19届高考数学一轮复习第七章不等式及推理与证明层级快练42文
(福建专用)2019高考数学一轮复习 第七章 不等式、推理与证明 7.3 合情推理与演绎推理 理 新人教A版
关闭
(1)× (2)× (3)× (4)× (5)√
答案
-7-
知识梳理 考点自测
12345
2.(2017安徽滁州模拟)若大前提是:任何实数的平方都大于0,小前 提是:a∈R,结论是:a2>0,那么这个演绎推理出错在( )
A.大前提 B.小前提 C.推理过程 D.没有出错
本题中大前提是错误的,因为0的平方不大于0,故选A. A
解析 答案
考点1 考点2 考点3 考点4
-20-
思考类比推理的关键是什么? 解题心得类比推理的关键及类型 1.进行类比推理,应从具体问题出发,通过观察、分析、联想进行 对比,提出猜想.其中找到合适的类比对象是解题的关键. 2.类比推理常见的情形有:平面与空间类比;低维与高维类比;等 差数列与等比数列类比;运算类比(加与积,乘与乘方,减与除,除与开 方);数的运算与向量运算类比;圆锥曲线间的类比等.
-21-
考点1 考点2 考点3 考点4
对点训练 2(1)已知在等差数列{an}中,有������11+������121+0…+������20 =
������1+������2+30…+������30,则在等比数列{bn}中,会有类似的结论:
.
(2)设△ABC的三边长分别为a,b,c,△ABC的面积为S,内切圆半径 (为 分1)r别1,0则为������1rS1=���1���,���1S���2+22…,���S���������+3���,������S���2;04类,四=比面30这体������个1A������结B2…C论D������可3的0 知体,积四为面V体,内AB切C球D的半四径个为面R,则的面积 关闭 由R=等比数列的性质知 b1b3.0=b2b29=…=b11b20,所以10 b11b12…b20 =
高考数学一轮复习 第七章 不等式、推理与证明7
高考数学一轮复习第七章不等式、推理与证明7.6推理与证明考试要求 1.了解合情推理的含义,能进行简单的归纳推理和类比推理,体会并认识合情推理在数学发现中的作用.2.了解演绎推理的含义,掌握演绎推理的“三段论”,并能运用“三段论”进行一些简单的演绎推理.3.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点.4.了解反证法的思考过程和特点.知识梳理1.合情推理类型定义特点归纳推理由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理由部分到整体、由个别到一般类比推理由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理由特殊到特殊2.演绎推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.3.直接证明(1)综合法①定义:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②框图表示:P⇒Q1―→Q1⇒Q2―→Q2⇒Q3―→…―→Q n⇒Q(其中P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论).③思维过程:由因导果.(2)分析法①定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.②框图表示:Q⇐P1―→P1⇐P2―→P2⇐P3―→…―→得到一个明显成立的条件(其中Q表示要证明的结论).③思维过程:执果索因.4.间接证明反证法:一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立的证明方法.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.(×)(2)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.(√)(3)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.(×)(4)用反证法证明结论“a>b”时,应假设“a<b”.(×)教材改编题1.已知在数列{a n}中,a1=1,当n≥2时,a n=a n-1+2n-1,依次计算a2,a3,a4后,猜想a n的表达式是()A.a n=3n-1 B.a n=4n-3C.a n=n2D.a n=3n-1答案 C解析a2=a1+3=4,a3=a2+5=9,a4=a3+7=16,a1=12,a2=22,a3=32,a4=42,猜想a n=n2.2.给出下列命题:“①正方形的对角线相等;②矩形的对角线相等,③正方形是矩形”,按照三段论证明,正确的是()A.①②⇒③B.①③⇒②C.②③⇒①D.以上都不对答案 C解析“矩形的对角线相等”是大前提,“正方形是矩形”是小前提,“正方形的对角线相等”是结论.所以②③⇒①.3.用反证法证明命题:“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要作的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根答案 A解析方程x3+ax+b=0至少有一个实根的反面是方程x3+ax+b=0没有实根.题型一合情推理与演绎推理命题点1归纳推理例1如图,第1个图形由正三角形扩展而成,共12个顶点.第n个图形由正n+2边形扩展而来,其中n∈N*,则第n个图形的顶点个数是()A.(2n+1)(2n+2) B.3(2n+2)C.2n(5n+1) D.(n+2)(n+3)答案 D解析由已知中的图形可以得到:当n=1时,图形的顶点个数为12=3×4,当n=2时,图形的顶点个数为20=4×5,当n=3时,图形的顶点个数为30=5×6,当n=4时,图形的顶点个数为42=6×7,……由此可以推断,第n个图形的顶点个数为(n+2)(n+3).命题点2类比推理例2(2022·铜仁质检)在△ABC中,BC⊥AC,AC=a,BC=b,则△ABC的外接圆的半径r=a2+b22,将此结论类比推广到空间中可得:在四面体P-ABC中,P A,PB,PC两两垂直,P A=a,PB=b,PC=c,则四面体P-ABC的外接球的半径R=________.答案a2+b2+c22解析可以类比得到:在四面体P-ABC中,P A,PB,PC两两垂直,P A=a,PB=b,PC =c,四面体P-ABC的外接球的半径R=a2+b2+c22.下面进行证明:可将图形补成以P A,PB,PC为邻边的长方体,则四面体P-ABC的外接球即为长方体的外接球,所以半径R=a2+b2+c22.命题点3演绎推理例3下面是小明同学利用三段论模式给出的一个推理过程:①若{a n}是等比数列,则{a n+a n+1}是等比数列(大前提),②若b n=(-1)n,则数列{b n}是等比数列(小前提),③所以数列{b n +b n+1}是等比数列(结论),以上推理()A.结论正确B.大前提不正确C.小前提不正确D.全不正确答案 B解析大前提错误:当a n=(-1)n时,a n+a n+1=0,此时{a n+a n+1}不是等比数列;小前提正确:∵b n=(-1)n,∴b nb n-1=-1n-1n-1=-1(n≥2,n∈N*)为常数,∴数列{b n}是首项为-1,公比为-1的等比数列;结论错误:b n+b n+1=(-1)n+(-1)n+1=0,故数列{b n+b n+1}不是等比数列.教师备选1.观察下列各式:72=49,73=343,74=2 401,…,则72 023的末两位数字为()A.01 B.43 C.07 D.49答案 B解析∵72=49,73=343,74=2 401,75=16 807,76=117 649,78=823 543,…,∴7n(n≥2,n∈N*)的末两位数字具备周期性,且周期为4,∵2 023=4×505+3,∴72 023和73的末两位数字相同,故72 023的末两位数字为43.2.在等差数列{a n}中,若a10=0,则有等式a1+a2+…+a n=a1+a2+…+a19-n(n<19且n∈N*)成立,类比上述性质,在等比数列{b n}中,若b11=1,则有()A.b1·b2·…·b n=b1·b2·…·b19-n(n<19且n∈N*)B.b1·b2·…·b n=b1·b2·…·b21-n(n<21且n∈N*)C.b1+b2+…+b n=b1+b2+…+b19-n(n<19且n∈N*)D.b1+b2+…+b n=b1+b2+…+b21-n(n<21且n∈N*)答案 B解析在等差数列{a n}中,若s+t=p+q(s,t,p,q∈N*),则a s+a t=a p+a q,若a m=0,则a n+1+a n+2+…+a2m-2-n+a2m-1-n=0,所以a1+a2+…+a n=a1+a2+…+a2m-1-n成立,当m=10时,a1+a2+…+a n=a1+a2+…+a19-n(n<19且n∈N*)成立,在等比数列{b n}中,若s+t=p+q(s,t,p,q∈N*),则b s b t=b p b q,若b m=1,则b n+1b n+2·…·b2m-2-n b2m-1-n=1,所以b1b2·…·b n=b1b2·…·b2m-1-n成立,当m=11时,b1b2·…·b n=b1b2·…·b21-n(n<21且n∈N*)成立.3.“对数函数是非奇非偶函数,f(x)=log2|x|是对数函数,因此f(x)=log2|x|是非奇非偶函数”,以上推理()A.结论正确B.大前提错误C.小前提错误D.推理形式错误答案 C解析本命题的小前提是f(x)=log2|x|是对数函数,但是这个小前提是错误的,因为f(x)=log2|x|不是对数函数,它是一个复合函数,只有形如y=log a x(a>0且a≠1)的才是对数函数.故选C. 思维升华(1)归纳推理问题的常见类型及解题策略①与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号.②与式子有关的推理.观察每个式子的特点,注意纵向对比,找到规律.③与图形变化有关的推理.合理利用特殊图形归纳推理出结论,并用赋值检验法验证其真伪性.(2)类比推理常见的情形有:平面与空间类比;低维与高维类比;等差与等比数列类比;运算类比;数的运算与向量运算类比;圆锥曲线间的类比等.跟踪训练1(1)(2022·南昌模拟)已知x>0,不等式x+1x≥2,x+4x2≥3,x+27x3≥4,…,可推广为x+ax n≥n+1,则a的值为()A.n2B.n n C.2n D.22n-2答案 B解析由题意,当分母的指数为1时,分子为11=1;当分母的指数为2时,分子为22=4;当分母的指数为3时,分子为33=27;据此归纳可得x+ax n≥n+1中,a的值为n n.(2)类比是学习探索中一种常用的思想方法,在等差数列与等比数列的学习中我们发现:只要将等差数列的一个关系式中的运算“+”改为“×”,“-”改为“÷”,正整数改为正整数指数幂,相应地就可以得到与等比数列的一个形式相同的关系式,反之也成立.在等差数列{a n}中有a n -k +a n +k =2a n (n >k ),借助类比,在等比数列{b n }中有________.答案 b n -k b n +k =b 2n (n >k )解析 由题设描述,将左式加改乘,则相当于a n -k +a n +k 改写为b n -k b n +k ;将右式正整数2改为指数,则相当于2a n 改写为b 2n ,∴等比数列{b n }中有b n -k b n +k =b 2n (n >k ).(3)(2022·银川模拟)一道四个选项的选择题,赵、钱、孙、李各选了一个选项,且选的恰好各不相同.赵说:“我选的是A.”钱说:“我选的是B ,C ,D 之一.”孙说:“我选的是C.”李说:“我选的是D.”已知四人中只有一人说了假话,则说假话的人可能是________.答案 孙、李解析 赵不可能说谎,否则由于钱不选A ,则孙和李之一选A ,出现两人说谎. 钱不可能说谎,否则与赵同时说谎;所以可能的情况是赵、钱、孙、李选择的分别为(A ,C ,B ,D)或(A ,D ,C ,B),所以说假话的人可能是孙、李.题型二 直接证明与间接证明命题点1 综合法例4 设a ,b ,c 均为正数,且a +b +c =1,证明:(1)ab +bc +ca ≤13; (2)a 2b +b 2c +c 2a≥1. 证明 (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,得a 2+b 2+c 2≥ab +bc +ca .由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1,所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13, 当且仅当“a =b =c ”时等号成立.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c , 当且仅当“a 2=b 2=c 2”时等号成立,故a 2b +b 2c +c 2a+(a +b +c )≥2(a +b +c ), 则a 2b +b 2c +c 2a≥a +b +c . 所以a 2b +b 2c +c 2a≥1. 命题点2 分析法例5 用分析法证明:当x ≥0,y ≥0时,2y ≥x +2y -x .证明 要证不等式成立, 只需证x +2y ≥x +2y 成立,即证(x +2y )2≥(x +2y )2成立,即证x +2y +22xy ≥x +2y 成立, 即证2xy ≥0成立,因为x ≥0,y ≥0,所以2xy ≥0,所以原不等式成立.命题点3 反证法例6 已知非零实数a ,b ,c 两两不相等.证明:三个一元二次方程ax 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0不可能都只有一个实根.证明 假设三个方程都只有一个实根,则⎩⎪⎨⎪⎧ b 2-ac =0, ①c 2-ab =0, ②a 2-bc =0. ③①+②+③,得a 2+b 2+c 2-ab -bc -ca =0,④ ④化为(a -b )2+(b -c )2+(c -a )2=0.⑤ 于是a =b =c ,这与已知条件相矛盾.因此,所给三个方程不可能都只有一个实根. 教师备选(2022·贵州质检)请在综合法、分析法、反证法中选择两种不同的方法证明:(1)如果a >0,b >0,则lg a +b 2≥lg a +lg b 2; (2)22-7>10-3.解 (1)方法一 (综合法)因为a >0,b >0,所以a +b 2≥ab , 所以lg a +b 2≥lg ab . 因为lg ab =12lg(ab )=12(lg a +lg b ), 所以lg a +b 2≥lg a +lg b 2. 方法二 (分析法)要证lg a +b 2≥lg a +lg b 2, 即证lg a +b 2≥12lg(ab )=lg ab , 即证a +b 2≥ab , 由a >0,b >0,上式显然成立,则原不等式成立.(2)方法一 (分析法)要证22-7>10-3,即证22+3>10+7,即证(22+3)2>(10+7)2.即证17+122>17+270,即证122>270,即证62>70.因为(62)2=72>(70)2=70,所以62>70成立.由上述分析可知22-7>10-3成立.方法二 (综合法)由22-7=122+7,且10-3=110+3, 由22<10,7<3, 可得22+7<10+3, 可得122+7>110+3, 即22-7>10-3成立.思维升华 (1)综合法证题从已知条件出发,分析法从要证结论入手,证明一些复杂问题,可采用两头凑的方法.(2)反证法适用于不好直接证明的问题,应用反证法证明时必须先否定结论.跟踪训练2 (1)已知a >0,b >0,求证:a +b 2≥2ab a +b; (2)已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0,c >0.证明 (1)∵a >0,b >0,要证a +b 2≥2ab a +b, 只要证(a +b )2≥4ab ,只要证(a +b )2-4ab ≥0,即证a 2-2ab +b 2≥0,而a 2-2ab +b 2=(a -b )2≥0恒成立,故a +b 2≥2ab a +b成立. (2)假设a ,b ,c 不全是正数,即至少有一个不是正数,不妨先设a ≤0,下面分a =0和a <0两种情况讨论,如果a =0,则abc =0与abc >0矛盾,所以a =0不可能,如果a <0,那么由abc >0可得,bc <0,又因为a +b +c >0,所以b +c >-a >0,于是ab +bc +ca =a (b +c )+bc <0,这和已知ab +bc +ca >0相矛盾,因此,a <0也不可能,综上所述,a >0,同理可证b >0,c >0,所以原命题成立.课时精练1.指数函数都是增函数(大前提),函数y =⎝⎛⎭⎫1e x 是指数函数(小前提),所以函数y =⎝⎛⎭⎫1e x 是增函数(结论).上述推理错误的原因是( )A .小前提不正确B .大前提不正确C .推理形式不正确D .大、小前提都不正确答案 B解析 大前提错误.因为指数函数y =a x (a >0,且a ≠1)在a >1时是增函数,而在0<a <1时为减函数.2.(2022·大庆联考)用反证法证明命题:“若a 2+b 2+c 2+d 2=0,则a ,b ,c ,d 都为0”.下列假设中正确的是( )A .假设a ,b ,c ,d 都不为0B .假设a ,b ,c ,d 至多有一个为0C .假设a ,b ,c ,d 不都为0D .假设a ,b ,c ,d 至少有两个为0答案 C解析 需假设a ,b ,c ,d 不都为0.3.若一个带分数的算术平方根等于带分数的整数部分乘以分数部分的算术平方根,则称该带分数为“穿墙数”,例如223=223.若一个“穿墙数”的整数部分等于log 28,则分数部分等于( )A.37B.49C.38D.716答案 C解析 因为log 28=3,所以可设这个“穿墙数”为3+n m, 则3+n m =3n m , 等式两边平方得3+n m =9n m , 即n m =38. 4.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形内角和是180°,归纳出所有三角形的内角和都是180°;③某次考试张军成绩是100分,由此推出全班同学成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,归纳出n 边形内角和是(n -2)·180°.A .①②B .①③④C .①②④D .②④答案 C解析 ①为类比推理,从特殊到特殊,正确;②④为归纳推理,从特殊到一般,正确;③不符合类比推理和归纳推理的定义,错误.5.(2022·普宁模拟)有一个游戏,将标有数字1,2,3,4的四张卡片分别随机发给甲、乙、丙、丁4个人,每人一张,并请这4个人在看自己的卡片之前进行预测:甲说:乙或丙拿到标有3的卡片;乙说:甲或丙拿到标有2的卡片;丙说:标有1的卡片在甲手中;丁说:甲拿到标有3的卡片.结果显示:甲、乙、丙、丁4个人的预测都不正确,那么丁拿到卡片上的数字为( )A .1B .2C .3D .4答案 C解析 乙、丙、丁所说为假⇒甲拿4,甲、乙所说为假⇒丙拿1,甲所说为假⇒乙拿2, 故甲、乙、丙、丁4个人拿到的卡片上的数字依次为4,2,1,3.6.观察下列数的特点:1,2,2,3,3,3,4,4,4,4,…,则第2 023项是( )A .61B .62C .63D .64答案 D解析 由规律可得,数字相同的数的个数依次为1,2,3,4,…,n .由n n +12≤2 023,得n ≤63,且n ∈N *, 当n =63时,共有63×642=2 016项, 则第2 017项至第2 080项均为64,即第2 023项是64.7.观察下列各式:已知a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则归纳猜测a 7+b 7=________.答案 29解析 观察发现,1+3=4,3+4=7,4+7=11,又7+11=18,11+18=29,∴a 7+b 7=29.8.若三角形内切圆半径为r ,三边长为a ,b ,c ,则三角形的面积S =12(a +b +c )r ,利用类比思想:若四面体内切球半径为R ,四个面的面积为S 1,S 2,S 3,S 4,则四面体的体积V =________.答案 13R (S 1+S 2+S 3+S 4) 解析 设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和.9.选用恰当的证明方法,证明下列不等式.(1)证明:6+7>22+5;(2)设a ,b ,c 都是正数,求证:bc a +ac b +ab c≥a +b +c . 证明 (1)要证6+7>22+5,只需证明(6+7)2>(22+5)2,即证明242>240,也就是证明42>40,式子显然成立,故原不等式成立.(2)2⎝⎛⎭⎫bc a +ac b +ab c =⎝⎛⎭⎫bc a +ac b +⎝⎛⎭⎫bc a +ab c +⎝⎛⎭⎫ac b +ab c≥2abc 2ab +2acb 2ac +2bca 2bc=2c +2b +2a , 所以bc a +ac b +ab c≥a +b +c ,当且仅当a =b =c 时,等号成立. 10.若x ,y 都是正实数,且x +y >2,求证:1+x y <2与1+y x<2中至少有一个成立. 解 假设1+x y <2和1+y x<2都不成立, 即1+x y ≥2和1+y x≥2同时成立. ∵x >0且y >0,∴1+x ≥2y,1+y ≥2x .两式相加得2+x +y ≥2x +2y ,即x +y ≤2.此与已知条件x +y >2相矛盾, ∴1+x y <2和1+y x<2中至少有一个成立.11.我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在2+2+2+…中“…”即代表无限次重复,但原式却是个定值x ,这可以通过方程2+x =x 确定x =2,类比上述解决方法,则正数1+11+11+…等于( ) A.1+32B.1+52C.-1+52D.-1+32答案 B解析 依题意1+1x=x ,其中x 为正数, 即x 2-x -1=0,解得x =1+52(负根舍去). 12.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m 3分裂后,其中有一个奇数是103,则m 的值是( )A .9B .10C .11D .12答案 B解析 因为底数为2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,所以m 3有m 个奇数,则从底数是2到底数是m 一共有2+3+4+…+m =2+m m -12个奇数,又2n +1=103时,有n =51,则奇数103是从3开始的第52个奇数, 因为9+29-12=44,10+210-12=54,所以第52个奇数是底数为10的数的立方分裂的奇数的其中一个,即m =10.13.在正整数数列中,由1开始依次按如下规则取它的项:第一次取1;第二次取2个连续偶数2,4;第三次取3个连续奇数5,7,9;第四次取4个连续偶数10,12,14,16;第五次取5个连续奇数17,19,21,23,25,按此规律取下去,得到一个子数列1,2,4,5,7,9,10,12,14,16,17,19,…,则在这个子数列中第2 022个数是( )A .3 976B .3 978C .3 980D .3 982答案 C解析 由题意可得,奇数次取奇数个数,偶数次取偶数个数,前n 次共取了1+2+3+…+n =n n +12个数,且第n 次取的最后一个数为n 2, 当n =63时,63×63+12=2 016, 即前63次共取了2 016个数,第63次取的数都为奇数,并且最后一个数为632=3 969, 即第2 016个数为3 969,所以当n =64时,依次取3 970,3 972,3 974,3 976,3 978,3 980,…,所以第2 022个数是3 980.14.(2022·平顶山模拟)某市为了缓解交通压力,实行机动车限行政策,每辆机动车每周一到周五都要限行一天,周六和周日不限行.某公司有A ,B ,C ,D ,E 五辆车,每天至少有四辆车可以上路行驶.已知E 车周四限行,B 车昨天限行,从今天算起,A ,C 两车连续四天都能上路行驶,E 车明天可以上路,由此可推测出今天是星期________.答案 四解析 由题意,A ,C 只能在每周前三天限行,又昨天B 限行,E 车明天可以上路,因此今天不能是一周的前3天,因此今天是周四.这样周一、周二A ,C 限行,周三B 限行,周四E 限行,周五D 限行.满足题意.15.已知a ,b ,c ∈R ,若b a ·c a >1且b a +c a ≥-2,则下列结论成立的是( ) A .a ,b ,c 同号 B .b ,c 同号,a 与它们异号C .a ,c 同号,b 与它们异号D .b ,c 同号,a 与b ,c 的符号关系不确定答案 A解析 由b a ·c a >1知b a 与c a 同号,若b a >0且c a >0,不等式b a +c a ≥-2显然成立,若b a <0且c a <0,则-b a>0,-c a>0,⎝⎛⎭⎫-b a +⎝⎛⎭⎫-c a ≥2⎝⎛⎭⎫-b a ·⎝⎛⎭⎫-c a >2,即b a +c a <-2,这与b a +c a ≥-2矛盾,故b a >0且c a>0,即a ,b ,c 同号.16.已知α,β为锐角,求证:1cos 2α+1sin 2αsin 2βcos 2β≥9. 解 要证1cos 2α+1sin 2αsin 2βcos 2β≥9, 只需证1cos 2α+4sin 2αsin 22β≥9, ① 考虑到sin 22β≤1,可知4sin 2αsin 22β≥4sin 2α, 因而要证①应先证1cos 2α+4sin 2α≥9, 即证sin 2α+cos 2αcos 2α+4sin 2α+cos 2αsin 2α≥9,又sin2α+cos2αcos2α+4sin2α+cos2αsin2α=sin2αcos2α+4cos2αsin2α+5≥9,所以原不等式成立.。
2019年高考数学(理)一轮复习第七章 不等式习题及答案
第七章⎪⎪⎪不 等 式第一节不等式的性质及一元二次不等式突破点(一) 不等式的性质1.比较两个实大小的方法(1)作差法⎩⎪⎨⎪⎧a -b >0⇔a >b a ,b ∈,a -b =0⇔a =b a ,b ∈,a -b <0⇔a <b a ,b ∈(2)作商法⎩⎪⎨⎪⎧ab>1⇔a >b a ∈R ,b ,ab =1⇔a =b a ∈R ,b,ab <1⇔a <b a∈R ,b2.不等式的基本性质本节主要包括2个知识点: 1.不等式的性质;一元二次不等式.3.不等式的一些常用性质(1)倒的性质①a>b,ab>0⇒1a<1b.②a<0<b⇒1a<1b.③a>b>0,0<c<d⇒ac>bd.④0<a<x<b或a<x<b<0⇒1b<1x<1a.(2)有关分的性质若a>b>0,m>0,则:①ba<b+ma+m;ba>b-ma-m(b-m>0).②ab>a+mb+m;ab<a-mb-m(b-m>0).[例1] (1)已知a1,a2∈(0,1),记M=a1a2,N=a1+a2-1,则M 与N的大小关系是( )A.M<N B.M >NC.M=N D.不确定(2)若a=ln 22,b=ln 33,则a________b(填“>”或“<”).[解析] (1)M-N=a1a2-(a1+a2-1)=a1a2-a1-a2+1=(a1-1)(a2-1),又∵a1∈(0,1),a2∈(0,1),∴a1-1<0,a2-1<0.∴(a1-1)(a2-1)>0,即M-N>0.∴M >N.(2)易知a,b都是正,ba=2ln 33ln 2=log89>1,所以b>a.[答案] (1)B (2)<[方法技巧] 比较两个(式)大小的两种方法[例2] (1)( )A.1a<1bB.ab<b2C.-ab<-a2 D.-1a<-1b(2)下列命题中,正确的是( ) A.若a>b,c>d,则ac>bdB.若ac>bc,则a>bC.若ac2<bc2,则a<bD.若a>b,c>d,则a-c>b-d(3)(2016·西安八校联考)“x1>3且x2>3”是“x1+x2>6且x1x2>9”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件[解析] (1)法一(性质判断):对于A项,由a<b<0,得b-a>0,ab>0,故1a-1b=b-aab>0,1a>1b,故A项错误;对于B项,由a<b<0,得b(a-b)>0,ab>b2,故B项错误;对于C项,由a<b<0,得a(a-b)>0,a2>ab,即-ab>-a2,故C项错误;对于D项,由a<b<0,得a-b<0,ab>0,故-1a-⎝⎛⎭⎪⎫-1b=a-bab<0,-1a<-1b成立,故D项正确.法二(特殊值法):令a=-2,b=-1,则1a=-12>1b=-1,ab=2>b2=1,-ab=-2>-a2=-4,-1a=12<-1b=1.故A、B、C项错误,D项正确.(2)取a=2,b=1,c=-1,d=-2,可知A错误;当c<0时,ac>bc⇒a<b,∴B错误;∵ac2<bc2,∴c≠0,又c2>0,∴a<b,C正确;取a=c=2,b=d=1,可知D错误.(3)x1>3,x2>3⇒x1+x2>6,x1x2>9;反之不成立,例如x1=12,x2=20,x1+x2=412>6,x1x2=10>9,但x1<3.故“x1>3且x2>3”是“x1+x2>6且x1x2>9”的充分不必要条件.[答案] (1)D (2)C (3)A[方法技巧]不等式性质应用问题的常见类型及解题策略(1)不等式成立问题.熟记不等式性质的条件和结论是基础,灵活运用是关键,要注意不等式性质成立的前提条件.(2)与充分、必要条件相结合问题.用不等式的性质分别判断p ⇒q和q⇒p是否正确,要注意特殊值法的应用.(3)与命题真假判断相结合问题.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.能力练通抓应用体验的“得”与“失”1.[考点一]设a,b∈[0,+∞),A=a+b,B=a+b,则A,B的大小关系是( )A.A≤B B.A≥BC.A<B D.A>B解析:选B 由题意得,B2-A2=-2ab≤0,且A≥0,B≥0,可得A≥B.2.[考点二]若m<0,n>0且m+n<0,则下列不等式中成立的是( )A.-n<m<n<-m B.-n<m<-m<nC.m<-n<-m<n D.m<-n<n<-m解析:选D 法一:(取特殊值法)令m=-3,n=2分别代入各选项检验即可.法二:m +n <0⇒m <-n ⇒n <-m ,又由于m <0<n ,故m <-n <n <-m 成立.3.[考点二]若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc<0;③a -c >b -d ;④a (d -c )>b (d -c )中,成立的个是( )A .1B .2C .3D .4解析:选C ∵a >0>b ,c <d <0,∴ad <0,bc >0,∴ad <bc ,故①不成立.∵a >0>b >-a ,∴a >-b >0,∵c <d <0,∴-c >-d >0,∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bdcd<0,故②成立.∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ),a -c >b -d ,故③成立.∵a >b ,d -c >0,∴a (d -c )>b (d -c ),故④成立.成立的个为3.4.[考点二]设a ,b 是实,则“a >b >1”是“a +1a >b +1b”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 因为a +1a -⎝ ⎛⎭⎪⎫b +1b =a -bab -ab ,若a >b >1,显然a +1a -⎝ ⎛⎭⎪⎫b +1b =a -bab -ab>0,则充分性成立,当a =12,b =23时,显然不等式a +1a >b +1b 成立,但a >b >1不成立,所以必要性不成立.突破点(二) 一元二次不等式1.三个“二次”之间的关系2.不等式ax 2+bx +c >0(<0)恒成立的条件 (1)不等式ax 2+bx +c >0对任意实x恒成立⇔⎩⎪⎨⎪⎧ a =b =0,c >0或⎩⎪⎨⎪⎧a >0,Δ<0.(2)不等式ax 2+bx +c <0对任意实x恒成立⇔⎩⎪⎨⎪⎧a =b =0,c <0或⎩⎪⎨⎪⎧a <0,Δ<0.[例1] (1)-3x 2-2x +8≥0; (2)0<x 2-x -2≤4;(3)ax 2-(a +1)x +1<0(a >0). [解] (1)原不等式可为3x 2+2x -8≤0, 即(3x -4)(x +2)≤0.解得-2≤x ≤43,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-2≤x ≤43. (2)原不等式等价于⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -2≤4⇔⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0⇔⎩⎪⎨⎪⎧x -x +>0,x -x +⇔⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.借助于轴,如图所示,原不等式的解集为{}x |-2≤x <-1或2<x ≤3. (3)原不等式变为(ax -1)(x -1)<0,因为a >0,所以a ⎝⎛⎭⎪⎫x -1a (x -1)<0.所以当a >1,即1a <1时,解为1a<x <1;当a =1时,解集为∅;当0<a <1,即1a >1时,解为1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a<x <1. [方法技巧]1.解一元二次不等式的方法和步骤(1):把不等式变形为二次项系大于零的标准形式. (2)判:计算对应方程的判别式.(3)求:求出对应的一元二次方程的根,或根据判别式说明方程有没有实根.(4)写:利用“大于取两边,小于取中间”写出不等式的解集. 2.解含参的一元二次不等式时分类讨论的依据(1)二次项中若含有参应讨论是等于0,小于0,还是大于0,然后将不等式转为一次不等式或二次项系为正的形式.(2)当不等式对应方程的实根的个不确定时,讨论判别式Δ与0的关系.(3)确定无实根时可直接写出解集,确定方程有两个实根时,要讨论两实根的大小关系,从而确定解集形式.由一元二次不等式恒成立求图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函的图象在给定的区间上全部在x 轴下方.另外,常转为求二次函的最值或用分离参求最值.考法(一) 在实集R 上恒成立[例2] 已知不等式mx 2-2x -m +1<0,是否存在实m 使得对所有的实x ,不等式恒成立?若存在,求出m 的取值范围;若不存在,请说明由.[解] 不等式mx 2-2x -m +1<0恒成立,即函f (x )=mx 2-2x -m +1的图象全部在x 轴下方.当m =0时,1-2x <0,则x >12,不满足题意;当m ≠0时,函f (x )=mx 2-2x -m +1为二次函, 需满足开口向下且方程mx 2-2x -m +1=0无解,即⎩⎪⎨⎪⎧m <0,Δ=4-4m -m <0,不等式组的解集为空集,即m 无解.综上可知不存在这样的实m 使不等式恒成立. 考法(二) 在某区间上恒成立[例3] 设函f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围.[解] 要使f (x )<-m +5在[1,3]上恒成立,则mx 2-mx +m -6<0,即m ⎝⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.法一:令g (x )=m ⎝⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函,所以g (x )max =g (3)=7m -6<0.所以m <67,则0<m <67. 当m <0时,g (x )在[1,3]上是减函,所以g (x )max =g (1)=m -6<0.所以m <6,则m <0.综上所述,m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪ 0<m <67或m <0. 法二:因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1. 因为函y =6x 2-x +1=6⎝⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 因为m ≠0,所以m 的取值范围是mm <0或0<m <67. 考法(三) 在参的某区间上恒成立时求变量范围[例4] 对任意m ∈[-1,1],函f (x )=x 2+(m -4)x +4-2m 的值恒大于零,求x 的取值范围.[解] 由f (x )=x 2+(m -4)x +4-2m =(x -2)m +x 2-4x +4,令g (m )=(x -2)m +x 2-4x +4,则原问题转为关于m 的一次函问题.由题意知在[-1,1]上,g (m )的值恒大于零,∴⎩⎪⎨⎪⎧ g -=x --+x 2-4x +4>0,g =x -+x 2-4x +4>0,解得x <1或x >3.故当x 的取值范围是(-∞,1)∪(3,+∞)时,对任意的m ∈[-1,1],函f (x )的值恒大于零.[易错提醒]解决恒成立问题一定要清楚选谁为主元,谁是参.一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参.即把变元与参交换位置,构造以参为变量的函,根据原变量的取值范围列式求解.能力练通 抓应用体验的“得”与“失”1.[考点一]不等式组⎩⎪⎨⎪⎧ x x +,|x |<1的解集为( )A .{x |-2<x <-1}B .{x |-1<x <0}C .{x |0<x <1}D .{x |x >1}解析:选C 解x (x +2)>0,得x <-2或x >0;解|x |<1,得-1<x <1.因为不等式组的解集为两个不等式解集的交集,即解集为{x |0<x <1}.2.[考点一]已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x-6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b 等于( )A .-3B .1C .-1D .3解析:选A 由题意得,A ={x |-1<x <3},B ={x |-3<x <2},∴A ∩B ={x |-1<x <2},由根与系的关系可知,a =-1,b =-2,则a +b =-3. 3.[考点二·考法一若不等式2kx 2+kx -38<0对一切实x 都成立,则k 的取值范围为( )A .(-3,0)B .[-3,0)C .[-3,0]D .(-3,0]解析:选D 当k =0时,显然成立;当k ≠0时,即一元二次不等式2kx 2+kx -38<0对一切实x 都成立, 则⎩⎪⎨⎪⎧ k <0,k 2-4×2k ×⎝ ⎛⎭⎪⎫-38<0,解得-3<k <0. 综上,满足不等式2kx 2+kx -38<0对一切实x 都成立的k 的取值范围是(-3,0]. 4.[考点二·考法二若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( )A .[-4,1]B .[-4,3]C .[1,3]D .[-1,3]解析:选B 原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3. 5.[考点二·考法三要使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立,则x 的取值范围为________.解析:将原不等式整为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0.令f (a )=(x -3)a +x 2-6x +9.因为f (a )>0在|a |≤1时恒成立,所以①若x =3,则f (a )=0,不符合题意,应舍去.②若x ≠3,则由一次函的单调性,可得⎩⎪⎨⎪⎧ f -,f ,即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0,解得x <2或x >4.答案:(-∞,2)∪(4,+∞)[全国卷5年真题集中演练——明规律]1.(2014·新课标全国卷Ⅰ)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( )A.[-2,-1] B.[-1,2)C.[-1,1] D.[1,2)解析:选A A={x|x≤-1或x≥3},故A∩B=[-2,-1],故选A.2.(2014·新课标全国卷Ⅱ)设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=( )A.{1} B.{2}C.{0,1} D.{1,2}解析:选 D N={x|x2-3x+2≤0}={x|1≤x≤2},又M={0,1,2},所以M∩N={1,2}.3.(2013·新课标全国卷Ⅰ)已知集合A={x|x2-2x>0},B={x|-5<x<5},则( )A.A∩B=∅ B.A∪B=RC.B⊆A D.A⊆B解析:选B 集合A={x|x>2或x<0},所以A∪B={x|x>2或x<0}∪{x|-5<x<5}=R,故选B.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强运算能力]1.若a>b>0,则下列不等式不成立的是( )A.1a<1bB.|a|>|b|C .a +b <2ab D.⎝ ⎛⎭⎪⎫12a <⎝ ⎛⎭⎪⎫12b 解析:选C ∵a >b >0,∴1a <1b,且|a |>|b |,a +b >2ab ,又f (x )=⎝ ⎛⎭⎪⎫12x 是减函,∴⎝ ⎛⎭⎪⎫12a <⎝ ⎛⎭⎪⎫12b .故C 项不成立. 2.函f (x )=1-x x +2的定义域为( ) A .[-2,1]B .(-2,1]C .[-2,1)D .(-∞,-2]∪[1,+∞)解析:选B 要使函f (x )=1-x x +2有意义,则⎩⎪⎨⎪⎧ -x x +,x +2≠0,解得-2<x ≤1,即函的定义域为(-2,1].3.已知x >y >z ,x +y +z =0,则下列不等式成立的是( )A .xy >yzB .xz >yzC .xy >xzD .x |y |>z |y |解析:选C 因为x >y >z ,x +y +z =0,所以3x >x +y +z =0,所以x >0,又y >z ,所以xy >xz ,故选C.4.不等式组⎩⎪⎨⎪⎧ x 2-4x +3<0,2x 2-7x +6>0的解集是( )A .(2,3) B.⎝⎛⎭⎪⎫1,32∪(2,3) C.⎝ ⎛⎭⎪⎫-∞,32∪(3,+∞) D .(-∞,1)∪(2,+∞)解析:选B ∵x 2-4x +3<0,∴1<x <3.又∵2x 2-7x +6>0,∴(x-2)(2x -3)>0,∴x <32或x >2,∴原不等式组的解集为⎝ ⎛⎭⎪⎫1,32∪(2,3). 5.已知关于x 的不等式ax 2+2x +c >0的解集为-13,12,则不等式-cx 2+2x -a >0的解集为________.解析:依题意知,⎩⎪⎨⎪⎧ -13+12=-2a ,-13×12=c a ,∴解得a =-12,c =2,∴不等式-cx 2+2x -a >0,即为-2x 2+2x +12>0,即x 2-x -6<0,解得-2<x <3.所以不等式的解集为(-2,3).答案:(-2,3)[练常考题点——检验高考能力]一、选择题1.设集合A ={x |x 2+x -6≤0},集合B 为函y =1x -1的定义域,则A ∩B 等于( )A .(1,2)B .[1,2]C .[1,2)D .(1,2] 解析:选D A ={x |x 2+x -6≤0}={x |-3≤x ≤2},由x -1>0得x >1,即B ={x |x >1},所以A ∩B ={x |1<x ≤2}.2.已知a ,b ,c ∈R ,则下列命题正确的是( )A .a >b ⇒ac 2>bc 2 B.a c >b c⇒a >b C. ⎭⎪⎬⎪⎫a >b ab <0⇒1a >1b D. ⎭⎪⎬⎪⎫a >b ab >0⇒1a >1b解析:选C 当c =0时,ac 2=0,bc 2=0,故由a >b 不能得到ac 2>bc 2,故A 错误;当c <0时,a c >b c ⇒a <b ,故B 错误;因为1a -1b =b -a ab >0⇔⎩⎪⎨⎪⎧ ab >0,a <b 或⎩⎪⎨⎪⎧ ab <0,a >b ,故选项D 错误,C 正确.故选C.3.已知a >0,且a ≠1,m =a a 2+1,n =a a +1,则( )A .m ≥nB .m >nC .m <nD .m ≤n解析:选 B 由题易知m >0,n >0,两式作商,得m n=a (a 2+1)-(a +1)=a a (a -1),当a >1时,a (a -1)>0,所以a a (a -1)>a 0=1,即m >n ;当0<a <1时,a (a -1)<0,所以a a (a -1)>a 0=1,即m >n .综上,对任意的a >0,a ≠1,都有m >n .4.若不等式组⎩⎪⎨⎪⎧ x 2-2x -3≤0,x 2+4x -+a 的解集不是空集,则实a 的取值范围是( )A .(-∞,-4]B .[-4,+∞)C .[-4,3]D .[-4,3)解析:选 B 不等式x 2-2x -3≤0的解集为[-1,3],假设⎩⎪⎨⎪⎧ x 2-2x -3≤0,x 2+4x -a +的解集为空集,则不等式x 2+4x -(a +1)≤0的解集为集合{x |x <-1或x >3}的子集,因为函f (x )=x 2+4x -(a +1)的图象的对称轴方程为x =-2,所以必有f (-1)=-4-a >0,即a <-4,则使⎩⎪⎨⎪⎧ x 2-2x -3≤0,x 2+4x -+a 的解集不为空集的a的取值范围是a ≥-4.5.若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-235,+∞B.⎣⎢⎡⎦⎥⎤-235,1 C .(1,+∞)D.⎝ ⎛⎦⎥⎤-∞,-235 解析:选A 由Δ=a 2+8>0,知方程恒有两个不等实根,又知两根之积为负,所以方程必有一正根、一负根.于是不等式在区间[1,5]上有解的充要条件是f (5)>0,解得a >-235,故a 的取值范围为⎝ ⎛⎭⎪⎫-235,+∞. 6.在R 上定义运算:⎝ ⎛⎭⎪⎫a c b d =ad -bc ,若不等式⎝ ⎛⎭⎪⎫x -1a +1 a -2x ≥1对任意实x 恒成立,则实a 的最大值为( )A .-12B .-32 C.12 D.32解析:选D 由定义知,不等式⎝ ⎛⎭⎪⎫x -1a +1a -2x ≥1等价于x 2-x -(a 2-a -2)≥1,∴x 2-x +1≥a 2-a 对任意实x 恒成立.∵x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,∴a 2-a ≤34,解得-12≤a ≤32,则实a 的最大值为32. 二、填空题7.已知a ,b ,c ∈R ,有以下命题:①若1a <1b ,则c a <c b ;②若a c 2<b c 2,则a <b ; ③若a >b ,则a ·2c >b ·2c .其中正确的是__________(请把正确命题的序号都填上).解析:①若c ≤0,则命题不成立.②由a c 2<b c 2得a -bc 2<0,于是a <b ,所以命题正确.③中由2c >0知命题正确.答案:②③8.若0<a <1,则不等式(a -x )⎝⎛⎭⎪⎫x -1a >0的解集是________. 解析:原不等式为(x -a )⎝⎛⎭⎪⎫x -1a <0,由0<a <1得a <1a ,∴a <x <1a . 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ a <x <1a 9.已知函f (x )=⎩⎪⎨⎪⎧ x 2+ax ,x ≥0,bx 2-3x ,x <0为奇函,则不等式f (x )<4的解集为________.解析:若x >0,则-x <0,则f (-x )=bx 2+3x .因为f (x )为奇函,所以f (-x )=-f (x ),即bx 2+3x =-x 2-ax ,可得a =-3,b =-1,所以f (x )=⎩⎪⎨⎪⎧ x 2-3x ,x ≥0,-x 2-3x ,x <0.当x ≥0时,由x 2-3x <4解得0≤x<4;当x <0时,由-x 2-3x <4解得x <0,所以不等式f (x )<4的解集为(-∞,4).答案:(-∞,4)10.(2016·西安一模)若关于x 的二次不等式x 2+mx +1≥0的解集为R ,则实m 的取值范围是________.解析:不等式x 2+mx +1≥0的解集为R ,相当于二次函y =x 2+mx +1的最小值非负,即方程x 2+mx +1=0最多有一个实根,故Δ=m 2-4≤0,解得-2≤m ≤2.答案:[-2,2]三、解答题11.已知f (x )=-3x 2+a (6-a )x +6.(1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实a ,b 的值. 解:(1)∵f (x )=-3x 2+a (6-a )x +6,∴f (1)=-3+a (6-a )+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a <3+2 3.∴不等式的解集为{a |3-23<a <3+23}.(2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3, ∴⎩⎪⎨⎪⎧ -1+3=a -a 3,-1×3=-6-b 3,解得⎩⎪⎨⎪⎧ a =3±3,b =-3. 故a 的值为3+3或3-3,b 的值为-3.12.已知函f (x )=x 2-2ax -1+a ,a ∈R.(1)若a =2,试求函y =f x x(x >0)的最小值; (2)对于任意的x ∈[0,2],不等式f (x )≤a 成立,试求a 的取值范围.解:(1)依题意得y =f x x =x 2-4x +1x =x +1x-4. 因为x >0,所以x +1x≥2. 当且仅当x =1x时, 即x =1时,等号成立.所以y ≥-2.所以当x =1时,y =f xx的最小值为-2.(2)因为f (x )-a =x 2-2ax -1,所以要使得“对任意的x ∈[0,2],不等式f (x )≤a 成立”只要“x 2-2ax -1≤0在[0,2]恒成立”.不妨设g (x )=x 2-2ax -1,则只要g (x )≤0在[0,2]上恒成立即可.所以⎩⎪⎨⎪⎧g ,g ,即⎩⎪⎨⎪⎧0-0-1≤0,4-4a -1≤0,解得a ≥34.则a 的取值范围为⎣⎢⎡⎭⎪⎫34,+∞.第二节二元一次不等式(组)与简单的线性规划问题突破点(一) 二元一次不等式(组)表示的平面区域1.二元一次不等式(组)表示的平面区域本节主要包括3个知识点:1.二元一次不等式(组)表示的平面区域;2.简单的线性规划问题;3.线性规划的实际应用.2.确定二元一次不等式(组)表示的平面区域的方法步骤1.求平面区域的面积,要先作出不等式组表示的平面区域,然后根据区域的形状求面积.2.求平面区域的面积问题,平面区域形状为三角形的居多,尤其当△ABC 为等腰直角三角形(A 为直角)时,点B 到直线AC 的距离即△ABC 的腰长|AB |.由点到直线的距离公式求得|AB |,面积便可求出.[例1]不等式组⎩⎪⎨⎪⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域的面积为( )A .4B .1C .5D .无穷大[解析]不等式组⎩⎪⎨⎪⎧2x +y -6≤0,x +y -3≥0,y ≤2表示的平面区域如图所示(阴影部分),△ABC的面积即所求.求出点A,B,C的坐标分别为A(1,2),B(2,2),C(3,0),则△ABC的面积为S=12×(2-1)×2=1.[答案] B[方法技巧]解决求平面区域面积问题的方法步骤(1)画出不等式组表示的平面区域;(2)判断平面区域的形状,并求得直线的交点坐标、图形的边长、相关线段的长(三角形的高、四边形的高)等,若为规则图形则利用图形的面积公式求解;若为不规则图形则利用割补法求解.[提醒] 求面积时应考虑圆、平行四边形等图形的对称性.根据平面区域满足的条件求参不等式组中的参影响平面区域的形状,如果不等式组中的不等式含有参,这时它表示的区域的分界线是一条变动的直线,此时要根据参的取值范围确定这条直线的变趋势、倾斜角度、上升还是下降、是否过定点等,确定区域的可能形状,进而根据题目要求求解;如果是一条曲线与平面区域具有一定的位置关系,可以考虑对应的函的变趋势,确定极限情况求解;如果目标函中含有参,则要根据这个目标函的特点考察参变时目标函与平面区域的关系,在运动变中求解.[例2] 若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫43,+∞ B .(0,1]C.⎣⎢⎡⎦⎥⎤1,43D .(0,1]∪⎣⎢⎡⎭⎪⎫43,+∞[解析]不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图所示(阴影部分).由⎩⎪⎨⎪⎧y =x ,2x +y =2,得A 23,23;由⎩⎪⎨⎪⎧y =0,2x +y =2,得B (1,0).若原不等式组表示的平面区域是一个三角形,则直线x +y =a 中a 的取值范围是0<a ≤1或a ≥43.[答案] D[易错提醒]此类问题的难点在于参取值范围的不同导致平面区域或者曲线位置的改变,解答的思路可能会有变,所以求解时要根据题意进行必要的分类讨论及对特殊点、特殊值的考虑.能力练通 抓应用体验的“得”与“失”1.[考点一]设动点P (x ,y )在区域Ω:⎩⎪⎨⎪⎧x ≥0,y ≥x ,x +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω的公共部分为线段AB ,则以AB 为直径的圆的面积的最大值为( )A .πB .2πC .3πD .4π 解析:选D 作出不等式组所表示的可行域如图中阴影部分所示,则根据图形可知,AB 长度的最大值为4,则以AB 为直径的圆的面积为最大值S =π×⎝ ⎛⎭⎪⎫422=4π.2.[考点二]若不等式组⎩⎪⎨⎪⎧x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于43,则m 的值为( )A .-3B .1 C.43D .3解析:选B 作出可行域,如图中阴影部分所示,易求A ,B ,C ,D 的坐标分别为A (2,0),B (1-m,1+m ),C 2-4m3,2+2m 3,D (-2m,0).S △ABC =S △ADB -S △ADC =12|AD |·|y B -y C |=12(2+2m )⎝ ⎛⎭⎪⎫1+m -2+2m 3=(1+m )⎝ ⎛⎭⎪⎫1+m -23=43,解得m =1或m =-3(舍去).3.[考点一]不等式组 ⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.解析:作出不等式组表示的平面区域如图中阴影部分所示,可知S △ABC =12×2×(2+2)=4.答案:44.[考点二]若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a的整点(x ,y )恰有9个,其中整点是指横、纵坐标都是整的点,则整a 的值为________.解析:不等式组所表示的平面区域如图中阴影部分,当a =0时,只有4个整点(1,1),(0,0),(1,0),(2,0);当a =-1时,增加了(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)共5个整点,此时,整点的个共9个,故整a =-1.答案:-1突破点(二) 简单的线性规划问题1.线性规划中的基本概念在确定线性约束条件和线性目标函的前提下,用图解法求最优解的步骤概括为“画、移、求、答”.即线性目标函的最值[例1] 足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0,则目标函z =2x +5y 的最小值为( )A .-4B .6C .10D .17 [解析] 由约束条件作出可行域如图所示,目标函可为y =-25x +15z ,在图中画出直线y =-25x ,平移该直线,易知经过点A 时z最小.又知点A 的坐标为(3,0),∴z min =2×3+5×0=6.故选B.[答案] B [方法技巧]求解线性目标函最值的常用方法线性目标函的最优解一般在平面区域的顶点或边界处取得,所以对于一般的线性规划问题,若可行域是一个封闭的图形,我们可以直接解出可行域的顶点,然后将坐标代入目标函求出相应的值,从而确定目标函的最值;若可行域不是封闭图形还是需要借助截距的几何意义求最值.非线性目标函的最值[例2](2016·山东高考)若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A .4B .9C .10D .12 [解析] 作出不等式组表示的平面区域,如图中阴影部分所示.x 2+y 2表示平面区域内点到原点距离的平方,由⎩⎪⎨⎪⎧x +y =2,2x -3y =9得A (3,-1),由图易得(x 2+y 2)max=|OA |2=32+(-1)2=10.故选C.[答案] C[方法技巧]非线性目标函最值问题的常见类型及求法(1)距离平方型:目标函为z =(x -a )2+(y -b )2时,可转为可行域内的点(x ,y )与点(a ,b )之间的距离的平方求解.(2)斜率型:对形如z =ay +b cx +d(ac ≠0)型的目标函,可利用斜率的几何意义求最值,即先变形为z =a c·y -⎝ ⎛⎭⎪⎫-b a x -⎝ ⎛⎭⎪⎫-d c 的形式,将问题为求可行域内的点(x ,y )与点⎝ ⎛⎭⎪⎫-d c,-b a 连线的斜率的ac 倍的取值范围、最值等.(3)点到直线距离型:对形如z =|Ax +By +C |型的目标函,可先变形为z=A 2+B 2·|Ax +By +C |A 2+B2的形式,将问题为求可行域内的点(x ,y )到直线Ax +By +C =0的距离的A 2+B 2倍的最值.线性规划中的参问题[例3] 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0.若z =ax +y的最大值为4,则a =( )A .3B .2C .-2D .-3 [解析] 画出不等式组表示的平面区域如图阴影部分所示,若z =ax +y 的最大值为4,则最优解为x =1,y =1或x =2,y =0,经检验知x =2,y =0符合题意,∴2a +0=4,此时a =2.[答案] B [方法技巧]求解线性规划中含参问题的两种基本方法(1)把参当成常用,根据线性规划问题的求解方法求出最优解,代入目标函确定最值,通过构造方程或不等式求解参的值或范围;(2)先分离含有参的式子,通过观察的方法确定含参的式子所满足的条件,确定最优解的位置,从而求出参.能力练通 抓应用体验的“得”与“失”1.[考点一]设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x-y 的最大值为( )A .10B .8C .3D .2 解析:选B 作出可行域如图中阴影部分所示,由z =2x -y 得y =2x -z ,作出直线y =2x ,平移使之经过可行域,观察可知,当直线经过点A (5,2)时,对应的z 值最大.故z max =2×5-2=8.2.[考点二]已知(x ,y )满足⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1,则k =y x +1的最大值为( )A.12 B.32 C .1D.14解析:选 C如图,不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1表示的平面区域为△AOB 的边界及其内部区域,k =yx +1=y -0x --表示平面区域内的点(x ,y )和点(-1,0)连线的斜率.由图知,平面区域内的点(0,1)和点(-1,0)连线的斜率最大,所以k max =1-00--=1.3.[考点一](2017·银川模拟)设z =x +y ,其中实x ,y 满足⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,0≤y ≤k ,若z 的最大值为6,则z 的最小值为( )A .-3B .-2C .-1D .0解析:选A 作出实x ,y 满足的平面区域,如图中阴影部分所示,由图知,当目标函z =x +y 经过点C (k ,k )时,取得最大值,且z max =k +k =6,得k =3.当目标函z =x +y 经过点B (-6,3)时,取得最小值,且z min =-6+3=-3,故选A.4.[考点三]x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax取得最大值的最优解不唯一,则实a 的值为( )A.12或-1 B .2或12C .2或1D .2或-1解析:选D 由题中条件画出可行域如图中阴影部分所示,可知A (0,2),B (2,0),C (-2,-2),则z A =2,z B =-2a ,z C=2a -2,要使目标函取得最大值的最优解不唯一,只要z A =z B >z C 或z A =z C >z B 或z B =z C >z A ,解得a =-1或a =2.5.[考点二]设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3,则z =(x+1)2+y 2的最大值为________.解析:作出不等式组⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3表示的平面区域,如图中阴影部分所示.(x +1)2+y 2可看作点(x ,y )到点P (-1,0)的距离的平方,由图可知可行域内的点A 到点P (-1,0)的距离最大.解方程组⎩⎪⎨⎪⎧x =3,x -y +5=0,得A 点的坐标为(3,8),代入z =(x +1)2+y 2,得z max =(3+1)2+82=80.答案:80突破点(三) 线性规划的实际应用解线性规划应用题的一般步骤应用[典例] B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )甲 乙 原料限额 A (吨) 3 2 12 B (吨)128A .12万元B .16万元C .17万元D .18万元[解析] 设每天生产甲、乙产品分别为x 吨、y 吨,每天所获利润为z 万元,则有⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,z =3x +4y ,作出可行域如图阴影部分所示,由图形可知,当直线z =3x +4y 经过点A (2,3)时,z 取最大值,最大值为3×2+4×3=18.[答案] D[易错提醒]求解线性规划应用题的三个注意点(1)明确问题中的所有约束条件,并根据题意判断约束条件是否能够取到等号.(2)注意结合实际问题的实际意义,判断所设未知x ,y 的取值范围,特别注意分析x ,y 是否为整、是否为非负等.(3)正确地写出目标函,一般地,目标函是等式的形式.能力练通 抓应用体验的“得”与“失”1.某校今年计划招聘女教师a 名,男教师b 名,若a ,b 满足不等式组⎩⎪⎨⎪⎧2a -b ≥5,a -b ≤2,a <7,设这所学校今年计划招聘教师最多x 名,则x =( )A .10B .12C .13D .16解析:选C 如图所示,画出约束条件所表示的区域,即可行域,作直线b +a =0,并平移,结合a ,b ∈N ,可知当a =6,b =7时,a +b 取最大值,故x=6+7=13.2.A ,B 两种规格的产品需要在甲、乙两台机器上各自加工一道工序才能成为成品.已知A 产品需要在甲机器上加工3小时,在乙机器上加工1小时;B 产品需要在甲机器上加工1小时,在乙机器上加工3小时.在一个工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A 产品每件利润300元,B 产品每件利润400元,则这两台机器在一个工作日内创造的最大利润是________元.解析:设生产A 产品x 件,B 产品y 件,则x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y ≤11,x +3y ≤9,x ∈N ,y ∈N ,生产利润为z =300x +400y .画出可行域,如图中阴影部分(包含边界)内的整点,显然z =300x +400y 在点M 或其附近的整点处取得最大值,由方程组⎩⎪⎨⎪⎧3x +y =11,x +3y =9,解得⎩⎪⎨⎪⎧x =3,y =2,则z max =300×3+400×2=1 700.故最大利润是1 700元.答案:1 700[全国卷5年真题集中演练——明规律]1.(2014·新课标全国卷Ⅰ)不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D .有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2; p 2:∃(x ,y )∈D ,x +2y ≥2; p 3:∀(x ,y )∈D ,x +2y ≤3; p 4:∃(x ,y )∈D ,x +2y ≤-1.其中的真命题是( ) A .p 2,p 3 B .p 1,p 4 C .p 1,p 2 D .p 1,p 3解析:选C 画出可行域如图中阴影部分所示,由图可知,当目标函z =x +2y 经过可行域内的点A (2,-1)时,取得最小值0,故x +2y ≥0,因此p 1,p 2是真命题,选C.2.(2013·新课标全国卷Ⅱ)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a x-若z =2x +y 的最小值为1,则a =( )A.14 B.12C .1D .2解析:选B 由已知约束条件,作出可行域如图中△ABC 内部及边界部分所示,由目标函z=2x +y 的几何意义为直线l :y =-2x +z 在y 轴上的截距,知当直线l 过可行域内的点B (1,-2a )时,目标函z =2x +y 的最小值为1,则2-2a =1,a =12,故选B.3.(2016·全国丙卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y ≤0,x +2y -2≤0,则z =x +y 的最大值为________.解析:不等式组表示的平面区域如图中阴影部分所示.平移直线x +y =0,当直线经过A 点时,z取得最大值, 由⎩⎪⎨⎪⎧x -2y =0,x +2y -2=0得A 1,12,z max=1+12=32.答案:324.(2016·全国乙卷)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900 元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析:设生产A 产品x 件,B 产品y 件,由已知可得约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *.即⎩⎪⎨⎪⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *.目标函为z =2 100x +900y ,由约束条件作出不等式组表示的可行域如图中阴影部分所示.作直线2 100x +900y =0,即7x +3y =0并上下平移,易知当直线经过点M 时,z取得最大值,联立⎩⎪⎨⎪⎧10x +3y =900,5x +3y =600,解得B (60,100).则z max =2 100×60+900×100=216 000(元). 答案:216 0005.(2015·新课标全国卷Ⅰ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0,x -y ≤0,x +y -4≤0,则yx的最大值为________. 解析:画出可行域如图阴影所示,∵yx表示过点(x ,y )与原点(0,0)的直线的斜率,∴点(x ,y )在点A 处时yx最大.由⎩⎪⎨⎪⎧x =1,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3.∴A (1,3).∴yx的最大值为3.答案:36.(2012·新课标全国卷)设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +y ≤3,x ≥0,y ≥0,则z =x -2y 的取值范围为________.解析:依题意,画出可行域,如图所示,可行域为ABOC ,显然,当直线y =12x -z2过点A (1,2)时,z 取得最小值为-3;当直线过点B (3,0)时,z 取得最大值为3,综上可知z 的取值范围为[-3,3].答案:[-3,3][课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强运算能力]1.下面给出的四个点中,位于⎩⎪⎨⎪⎧x +y -1<0,x -y +1>0表示的平面区域内的点是( )A .(0,2)B .(-2,0)C .(0,-2)D .(2,0)解析:选C 将四个点的坐标分别代入不等式组⎩⎪⎨⎪⎧x +y -1<0,x -y +1>0验证可知,满足条件的只有(0,-2).2.不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于( )A.32B.23C.43D.34解析:选C 平面区域如图中阴影部分所示.解⎩⎪⎨⎪⎧x +3y =4,3x +y =4得A (1,1),易得B (0,4),C ⎝⎛⎭⎪⎫0,43,|BC |=4-43=83.∴S △ABC =12×83×1=43.3.若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为( )A .0B .1 C.32 D .2解析:选D 作出不等式组所表示的平面区域,如图所示.作直线x +2y =0并上下平移,易知当直线过点A (0,1)时,z =x +2y 取最大值,即z max =0+2×1=2.4.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,y +2≥0,x +y +2≥0,则(x +2)2+(y +3)2的最小值为( )A .1B.92C .5D .9解析:选B 不等式组表示的可行域如图阴影部分所示,由题意可知点P (-2,-3)到直线x +y +2=0的距离为|-2-3+2|2=32,所以(x +2)2+(y +3)2的最小值为⎝ ⎛⎭⎪⎪⎫322=92,故选B.5.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函z=3x -y 的最大值为________.解析:根据约束条件作出可行域如图中阴影部分所示,∵z =3x -y ,∴y =3x -z ,当该直线经过点A (2,2)时,z 取得最大值,即z max =3×2-2=4.答案:4[练常考题点——检验高考能力]一、选择题1.若x ,y 满足不等式组⎩⎪⎨⎪⎧x +y -3≤0,x -y +3≥0,y ≥-1,则z =3x +y 的最大值为( )A .11B .-11C .13D .-13解析:选A 将z =3x +y 为y =-3x +z ,作出可行域如图阴影部分所示,易知当直线y =-3x +z 经过点D 时,z 取得最大值.联立⎩⎪⎨⎪⎧x +y -3=0,y =-1,得D (4,-1),此时z max =4×3-1=11,故选A.2.(2017·河南八市高三质检)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥2,x +y ≤4,-2x +y +c ≥0,目标函z =6x +2y 的最小值是10,则z 的最大值是( )A .20B .22C .24D .26 解析:选A 由z =6x +2y ,得y =-3x +z2,作出不等式组所表示可行域的大致图形如图中阴影部分所示,由图可知当直线y =-3x +z2经过点C 时,直线的纵截距最小,即z =6x +2y 取得最小值10,由⎩⎪⎨⎪⎧6x +2y =10,x =2,解得⎩⎪⎨⎪⎧x =2,y =-1,即C (2,-1),将其代入直线方程-2x +y +c =0,得c =5,即直线方程为-2x +y +5=0,平移直线3x +y =0,当直线经过点D 时,直线的纵截距最大,此时z 取最大值,由⎩⎪⎨⎪⎧-2x +y +5=0,x +y =4,得⎩⎪⎨⎪⎧x =3,y =1,即D (3,1),将点D 的坐标代入目标函z =6x +2y ,得z max =6×3+2=20,故选A.3.若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2 C.12 D .-12解析:选 D作出线性约束条件⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0的可行域.当k ≥0时,如图(1)所示,此时可行域为x 轴上方、直线x +y -2=0的右上方、直线kx -y +2=0的右下方的区域,显然此时z =y -x 无最小值.当k <-1时,z =y -x 取得最小值2;当k =-1时,z =y -x 取得最小值-2,均不符合题意.当-1<k <0时,如图(2)所示,此时可行域为点A (2,0),B ⎝ ⎛⎭⎪⎫-2k ,0,C (0,2)所围成的三角形区域,当直线z =y -x 经过点B ⎝ ⎛⎭⎪⎫-2k ,0时,有最小值,即-⎝ ⎛⎭⎪⎫-2k =-4,即k =-12.故选D.。
2019版高考数学一轮总复习第七章不等式及推理与证明专题研究2数学归纳法课件理
★状元笔记★ 证明整除问题的关键——“凑项”
证明整除问题的关键是“凑项”,即采用增项、减项、拆 项和因式分解等手段,将n=k+1时的式子凑出n=k时的情形, 从而利用归纳假设使问题获证.
思考题3 (2017·西安模拟)试证:当n∈N*时,f(n)=32n+ 2-8n-9能被64整除.
【证明】 (1)当n=1时,f(1)=64,命题显然成立. (2)假设当n=k(k∈N*,k≥1)时,f(k)=32k+2-8k-9能被64整 除.
(2)假设 n=k(k≥1,k∈N*)时等式成立.
即2×1 4+4×1 6+…+2k(21k+2)=4(kk+1)成立,那么当
n=k+1
时
,
1 2×4
+
1 4×6
+
1 6×8
+
…
+
1 2k(2k+2)
+
1 2(k+1)[2(k+1)+2]
=
k 4(k+1)
+
1 4(k+1)(k+2)
=
4(kk(+k1+)2()k++12)=4(k+(1k)+(1)k+2 2)=4[(kk++11)+1],
当n=k+1时,由于32(k+1)+2-8(k+1)-9 =9(32k+2-8k-9)+9·8k+9·9-8(k+1)-9 =9(32k+2-8k-9)+64(k+1), 即f(k+1)=9f(k)+64(k+1), ∴n=k+1时命题也成立. 根据(1)、(2)可知, 对于任意n∈N*,命题都成立. 【答案】 略
=k+1 2+k+1 3+…+2k1+1+2k1+2. 即当 n=k+1 时,等式也成立. 综合(1),(2)可知,对一切 n∈N*,等式成立. 【答案】 略
★状元笔记★ 用数学归纳法证明恒等式的方法
高考数学一轮复习 第七章 不等式、推理与证明7
高考数学一轮复习 第七章 不等式、推理与证明7.5 基本不等式的综合应用题型一 基本不等式与其他知识交汇的最值问题例1 (1)(2022·成都模拟)已知直线ax +by -1=0(a >0,b >0)与圆x 2+y 2=4相切,则log 2a +log 2b 的最大值为( )A .3B .2C .-2D .-3答案 D解析 因为直线ax +by -1=0(a >0,b >0)与圆x 2+y 2=4相切, 所以1a 2+b 2=2,即a 2+b 2=14,因为a 2+b 2≥2ab ,所以ab ≤18(当且仅当a =b 时,等号成立),所以log 2a +log 2b =log 2(ab )≤log 218=-3,所以log 2a +log 2b 的最大值为-3.(2)(2022·合肥质检)若△ABC 的内角满足sin B +sin C =2sin A ,则( )A .A 的最大值为π3B .A 的最大值为2π3C .A 的最小值为π3D .A 的最小值为π6答案 A解析 ∵sin B +sin C =2sin A .∴b +c =2a .由余弦定理知cos A =b 2+c 2-a 22bc =b 2+c 2-b +c242bc=3b 2+c 2-2bc 8bc ≥6bc -2bc 8bc =12, 当且仅当b =c 时取等号.又A ∈(0,π), ∴0<A ≤π3,即A 的最大值为π3. 教师备选已知椭圆x 2a 2+y 2b 2=1(a >b >0)的两焦点分别为F 1,F 2.若椭圆上有一点P ,使PF 1⊥PF 2,则b a的取值范围是( )A.⎝⎛⎦⎤0,12 B.⎝⎛⎦⎤0,22 C.⎣⎡⎦⎤12,22 D.⎣⎡⎭⎫22,1 答案 B解析 设|PF 1|=m ,|PF 2|=n ,则m +n =2a ,m 2+n 2=4c 2,∴2mn =4a 2-4c 2=4b 2,又2mn ≤2⎝⎛⎭⎫m +n 22, 即4b 2≤2⎝⎛⎭⎫2a 22,∴2b 2≤a 2,∴0<b a ≤22. 思维升华 基本不等式与其他知识相结合时,往往是提供一个应用基本不等式的条件,一般利用常数代换法求最值,要注意最值成立的条件.跟踪训练1 (1)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则1a +4b 的最小值等于( ) A .2 B.32 C.12D .1 答案 B解析 ∵函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,∴f ′(x )=12x 2-2ax -2b ,则f ′(1)=12-2a -2b =0,即a +b =6,又a >0,b >0.∴1a +4b =16⎝⎛⎭⎫1a +4b (a +b ) =56+16⎝⎛⎭⎫b a +4a b ≥56+16×2b a ·4a b =32, 当且仅当2a =b =4时,等号成立.此时满足在x =1处有极值.∴1a +4b 的最小值等于32. (2)已知数列{a n }是等比数列,若a 2a 5a 8=-8,则a 9+9a 1的最大值为________.答案 -12解析 ∵a 2a 5a 8=-8,∴a 35=-8,∴a 5=-2,∴a 1<0,a 9<0,a 9+9a 1=-(-a 9-9a 1)≤-2-a 9-9a 1=-29a 1a 9 =-29·a 25=-12,当且仅当-a 9=-9a 1时取等号.题型二 求参数值或取值范围例2 (1)已知函数f (x )=4x +ax (x >0,a >0)在x =3时取得最小值,则a 等于( )A .6B .8C .16D .36答案 D解析 因为f (x )=4x +ax (x >0,a >0),故4x +a x ≥24x ·ax =4a ,当且仅当4x =ax ,即x =a2时取等号,故a2=3,a =36.(2)已知x ,y 属于正实数,若不等式4x +9y ≥mx +y 恒成立,则实数m 的取值范围是() A .(-∞,9] B .(-∞,16]C .(-∞,25]D .(-∞,36]答案 C解析 因为x ,y 属于正实数,所以不等式4x +9y ≥mx +y 恒成立,即m ≤⎣⎡⎦⎤⎝⎛⎭⎫4x +9y x +y min ,因为⎝⎛⎭⎫4x +9y (x +y )=13+4y x +9x y≥13+24y x ·9x y=25, 当且仅当4y x =9x y,即3x =2y 时,等号成立, 所以m ≤25.教师备选(2022·沙坪坝模拟)已知函数f (x )=2x 3+3x (x ∈R ),若不等式f (2m +mt 2)+f (4t )<0对任意实数t ≥1恒成立,则实数m 的取值范围为( )A .(-∞,-2)∪(2,+∞)B.⎝⎛⎭⎫-∞,43 C .(-∞,-2)D .(-2,-2)答案 C解析 ∵f (x )的定义域为R ,且f (-x )=-2x 3-3x =-f (x ),∴f (x )是奇函数,且f (x )在R 上单调递增,则不等式f (2m +mt 2)+f (4t )<0等价于f (2m +mt 2)<-f (4t )=f (-4t ),∴2m +mt 2<-4t ,即m <-4t t 2+2对t ≥1恒成立, ∵-4t t 2+2=-4t +2t ≥-42t ·2t=-2, 当且仅当t =2t,即t =2时等号成立, ∴m <- 2.思维升华 求参数的值或取值范围时,要观察题目的特点.利用基本不等式确定等号成立的条件,从而得到参数的值或范围.跟踪训练2 (1)(2022·杭州模拟)已知k ∈R ,则“对任意a ,b ∈R ,a 2+b 2≥kab ”是“k ≤2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 因为对任意a ,b ∈R ,有a 2+b 2≥2ab ,而对任意a ,b ∈R ,a 2+b 2≥kab ,所以-2≤k ≤2,因为[-2,2]是(-∞,2]的真子集,所以“对任意a ,b ∈R ,a 2+b 2≥kab ”是“k ≤2”的充分不必要条件.(2)(2022·济宁质检)命题p :∃x ∈(0,+∞),x 2-λx +1=0,当p 是真命题时,则λ的取值范围是________.答案 [2,+∞)解析 依题意,方程x 2-λx +1=0有正解,即λ=x +1x有正解, 又x >0时,x +1x≥2, ∴λ≥2.题型三 基本不等式的实际应用例3 小王于年初用50万元购买了一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为(25-x )万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)解 (1)设大货车运输到第x 年年底,该车运输累计收入与总支出的差为y 万元,则y =25x -[6x +x (x -1)]-50=-x 2+20x -50(0<x ≤10,x ∈N *),由-x 2+20x -50>0,可得10-52<x ≤10. 因为2<10-52<3,所以大货车运输到第3年年底,该车运输累计收入超过总支出.(2)因为利润=累计收入+销售收入-总支出,所以二手车出售后,小王的年平均利润为y +25-x x =19-⎝⎛⎭⎫x +25x ≤19-225=9,当且仅当x =25x,即x =5时,等号成立,所以小王应当在第5年年底将大货车出售,能使小王获得的年平均利润最大.教师备选某高级中学高二年级部为了更好的督促本年级学生养成节约用水、珍惜粮食、爱护公物的良好习惯,现要设计如图所示的一张矩形宣传海报,该海报含有大小相等的左中右三个矩形栏目,这三栏的面积之和为60 000 cm 2,四周空白的宽度为10 cm ,栏与栏之间的中缝空白的宽度为 5 cm.怎样确定矩形栏目高与宽的尺寸,能使整个矩形海报面积最小,其最小值是________ cm 2.答案 72 600解析 设矩形栏目的高为a cm ,宽为b cm ,由题意可得3ab =60 000,所以ab =20 000,即b =20 000a, 所以该海报的高为(a +20)cm ,宽为(3b +10×2+5×2)cm ,即(3b +30)cm ,所以整个矩形海报面积S =(a +20)(3b +30)=3ab +30a +60b +600=30(a +2b )+60 600=30⎝⎛⎭⎫a +40 000a +60 600 ≥30×2a ·40 000a+60 600 =30×400+60 600=72 600, 当且仅当a =40 000a,即a =200时等号成立, 所以当广告栏目的高为200 cm ,宽为100 cm 时,能使整个矩形海报面积最小,其最小值是72 600 cm 2.思维升华 利用基本不等式求解实际问题时,要根据实际问题,设出变量,注意变量应满足实际意义,抽象出目标函数的表达式,建立数学模型,再利用基本不等式求得函数的最值. 跟踪训练3 网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2021年10月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x 万件与投入实体店体验安装的费用t 万元之间满足函数关系式x =3-2t +1.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是______万元.答案 37.5解析 由题意知t =23-x -1(1<x <3),设该公司的月利润为y 万元,则y =⎝⎛⎭⎫32×150%+t 2x x -32x -3-t =16x -t 2-3=16x -13-x +12-3=45.5-⎣⎡⎦⎤163-x +13-x ≤45.5-216=37.5,当且仅当x =114时取等号, 即最大月利润为37.5万元. 课时精练1.(2022·苏州模拟)设直线l 与曲线y =x 3-2x+1相切,则l 斜率的最小值为( ) A. 6 B .4 C .2 6 D .3 2答案 C解析 因为x ≠0,所以x 2>0,因为y ′=3x 2+2x 2≥26⎝⎛⎭⎫当且仅当3x 2=2x 2,等号成立, 所以l 斜率的最小值为2 6.2.(2021·新高考全国Ⅰ)已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( )A .13B .12C .9D .6答案 C解析 由椭圆C :x 29+y 24=1, 得|MF 1|+|MF 2|=2×3=6,则|MF 1|·|MF 2|≤⎝⎛⎭⎫|MF 1|+|MF 2|22=32=9,当且仅当|MF 1|=|MF 2|=3时等号成立.3.(2022·北京人大附中模拟)数列{a n }是等差数列 ,{b n }是各项均为正数的等比数列,公比q >1,且a 5=b 5,则( )A .a 3+a 7>b 4+b 6B .a 3+a 7≥b 4+b 6C .a 3+a 7<b 4+b 6D .a 3+a 7=b 4+b 6 答案 C解析 因为数列{a n }是等差数列,{b n }是各项均为正数的等比数列,所以a 3+a 7=2a 5=2b 5,b 4+b 6≥2b 4b 6=2b 5,所以a 3+a 7≤b 4+b 6,又因为公比q >1,所以a 3+a 7<b 4+b 6.4.已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8答案 B解析 已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,只要求(x +y )⎝⎛⎭⎫1x +a y 的最小值大于或等于9,∵(x +y )⎝⎛⎭⎫1x +a y =1+a +y x +ax y≥a +2a +1,当且仅当y =ax 时,等号成立,∴a +2a +1≥9, ∴a ≥2或a ≤-4(舍去),∴a ≥4,即正实数a 的最小值为4.5.(2022·湖南五市十校联考)原油作为“工业血液”“黑色黄金”,其价格的波动牵动着整个化工产业甚至世界经济.小李在某段时间内共加油两次,这段时间燃油价格有升有降,现小李有两种加油方案:第一种方案是每次加油40升,第二种方案是每次加油200元,则下列说法正确的是( )A .第一种方案更划算B .第二种方案更划算C .两种方案一样D .无法确定答案 B解析 设小李这两次加油的油价分别为x 元/升、y 元/升(x ≠y ),则方案一:两次加油平均价格为40x +40y 80=x +y 2>xy , 方案二:两次加油平均价格为400200x +200y=2xy x +y <xy , 故无论油价如何起伏,方案二比方案一更划算.6.已知p :存在实数x ,使4x +2x ·m +1=0成立,若綈p 是假命题,则实数m 的取值范围是( )A .(-∞,-2]B .(-∞,-2)C .(0,+∞)D .(1,+∞)答案 A解析 ∵綈p 为假命题,∴p 为真命题,即关于x 的方程4x +2x ·m +1=0有解.由4x +2x ·m +1=0,得m =-2x -12x =-⎝⎛⎭⎫2x +12x ≤-22x ·12x =-2, 当且仅当2x =12x ,即x =0时,取等号.∴m 的取值范围为(-∞,-2].7.(2022·焦作质检)若数列{a n }满足a 2=9,a n -1+n =a n +1(n ≥2且n ∈N *),则a n n 的最小值为( ) A.72 B.185 C.113 D.92答案 A解析 因为数列{a n }满足a 2=9,a n -1+n =a n +1(n ≥2且n ∈N *),所以a 1+2=a 2+1,解得a 1=8,所以a n =a 2-a 1+a 3-a 2+a 4-a 3+…+a n -a n -1+a 1=1+2+3+…+n -1+8=n 2-n +162, 则a n n =n 2-n +162n=12⎝⎛⎭⎫n +16n -1 ≥12⎝⎛⎭⎫2n ·16n -1=72, 当且仅当n =16n,即n =4时,等号成立, 所以a n n 的最小值为72. 8. 如图,在半径为4(单位:cm)的半圆形(O 为圆心)铁皮上截取一块矩形材料ABCD ,其顶点A ,B 在直径上,顶点C ,D 在圆周上,则矩形ABCD 面积的最大值为(单位:cm 2)( )A .8B .10C .16D .20答案 C解析 连接OC ,如图,设BC =x ,则OB =16-x 2,所以AB =216-x 2,所以矩形ABCD 的面积S =2x 16-x 2,x ∈(0,4),S =2x 16-x 2=2x 216-x 2≤x 2+16-x 2=16,当且仅当x 2=16-x 2,即x =22时取等号,此时S max =16.9.已知向量m =(x ,2),n =⎝⎛⎭⎫3,y -12(x >0,y >0),若m ⊥n ,则xy 的最大值为________. 答案 124 解析 因为向量m =(x ,2),n =⎝⎛⎭⎫3,y -12, 且m ⊥n ,所以3x +2⎝⎛⎭⎫y -12=0,即3x +2y =1. 因为x >0,y >0,所以1=3x +2y ≥23x ×2y ,即xy ≤124, 当且仅当3x =2y =12, 即x =16,y =14时取等号. 10.在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例.在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和.若一个直角三角形的斜边长等于5,则这个直角三角形周长的最大值为________.答案 52+5解析 设直角三角形的两条直角边边长分别为a ,b ,则a 2+b 2=25.因为(a +b )2=25+2ab ≤25+2×a +b 24, 所以(a +b )2≤50,所以5<a +b ≤52,当且仅当a =b =522时,等号成立. 故这个直角三角形周长的最大值为52+5.11.已知圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线,若a ,b ∈R 且ab ≠0,则1a 2+1b2的最小值为________. 答案 9解析 因为圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线, 所以两圆相内切,其中C 1(-2a ,0),r 1=2;C 2(0,b ),r 2=1,故|C 1C 2|=4a 2+b 2,由题设可知4a 2+b 2=2-1⇒4a 2+b 2=1,所以(4a 2+b 2)⎝⎛⎭⎫1a 2+1b 2=4a 2b 2+b 2a 2+5 ≥24a 2b 2·b 2a 2+5=9, 当且仅当b 2=2a 2时等号成立.12.(2022·北京朝阳区模拟)李明自主创业,经营一家网店,每售出一件A 商品获利8元.现计划在“五一”期间对A 商品进行广告促销,假设售出A 商品的件数m (单位:万件)与广告费用x (单位:万元)符合函数模型m =3-2x +1.若要使这次促销活动获利最多,则广告费用x 应投入________万元.答案 3解析 设李明获得的利润为f (x )万元,则x ≥0,则f (x )=8m -x =8⎝⎛⎭⎫3-2x +1-x=24-16x +1-x=25-⎣⎡⎦⎤16x +1+x +1≤25-216x +1x +1=25-8=17,当且仅当x +1=16x +1, 因为x ≥0,即当x =3时,等号成立.13.(2022·柳州模拟)已知△ABC 中,a 2+b 2-c 2=ab ≥c 2,则△ABC 一定是() A .等边三角形 B .钝角三角形C .直角三角形D .等腰三角形答案 A解析 由a 2+b 2-c 2=ab ,则cos C =a 2+b 2-c 22ab =ab 2ab =12,又因为0°<C <180°,所以C =60°,因为a 2+b 2-c 2≥2ab -c 2,当且仅当a =b 时取等号,即ab ≥2ab -c 2,解得ab ≤c 2,又因为ab ≥c 2,所以ab =c 2,且a =b 时取等号,因为C =60°,所以△ABC 一定是等边三角形.14.(2022·武汉模拟)已知平面向量OA →,OB →,OC →为三个单位向量,且〈OA →,OB →〉=120°,若OC →=xOA →+yOB →(x ,y ∈R ),则x +y 的取值范围为________.答案 [-2,2]解析 由OC →=xOA →+yOB →,两边同时平方得OC →2=(xOA →+yOB →)2,即OC →2=x 2OA →2+y 2OB →2+2xyOA →·OB →,∵平面向量OA →,OB →,OC →为三个单位向量,且〈OA →,OB →〉=120°,∴x 2+y 2-xy =1,∴(x +y )2=1+3xy ≤1+3⎝⎛⎭⎫x +y 22,即(x +y )2≤4,即-2≤x +y ≤2.15.(2022·大庆模拟)设函数f (x )=|lg x |,若存在实数0<a <b ,满足f (a )=f (b ),则M =log 2a 2+b 28,N =log 2⎝ ⎛⎭⎪⎫1a +b 2,Q =ln 1e 2的关系为( ) A .M >N >Q B .M >Q >NC .N >Q >MD .N >M >Q 答案 B解析 ∵f (a )=f (b ),∴|lg a |=|lg b |,∴lg a +lg b =0,即ab =1, ⎝ ⎛⎭⎪⎫1a +b 2=1a +b +2=1a +1a +2<12+2=14,∴N =log 2⎝ ⎛⎭⎪⎫1a +b 2<-2,又a 2+b 28>ab 4=14,∴a 2+b 28>14,∴M =log 2a 2+b 28>-2,又∵Q =ln 1e 2=-2,∴M >Q >N .16.设0<t <12,若1t +21-2t ≥k 2+2k 恒成立,则k 的取值范围为() A .[-4,2] B .[-2,4]C .[-4,0)∪(0,2]D .[-2,0)∪(0,4] 答案 A解析 依题意k 2+2k ≤1t +21-2t 对∀t ∈⎝⎛⎭⎫0,12恒成立,所以k 2+2k ≤⎝⎛⎭⎫1t +21-2t min ,因为t ∈⎝⎛⎭⎫0,12,所以1-2t >0,所以1t +21-2t =⎝⎛⎭⎫1t +21-2t (2t +1-2t )=2+2+1-2t t +4t1-2t≥4+21-2t t ·4t 1-2t=8, 当且仅当1-2t t =4t 1-2t时取“=”, 即t =14时取得最小值, 所以k 2+2k ≤8,所以(k -2)(k +4)≤0,解得-4≤k ≤2,即k ∈[-4,2].。
高考数学一轮复习 第七章 不等式、推理与证明7
高考数学一轮复习 第七章 不等式、推理与证明7.1 等式性质与不等式性质 考试要求 1.掌握等式性质.2.会比较两个数的大小.3.理解不等式的性质,并能简单应用. 知识梳理1.两个实数比较大小的方法作差法⎩⎪⎨⎪⎧ a -b >0⇔a >b ,a -b =0⇔a =b ,a -b <0⇔a <b . (a ,b ∈R )2.等式的性质性质1 对称性:如果a =b ,那么b =a ;性质2 传递性:如果a =b ,b =c ,那么a =c ;性质3 可加(减)性:如果a =b ,那么a ±c =b ±c ;性质4 可乘性:如果a =b ,那么ac =bc ;性质5 可除性:如果a =b ,c ≠0,那么a c =b c. 3.不等式的性质性质1 对称性:a >b ⇔b <a ;性质2 传递性:a >b ,b >c ⇒a >c ;性质3 可加性:a >b ⇔a +c >b +c ;性质4 可乘性:a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc ;性质5 同向可加性:a >b ,c >d ⇒a +c >b +d ;性质6 同向同正可乘性:a >b >0,c >d >0⇒ac >bd ;性质7 同正可乘方性:a >b >0⇒a n >b n (n ∈N ,n ≥2).常用结论1.若ab >0,且a >b ⇔1a <1b . 2.若a >b >0,m >0⇒b a <b +ma +m ; 若b >a >0,m >0⇒b a >b +ma +m .思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.(√ )(2)若ba >1,则b >a .( × )(3)若x >y ,则x 2>y 2.( × )(4)若1a >1b ,则b <a .( × )教材改编题1.设b >a >0,c ∈R ,则下列不等式不正确的是( )A .12a <12b B.1a >1bC.a +2b +2>ab D .ac 3<bc 3答案 D解析 因为y =12x 在(0,+∞)上单调递增,所以12a <12b ,A 正确;因为y =1x 在(0,+∞)上单调递减,所以1a >1b ,B 正确;因为a +2b +2-a b =2b -ab +2b >0,所以a +2b +2>ab ,C 正确;当c =0时,ac 3=bc 3,所以D 不正确.2.已知M =x 2-3x ,N =-3x 2+x -3,则M ,N 的大小关系是________.答案 M >N解析 M -N =(x 2-3x )-(-3x 2+x -3)=4x 2-4x +3=(2x -1)2+2>0,∴M >N .3.已知-1<a <2,-3<b <5,则a +2b 的取值范围是______.答案 (-7,12)解析 ∵-3<b <5,∴-6<2b <10,又-1<a <2,∴-7<a +2b <12.题型一 比较两个数(式)的大小例1 (1)若a <0,b <0,则p =b 2a +a 2b与q =a +b 的大小关系为( ) A .p <q B .p ≤q C .p >q D .p ≥q答案 B解析 p -q =b 2a +a 2b-a -b =b 2-a 2a +a 2-b 2b=(b 2-a 2)·⎝⎛⎭⎫1a -1b =b 2-a 2b -a ab =b -a 2b +aab ,因为a <0,b <0,所以a +b <0,ab >0.若a =b ,则p -q =0,故p =q ;若a ≠b ,则p -q <0,故p <q .综上,p ≤q .(2)若a =ln 33,b =ln 44,c =ln 55,则( ) A .a <b <cB .c <b <aC .c <a <bD .b <a <c 答案 B解析 令函数f (x )=ln x x ,则f ′(x )=1-ln x x 2, 易知当x >e 时,f ′(x )<0,函数f (x )单调递减,因为e<3<4<5,所以f (3)>f (4)>f (5),即c <b <a .教师备选已知M =e 2 021+1e 2 022+1,N =e 2 022+1e 2 023+1,则M ,N 的大小关系为________. 答案 M >N解析 方法一 M -N =e 2 021+1e 2 022+1-e 2 022+1e 2 023+1=e 2 021+1e 2 023+1-e 2 022+12e 2 022+1e 2 023+1=e 2 021+e 2 023-2e 2 022e 2 022+1e 2 023+1=e 2 021e -12e 2 022+1e 2 023+1>0. ∴M >N .方法二 令f (x )=e x +1e x +1+1=1e e x +1+1+1-1e e x +1+1=1e +1-1e e x +1+1, 显然f (x )是R 上的减函数,∴f (2 021)>f (2 022),即M >N .思维升华 比较大小的常用方法(1)作差法:①作差;②变形;③定号;④得出结论.(2)作商法:①作商;②变形;③判断商与1的大小关系;④得出结论.(3)构造函数,利用函数的单调性比较大小.跟踪训练1 (1)已知0<a <1b ,且M =11+a +11+b,N =a 1+a +b 1+b ,则M ,N 的大小关系是( ) A .M >N B .M <NC .M =ND .不能确定答案 A解析 ∵0<a <1b ,∴1+a >0,1+b >0,1-ab >0. ∴M -N =1-a 1+a +1-b 1+b =21-ab1+a 1+b >0,∴M >N .(2)e π·πe 与e e ·ππ的大小关系为________.答案 e π·πe <e e ·ππ解析 e π·πe e e ·ππ=e π-eππ-e =⎝⎛⎭⎫eππ-e ,又0<eπ<1,0<π-e<1,∴⎝⎛⎭⎫eππ-e <1,即e π·πee e ·ππ<1,即e π·πe <e e ·ππ.题型二 不等式的性质例2 (1)(2022·滨州模拟)下列命题为真命题的是() A .若a >b ,则ac 2>bc 2B .若a <b <0,则a 2<ab <b 2C .若c >a >b >0,则a c -a <bc -bD .若a >b >c >0,则a b >a +c b +c 答案 D 解析 对于A 选项,当c =0时,显然不成立,故A 选项为假命题; 对于B 选项,当a =-3,b =-2时,满足a <b <0,但不满足a 2<ab <b 2,故B 选项为假命题;对于C 选项,当c =3,a =2,b =1时,a c -a =23-2>b c -b =12,故C 选项为假命题; 对于D 选项,由于a >b >c >0,所以a b -a +c b +c=a b +c -b a +c b b +c =ac -bc b b +c=a -b c b b +c>0,即a b >a +c b +c ,故D 选项为真命题. (2)若1a <1b<0,则下列不等式正确的是________.(填序号) ①1a +b <1ab ; ②|a |+b >0; ③a -1a >b -1b; ④ln a 2>ln b 2.答案 ①③解析 由1a <1b <0,可知b <a <0. ①中,因为a +b <0,ab >0,所以1a +b <0,1ab >0.故有1a +b <1ab,即①正确; ②中,因为b <a <0,所以-b >-a >0.故-b >|a |,即|a |+b <0,故②错误;③中,因为b <a <0,又1a <1b<0, 则-1a >-1b >0,所以a -1a >b -1b,故③正确; ④中,因为b <a <0,根据y =x 2在(-∞,0)上单调递减,可得b 2>a 2>0,而y =ln x 在定义域 (0,+∞)上单调递增,所以ln b 2>ln a 2,故④错误.教师备选若a ,b ,c ∈R ,a >b ,则下列不等式恒成立的是( )A.1a <1b B .a 2>b 2C .a |c |>b |c | D.a c 2+1>bc 2+1答案 D解析 对于A ,若a >0>b ,则1a >1b ,故A 错误;对于B ,取a =1,b =-2,则a 2<b 2,故B 错误;对于C ,若c =0,a |c |=b |c |,故C 错误;对于D ,因为c 2+1≥1,所以1c 2+1>0,又a >b ,所以a c 2+1>bc 2+1,故D 正确.思维升华 判断不等式的常用方法(1)利用不等式的性质逐个验证.(2)利用特殊值法排除错误选项.(3)作差法.(4)构造函数,利用函数的单调性.跟踪训练2 (1)(2022·珠海模拟)已知a ,b ∈R ,满足ab <0,a +b >0,a >b ,则() A.1a <1b B.b a +a b >0C .a 2>b 2D .a <|b |答案 C解析 因为ab <0,a >b ,则a >0,b <0,1a >0,1b <0,A 不正确;b a <0,a b <0,则b a +a b <0,B 不正确;又a+b>0,即a>-b>0,则a2>(-b)2,a2>b2,C正确;由a>-b>0得a>|b|,D不正确.(2)设a>b>1>c>0,下列四个结论正确的是________.(填序号)①1ac>1bc;②ba c>ab c;③(1-c)a<(1-c)b;④log b(a+c)>log a(b+c).答案③④解析由题意知,a>b>1>c>0,所以对于①,ac>bc>0,故1ac<1bc,所以①错误;对于②,取a=3,b=2,c=1 2,则ba c=23,ab c=32,所以ba c<ab c,故②错误;对于③,因为0<1-c<1,且a>b,所以(1-c)a<(1-c)b,故③正确;对于④,a+c>b+c>1,所以log b(a+c)>log b(b+c)>log a(b+c),故④正确.题型三不等式性质的综合应用例3(1)已知-1<x<4,2<y<3,则x-y的取值范围是________,3x+2y的取值范围是________.答案(-4,2)(1,18)解析∵-1<x<4,2<y<3,∴-3<-y <-2,∴-4<x -y <2.由-1<x <4,2<y <3,得-3<3x <12,4<2y <6,∴1<3x +2y <18.(2)已知3<a <8,4<b <9,则a b的取值范围是________. 答案 ⎝⎛⎭⎫13,2解析 ∵4<b <9,∴19<1b <14, 又3<a <8,∴19×3<a b <14×8, 即13<a b<2. 延伸探究 若将本例(1)中条件改为-1<x +y <4,2<x -y <3,求3x +2y 的取值范围. 解 设3x +2y =m (x +y )+n (x -y ),则⎩⎪⎨⎪⎧ m +n =3,m -n =2,∴⎩⎨⎧ m =52,n =12.即3x +2y =52(x +y )+12(x -y ), 又∵-1<x +y <4,2<x -y <3,∴-52<52(x +y )<10,1<12(x -y )<32, ∴-32<52(x +y )+12(x -y )<232, 即-32<3x +2y <232,∴3x +2y 的取值范围为⎝⎛⎭⎫-32,232. 教师备选已知0<β<α<π2,则α-β的取值范围是________. 答案 ⎝⎛⎭⎫0,π2 解析 ∵0<β<π2,∴-π2<-β<0, 又0<α<π2,∴-π2<α-β<π2, 又β<α,∴α-β>0,即0<α-β<π2. 思维升华 求代数式的取值范围,一般是利用整体思想,通过“一次性”不等关系的运算求得整体范围.跟踪训练3 (1)已知a >b >c ,2a +b +c =0,则c a的取值范围是( ) A .-3<c a<-1 B .-1<c a <-13 C .-2<c a<-1 D .-1<c a <-12 答案 A解析 因为a >b >c ,2a +b +c =0,所以a >0,c <0,b =-2a -c ,因为a >b >c ,所以-2a -c <a ,即3a >-c ,解得c a>-3, 将b =-2a -c 代入b >c 中,得-2a -c >c ,即a <-c ,得c a <-1,所以-3<c a <-1. (2)已知1<a <b <3,则a -b 的取值范围是________,a b的取值范围是________. 答案 (-2,0) ⎝⎛⎭⎫13,1解析 ∵1<b <3,∴-3<-b <-1,又1<a <3,∴-2<a -b <2,又a <b ,∴a -b <0,∴-2<a -b <0,又13<1b <1a ,∴a3<ab <1,又a3>13,∴13<ab <1.综上所述,a -b 的取值范围为(-2,0);a b 的取值范围为⎝⎛⎭⎫13,1.课时精练1.已知a >0,b >0,M =a +b ,N =a +b ,则M 与N 的大小关系为() A .M >NB .M <NC .M ≤ND .M ,N 大小关系不确定答案 B解析 M 2-N 2=(a +b )-(a +b +2ab )=-2ab <0,∴M <N .2.已知非零实数a ,b 满足a <b ,则下列命题成立的是( )A .a 2<b 2B .ab 2<a 2bC.1ab 2<1a 2b D.b a <a b答案 C解析 若a <b <0,则a 2>b 2,故A 不成立;若⎩⎪⎨⎪⎧ ab >0,a <b ,则a 2b <ab 2,故B 不成立;若a =1,b =2,则b a =2,a b =12,b a >a b ,故D 不成立,由不等式的性质知,C 正确.3.已知-3<a <-2,3<b <4,则a 2b 的取值范围为( )A .(1,3) B.⎝⎛⎭⎫43,94C.⎝⎛⎭⎫23,34D.⎝⎛⎭⎫12,1答案 A解析 因为-3<a <-2,所以a 2∈(4,9),而3<b <4,故a 2b 的取值范围为(1,3).4.若a >1,m =log a (a 2+1),n =log a (a +1),p =log a (2a ),则m ,n ,p 的大小关系是() A .n >m >p B .m >p >nC .m >n >pD .p >m >n答案 B解析 由a >1知,a 2+1-2a =(a -1)2>0,即a 2+1>2a ,而2a -(a +1)=a -1>0,即2a >a +1,∴a 2+1>2a >a +1,而y =log a x 在定义域上单调递增,∴m >p >n .5.已知a ,b ∈R ,则“|a |>|b |”是“a b >1”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 不妨令a =1,b =0,故|a |>|b |不能推出a b >1,若a b >1,故a ,b 同号,若a ,b 都大于0,则a >b >0,从而|a |>|b |;若a ,b 都小于0,则a <b <0,从而|a |>|b |,故a b >1能推出|a |>|b |,从而“|a |>|b |”是“a b >1”成立的必要不充分条件.6.(2022·济宁模拟)已知x >y >z ,x +y +z =0,则下列不等式恒成立的是() A .xy >yz B .xy >xzC .xz >yzD .x |y |>|y |z答案 B解析 因为x >y >z ,x +y +z =0,所以x >0,z <0,y 的符号无法确定,对于A ,因为x >0>z ,若y <0,则xy <0<yz ,故A 错误;对于B ,因为y >z ,x >0,所以xy >xz ,故B 正确;对于C ,因为x >y ,z <0,所以xz <yz ,故C 错误;对于D ,因为x >z ,当|y |=0时,x |y |=|y |z ,故D 错误.7.设a ,b ,c ,d 为实数,且a >b >0>c >d ,则下列不等式正确的是( )A .c 2>cdB .a -c <b -dC .ac <bdD.c a -d b >0 答案 D解析 因为a >b >0>c >d ,所以a >b >0,0>c >d ,对于A ,因为0>c >d ,由不等式的性质可得c 2<cd ,故选项A 错误;对于B ,取a =2,b =1,c =-1,d =-2,则a -c =3,b -d =3,所以a -c =b -d ,故选项B 错误;对于C ,取a =2,b =1,c =-1,d =-2,则ac =-2,bd =-2,所以ac =bd ,故选项C 错误;对于D ,因为a >b >0,d <c <0,则ad <bc ,所以c a >d b, 故c a -d b>0,故选项D 正确. 8.若0<a <1,b >c >1,则( )A.⎝⎛⎭⎫b c a <1B.c -a b -a >c b C .c a -1<b a -1D .log c a <log b a答案 D解析 对于A ,∵b >c >1,∴b c>1. ∵0<a <1,则⎝⎛⎭⎫b c a >⎝⎛⎭⎫b c 0=1,故选项A 错误;对于B ,若c -a b -a >c b, 则bc -ab >bc -ac ,即a (c -b )>0,这与0<a <1,b >c >1矛盾,故选项B 错误;对于C ,∵0<a <1,∴a -1<0.∵b >c >1,∴c a -1>b a -1,故选项C 错误;对于D ,∵0<a <1,b >c >1,∴log c a <log b a ,故选项D 正确.9.已知M =x 2+y 2+z 2,N =2x +2y +2z -π,则M ________N .(填“>”“<”或“=”) 答案 >解析 M -N =x 2+y 2+z 2-2x -2y -2z +π=(x -1)2+(y -1)2+(z -1)2+π-3≥π-3>0,故M >N .10.(2022·宜丰模拟)若1a <1b <0,已知下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④b a +a b>2.其中正确的不等式的序号为________.答案 ①④解析 因为1a <1b<0, 所以b <a <0,故③错误;所以a +b <0<ab ,故①正确;所以|a |<|b |,故②错误;所以b a >0,a b >0且均不为1,b a +a b ≥2b a ·a b =2,当且仅当b a =a b =1时,等号成立,所以b a +a b>2,故④正确. 11.若0<a <b ,且a +b =1,则将a ,b ,12,2ab ,a 2+b 2从小到大排列为________________. 答案 a <2ab <12<a 2+b 2<b 解析 方法一 令a =13,b =23, 则2ab =49,a 2+b 2=19+49=59, 故a <2ab <12<a 2+b 2<b . 方法二 ∵0<a <b 且a +b =1,∴a <12<b <1,∴2b >1且2a <1, ∴a <2b ·a =2a (1-a )=-2a 2+2a=-2⎝⎛⎭⎫a -122+12<12, 即a <2ab <12. 又a 2+b 2=(a +b )2-2ab =1-2ab >1-12=12, 即a 2+b 2>12.∵12<b <1, ∴(a 2+b 2)-b =[(1-b )2+b 2]-b =2b 2-3b +1=(2b -1)(b -1)<0,即a 2+b 2<b ,综上可知a <2ab <12<a 2+b 2<b . 12.若α,β满足-π2<α<β<π2,则2α-β的取值范围是________. 答案 ⎝⎛⎭⎫-3π2,π2 解析 ∵-π2<α<π2,∴-π<2α<π.∵-π2<β<π2,∴-π2<-β<π2, ∴-3π2<2α-β<3π2. 又α-β<0,α<π2,∴2α-β<π2. 故-3π2<2α-β<π2.13.(2022·长沙模拟)设实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则下列不等式恒成立的是( )A .c <bB .b ≤1C .b ≤aD .a <c 答案 D解析 ∵⎩⎪⎨⎪⎧ b +c =6-4a +3a 2,c -b =4-4a +a 2, 两式相减得2b =2a 2+2,即b =a 2+1,∴b ≥1.又b -a =a 2+1-a =⎝⎛⎭⎫a -122+34>0, ∴b >a .而c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b ,从而c ≥b >a .14.实数a ,b ,c ,d 满足下列三个条件:①d >c ;②a +b =c +d ;③a +d <b +c .那么a ,b ,c ,d 的大小关系是________.答案 b >d >c >a解析 由题意知d >c ①,②+③得2a +b +d <2c +b +d ,化简得a <c ④,由②式a +b =c +d及a <c 可得到,要使②成立,必须b >d ⑤成立,综合①④⑤式得到b >d >c >a .15.已知函数f (x )=ax 2+bx +c 满足f (1)=0,且a >b >c ,则c a的取值范围是________. 答案 ⎝⎛⎭⎫-2,-12 解析 因为f (1)=0,所以a +b +c =0,所以b =-(a +c ).又a >b >c ,所以a >-(a +c )>c ,且a >0,c <0,所以1>-a +c a >c a ,即1>-1-c a >c a. 所以⎩⎨⎧ 2c a <-1,c a >-2,解得-2<c a <-12. 即c a的取值范围为⎝⎛⎭⎫-2,-12. 16.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(1)男学生人数多于女学生人数;(2)女学生人数多于教师人数;(3)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为________.②该小组人数的最小值为________.答案 ①6 ②12解析 设男学生人数为x ,女学生人数为y ,教师人数为z ,由已知得⎩⎪⎨⎪⎧ x >y ,y >z ,2z >x ,且x ,y ,z均为正整数.①当z =4时,8>x >y >4,∴x 的最大值为7,y 的最大值为6,故女学生人数的最大值为6.②x >y >z >x 2,当x =3时,条件不成立,当x =4时,条件不成立,当x =5时,5>y >z >52,此时z =3,y =4.∴该小组人数的最小值为12.。
2019届高考数学一轮复习第七章不等式及推理与证明层级快练42文
层级快练(四十二)1.(2018·沈阳四校联考)下列各点中,与点(1,2)位于直线x +y -1=0的同一侧的是( ) A .(0,0) B .(-1,1) C .(-1,3) D .(2,-3)答案 C解析 点(1,2)使x +y -1>0,点(-1,3)使x +y -1>0,所以此两点位于x +y -1=0的同一侧.故选C. 2.不等式(x +2y +1)(x -y +4)≤0表示的平面区域为()答案 B解析 方法一:可转化为①⎩⎪⎨⎪⎧x +2y +1≥0,x -y +4≤0或②⎩⎪⎨⎪⎧x +2y +1≤0,x -y +4≥0. 由于(-2,0)满足②,所以排除A ,C ,D 选项.方法二:原不等式可转化为③⎩⎪⎨⎪⎧x +2y +1≥0,-x +y -4≥0或④⎩⎪⎨⎪⎧x +2y +1≤0,-x +y -4≤0. 两条直线相交产生四个区域,分别为上下左右区域,③表示上面的区域,④表示下面的区域,故选B. 3.(2017·天津,理)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y≥0,x +2y -2≥0,x≤0,y≤3,则目标函数z =x +y 的最大值为( )A.23 B .1 C.32 D .3答案 D解析 作出约束条件所表示的可行域如图中阴影部分所示,由z =x +y 得y =-x +z ,作出直线y =-x ,平移使之经过可行域,观察可知,最大值在B(0,3)处取得,故z max =0+3=3,选项D 符合.4.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m<0,y -m>0,表示的平面区域内存在点P(x 0,y 0),满足x 0-2y 0=2,则m 的取值范围是( ) A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)答案 C解析 作出可行域如图.图中阴影部分表示可行域,要求可行域包含y =12x -1的上的点,只需要可行域的边界点(-m ,m)在y =12x-1下方,也就是m<-12m -1,即m<-23.5.(2016·北京,理)若x ,y 满足⎩⎪⎨⎪⎧2x -y≤0,x +y≤3,x≥0,则2x +y 的最大值为( )A .0B .3C .4D .5答案 C解析 不等式组⎩⎪⎨⎪⎧2x -y≤0,x +y≤3,x≥0表示的可行域如图中阴影部分所示(含边界),由⎩⎪⎨⎪⎧2x -y =0,x +y =3,解得⎩⎪⎨⎪⎧x =1,y =2,故当目标函数z =2x +y 经过点A(1,2)时,z 取得最大值,z max =2×1+2=4.故选C.6.(2018·西安四校联考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为( ) A .-7 B .-4 C .1 D .2答案 A解析 画出由x ,y 满足的约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,如图所示,得它们的交点分别为A(2,0),B(5,3),C(1,3).可知z =y -2x 过点B(5,3)时,z 最小值为3-2×5=-7.7.(2017·贵阳监测)已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x<2,x +y -1≥0,则z =2x -2y -1的取值范围是( )A .[53,5]B .[0,5]C .[53,5)D .[-53,5)答案 D解析 画出不等式组所表示的区域,如图中阴影部分所示,作直线l :2x -2y -1=0,平移l 可知2×13-2×23-1≤z<2×2-2×(-1)-1,即z 的取值范围是[-53,5).8.(2017·南昌调研)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧y≥x,x +3y≤4,x≥-2,则z =|x -3y|的最大值为( )A .10B .8C .6D .4答案 B解析 不等式组⎩⎪⎨⎪⎧y≥x,x +3y≤4,x≥-2,所表示的平面区域如图中阴影部分所示.当平移直线x -3y =0过点A 时,m =x -3y 取最大值; 当平移直线x -3y =0过点C 时,m =x -3y 取最小值.由题意可得A(-2,-2),C(-2,2),所以m max =-2-3×(-2)=4,m min =-2-3×2=-8,所以-8≤m ≤4,所以|m|≤8,即z max =8.9.(2014·安徽,理)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( ) A.12或-1 B .2或12 C .2或1 D .2或-1 答案 D解析 作出约束条件满足的可行域,根据z =y -ax 取得最大值的最优解不唯一,通过数形结合分析求解.如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a>0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a<0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.10.(2015·福建)变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y≥0,x -2y +2≥0,mx -y≤0,若z =2x -y 的最大值为2,则实数m 等于( )A .-2B .-1C .1D .2答案 C解析 如图所示,目标函数z =2x -y 取最大值2即y =2x -2时,画出⎩⎪⎨⎪⎧x +y≥0,x -2y +2≥0,表示的区域,由于mx -y ≤0过定点(0,0),要使z =2x -y 取最大值2,则目标函数必过两直线x -2y +2=0与y =2x -2的交点A(2,2),因此直线mx -y =0过点A(2,2),故有2m -2=0,解得m =1.11.(2017·泉州质检)已知O 为坐标原点,A(1,2),点P 的坐标(x ,y)满足约束条件⎩⎪⎨⎪⎧x +|y|≤1,x≥0,则z=OA →·OP →的最大值为( ) A .-2 B .-1 C .1 D .2答案 D解析 作出可行域如图中阴影部分所示,易知B(0,1),z =OA →·OP →=x +2y ,平移直线x +2y =0,显然当直线z =x +2y 经过点B 时,z 取得最大值,且z max =2.故选D.12.已知实数x ,y 满足条件⎩⎪⎨⎪⎧(x -3)2+(y -2)2≤1,x -y -1≥0,则z =yx -2的最小值为( )A .3+ 2B .2+ 2 C.34 D.43答案 Cyx -2=y -0x -2解析 不等式组表示的可行域如图阴影部分所示.目标函数z =表示在可行域取一点与点(2,0)连线的斜率,可知过点(2,0)作半圆的切线,切线的斜率为z =yx -2的最小值,设切线方程为y =k(x -2),则A到切线的距离为1,故1=|k -2|1+k2.解得k =34.13.(2018·苏州市高三一诊)实数x ,y 满足⎩⎪⎨⎪⎧y≥0,x -y≥0,2x -y -2≤0,则使得z =2y -3x 取得最小值的最优解是( ) A .(1,0) B .(0,-2) C .(0,0) D .(2,2)答案 A解析 约束条件所表示的可行域为三角形,其三个顶点的坐标分别为(0,0),(1,0),(2,2),将三个顶。
届高考数学一轮复习第七章不等式推理与证明课时跟踪训练不等关系与不等式文
课时跟踪训练(三十四) 不等关系与不等式[根底稳固]一、选择题1.假设a ,b ,c ∈R ,且a >b ,那么以下不等式一定成立的是( ) A .a +c ≥b -c B .ac >bc C.c 2a -b>0D .(a -b )c 2≥0[解析] 当c =0时,B ,C 不成立;当a =1,b =0,c =-2时,A 不成立;因为a -b >0,c 2≥0,所以D 成立.[答案] D2.(2022·陕西商洛商南高中模拟)以下命题为真命题的是( ) A .假设ac >bc ,那么a >b B .假设a 2>b 2,那么a >b C .假设1a >1b,那么a <bD .假设a <b ,那么a <b[解析] 由ac >bc ,当c <0时,有a <b ,选项A 错误;假设a 2>b 2,不一定有a >b ,如(-3)2>(-2)2,但-3<-2,选项B 错误; 假设1a >1b ,不一定有a <b ,如12>-13,但2>-3,选项C 错误;假设a <b ,那么(a )2<(b )2,即a <b ,选项D 正确. 应选D. [答案] D3.假设m =3+5,n =2+6,那么以下结论正确的选项是( ) A .m <n B .n <mC .n =mD .不能确定m ,n 的大小[解析] ∵m =3+5,∴m 2=8+215,∵n =2+6,∴n 2=8+212,∴m 2>n 2,∴m >n .[答案] B4.(2022·吉林省吉林一中月考)假设a >b ,x >y ,以下不等式不正确的选项是( ) A .a +x >b +y B .y -a <x -b C .|a |x >|a |yD .(a -b )x >(a -b )y[解析] 当a ≠0时,|a |>0,不等式两边同乘一个大于零的数,不等号方向不变. 当a =0时,|a |x =|a |y ,故|a |x ≥|a |y .应选C. [答案] C5.假设a ,b 为实数,那么“ab <1”是“0<a <1b〞的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] 由a ,b 为实数,ab <1,可令a =-1,b =1,那么ab =-1<1成立,但推不出0<a <1b ;由0<a <1b ,可得b >0,∴0<ab <1,可推出ab <1,∴“ab <1”是“0<a <1b〞的必要不充分条件.[答案] B6.(2022·浙江卷)a ,b >0且a ≠1,b ≠1,假设log a b >1,那么( ) A .(a -1)(b -1)<0 B .(a -1)(a -b )>0 C .(b -1)(b -a )<0 D .(b -1)(b -a )>0[解析] [答案] D 二、填空题7.假设ab <0,且a >b ,那么1a 与1b的大小关系是________.[解析] ∵a >b ,∴b -a <0, 又ab <0,那么1a -1b =b -a ab >0,即1a >1b.[答案] 1a >1b8.假设a =ln33,b =ln22,那么a 与b 的大小关系为________.[解析] ∵a =ln33>0,b =ln22>0,∴a b =ln33·2ln2=2ln33ln2=ln9ln8=log 89>1,∴a >b . [答案] a >b9.假设角α,β满足-π2<α<β<π2,那么2α-β的取值范围是________.[解析] ∵-π2<α<β<π2,∴-π2<α<π2,-π2<β<π2,-π2<-β<π2,而α<β.∴-π<α-β<0,∴2α-β=(α-β)+α∈⎝ ⎛⎭⎪⎫-3π2,π2.[答案] ⎝ ⎛⎭⎪⎫-3π2,π2。
第七章 不等式、推理与证明(答案)
答案 第七章 不等式、推理与证明 第一节 不等关系与不等式的解法基础自测1.[答案] (1)× (2)√ (3)√ (4)× (5)×2.[解析] 因为M ={x |x 2+3x +2<0}={x |-2<x <-1},N =[-2,+∞),所以M ∪N =[-2,+∞),故选A.3.[解析] ∵c <d <0,∴0>1c >1d ,两边同乘-1,得-1d >-1c>0,又a >b >0,故由不等式的性质可知-ad >-b c >0.两边同乘-1,得a d <b c.故选B.4.[解析] 依题意x 2+ax +1≥0对x ∈R 恒成立,∴a 2-4≤0,∴-2≤a ≤2.[答案] D5.[解析] ∵ax 2+bx +2>0的解集为⎩⎨⎧⎭⎬⎫x |-12<x <13,∴x =-12,x =13是方程ax 2+bx +2=0的两根,则⎩⎪⎨⎪⎧-b a =-12+13,2a =-16,解得⎩⎪⎨⎪⎧a =-12,b =-2,∴a +b =-14.[答案] -14考点一 不等式的性质及应用例1:[解题指导] 切入点:不等式的性质;关键点:不等式成立的条件.[解析] (1)由a -b >0得a >b ≥0,由a 2-b 2>0得a 2>b 2,即a >b ≥0或a <b ≤0,所以“a -b >0”是“a 2-b 2>0”的充分不必要条件.(2)解法一:取a =2,b =12,排除B ;取a =2,b =1,排除D ;⎝ ⎛⎭⎪⎫a +1b -⎝ ⎛⎭⎪⎫b +1a =(a -b )+⎝ ⎛⎭⎪⎫1b -1a =(a -b )+a -bab=a -bab +ab,因为a >b >0,所以a -b >0,ab >0, ab +1>0,故a -bab +ab>0,即a +1b >b +1a ,所以A 正确;b a -b +1a +1=ba +-ab +a a +=b -a a a +<0,所以C 错误.解法二:取a =2,b =1,排除D ;另外,函数f (x )=x -1x在(0,+∞)上单调递增,函数g (x )=x +1x在(0,1)上单调递减,在[1,+∞)上单调递增,所以当a >b >0时,f (a )>f (b )必定成立,但g (a )>g (b )未必成立,从而有a -1a >b -1b ,即a +1b >b +1a ,但a +1a >b +1b未必成立,故A 正确;b a -b +1a +1=b a +-a b +a a +=b -aa a +<0,所以C 错误. [答案] (1)A (2)A对点训练1.[解析] y =x 3为增函数,得a 3<b 3;y =1x (x >0)为减函数,得1a >1b;y =a x为减函数(0<a <1),得a b <a 0=1;因为0<b -a <1,所以lg(b -a )<0,故选D.2.[解析] 由a <b <0,可用特殊值法加以验证,取a =-2,b =-1,则1a -b >1a不成立,选A. 3.[解析] a b 2+b a 2-⎝ ⎛⎭⎪⎫1a +1b =a -b b 2+b -a a 2=(a -b )⎝ ⎛⎭⎪⎫1b 2-1a 2=a +b a -b 2a 2b 2.∵a +b >0,(a -b )2≥0,∴a +ba -b2a 2b2≥0.∴a b2+b a2≥1a +1b.[答案] a b2+b a2≥1a +1b考点二 不等式的解法例2:[解题指导] 切入点:不等式的性质及公式法;关键点:化不等式为标准形式. [解析] (1)A ={x |2x -x 2>0}={x |0<x <2},B ={x |x >1},∴∁R B ={x |x ≤1},则(∁R B )∩A ={x |0<x ≤1},选B.(2)∵|2x -1|<3,∴-3<2x -1<3.∴-1<x <2. 又∵2x +13-x <0,∴(2x +1)(3-x )<0.∴⎝ ⎛⎭⎪⎫x +12(x -3)>0.∴x <-12或x >3. ∴A ∩B ={x |-1<x <2}∩⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-12或x >3=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1<x <-12,选D. [答案] (1)B (2)D 对点训练[解] 若a =0,则原不等式等价于-x +1<0⇒x >1.若a <0,则原不等式等价于⎝ ⎛⎭⎪⎫x -1a (x -1)>0⇔x <1a或x >1.若a >0,则原不等式等价于⎝⎛⎭⎪⎫x -1a (x -1)<0.①当a =1时,1a=1,所以原不等式的解集为Ø.②当a >1时,1a<1,所以原不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫1a<x <1.③当0<a <1时,1a>1,所以原不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫1<x <1a .综上所述,当a <0时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x <1a或x >1;当a =0时,解集为{x |x >1};当0<a <1时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫1<x <1a ;当a =1时,解集为Ø;当a >1时,解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫1a<x <1.考点三 与不等式恒成立有关的问题例3:[解题指导] 切入点:应用二次不等式或二次函数的最值求解;关键点:对m 的分类讨论. [解] (1)要使mx 2-mx -1<0恒成立, 若m =0,显然-1<0;若m ≠0,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,⇒-4<m <0.所以-4<m ≤0.(2)要使f (x )<-m +5在[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.有以下两种解法:解法一:令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数,所以g (x )max =g (3)⇒7m -6<0,所以m <67,则0<m <67;当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1)⇒m -6<0,所以m <6,所以m <0.综上所述:m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <67. 解法二:因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 所以,m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <67.[拓展探究] [解] 由f (x )<0,得mx 2-mx -1<0,即(x 2-x )m -1<0. 令g (m )=(x 2-x )m -1,则g (m )<0,对|m |≤1,即-1≤m ≤1恒成立.所以⎩⎪⎨⎪⎧g-,g ,即⎩⎪⎨⎪⎧-x 2+x -1<0,x 2-x -1<0,解得1-52<x <1+52.故x 的取值范围是⎝ ⎛⎭⎪⎫1-52,1+52.课时跟踪训练(三十四)一、选择题1.[解析] 当c =0时,选项A 不成立;当a >0,b <0时,选项B 不成立;当a =1,b =-5时,选项C 不成立;a 3-b 3=(a -b )(a 2+ab +b 2)=(a -b )⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +b 22+3b 24>0,故选D. 2.[解析] 解x 2-2x -3<0,得-1<x <3,由log 12x <0,得x >1.所以M ={x |-1<x <3},N ={x |x >1},所以M ∩N ={x |1<x <3},选B.3.[解析] 集合A ={x |0≤x <1},集合B ={x |0<x <2},则A ∩B ={x |0<x <1},故选A.4.[解析] 由题意可得⎩⎪⎨⎪⎧k <0,Δ=k 2-8k ×⎝ ⎛⎭⎪⎫-38<0,解得-3<k <0,故选A.5.[解析] 因为(x -1)2<1⇔0<x <2,故(1-m,1+m )为A ={x |0<x <2}的真子集即可,结合数轴可得⎩⎪⎨⎪⎧1-m ≥0,1+m ≤2,1-m <1+m ,前两式的等号不能同时成立,解得0<m <1,故选D.6.[解析] m >x 2-2x +5,设f (x )=x 2-2x +5=(x -1)2+4,x ∈[2,4],当x =2时f (x )min =5,∃x ∈[2,4]使x 2-2x +5-m <0成立,即m >f (x )min ,∴m >5.故选B.7.[解析] ⎩⎪⎨⎪⎧x +1<0,x +x +-x ++1]≤1,或⎩⎪⎨⎪⎧x +1≥0,x +x +x +-1]≤1,∴x <-1或-1≤x ≤ 2-1.∴x ≤ 2-1. [答案] C8.[解析] 解不等式得p :12≤x ≤1,q :a ≤x ≤a +1,非p 是非q 的必要不充分条件即为p 是q 的充分不必要条件,所以⎩⎪⎨⎪⎧a ≤12,a +1≥1,(等号不能同时取得),解得0≤a ≤12,故选A.9.[解析] 由ca +b <ab +c <bc +a,可得ca +b+1<ab +c+1<bc +a+1,即a +b +c a +b <a +b +c b +c <a +b +cc +a,又a ,b ,c ∈(0,+∞),所以a +b >b +c >c +a .由a +b >b +c 可得a >c ;由b +c >c +a 可得b >a ,于是有c <a <b . [答案] A10.解:根据题意,由于1+2x +(a -a 2)·4x>0对于一切的x ∈(-∞,1]恒成立,令2x=t (0<t ≤2),则可知1+t +(a -a 2)t 2>0⇔a -a 2>-1+t t 2,故可知只要求解-1+tt2的最大值即可,结合二次函数的性质可知a -a 2>-34,所以4a 2-4a -3<0,解得实数a 的取值范围为⎝ ⎛⎭⎪⎫-12,32,选C.二、填空题11.[解析] 函数y =log 13x 2-3x 的定义域应保证满足0<4x 2-3x ≤1,解得-14≤x <0或34<x ≤1. [答案] ⎣⎢⎡⎭⎪⎫-14,0∪⎝ ⎛⎦⎥⎤34,112.[解析] ax -1x +1<0⇔(ax -1)(x +1)<0,根据解集的结构可知,a <0且1a =-12,∴a =-2. [答案] -213.[解析] ∵-π2<α<π2,-π2<-β<π2,∴-π<α-β<π.又α<β,则α-β<0,∴-π<α-β<0. 又-π2<-β<π2,∴-32π<α-2β<π2. [答案]⎝ ⎛⎭⎪⎫-32π,π2三、解答题 14.[证明]x x +a -yy +b =x y +b -y x +a x +a y +b =bx -ay x +a y +b.∵b >a >0,x >y >0,∴bx >ay ,x +a >0,y +b >0,∴bx -ayx +a y +b>0,∴xx +a >yy +b.15.[解] (1)因为不等式ax 2-3x +6>4的解集为{x |x <1或x >b },所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,b >1且a >0.由根与系数的关系,得⎩⎪⎨⎪⎧1+b =3a ,1×b =2a,解得⎩⎪⎨⎪⎧a =1,b =2.(2)不等式ax 2-(ac +b )x +bc <0, 即x 2-(2+c )x +2c <0,即(x -2)(x -c )<0.当c >2时,不等式(x -2)(x -c )<0的解集为{x |2<x <c }; 当c <2时,不等式(x -2)(x -c )<0的解集为{x |c <x <2}; 当c =2时,不等式(x -2)(x -c )<0的解集为Ø.所以,当c >2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |2<x <c }; 当c <2时,不等式ax 2-(ac +b )x +bc <0的解集为{x |c <x <2}; 当c =2时,不等式ax 2-(ac +b )x +bc <0的解集为Ø.16.[解] 解法一:f (x )=(x -a )2+2-a 2,此二次函数图象的对称轴为x =a ,①当a ∈(-∞,-1)时,结合图象知,f (x )在[-1,+∞)上单调递增,f (x )min =f (-1)=2a +3,要使f (x )≥a 恒成立,只需f (x )min ≥a , 即2a +3≥a ,解得a ≥-3. 又a <-1,∴-3≤a <-1.②当a ∈[-1,+∞)时,f (x )min =f (a )=2-a 2, 由2-a 2≥a ,解得-2≤a ≤1. 又a ≥-1,∴-1≤a ≤1.综上所述,所求a 的取值范围为-3≤a ≤1.解法二:由已知得x 2-2ax +2-a ≥0在[-1,+∞)上恒成立,令g (x )=x 2-2ax +2-a , 即Δ=4a 2-4(2-a )≤0或⎩⎪⎨⎪⎧Δ>0,a ≤-1,g -,解得-3≤a ≤1.第二节 二元一次不等式(组)与简单的线性规划基础自测1.[答案] (1)× (2)√ (3)√ (4)√ (5)× 2.[解析] 画出可行域如图所示,由题知可行域为△ABC ,S △ABC =|4-0|×22=4. [答案] B3.[解析] 画出可行域如图中阴影部分所示,平移直线3x -y =0,可知直线z =3x -y 在点A (-2,1)处取得最小值,故z min =3×(-2)-1=-7,选A.4.[解析] 设直线x -2y +4=0与2x -y -4=0、直线x -2y +4=0与x =2的交点分别为A 、B ,则A (4,4)、B (2,3),z =kx +y 可化为y =-kx +z .当k =0,显然不符合题意.当-k >0,即k <0时,A 、B 两点都可能是最优点,但代入后检验都矛盾;当-k <0,即k >0时,显然点A (4,4)是最优解,代入后可得k =94.[答案] C5.[解析] 作出不等式组表示的可行域如图中阴影部分所示,因此|OM |的最小值为点O 到直线x +y -2=0的距离,所以|OM |min =|-2|2= 2.[答 2考点一 二元一次不等式(组)表示的平面区域例1:[解题指导] 切入点:准确画出平面区域;关键点:确定二元不等式表示的平面区域. [解析] (1)作出不等式组表示的平面区域如图中阴影部分所示,由图可知,要使不等式组表示的平面区域为三角形,则m >-1.由⎩⎪⎨⎪⎧x +y -2=0,x -y +2m =0,解得⎩⎪⎨⎪⎧x =1-m ,y =1+m ,即A (1-m,1+m ).由⎩⎪⎨⎪⎧x +2y -2=0,x -y +2m =0, 解得⎩⎪⎨⎪⎧x =23-43m ,y =23+23m ,即B ⎝ ⎛⎭⎪⎫23-43m ,23+23m .因为S △ABC =S △ADC -S △BDC =12(2+2m ) ⎣⎢⎡⎦⎥⎤+m -⎝ ⎛⎭⎪⎫23+23m =13(m +1)2=43,所以m =1或m =-3(舍去),故选B. (2)不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝ ⎛⎭⎪⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝ ⎛⎭⎪⎫12,52. 当y =kx +43过点⎝ ⎛⎭⎪⎫12,25时,52=k 2+43,所以k =73. [答案] (1)B (2)A对点训练1.[解析] 不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0所围成的区域如图所示.∵其面积为2,∴|AC |=4,∴C 的坐标为(1,4),代入ax -y +1=0, 得a =3.故选D.2.[解析] 由于点(-m ,m )不可能在第一和第三象限,而直线x -2y =2经过第一、三、四象限,则点(-m ,m )只能在第四象限,可得m <0,不等式组所表示的平面区域如图中阴影部分所示,要使直线x -2y =2与阴影部分有公共点,则点(-m ,m )在直线x -2y -2=0的下方,由于坐标原点使得x -2y -2<0,故-m -2m -2>0,即m <-23.[答案] C3.[解析] 画出可行域如图中阴影部分所示,则B (-1,-1),C (2,-1),直线y =kx -2过定点D (0,-2)且经过可行域,所以k 可以看作可行域中的点与D (0,-2)的连线的斜率,所以k ≥k DC =-1+22=12或k ≤k DB =-1+2-1=-1.[答案] (-∞,-1]∪⎣⎢⎡⎭⎪⎫12,+∞考点二 求目标函数的最值例2:[解题指导] 切入点:准确画出平面区域;关键点:利用目标函数的几何意义求解. [解析] (1)作出可行域如图中阴影部分所示,当目标函数z =2x -y 过点A 时,z =2x -y 取得最小值.由⎩⎪⎨⎪⎧x -2y +2=0,x +2y =0得A ⎝⎛⎭⎪⎫-1,12,故z min =2×(-1)-12=-52.(2)由约束条件可画出可行域,利用yx的几何意义求解. 画出可行域如图阴影所示,∵y x表示过点(x ,y )与原点(0,0)的直线的斜率,∴点(x ,y )在点A 处时y x最大.由⎩⎪⎨⎪⎧x =1,x +y -4=0,得⎩⎪⎨⎪⎧x =1,y =3.∴A (1,3).∴yx的最大值为3. [答案] (1)A (2)3[拓展探究] [解] (1)由图可知,当a >0时,平移直线y =ax ,使z 取得最大值的最优解不唯一的a 的值为1;当a <0时,平移直线y =ax ,使z 取得最大值的最优解不唯一的a 的值-12.故a 的值为1或-12.(2)z =x 2+y 2的几何意义是可行域上的点到原点距离的平方,结合图形可知,点B 到原点的距离最小.由⎩⎪⎨⎪⎧x =1,x -y =0得B (1,1),故z min =12+12=2.考点三 线性规划的实际应用例3:[解指导] 切入点:设出甲、乙两种产品的数量,列出关系式;关键点:转化为线性规划问题,画出可行域求解.[解析] 根据题意,设每天生产甲x 吨,乙y 吨,则⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +2y ≤12,x +2y ≤8,目标函数为z =3x+4y ,作出不等式组所表示的平面区域如图中阴影部分所示,作出直线3x +4y =0并平移,易知当直线经过点A (2,3)时,z 取得最大值且z max =3×2+4×3=18,故该企业每天可获得最大利润为18万元,选D. 对点训练1.[解析] 此题为线性规划问题,设生产甲x 桶,生产乙y 桶,则有⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,公司所获利润z =300x +400y ,如图, 当x =4,y =4时利润最大为2 800元,故选C.2.[解析] 设该厂每月生产甲、乙两种纪念品分别为x 套、y 套,月利润为z 元.由题意得⎩⎪⎨⎪⎧4x +5y ≤200,3x +10y ≤300,x ≥0,y ≥0(x ,y ∈N ),目标函数为z =700x +1 200y ,作出二元一次不等式组所表示的平面区域,即可行域,如图中阴影部分的整点所示,所以目标函数可变形为y =-712x +z1 200. 因为-45<-712<-310,所以当直线y =-712x +z 1 200经过图中的点A 时,z 1 200最大,即z 最大.解⎩⎪⎨⎪⎧4x +5y =2003x +10y =300,得点A 的坐标为(20,24),故该厂生产甲、乙两种纪念品的最大月利润为z =700×20+1 200×24=42 800(元). [答案] 42 800课时跟踪训练(三十五)1.[解:由题意可得(2×1+3+m )[2×(-4)-2+m ]<0,即(m +5)(m -10)<0,∴-5<m <10.[答C2.[解析] 作出不等式组对应的区域为△BCD ,由题意知x B =1,x C=2.由⎩⎪⎨⎪⎧y =-x +2,y =x -1,得y D =12,所以S △BCD =12×(x C -x B )×12=14.[答案] D3.[解析] 画出可行域,如图中阴影部分所示.由z =2x +y ,知y =-2x +z ,当目标函数过点(2,-1)时,直线在y 轴上的截距最大,为3,所以选A.4.[解析] 由题意作出可行域如图中阴影部分所示,当z =x +2y 经过点A (0,1)时,目标函数取得最大值,且z max =0+2×1=2.[答案]D5.[解析] 画出不等式组所表示的可行域如图中阴影部分所示,因为目标函数z =ax +y 的最大值为4,即目标函数对应直线与可行域有公共点时,在y 轴上的截距的最大值为4,作出过点D (0,4)的直线,由图可知,目标函数在点B (2,0)处取得最大值,故有a ×2+0=4,解得a =2.故选B.6.[解析] 画出x ,y 约束条件限定的可行域,如图阴影区域所示,由z =y -ax 得y =ax +z ,当直线y =ax 与直线2x -y +2=0或直线x +y-2=0平行时,符合题意,则a =2或-1.[答案] D7.[解析] 作出不等式组⎩⎪⎨⎪⎧x -y +2≥0,x +y -2≥0,kx -y -2k +1≥0对应的平面区域,直线kx -y -2k +1=0,得k (x -2)+1-y =0,则直线过定点(2,1),当直线k (x -2)+1-y =0与x +y -2=0平行时,即k =-1时,此时对应的平面区域不是三角形,∴要使对应的平面区域是三角形,则k (x -2)+1-y =0与x +y -2=0在第四象限内相交,即k <-1.[答案] B8.[解析] 先作出不等式组⎩⎪⎨⎪⎧x -y +1≥0,2x +y -4≥0表示的可行域(图略),再作x -ay -2≤0,因为x -ay -2=0过定点(2,0),且x -ay -2≤0与前面可行域围成的区域是封闭区域,故实数a 的取值范围是-12<a <1.[答案] B9.[解析] 作出集合A 所表示的区域,如图中阴影部分所示,三个顶点到圆心(0,1)的距离分别是1,1,2,由A ⊆B 得三角形内所有点都在圆的内部,故m ≥2,解得m ≥2.[答案] C10.[解析] 作出不等式组所表示的平面区域如图中阴影部分所示,作出参照直线ax +by =0(a >0,b >0),平移直线ax +by =0可知在点A (2,3)处,目标函数z =ax +by (a >0,b >0)取得最小值2,故2a +3b =2≥22a ×3b ,所以ab ≤16,故选D.11.[解析] 在平面直角坐标系中画出可行域如图中阴影部分所示,易得在点A ⎝ ⎛⎭⎪⎫1,12处,z 取得最大值,且z max =32.[答案] 32 12.[解析] 设A (x1,y 1),B (x 2,y 2),AB →=(x 2-x 1,y 2-y 1),则AB →·n =3(x 2-x 1)-2(y 2-y 1)=3x 2-2y 2-(3x 1-2y 1),令z =3x -2y .画出不等式组表示的平面区域(如图中阴影部分所示),可知z max =6,z min =-4,则AB →·n 的最大值为z max -z min =10.[答案] 10 13.[解析] 令f (x )=x 2+ax +2b +1,由-1<x 1<1<x 2<2,得⎩⎪⎨⎪⎧f -=-a +2b +2>0,f=a +2b +2<0,f=2a +2b +5>0,该不等式组表示的平面区域如图,则b -1a -1为区域内的点与(1,1)点连线的斜率,可解得M 、N 点坐标为⎝⎛⎭⎪⎫-3,12,(0,-1),由图可知b -1a -1的取值范围是⎝ ⎛⎭⎪⎫18,2.[答案] ⎝ ⎛⎭⎪⎫18,2 14.[解] 作出不等式组对应的平面区域BCD ,由z =y -ax ,得y =ax +z ,要使目标函数y =ax +z 仅在点(1,3)处取最大值,则只需直线y =ax +z 仅在点B (1,3)处的截距最大,由图象可知a >k BD ,因为k BD =1,所以a >1,即a 的取值范围是(1,+∞).15. [解] 解法一:作出不等式组表示的平面区域,如图中阴影部分.z =|x +2y -4|=|x +2y -4|5·5,即其几何意义为阴影区域内的点到直线x +2y -4=0的距离的5倍.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0,得点B的坐标为(7,9),显然,点B 到直线x +2y -4=0的距离最大,此时z max =21.解法二:由图可知,阴影区域内的点都在直线x +2y -4=0的上方,显然此时有x +2y -4>0,于是目标函数等价于z =x +2y -4,即转化为一般的线性规划问题.显然,当直线经过点B 时,目标函数取得最大值,z max =21.16. [解] 设该公司在甲、乙两个电视台所做广告时间分别为x 分钟、y 分钟,由题意得⎩⎪⎨⎪⎧x +y ≤300,500x +200y ≤90 000,x ≥0,y ≥0,目标函数为z =3 000x +2 000y .二元一次不等式组等价于⎩⎪⎨⎪⎧x +y ≤300,5x +2y ≤900,x ≥0,y ≥0,作出二元一次不等式组所表示的平面区域,即可行域,如图阴影部分所示.作直线l :3 000x +2 000y =0,即3x +2y =0.平移直线l ,从图中可知,当直线l 过M 点时,目标函数取得最大值.联立⎩⎪⎨⎪⎧ x +y =300,5x +2y =900,解得⎩⎪⎨⎪⎧x =100,y =200.∴点M 的坐标为(100,200). ∴z =3 000x +2 000y =700 000(元),即在甲、乙两个电视台的广告时间分别为100分钟、200分钟时,收益最大,最大为70万元.第三节 基本不等式及其应用基础自测1.[答案] (1)√ (2)× (3)× (4)× (5)×2.[解析] 由a >b >0得,a 2+b 2>2ab ;但由a 2+b 2>2ab 不能得到a >b >0,故“a >b >0”是“ab <a 2+b 22”的充分不必要条件,故选A.3.[解析] 由2a +b =4,得22ab ≤4,即ab ≤2, 又a >0,b >0,所以1ab ≥12.当2a =b ,即b =2,a =1时,1ab 取得最小值12.故选C.4.[解析] a ≥x x 2+3x +1=1x +1x+3,又x >0,∴x +1x≥2,(当且仅当x =1时取等号)∴1x +1x+3≤15,∴a ≥15.故选B. 5.[解析] 因为0<x <52,所以5-2x >0,所以y =4x (5-2x )=2×2x (5-2x )≤2⎝⎛⎭⎪⎫2x +5-2x 22=252,当且仅当2x =5-2x ,即x =54时等号成立,故函数y =4x (5-2x )的最大值为252.[答案] 252考点一 利用基本不等式证明不等式例1:[解题指导] 切入点:基本不等式;关键点:适当变形及确定等号成立的条件. [证明] 由a +b =1,得1a +1b +1ab =2⎝ ⎛⎭⎪⎫1a +1b ,∵a +b =1,a >0,b >0,∴1a +1b=a +b a +a +b b=2+a b +ba≥2+2=4,∴1a +1b +1ab ≥8⎝ ⎛⎭⎪⎫当且仅当a =b =12时等号成立.对点训练[证明] ∵a >0,b >0,c >0,∴bc a +ca b ≥2bc a ·cab=2c ; bc a +ab c ≥2 bc a ·abc =2b ; ca b +ab c≥2 ca b ·abc=2a . 以上三式相加得:2⎝ ⎛⎭⎪⎫bc a+ca b+ab c ≥2(a +b +c ),即bc a +ca b +abc≥a +b +c .考点二 利用基本不等式求最值例2:[解题指导] 切入点:利用基本不等式求最值;关键点:凑和或积为定值,同时注意等号成立的条件.[解析] (1)解法一:∵a >0,b >0,4a +b =1,∴1=4a +b ≥24ab =4ab , 当且仅当4a =b =12,即a =18,b =12时,等号成立.∴ab ≤14,∴ab ≤116.所以ab 的最大值为116.解法二:∵a >0,b >0,4a +b =1,∴ab =14·4a ·b ≤14⎝ ⎛⎭⎪⎫4a +b 22=116,当且仅当4a =b =12,即a =18,b =12时,等号成立.所以ab 的最大值为116.(2)由x +3y =5xy ,得3x +1y=5(x >0,y >0),则3x +4y =15(3x +4y )⎝ ⎛⎭⎪⎫3x +1y =15⎝ ⎛⎭⎪⎫13+12y x +3x y ≥15⎝ ⎛⎭⎪⎫13+212y x ·3x y =15(13+12)=5, 当且仅当12y x =3xy,即x =2y =1时,等号成立,此时由⎩⎪⎨⎪⎧x =2y ,x +3y =5xy ,解得⎩⎪⎨⎪⎧x =1,y =12.(3)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3≤-2+3=1,当且仅当5-4x=15-4x,即x=1时,等号成立.故f(x)=4x-2+14x-5的最大值为1.[答案] (1)116(2)5 (3)1对点训练1.[解析]因为-6≤a≤3,所以3-a≥0,a+6≥0,则由基本不等式可知,(3a)(a6)2-++=92,当且仅当a=-32时等号成立.[答案] B2.[解析] 解法一:由已知得1a+2b=b+2aab=ab,且a>0,b>0,∴ab ab=b+2a≥22ab,∴ab≥2 2.解法二:由题设易知a>0,b>0,∴ab=1a+2b≥22ab,即ab≥22,选C.3.[解析] ∵f(x)=4x+ax≥24x·ax=4a(x>0,a>0),当且仅当4x=ax,即4x2=a时f(x)取得最小值.又∵x=3,∴a=4×32=36.[答案] 36考点三基本不等式的实际应用例3:[解题指导]切入点:建立销售量m和售价x的函数关系式;关键点:应用基本不等式求解.[解] (1)设商品的销售价格提高a元,则销售量减少(10-a)万件,所以(10-a)(5+a)≥50,解得0≤a≤5.所以商品的价格最多可以提高5元.(2)由题意知,技术革新后的销售收入为mx万元,若技术革新后的该商品销售收入等于原销售收入与总投入之和,只需满足mx=12(x2+x)+x4+50(x>5)即可,此时m=12x+34+50x≥2x2·50x+34=434,当且仅当12x=50x,即x=10时,取“=”.故销售量至少应达到434万件时,才能使技术革新后的销售收入等于原销售收入与总投入之和.对点训练[解] (1)∵当v =60 km/h 时,d =2.66l ,∴k =2.66l -12l602l =2.16602=0.000 6, ∴d =0.002 4v 2+2.(2)设每小时通过的车辆为Q ,则Q =1 000v d +4,即Q = 1 000v 0.002 4v 2+6= 1 0000.002 4v +6v. ∵0.002 4v +6v≥20.002 4v ·6v =0.24,∴Q ≤1 0000.24=12 5003.当且仅当0.002 4v =6v ,即v =50时,Q 取最大值12 5003.答:当v =50 km/h 时,大桥上每小时通过的车辆最多.课时跟踪训练(三十六)一、选择题1.[解析] ∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误.对于B ,C ,当a <0,b <0时,明显错误. 对于D ,∵ab >0,∴b a +a b ≥2b a ·ab=2.[答案] D 2.[解析] 由a +b =2得,ab ≤⎝ ⎛⎭⎪⎫a +b 22=1,排除A ,B.又a 2+b 22≥⎝⎛⎭⎪⎫a +b 22,可得a 2+b 2≥2. [答案] C 3.[解析] 不等式x +1x -1≥a 恒成立等价于a ≤x +1x -1的最小值,由于x >1,所以x -1>0, 则x +1x -1=x -1+1x -1+1≥2 x -1x -1+1=3, 当且仅当x -1=1x -1,即x =2时,x +1x -1的最小值为3,所以a ≤3.[答案] D 4.[解析] 因为a ,b ∈R 时,都有a 2+b 2-2ab =(a -b )2≥0,即a 2+b 2≥2ab ,而a b +ba≥2⇔ab >0,所以“a 2+b 2≥2ab ”是“a b +ba≥2”的必要不充分条件,故选B. 5.[解析] ∵0<a <b ,∴a +b2>ab ,又f (x )=ln x 在(0,+∞)上单调递增,故f (ab )<f ⎝⎛⎭⎪⎫a +b 2,即q >p ,∵r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =f (ab )=p ,∴p =r <q .故选B.6.[解析] y 2=(2x -1+5-2x )2=4+2x --2x ≤4+(2x -1)+(5-2x )=8,又y >0,所以0<y ≤22,当且仅当2x -1=5-2x ,即x =32时取等号.故y max =22,故选C.7.[解析] 因为1a +1b +2ab ≥21ab+2ab =2⎝⎛⎭⎪⎫1ab+ab ≥4当且仅当1a =1b ,且 1ab=ab ,即a =b 时,取“=”号.[答案] C8.[解:设直角三角形的两直角边分别为a ,b ,则斜边为a 2+b 2.又三角形的面积为1,∴ab =2, ∴三角形的周长为a +b +a 2+b 2≥2ab +2ab =22+2≈4.828,当且仅当a =b =2时取等号,故选C.9.[解析] x ∈(0,1)时1-x >0,∴12x +21-x=-x +x2x+-x +2x 1-x =1-x 2x +2x 1-x +12+2≥52+21=92,当且仅当1-x =2x 即x =13时取得最小值92,∴使m ≤12x +21-x恒成立的实数m 的最大值为92,选B.10.[解:xy z =xy x 2-3xy +4y 2=1x y +4y x -3≤14-3=1,当且仅当x =2y 时等号成立,此时z =2y 2,2x +1y -2z=-1y2+2y=-⎝ ⎛⎭⎪⎫1y -12+1≤1,当且仅当y =1时等号成立,故所求的最大值为1.[答B二、填空题11.[解析] ∵x >y ,y >0,1x +9y=1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫1x +9y =y x+9xy+10≥6+10=16,当且仅当y x=9x y时,上式等号成立,又1x +9y=1,可得x =4,y =12时,(x +y )min =16.[答1612.[解:根据基本不等式知a 2+b 2>2ab (b >a >0),因为b >a >0,且a +b =1,所以b >12>a .因为b-a 2-b 2=b (a +b )-a 2-b 2=a (b -a )>0,所以12,2ab ,a 2+b 2,b 四个数中最大的是b .[答b13.[解析] (a +1+b +3)2=a +b +4+2a +1·b +3≤9+2·a +12+b +322=9+a +b +4=18,所以a +1+b +3≤32,当且仅当a +1=b +3且a +b =5,即a =72,b =32时等号成立.所以a +1+b +3的最大值为3 2.[答案] 3 2三、解答题14.[解] (1)∵1x +1y =⎝ ⎛⎭⎪⎫1x +1y (4x +y )=5+y x +4xy≥9,当且仅当y x =4x y ,即x =16,y =13时取等号,∴1x +1y的最小值是9.(2)∵x >0,y >0,4x +y =1≥24xy ,∴xy ≤116,∴log 2x +log 2y =log 2(xy )≤log 2 116=-4,当且仅当4x =y ,即x =18,y =12时取等号,∴log 2x +log 2y 的最大值为-4.15.[证明] (1)∵a >0,b >0,c >0,且a +b +c =1,∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c =3+b a +c a +a b +c b +a c +bc=3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9,当且仅当a =b =c =13时,取等号.(2)∵1a 2+1b 2≥21a2·1b 2=2ab,当且仅当a =b 时取等号. 又2ab+ab ≥22,当且仅当ab =2时取等号, ∴1a 2+1b 2+ab ≥22,当且仅当⎩⎨⎧a =b ,ab =2,即a =b =42时取等号.16.[解] (1)93=12(AD +BC )h ,其中AD =BC +2·x 2=BC +x ,h =32x ,∴93=12(2BC +x )32x ,得BC =18x -x 2.由⎩⎪⎨⎪⎧h =32x ≥3,BC =18x -x 2>0,得2≤x <6,∴y =BC +2x =18x +3x2(2≤x <6).(2)由y =18x +3x2≤10.5得3≤x ≤4.∵[3,4]⊆[2,6),∴腰长x 的范围是[3,4]. (3)y =18x +3x 2≥218x ·3x 2=63,当且仅当18x =3x2,即x =23∈[2,6)时等号成立. ∴外周长的最小值为63米,此时腰长x 为23米.第四节 合情推理与演绎推理基础自测1.[答案] (1)× (2)√ (3)× (4)× (5)×2.[解:从第2项起每一项与前一项的差构成公差为3的等差数列,所以x =20+12=32.[答B 3.[解析] 从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a 10+b 10=123.[答案] C4.[解析] 若a ,b ∈C ,a -b =0,则a =b ,故①的结论成立;若a ,b ,c ,d ∈Q ,a +b 2=c +d 2,则a =c ,b =d ;故②的结论成立;由(3+i)-(2+i)>0不能得出3+i>2+i ,故③的结论不正确.选C.5.[解析] 由等比数列的性质b n +1·b 17-n =b n +2·b 16-n =…=b 29=1,得b 1b 2…b n =b 1b 2b 3b 4…b 17-n(n <17,n ∈N *). [答案] b 1b 2b 3b 4…b 17-n (n <17,n ∈N *)考点一 归纳推理例1:[解题指导] 切入点:列举一部分观察特点;关键点:规律性.[解析] (1)由题意得a n =a n -1+a n +1(n ≥2).∴a n +1=a n -a n -1(n ≥2).数列的前8项依次为2 008,2 009,1,-2 008,-2 009,-1,2 008,2 009.可知数列为周期数列,周期为6,且S 6=0.∴S 2 009=S 5=1,选C.(2)观察每行等式的特点,每行等式的右端都是幂的形式,底数均为4,指数与等式左端最后一个组合数的上标相等,故有C 02n -1+C 12n -1+C 22n -1+…+C n -12n -1=4n -1. [答案] (1)C (2)4n -1对点训练1.[解析] 观察所给等式左右两边的构成易得第n 个等式为13+23+…+n 3=⎣⎢⎡⎦⎥⎤n n +22=n 2n +24. [答案] 13+23+…+n 3=n 2n +242.[解析] 在{a n }中,a 1=1,a 2=2a 12+a 1=23,a 3=2a 22+a 2=12=24,a 4=2a 32+a 3=25,…,所以猜想{a n }的通项公式a n =2n +1. 这个猜想是正确的,证明如下:因为a 1=1,a n +1=2a n 2+a n ,所以1a n +1=2+a n 2a n =1a n +12,即1a n +1-1a n =12,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,12为公差的等差数列, 所以1a n =1+(n -1)12=12n +12,所以通项公式a n =2n +1(n ∈N *).[答案] a n =2n +1(n ∈N *)考点二 类比推理例2:[解题指导] 切入点:类比推理的转化;关键点:形式和方法兼顾.[解析] (1)设四面体的内切球的球心为O ,则球心O 到四个面的距离都是r ,所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为:V =13(S 1+S 2+S 3+S 4)r ,∴r =3VS 1+S 2+S 3+S 4.(2)由于函数y =a x(a >1)的图象上任意不同两点,依据图象可知,线段AB 总是位于A ,B 两点之间函数图象的上方,因此有结论ax 1+ax 22>a x 1+x 22成立;而函数y =sin x (x ∈(0,π))的图象上任意不同两点A (x 1,sin x 1),B (x 2,sin x 2)的线段总是位于A ,B 两点之间函数图象的下方,类比可知应有sin x 1+sin x 22<sin x 1+x 22成立. [答 (1)C (2)sin x 1+sin x 22<sin x 1+x 22对点训练1.[解析] 解法一:从商类比开方,从和类比积,则算术平均数可以类比几何平均数,故d n 的表达式为d n =nc 1·c 2·…·c n .解法二:若{a n }是等差数列,则a 1+a 2+…+a n =na 1+n n -2d ,∴b n =a 1+n -2d =d2n+a 1-d2,即{b n }为等差数列;若{c n }是等比数列,则c 1·c 2·…·c n =c n1·q1+2+…+(n -1)=c n 1·qn n -2,∴d n =n c 1·c 2·…·c n =c 1·qn -12,即{d n }为等比数列,故选D.2.[解析]由平面图形的面积类比立体图形的体积得出:在空间内,若两个正四面体的棱长的比为1∶2,则它们的底面积之比为1∶4,对应高之比为1∶2,所以体积比为1∶8.[答案] 1∶8考点三 演绎推理例3:[解题指导] 切入点:演绎推理;关键点:导数的应用、构造函数 [解] (1)函数f (x )的定义域为(0,+∞). 因为f (x )=ln x x ,所以f ′(x )=1-ln xx2. 当f ′(x )>0,即0<x <e 时,函数f (x )单调递增; 当f ′(x )<0,即x >e 时,函数f (x )单调递减.故函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞).(2)因为e<3<π,所以eln 3<eln π,πln e<πln 3,即ln 3e<ln πe,ln e π<ln 3π. 于是根据函数y =ln x ,y =e x ,y =πx 在定义域上单调递增,可得3e <πe <π3,e 3<e π<3π. 故这6个数的最大数在π3与3π之中,最小数在3e与e 3之中. 由e<3<π及(1)的结论,得f (π)<f (3)<f (e),即ln ππ<ln 33<ln e e .由ln ππ<ln 33,得ln π3<ln 3π,所以3π>π3; 由ln 33<ln e e,得ln 3e <ln e 3,所以3e <e 3. 综上,6个数中的最大数是3π,最小数是3e. 对点训练[解] (1)由题意f ′(x )=x -ax 2. 当a >0时,函数f (x )的定义域为(0,+∞),此时函数在(0,a )上是减函数,在(a ,+∞)上是增函数,f (x )min =f (a )=ln a 2,无最大值. 当a <0时,函数f (x )的定义域为(-∞,0),此时函数在(-∞,a )上是减函数,在(a,0)上是增函数,f (x )min =f (a )=ln a 2,无最大值. (2)证明:取a =1,由(1)知,f (x )=ln x -x -1x ≥f (1)=0,故1x ≥1-ln x =ln ex. 取x =1,2,3,…,n ,则1+12+13+…+1n ≥ln e+ln e 2+…+ln e n =ln enn !.课时跟踪训练(三十七)一、选择题1.[解析] 由偶函数的导函数为奇函数,故g (-x )=-g (x ).[答案] D2.[解析] 由特殊到一般的推理过程,符合归纳推理的定义;由特殊到与它类似的另一个特殊的推理过程,符合类比推理的定义;由一般到特殊的推理符合演绎推理的定义.A 是演绎推理,B 是归纳推理,C 和D 为类比推理,故选A.3.[解析] 由给出的数列{a n }的前10项得出规律,此数列中,分子与分母的和等于2的有1项,等于3的有2项,等于4的有3项,…,等于n 的有n -1项,且分母由1逐渐增大到n -1,分子由n -1逐渐减小到1(n ≥2),当n =14时即分子与分母的和为14时,数列到91项,当n =15即分子与分母的和为15时,数列到104项,所以a 99与a 100是分子与分母和为15中的第8项与第9项,分别为78,69,∴a 99+a 100=78+69=3724,选A.4.[解析] ∵55=3 125,56=15 625,57=78 125, 58=390 625,59=1 953 125,……,∴52 011最后四位应为每四个循环,2 011=4×502+3,∴最后四位应为8 125. [答案] D5.[解:y =a x是增函数(大前提),底数的范围不定,因此是错误的,从而导致结论错.故选A. 6.[解析] 用A ,B ,C 分别表示优秀、及格和不及格,而语文成绩得A 的学生最多只有1个,语文成绩得B 的也最多只有1个,语文成绩得C 的也最多只有1个,因此学生最多只有3个,显然(A ,C ),(B ,B ),(C ,A ),满足条件.故学生最多3个.[答案] B7.[解析] 由二项式定理可知(a +b )n ≠a n +b n;由两角和的正弦公式可知sin(α+β)≠sin αsin β;由向量的运算性质可知(a +b )2=a 2+2a ·b +b 2,故③是正确的,选B. 8.[解析] ∵V =13S 1H 1+13S 2H 2+13S 3H 3+13S 4H 4=13(kH 1+2kH 2+3kH 3+4kH 4)∴H 1+2H 2+3H 3+4H 4=3Vk. [答案] B9.[解析] B (0,b ),F (-c,0),A (a,0).在“黄金双曲线”中, ∵FB →⊥AB →,∴FB →·AB →=0.∴b 2=ac .而b 2=c 2-a 2, ∴c 2-a 2=ac .在等号两边同除以a 2得e =5+12或e =1-52(舍).[答案] A 10.[解析] 注意到,选项A 由一些特殊事例得出一般性结论,且注意到数列{a n }是等差数列,其前n 项和等于S n =n+2n -2=n 2;选项B 为演绎推理;选项C 为类比推理;选项D 中的推理属于归纳推理,但结论不正确.因此选A. 二、填空题11.[解析] ∵1=12,1+2+1=22,1+2+3+2+1=32,1+2+3+4+3+2+1=42,…,∴归纳可得1+2+…+n +…+2+1=n 2.[答案] n 212.[解析] 由图看出三棱锥P 1-OR 1Q 1及三棱锥 P 2-OR 2Q 2的底面面积比为OQ 1OQ 2·OR 1OR 2,又过顶点分别向底面作垂线,得到高的比为OP 1OP 2,故体积之比为VO -P 1Q 1R 1VO -P 2Q 2R 2=OP 1OP 2·OQ 1OQ 2·OR 1OR 2. [答案]VO -P 1Q 1R 1VO -P 2Q 2R 2=OP 1OP 2·OQ 1OQ 2·OR 1OR 213.[解析] 过圆上一点M (x 0,y 0)的切线方程是把圆的方程中的x 2,y 2中的一个x 和一个y 分别用x 0,y 0代替,圆和椭圆都是封闭曲线,类比圆上一点的切线方程可以得到,过椭圆上一点P (x 0,y 0)的切线方程也是把椭圆方程中的x 2,y 2中的一个x 和一个y 分别用x 0,y 0代替,即得到切线方程为x 0x a 2+y 0y b 2=1.[答案]x 0x a 2+y 0yb 2=1 三、解答题14.[证明] (1)∵a n +1=S n +1-S n ,a n +1=n +2nS n ,∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . ∴S n +1n +1=2·S nn ,故⎩⎨⎧⎭⎬⎫S n n 是以2为公比,1为首项的等比数列. (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2),∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2), 又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1, ∴对于任意正整数n ,都有S n +1=4a n .15.[解] (1)证明:∵a ,b ,c 成等差数列,∴a +c =2b . 由正弦定理得sin A +sin C =2sinB .∵sin B =sin[π-(A +C )]=sin(A +C ),∴sin A +sin C =2sin(A +C ). (2)∵a ,b ,c 成等比数列,∴b 2=ac .由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,当且仅当a =c 时等号成立.∴cos B 的最小值为12.16.[证明] 如图所示,由射影定理,得AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=BC ·DC , ∴1AD 2=1BD ·DC =BC 2BD ·BC ·DC ·BC =BC2AB 2·AC 2.又BC 2=AB 2+AC 2,∴1AD 2=AB 2+AC 2AB 2·AC 2=1AB 2+1AC 2. 猜想,在四面体ABCD 中,AB ,AC ,AD 两两垂直,AE ⊥平面BCD , 则1AE2=1AB2+1AC2+1AD 2.证明:如图,连接BE 并延长交CD 于F ,连接AF ,∵AB ⊥AC ,AB ⊥AD ,AC ∩AD =A , ∴AB ⊥平面ACD ,又AF ⊂平面ACD ,∴AB ⊥AF . 在Rt △ABF 中,AE ⊥BF ,∴1AE=1AB +1AF . 在Rt △ACD 中,AF ⊥CD ,∴1AF2=1AC2+1AD2,∴1AE2=1AB2+1AC2+1AD 2.第五节 直接证明与间接证明基础自测1.[答案] (1)× (2)× (3)√ (4)√ (5)×2.[解析] A 、D 中x 必须大于0,故A 、D 排除,B 中应x 2+1≥2x ,故B 不正确.[答案] C 3.[解析] 因为“方程x 3+ax +b =0至少有一个实根”等价于“方程x 3+ax +b =0的实根的个数大于或等于1”,所以要做的假设是“方程x 3+ax +b =0没有实根”.[答案] A 4.[解析] 若{a n }为等比数列,则a na n -1=q , 所以lg a n -lg a n -1=lga na n -1=lg q ,故数列{lg a n }是等差数列; 若数列{lg a n }是等差数列,则lg a n -lg a n -1=d ,即lg a n a n -1=d ,所以a n a n -1=10d,故数列{a n }是等比数列,故选C.5.[解析] 要比较6+7与22+5的大小, 只需比较(6+7)2与(22+5)2的大小, 只需比较6+7+242与8+5+410的大小, 只需比较42与210的大小, 只需比较42与40的大小, ∵42>40,∴6+7>22+ 5. [答案]6+7>22+ 5考点一 综合法例1:[解题指导] 切入点:利用基本不等式,由条件向结论推导;关键点:综合法的逻辑推理要严密.[证明] (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca , 得a 2+b 2+c 2≥ab +bc +ca .由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c ,。
2019届高考数学一轮复习 第七章 不等式、推理与证明单元质检 文 新人教B版
单元质检七不等式、推理与证明(时间:45分钟满分:100分)一、选择题(本大题共12小题,每小题6分,共72分)1.已知条件p:x>1,q:<1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.由于正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数,以上推理()A.结论正确B.大前提不正确C.小前提不正确D.全不正确3.(2017浙江,4)若x,y满足约束条件则z=x+2y的取值范围是()A.[0,6]B.[0,4]C.[6,+∞)D.[4,+∞)4.若2x+2y=1,则x+y的取值范围是()A.[0,2]B.[-2,0]C.[-2,+∞)D.(-∞,-2]5.袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多6.已知x,y满足约束条件当且仅当x=y=4时,z=ax-y取得最小值,则实数a的取值范围是()A.[-1,1]B.(-∞,1)C.(0,1)D.(-∞,1)∪(1,+∞)7.已知不等式>0对满足a>b>c恒成立,则λ的取值范围是()A.(-∞,0]B.(-∞,1)C.(-∞,4)D.(4,+∞)8.已知不等式ax2-5x+b>0的解集为,则不等式bx2-5x+a>0的解集为() A.B.C.{x|-3<x<2}D.{x|x<-3或x>2}9.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件10.(2017山东菏泽一模)已知实数x,y满足约束条件若z=的最小值为-,则正数a的值为()A. B.1 C. D.11.若a>b>0,且ab=1,则下列不等式成立的是()A.a+<log2(a+b)B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b)<a+12.已知任意非零实数x,y满足3x2+4xy≤λ(x2+y2)恒成立,则实数λ的最小值为()A.4B.5C.D.二、填空题(本大题共4小题,每小题7分,共28分)13.观察分析下表中的数据:猜想一般凸多面体中F,V,E所满足的等式是.14.已知f(x)=lg(100x+1)-x,则f(x)的最小值为.15.如果函数f(x)在区间D上是凸函数,那么对于区间D内的任意x1,x2,…,x n,都有≤f.若y=sin x在区间(0,π)内是凸函数,则在△ABC中,sin A+sin B+sin C的最大值是.16.已知实数x,y满足约束条件则23x+2y的最大值是.参考答案单元质检七不等式、推理与证明1.A解析由x>1,推出<1,故p是q的充分条件;由<1,得<0,解得x<0或x>1.故p不是q的必要条件,故选A.2.C解析因为f(x)=sin(x2+1)不是正弦函数,所以小前提不正确.3.D解析画出约束条件所表示的平面区域为图中阴影部分所示,由目标函数z=x+2y得直线l:y=-x+z,当l经过点B(2,1)时,z取最小值,z min=2+2×1=4.又z无最大值,所以z的取值范围是[4,+∞),故选D.4.D解析∵2x+2y=1≥2,∴≥2x+y,即2x+y≤2-2.∴x+y≤-2.5.B解析若乙盒中放入的是红球,则须保证抽到的两个均是红球;若乙盒中放入的是黑球,则须保证抽到的两个球是一红一黑,且红球放入甲盒;若丙盒中放入的是红球,则须保证抽到的两个球是一红一黑,且黑球放入甲盒;若丙盒中放入的是黑球,则须保证抽到的两个球都是黑球;又由于袋中有偶数个球,且红球、黑球各占一半,则每次从袋中任取两个球,直到袋中所有球都被放入盒中时抽到两个红球的次数与抽到两个黑球的次数一定是相等的,故乙盒中红球与丙盒中黑球一样多,选B.6.B解析作出约束条件所对应的平面区域如图阴影部分.目标函数z=ax-y可化为y=ax-z,可知直线y=ax-z的斜率为a,在y轴上的截距为-z.∵z=ax-y仅在点A(4,4)处取得最小值,∴斜率a<1,即实数a的取值范围为(-∞,1),故选B.7.C解析变形得λ<(a-c)=[(a-b)+(b-c)]·=1++1,而1++1≥4(当且仅当(a-b)2=(b-c)2时等号成立),则λ<4.故选C.8.C解析由题意知a>0,且,-是方程ax2-5x+b=0的两根,∴解得a=30,b=-5,∴bx2-5x+a>0为-5x2-5x+30>0,x2+x-6<0,解得-3<x<2,故选C.9.B解析设每件产品的平均费用为y元,由题意得y=≥2=20,当且仅当(x>0),即x=80时等号成立,故选B.10.D解析实数x,y满足约束条件的可行域如图阴影部分.已知a>0,由z=表示过点(x,y)与点(-1,-1)的直线的斜率,且z的最小值为-,所以点A与点(-1,-1)连线的斜率最小,由解得A,z=的最小值为-,即=-,解得a=.故选D.11.B解析不妨令a=2,b=,则a+=4,,log2(a+b)=log2∈(log22,log24)=(1,2),即<log2(a+b)<a+.故选B.12.A解析依题意,得3x2+4xy≤3x2+[x2+(2y)2]=4(x2+y2)(当且仅当x=2y时等号成立).因此有≤4,当且仅当x=2y时等号成立,即的最大值是4,结合题意得λ≥,故λ≥4,即λ的最小值是4.13.F+V-E=2解析三棱柱中5+6-9=2;五棱锥中6+6-10=2;正方体中6+8-12=2;由此归纳可得F+V-E=2.14.lg 2解析∵f(x)=lg(100x+1)-x=lg=lg(10x+1)≥lg2,当且仅当x=0时等号成立,∴f(x)的最小值为lg2.15.解析由题意知,凸函数f(x)满足≤f,又y=sin x在区间(0,π)上是凸函数,故sin A+sin B+sin C≤3sin=3sin.16.32解析设z=3x+2y,由z=3x+2y得y=-x+.作出不等式组对应的平面区域如图阴影部分,由图象可知当直线y=-x+经过点B时,直线y=-x+在y轴上的截距最大,此时z也最大.由解得即B(1,1).故z max=3×1+2×1=5,则23x+2y的最大值是25=32.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
层级快练(四十二)1.(2018·沈阳四校联考)下列各点中,与点(1,2)位于直线x +y -1=0的同一侧的是( ) A .(0,0) B .(-1,1) C .(-1,3) D .(2,-3)答案 C解析 点(1,2)使x +y -1>0,点(-1,3)使x +y -1>0,所以此两点位于x +y -1=0的同一侧.故选C.2.不等式(x +2y +1)(x -y +4)≤0表示的平面区域为()答案 B解析 方法一:可转化为①⎩⎪⎨⎪⎧x +2y +1≥0,x -y +4≤0或②⎩⎪⎨⎪⎧x +2y +1≤0,x -y +4≥0.由于(-2,0)满足②,所以排除A ,C ,D 选项.方法二:原不等式可转化为③⎩⎪⎨⎪⎧x +2y +1≥0,-x +y -4≥0或④⎩⎪⎨⎪⎧x +2y +1≤0,-x +y -4≤0.两条直线相交产生四个区域,分别为上下左右区域,③表示上面的区域,④表示下面的区域,故选B.3.(2017·天津,理)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y≥0,x +2y -2≥0,x ≤0,y ≤3,则目标函数z =x +y 的最大值为( ) A.23 B .1 C.32 D .3答案 D解析 作出约束条件所表示的可行域如图中阴影部分所示,由z =x +y 得y =-x +z ,作出直线y =-x ,平移使之经过可行域,观察可知,最大值在B(0,3)处取得,故z max =0+3=3,选项D 符合.4.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m<0,y -m>0,表示的平面区域内存在点P(x 0,y 0),满足x 0-2y 0=2,则m 的取值范围是( ) A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)答案 C解析 作出可行域如图.图中阴影部分表示可行域,要求可行域包含y =12x -1的上的点,只需要可行域的边界点(-m ,m)在y =12x -1下方,也就是m<-12m -1,即m<-23.5.(2016·北京,理)若x ,y 满足⎩⎪⎨⎪⎧2x -y≤0,x +y≤3,x ≥0,则2x +y 的最大值为( )A .0B .3C .4D .5答案 C解析 不等式组⎩⎪⎨⎪⎧2x -y≤0,x +y≤3,x ≥0表示的可行域如图中阴影部分所示(含边界),由⎩⎪⎨⎪⎧2x -y =0,x +y =3,解得⎩⎪⎨⎪⎧x =1,y =2,故当目标函数z =2x +y 经过点A(1,2)时,z 取得最大值,z max =2×1+2=4.故选C.6.(2018·西安四校联考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x的最小值为( ) A .-7 B .-4 C .1 D .2答案 A解析 画出由x ,y 满足的约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,如图所示,得它们的交点分别为A(2,0),B(5,3),C(1,3).可知z =y -2x 过点B(5,3)时,z 最小值为3-2×5=-7.7.(2017·贵阳监测)已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x<2,x +y -1≥0,则z =2x -2y -1的取值范围是( ) A .[53,5]B .[0,5]C .[53,5)D .[-53,5)答案 D解析 画出不等式组所表示的区域,如图中阴影部分所示,作直线l :2x -2y -1=0,平移l 可知2×13-2×23-1≤z<2×2-2×(-1)-1,即z 的取值范围是[-53,5).8.(2017·南昌调研)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧y≥x,x +3y≤4,x ≥-2,则z =|x -3y|的最大值为( )A .10B .8C .6D .4答案 B解析 不等式组⎩⎪⎨⎪⎧y≥x,x +3y≤4,x ≥-2,所表示的平面区域如图中阴影部分所示.当平移直线x -3y =0过点A 时,m =x -3y 取最大值; 当平移直线x -3y =0过点C 时,m =x -3y 取最小值.由题意可得A(-2,-2),C(-2,2),所以m max =-2-3×(-2)=4,m min =-2-3×2=-8,所以-8≤m≤4,所以|m|≤8,即z max =8.9.(2014·安徽,理)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( ) A.12或-1 B .2或12C .2或1D .2或-1答案 D解析 作出约束条件满足的可行域,根据z =y -ax 取得最大值的最优解不唯一,通过数形结合分析求解.如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a>0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a<0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.10.(2015·福建)变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y≥0,x -2y +2≥0,mx -y≤0,若z =2x -y 的最大值为2,则实数m 等于( ) A .-2 B .-1 C .1 D .2答案 C解析 如图所示,目标函数z =2x -y 取最大值2即y =2x -2时,画出⎩⎪⎨⎪⎧x +y≥0,x -2y +2≥0,表示的区域,由于mx -y≤0过定点(0,0),要使z =2x -y 取最大值2,则目标函数必过两直线x -2y +2=0与y =2x -2的交点A(2,2),因此直线mx -y =0过点A(2,2),故有2m -2=0,解得m =1.11.(2017·泉州质检)已知O 为坐标原点,A(1,2),点P 的坐标(x ,y)满足约束条件⎩⎪⎨⎪⎧x +|y|≤1,x ≥0,则z =OA →·OP →的最大值为( )A .-2B .-1C .1D .2答案 D解析 作出可行域如图中阴影部分所示,易知B(0,1),z =OA →·OP →=x +2y ,平移直线x +2y =0,显然当直线z =x +2y 经过点B 时,z 取得最大值,且z max =2.故选D.12.已知实数x ,y 满足条件⎩⎪⎨⎪⎧(x -3)2+(y -2)2≤1,x -y -1≥0,则z =yx -2的最小值为( )A .3+ 2B .2+ 2 C.34 D.43答案 C解析 不等式组表示的可行域如图阴影部分所示.目标函数z =y x -2=y -0x -2表示在可行域取一点与点(2,0)连线的斜率,可知过点(2,0)作半圆的切线,切线的斜率为z =yx -2的最小值,设切线方程为y =k(x -2),则A 到切线的距离为1,故1=|k -2|1+k2.解得k =34. 13.(2018·苏州市高三一诊)实数x ,y 满足⎩⎪⎨⎪⎧y≥0,x -y≥0,2x -y -2≤0,则使得z =2y -3x 取得最小值的最优解是( ) A .(1,0) B .(0,-2) C .(0,0) D .(2,2) 答案 A解析 约束条件所表示的可行域为三角形,其三个顶点的坐标分别为(0,0),(1,0),(2,2),将三个顶点的坐标分别代入到目标函数z =2y -3x 中,易得在(1,0)处取得最小值,故取得最小值的最优解为(1,0).14.(2018·湖北宜昌市)设x ,y 满足约束条件⎩⎪⎨⎪⎧y -x≤1,x +y≤3,y ≥m ,若z =x +3y 的最大值与最小值的差为7,则实数m =( ) A.32 B .-32C.14 D .-14答案 C解析 作出不等式组表示的平面区域(图略),由图易得目标函数z =x +3y 在点(1,2)处取得最大值;z max =1+3×2=7,在点(m -1,m)处取得最小值,z min =m -1+3m =4m -1.又由题知7-(4m -1)=7,解得m =14,故选C.15.(2018·兰州模拟)已知M(-4,0),N(0,-3),P(x ,y)的坐标x ,y 满足⎩⎪⎨⎪⎧x≥0,y ≥0,3x +4y≤12,则△PMN 面积的取值范围是( ) A .[12,24] B .[12,25] C .[6,12] D .[6,252]答案 C解析 作出不等式组⎩⎪⎨⎪⎧x≥0,y ≥0,3x +4y≤12表示的平面区域如图中阴影部分所示.又过点M(-4,0),N(0,-3)的直线的方程为3x +4y +12=0,而它与直线3x +4y =12平行,其距离d =|12+12|32+42=245,所以当P 点在原点O 处时,△PMN 的面积最小,其面积为△OMN 的面积,此时S △OMN =12×3×4=6;当P 点在线段AB 上时,△PMN 的面积最大,为12×32+42×245=12,故选C.16.(2017·陕西质检一)点(x ,y)满足不等式|x|+|y|≤1,Z =(x -2)2+(y -2)2,则Z 的最小值为________. 答案 92解析 |x|+|y|≤1所确定的平面区域如图中阴影部分所示,目标函数Z =(x -2)2+(y -2)2的几何意义是点(x ,y)到点P(2,2)距离的平方,由图可知Z 的最小值为点P(2,2)到直线x +y =1距离的平方,即为(|2+2-1|2)2=92.17.已知整数x ,y 满足⎩⎪⎨⎪⎧2x -y≤0,x -3y +5≥0,则z =4-x·(12)y 的最小值为________.答案116解析 z =4-x ·(12)y =2-2x ·2-y =2-2x -y.设m =-2x -y ,要使z 最小,则只需m 最小.作出不等式组所表示的平面区域如图中阴影部分所示.由m =-2x -y 得y =-2x -m ,平移可知当直线y =-2x -m 经过点B 时,m 最小,由⎩⎪⎨⎪⎧2x -y =0,x -3y +5=0,解得⎩⎪⎨⎪⎧x =1,y =2,即B(1,2),此时m =-2-2=-4,所以z =4-x ·(12)y 的最小值为2-4=116.18.某工厂生产甲、乙两种产品,其产量分别为45个与55个,所用原料为A ,B 两种规格金属板,每张面积分别为2 m 2与3 m 2.用A 种规格金属板可造甲种产品3个、乙种产品5个;用B 种规格金属板可造甲、乙两种产品各6个.问A ,B 两种规格金属板各取多少张才能完成计划,并使总用料面积最省? 答案 A ,B 两种金属板各取5张.解析 设A ,B 两种金属板各取x 张,y 张,总用料面积为z , 则约束条件为⎩⎪⎨⎪⎧3x +6y≥45,5x +6y≥55,x ,y ∈N ,目标函数z =2x +3y.作出不等式组的可行域,如图所示.将z =2x +3y 化成y =-23x +z 3,得到斜率为-23,在y 轴上截距为z3,且随z 变化的一组平行直线.当直线z =2x +3y 经过可行域上点M 时,截距最小,z 取得最小值.解方程组⎩⎪⎨⎪⎧5x +6y =55,3x +6y =45,得点M 的坐标为(5,5).此时z min =2×5+3×5=25.所以两种金属板各取5张时,总用料面积最省.1.(2018·兰州市高考诊断考试)设变量x ,y 满足不等式组⎩⎪⎨⎪⎧x +y≥3,x -y≥-1,2x -y≤3,则x 2+y 2的最小值是( ) A.322B.92 C. 5 D .2 5答案 B解析 约束条件所表示的可行域为一个三角形,而目标函数可视为可行域内的点到原点的距离的平方,其距离的最小值为原点到直线x +y =3的距离.∵原点到直线x +y =3的距离为32=322,∴x 2+y 2的最小值为92. 2.(课本习题改编)不等式x -2y +6>0表示的区域在直线x -2y +6=0的( ) A .左下方 B .左上方 C .右下方 D .右上方答案 C解析 画出直线及区域范围,如:当B<0时,Ax +By +C>0表示直线Ax +By +C =0的下方区域;Ax +By +C<0表示直线Ax +By +C =0的上方区域.故选C.3.(2014·安徽,文)不等式组⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.答案 4解析 不等式组表示的平面区域如图阴影部分所示.由⎩⎪⎨⎪⎧x +3y -2=0,x +2y -4=0,得A(8,-2). 由x +y -2=0,得B(0,2).又|CD|=2, 故S 阴影=12×2×2+12×2×2=4.4.(2016·课标全国Ⅲ,理)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y≤0,x +2y -2≤0,则z =x +y 的最大值为________. 答案 32解析 约束条件对应的平面区域是以点(1,12)、(0,1)和(-2,-1)为顶点的三角形,当目标函数y =-x +z 经过点(1,12)时,z 取得最大值32.5.(2017·沈阳质检)在满足不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,y ≥0,的平面点集中随机取一点M(x 0,y 0),设事件A 为“y 0<2x 0”,那么事件A 发生的概率是( ) A.14 B.34 C.13 D.23答案 B解析 不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,y ≥0,表示的平面区域的面积为12×(1+3)×2=4;不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,y ≥0,y ≤2x ,表示的平面区域的面积为12×3×2=3,因此所求的概率等于34,选B. 6.(2015·陕西)某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元 C .17万元 D .18万元答案 D解析 设该企业每天生产甲、乙两种产品分别为x ,y 吨,则利润z =3x +4y.由题意可列⎩⎪⎨⎪⎧3x +2y≤12,x +2y≤8,x ≥0,y ≥0,其表示如图阴影部分区域:.当直线3x +4y -z =0过点A(2,3)时,z 取得最大值,所以z max =3×2+4×3=18,故选D 项.7.(2015·安徽,文)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y≥0,x +y -4≤0,y ≥1,则z =-2x +y 的最大值是( )A .-1B .-2C .-5D .1答案 A解析 作出满足条件的可行域,如图中阴影部分所示,易知在点A(1,1)处,z 取得最大值,故z max =-2×1+1=-1.8.(2016·课标全国Ⅱ,文)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,x -3≤0,则z =x -2y 的最小值为________. 答案 -5解析 通性通法:作出可行域,如图中阴影部分所示,由z =x -2y 得y =12x -12z ,作直线y=12x 并平移,观察可知,当直线经过点A(3,4)时,z min =3-2×4=-5.光速解法:因为可行域为封闭区域,所以线性目标函数的最值只可能在边界点处取得,易求得边界点分别为(3,4),(1,2),(3,0),依次代入目标函数可求得z min =-5.9.已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0,目标函数z =y -ax(a∈R ).若z 取最大值时的唯一最优解是(1,3),则实数a 的取值范围是________. 答案 (1,+∞)解析 作出可行域,可行域为三条直线所围成的区域,则它的最大值在三条直线的交点处取得,三个交点分别为(1,3),(7,9),(3,1),所以⎩⎪⎨⎪⎧3-a>9-7a ,3-a>1-3a.所以a>1.10.(2018·安徽安庆模拟)若实数x ,y 满足⎩⎪⎨⎪⎧y -2x≤-2,y ≥1,x +y≤4,则z =x 2+y2xy的取值范围是________. 答案 [2,103]解析 因为z =x 2+y 2xy =x y +y x ,所以令k =y x ,则z =k +1k ,其中k 表示可行域内的点与坐标原点连线的斜率.根据不等式组画出可行域,则A(2,2),B(3,1),C(32,1),如图.由图形可知,13≤k ≤1,根据函数z =1k +k 的单调性得2≤z≤103.所以z∈[2,103].。