积变换及棱锥的体积公式. 23.【答案】【解析】解:(Ⅰ)由f (x )=x ﹣1+,得f ′(x )=1﹣,又曲线y=f (x )在点(1,f (1))处的切线平行于x 轴,∴f ′(1)=0,即1﹣=0,解得a=e .(Ⅱ)f ′(x )=1﹣,①当a ≤0时,f ′(x )>0,f (x )为(﹣∞,+∞)上的增函数,所以f (x )无极值; ②当a >0时,令f ′(x )=0,得e x =a ,x=lna ,x ∈(﹣∞,lna ),f ′(x )<0;x ∈(lna ,+∞),f ′(x )>0; ∴f (x )在∈(﹣∞,lna )上单调递减,在(lna ,+∞)上单调递增, 故f (x )在x=lna 处取到极小值,且极小值为f (lna )=lna ,无极大值.综上,当a ≤0时,f (x )无极值;当a >0时,f (x )在x=lna 处取到极小值lna ,无极大值.(Ⅲ)当a=1时,f (x )=x ﹣1+,令g (x )=f (x )﹣(kx ﹣1)=(1﹣k )x+,则直线l :y=kx ﹣1与曲线y=f (x )没有公共点, 等价于方程g (x )=0在R 上没有实数解.假设k >1,此时g (0)=1>0,g ()=﹣1+<0,又函数g (x )的图象连续不断,由零点存在定理可知g (x )=0在R 上至少有一解, 与“方程g (x )=0在R 上没有实数解”矛盾,故k ≤1.又k=1时,g (x )=>0,知方程g (x )=0在R 上没有实数解,所以k 的最大值为1.24.【答案】【解析】解:(1)当a=1时,依题意得x 2﹣3x+2≤0因式分解为:(x ﹣2)(x ﹣1)≤0, 解得:x ≥1或x ≤2. ∴1≤x ≤2.不等式的解集为{x|1≤x ≤2}.(2)依题意得x 2﹣3ax+2a 2<0∴(x ﹣a )(x ﹣2a )<0… 对应方程(x ﹣a )(x ﹣2a )=0 得x 1=a ,x 2=2a当a=0时,x∈∅.当a>0时,a<2a,∴a<x<2a;当a<0时,a>2a,∴2a<x<a;综上所述,当a=0时,原不等式的解集为∅;当a>0时,原不等式的解集为{x|a<x<2a};当a<0时,原不等式的解集为{x|2a<x<a};。

鲁山县一中2018-2019学年上学期高二数学12月月考试题含解析

鲁山县一中2018-2019学年上学期高二数学12月月考试题含解析

鲁山县一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 下列各组表示同一函数的是( )A .y=与y=()2B .y=lgx 2与y=2lgxC .y=1+与y=1+D .y=x 2﹣1(x ∈R )与y=x 2﹣1(x ∈N )2. 设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则,类比这个结论可知:四面体S ﹣ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球半径为r ,四面体S ﹣ABC 的体积为V ,则r=( )A .B .C .D .3. 设a=60.5,b=0.56,c=log 0.56,则( ) A .c <b <a B .c <a <b C .b <a <c D .b <c <a4. 设a ,b ∈R ,i 为虚数单位,若2+a i1+i =3+b i ,则a -b 为( )A .3B .2C .1D .05. 设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x6. 如果集合 ,A B ,同时满足{}{}{}{}1,2,3,41,1,1A B B A B =≠≠,A=,就称有序集对(),A B 为“ 好集对”. 这里有序集对(),A B 是指当A B ≠时,(),A B 和(),B A 是不同的集对, 那么“好集对” 一共有( )个A .个B .个C .个D .个 7. 一个几何体的三视图如图所示,则该几何体的体积是( )A .64B .72C .80D .112【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力. 8. 函数f (x )=3x +x ﹣3的零点所在的区间是( ) A .(0,1) B .(1,2) C .(2.3) D .(3,4)9. 设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( ) A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件10.已知函数2()2ln 2f x a x x x =+-(a R ∈)在定义域上为单调递增函数,则的最小值是( ) A .14 B .12C .D . 11.已知函数f (x )的图象如图,则它的一个可能的解析式为( )A .y=2B .y=log 3(x+1)C .y=4﹣D .y=12.独立性检验中,假设H 0:变量X 与变量Y 没有关系.则在H 0成立的情况下,估算概率P (K 2≥6.635)≈0.01表示的意义是( )A .变量X 与变量Y 有关系的概率为1%B .变量X 与变量Y 没有关系的概率为99%C .变量X 与变量Y 有关系的概率为99%D .变量X 与变量Y 没有关系的概率为99.9%二、填空题13.若x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y +1≤02x -y +2≥0x +y -2≤0,z =3x +y +m 的最小值为1,则m =________.14.已知a=(cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .15.如图所示,正方体ABCD ﹣A ′B ′C ′D ′的棱长为1,E 、F 分别是棱AA ′,CC ′的中点,过直线EF 的平面分别与棱BB ′、DD ′交于M 、N ,设BM=x ,x ∈[0,1],给出以下四个命题: ①平面MENF ⊥平面BDD ′B ′;②当且仅当x=时,四边形MENF 的面积最小; ③四边形MENF 周长l=f (x ),x ∈0,1]是单调函数; ④四棱锥C ′﹣MENF 的体积v=h (x )为常函数; 以上命题中真命题的序号为 .16.设,x y 满足条件,1,x y a x y +≥⎧⎨-≤-⎩,若z ax y =-有最小值,则a 的取值范围为 .17由表中数据算出线性回归方程为=x+.若该公司第五名推销员的工作年限为8年,则估计他(她)的年推销金额为 万元.18.在△ABC 中,,,,则_____.三、解答题19.设圆C 满足三个条件①过原点;②圆心在y=x 上;③截y 轴所得的弦长为4,求圆C 的方程.20.已知函数xx x f ---=713)(的定义域为集合A ,{x |210}B x =<<,{x |21}C a x a =<<+(1)求A B ,B A C R ⋂)(;(2)若B C B =,求实数a 的取值范围.21.已知函数f (x )=e x ﹣ax ﹣1(a >0,e 为自然对数的底数). (1)求函数f (x )的最小值;(2)若f (x )≥0对任意的x ∈R 恒成立,求实数a 的值.22.如图所示,已知在四边形ABCD 中,AD ⊥CD ,AD=5,AB=7,BD=8,∠BCD=135°.(1)求∠BDA的大小(2)求BC的长.23.已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}.(1)求A∪B;(2)求(∁U A)∩B;(3)求∁U(A∩B).24.如图,四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.(1)求证:平面AEC⊥平面PDB;(2)当PD=AB,且E为PB的中点时,求AE与平面PDB所成的角的大小.鲁山县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:A.y=|x|,定义域为R,y=()2=x,定义域为{x|x≥0},定义域不同,不能表示同一函数.B.y=lgx2,的定义域为{x|x≠0},y=2lgx的定义域为{x|x>0},所以两个函数的定义域不同,所以不能表示同一函数.C.两个函数的定义域都为{x|x≠0},对应法则相同,能表示同一函数.D.两个函数的定义域不同,不能表示同一函数.故选:C.【点评】本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数.2.【答案】C【解析】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为∴R=故选C.【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).3. 【答案】A【解析】解:∵a=60.5>1,0<b=0.56<1,c=log 0.56<0, ∴c <b <a . 故选:A .【点评】本题考查了指数函数与对数函数的单调性,属于基础题.4. 【答案】【解析】选A.由2+a i1+i=3+b i 得,2+a i =(1+i )(3+b i )=3-b +(3+b )i , ∵a ,b ∈R ,∴⎩⎪⎨⎪⎧2=3-b a =3+b,即a =4,b =1,∴a -b =3(或者由a =3+b 直接得出a -b =3),选A. 5. 【答案】 C【解析】解:∵抛物线C 方程为y 2=2px (p >0),∴焦点F 坐标为(,0),可得|OF|=, ∵以MF 为直径的圆过点(0,2), ∴设A (0,2),可得AF ⊥AM ,Rt △AOF 中,|AF|==,∴sin ∠OAF==,∵根据抛物线的定义,得直线AO 切以MF 为直径的圆于A 点,∴∠OAF=∠AMF ,可得Rt △AMF 中,sin ∠AMF==,∵|MF|=5,|AF|=∴=,整理得4+=,解之可得p=2或p=8因此,抛物线C 的方程为y 2=4x 或y 2=16x .故选:C .方法二:∵抛物线C 方程为y 2=2px (p >0),∴焦点F (,0),设M (x ,y ),由抛物线性质|MF|=x+=5,可得x=5﹣,因为圆心是MF 的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y 轴相切于点(0,2),故圆心纵坐标为2,则M 点纵坐标为4,即M (5﹣,4),代入抛物线方程得p 2﹣10p+16=0,所以p=2或p=8.所以抛物线C 的方程为y 2=4x 或y 2=16x .故答案C .【点评】本题给出抛物线一条长度为5的焦半径MF ,以MF 为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.6. 【答案】B 【解析】试题分析:因为{}{}{}{}1,2,3,41,1,1AB B A B =≠≠,A =,所以当{1,2}A =时,{1,2,4}B =;当{1,3}A =时,{1,2,4}B =;当{1,4}A =时,{1,2,3}B =;当{1,2,3}A =时,{1,4}B =;当{1,2,4}A =时,{1,3}B =;当{1,3,4}A =时,{1,2}B =;所以满足条件的“好集对”一共有个,故选B.考点:元素与集合的关系的判断.【方法点晴】本题主要考查了元素与集合关系的判断与应用,其中解答中涉及到集合的交集和集合的并集运算与应用、元素与集合的关系等知识点的综合考查,着重考查了分类讨论思想的应用,以及学生分析问题和解答问题的能力,试题有一定的难度,属于中档试题,本题的解答中正确的理解题意是解答的关键.1111]7. 【答案】C. 【解析】8. 【答案】A【解析】解:∵f (0)=﹣2<0,f (1)=1>0,∴由零点存在性定理可知函数f (x )=3x +x ﹣3的零点所在的区间是(0,1). 故选A【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题.9. 【答案】B【解析】解:∵b ⊥m ,∴当α⊥β,则由面面垂直的性质可得a ⊥b 成立, 若a ⊥b ,则α⊥β不一定成立, 故“α⊥β”是“a ⊥b ”的充分不必要条件, 故选:B .【点评】本题主要考查充分条件和必要条件的判断,利用线面垂直的性质是解决本题的关键.10.【答案】A 【解析】试题分析:由题意知函数定义域为),0(+∞,2'222()x x a f x x++=,因为函数2()2ln 2f x a x x x=+-(a R ∈)在定义域上为单调递增函数0)('≥x f 在定义域上恒成立,转化为2()222h x x x a =++在),0(+∞恒成立,10,4a ∴∆≤∴≥,故选A. 1考点:导数与函数的单调性.11.【答案】C【解析】解:由图可得,y=4为函数图象的渐近线,函数y=2,y=log3(x+1),y=的值域均含4,即y=4不是它们的渐近线,函数y=4﹣的值域为(﹣∞,4)∪(4,+∞),故y=4为函数图象的渐近线,故选:C【点评】本题考查的知识点是函数的图象,函数的值域,难度中档.12.【答案】C【解析】解:∵概率P(K2≥6.635)≈0.01,∴两个变量有关系的可信度是1﹣0.01=99%,即两个变量有关系的概率是99%,故选C.【点评】本题考查实际推断原理和假设检验的应用,本题解题的关键是理解所求出的概率的意义,本题是一个基础题.二、填空题13.【答案】【解析】解析:可行域如图,当直线y=-3x+z+m与直线y=-3x平行,且在y轴上的截距最小时,z才能取最小值,此时l经过直线2x-y+2=0与x-2y+1=0的交点A(-1,0),z min=3×(-1)+0+m=-3+m=1,∴m=4.答案:414.【答案】240.【解析】解:a=(cosx﹣sinx)dx=(sinx+cosx)=﹣1﹣1=﹣2,则二项式(x2﹣)6=(x2+)6展开始的通项公式为T r+1=•2r•x12﹣3r,令12﹣3r=0,求得r=4,可得二项式(x2﹣)6展开式中的常数项是•24=240,故答案为:240.【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题.15.【答案】①②④.【解析】解:①连结BD,B′D′,则由正方体的性质可知,EF⊥平面BDD′B′,所以平面MENF⊥平面BDD′B′,所以①正确.②连结MN,因为EF⊥平面BDD′B′,所以EF⊥MN,四边形MENF的对角线EF是固定的,所以要使面积最小,则只需MN的长度最小即可,此时当M为棱的中点时,即x=时,此时MN长度最小,对应四边形MENF的面积最小.所以②正确.③因为EF⊥MN,所以四边形MENF是菱形.当x∈[0,]时,EM的长度由大变小.当x∈[,1]时,EM的长度由小变大.所以函数L=f(x)不单调.所以③错误.④连结C′E,C′M,C′N,则四棱锥则分割为两个小三棱锥,它们以C′EF为底,以M,N分别为顶点的两个小棱锥.因为三角形C′EF的面积是个常数.M,N到平面C'EF的距离是个常数,所以四棱锥C'﹣MENF的体积V=h(x)为常函数,所以④正确.故答案为:①②④.【点评】本题考查空间立体几何中的面面垂直关系以及空间几何体的体积公式,本题巧妙的把立体几何问题和函数进行的有机的结合,综合性较强,设计巧妙,对学生的解题能力要求较高.16.【答案】[1,)+∞【解析】解析:不等式,1,x y ax y+≥⎧⎨-≤-⎩表示的平面区域如图所示,由z ax y=-得y ax z=-,当01a≤<时,平移直线1l 可知,z 既没有最大值,也没有最小值;当1a ≥时,平移直线2l 可知,在点A 处z 取得最小值;当10a -<<时,平移直线3l 可知,z 既没有最大值,也没有最小值;当1a ≤-时,平移直线4l 可知,在点A 处取得最大值,综上所述,1a ≥.17.【答案】 .【解析】解:由条件可知=(3+5+10+14)=8, =(2+3+7+12)=6, 代入回归方程,可得a=﹣,所以=x ﹣,当x=8时,y=,估计他的年推销金额为万元. 故答案为:.【点评】本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题.18.【答案】2【解析】【知识点】余弦定理同角三角函数的基本关系式【试题解析】因为所以又因为解得:再由余弦定理得:故答案为:2三、解答题19.【答案】【解析】解:根据题意画出图形,如图所示:当圆心C 1在第一象限时,过C 1作C 1D 垂直于x 轴,C 1B 垂直于y 轴,连接AC 1,由C 1在直线y=x 上,得到C 1B=C 1D ,则四边形OBC 1D 为正方形, ∵与y 轴截取的弦OA=4,∴OB=C 1D=OD=C 1B=2,即圆心C 1(2,2),在直角三角形ABC1中,根据勾股定理得:AC 1=2,则圆C 1方程为:(x ﹣2)2+(y ﹣2)2=8;当圆心C 2在第三象限时,过C 2作C 2D 垂直于x 轴,C 2B 垂直于y 轴,连接AC 2,由C 2在直线y=x 上,得到C 2B=C 2D ,则四边形OB ′C 2D ′为正方形,∵与y 轴截取的弦OA ′=4,∴OB ′=C 2D ′, =OD ′=C 2B ′=2,即圆心C 2(﹣2,﹣2), 在直角三角形A ′B ′C2中,根据勾股定理得:A ′C 2=2, 则圆C 1方程为:(x+2)2+(y+2)2=8,∴圆C 的方程为:(x ﹣2)2+(y ﹣2)2=8或(x+2)2+(y+2)2=8.【点评】本题考查了角平分线定理,垂径定理,正方形的性质及直角三角形的性质,做题时注意分两种情况,利用数形结合的思想,分别求出圆心坐标和半径,写出所有满足题意的圆的标准方程,是中档题.20.【答案】(1){}210A B x =<<U ,(){}2310R C A B x x x =<<≤<I 或7;(2)1a ≤-或922a ≤≤。

河南省鲁山县第一高级中学2019-2020学年高二上学期9月月考数学(理)试卷

河南省鲁山县第一高级中学2019-2020学年高二上学期9月月考数学(理)试卷

2019—2020学年高一上学期9月月考试题理科数学一、选择题1.如果命题“p 且q”是假命题,“非p”是真命题,那么( ) A .命题p 一定是真命题 B .命题q 一定是真命题 C .命题q 可以是真命题也可以是假命题 D .命题q 一定是假命题 2.若m 是2和8的等比中项,则圆锥曲线的离心率是( )A.B.C.或D.3.抛物线顶点在原点,焦点在y 轴上,其上一点P(m ,1)到焦点距离为5,则抛物线方程为( )A .y x 82= B .y x 82-= C .y x 162=D .y x 162-=4.椭圆12222=+b y a x (a >b>0)离心率为23,则双曲线12222=-by a x 的离心率为 ( )A .45B .25 C .32D .455.命题“x R ∀∈,2240x x -+≤”的否定为( )A .x R ∀∈,2240x x -+≥ B .x R ∀∈,2244x x -+≤ C .x R ∃∈,2240x x -+> D .x R ∃∉,2240x x -+>6.椭圆131222=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1中点在y 轴上,那么|PF 1|是|PF 2|的 ( )A .7倍B .5倍C .4倍D .3倍7.下列有关命题的说法正确的是 ( ) A. 命题“若,则”的否命题为:“若,则”B. “若,则,互为相反数”的逆命题为真命题C. 命题“,使得”的否定是:“,均有”D. 命题“若,则”的逆否命题为真命题8.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( ) A .3B .11C .22D .109.与双曲线2214y x -=有共同的渐近线,且过点(2,2)的双曲线方程为( ) A .22128x y -= B .221312x y -= C .221312y x -= D .22128y x -= 10.如图,已知点()Q 及抛物线24x y =上的动点(),x y P ,则Q y +P 的最小值是( )A .2B .3C .4 D.11. 如图,过抛物线)(022>=p px y 的焦点F 的直线l 交抛物线于点A .B ,交其准线于点C ,若BF BC 2=,且3=AF ,则此抛物线的方程为 ( ) A .x y 232=B .x y 32=C .x y 292=D .x y 92=12.已知点,,P A B 在双曲线12222=-by a x 上,直线AB 过坐标原点,且直线PA 、PB 的斜率之积为31,则双曲线的离心率为( ) A.332 B.315C.2D.210 二、填空题13.若动圆M 与圆C 1:(x +4)2+y 2=2外切,且与圆C 2:(x -4)2+y 2=2内切,则动圆圆心M 的轨迹方程________. 14.“||2b <是“直线y b =+与圆2240x y y +-=相交”的______________条件.15.直线32y x =与椭圆22221(0)+=>>x y a b a b 相交于A 、B 两点,过点A 作x 轴的垂线,垂足恰好是椭圆的一个焦点,则椭圆的离心率是 .16.AB 是抛物线y =x 2的一条弦,若AB 的中点到x 轴的距离为1,则弦AB 的长度的最大值为 . 三、解答题17.设命题:p 函数()xa x f ⎪⎭⎫ ⎝⎛-=23是R 上的减函数,命题:q 函数()342+-=x x x g ,[]a x ,0∈的值域为[]3,1-,若“p 且q ”为假命题,“p 或q ”为真命题,求实数a 的取值范围.18.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a =(1)若b,c 是方程210x +=的两根,求△ABC 的面积;(2)若△ABC 是锐角三角形,且B =2A ,求b 的取值范围19.已知各项不为零的数列{}n a 的前n 项和为n S ,且满足()11n n S a a =-. (1)求数列{}n a 的通项公式;(2)设数列{}n b 满足2log n n n a b a =,求数列{}n b 的前n 项和n T .20. 已知椭圆E 的两个焦点分别为(1,0)-和(1,0),离心率e =. (1)求椭圆E 的方程;(2)若直线:l y kx m =+(0k ≠)与椭圆E 交于不同的两点A 、B ,且线段AB 的垂直平分线过定点1(,0)2P ,求实数k 的取值范围.21.已知抛物线()2:20C y px p =>上的一点M 的横坐标为3,焦点为F ,且4MF =,直线:24l y x =-与抛物线C 交于,A B 两点. (1)求抛物线C 的方程;(2)若P 是x 轴上一点,且△PAB 的面积等于9,求点P 的坐标.22. 已知椭圆M 的中心为坐标原点,且焦点在x 轴上,若M 的一个顶点恰好是抛物线28y x=的焦点,M 的离心率12e =,过M 的右焦点F 作不与坐标轴垂直的直线l ,交M 于A ,B 两点。

鲁山县实验中学2018-2019学年上学期高二数学12月月考试题含解析

鲁山县实验中学2018-2019学年上学期高二数学12月月考试题含解析

鲁山县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 双曲线:的渐近线方程和离心率分别是( )A .B .C .D .2. 已知集合A={x|1≤x ≤3},B={x|0<x <a},若A ⊆B ,则实数a 的范围是( )A .[3,+∞)B .(3,+∞)C .[﹣∞,3]D .[﹣∞,3)3. 一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是( )A .4πB .12πC .16πD .48π 4. 向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系式如图所示,那么水瓶的形状是( )A .B .C .D .5. 若动点A ,B 分别在直线l 1:x+y ﹣7=0和l 2:x+y ﹣5=0上移动,则AB 的中点M 到原点的距离的最小值为( )A .3B .2C .3D .46. 已知直线l 1 经过A (﹣3,4),B (﹣8,﹣1)两点,直线l 2的倾斜角为135°,那么l 1与l 2( ) A .垂直 B .平行 C .重合 D .相交但不垂直7. 已知函数f (x )=1+x ﹣+﹣+…+,则下列结论正确的是( )A .f (x )在(0,1)上恰有一个零点B .f (x )在(﹣1,0)上恰有一个零点C .f (x )在(0,1)上恰有两个零点D .f (x )在(﹣1,0)上恰有两个零点8. 如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为( )A .54B .162C .54+18D .162+189. 如图,长方形ABCD 中,AB=2,BC=1,半圆的直径为AB .在长方形ABCD 内随机取一点,则该点取自阴影部分的概率是( )A .B .1﹣C .D .1﹣10.高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )A .34种B .35种C .120种D .140种11.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则点P 轨迹方程为( )A .86210x y --=B .86210x y +-=C .68210x y +-=D .68210x y --=【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.12.已知直线x+ay ﹣1=0是圆C :x 2+y 2﹣4x ﹣2y+1=0的对称轴,过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( )A .2B .6C .4D .2二、填空题13.若命题“∀x ∈R ,|x ﹣2|>kx+1”为真,则k 的取值范围是 . 14.执行如图所示的程序框图,输出的所有值之和是 .【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.15.(﹣2)7的展开式中,x 2的系数是 .16.在极坐标系中,点(2,)到直线ρ(cos θ+sin θ)=6的距离为 .17.当0,1x ∈()时,函数()e 1x f x =-的图象不在函数2()g x x ax =-的下方,则实数a 的取值范围是___________.【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力.18.设函数32()(1)f x x a x ax =+++有两个不同的极值点1x ,2x ,且对不等式12()()0f x f x +≤ 恒成立,则实数的取值范围是 .三、解答题19.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()2ln R f x x ax x a =-+-∈.(1)若函数()f x 是单调递减函数,求实数a 的取值范围;(2)若函数()f x 在区间()0,3上既有极大值又有极小值,求实数a 的取值范围.20.已知函数f (x )=x 3﹣x 2+cx+d 有极值.(Ⅰ)求c 的取值范围;(Ⅱ)若f (x )在x=2处取得极值,且当x <0时,f (x )<d 2+2d 恒成立,求d 的取值范围.21.已知等差数列{a n }中,a 1=1,且a 2+2,a 3,a 4﹣2成等比数列. (1)求数列{a n }的通项公式;(2)若b n =,求数列{b n }的前n 项和S n .22.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数()2ln f x ax x =+,()21145ln 639f x x x x =++,()22122f x x ax =+,a R ∈ (1)求证:函数()f x 在点()(),e f e 处的切线恒过定点,并求出定点的坐标;(2)若()()2f x f x <在区间()1,+∞上恒成立,求a 的取值范围; (3)当23a =时,求证:在区间()0,+∞上,满足()()()12f x g x f x <<恒成立的函数()g x 有无穷多个.(记ln5 1.61,6 1.79ln ==)23.已知曲线C 1:ρ=1,曲线C 2:(t 为参数)(1)求C 1与C 2交点的坐标;(2)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线C 1′与C 2′,写出C 1′与C 2′的参数方程,C 1与C 2公共点的个数和C 1′与C 2′公共点的个数是否相同,说明你的理由.2015-2016学年安徽省合肥168中学高三(上)10月月考数学试卷(理科)24.已知f (x )是定义在R 上的奇函数,当x <0时,f (x )=()x . (1)求当x >0时f (x )的解析式; (2)画出函数f (x )在R 上的图象; (3)写出它的单调区间.鲁山县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:双曲线:的a=1,b=2,c==∴双曲线的渐近线方程为y=±x=±2x;离心率e==故选D2.【答案】B【解析】解:∵集合A={x|1≤x≤3},B={x|0<x<a},若A⊆B,则a>3,故选:B.【点评】本题考查了集合的包含关系,考查不等式问题,是一道基础题.3.【答案】B【解析】解:由三视图可知几何体是底面半径为2的圆柱,∴几何体的侧面积为2π×2×h=12π,解得h=3,∴几何体的体积V=π×22×3=12π.故选B.【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题.4.【答案】A【解析】解:考虑当向高为H的水瓶中注水为高为H一半时,注水量V与水深h的函数关系.如图所示,此时注水量V与容器容积关系是:V<水瓶的容积的一半.对照选项知,只有A符合此要求.故选A.【点评】本小题主要考查函数、函数的图象、几何体的体积的概念等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.5.【答案】A【解析】解:∵l1:x+y﹣7=0和l2:x+y﹣5=0是平行直线,∴可判断:过原点且与直线垂直时,中的M到原点的距离的最小值∵直线l1:x+y﹣7=0和l2:x+y﹣5=0,∴两直线的距离为=,∴AB的中点M到原点的距离的最小值为+=3,故选:A【点评】本题考查了两点距离公式,直线的方程,属于中档题.6.【答案】A【解析】解:由题意可得直线l1的斜率k1==1,又∵直线l2的倾斜角为135°,∴其斜率k2=tan135°=﹣1,显然满足k1•k2=﹣1,∴l1与l2垂直故选A7.【答案】B【解析】解:∵f′(x)=1﹣x+x2﹣x3+…+x2014=(1﹣x)(1+x2+…+x2012)+x2014;∴f′(x)>0在(﹣1,0)上恒成立;故f(x)在(﹣1,0)上是增函数;又∵f(0)=1,f(﹣1)=1﹣1﹣﹣﹣…﹣<0;故f (x )在(﹣1,0)上恰有一个零点;故选B .【点评】本题考查了导数的综合应用及函数零点的个数的判断,属于中档题.8. 【答案】D【解析】解:由已知中的三视图可得:该几何体是一个正方体截去一个三棱锥得到的组合体, 其表面有三个边长为6的正方形,三个直角边长为6的等腰直角三角形,和一个边长为6的等边三角形组成,故表面积S=3×6×6+3××6×6+×=162+18,故选:D9. 【答案】B【解析】解:由题意,长方形的面积为2×1=2,半圆面积为,所以阴影部分的面积为2﹣,由几何概型公式可得该点取自阴影部分的概率是;故选:B .【点评】本题考查了几何概型公式的运用,关键是明确几何测度,利用面积比求之.10.【答案】A【解析】解:从7个人中选4人共种选法,只有男生的选法有种,所以既有男生又有女生的选法有﹣=34种. 故选:A .【点评】本题考查了排列组合题,间接法是常用的一种方法,属于基础题11.【答案】D【解析】由切线性质知PQ CQ ⊥,所以222PQ PC QC =-,则由PQ PO =,得,2222(3)(4)4x y x y -++-=+,化简得68210x y --=,即点P 的轨迹方程,故选D ,12.【答案】B【解析】解:∵圆C :x 2+y 2﹣4x ﹣2y+1=0,即(x ﹣2)2+(y ﹣1)2=4,表示以C (2,1)为圆心、半径等于2的圆.由题意可得,直线l :x+ay ﹣1=0经过圆C 的圆心(2,1), 故有2+a ﹣1=0,∴a=﹣1,点A (﹣4,﹣1).∵AC==2,CB=R=2,∴切线的长|AB|===6.故选:B .【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题.二、填空题13.【答案】 [﹣1,﹣) .【解析】解:作出y=|x ﹣2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k ∈[﹣1,﹣).故答案为:[﹣1,﹣).【点评】本题考查全称命题,考查数形结合的数学思想,比较基础.14.【答案】54【解析】根据程序框图可知循环体共运行了9次,输出的x 是1,3,5,7,9,11,13,15, 17中不是3的倍数的数,所以所有输出值的和54171311751=+++++. 15.【答案】﹣280解:∵(﹣2)7的展开式的通项为=.由,得r=3.∴x 2的系数是.故答案为:﹣280.16.【答案】 1 .【解析】解:点P (2,)化为P. 直线ρ(cos θ+sin θ)=6化为.∴点P 到直线的距离d==1.故答案为:1.【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.17.【答案】[2e,)-+∞【解析】由题意,知当0,1x ∈()时,不等式2e 1xx ax -≥-,即21e x x a x +-≥恒成立.令()21e xx h x x+-=,()()()211e 'x x x h x x-+-=.令()1e x k x x =+-,()'1e x k x =-.∵()0,1x ∈,∴()'1e 0,xk x =-<∴()k x 在()0,1x ∈为递减,∴()()00k x k <=,∴()()()211e '0x x x h x x -+-=>,∴()h x 在()0,1x ∈为递增,∴()()12e h x h <=-,则2e a ≥-.18.【答案】1(,1],22⎡⎤-∞-⎢⎥⎣⎦【解析】试题分析:因为12()()0f x f x +≤,故得不等式()()()332212121210x x a x x a x x ++++++≤,即()()()()()221212121212123120x x x x x x a x x x x a x x ⎡⎤⎡⎤++-+++-++≤⎣⎦⎣⎦,由于()()2'321f x x a x a =+++,令()'0f x =得方程()23210x a x a +++=,因()2410a a ∆=-+> , 故()12122133x x a a x x ⎧+=-+⎪⎪⎨⎪=⎪⎩,代入前面不等式,并化简得()1a +()22520a a -+≥,解不等式得1a ≤-或122a ≤≤,因此, 当1a ≤-或122a ≤≤时, 不等式()()120f x f x +≤成立,故答案为1(,1],22⎡⎤-∞-⎢⎥⎣⎦.考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.【思路点晴】本题主要考查利用导数研究函数的极值点、韦达定理及高次不等式的解法,属于难题.要解答本题首先利用求导法则求出函数()f x 的到函数,令()'0f x =考虑判别式大于零,根据韦达定理求出1212,x x x x +的值,代入不等式12()()0f x f x +≤,得到关于的高次不等式,再利用“穿针引线”即可求得实数的取值范围.111]三、解答题19.【答案】(1)a ≤2)193a <<. 【解析】试题分析:(1)原问题等价于()0f x '≤对()0,+∞恒成立,即12a x x≤+对()0,+∞恒成立,结合均值不等式的结论可得a ≤(2)由题意可知()2210x ax f x x-+-'==在()0,3上有两个相异实根,结合二次函数根的分布可得实数a 的取值范围是193a <<.试题解析:(2)∵函数()f x 在()0,3上既有极大值又有极小值,∴()2210x ax f x x-+-'==在()0,3上有两个相异实根, 即2210x ax -+=在()0,3上有两个相异实根,记()221g x x ax =-+,则()()003{ 40030ag g ∆><<>>,得{012 193a a a a -<<<,即193a <<.20.【答案】【解析】解(Ⅰ)∵f(x)=x3﹣x2+cx+d,∴f′(x)=x2﹣x+c,要使f(x)有极值,则方程f′(x)=x2﹣x+c=0有两个实数解,从而△=1﹣4c>0,∴c<.(Ⅱ)∵f(x)在x=2处取得极值,∴f′(2)=4﹣2+c=0,∴c=﹣2.∴f(x)=x3﹣x2﹣2x+d,∵f′(x)=x2﹣x﹣2=(x﹣2)(x+1),∴当x∈(﹣∞,﹣1]时,f′(x)>0,函数单调递增,当x∈(﹣1,2]时,f′(x)<0,函数单调递减.∴x<0时,f(x)在x=﹣1处取得最大值,∵x<0时,f(x)<恒成立,∴<,即(d+7)(d﹣1)>0,∴d<﹣7或d>1,即d的取值范围是(﹣∞,﹣7)∪(1,+∞).【点评】本题考查的知识点是函数在某点取得极值的条件,导数在最大值,最小值问题中的应用,其中根据已知中函数的解析式,求出函数的导函数的解析式,是解答本题的关键.21.【答案】【解析】解:(1)由a2+2,a3,a4﹣2成等比数列,∴=(a2+2)(a4﹣2),(1+2d)2=(3+d)(﹣1+3d),d2﹣4d+4=0,解得:d=2,∴a n=1+2(n﹣1)=2n﹣1,数列{a n}的通项公式a n=2n﹣1;(2)b n===(﹣),S n=[(1﹣)+(﹣)+…+(﹣)],=(1﹣),=,数列{b n }的前n 项和S n ,S n =.22.【答案】(1)切线恒过定点1,22e ⎛⎫⎪⎝⎭.(2) a 的范围是11,22⎡⎤-⎢⎥⎣⎦ (3) 在区间()1,+∞上,满足()()()12f x g x f x <<恒成立函数()g x 有无穷多个【解析】试题分析:(1)根据导数的几何意义求得切线方程为11222e y ae x e ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭,故过定点1,22e ⎛⎫ ⎪⎝⎭;试题解析:(1)因为()12f x ax x '=+,所以()f x 在点()(),e f e 处的切线的斜率为12k ae e=+, 所以()f x 在点()(),e f e 处的切线方程为()2121y ae x e ae e ⎛⎫=+-++ ⎪⎝⎭,整理得11222e y ae x e ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭,所以切线恒过定点1,22e ⎛⎫⎪⎝⎭.(2)令()()()2p x f x f x =-=212ln 02a x ax x ⎛⎫--+< ⎪⎝⎭,对()1,x ∈+∞恒成立,因为()()1212p x a x a x =--+'()22121a x ax x --+=()()()1211*x a x x⎡⎤---⎣⎦= 令()0p x '=,得极值点11x =,2121x a =-,①当112a <<时,有211x x >=,即112a <<时,在()2,x +∞上有()0p x '>,此时()p x 在区间()2,x +∞上是增函数,并且在该区间上有()()()2,p x p x ∈+∞,不合题意;②当1a ≥时,有211x x <=,同理可知,()p x 在区间()1,+∞上,有()()()1,p x p ∈+∞,也不合题意; ③当12a ≤时,有210a -≤,此时在区间()1,+∞上恒有()0p x '<, 从而()p x 在区间()1,+∞上是减函数;要使()0p x <在此区间上恒成立,只须满足()111022p a a =--≤⇒≥-, 所以1122a -≤≤.综上可知a 的范围是11,22⎡⎤-⎢⎥⎣⎦. (利用参数分离得正确答案扣2分)(3)当23a =时,()21145ln 639f x x x x =++,()221423f x x x =+ 记()()22115ln 39y f x f x x x =-=-,()1,x ∈+∞.因为22565399x x y x x='-=-,令0y '=,得x =所以()()21y f x f x =-在⎛ ⎝为减函数,在⎫+∞⎪⎪⎭上为增函数,所以当x =时,min 59180y =设()()()15901180R x f x λλ=+<<,则()()()12f x R x f x <<, 所以在区间()1,+∞上,满足()()()12f x g x f x <<恒成立函数()g x 有无穷多个23.【答案】【解析】解:(1)∵曲线C 1:ρ=1,∴C 1的直角坐标方程为x 2+y 2=1,∴C 1是以原点为圆心,以1为半径的圆,∵曲线C 2:(t 为参数),∴C 2的普通方程为x ﹣y+=0,是直线,联立,解得x=﹣,y=.∴C 2与C 1只有一个公共点:(﹣,).(2)压缩后的参数方程分别为:(θ为参数):(t 为参数),化为普通方程为::x 2+4y 2=1,:y=,联立消元得,其判别式,∴压缩后的直线与椭圆仍然只有一个公共点,和C1与C2公共点个数相同.【点评】本题考查两曲线的交点坐标的求法,考查压缩后的直线与椭圆的公共点个数的判断,是基础题,解题时要认真审题,注意一元二次方程的根的判别式的合理运用.24.【答案】【解析】解:(1)若x>0,则﹣x<0…(1分)∵当x<0时,f(x)=()x.∴f(﹣x)=()﹣x.∵f(x)是定义在R上的奇函数,f(﹣x)=﹣f(x),∴f(x)=﹣()﹣x=﹣2x.…(4分)(2)∵(x)是定义在R上的奇函数,∴当x=0时,f(x)=0,∴f(x)=.…(7分)函数图象如下图所示:(3)由(2)中图象可得:f(x)的减区间为(﹣∞,+∞)…(11分)(用R表示扣1分)无增区间…(12分)【点评】本题考查的知识点是函数的奇偶性,函数的解析式,函数的图象,分段函数的应用,函数的单调性,难度中档.。

河南省鲁山县高二数学上学期第一次月考试题 文

河南省鲁山县高二数学上学期第一次月考试题 文

高二年级上学期第一次月考试题(文科数学)第I 卷(选择题 共60分)一、选择题(本大题共有12个小题,每小题5分) 1.不等式111x ≥--的解集为( ) A. (](),01,-∞⋃+∞ B. [)0,+∞ C. [)()0,11,⋃+∞ D. ()[),01,-∞⋃+∞ 2.已知命题()000:0,,ln 1p x x x ∃∈+∞=- ,则命题p 的真假及p ⌝依次为( ) A. 真; ()0000,,ln 1x x x ∃∈+∞≠- B. 真; ()0,,ln 1x x x ∀∈+∞≠- C. 假; ()0,,ln 1x x x ∀∈+∞≠- D. 假; ()0000,,ln 1x x x ∃∈+∞≠-3.各项为正的等比数列{}n a 中,4a 与14a的等比中项为则27211log log a a +的值为( )A .4B .3C .2D .14.方程22142x y m m+=+-表示椭圆的必要不充分条件是( ) A. m ∈(﹣1,2) B. m ∈(﹣4,2) C. m ∈(﹣4,﹣1)∪(﹣1,2) D. m ∈(﹣1,+∞)5.实数,x y 满足1030270x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩,则2z x y =-的最小值是( )A .-3B .-4C .6D .-66.已知圆O :422=+y x ,从这个圆上任意一点P 向y 轴作垂线段1PP (1P 在y 轴上),M 在直线1PP 上且P P 112=,则动点M 的轨迹方程是( )A.4x 2+16y 2=1 B.16x 2+4y 2=1 C.42x +16y =1 D.162x +42y =17.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15,与灯塔S 相距20nmile ,随后货轮按北偏西30的方向航行30min 后,又测得灯塔在货轮的东北方向,则货轮的速度为( )A. 20mi /n le hB. 20mi /n le hC. 20mi /n le hD. 20mi /n le h 8.已知ABC ∆是锐角三角形,若B A 2=,则ba的取值范围是( ) A. )3,2( B. )2,2( C. )3,1( D. )2,1( 9.设直线())*1nx n y n N ++=∈与两坐标轴围成的三角形面积为n a ,则122017a a a +++=( )A.20172018 B. 20162017 C. 20152016 D. 2017201610.已知函数f (x )=|lgx|.若0<a<b,且f (a )=f (b ),则a+2b 的取值范围是( )A. ()+∞B. )⎡+∞⎣C. ()3,+∞D. [)3,+∞11.已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得nna b 为整数的正整数n 的个数是( ) A .2 B .3 C .4 D .512.设f (x )是定义在R 上的增函数,且对任意x ,都有f (﹣x )+f (x )=0恒成立,如果实数m ,n 满足不等式f (m 2﹣6m+21)+f (n 2﹣8n )<0,那么m 2+n 2的取值范围是( ) A .(9,49) B .(13,49) C .(9,25) D .(3,7)第Ⅱ卷(非选择题 共90分)二.填空题(本大题共有4个小题,每小题5分,共20分) 13.已知焦点在y 轴上的椭圆1422=+y mx 的离心率为22,则实数m 等于__________. 14.已知x >0, y >0,且21+=1x y,若2x+2y>m +2m 恒成立,则实数m 的取值范围是__________.15.关于x221x cos x k +=+在02π⎡⎤⎢⎥⎣⎦,内有两个不相等的实数根,则k 的取值范围是______.16.对于数列{}n a ,定义11222n nn a a a H n-+++=为{}n a 的“优值”,现在已知某数列{}n a 的“优值”12n n H +=,记数列{}n a kn -的前n 项和为n S ,若5n S S ≤对任意的n 恒成立,则实数k 的最大值为_____.三、解答题(本大题共6题,共70分.解答时应写出文字说明、证明过程或演算步骤.) 17.(本小题10分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且()cos 2cos b C a c B =-. (1)求角B 的大小;(2)若不等式210x -+<的解集是{|}x a x c <<,求ABC ∆的周长.18.(本小题12分)已知命题p :方程17622=+--m y m x 表示椭圆,命题q :0122,2≤-++∈∃m mx mx R x ,. (1)若命题p 为真,求实数m 的取值范围;(2)若q p ∨为真,q ⌝为真,求实数m 的取值范围.19.(本小题12分)在ABC ∆中,点D 为BC 边上一点,且1,BD E =为AC 的中点,32,cos ,ADB 273AE B π==∠=. (1)求sin BAD ∠;(2)求AD 及DC 的长.20.(本小题12分)已知函数()222sin cos 122cos sin 22x x f x x x ⎛⎫+- ⎪⎝⎭=-,函数()y f x =在()0,+∞上的零点按从小到大的顺序构成数列{}()N x n a n ∈. (1)求数列{}n a 的通项公式;(2)设()()234132nn a b nn π=--,求数列{}n b 的前n 项和n S .21.(本小题12分)某货轮匀速行驶在相距300海里的甲、乙两地间运输货物,运输成本由燃料费用和其他费用组成.已知该货轮每小时的燃料费用与其航行速度的平方成正比(比例系数为0.5),其他费用为每小时800元,且该货轮的最大航行速度为50海里/小时.(1)请将从甲地到乙地的运输成本y (元)表示为航行速度x (海里/小时)的函数; (2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?22.(本小题12分)已知正项数列{}n a 的前n 项和为n S ,数列{}n a 满足,2(1)n n n S a a =+. (1)求数列{}n a 的通项公式;(2)设数列21{}(2)n a +的前n 项和为n A ,求证:对任意正整数n ,都有12nA <成立; (3)数列{}n b 满足1()2n n n b a =,它的前n 项和为n T ,若存在正整数n ,使得不等式11(2)22n n n n nT λ---<+-成立,求实数λ的取值范围.鲁山一高高二年级上学期第一次月考试题(文科数学)命题人:李浩 审题人:孟繁星 2017.9.23第I 卷(选择题 共60分)二、选择题(本大题共有12个小题,每小题5分) 1.不等式111x ≥--的解集为( ) A. (](),01,-∞⋃+∞ B. [)0,+∞ C. [)()0,11,⋃+∞ D. ()[),01,-∞⋃+∞ 2.已知命题()000:0,,ln 1p x x x ∃∈+∞=- ,则命题p 的真假及p ⌝依次为( ) A. 真; ()0000,,ln 1x x x ∃∈+∞≠- B. 真; ()0,,ln 1x x x ∀∈+∞≠- C. 假; ()0,,ln 1x x x ∀∈+∞≠- D. 假; ()0000,,ln 1x x x ∃∈+∞≠-3.各项为正的等比数列{}n a 中,4a 与14a的等比中项为则27211log log a a +的值为( )A .4B .3C .2D .14.方程22142x y m m+=+-表示椭圆的必要不充分条件是( ) A. m ∈(﹣1,2) B. m ∈(﹣4,2) C. m ∈(﹣4,﹣1)∪(﹣1,2) D. m ∈(﹣1,+∞)5.实数,x y 满足1030270x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩,则2z x y =-的最小值是( )A .-3B .-4C .6D .-66.已知圆O :422=+y x ,从这个圆上任意一点P 向y 轴作垂线段1PP (1P 在y 轴上),M 在直线1PP 上且P P 112=,则动点M 的轨迹方程是( )A.4x 2+16y 2=1 B.16x 2+4y 2=1 C.42x +16y =1 D.162x +42y =17.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15,与灯塔S 相距20nmile ,随后货轮按北偏西30的方向航行30min 后,又测得灯塔在货轮的东北方向,则货轮的速度为( )A. 20mi /n le hB. 20mi /n le hC. 20mi /n le hD. 20mi /n le h 8.已知ABC ∆是锐角三角形,若B A 2=,则ba的取值范围是( ) A. )3,2( B. )2,2( C. )3,1( D. )2,1( 9.设直线())*1nx n y n N ++=∈与两坐标轴围成的三角形面积为n a ,则122017a a a +++=( )A.20172018 B. 20162017 C. 20152016 D. 2017201610.已知函数f (x )=|lgx|.若0<a<b,且f (a )=f (b ),则a+2b 的取值范围是( )A. ()+∞B. )⎡+∞⎣C. ()3,+∞D. [)3,+∞11.已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得nna b 为整数的正整数n 的个数是( ) A .2 B .3 C .4 D .512.设f (x )是定义在R 上的增函数,且对任意x ,都有f (﹣x )+f (x )=0恒成立,如果实数m ,n 满足不等式f (m 2﹣6m+21)+f (n 2﹣8n )<0,那么m 2+n 2的取值范围是( ) A .(9,49) B .(13,49) C .(9,25) D .(3,7)第Ⅱ卷(非选择题 共90分)二.填空题(本大题共有4个小题,每小题5分,共20分) 13.已知焦点在y 轴上的椭圆1422=+y mx 的离心率为22,则实数m 等于__________. 14.已知x >0, y >0,且21+=1x y,若2x+2y>m +2m 恒成立,则实数m 的取值范围是__________.15.关于x221x cos x k +=+在02π⎡⎤⎢⎥⎣⎦,内有两个不相等的实数根,则k 的取值范围是______.16.对于数列{}n a ,定义11222n nn a a a H n-+++=为{}n a 的“优值”,现在已知某数列{}n a 的“优值”12n n H +=,记数列{}n a kn -的前n 项和为n S ,若5n S S ≤对任意的n 恒成立,则实数k 的最大值为_____.三、解答题(本大题共6题,共70分.解答时应写出文字说明、证明过程或演算步骤.) 17.(本小题10分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且()cos 2cos b C a c B =-. (1)求角B 的大小;(2)若不等式210x -+<的解集是{|}x a x c <<,求ABC ∆的周长.20.(本小题12分)已知命题p :方程17622=+--m y m x 表示椭圆,命题q :0122,2≤-++∈∃m mx mx R x ,. (1)若命题p 为真,求实数m 的取值范围;(2)若q p ∨为真,q ⌝为真,求实数m 的取值范围.21.(本小题12分)在ABC ∆中,点D 为BC 边上一点,且1,BD E =为AC 的中点,32,cos ,ADB 273AE B π==∠=. (1)求sin BAD ∠;(2)求AD 及DC 的长.22.(本小题12分)已知函数()222sin cos 122cos sin 22x x f x x x ⎛⎫+- ⎪⎝⎭=-,函数()y f x =在()0,+∞上的零点按从小到大的顺序构成数列{}()N x n a n ∈. (1)求数列{}n a 的通项公式;(2)设()()234132nn a b nn π=--,求数列{}n b 的前n 项和n S .23.(本小题12分)某货轮匀速行驶在相距300海里的甲、乙两地间运输货物,运输成本由燃料费用和其他费用组成.已知该货轮每小时的燃料费用与其航行速度的平方成正比(比例系数为0.5),其他费用为每小时800元,且该货轮的最大航行速度为50海里/小时.(1)请将从甲地到乙地的运输成本y (元)表示为航行速度x (海里/小时)的函数; (2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?22.(本小题12分)已知正项数列{}n a 的前n 项和为n S ,数列{}n a 满足,2(1)n n n S a a =+. (1)求数列{}n a 的通项公式;(2)设数列21{}(2)n a +的前n 项和为n A ,求证:对任意正整数n ,都有12nA <成立; (3)数列{}n b 满足1()2n n n b a =,它的前n 项和为n T ,若存在正整数n ,使得不等式11(2)22n n n n nT λ---<+-成立,求实数λ的取值范围.参考答案1.A2.B3.B4.B5.B6.D7.【答案】B 【解析】由题意153045NMS ∠=︒+︒=︒,4560105SNM ∠=︒+︒=︒,由正弦定理得sin105sin30MS MN=︒︒,所以20s i n 12s i n 10MN ︒==︒,速度为1020/12nmile h =,故选B . 8.【答案】A 由题意得,在ABC ∆中,由正弦定理可得sin sin a Ab B=,又因为B A 2=,所以sin sin 22cos sin sin a A B B b B B ===,又因为锐角三角形,所以2(0,)2A B π=∈且(2)3(0,)2A B B πππ-+=-∈,所以64B ππ<<,所以2cos B ∈,所以ba 的取值范围是)3,2(,故选A .9.【答案】A 【解析】分别令x =0和y =0,得到直线nx +(n +1)yn ∈N ∗)与两坐标轴的交点:(n,0),(0, 1n +),则S n =12⋅n⋅1n +=()11n n +=1n −11n +然后分别代入1,2,…,2017,则有S 1+S 2+S 3+…+S 2017=1−12+12−13+13−14+…+12017−12018=1−12018=20172018.故答案为: 20172018. 10.【答案】C 试题分析:()()0,a b f a f b <<=, 01,a b ∴<<<所以()()l g ,l g b f a a l g a f b l g b ==-==,所以由()()f a f b =得lg lg a b -=,即()l g l g l g 0a b a b +==,所以1ab =, 1b a =,令()22h a a b a a=+=+,因为函数()h a 在区间()0,1上是减函数,故()()13h a h >=,故选C 。

河南省鲁山县一中2017-2018学年高二第一次月考数学(文)试卷Word版含答案

河南省鲁山县一中2017-2018学年高二第一次月考数学(文)试卷Word版含答案

鲁山一高高二年级上学期第一次月考试题(文科数学)第I 卷(选择题 共60分)一、选择题(本大题共有12个小题,每小题5分) 1.不等式111x ≥--的解集为( ) A. (](),01,-∞⋃+∞ B. [)0,+∞ C. [)()0,11,⋃+∞ D. ()[),01,-∞⋃+∞ 2.已知命题()000:0,,ln 1p x x x ∃∈+∞=- ,则命题p 的真假及p ⌝依次为( ) A. 真; ()0000,,ln 1x x x ∃∈+∞≠- B. 真; ()0,,ln 1x x x ∀∈+∞≠- C. 假; ()0,,ln 1x x x ∀∈+∞≠- D. 假; ()0000,,ln 1x x x ∃∈+∞≠-3.各项为正的等比数列{}n a 中,4a 与14a的等比中项为则27211log log a a +的值为( )A .4B .3C .2D .14.方程22142x y m m+=+-表示椭圆的必要不充分条件是( ) A. m ∈(﹣1,2) B. m ∈(﹣4,2) C. m ∈(﹣4,﹣1)∪(﹣1,2) D. m ∈(﹣1,+∞)5.实数,x y 满足1030270x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩,则2z x y =-的最小值是( )A .-3B .-4C .6D .-66.已知圆O :422=+y x ,从这个圆上任意一点P 向y 轴作垂线段1PP (1P 在y 轴上),M 在直线1PP 上且P P M P 112=,则动点M 的轨迹方程是( )A.4x 2+16y 2=1 B.16x 2+4y 2=1 C.42x +16y =1 D.162x +42y =17.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15,与灯塔S 相距20nmile ,随后货轮按北偏西30的方向航行30min 后,又测得灯塔在货轮的东北方向,则货轮的速度为( )A. 20mi /n le hB. 20mi /n le hC. 20mi /n le hD. 20mi /n le h 8.已知ABC ∆是锐角三角形,若B A 2=,则ba的取值范围是( ) A. )3,2( B. )2,2( C. )3,1( D. )2,1( 9.设直线())*1nx n y n N ++=∈与两坐标轴围成的三角形面积为n a ,则122017a a a +++=( )A.20172018 B. 20162017 C. 20152016 D. 2017201610.已知函数f (x )=|lgx|.若0<a<b,且f (a )=f (b ),则a+2b 的取值范围是( )A. ()+∞B. )⎡+∞⎣C. ()3,+∞D. [)3,+∞11.已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得nna b 为整数的正整数n 的个数是( ) A .2 B .3 C .4 D .512.设f (x )是定义在R 上的增函数,且对任意x ,都有f (﹣x )+f (x )=0恒成立,如果实数m ,n 满足不等式f (m 2﹣6m+21)+f (n 2﹣8n )<0,那么m 2+n 2的取值范围是( ) A .(9,49) B .(13,49) C .(9,25) D .(3,7)第Ⅱ卷(非选择题 共90分)二.填空题(本大题共有4个小题,每小题5分,共20分) 13.已知焦点在y 轴上的椭圆1422=+y mx 的离心率为22,则实数m 等于__________. 14.已知x >0, y >0,且21+=1x y,若2x+2y>m +2m 恒成立,则实数m 的取值范围是__________.15.关于x221x cos x k +=+在02π⎡⎤⎢⎥⎣⎦,内有两个不相等的实数根,则k 的取值范围是______.16.对于数列{}n a ,定义11222n nn a a a H n-+++=为{}n a 的“优值”,现在已知某数列{}n a 的“优值”12n n H +=,记数列{}n a kn -的前n 项和为n S ,若5n S S ≤对任意的n 恒成立,则实数k 的最大值为_____.三、解答题(本大题共6题,共70分.解答时应写出文字说明、证明过程或演算步骤.) 17.(本小题10分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且()cos 2cos b C a c B =-. (1)求角B 的大小;(2)若不等式210x -+<的解集是{|}x a x c <<,求ABC ∆的周长.18.(本小题12分)已知命题p :方程17622=+--m y m x 表示椭圆,命题q :0122,2≤-++∈∃m mx mx R x ,. (1)若命题p 为真,求实数m 的取值范围;(2)若q p ∨为真,q ⌝为真,求实数m 的取值范围.19.(本小题12分)在ABC ∆中,点D 为BC 边上一点,且1,BD E =为AC 的中点,32,cos ,ADB 273AE B π==∠=. (1)求sin BAD ∠;(2)求AD 及DC 的长.20.(本小题12分)已知函数()222sin cos 122cos sin 22x x f x x x ⎛⎫+- ⎪⎝⎭=-,函数()y f x =在()0,+∞上的零点按从小到大的顺序构成数列{}()N x n a n ∈. (1)求数列{}n a 的通项公式;(2)设()()234132nn a b nn π=--,求数列{}n b 的前n 项和n S .21.(本小题12分)某货轮匀速行驶在相距300海里的甲、乙两地间运输货物,运输成本由燃料费用和其他费用组成.已知该货轮每小时的燃料费用与其航行速度的平方成正比(比例系数为0.5),其他费用为每小时800元,且该货轮的最大航行速度为50海里/小时.(1)请将从甲地到乙地的运输成本y (元)表示为航行速度x (海里/小时)的函数; (2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?22.(本小题12分)已知正项数列{}n a 的前n 项和为n S ,数列{}n a 满足,2(1)n n n S a a =+. (1)求数列{}n a 的通项公式;(2)设数列21{}(2)n a +的前n 项和为n A ,求证:对任意正整数n ,都有12nA <成立; (3)数列{}n b 满足1()2n n n b a =,它的前n 项和为n T ,若存在正整数n ,使得不等式11(2)22n n n n nT λ---<+-成立,求实数λ的取值范围.鲁山一高高二年级上学期第一次月考试题(文科数学)命题人:李浩 审题人:孟繁星 2017.9.23第I 卷(选择题 共60分)二、选择题(本大题共有12个小题,每小题5分) 1.不等式111x ≥--的解集为( ) A. (](),01,-∞⋃+∞ B. [)0,+∞ C. [)()0,11,⋃+∞ D. ()[),01,-∞⋃+∞ 2.已知命题()000:0,,ln 1p x x x ∃∈+∞=- ,则命题p 的真假及p ⌝依次为( ) A. 真; ()0000,,ln 1x x x ∃∈+∞≠- B. 真; ()0,,ln 1x x x ∀∈+∞≠- C. 假; ()0,,ln 1x x x ∀∈+∞≠- D. 假; ()0000,,ln 1x x x ∃∈+∞≠-3.各项为正的等比数列{}n a 中,4a 与14a的等比中项为则27211log log a a +的值为( )A .4B .3C .2D .14.方程22142x y m m+=+-表示椭圆的必要不充分条件是( ) A. m ∈(﹣1,2) B. m ∈(﹣4,2) C. m ∈(﹣4,﹣1)∪(﹣1,2) D. m ∈(﹣1,+∞)5.实数,x y 满足1030270x y x y x y -+≥⎧⎪+-≥⎨⎪+-≤⎩,则2z x y =-的最小值是( )A .-3B .-4C .6D .-66.已知圆O :422=+y x ,从这个圆上任意一点P 向y 轴作垂线段1PP (1P 在y 轴上),M 在直线1PP 上且P P 112=,则动点M 的轨迹方程是( )A.4x 2+16y 2=1 B.16x 2+4y 2=1 C.42x +16y =1 D.162x +42y =17.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15,与灯塔S 相距20nmile ,随后货轮按北偏西30的方向航行30min 后,又测得灯塔在货轮的东北方向,则货轮的速度为( )A. 20mi /n le hB. 20mi /n le hC. 20mi /n le hD. 20mi /n le h8.已知ABC ∆是锐角三角形,若B A 2=,则ba的取值范围是( ) A. )3,2( B. )2,2( C. )3,1( D. )2,1( 9.设直线())*1nx n y n N ++=∈与两坐标轴围成的三角形面积为n a ,则122017a a a +++=( )A.20172018 B. 20162017 C. 20152016 D. 2017201610.已知函数f (x )=|lgx|.若0<a<b,且f (a )=f (b ),则a+2b 的取值范围是( )A. ()+∞B. )⎡+∞⎣C. ()3,+∞D. [)3,+∞11.已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得nna b 为整数的正整数n 的个数是( ) A .2 B .3 C .4 D .512.设f (x )是定义在R 上的增函数,且对任意x ,都有f (﹣x )+f (x )=0恒成立,如果实数m ,n 满足不等式f (m 2﹣6m+21)+f (n 2﹣8n )<0,那么m 2+n 2的取值范围是( ) A .(9,49) B .(13,49) C .(9,25) D .(3,7)第Ⅱ卷(非选择题 共90分)二.填空题(本大题共有4个小题,每小题5分,共20分) 13.已知焦点在y 轴上的椭圆1422=+y mx 的离心率为22,则实数m 等于__________. 14.已知x >0, y >0,且21+=1x y,若2x+2y>m +2m 恒成立,则实数m 的取值范围是__________.15.关于x221x cos x k +=+在02π⎡⎤⎢⎥⎣⎦,内有两个不相等的实数根,则k 的取值范围是______.16.对于数列{}n a ,定义11222n nn a a a H n-+++=为{}n a 的“优值”,现在已知某数列{}n a 的“优值”12n n H +=,记数列{}n a kn -的前n 项和为n S ,若5n S S ≤对任意的n 恒成立,则实数k 的最大值为_____.三、解答题(本大题共6题,共70分.解答时应写出文字说明、证明过程或演算步骤.) 17.(本小题10分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且()cos 2cos b C a c B =-. (1)求角B 的大小;(2)若不等式210x -+<的解集是{|}x a x c <<,求ABC ∆的周长.20.(本小题12分)已知命题p :方程17622=+--m y m x 表示椭圆,命题q :0122,2≤-++∈∃m mx mx R x ,. (1)若命题p 为真,求实数m 的取值范围;(2)若q p ∨为真,q ⌝为真,求实数m 的取值范围.21.(本小题12分)在ABC ∆中,点D 为BC 边上一点,且1,BD E =为AC 的中点,32,cos ,ADB 273AE B π==∠=. (1)求sin BAD ∠;(2)求AD 及DC 的长.22.(本小题12分)已知函数()222sin cos 122cos sin 22x x f x x x ⎛⎫+- ⎪⎝⎭=-,函数()y f x =在()0,+∞上的零点按从小到大的顺序构成数列{}()N x n a n ∈. (1)求数列{}n a 的通项公式;(2)设()()234132nn a b nn π=--,求数列{}n b 的前n 项和n S .23.(本小题12分)某货轮匀速行驶在相距300海里的甲、乙两地间运输货物,运输成本由燃料费用和其他费用组成.已知该货轮每小时的燃料费用与其航行速度的平方成正比(比例系数为0.5),其他费用为每小时800元,且该货轮的最大航行速度为50海里/小时.(1)请将从甲地到乙地的运输成本y (元)表示为航行速度x (海里/小时)的函数; (2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?22.(本小题12分)已知正项数列{}n a 的前n 项和为n S ,数列{}n a 满足,2(1)n n n S a a =+. (1)求数列{}n a 的通项公式; (2)设数列21{}(2)n a +的前n 项和为n A ,求证:对任意正整数n ,都有12n A <成立; (3)数列{}n b 满足1()2n n n b a =,它的前n 项和为n T ,若存在正整数n ,使得不等式11(2)22n n n nn T λ---<+-成立,求实数λ的取值范围.参考答案1.A2.B3.B 4.B 5.B 6.D7.【答案】B 【解析】由题意153045NMS ∠=︒+︒=︒,4560105SNM ∠=︒+︒=︒,由正弦定理得sin105sin30MS MN=︒︒,所以20s i n 12s i n 10MN ︒==︒,速度为1020/12nmile h =,故选B . 8.【答案】A 由题意得,在ABC ∆中,由正弦定理可得sin sin a Ab B=,又因为B A 2=,所以sin sin 22cos sin sin a A B B b B B ===,又因为锐角三角形,所以2(0,)2A B π=∈且(2)3(0,)2A B B πππ-+=-∈,所以64B ππ<<,所以2cos B ∈,所以ba 的取值范围是)3,2(,故选A .9.【答案】A 【解析】分别令x =0和y =0,得到直线nx +(n +1)yn ∈N ∗)与两坐标轴的交点:(,0),(0,,则S n =12=()11n n +=1n −11n +然后分别代入1,2,…,2017,则有S 1+S 2+S 3+…+S 2017=1−12+12−13+13−14+…+12017−12018=1−12018=20172018.故答案为:20172018. 10.【答案】C 试题分析:()()0,a b f a f b <<=, 01,a b ∴<<<所以()()l g ,l g b f a a l g a f b l g b ==-==,所以由()()f a f b =得lg lg a b -=,即()l g l g l g 0a b a b +==,所以1ab =, 1b a =,令()22h a a b a a=+=+,因为函数()h a 在区间()0,1上是减函数,故()()13h a h >=,故选C 。

河南省鲁山县第一高级中学2020学年高二数学上学期月考试题(最新整理)

河南省鲁山县第一高级中学2020学年高二数学上学期月考试题(最新整理)

河南省鲁山县第一高级中学2019—2020学年高二数学上学期月考试题一。

选择题:(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.数列11,的一个通项公式是 ( ) A 。

n a =B. n a =。

n a =。

n a = 2。

已知,a b c d >>,则下列不等式恒成立的是( ) A .a c b d +>+ B .a d b c +>+ C .a c b d ->- D .a b c d ->- 3.不等式(2)0x x -<的解集是( )A .(2,)+∞B .(,2)-∞C .(0,2)D .(,0)(2,)-∞+∞ 4.在等比数列中,112a =,12q =,132n a =,则项数n 为 ( ) A. 3B 。

4C 。

5 D. 65.已知0x >,则16y x x=+的最小值为( ) A 。

4 B. 16 C. 8 D 。

10 6.在数列{}n a 中,1a =1,12n n a a +-=,则51a 的值为 ( ) A .99 B .49 C .102 D . 1017.已知等差数列{}n a 中,2a ,7a 是函数2()42f x x x =-+的两个零点,则{}n a 的前8项和等于( )A . 4B . 8C . 16D . 208。

若数列{}n a 的前n 项和为2133n n S a =+,则数列{}n a 的通项公式是n a = ( ) A. 12n - B 。

1(2)n -- C 。

2n D.(2)n - 9.设n S 是等差数列{}n a 的前n 项和,若65911a a =,则119SS = ( )A 。

1B 。

1?- 1 C. 2 D 。

1210。

一元二次不等式220ax bx +->的解集为()1,2,则a b +的值是( )A. -3B.3C.—2 D 。

鲁山县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

鲁山县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

鲁山县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=sin 2(ωx )﹣(ω>0)的周期为π,若将其图象沿x 轴向右平移a 个单位(a >0),所得图象关于原点对称,则实数a 的最小值为( )A .πB .C .D .2. 函数y=f (x )在[1,3]上单调递减,且函数f (x+3)是偶函数,则下列结论成立的是( )A .f (2)<f (π)<f (5)B .f (π)<f (2)<f (5)C .f (2)<f (5)<f (π)D .f (5)<f (π)<f (2)3. 已知函数()2111x f x x ++=+,则曲线()y f x =在点()()11f ,处切线的斜率为( )A .1B .1-C .2D .2-4. 将函数(其中)的图象向右平移个单位长度,所得的图象经过点x x f ωsin )(=0>ω4π,则的最小值是( ))0,43(πωA . B .C .D .31355. 某几何体的三视图如图所示,该几何体的体积是()A .B .C .D .6. 设F 1,F 2是双曲线的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .B .C .24D .487. 已知等差数列{a n }满足2a 3﹣a+2a 13=0,且数列{b n } 是等比数列,若b 8=a 8,则b 4b 12=( )A .2B .4C .8D .168. 某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为( )A .4320B .2400C .2160D .13209. 在中,,等于( )ABC ∆60A =1b =sin sin sin a b cA B C++++A .B CD 10.某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是( )A .B .8C .D .11.若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)12.下列各组函数为同一函数的是( )A .f (x )=1;g (x )=B .f (x )=x ﹣2;g (x )=C .f (x )=|x|;g (x )=D .f (x )=•;g (x )=二、填空题13.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i <m 中的整数m 的值是 .14.在中,已知,则此三角形的最大内角的度数等ABC ∆sin :sin :sin 3:5:7A B C =于__________.15.若复数是纯虚数,则的值为 .34sin (cos )i 55z αα=-+-tan α【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力.16.若x ,y 满足线性约束条件,则z=2x+4y 的最大值为 .17.已知1a b >>,若10log log 3a b b a +=,b a a b =,则a b += ▲ .18.设全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},若N ⊆M ,则实数a 的取值范围是 .三、解答题19.某重点大学自主招生考试过程依次为自荐材料审查、笔试、面试共三轮考核。

鲁山县高级中学2018-2019学年上学期高二数学12月月考试题含解析

鲁山县高级中学2018-2019学年上学期高二数学12月月考试题含解析

鲁山县高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知数列{}n a 是各项为正数的等比数列,点22(2,log )M a 、25(5,log )N a 都在直线1y x =-上,则数列{}n a 的前n 项和为( )A .22n -B .122n +-C .21n -D .121n +-2. 拋物线E :y 2=2px (p >0)的焦点与双曲线C :x 2-y 2=2的焦点重合,C 的渐近线与拋物线E 交于非原点的P 点,则点P 到E 的准线的距离为( ) A .4 B .6 C .8D .103. 执行下面的程序框图,若输入2016x =-,则输出的结果为( )A .2015B .2016C .2116D .20484. 若变量x y ,满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则目标函数32z x y =-的最小值为( )A .-5B .-4 C.-2 D .3 5. 如果一个几何体的三视图如图所示,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,(单位:cm ),则此几何体的表面积是( )A .8cm 2B . cm 2C .12 cm 2D .cm 26. 函数f (x )=kx +bx +1,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )A .-1B .1C .2D .47. 定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有1212()()0f x f x x x ->-,则有( )A .(49)(64)(81)f f f <<B .(49)(81)(64)f f f << C. (64)(49)(81)f f f << D .(64)(81)(49)f f f << 8. 函数y=+的定义域是( )A .{x|x ≥﹣1}B .{x|x >﹣1且x ≠3}C .{x|x ≠﹣1且x ≠3}D .{x|x ≥﹣1且x ≠3}9. 已知双曲线2222:1(0,0)x y C a b a b-=>>,12,F F 分别在其左、右焦点,点P 为双曲线的右支上的一点,圆M 为三角形12PF F 的内切圆,PM 所在直线与轴的交点坐标为(1,0),与双曲线的一条渐近线平行且距离为2,则双曲线C 的离心率是( ) AB .2 CD.210.已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A .2,3B .3,4C .3,5D .2,5 11.如果过点M (﹣2,0)的直线l与椭圆有公共点,那么直线l 的斜率k 的取值范围是( )A. B.C.D.12.关于函数2()ln f x x x=+,下列说法错误的是( ) (A )2x =是()f x 的极小值点( B ) 函数()y f x x =-有且只有1个零点 (C )存在正实数k ,使得()f x kx >恒成立(D )对任意两个正实数12,x x ,且21x x >,若12()()f x f x =,则124x x +>二、填空题13.在等差数列{}n a 中,17a =,公差为d ,前项和为n S ,当且仅当8n =时n S 取得最大值,则d 的取值范围为__________. 14.设函数f (x )=则函数y=f (x )与y=的交点个数是 .15.长方体ABCD ﹣A 1B 1C 1D 1的棱AB=AD=4cm ,AA 1=2cm ,则点A 1到平面AB 1D 1的距离等于 cm .16.【徐州市第三中学2017~2018学年度高三第一学期月考】函数()3f x x x =-+的单调增区间是__________. 17.设有一组圆C k :(x ﹣k+1)2+(y ﹣3k )2=2k 4(k ∈N *).下列四个命题: ①存在一条定直线与所有的圆均相切; ②存在一条定直线与所有的圆均相交; ③存在一条定直线与所有的圆均不相交; ④所有的圆均不经过原点.其中真命题的代号是 (写出所有真命题的代号).18.【2017-2018第一学期东台安丰中学高三第一次月考】函数()2ln f x x x =-的单调递增区间为__________.三、解答题19.本小题满分10分选修44-:坐标系与参数方程选讲在直角坐标系xoy中,直线的参数方程为3x y ⎧=⎪⎪⎨⎪=⎪⎩为参数,在极坐标系与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴中,圆C的方程为ρθ=.Ⅰ求圆C 的圆心到直线的距离;Ⅱ设圆C 与直线交于点A B 、,若点P的坐标为(3,,求PA PB +.20.已知条件4:11px≤--,条件22:q x x a a+<-,且p是的一个必要不充分条件,求实数的取值范围.21.某农户建造一座占地面积为36m2的背面靠墙的矩形简易鸡舍,由于地理位置的限制,鸡舍侧面的长度x 不得超过7m,墙高为2m,鸡舍正面的造价为40元/m2,鸡舍侧面的造价为20元/m2,地面及其他费用合计为1800元.(1)把鸡舍总造价y表示成x的函数,并写出该函数的定义域.(2)当侧面的长度为多少时,总造价最低?最低总造价是多少?22.已知椭圆的左、右焦点分别为F1(﹣c,0),F2(c,0),P是椭圆C上任意一点,且椭圆的离心率为.(1)求椭圆C的方程;(2)直线l1,l2是椭圆的任意两条切线,且l1∥l2,试探究在x轴上是否存在定点B,点B到l1,l2的距离之积恒为1?若存在,求出点B的坐标;若不存在,请说明理由.23.已知二次函数f(x)=x2+2bx+c(b,c∈R).(1)若函数y=f(x)的零点为﹣1和1,求实数b,c的值;(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(﹣3,﹣2),(0,1)内,求实数b的取值范围.24.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为1()16t ay-=(a为常数),如图所示.据图中提供的信息,回答下列问题:(1)写出从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室。

鲁山县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

鲁山县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析

鲁山县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 从一群学生中抽取一个一定容量的样本对他们的学习成绩进行分析,已知不超过70分的人数为8人,其累计频率为0.4,则这样的样本容量是( )A .20人B .40人C .70人D .80人2. 已知双曲线﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=1相切,则双曲线的离心率为( )A .B .C .D .3. 若P 是以F 1,F 2为焦点的椭圆=1(a >b >0)上的一点,且=0,tan ∠PF 1F 2=,则此椭圆的离心率为( )A .B .C .D .4. 直角梯形OABC 中,,1,2AB OC AB OC BC ===,直线:l x t =截该梯形所得位于左边图 形面积为,则函数()S f t =的图像大致为( )5. 定义运算,例如.若已知,则=( )A .B .C .D .6. 设直线x=t 与函数f (x )=x 2,g (x )=lnx 的图象分别交于点M ,N ,则当|MN|达到最小时t 的值为( )A .1B .C .D .7. 在长方体ABCD ﹣A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是( )A .B .C .D .8. 若关于x 的方程x 3﹣x 2﹣x+a=0(a ∈R )有三个实根x 1,x 2,x 3,且满足x 1<x 2<x 3,则a 的取值范围为( )A .a >B .﹣<a <1 C .a <﹣1D .a >﹣19. 已知数列{}n a 的首项为11a =,且满足11122n n n a a +=+,则此数列的第4项是( ) A .1 B .12 C. 34 D .5810.在平面直角坐标系中,向量=(1,2),=(2,m),若O ,A ,B 三点能构成三角形,则( )A .B .C .D .11.抛物线y=x 2的焦点坐标为( ) A .(0,)B .(,0)C .(0,4)D .(0,2)12.已知的终边过点()2,3,则7tan 4πθ⎛⎫+ ⎪⎝⎭等于( ) A .15- B .15 C .-5 D .5二、填空题13.若直线y ﹣kx ﹣1=0(k ∈R )与椭圆恒有公共点,则m 的取值范围是 .14.函数y=sin 2x ﹣2sinx 的值域是y ∈ .15.长方体1111ABCD A B C D -中,对角线1A C 与棱CB 、CD 、1CC 所成角分别为α、β、,则222sin sin sin αβγ++= . 16.给出下列命题:①存在实数α,使②函数是偶函数③是函数的一条对称轴方程④若α、β是第一象限的角,且α<β,则sin α<sin β其中正确命题的序号是 .17.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x ﹣y+1=0相交所得的弦长为,则圆的方程为 .18. 设函数()xf x e =,()lng x x m =+.有下列四个命题:①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <; ②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2ln 2m e <-;③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22em <-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <.其中所有正确结论的序号为 .【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能力,考查分类整合思想.三、解答题19.已知函数f (x )=2x ﹣,且f (2)=. (1)求实数a 的值; (2)判断该函数的奇偶性;(3)判断函数f (x )在(1,+∞)上的单调性,并证明.20.已知函数f (x )=sin ωxcos ωx ﹣cos 2ωx+(ω>0)经化简后利用“五点法”画其在某一个周期内的图象π π(Ⅰ)请直接写出①处应填的值,并求函数f (x )在区间[﹣,]上的值域;(Ⅱ)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知f (A+)=1,b+c=4,a=,求△ABC 的面积.21.已知函数f(x)=x﹣alnx(a∈R)(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;(2)求函数f(x)的极值.22.若点(p,q),在|p|≤3,|q|≤3中按均匀分布出现.(1)点M(x,y)横、纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点M(x,y)落在上述区域的概率?(2)试求方程x2+2px﹣q2+1=0有两个实数根的概率.23.某同学在研究性学习中,了解到淘宝网站一批发店铺在今年的前五个月的销售量(单位:百件)的数据如(Ⅰ)该同学为了求出y关于x的回归方程=x+,根据表中数据已经正确算出=0.6,试求出的值,并估计该店铺6月份的产品销售量;(单位:百件)(Ⅱ)一零售商现存有从该淘宝批发店铺2月份进货的4件和3月份进货的5件产品,顾客甲现从该零售商处随机购买了3件,后经了解,该淘宝批发店铺今年2月份的产品都有质量问题,而3月份的产品都没有质量问题.记顾客甲所购买的3件产品中存在质量问题的件数为X,求X的分布列和数学期望.24.在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B的考生有10人.(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A的人数;(Ⅱ)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A.在至少一科成绩为A的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A的概率.鲁山县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:由已知中的频率分布直方图可得时间不超过70分的累计频率的频率为0.4,则这样的样本容量是n==20.故选A.【点评】本题考查的知识点是频率分布直方图,熟练掌握频率的两个公式频率=矩形高×组距=是解答的关键.2.【答案】D【解析】解:双曲线﹣=1(a>0,b>0)的渐近线方程为y=±x,即x±y=0.根据圆(x﹣2)2+y2=1的圆心(2,0)到切线的距离等于半径1,可得,1=,∴=,,可得e=.故此双曲线的离心率为:.故选D.【点评】本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出的值,是解题的关键.3.【答案】A【解析】解:∵∴,即△PF1F2是P为直角顶点的直角三角形.∵Rt△PF1F2中,,∴=,设PF2=t,则PF1=2t∴=2c,又∵根据椭圆的定义,得2a=PF 1+PF 2=3t∴此椭圆的离心率为e====故选A【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题.4. 【答案】C 【解析】试题分析:由题意得,当01t <≤时,()2122f t t t t =⋅⋅=,当12t <≤时, ()112(1)2212f t t t =⨯⨯+-⋅=-,所以()2,0121,12t t f t t t ⎧<≤=⎨-<≤⎩,结合不同段上函数的性质,可知选项C 符合,故选C.考点:分段函数的解析式与图象. 5. 【答案】D【解析】解:由新定义可得,====.故选:D .【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题.6. 【答案】D【解析】解:设函数y=f (x )﹣g (x )=x 2﹣lnx ,求导数得=当时,y ′<0,函数在上为单调减函数,当时,y ′>0,函数在上为单调增函数所以当时,所设函数的最小值为所求t 的值为故选D【点评】可以结合两个函数的草图,发现在(0,+∞)上x2>lnx恒成立,问题转化为求两个函数差的最小值对应的自变量x的值.7.【答案】C【解析】解:如图,设A1C1∩B1D1=O1,∵B1D1⊥A1O1,B1D1⊥AA1,∴B1D1⊥平面AA1O1,故平面AA1O1⊥面AB1D1,交线为AO1,在面AA1O1内过B1作B1H⊥AO1于H,则易知AH的长即是点A1到截面AB1D1的距离,在Rt△A1O1A中,A1O1=,1AO1=3,由A1O1•A1A=h•AO1,可得A1H=,故选:C.【点评】本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题.8.【答案】B【解析】解:由x3﹣x2﹣x+a=0得﹣a=x3﹣x2﹣x,设f(x)=x3﹣x2﹣x,则函数的导数f′(x)=3x2﹣2x﹣1,由f′(x)>0得x>1或x<﹣,此时函数单调递增,由f′(x)<0得﹣<x<1,此时函数单调递减,即函数在x=1时,取得极小值f(1)=1﹣1﹣1=﹣1,在x=﹣时,函数取得极大值f(﹣)=(﹣)3﹣(﹣)2﹣(﹣)=,要使方程x3﹣x2﹣x+a=0(a∈R)有三个实根x1,x2,x3,则﹣1<﹣a<,即﹣<a<1,故选:B.【点评】本题主要考查导数的应用,构造函数,求函数的导数,利用导数求出函数的极值是解决本题的关键.9.【答案】B【解析】10.【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O,A,B三点能构成三角形,则O,A,B三点不共线。

鲁山县高中2018-2019学年上学期高二数学12月月考试题含解析

鲁山县高中2018-2019学年上学期高二数学12月月考试题含解析

A.36π
B.48π
C.60π
D.72π
7. 设 x∈R,则 x>2 的一个必要不充分条件是( )
A.x>1 B.x<1 C.x>3 D.x<3
8. 对“a,b,c 是不全相等的正数”,给出两个判断:
①(a﹣b)2+(b﹣c)2+(c﹣a)2≠0;②a≠b,b≠c,c≠a 不能同时成立,
下列说法正确的是( )
A.2+
B.1+
C.
D.
5. 数列﹣1,4,﹣7,10,…,(﹣1)n(3n﹣2)的前 n 项和为 Sn,则 S11+S20=(

A.﹣16
B.14
C.28
D.30
6. 底面为矩形的四棱锥 P-ABCD 的顶点都在球 O 的表面上,且 O 在底面 ABCD 内,PO⊥平面 ABCD,当四
棱锥 P-ABCD 的体积的最大值为 18 时,球 O 的表面积为( )

根据椭圆的定义可得|PF1|+|PF2|=2a,
所以|PF2|=2a﹣c.
所以 2a﹣c= ,所以 e=

第 9 页,共 17 页
考 点:三视图. 【方法点睛】本题主要考查几何体的三视图,空间想象能力.空间几何体的三视图是分别从空间几何体的正面,左 面,上面用平行投影的方法得到的三个平面投影图.因此在分析空间几何体的三视图时,先根据俯视图确定几何 体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱,面的位置,再 确定几何体的形状,即可得到结果. 要能够牢记常见几何体的三视图. 10.【答案】C 【解析】解:正方体 8 个顶点中任选 3 个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上, 在每一个面上能组成等腰直角三角形的有四个, 所以共有 4×6=24 个, 而在 8 个点中选 3 个点的有 C83=56, 所以所求概率为 = 故选:C 【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概 念,有利于计算一些事件的概率,有利于解释生活中的一些问题. 11.【答案】A 【解析】

河南省鲁山县第一高级中学高二数学月月考试题理

河南省鲁山县第一高级中学高二数学月月考试题理

河南省鲁山县第一高级中学2019-2020学年高二数学11月月考试题理一、选择题(每小题5分,共60分.)1.“01k <<”是“方程2212x y k-=表示双曲线”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.已知空间向量(3,1,1)a =r ,(,3,0)b x =-r ,且a b ⊥r r,则x =A .3-B .1-C .1D .33.下列函数中,在其定义域上为增函数的是A .2y x =B .xy e -=C .sin y x x =-D .y =4.设()ln f x x x =,若()3f a '=,则a = A .eB .ln 2C .2eD .ln 225.抛物线24y x =的焦点坐标是( ) A .()1,0B .1,016⎛⎫⎪⎝⎭C .()0,1D .10,16⎛⎫⎪⎝⎭6.函数()f x 的定义域为R ,(1)3f -=,对任意,'()>2x R f x ∈,则()>25f x x +的解集为A .1-∞(,)B .1-+∞(,)C .1-∞(,)D .1(,)+∞ 7.设定点1(2,0)F -,2(2,0)F ,平面内满足124PF PF +=的动点P 的轨迹是( ) A.椭圆 B.线段 C.双曲线 D.不存在8.若椭圆22mx ny 1+=与直线x y 10+-=交于A ,B 两点,过原点与线段AB 的中点的直线的斜率为2, 则nm的值为A .2B .2C .3 D .299.如图,已知正方形ABCD 的边长为4,E F 、分别是AB AD 、的中点,GC ⊥平面ABCD ,且2GC =,则点B 到平面EFG 的距离为A .1010B .11112C .53 D .1第9题图 第11题图10.已知()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个平面直角坐标系中,不可能正确的是A .B .C .D .11.如图,过双曲线上左支一点A 作两条相互垂直的直线分别过两焦点,其中一条与双曲线交于点B ,若三角形ABF 2是等腰直角三角形,则双曲线的离心率为 A 522+B 522-422+D 422-12.已知()'f x 是奇函数()()f x x R ∈的导函数,()20f =,当0x ≠时,()()2'f x f x x>,则不等式()()10x f x -<的解集为A .()(),20,2-∞-UB .()()2,02,-+∞UC .()(),21,2-∞-UD .()()2,01,2-U二、填空题(本大题共4小题,每小题5分,共20分.把答案直接答在答题卷上) 13.函数x x x f ln 2)(2-=的单调递增区间是_______.14.抛物线28y x =的焦点到双曲线221169x y -=渐近线的距离为_______. 15.若向量()2,1,2=-a ,()4,2,m =-b ,且a 与b 的夹角为钝角,则实数m 的取值范围为_______.16.已知函数2,[0,1]()e ,(1,3]x x x f x x -∈⎧=⎨∈⎩,若存在实数12,x x 满足0≤x 1≤x 2≤3,且()()12f x f x =,则212x x -的最大值为______.三、解答题(本大题共6小题,17题10分,18-22题每小题10分,共70分.把答案直接答在答题卷上)17.(10分)已知函数()32392f x x x x =-++-,求:(1)函数()y f x =的图象在点()0,(0)f 处的切线方程; (2)()f x 的单调递减区间.18.(12分)设函数2()1ln f x x x =+- (1)求()f x 的单调区间;(2)求函数()()g x f x x =-在区间1[,2]2上的最小值。

鲁山县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

鲁山县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析

鲁山县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.命题:“∀x∈R,x2﹣x+2<0”的否定是()A.∀x∈R,x2﹣x+2≥0 B.∃x∈R,x2﹣x+2≥0C.∃x∈R,x2﹣x+2<0 D.∀x∈R,x2﹣x+2<02.在正方体ABCD﹣A′B′C′D′中,点P在线段AD′上运动,则异面直线CP与BA′所成的角θ的取值范围是()A.0<B.0 C.0D.03.已知圆C:x2+y2=4,若点P(x0,y0)在圆C外,则直线l:x0x+y0y=4与圆C的位置关系为()A.相离 B.相切 C.相交 D.不能确定4.等比数列{a n}满足a1=3,a1+a3+a5=21,则a2a6=()A.6 B.9 C.36 D.725.某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是()A. B.8 C. D.6.过直线3x﹣2y+3=0与x+y﹣4=0的交点,与直线2x+y﹣1=0平行的直线方程为()A.2x+y﹣5=0 B.2x﹣y+1=0 C.x+2y﹣7=0 D.x﹣2y+5=07.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为()A.y=x﹣1B.y=lnx C.y=x3D.y=|x|8.数列﹣1,4,﹣7,10,…,(﹣1)n(3n﹣2)的前n项和为S n,则S11+S20=()A .﹣16B .14C .28D .309. 设i 是虚数单位,则复数21ii-在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10.线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂αB .AB ⊄αC .由线段AB 的长短而定D .以上都不对11.已知圆C 1:x 2+y 2=4和圆C 2:x 2+y 2+4x ﹣4y+4=0关于直线l 对称,则直线l 的方程为( ) A .x+y=0 B .x+y=2 C .x ﹣y=2 D .x ﹣y=﹣212.某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( ) A .80 B .40C .60D .20二、填空题13.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全 校学生中抽取1名学生,抽到高二年级女生的概率为19.0,先采用分层抽样(按年级分层)在全校抽取 100人,则应在高三年级中抽取的人数等于 .14.如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和CN 所成角的余弦值为 .15.长方体ABCD ﹣A 1B 1C 1D 1的棱AB=AD=4cm ,AA 1=2cm ,则点A 1到平面AB 1D 1的距离等于 cm .16.已知关于的不等式20x ax b ++<的解集为(1,2),则关于的不等式210bx ax ++>的解集 为___________.17.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>xxe xf e (其 中为自然对数的底数)的解集为 .18.已知f (x )=x (e x +a e -x )为偶函数,则a =________.三、解答题19.设函数f (x )=1+(1+a )x ﹣x 2﹣x 3,其中a >0. (Ⅰ)讨论f (x )在其定义域上的单调性;(Ⅱ)当x ∈时,求f (x )取得最大值和最小值时的x 的值.20.(本小题满分10分)选修4—4:坐标系与参数方程以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为方程为r =(],0[πθ∈),直线l 的参数方程为2t cos 2sin x y t aa ì=+ïí=+ïî(t 为参数).(I )点D 在曲线C 上,且曲线C 在点D 处的切线与直线+2=0x y +垂直,求点D 的直角坐标和曲线C的参数方程;(II )设直线l 与曲线C 有两个不同的交点,求直线l 的斜率的取值范围.21.已知函数.(Ⅰ)若函数f (x )在区间[1,+∞)内单调递增,求实数a 的取值范围; (Ⅱ)求函数f (x )在区间[1,e]上的最小值.22.已知函数f (x )=•,其中=(2cosx , sin2x ),=(cosx ,1),x ∈R .(1)求函数y=f (x )的单调递增区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=2,a=,且sinB=2sinC ,求△ABC 的面积.23.(本小题满分12分)中央电视台电视公开课《开讲了》需要现场观众,先邀请甲、乙、丙、丁四所大学的40名学生参加,各(1)求各大学抽取的人数;(2)从(1)中抽取的乙大学和丁大学的学生中随机选出2名学生发言,求这2名学生来自同一所大学的 概率.24.(本小题满分10分)选修4—5:不等式选讲 已知函数3212)(-++=x x x f .(I )若R x ∈∃0,使得不等式m x f ≤)(0成立,求实数m 的最小值M ;(Ⅱ)在(I )的条件下,若正数,a b 满足3a b M +=,证明:313b a+≥.鲁山县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:因为全称命题的否定是特称命题,所以命题:“∀x∈R,x2﹣x+2<0”的否定是∃x∈R,x2﹣x+2≥0.故选:B.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.2.【答案】D【解析】解:∵A1B∥D1C,∴CP与A1B成角可化为CP与D1C成角.∵△AD1C是正三角形可知当P与A重合时成角为,∵P不能与D1重合因为此时D1C与A1B平行而不是异面直线,∴0<θ≤.故选:D.3.【答案】C【解析】解:由点P(x0,y0)在圆C:x2+y2=4外,可得x02+y02 >4,求得圆心C(0,0)到直线l:x0x+y0y=4的距离d=<=2,故直线和圆C相交,故选:C.【点评】本题主要考查点和圆的位置关系、直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.4.【答案】D【解析】解:设等比数列{a n}的公比为q,∵a1=3,a1+a3+a5=21,∴3(1+q2+q4)=21,解得q2=2.则a2a6=9×q6=72.故选:D.5.【答案】C【解析】【分析】通过三视图分析出几何体的图形,利用三视图中的数据求出四个面的面积中的最大值.【解答】解:由题意可知,几何体的底面是边长为4的正三角形,棱锥的高为4,并且高为侧棱垂直底面三角形的一个顶点的三棱锥,两个垂直底面的侧面面积相等为:8,底面面积为:=4,另一个侧面的面积为:=4,四个面中面积的最大值为4;故选C.6.【答案】A【解析】解:联立,得x=1,y=3,∴交点为(1,3),过直线3x﹣2y+3=0与x+y﹣4=0的交点,与直线2x+y﹣1=0平行的直线方程为:2x+y+c=0,把点(1,3)代入,得:2+3+c=0,解得c=﹣5,∴直线方程是:2x+y﹣5=0,故选:A.7.【答案】D【解析】解:选项A:y=在(0,+∞)上单调递减,不正确;选项B:定义域为(0,+∞),不关于原点对称,故y=lnx为非奇非偶函数,不正确;选项C:记f(x)=x3,∵f(﹣x)=(﹣x)3=﹣x3,∴f(﹣x)=﹣f(x),故f(x)是奇函数,又∵y=x3区间(0,+∞)上单调递增,符合条件,正确;选项D:记f(x)=|x|,∵f(﹣x)=|﹣x|=|x|,∴f(x)≠﹣f(x),故y=|x|不是奇函数,不正确.故选D8.【答案】B【解析】解:∵a n=(﹣1)n(3n﹣2),∴S11=()+(a2+a4+a6+a8+a10)=﹣(1+7+13+19+25+31)+(4+10+16+22+28)=﹣16,S20=(a1+a3+…+a19)+(a2+a4+…+a20)=﹣(1+7+...+55)+(4+10+ (58)=﹣+=30,∴S11+S20=﹣16+30=14.故选:B.【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用.9.【答案】B【解析】因为所以,对应的点位于第二象限故答案为:B【答案】B10.【答案】A【解析】解:∵线段AB在平面α内,∴直线AB上所有的点都在平面α内,∴直线AB与平面α的位置关系:直线在平面α内,用符号表示为:AB⊂α故选A.【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.11.【答案】D【解析】【分析】由题意可得圆心C1和圆心C2,设直线l方程为y=kx+b,由对称性可得k和b的方程组,解方程组可得.【解答】解:由题意可得圆C1圆心为(0,0),圆C2的圆心为(﹣2,2),∵圆C1:x2+y2=4和圆C2:x2+y2+4x﹣4y+4=0关于直线l对称,∴点(0,0)与(﹣2,2)关于直线l对称,设直线l方程为y=kx+b,∴•k=﹣1且=k•+b,解得k=1,b=2,故直线方程为x﹣y=﹣2,故选:D.12.【答案】B【解析】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,∴三年级要抽取的学生是×200=40,故选:B.【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果.二、填空题13.【答案】25【解析】考点:分层抽样方法.14.【答案】.【解析】解:如图,将AM平移到B1E,NC平移到B1F,则∠EB1F为直线AM与CN所成角设边长为1,则BE=B1F=,EF=1∴cos∠EB1F=,故答案为【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.15.【答案】【解析】解:由题意可得三棱锥B 1﹣AA 1D 1的体积是=,三角形AB1D 1的面积为4,设点A 1到平面AB 1D 1的距离等于h ,则,则h=故点A 1到平面AB 1D 1的距离为.故答案为:.16.【答案】),1()21,(+∞-∞ 【解析】考点:一元二次不等式的解法. 17.【答案】),0(+∞ 【解析】考点:利用导数研究函数的单调性.【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得()()01>-'+x f x f ,结合要求的不等式可知在不等式两边同时乘以xe ,即()()0>-'+x x x e x f e x f e ,因此构造函数()()x x e x f e x g -=,求导利用函数的单调性解不等式.另外本题也可以构造满足前提的特殊函数,比如令()4=x f 也可以求解.1 18.【答案】【解析】解析:∵f (x )是偶函数,∴f (-x )=f (x )恒成立, 即(-x )(e -x +a e x )=x (e x +a e -x ), ∴a (e x +e -x )=-(e x +e -x ),∴a =-1. 答案:-1三、解答题19.【答案】【解析】解:(Ⅰ)f (x )的定义域为(﹣∞,+∞),f ′(x )=1+a ﹣2x ﹣3x 2,由f ′(x )=0,得x 1=,x 2=,x 1<x 2,∴由f ′(x )<0得x <,x >;由f ′(x )>0得<x <;故f (x )在(﹣∞,)和(,+∞)单调递减,在(,)上单调递增;(Ⅱ)∵a >0,∴x 1<0,x 2>0,∵x ∈,当时,即a ≥4①当a ≥4时,x 2≥1,由(Ⅰ)知,f (x )在上单调递增,∴f (x )在x=0和x=1处分别取得最小值和最大值. ②当0<a <4时,x 2<1,由(Ⅰ)知,f (x )在单调递增,在上单调递减,因此f (x )在x=x 2=处取得最大值,又f (0)=1,f (1)=a ,∴当0<a <1时,f (x )在x=1处取得最小值; 当a=1时,f (x )在x=0和x=1处取得最小值; 当1<a <4时,f (x )在x=0处取得最小值.20.【答案】【解析】【命题意图】本题考查圆的参数方程和极坐标方程、直线参数方程、直线和圆位置关系等基础知识,意在考查数形结合思想、转化思想和基本运算能力.(Ⅱ)设直线l :2)2(+-=x k y 与半圆)0(222≥=+y y x 相切时21|22|2=+-kk0142=+-∴k k ,32-=∴k ,32+=k (舍去)设点)0,2(-B ,2ABk ==-,故直线l 的斜率的取值范围为]22,32(--. 21.【答案】【解析】解:(1)由已知得:f ′(x )=.要使函数f (x )在区间[1,+∞)内单调递增,只需≥0在[1,+∞)上恒成立.结合a >0可知,只需a ,x ∈[1,+∞)即可.易知,此时=1,所以只需a ≥1即可.(2)结合(1),令f ′(x )==0得.当a ≥1时,由(1)知,函数f (x )在[1,e]上递增,所以f (x )min =f (1)=0;当时,,此时在[1,)上f′(x)<0,在上f′(x)>0,所以此时f(x)在上递减,在上递增,所以f(x)min=f()=1﹣lna﹣;当时,,故此时f′(x)<0在[1,e]上恒成立,所以f(x)在[1,e]上递减,所以f(x)min=f(e)=.【点评】本题考查了利用导数研究函数的单调性的基本思路,以及已知函数单调性求参数范围时转化为导函数在指定区间上大于零或小于零恒成立的问题的思想方法.22.【答案】【解析】解:(1)f(x)=•=2cos2x+sin2x=sin2x+cos2x+1=2sin(2x+)+1,令﹣+2kπ≤2x+≤+2kπ,解得﹣+kπ≤x≤+kπ,函数y=f(x)的单调递增区间是[﹣+kπ,+kπ],(Ⅱ)∵f(A)=2∴2sin(2A+)+1=2,即sin(2A+)=….又∵0<A<π,∴A=.…∵a=,由余弦定理得a2=b2+c2﹣2bccosA=(b+c)2﹣3bc=7 ①…∵sinB=2sinC∴b=2c ②…由①②得c2=.…∴S△ABC=.…23.【答案】(1)甲,乙,丙,丁;(2)25 P .【解析】试题分析:(1)从这40名学生中按照分层抽样的方式抽取10名学生,则各大学人数分别为甲,乙,丙,丁;(2)利用列举出从参加问卷调查的40名学生中随机抽取两名学生的方法共有15种,这来自同一所大学的取法共有种,再利用古典慨型的概率计算公式即可得出.试题解析:(1)从这40名学生中按照分层抽样的方式抽取10名学生,则各大学人数分别为甲2,乙3,丙2,丁3.(2)设乙中3人为123,,a a a ,丁中3人为123,,b b b ,从这6名学生中随机选出2名学生发言的结果为12{,}a a ,13{,}a a ,11{,}a b ,12{,}a b ,13{,}a b ,32{,}a a ,12{,}b a ,22{,}b a ,32{,}b a ,31{,}a b ,32{,}a b ,33{,}a b ,12{,}b b ,13{,}b b ,23{,}b b ,共15种,这2名同学来自同一所大学的结果共6种,所以所求概率为62155P ==. 考点:1、分层抽样方法的应用;2、古典概型概率公式. 24.【答案】【解析】【命题意图】本题考查基本不等式、绝对值三角不等式等基础知识,意在考查转化思想和基本运算能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鲁山县高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 函数21()ln 2f x x x ax =++存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力.2. 已知α是△ABC 的一个内角,tan α=,则cos (α+)等于( )A .B .C .D .3. 在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( )A .20种B .22种C .24种D .36种4. 对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为( )A .92%B .24%C .56%D .5.6%5. 如图,正六边形ABCDEF 中,AB=2,则(﹣)•(+)=( )A .﹣6B .﹣2C .2D .66. 已知函数f (x )=3cos (2x ﹣),则下列结论正确的是( )A .导函数为B.函数f(x)的图象关于直线对称C.函数f(x)在区间(﹣,)上是增函数D.函数f(x)的图象可由函数y=3co s2x的图象向右平移个单位长度得到7.设P是椭圆+=1上一点,F1、F2是椭圆的焦点,若|PF1|等于4,则|PF2|等于()A.22 B.21 C.20 D.138.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x﹣1C.e﹣x+1 D.e﹣x﹣19.函数是()A.最小正周期为2π的奇函数B.最小正周期为π的奇函数C.最小正周期为2π的偶函数D.最小正周期为π的偶函数10.如图可能是下列哪个函数的图象()A.y=2x﹣x2﹣1 B.y=C.y=(x2﹣2x)e x D.y=11.双曲线的渐近线方程是()A.B.C.D.12.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A=()A.30°B.60°C.120°D.150°二、填空题13.不等式()2110ax a x +++≥恒成立,则实数的值是__________.14.x 为实数,[x]表示不超过x 的最大整数,则函数f (x )=x ﹣[x]的最小正周期是 . 15.曲线y =x 2+3x 在点(-1,-2)处的切线与曲线y =ax +ln x 相切,则a =________.16.已知,0()1,0x e x f x x ì³ï=í<ïî,则不等式2(2)()f x f x ->的解集为________.【命题意图】本题考查分段函数、一元二次不等式等基础知识,意在考查分类讨论思想和基本运算能力. 17.一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是 .18.如图,一个空间几何体的正视图和侧视图都是边长为2的正三角形,俯视如图是一个圆,那么该几何体的体积是 .三、解答题19.一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图1的矩形,俯视图为两个边长为1的正方形拼成的矩形. (1)求该几何体的体积V ;111] (2)求该几何体的表面积S .20.已知椭圆E 的中心在坐标原点,左、右焦点F 1、F 2分别在x 轴上,离心率为,在其上有一动点A ,A 到点F 1距离的最小值是1,过A 、F 1作一个平行四边形,顶点A 、B 、C 、D 都在椭圆E 上,如图所示. (Ⅰ)求椭圆E 的方程;(Ⅱ)判断▱ABCD 能否为菱形,并说明理由.(Ⅲ)当▱ABCD 的面积取到最大值时,判断▱ABCD 的形状,并求出其最大值.21.某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.(1)求直方图中的值;(2)求月平均用电量的众数和中位数.1111]22.已知x2﹣y2+2xyi=2i,求实数x、y的值.23.已知数列{a n}和{b n}满足a1•a2•a3…a n=2(n∈N*),若{a n}为等比数列,且a1=2,b3=3+b2.(1)求a n和b n;(2)设c n=(n∈N*),记数列{c n}的前n项和为S n,求S n.24.我市某校某数学老师这学期分别用m,n两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的数学期末考试成绩,并作出茎叶图如图所示.(Ⅰ)依茎叶图判断哪个班的平均分高?(Ⅱ)现从甲班所抽数学成绩不低于80分的同学中随机抽取两名同学,用ξ表示抽到成绩为86分的人数,求ξ的分布列和数学期望;(Ⅲ)学校规定:成绩不低于85分的为优秀,作出分类变量成绩与教学方式的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”下面临界值表仅供参考:P(K2≥k)0.15 0.10 0.05 0.025 0.010 0.005 0.001k 2.072 2.706 3.841 5.024 6.635 7.879 10.828(参考公式:K2=,其中n=a+b+c+d)鲁山县高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1. 【答案】D 【解析】因为1()f x x a x'=++,直线的03=-y x 的斜率为3,由题意知方程13x a x ++=(0x >)有解,因为12x x+?,所以1a £,故选D . 2. 【答案】B【解析】解:由于α是△ABC 的一个内角,tan α=,则=,又sin 2α+cos 2α=1,解得sin α=,cos α=(负值舍去).则cos (α+)=coscos α﹣sinsin α=×(﹣)=.故选B .【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题.3. 【答案】C【解析】解:根据题意,分2种情况讨论:①、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学,共有=12种推荐方法; ②、将三个男生分成两组分别推荐北京大学和清华大学,其余2个女生从剩下的2个大学中选,共有=12种推荐方法;故共有12+12=24种推荐方法;故选:C .4. 【答案】C【解析】解:这次测验的优秀率(不小于80分)为0.032×10+0.024×10=0.56 故这次测验的优秀率(不小于80分)为56%故选C【点评】在解决频率分布直方图时,一定注意频率分布直方图的纵坐标是.5.【答案】D【解析】解:根据正六边形的边的关系及内角的大小便得:===2+4﹣2+2=6.故选:D.【点评】考查正六边形的内角大小,以及对边的关系,相等向量,以及数量积的运算公式.6.【答案】B【解析】解:对于A,函数f′(x)=﹣3sin(2x﹣)•2=﹣6sin(2x﹣),A错误;对于B,当x=时,f()=3cos(2×﹣)=﹣3取得最小值,所以函数f(x)的图象关于直线对称,B正确;对于C,当x∈(﹣,)时,2x﹣∈(﹣,),函数f(x)=3cos(2x﹣)不是单调函数,C错误;对于D,函数y=3co s2x的图象向右平移个单位长度,得到函数y=3co s2(x﹣)=3co s(2x﹣)的图象,这不是函数f(x)的图象,D错误.故选:B.【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目.7.【答案】A【解析】解:∵P是椭圆+=1上一点,F1、F2是椭圆的焦点,|PF1|等于4,∴|PF2|=2×13﹣|PF1|=26﹣4=22.故选:A.【点评】本题考查椭圆的简单性质的应用,是基础题,解题时要熟练掌握椭圆定义的应用.8.【答案】D【解析】解:函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.9.【答案】B【解析】解:因为==cos(2x+)=﹣sin2x.所以函数的周期为:=π.因为f(﹣x)=﹣sin(﹣2x)=sin2x=﹣f(x),所以函数是奇函数.故选B.【点评】本题考查二倍角公式的应用,诱导公式的应用,三角函数的基本性质,考查计算能力.10.【答案】C【解析】解:A中,∵y=2x﹣x2﹣1,当x趋向于﹣∞时,函数y=2x的值趋向于0,y=x2+1的值趋向+∞,∴函数y=2x﹣x2﹣1的值小于0,∴A中的函数不满足条件;B中,∵y=sinx是周期函数,∴函数y=的图象是以x轴为中心的波浪线,∴B中的函数不满足条件;C中,∵函数y=x2﹣2x=(x﹣1)2﹣1,当x<0或x>2时,y>0,当0<x<2时,y<0;且y=e x>0恒成立,∴y=(x2﹣2x)e x的图象在x趋向于﹣∞时,y>0,0<x<2时,y<0,在x趋向于+∞时,y趋向于+∞;∴C中的函数满足条件;D中,y=的定义域是(0,1)∪(1,+∞),且在x∈(0,1)时,lnx<0,∴y=<0,∴D中函数不满足条件.故选:C.【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目.11.【答案】B【解析】解:∵双曲线标准方程为,其渐近线方程是=0,整理得y=±x . 故选:B .【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程.属于基础题.12.【答案】A 【解析】解:∵sinC=2sinB ,∴c=2b ,∵a 2﹣b 2=bc ,∴cosA===∵A 是三角形的内角 ∴A=30° 故选A .【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题.二、填空题13.【答案】1a = 【解析】试题分析:因为不等式()2110ax a x +++≥恒成立,所以当0a =时,不等式可化为10x +≥,不符合题意;当0a ≠时,应满足20(1)40a a a >⎧⎨∆=+-≤⎩,即2(1)0a a >⎧⎨-≤⎩,解得1a =.1 考点:不等式的恒成立问题.14.【答案】 [1,)∪(9,25] .【解析】解:∵集合,得 (ax ﹣5)(x 2﹣a )<0,当a=0时,显然不成立, 当a >0时,原不等式可化为,若时,只需满足,解得;若,只需满足,解得 9<a ≤25, 当a <0时,不符合条件,综上,故答案为[1,)∪(9,25].【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题.15.【答案】【解析】由y =x 2+3x 得y ′=2x +3, ∴当x =-1时,y ′=1,则曲线y =x 2+3x 在点(-1,-2)处的切线方程为y +2=x +1, 即y =x -1,设直线y =x -1与曲线y =ax +ln x 相切于点(x 0,y 0),由y =ax +ln x 得y ′=a +1x(x >0),∴⎩⎪⎨⎪⎧a +1x 0=1y 0=x 0-1y 0=ax 0+ln x,解之得x 0=1,y 0=0,a =0. ∴a =0. 答案:016.【答案】(-【解析】函数()f x 在[0,)+?递增,当0x <时,220x ->,解得0x -<<;当0x ³时,22x x ->,解得01x ?,综上所述,不等式2(2)()f x f x ->的解集为(-. 17.【答案】 2:1 .【解析】解:设圆锥、圆柱的母线为l ,底面半径为r ,所以圆锥的侧面积为:=πrl圆柱的侧面积为:2πrl所以圆柱和圆锥的侧面积的比为:2:1故答案为:2:118.【答案】.【解析】解:此几何体是一个圆锥,由正视图和侧视图都是边长为2的正三角形,其底面半径为1,且其高为正三角形的高由于此三角形的高为,故圆锥的高为此圆锥的体积为=故答案为【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是圆锥的体积.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是新课标的新增内容,在以后的高考中有加强的可能.三、解答题19.【答案】(12)6 .【解析】(2)由三视图可知,该平行六面体中1A D ⊥平面ABCD ,CD ⊥平面11BCC B , ∴12AA =,侧面11ABB A ,11CDD C 均为矩形,2(11112)6S =⨯++⨯=+.1考点:几何体的三视图;几何体的表面积与体积.【方法点晴】本题主要考查了空间几何体的三视图、解题的表面积与体积的计算,其中解答中涉及到几何体的表面积和体积公式的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状是解答的关键. 20.【答案】【解析】解:(I )由题意可得:,解得c=1,a=2,b 2=3.∴椭圆E 的方程为=1.(II )假设▱ABCD 能为菱形,则OA ⊥OB ,k OA •k OB =﹣1.①当AB ⊥x 轴时,把x=﹣1代入椭圆方程可得: =1,解得y=,取A,则|AD|=2,|AB|=3,此时▱ABCD 不能为菱形.②当AB 与x 轴不垂直时,设直线AB 的方程为:y=k (x+1),A (x 1,y 1),B (x 2,y 2).联立,化为:(3+4k 2)x 2+8k 2x+4k 2﹣12=0,∴x 1+x 2=﹣,x 1x 2=.∴k OA•k OB=====,假设=﹣1,化为k2=﹣,因此平行四边形ABCD不可能是菱形.综上可得:平行四边形ABCD不可能是菱形.(III)①当AB⊥x轴时,由(II)可得:|AD|=2,|AB|=3,此时▱ABCD为矩形,S矩形ABCD=6.②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,∴x1+x2=﹣,x1x2=.|AB|==.点O到直线AB的距离d=.∴S平行四边形ABCD=4×S△OAB==2××=.则S2==<36,∴S<6.因此当平行四边形ABCD为矩形面积取得最大值6.x ;(2)众数是230,中位数为224.21.【答案】(1)0.0075【解析】试题分析:(1)利用频率之和为一可求得的值;(2)众数为最高小矩形底边中点的横坐标;中位数左边和右边的直方图的面积相等可求得中位数.1试题解析:(1)由直方图的性质可得(0.0020.00950.0110.01250.0050.0025)201x ++++++⨯=, ∴0.0075x =.考点:频率分布直方图;中位数;众数. 22.【答案】【解析】解:由复数相等的条件,得﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)解得或﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)【点评】本题考查复数相等的条件,以及方程思想,属于基础题.23.【答案】【解析】解:(1)设等比数列{a n }的公比为q ,∵数列{a n }和{b n }满足a 1•a 2•a 3…a n =2(n ∈N *),a 1=2,∴,,,∴b 1=1,=2q >0,=2q 2,又b 3=3+b 2.∴23=2q 2,解得q=2. ∴a n =2n.∴=a 1•a 2•a 3…a n =2×22×…×2n =,∴.(2)c n ===﹣=,∴数列{c n}的前n项和为S n=﹣+…+=﹣2=﹣2+=﹣﹣1.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、递推式的应用、“裂项求和”,考查了推理能力与计算能力,属于中档题.24.【答案】【解析】【专题】综合题;概率与统计.【分析】(Ⅰ)依据茎叶图,确定甲、乙班数学成绩集中的范围,即可得到结论;(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2,求出概率,可得ξ的分布列和数学期望;(Ⅲ)根据成绩不低于85分的为优秀,可得2×2列联表,计算K2,从而与临界值比较,即可得到结论.【解答】解:(Ⅰ)由茎叶图知甲班数学成绩集中于60﹣9之间,而乙班数学成绩集中于80﹣100分之间,所以乙班的平均分高┉┉┉┉┉┉(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2P(ξ=0)==,P(ξ=1)==,P(ξ=2)==┉┉┉┉┉┉则随机变量ξ的分布列为ξ0 1 2P数学期望Eξ=0×+1×+2×=人﹣┉┉┉┉┉┉┉┉(Ⅲ)2×2列联表为甲班乙班合计优秀 3 10 13不优秀17 10 27合计20 20 40┉┉┉┉┉K2=≈5.584>5.024因此在犯错误的概率不超过0.025的前提下可以认为成绩优秀与教学方式有关.┉┉【点评】本题考查概率的计算,考查独立性检验知识,考查学生的计算能力,属于中档题.。

相关文档
最新文档